WO2022134992A1 - Solar cell, production method therefor and photovoltaic module - Google Patents

Solar cell, production method therefor and photovoltaic module Download PDF

Info

Publication number
WO2022134992A1
WO2022134992A1 PCT/CN2021/132485 CN2021132485W WO2022134992A1 WO 2022134992 A1 WO2022134992 A1 WO 2022134992A1 CN 2021132485 W CN2021132485 W CN 2021132485W WO 2022134992 A1 WO2022134992 A1 WO 2022134992A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
titanium nitride
work function
low work
nitride layer
Prior art date
Application number
PCT/CN2021/132485
Other languages
French (fr)
Chinese (zh)
Inventor
刘继宇
李华
Original Assignee
泰州隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011548705.9A external-priority patent/CN114744064B/en
Priority claimed from CN202011556800.3A external-priority patent/CN114678433B/en
Application filed by 泰州隆基乐叶光伏科技有限公司 filed Critical 泰州隆基乐叶光伏科技有限公司
Publication of WO2022134992A1 publication Critical patent/WO2022134992A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions

Definitions

  • the present disclosure relates to the technical field of solar photovoltaics, and in particular, to a solar cell, a production method, and a photovoltaic assembly.
  • a distinguishing feature of solar cells is their ability to direct light-generated electrons and holes into asymmetrically conductive paths, that is, to separate charge carriers and then collect them through the positive and negative electrodes, thereby outputting electrical energy.
  • Conventional crystalline silicon solar cells are doped near the surface of the silicon substrate to obtain electron selective contact and hole selective contact to achieve carrier separation.
  • heavy doping is bound to occur. It affects the performance of the cell.
  • the high temperature process of the doping technology will introduce more impurities and affect the lifetime of minority carriers, resulting in lower efficiency of the solar cell.
  • the electron selectivity can be arranged on one side of the silicon substrate or a hole-selective titanium nitride layer acts as a carrier-selective layer to collect electrons or holes in the silicon substrate, thereby separating the carriers in the silicon substrate, without doping the silicon substrate. Hole-selective contact and electron-selective contact for separation of charge carriers.
  • the titanium nitride layer which is the carrier selection layer, is oxidized to form a titanium oxide layer. Due to the poor conductivity of the titanium oxide layer, the electron transport efficiency is poor, and the metal electrode and the titanium oxide layer have poor electron transport efficiency. The height of the potential barrier between them is high, thereby increasing the contact resistance of the solar cell and reducing the efficiency of the solar cell.
  • a remarkable feature of solar cells is their ability to direct light-generated electrons and holes into asymmetrically conductive paths, that is, to separate charge carriers and then collect them through the positive and negative electrodes, thereby outputting electrical energy.
  • Conventional crystalline silicon solar cells are doped near the surface of the silicon substrate to obtain electron selective contact and hole selective contact to achieve carrier separation.
  • heavy doping is bound to occur. affect battery performance. Since titanium nitride is a metalloid material, its high electrical conductivity and low contact resistivity make it a material that facilitates carrier transport and collection.
  • titanium nitride itself can passivate the silicon substrate surface to The surface recombination of carriers is inhibited, and the deposition rate of titanium nitride is relatively fast. Therefore, a titanium nitride layer with electron selectivity or hole selectivity can be arranged on one side of the silicon substrate as a carrier selection layer. The electrons or holes in the silicon substrate are collected, thereby separating charge carriers in the silicon substrate without doping the silicon substrate.
  • the present disclosure provides a solar cell, a production method, and a photovoltaic module, aiming at solving the problem that a titanium nitride layer serving as a carrier selection layer in a solar cell is oxidized to generate a titanium oxide layer, resulting in high contact resistance of the solar cell, and solar cells The problem of low battery efficiency.
  • embodiments of the present disclosure provide a solar cell, the solar cell comprising:
  • Silicon substrate titanium nitride layer, low work function metal layer and metal electrode layer;
  • the titanium nitride layer is arranged on one side of the silicon substrate, the low work function metal layer is arranged on the side of the titanium nitride layer away from the silicon substrate, and the metal electrode layer is arranged on the low work function a side of the metal layer away from the titanium nitride layer;
  • the low work function metal contained in the low work function metal layer has higher activity than metal titanium.
  • the low work function metal includes: any one of calcium, magnesium, aluminum, barium, cesium, strontium, ytterbium, cerium, samarium, europium, neodymium, thorium, gadolinium, hafnium, lutetium and lanthanum.
  • the solar cell further comprises: a titanium oxide layer and a silicon oxide layer;
  • the silicon oxide layer is arranged between the silicon substrate and the titanium nitride layer, and the titanium oxide layer is arranged between the titanium nitride layer and the low work function metal layer;
  • the titanium oxide layer and the silicon oxide layer are formed in the process of oxidizing the titanium nitride layer.
  • the solar cell further comprises: a silicide layer;
  • the silicide layer is disposed between the silicon substrate and the titanium nitride layer;
  • the silicide layer includes any one of cobalt disilicide, platinum silicide and titanium disilicide.
  • the silicon substrate is an n-type silicon substrate.
  • the metal electrode layer comprises: any one of aluminum, aluminum/silver, nickel/copper, nickel/copper/tin, chromium/palladium/silver and nickel/copper/silver.
  • the thickness of the titanium nitride layer is less than 20 nanometers.
  • embodiments of the present disclosure provide a method for producing a solar cell, the method comprising:
  • a titanium nitride layer is prepared on one side of the silicon substrate
  • the low work function metal contained in the low work function metal layer has higher activity than metal titanium.
  • the method further includes:
  • the titanium nitride layer is oxidized to form a silicon oxide layer between the titanium nitride layer and the silicon substrate, and a titanium oxide layer is formed on the side of the titanium nitride layer away from the silicon substrate.
  • the method before the step of preparing the titanium nitride layer on one side of the silicon substrate, the method further includes:
  • the metal layer includes any one of cobalt, platinum and titanium.
  • the oxidation treatment includes any one of dry oxidation, wet oxidation and plasma oxidation.
  • the heat treatment temperature of the oxidation treatment is 300-600 degrees Celsius, and the oxidation atmosphere of the oxidation treatment includes nitrogen and oxygen;
  • the heat treatment temperature of the oxidation treatment is 300-600 degrees Celsius, and the oxidation atmosphere of the oxidation treatment includes nitrogen and water;
  • the heat treatment temperature of the oxidation treatment is 25-300 degrees Celsius.
  • an embodiment of the present disclosure provides a photovoltaic assembly, wherein the photovoltaic assembly includes any one of the aforementioned solar cells.
  • the present disclosure has the following beneficial effects: the solar cell in the present disclosure includes: a silicon substrate, a titanium nitride layer, a low work function metal layer and a metal electrode layer; the titanium nitride layer is disposed on the silicon On one side of the substrate, the low work function metal layer is arranged on the side of the titanium nitride layer away from the silicon substrate, and the metal electrode layer is arranged on the side of the low work function metal layer away from the titanium nitride layer; The work function metal is more active than the titanium metal.
  • a low work function metal layer is provided on the side of the titanium nitride layer away from the silicon substrate, and the low work function metal contained in the low work function metal layer is more active than the metal titanium, if it is used as a carrier
  • the titanium nitride layer of the selective transport layer is oxidized to form a titanium oxide layer, and the low work function metal layer can reduce the titanium oxide layer, thereby improving the conductivity of the titanium nitride layer, improving the electron transfer efficiency, and reducing the metal electrode and the metal electrode.
  • the potential barrier height between the titanium nitride layers can reduce the contact resistance of the solar cell and improve the efficiency of the solar cell.
  • the present disclosure also provides a solar cell, a production method, and a photovoltaic module, aiming to solve the problem of low efficiency of the solar cell due to the large work function of the titanium nitride when titanium nitride is used as the carrier selection layer. .
  • embodiments of the present disclosure provide a solar cell, the solar cell comprising:
  • Silicon substrate doped titanium nitride layer, low work function metal layer and metal electrode layer;
  • the doped titanium nitride layer is arranged on one side of the silicon substrate, the low work function metal layer is arranged on the side of the doped titanium nitride layer away from the silicon substrate, and the metal electrode layer is arranged on the side of the silicon substrate. a side of the low work function metal layer away from the doped titanium nitride layer;
  • the low work function metal contained in the low work function metal layer is more active than the metal titanium;
  • the low work function metal is contained in the doped titanium nitride layer, and the low work function metal contained in the doped titanium nitride layer is in the process of annealing the low work function metal layer , formed by diffusion into the low work function metal layer.
  • between the silicon substrate and the doped titanium nitride layer further comprises: a first oxide layer and a second oxide layer;
  • the first oxide layer is arranged on one side of the silicon substrate, and the second oxide layer is arranged on the side of the first oxide layer away from the silicon substrate;
  • the low work function metal is more active than the metal contained in the first oxide layer
  • the second oxide layer is a metal oxide layer generated by the low work function metal in the low work function metal layer passing through the doped titanium nitride layer and reacting with the first oxide layer.
  • the first oxide layer includes: any one of magnesium oxide, aluminum oxide, hafnium oxide, titanium oxide, niobium oxide, tantalum oxide, gallium oxide, zinc oxide and cesium oxide.
  • the concentration of the low work function metal in the doped titanium nitride layer gradually decreases from the side close to the low work function metal layer to the side close to the silicon substrate.
  • the solar cell further comprises: a first titanium nitride layer;
  • the first titanium nitride layer is disposed between the low work function metal layer and the metal electrode layer.
  • the thickness of the doped titanium nitride layer is 1-10 nanometers, and the thickness of the first titanium nitride layer is 5-500 nanometers.
  • the low work function metal includes: any one of calcium, magnesium, aluminum, barium, cesium, strontium, ytterbium, cerium, samarium, europium, neodymium, thorium, gadolinium, hafnium, lutetium and lanthanum.
  • the metal electrode layer includes any one of aluminum, silver, aluminum/silver, nickel/copper/tin, chromium/palladium/silver, and nickel/copper/silver.
  • the thickness of the low work function metal layer is 0.1-10 nanometers.
  • embodiments of the present disclosure provide a method for producing a solar cell, the method comprising:
  • a titanium nitride layer is prepared on one side of the silicon substrate
  • the low work function metal layer is annealed, and the low work function metal in the low work function metal layer diffuses into the titanium nitride layer to form a doped titanium nitride layer.
  • the step of preparing the titanium nitride layer on one side of the silicon substrate specifically includes:
  • the step of performing annealing treatment on the low work function metal layer and diffusing the low work function metal in the low work function metal layer into the titanium nitride layer to form a doped titanium nitride layer specifically includes:
  • the low work function metal layer is annealed, the low work function metal in the low work function metal layer diffuses into the titanium nitride layer to form the doped titanium nitride layer, and the low work function metal layer is diffused into the titanium nitride layer.
  • the low work function metal in the functional metal layer passes through the doped titanium nitride layer and reacts with the first oxide layer to form a second oxide layer.
  • the step of the annealing treatment includes:
  • the annealing is carried out in a mixed gas of nitrogen and hydrogen in a temperature range of 350-450 degrees Celsius, and the ratio of nitrogen and hydrogen in the mixed gas is 10:1.
  • the method further includes:
  • the secondary annealing is carried out in a nitrogen annealing atmosphere in the temperature range of 400-700 degrees Celsius.
  • the step of preparing a metal electrode layer on the side of the low work function metal layer away from the titanium nitride layer specifically includes:
  • the metal electrode layer is prepared on the side of the first titanium nitride layer away from the low work function metal layer.
  • the first oxide layer includes: any one of magnesium oxide, aluminum oxide, hafnium oxide, titanium oxide, niobium oxide, tantalum oxide, gallium oxide, zinc oxide and cesium oxide.
  • an embodiment of the present disclosure provides a photovoltaic assembly, wherein the photovoltaic assembly includes any one of the aforementioned solar cells.
  • the solar cell in the present disclosure includes: a silicon substrate, a doped titanium nitride layer, a low work function metal layer and a metal electrode layer;
  • the layer is arranged on one side of the silicon substrate, the low work function metal layer is arranged on the side of the doped titanium nitride layer away from the silicon substrate, and the metal electrode layer is arranged on the side of the low work function metal layer away from the doped titanium nitride layer;
  • the low work function metal contained in the metal layer is higher than the activity of metal titanium; wherein, the low work function metal is contained in the doped titanium nitride layer, and the low work function metal contained in the doped titanium nitride layer is in the low work function.
  • the metal layer During the annealing process of the metal layer, it is formed by diffusion from the low work function metal layer.
  • the low work function metal layer can be diffused during the annealing process, a doped titanium nitride layer doped with the low work function metal in the low work function metal layer is generated, so that the doped titanium nitride layer is The work function is reduced, which promotes electron transport, thereby improving the efficiency of solar cells.
  • FIG. 1 shows a schematic structural diagram of a first solar cell in an embodiment of the present disclosure
  • FIG. 2 shows a schematic structural diagram of a second type of solar cell in an embodiment of the present disclosure
  • FIG. 3 shows a schematic structural diagram of a third solar cell in an embodiment of the present disclosure
  • FIG. 4 shows a flow chart of steps of a method for producing a solar cell in an embodiment of the present disclosure
  • 10-silicon substrate 20-titanium nitride layer, 30-low work function metal layer, 40-metal electrode layer, 50-silicon oxide layer, 60-titanium oxide layer, 70-silicide layer;
  • FIG. 5 shows a schematic structural diagram of a first solar cell in an embodiment of the present disclosure
  • FIG. 6 shows a schematic structural diagram of a second type of solar cell in an embodiment of the present disclosure
  • FIG. 7 shows a schematic structural diagram of a third solar cell in an embodiment of the present disclosure.
  • FIG. 8 shows a flow chart of steps of a method for producing a solar cell in an embodiment of the present disclosure
  • 110-silicon substrate 120-doped titanium nitride layer, 130-low work function metal layer, 140-metal electrode layer, 150-first oxide layer, 160-second oxide layer, 170-first titanium nitride layer .
  • a solar cell, a production method, and a photovoltaic photovoltaic assembly provided by the present disclosure will be described in detail below by listing several specific embodiments.
  • FIG. 1 shows a schematic structural diagram of a first solar cell provided by an embodiment of the present disclosure.
  • the solar cell may include: a silicon substrate 10 , a titanium nitride layer 20 , a low work function metal layer 30 and a metal electrode layer 40 .
  • the titanium nitride layer 20 is disposed on one side of the silicon substrate 10
  • the low work function metal layer 30 is disposed on the side of the titanium nitride layer 20 away from the silicon substrate 10
  • the metal electrode layer 40 is disposed on the low work function metal layer 30 away from the nitride
  • One side of the titanium layer 20, and the low work function metal contained in the low work function metal layer 30 is more active than the metal titanium.
  • the silicon substrate may be an n-type silicon substrate, that is, the doping type of the silicon substrate is n-type doping, and the corresponding dopants may include phosphorus (P), arsenic ( Any one or more of As), bismuth element (Bi) and antimony element (Sb), the doping concentration is 5 ⁇ 10 14 -1 ⁇ 10 16 cm -3 , and the n-type silicon substrate has higher contamination The resistance of the contaminants on the lifetime can be reduced, resulting in a higher lifetime, and since the n-type silicon substrate has no boron-oxygen defects, performance degradation can be avoided.
  • the doping type of the silicon substrate is n-type doping
  • the corresponding dopants may include phosphorus (P), arsenic ( Any one or more of As), bismuth element (Bi) and antimony element (Sb)
  • the doping concentration is 5 ⁇ 10 14 -1 ⁇ 10 16 cm -3
  • the n-type silicon substrate has higher contamination
  • the resistance of the contaminants on the lifetime can be
  • the lightly doped silicon substrate can reduce the Auger recombination and band gap narrowing effects caused by doping, improve the lifetime and carrier diffusion length of minority carriers, and improve the current density of solar cells, so that higher conversion efficiency.
  • the silicon substrate may also be a p-type silicon substrate, that is, the doping type of the silicon substrate is p-type doping, and the corresponding dopants may include boron (B), aluminum (Al), gallium in group III elements. Any one or more of element (Ga) and indium element (In).
  • the above-mentioned titanium nitride layer may be disposed on the backlight surface of the silicon substrate, or may be disposed on the light-facing surface of the silicon substrate.
  • the titanium nitride layer may have hole selectivity or electron selectivity, and thus can be used as a A hole-selective transport layer or an electron-selective transport layer to collect holes or electrons in a silicon substrate to separate carriers in a silicon substrate, which can be formed without heavily doping the silicon substrate for carrier separation hole-selective contact or electron-selective contact.
  • a silicon oxide layer with tunneling passivation can be formed at the interface between the titanium nitride layer and the silicon substrate, and titanium oxide can be formed on the side of the titanium nitride layer away from the silicon substrate.
  • the silicon oxide layer can passivate the surface defects, so that there is no need to grow the silicon oxide layer separately to improve the defects of the insufficient passivation ability of the titanium nitride layer.
  • the titanium oxide layer can enhance the surface passivation effect, and the titanium nitride layer also has excellent passivation.
  • the passivation effect of the surface can be greatly enhanced by one oxidation treatment, which has the advantage of a simple process.
  • titanium nitride layers with different work functions and different types can be prepared by adjusting the process conditions.
  • the above-mentioned low work function metal layer is disposed on the side of the titanium nitride layer away from the silicon substrate. If a titanium oxide layer is formed on the surface of the titanium nitride layer, the titanium oxide layer is located between the low work function metal layer and the nitrided surface.
  • the low work function metal layer containing the low work function metal can reduce the titanium oxide layer, avoiding Due to the poor conductivity of the titanium oxide generated by oxidation on the surface of the titanium nitride, the contact resistance increases, thereby improving the conductivity of the titanium nitride layer, improving the electron transfer efficiency and reducing the metal electrode and the nitride.
  • the height of the potential barrier between the titanium layers can reduce the contact resistance of the solar cell and improve the efficiency of the solar cell.
  • the work function of the low work function metal in the low work function metal layer may be lower than that of aluminum (4.28 eV).
  • the above-mentioned metal electrode layer is used for collecting and exporting carriers.
  • the silicon substrate acts as a light absorbing layer to generate electron-hole pairs. Due to the selective transport of minority carriers by the titanium nitride layer and the low work function metal layer, the minority carriers are transported to the low work function.
  • the functional metal layer is then extracted by the metal electrode layer connected to it, so as to realize the separation of carriers, so that a potential difference is generated between the metal electrode layer and the silicon substrate, that is, a voltage is generated, thereby converting light energy into electrical energy.
  • a solar cell includes: a silicon substrate, a titanium nitride layer, a low work function metal layer and a metal electrode layer; the titanium nitride layer is disposed on one side of the silicon substrate, and the low work function metal layer is disposed on one side of the silicon substrate.
  • the titanium nitride layer is on the side away from the silicon substrate, and the metal electrode layer is arranged on the side of the low work function metal layer away from the titanium nitride layer; wherein, the low work function metal contained in the low work function metal layer is more active than the metal titanium.
  • a low work function metal layer is provided on the side of the titanium nitride layer away from the silicon substrate, and the low work function metal contained in the low work function metal layer is more active than the metal titanium, if it is used as a carrier
  • the titanium nitride layer of the selective transport layer is oxidized to form a titanium oxide layer, and the low work function metal layer can reduce the titanium oxide layer, thereby improving the conductivity of the titanium nitride layer, improving the electron transfer efficiency, and reducing the metal electrode and the metal electrode.
  • the potential barrier height between the titanium nitride layers can reduce the contact resistance of the solar cell and improve the efficiency of the solar cell.
  • the above-mentioned low work function metals include: any one of calcium, magnesium, aluminum, barium, cesium, strontium, ytterbium, cerium, samarium, europium, neodymium, thorium, gadolinium, hafnium, lutetium and lanthanum, that is, low work function metals.
  • the metal activity order of the work function metal is before the metal titanium, and the low work function metal is higher than the metal titanium activity. At the same time, the stronger the activity of the low work function metal, the greater the reduction degree of titanium oxide.
  • FIG. 2 shows a schematic structural diagram of a second type of solar cell provided by an embodiment of the present disclosure.
  • the solar cell may further include: a titanium oxide layer 60 and a silicon oxide layer 50 , and the silicon oxide layer 50 is disposed on the Between the silicon substrate 10 and the titanium nitride layer 20, the titanium oxide layer 60 is disposed between the titanium nitride layer 20 and the low work function metal layer 30, wherein the titanium oxide layer 60 and the silicon oxide layer 50 are opposite to the titanium nitride layer 30.
  • the layer 20 is formed during the oxidation treatment.
  • a silicon oxide layer with tunneling passivation can be formed at the interface between the titanium nitride layer and the silicon substrate by performing an oxidation treatment on the titanium nitride layer. , and a titanium oxide layer is formed on the side of the titanium nitride layer away from the silicon substrate.
  • the silicon oxide layer can passivate the surface defects, there is no need to grow the silicon oxide layer separately to improve the defects of the insufficient passivation ability of the titanium nitride layer, the titanium oxide layer can enhance the surface passivation effect, and the titanium nitride layer also has excellent In summary, the passivation performance of the surface can be greatly enhanced by one oxidation treatment, which has the advantage of a simple process.
  • FIG. 3 shows a schematic structural diagram of a third solar cell provided by an embodiment of the present disclosure.
  • the solar cell may further include: a silicide layer 70 , and the silicide layer 70 is disposed on the silicon substrate 10 Between the titanium nitride layer 20 and the titanium nitride layer 20, the contact resistance can be further reduced and the efficiency of the solar cell can be improved.
  • the silicide layer may include any one of cobalt disilicide, platinum silicide and titanium disilicide.
  • the above-mentioned silicon substrate may be an n-type silicon substrate. Since the n-type silicon substrate has a higher resistance to contaminants, the influence of contaminants on the lifespan can be reduced, thereby having a higher lifespan.
  • the silicon substrate has no boron-oxygen defects, thus avoiding performance degradation.
  • the above-mentioned metal electrode layer may include any one of aluminum, aluminum/silver, nickel/copper, nickel/copper/tin, chromium/palladium/silver, and nickel/copper/silver.
  • the thickness of the titanium nitride layer may be less than 20 nanometers, preferably less than 15 nanometers, such as 8 nanometers, and the thickness of the titanium oxide layer formed on the surface of the titanium nitride layer may be less than the thickness of the titanium nitride layer.
  • the present disclosure also provides a method for producing a solar cell.
  • FIG. 4 it shows a flow chart of the steps of the method for producing a solar cell provided by an embodiment of the present disclosure.
  • the method may include the following steps:
  • step 101 a titanium nitride layer is prepared on one side of the silicon substrate.
  • a silicon substrate can be obtained first, and then a titanium nitride layer is prepared on one side of the silicon substrate.
  • the silicon substrate may be an n-type silicon substrate, and the silicon substrate may be a silicon wafer after surface de-damage, polishing, or texturing and diffusion.
  • the titanium nitride layer can be deposited by means of thermal atomic deposition or plasma-assisted or enhanced atomic deposition, and the titanium nitride layer can be an electron selective transport layer or a hole selective transport layer.
  • a metal layer may be deposited on the surface of the silicon substrate, and the metal layer may be annealed, so that the metal layer reacts with the silicon substrate to form a silicide layer, thereby forming a silicide layer between the silicon substrate and the titanium nitride layer.
  • a silicide layer is prepared between the layers.
  • the metal layer may include any one of cobalt, platinum and titanium, and correspondingly, the silicide layer may include any one of cobalt disilicide, platinum silicide and titanium disilicide.
  • the titanium nitride layer can be oxidized, so as to form an ultra-thin silicon oxide layer between the titanium nitride layer and the silicon substrate, on the side of the titanium oxide layer away from the silicon substrate A titanium oxide layer is formed.
  • the titanium nitride layer can be deposited on the side of the metal layer away from the silicon substrate, and the In one oxidation treatment, the metal in the metal layer reacts with the silicon substrate to form a silicide layer, and at the same time, an ultra-thin silicon oxide layer and a titanium oxide layer are formed.
  • the above oxidation treatment may include any one of dry oxidation, wet oxidation and plasma oxidation.
  • the heat treatment temperature of the oxidation treatment is 300-600 degrees Celsius, and the oxidizing atmosphere of the oxidation treatment includes nitrogen and oxygen; in the case that the above-mentioned oxidation treatment is wet oxidation, the oxidation treatment The heat treatment temperature of the oxidation treatment is 300-600 degrees Celsius, and the oxidation environment of the oxidation treatment includes nitrogen and water; in the case that the above oxidation treatment is plasma oxidation, the heat treatment temperature of the oxidation treatment is 25-300 degrees Celsius, and the plasma oxidation can use an inductor Coupled plasma (Inductively Coupled Plasma, ICP) reactor or microwave plasma oxidizer to complete.
  • ICP inductively Coupled Plasma
  • Step 102 preparing a low work function metal layer on the side of the titanium nitride layer away from the silicon substrate.
  • a low work function metal layer can be further prepared on the side of the titanium nitride layer away from the silicon substrate.
  • the activity of the low work function metal contained in the low work function metal layer is higher than that of titanium metal.
  • Step 103 preparing a metal electrode layer on the side of the low work function metal layer away from the titanium nitride layer.
  • a metal electrode layer may be further prepared on the side of the low work function metal layer away from the titanium nitride layer.
  • the metal electrodes may be fabricated by various known methods, and may not require a high-temperature sintering process to reduce thermal budget and adverse effects on battery performance, for example, by screen printing, printing, laser
  • the metal electrode layer is formed by transfer of low temperature paste or electron beam evaporation, thermal evaporation and electroplating.
  • a solar cell, a production method, and a photovoltaic photovoltaic assembly provided by the present disclosure will be described in detail below by listing several specific embodiments.
  • FIG. 5 shows a schematic structural diagram of a first solar cell provided by an embodiment of the present disclosure.
  • the solar cell may include: a silicon substrate 110 , a doped titanium nitride layer 120 , a low work function metal layer 130 and a metal electrode Layer 140.
  • the doped titanium nitride layer 120 is disposed on one side of the silicon substrate 110, the low work function metal layer 30 is disposed on the side of the doped titanium nitride layer 120 away from the silicon substrate 110, and the metal electrode layer 40 is disposed on the low work function metal layer 130 is away from the side of the doped titanium nitride layer 120, and the low work function metal layer 30 contains a low work function metal which is more active than metal titanium.
  • the doped titanium nitride layer 120 contains a low work function metal, and the low work function metal contained in the doped titanium nitride layer 120 is annealed from the low work function metal layer 130 during the annealing process.
  • the work function metal layer 130 is diffused into the formed.
  • the doping type of the silicon substrate may be n-type doping or p-type doping.
  • the corresponding dopant may include V Any one or more of phosphorus (P), arsenic (As), bismuth (Bi) and antimony (Sb) among the group elements; when the doping type of the silicon substrate is P-type doping, The corresponding dopant may include any one or more of boron element (B), aluminum element (Al), gallium element (Ga), and indium element (In) among the group III elements.
  • the doped titanium nitride layer disposed on the silicon substrate may be disposed on the backlight surface of the silicon substrate, or may be disposed on the light-directing surface of the silicon substrate. Since titanium nitride is a metalloid material, its high electrical conductivity and low contact resistivity make it a material that facilitates carrier transport and collection. In addition, titanium nitride itself can passivate the silicon substrate surface to The surface recombination of carriers is inhibited, and the deposition rate of titanium nitride is relatively fast. Therefore, a titanium nitride layer with electron selectivity or hole selectivity can be arranged on one side of the silicon substrate as a carrier selection layer.
  • the electrons or holes in the silicon substrate are collected, thereby separating charge carriers in the silicon substrate without doping the silicon substrate.
  • the work function of titanium nitride prepared by conventional methods is large, which makes the electron transport efficiency of titanium nitride poor, and is not suitable for extracting and collecting electron carriers, resulting in low efficiency of solar cells.
  • the titanium nitride layer disposed on the surface of the silicon substrate can be prepared as a doped titanium nitride layer, that is, the titanium nitride layer is disposed on the surface of the titanium nitride layer far from the silicon substrate.
  • the work function metal layer, and the low work function metal layer contained in the low work function metal layer is more active than the metal titanium, so that in the process of annealing the low work function metal layer, the low work function metal layer in the low work function metal layer has a low work function metal layer. Diffusion into the titanium nitride layer to form a doped titanium nitride layer, so that the work function of the doped titanium nitride layer is reduced, electron transport is promoted, and the efficiency of the solar cell is improved.
  • the doping level of the low work function metal in the doped titanium nitride layer depends on the work function and diffusivity of the low work function metal in the low work function metal layer, as well as the thickness and annealing conditions of the titanium nitride layer, nitrogen
  • the thickness of the layer, the adjustment of annealing conditions, etc. can improve the doping level of the low work function metal in the doped titanium nitride layer.
  • the work function of the low work function metal in the low work function metal layer may be lower than that of aluminum (4.28 eV) to improve the selective transport of electron carriers.
  • the above-mentioned metal electrode layer is used for collecting and exporting carriers.
  • the silicon substrate acts as a light absorbing layer to generate electron-hole pairs. Since the doped titanium nitride layer and the low work function metal layer have good carrier selection and transport, the carriers are transported to The low work function metal layer is then extracted by the metal electrode layer connected to it, so as to realize the separation of carriers, so that a potential difference is generated between the metal electrode layer and the silicon substrate, that is, a voltage is generated, thereby converting light energy into electrical energy.
  • a solar cell includes: a silicon substrate, a doped titanium nitride layer, a low work function metal layer and a metal electrode layer; the doped titanium nitride layer is disposed on one side of the silicon substrate, and the low work function The metal layer is arranged on the side of the doped titanium nitride layer away from the silicon substrate, and the metal electrode layer is arranged on the side of the low work function metal layer away from the doped titanium nitride layer; the low work function metal layer contains a lower work function metal than the metal layer.
  • the activity of titanium wherein, the doped titanium nitride layer contains low work function metal, and the low work function metal contained in the doped titanium nitride layer is in the process of annealing the low work function metal layer. Formed by diffusion into the work function metal layer.
  • the low work function metal layer can be diffused during the annealing process, a doped titanium nitride layer doped with the low work function metal in the low work function metal layer is generated, so that the doped titanium nitride layer is The work function is reduced, which promotes electron transport, thereby improving the efficiency of solar cells.
  • FIG. 6 shows a schematic structural diagram of a second type of solar cell provided by an embodiment of the present disclosure.
  • between the silicon substrate 110 and the doped titanium nitride layer 120 may further include: a first oxide layer 150 and the second oxide layer 160 , the first oxide layer 150 is disposed on one side of the silicon substrate 110 , and the second oxide layer 160 is disposed on the side of the first oxide layer 150 away from the silicon substrate 110 .
  • the activity of the low work function metal in the low work function metal layer 130 is higher than that of the metal contained in the first oxide layer 150 , and the second oxide layer 160 is doped by the low work function metal in the low work function metal layer 130 through doping.
  • the titanium hetero nitride layer 120 is a metal oxide layer formed by reacting with the first oxide layer 150, that is, since the low work function metal in the low work function metal layer 130 is more active than the metal contained in the first oxide layer 150, then The low work function metal in the low work function metal layer 130 can diffuse through the doped titanium nitride layer 120, react with the first oxide layer 150 to form a second oxide layer 160, and the generated second oxide layer 160 can enhance the solar cell
  • the surface passivation effect can be improved, and at the same time, the diffusion of the low work function metal in the low work function metal layer 130 in the doped titanium nitride layer 120 can be promoted.
  • the first oxide layer may include: magnesium oxide (MgO x ), aluminum oxide (Al 2 O 3 ), hafnium dioxide (HfO 2 ), titanium oxide (TiO x ), niobium oxide (NbO x ) , any one of tantalum oxide (TaO x ), gallium oxide (GaO x ), zinc oxide (ZnO x ) and cesium oxide (CsO x ).
  • magnesium oxide MgO x
  • aluminum oxide Al 2 O 3
  • hafnium dioxide HfO 2
  • titanium oxide TiO x
  • niobium oxide NbO x
  • the first oxide layer can act as an electron-selective contact to facilitate the selection and transport of electron carriers in the silicon substrate, wherein titanium dioxide (TiO 2 ), zinc monoxide (ZnO), and tantalum oxide (TaO x ) have smaller
  • TiO 2 titanium dioxide
  • ZnO zinc monoxide
  • TaO x tantalum oxide
  • the conduction band difference and the large valence band difference provide obstacles for holes, and MgO x and CsO x can generate a dipole moment, which can reduce the work function of the electrode through the de-pinning of the Fermi level, thereby making the electron transport more efficient.
  • the barrier height becomes smaller.
  • the first oxide layer may also include silicon dioxide (SiO 2 ), and SiO 2 may also react with the low work function metal passing through the doped titanium nitride layer to form the second oxide layer.
  • SiO 2 silicon dioxide
  • the concentration of the low work function metal in the doped titanium nitride layer gradually decreases from the side close to the low work function metal layer to the side close to the silicon substrate.
  • the low work function metal in the doped titanium nitride layer is generated by the diffusion of the low work function metal in the low work function metal layer on the side of the doped titanium nitride layer away from the silicon substrate, the doping nitrogen
  • the concentration of the low work function metal in the titanium oxide layer is distributed in a gradient from the direction away from the silicon substrate to the direction close to the silicon substrate, and the concentration of the low work function metal decreases gradually due to the increase of the diffusion distance of the low work function metal.
  • FIG. 7 shows a schematic structural diagram of a third solar cell provided by an embodiment of the present disclosure.
  • the solar cell may further include a first titanium nitride layer 170 , wherein the first titanium nitride layer is provided between the low work function metal layer 130 and the metal electrode layer 140 .
  • the titanium nitride layer is disposed on the side of the low work function metal layer 130 close to the silicon substrate 110, it is used to form the doped titanium nitride layer 120 between the silicon substrate 110 and the low work function metal layer 130, and the first titanium nitride layer is The layer 170 is disposed on the side of the low work function metal layer 130 away from the silicon substrate 110.
  • the first titanium nitride layer 170 can be directly used as the electrode layer of the solar cell to collect and export the For carriers, the metal electrode layer 140 is disposed on the side of the first titanium nitride layer 170 away from the low work function metal layer 130 , so as to prevent the first titanium nitride layer 170 from being oxidized in the air and avoid the degradation of the battery performance.
  • the thickness of the doped titanium nitride layer can be 1-10 nanometers, that is, the thickness of the titanium nitride layer used to form the doped titanium nitride layer is also 1-10 nanometers, and the thickness of the titanium nitride layer is about 1-10 nanometers.
  • the diffusion of low work function metal has an important influence. The thicker the thickness of the titanium nitride layer, the greater the hindrance to the diffusion of low work function metal elements, and the worse the doping effect.
  • the doped nitride obtained after titanium nitride doping The decrease in the work function of titanium is not obvious, therefore, the improvement of electron transport cannot be promoted.
  • the thickness of the first titanium nitride layer may be 5-500 nanometers, so that the thickness of the first titanium nitride layer is larger than that of the titanium nitride layer, which can be used as an electrode layer of a solar cell, and at the same time, a low work function is obtained
  • the low work function metal in the metal layer is diffused and doped to the titanium nitride layer in the direction of the silicon substrate to form a doped titanium nitride layer without affecting the work function of the first titanium nitride layer. Therefore, the first titanium nitride layer
  • the work function of is greater than that of the doped titanium nitride layer.
  • the low work function metal includes: any one of calcium, magnesium, aluminum, barium, cesium, strontium, ytterbium, cerium, samarium, europium, neodymium, thorium, gadolinium, hafnium, lutetium and lanthanum.
  • the activity of the functional metal is greater than that of the metal titanium, that is, the activity of the metal precedes the metal titanium, so that it can diffuse in the titanium nitride layer to form the doped titanium nitride layer.
  • the activity sequence of the low work function metal is located before the metal element in the first oxide layer, and the activity of the low work function metal is stronger, and The greater the reaction degree of the first oxide layer is, the more significant the doping effect on the titanium nitride layer is.
  • the metal electrode layer may include any one of aluminum, silver, aluminum/silver, nickel/copper/tin, chromium/palladium/silver, and nickel/copper/silver, and the arrangement of the metal electrode layer can be avoided on the one hand.
  • the oxidation of the first titanium nitride in the air can avoid the deterioration of the battery performance.
  • it can improve the energy band alignment on the surface of the crystalline silicon and reduce the resistance, thereby promoting the transmission and collection of electrons and improving the battery performance.
  • the present disclosure also provides a method for producing a solar cell, referring to FIG. 8 , which shows a flow chart of the steps of the method for producing a solar cell provided by an embodiment of the present disclosure, and the method may include the following steps:
  • step 1101 a titanium nitride layer is prepared on one side of the silicon substrate.
  • a silicon substrate can be obtained first, and then a titanium nitride layer, that is, an undoped titanium nitride layer, is prepared on one side of the silicon substrate.
  • a titanium nitride layer can be prepared on one side of the silicon substrate, so as to further prepare a low work function metal layer on the side of the titanium nitride layer away from the silicon substrate, so that under the condition of annealing, the low work function metal layer in the low work function metal layer can be prepared.
  • the low work function metal diffuses into the titanium nitride layer, thereby preparing a doped titanium nitride layer.
  • a first oxide layer may be first prepared on one side of the silicon substrate, and a titanium nitride layer may be further prepared on the side of the first oxide layer away from the silicon substrate, so as to further prepare the titanium nitride layer on the side of the first oxide layer.
  • a low work function metal layer is prepared on the side away from the silicon substrate, so that under the condition of annealing, the low work function metal in the low work function metal layer is diffused into the titanium nitride layer, thereby preparing a doped titanium nitride layer, and , after the low work function metal in the low work function metal layer passes through the doped titanium nitride layer, it can react with the first oxide layer to form a second oxide layer.
  • Step 1102 preparing a low work function metal layer on the side of the titanium nitride layer away from the silicon substrate.
  • a low work function metal layer may be further prepared on the side of the titanium nitride layer away from the silicon substrate.
  • Step 1103 preparing a metal electrode layer on the side of the low work function metal layer away from the titanium nitride layer.
  • a metal electrode layer may be prepared on the side away from the titanium nitride layer of the low work function metal layer.
  • the low work function metal layer may be separated from the titanium nitride layer on the side of the low work function metal layer away from the titanium nitride layer.
  • a first titanium nitride layer is first prepared on one side, and a metal electrode layer is further prepared on the side of the first titanium nitride layer away from the low work function metal layer, so that the first titanium nitride layer can be directly used as the electrode layer of the solar cell to collect And the carriers are derived, and the metal electrode layer is arranged on the side of the first titanium nitride layer away from the low work function metal layer, so that the oxidation of the first titanium nitride layer in the air can be prevented and the performance of the battery can be prevented from being degraded.
  • Step 1104 annealing the low work function metal layer, and the low work function metal in the low work function metal layer diffuses into the titanium nitride layer to form a doped titanium nitride layer.
  • the low work function metal layer may be annealed, so that the low work function metal in the low work function metal layer diffuses into the titanium nitride layer , thereby forming a doped titanium nitride layer.
  • the annealing treatment of the low work function metal layer can also make the low work function metal layer in the low work function metal layer. After the metal passes through the doped titanium nitride layer, it reacts with the first oxide layer to form a second oxide layer.
  • the above-mentioned annealing treatment for the low work function metal layer may include: in a temperature range of 350-450 degrees Celsius, annealing is performed in a mixed gas of nitrogen and hydrogen, and the ratio of nitrogen and hydrogen in the mixed gas is 10: 1.
  • secondary annealing may be further performed in a nitrogen annealing atmosphere within a temperature range of 400-700 degrees Celsius.
  • the higher the annealing temperature the greater the reduction in the work function of the titanium nitride layer, and the smaller the work function of the resulting doped titanium nitride layer.
  • there is a critical value of the annealing temperature If the annealing temperature is lower than the critical value, the work function of the doped titanium nitride layer will decrease with the increase of the annealing temperature. If the temperature is higher than the critical value, the work function of the titanium nitride layer will decrease.
  • the function not decrease, but it will also increase to some extent.
  • the thickness of the first oxide layer decreases with the increase of the annealing temperature.
  • the metal oxide layer ie, the second oxide layer, resulting in oxygen scavenging.
  • an embodiment of the present disclosure also provides a photovoltaic assembly, including any one of the aforementioned solar cells, and both sides of the solar cell may be provided with an encapsulation film, a cover plate, a back plate, and the like. Has the same or similar beneficial effects as the aforementioned solar cells.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided are a solar cell, a production method therefor and a photovoltaic module, relating to the technical field of solar photovoltaics. The solar cell comprises: a silicon substrate, a titanium nitride layer, a low-work-function metal layer and a metal electrode layer. The titanium nitride layer is arranged on one side of the silicon substrate, the low-work-function metal layer is arranged on the side of the titanium nitride layer away from the silicon substrate, and the metal electrode layer is arranged on the side of the low-work-function metal layer away from the titanium nitride layer, wherein the activity of low-work-function metal contained in the low-work-function metal layer is higher than the that of metal titanium. In the present disclosure, if the titanium nitride layer, which acts as a carrier selection transport layer, is oxidized to generate a titanium oxide layer, then the low-work-function metal layer can reduce the titanium oxide layer, thereby improving the conductivity of the titanium nitride layer, such that the electron transport efficiency is improved, the barrier height between the metal electrode and the titanium nitride layer is reduced, so that the contact resistance of the solar cell can be reduced and the efficiency of the solar cell can be improved.

Description

太阳能电池及生产方法、光伏组件Solar cell and production method, photovoltaic module
相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS
本申请要求在2020年12月23日提交中国专利局、申请号为202011548705.9、名称为“太阳能电池及生产方法、光伏组件”;以及在2020年12月24日提交中国专利局、申请号为202011556800.3、名称为“太阳能电池及生产方法、光伏组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application is required to be submitted to the China Patent Office on December 23, 2020, with the application number of 202011548705.9, titled "Solar Cells and Production Methods, and Photovoltaic Modules"; and submitted to the China Patent Office on December 24, 2020, with the application number of 202011556800.3 , the priority of the Chinese patent application entitled "Solar Cell and Production Method, Photovoltaic Module", the entire content of which is incorporated herein by reference.
技术领域technical field
本公开涉及太阳能光伏技术领域,特别是涉及一种太阳能电池及生产方法、光伏组件。The present disclosure relates to the technical field of solar photovoltaics, and in particular, to a solar cell, a production method, and a photovoltaic assembly.
背景技术Background technique
随着传统能源的不断消耗及其对环境带来的负面影响,太阳能作为一种无污染、可再生能源,其开发和利用得到了迅速的发展。With the continuous consumption of traditional energy and its negative impact on the environment, the development and utilization of solar energy, as a pollution-free and renewable energy source, has developed rapidly.
太阳能电池的一个显著特点是它们能够将光产生的电子和空穴引导到非对称导电的路径上,即将载流子分开,然后通过正极和负极进行收集,从而输出电能。传统的晶体硅太阳能电池是通过在硅基底的近表面进行掺杂,从而得到电子选择性接触和空穴选择性接触以实现载流子的分离,但由于掺杂技术势必引起重掺杂效应,影响电池性能,同时掺杂技术的高温过程会引入较多杂质,且会影响少数载流子的寿命,从而导致太阳电池的效率较低,因此,可以通过在硅基底的一面设置具有电子选择性或者空穴选择性的氮化钛层作为载流子选择层,以收集硅基底中的电子或空穴,从而分离硅基底中的载流子,而无需对硅基底进行掺杂就可以形成用于分离载流子的空穴选择性接触和电子选择性接触。A distinguishing feature of solar cells is their ability to direct light-generated electrons and holes into asymmetrically conductive paths, that is, to separate charge carriers and then collect them through the positive and negative electrodes, thereby outputting electrical energy. Conventional crystalline silicon solar cells are doped near the surface of the silicon substrate to obtain electron selective contact and hole selective contact to achieve carrier separation. However, due to the doping technology, heavy doping is bound to occur. It affects the performance of the cell. At the same time, the high temperature process of the doping technology will introduce more impurities and affect the lifetime of minority carriers, resulting in lower efficiency of the solar cell. Therefore, the electron selectivity can be arranged on one side of the silicon substrate Or a hole-selective titanium nitride layer acts as a carrier-selective layer to collect electrons or holes in the silicon substrate, thereby separating the carriers in the silicon substrate, without doping the silicon substrate. Hole-selective contact and electron-selective contact for separation of charge carriers.
但是,在目前的方案中,作为载流子选择层的氮化钛层被氧化而生成氧化钛层,由于氧化钛层的导电性较差,使得电子传输效率较差,金属电极与氧化钛层之间的势垒高度较高,从而增加了太阳能电池的接触电阻,降低了 太阳能电池的效率。However, in the current solution, the titanium nitride layer, which is the carrier selection layer, is oxidized to form a titanium oxide layer. Due to the poor conductivity of the titanium oxide layer, the electron transport efficiency is poor, and the metal electrode and the titanium oxide layer have poor electron transport efficiency. The height of the potential barrier between them is high, thereby increasing the contact resistance of the solar cell and reducing the efficiency of the solar cell.
除此之外,太阳能电池的一个显著特点是它们能够将光产生的电子和空穴引导到非对称导电的路径上,即将载流子分开,然后通过正极和负极进行收集,从而输出电能。传统的晶体硅太阳能电池是通过在硅基底的近表面进行掺杂,从而得到电子选择性接触和空穴选择性接触以实现载流子的分离,但由于掺杂技术势必引起重掺杂效应,影响电池性能。由于氮化钛是一种准金属材料,其高导电性和低接触电阻率使其成为一种有助于载流子传输和收集的材料,另外,氮化钛本身可以钝化硅基底表面以抑制载流子的表面复合,且氮化钛的沉积速率较快,因此,可以通过在硅基底的一面设置具有电子选择性或者空穴选择性的氮化钛层作为载流子选择层,以收集硅基底中的电子或空穴,从而分离硅基底中的载流子,而无需对硅基底进行掺杂。In addition to this, a remarkable feature of solar cells is their ability to direct light-generated electrons and holes into asymmetrically conductive paths, that is, to separate charge carriers and then collect them through the positive and negative electrodes, thereby outputting electrical energy. Conventional crystalline silicon solar cells are doped near the surface of the silicon substrate to obtain electron selective contact and hole selective contact to achieve carrier separation. However, due to the doping technology, heavy doping is bound to occur. affect battery performance. Since titanium nitride is a metalloid material, its high electrical conductivity and low contact resistivity make it a material that facilitates carrier transport and collection. In addition, titanium nitride itself can passivate the silicon substrate surface to The surface recombination of carriers is inhibited, and the deposition rate of titanium nitride is relatively fast. Therefore, a titanium nitride layer with electron selectivity or hole selectivity can be arranged on one side of the silicon substrate as a carrier selection layer. The electrons or holes in the silicon substrate are collected, thereby separating charge carriers in the silicon substrate without doping the silicon substrate.
但是,在目前的方案中,采用常规方法制备得到的氮化钛的功函数较大,电子输运效率较差,并不适用于提取和收集电子载流子,从而导致太阳能电池的效率较低。However, in the current scheme, the work function of titanium nitride prepared by conventional methods is large, and the electron transport efficiency is poor, which is not suitable for extracting and collecting electron carriers, resulting in low efficiency of solar cells. .
概述Overview
本公开提供一种太阳能电池及生产方法、光伏组件,旨在解决太阳能电池中作为载流子选择层的氮化钛层被氧化而生成氧化钛层,从而导致太阳能电池的接触电阻较高,太阳能电池的效率低下的问题。The present disclosure provides a solar cell, a production method, and a photovoltaic module, aiming at solving the problem that a titanium nitride layer serving as a carrier selection layer in a solar cell is oxidized to generate a titanium oxide layer, resulting in high contact resistance of the solar cell, and solar cells The problem of low battery efficiency.
第一方面,本公开实施例提供了一种太阳能电池,所述太阳能电池包括:In a first aspect, embodiments of the present disclosure provide a solar cell, the solar cell comprising:
硅基底、氮化钛层、低功函数金属层和金属电极层;Silicon substrate, titanium nitride layer, low work function metal layer and metal electrode layer;
所述氮化钛层设置在所述硅基底的一面,所述低功函数金属层设置在所述氮化钛层远离所述硅基底的一面,所述金属电极层设置在所述低功函数金属层远离所述氮化钛层的一面;The titanium nitride layer is arranged on one side of the silicon substrate, the low work function metal layer is arranged on the side of the titanium nitride layer away from the silicon substrate, and the metal electrode layer is arranged on the low work function a side of the metal layer away from the titanium nitride layer;
其中,所述低功函数金属层中包含的低功函数金属高于金属钛的活性。Wherein, the low work function metal contained in the low work function metal layer has higher activity than metal titanium.
可选地,所述低功函数金属包括:钙、镁、铝、钡、铯、锶、镱、铈、钐、铕、钕、钍、钆、铪、镥和镧中的任意一种。Optionally, the low work function metal includes: any one of calcium, magnesium, aluminum, barium, cesium, strontium, ytterbium, cerium, samarium, europium, neodymium, thorium, gadolinium, hafnium, lutetium and lanthanum.
可选地,所述太阳能电池还包括:氧化钛层和氧化硅层;Optionally, the solar cell further comprises: a titanium oxide layer and a silicon oxide layer;
所述氧化硅层设置在所述硅基底和所述氮化钛层之间,所述氧化钛层设 置在所述氮化钛层和所述低功函数金属层之间;The silicon oxide layer is arranged between the silicon substrate and the titanium nitride layer, and the titanium oxide layer is arranged between the titanium nitride layer and the low work function metal layer;
其中,所述氧化钛层和所述氧化硅层是在对所述氮化钛层进行氧化处理的过程中生成。Wherein, the titanium oxide layer and the silicon oxide layer are formed in the process of oxidizing the titanium nitride layer.
可选地,所述太阳能电池还包括:硅化物层;Optionally, the solar cell further comprises: a silicide layer;
所述硅化物层设置在所述硅基底与所述氮化钛层之间;the silicide layer is disposed between the silicon substrate and the titanium nitride layer;
所述硅化物层包括:二硅化钴、硅化铂和二硅化钛中的任意一种。The silicide layer includes any one of cobalt disilicide, platinum silicide and titanium disilicide.
可选地,所述硅基底为n型硅基底。Optionally, the silicon substrate is an n-type silicon substrate.
可选地,所述金属电极层包括:铝、铝/银、镍/铜、镍/铜/锡、铬/钯/银和镍/铜/银中的任意一种。Optionally, the metal electrode layer comprises: any one of aluminum, aluminum/silver, nickel/copper, nickel/copper/tin, chromium/palladium/silver and nickel/copper/silver.
可选地,所述氮化钛层的厚度小于20纳米。Optionally, the thickness of the titanium nitride layer is less than 20 nanometers.
第二方面,本公开实施例提供了一种太阳能电池的生产方法,所述方法包括:In a second aspect, embodiments of the present disclosure provide a method for producing a solar cell, the method comprising:
在硅基底的一面制备氮化钛层;A titanium nitride layer is prepared on one side of the silicon substrate;
在所述氮化钛层远离所述硅基底的一面制备低功函数金属层;preparing a low work function metal layer on the side of the titanium nitride layer away from the silicon substrate;
在所述低功函数金属层远离所述氮化钛层的一面制备金属电极层;preparing a metal electrode layer on the side of the low work function metal layer away from the titanium nitride layer;
其中,所述低功函数金属层中包含的低功函数金属高于金属钛的活性。Wherein, the low work function metal contained in the low work function metal layer has higher activity than metal titanium.
可选地,在硅基底的一面制备氮化钛层的步骤之后,所述方法还包括:Optionally, after the step of preparing the titanium nitride layer on one side of the silicon substrate, the method further includes:
对所述氮化钛层进行氧化处理,在所述氮化钛层与所述硅基底的中间生成氧化硅层,在所述氮化钛层远离所述硅基底的一面生成氧化钛层。The titanium nitride layer is oxidized to form a silicon oxide layer between the titanium nitride layer and the silicon substrate, and a titanium oxide layer is formed on the side of the titanium nitride layer away from the silicon substrate.
可选地,在硅基底的一面制备氮化钛层的步骤之前,所述方法还包括:Optionally, before the step of preparing the titanium nitride layer on one side of the silicon substrate, the method further includes:
在所述硅基底的一面制备金属层;preparing a metal layer on one side of the silicon substrate;
对所述金属层进行退火处理,所述金属层与所述硅基底反应生成硅化物层;annealing the metal layer, and the metal layer reacts with the silicon substrate to form a silicide layer;
其中,所述金属层包括:钴、铂和钛中的任意一种。Wherein, the metal layer includes any one of cobalt, platinum and titanium.
可选地,所述氧化处理包括:干式氧化、湿式氧化和等离子体氧化中的任意一种。Optionally, the oxidation treatment includes any one of dry oxidation, wet oxidation and plasma oxidation.
可选地,在所述氧化处理为干式氧化的情况下,所述氧化处理的热处理温度为300-600摄氏度,所述氧化处理的氧化气氛包括氮气和氧气;Optionally, when the oxidation treatment is dry oxidation, the heat treatment temperature of the oxidation treatment is 300-600 degrees Celsius, and the oxidation atmosphere of the oxidation treatment includes nitrogen and oxygen;
在所述氧化处理为湿式氧化的情况下,所述氧化处理的热处理温度为300-600摄氏度,所述氧化处理的氧化气氛包括氮气和水;When the oxidation treatment is wet oxidation, the heat treatment temperature of the oxidation treatment is 300-600 degrees Celsius, and the oxidation atmosphere of the oxidation treatment includes nitrogen and water;
在所述氧化处理为等离子体氧化的情况下,所述氧化处理的热处理温度为25-300摄氏度。When the oxidation treatment is plasma oxidation, the heat treatment temperature of the oxidation treatment is 25-300 degrees Celsius.
第三方面,本公开实施例提供了一种光伏组件,所述光伏组件包括前述任一所述的太阳能电池。In a third aspect, an embodiment of the present disclosure provides a photovoltaic assembly, wherein the photovoltaic assembly includes any one of the aforementioned solar cells.
基于上述太阳能电池及生产方法、光伏组件,本公开存在以下有益效果:本公开中太阳能电池包括:硅基底、氮化钛层、低功函数金属层和金属电极层;氮化钛层设置在硅基底的一面,低功函数金属层设置在氮化钛层远离硅基底的一面,金属电极层设置在低功函数金属层远离氮化钛层的一面;其中,低功函数金属层中包含的低功函数金属高于金属钛的活性。本公开中,由于在氮化钛层远离硅基底的一面设置有低功函数金属层,且低功函数金属层中包含的低功函数金属高于金属钛的活性,因此,若作为载流子选择传输层的氮化钛层被氧化而生成氧化钛层,则低功函数金属层可以还原氧化钛层,从而提高氮化钛层的导电性,使得电子传输效率得到提升,降低了金属电极与氮化钛层之间的势垒高度,从而可以降低太阳能电池的接触电阻,提高太阳能电池的效率。Based on the above solar cell, production method, and photovoltaic assembly, the present disclosure has the following beneficial effects: the solar cell in the present disclosure includes: a silicon substrate, a titanium nitride layer, a low work function metal layer and a metal electrode layer; the titanium nitride layer is disposed on the silicon On one side of the substrate, the low work function metal layer is arranged on the side of the titanium nitride layer away from the silicon substrate, and the metal electrode layer is arranged on the side of the low work function metal layer away from the titanium nitride layer; The work function metal is more active than the titanium metal. In the present disclosure, since a low work function metal layer is provided on the side of the titanium nitride layer away from the silicon substrate, and the low work function metal contained in the low work function metal layer is more active than the metal titanium, if it is used as a carrier The titanium nitride layer of the selective transport layer is oxidized to form a titanium oxide layer, and the low work function metal layer can reduce the titanium oxide layer, thereby improving the conductivity of the titanium nitride layer, improving the electron transfer efficiency, and reducing the metal electrode and the metal electrode. The potential barrier height between the titanium nitride layers can reduce the contact resistance of the solar cell and improve the efficiency of the solar cell.
本公开还提供一种太阳能电池及生产方法、光伏组件,旨在解决采用氮化钛作为载流子选择层时,由于氮化钛的功函数较大而导致的太阳能电池的效率较低的问题。The present disclosure also provides a solar cell, a production method, and a photovoltaic module, aiming to solve the problem of low efficiency of the solar cell due to the large work function of the titanium nitride when titanium nitride is used as the carrier selection layer. .
第四方面,本公开实施例提供了一种太阳能电池,所述太阳能电池包括:In a fourth aspect, embodiments of the present disclosure provide a solar cell, the solar cell comprising:
硅基底、掺杂氮化钛层、低功函数金属层和金属电极层;Silicon substrate, doped titanium nitride layer, low work function metal layer and metal electrode layer;
所述掺杂氮化钛层设置在所述硅基底的一面,所述低功函数金属层设置在所述掺杂氮化钛层远离所述硅基底的一面,所述金属电极层设置在所述低功函数金属层远离所述掺杂氮化钛层的一面;The doped titanium nitride layer is arranged on one side of the silicon substrate, the low work function metal layer is arranged on the side of the doped titanium nitride layer away from the silicon substrate, and the metal electrode layer is arranged on the side of the silicon substrate. a side of the low work function metal layer away from the doped titanium nitride layer;
所述低功函数金属层包含的低功函数金属高于金属钛的活性;The low work function metal contained in the low work function metal layer is more active than the metal titanium;
其中,所述掺杂氮化钛层中包含所述低功函数金属,且所述掺杂氮化钛层中包含的低功函数金属是在对所述低功函数金属层进行退火处理的过程 中,从所述低功函数金属层中扩散进入形成的。Wherein, the low work function metal is contained in the doped titanium nitride layer, and the low work function metal contained in the doped titanium nitride layer is in the process of annealing the low work function metal layer , formed by diffusion into the low work function metal layer.
可选地,所述硅基底和掺杂氮化钛层之间还包括:第一氧化层和第二氧化层;Optionally, between the silicon substrate and the doped titanium nitride layer further comprises: a first oxide layer and a second oxide layer;
所述第一氧化层设置在所述硅基底的一面,所述第二氧化层设置在所述第一氧化层远离所述硅基底的一面;The first oxide layer is arranged on one side of the silicon substrate, and the second oxide layer is arranged on the side of the first oxide layer away from the silicon substrate;
其中,所述低功函数金属高于所述第一氧化层中包含的金属的活性;wherein the low work function metal is more active than the metal contained in the first oxide layer;
所述第二氧化层是由所述低功函数金属层中的低功函数金属穿过所述掺杂氮化钛层,与所述第一氧化层发生反应生成的金属氧化层。The second oxide layer is a metal oxide layer generated by the low work function metal in the low work function metal layer passing through the doped titanium nitride layer and reacting with the first oxide layer.
可选地,所述第一氧化层包括:氧化镁、三氧化二铝、二氧化铪、氧化钛、氧化铌,氧化钽、氧化镓、氧化锌和氧化铯中的任意一种。Optionally, the first oxide layer includes: any one of magnesium oxide, aluminum oxide, hafnium oxide, titanium oxide, niobium oxide, tantalum oxide, gallium oxide, zinc oxide and cesium oxide.
可选地,所述掺杂氮化钛层中低功函数金属的浓度,从靠近所述低功函数金属层的一面向靠近所述硅基底的一面逐渐减小。Optionally, the concentration of the low work function metal in the doped titanium nitride layer gradually decreases from the side close to the low work function metal layer to the side close to the silicon substrate.
可选地,所述太阳能电池还包括:第一氮化钛层;Optionally, the solar cell further comprises: a first titanium nitride layer;
所述第一氮化钛层设置在所述低功函数金属层和所述金属电极层之间。The first titanium nitride layer is disposed between the low work function metal layer and the metal electrode layer.
可选地,所述掺杂氮化钛层的厚度为1-10纳米,所述第一氮化钛层的厚度为5-500纳米。Optionally, the thickness of the doped titanium nitride layer is 1-10 nanometers, and the thickness of the first titanium nitride layer is 5-500 nanometers.
可选地,所述低功函数金属包括:钙、镁、铝、钡、铯、锶、镱、铈、钐、铕、钕、钍、钆、铪、镥和镧中的任意一种。Optionally, the low work function metal includes: any one of calcium, magnesium, aluminum, barium, cesium, strontium, ytterbium, cerium, samarium, europium, neodymium, thorium, gadolinium, hafnium, lutetium and lanthanum.
可选地,所述金属电极层包括:铝、银、铝/银、镍/铜/锡、铬/钯/银和镍/铜/银中的任意一种。Optionally, the metal electrode layer includes any one of aluminum, silver, aluminum/silver, nickel/copper/tin, chromium/palladium/silver, and nickel/copper/silver.
可选地,所述低功函数金属层的厚度为0.1-10纳米。Optionally, the thickness of the low work function metal layer is 0.1-10 nanometers.
第五方面,本公开实施例提供了一种太阳能电池的生产方法,所述方法包括:In a fifth aspect, embodiments of the present disclosure provide a method for producing a solar cell, the method comprising:
在硅基底的一面制备氮化钛层;A titanium nitride layer is prepared on one side of the silicon substrate;
在所述氮化钛层远离所述硅基底的一面制备低功函数金属层;preparing a low work function metal layer on the side of the titanium nitride layer away from the silicon substrate;
在所述低功函数金属层远离所述氮化钛层的一面制备金属电极层;preparing a metal electrode layer on the side of the low work function metal layer away from the titanium nitride layer;
对所述低功函数金属层进行退火处理,所述低功函数金属层中的低功函数金属扩散进入所述氮化钛层中,形成掺杂氮化钛层。The low work function metal layer is annealed, and the low work function metal in the low work function metal layer diffuses into the titanium nitride layer to form a doped titanium nitride layer.
可选地,所述在硅基底的一面制备氮化钛层的步骤,具体包括:Optionally, the step of preparing the titanium nitride layer on one side of the silicon substrate specifically includes:
在所述硅基底的一面制备第一氧化层;preparing a first oxide layer on one side of the silicon substrate;
在所述第一氧化层远离所述硅基底的一面制备所述氮化钛层;preparing the titanium nitride layer on the side of the first oxide layer away from the silicon substrate;
所述对所述低功函数金属层进行退火处理,所述低功函数金属层中的低功函数金属扩散进入所述氮化钛层中,形成掺杂氮化钛层的步骤,具体包括:The step of performing annealing treatment on the low work function metal layer and diffusing the low work function metal in the low work function metal layer into the titanium nitride layer to form a doped titanium nitride layer specifically includes:
对所述低功函数金属层进行退火处理,所述低功函数金属层中的低功函数金属扩散进入所述氮化钛层中,形成所述掺杂氮化钛层,且所述低功函数金属层中的低功函数金属穿过所述掺杂氮化钛层,与所述第一氧化层发生反应生成第二氧化层。The low work function metal layer is annealed, the low work function metal in the low work function metal layer diffuses into the titanium nitride layer to form the doped titanium nitride layer, and the low work function metal layer is diffused into the titanium nitride layer. The low work function metal in the functional metal layer passes through the doped titanium nitride layer and reacts with the first oxide layer to form a second oxide layer.
可选地,所述退火处理的步骤,包括:Optionally, the step of the annealing treatment includes:
在350-450摄氏度的温度范围内,在氮气和氢气的混合气体中进行退火,所述混合气体中氮气和氢气的比例为10:1。The annealing is carried out in a mixed gas of nitrogen and hydrogen in a temperature range of 350-450 degrees Celsius, and the ratio of nitrogen and hydrogen in the mixed gas is 10:1.
可选地,在350-450摄氏度的温度范围内,在氮气和氢气的混合气体中进行退火的步骤之后,所述方法还包括:Optionally, after the step of annealing in a mixed gas of nitrogen and hydrogen within a temperature range of 350-450 degrees Celsius, the method further includes:
在400-700摄氏度的温度范围内,在氮气退火气氛中进行二次退火。The secondary annealing is carried out in a nitrogen annealing atmosphere in the temperature range of 400-700 degrees Celsius.
可选地,在所述低功函数金属层远离所述氮化钛层的一面制备金属电极层的步骤,具体包括:Optionally, the step of preparing a metal electrode layer on the side of the low work function metal layer away from the titanium nitride layer specifically includes:
在所述低功函数金属层远离所述氮化钛层的一面制备第一氮化钛层;preparing a first titanium nitride layer on the side of the low work function metal layer away from the titanium nitride layer;
在所述第一氮化钛层远离所述低功函数金属层的一面制备所述金属电极层。The metal electrode layer is prepared on the side of the first titanium nitride layer away from the low work function metal layer.
可选地,所述第一氧化层包括:氧化镁、三氧化二铝、二氧化铪、氧化钛、氧化铌,氧化钽、氧化镓、氧化锌和氧化铯中的任意一种。Optionally, the first oxide layer includes: any one of magnesium oxide, aluminum oxide, hafnium oxide, titanium oxide, niobium oxide, tantalum oxide, gallium oxide, zinc oxide and cesium oxide.
第六方面,本公开实施例提供了一种光伏组件,所述光伏组件包括前述任一所述的太阳能电池。In a sixth aspect, an embodiment of the present disclosure provides a photovoltaic assembly, wherein the photovoltaic assembly includes any one of the aforementioned solar cells.
基于上述太阳能电池及生产方法、光伏组件,本公开存在以下有益效果:本公开中太阳能电池包括:硅基底、掺杂氮化钛层、低功函数金属层和金属电极层;掺杂氮化钛层设置在硅基底的一面,低功函数金属层设置在掺杂氮化钛层远离硅基底的一面,金属电极层设置在低功函数金属层远离掺杂氮化 钛层的一面;低功函数金属层包含的低功函数金属高于金属钛的活性;其中,掺杂氮化钛层中包含低功函数金属,且掺杂氮化钛层中包含的低功函数金属是在对低功函数金属层进行退火处理的过程中,从低功函数金属层中扩散进入形成的。本公开中,由于低功函数金属层可以在退火处理的过程中发生扩散,从而生成掺杂有低功函数金属层中低功函数金属的掺杂氮化钛层,使得掺杂氮化钛层的功函数降低,促进电子输运,进而提高太阳能电池的效率。Based on the above solar cell, production method, and photovoltaic assembly, the present disclosure has the following beneficial effects: the solar cell in the present disclosure includes: a silicon substrate, a doped titanium nitride layer, a low work function metal layer and a metal electrode layer; The layer is arranged on one side of the silicon substrate, the low work function metal layer is arranged on the side of the doped titanium nitride layer away from the silicon substrate, and the metal electrode layer is arranged on the side of the low work function metal layer away from the doped titanium nitride layer; The low work function metal contained in the metal layer is higher than the activity of metal titanium; wherein, the low work function metal is contained in the doped titanium nitride layer, and the low work function metal contained in the doped titanium nitride layer is in the low work function. During the annealing process of the metal layer, it is formed by diffusion from the low work function metal layer. In the present disclosure, since the low work function metal layer can be diffused during the annealing process, a doped titanium nitride layer doped with the low work function metal in the low work function metal layer is generated, so that the doped titanium nitride layer is The work function is reduced, which promotes electron transport, thereby improving the efficiency of solar cells.
附图简述Brief Description of Drawings
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present disclosure more clearly, the following briefly introduces the drawings that are used in the description of the embodiments of the present disclosure. Obviously, the drawings in the following description are only some embodiments of the present disclosure. , for those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative labor.
图1示出了本公开实施例中的第一种太阳能电池的结构示意图;FIG. 1 shows a schematic structural diagram of a first solar cell in an embodiment of the present disclosure;
图2示出了本公开实施例中的第二种太阳能电池的结构示意图;FIG. 2 shows a schematic structural diagram of a second type of solar cell in an embodiment of the present disclosure;
图3示出了本公开实施例中的第三种太阳能电池的结构示意图;FIG. 3 shows a schematic structural diagram of a third solar cell in an embodiment of the present disclosure;
图4示出了本公开实施例中的一种太阳能电池的生产方法的步骤流程图;FIG. 4 shows a flow chart of steps of a method for producing a solar cell in an embodiment of the present disclosure;
附图编号说明:Description of drawing numbers:
10-硅基底,20-氮化钛层,30-低功函数金属层,40-金属电极层,50-氧化硅层,60-氧化钛层,70-硅化物层;10-silicon substrate, 20-titanium nitride layer, 30-low work function metal layer, 40-metal electrode layer, 50-silicon oxide layer, 60-titanium oxide layer, 70-silicide layer;
图5示出了本公开实施例中的第一种太阳能电池的结构示意图;FIG. 5 shows a schematic structural diagram of a first solar cell in an embodiment of the present disclosure;
图6示出了本公开实施例中的第二种太阳能电池的结构示意图;FIG. 6 shows a schematic structural diagram of a second type of solar cell in an embodiment of the present disclosure;
图7示出了本公开实施例中的第三种太阳能电池的结构示意图;FIG. 7 shows a schematic structural diagram of a third solar cell in an embodiment of the present disclosure;
图8示出了本公开实施例中的一种太阳能电池的生产方法的步骤流程图;FIG. 8 shows a flow chart of steps of a method for producing a solar cell in an embodiment of the present disclosure;
附图编号说明:Description of drawing numbers:
110-硅基底,120-掺杂氮化钛层,130-低功函数金属层,140-金属电极 层,150-第一氧化层,160-第二氧化层,170-第一氮化钛层。110-silicon substrate, 120-doped titanium nitride layer, 130-low work function metal layer, 140-metal electrode layer, 150-first oxide layer, 160-second oxide layer, 170-first titanium nitride layer .
详细描述Detailed Description
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。The technical solutions in the embodiments of the present disclosure will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present disclosure. Obviously, the described embodiments are part of the embodiments of the present disclosure, but not all of the embodiments. Based on the embodiments in the present disclosure, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present disclosure.
下面通过列举几个具体的实施例详细介绍本公开提供的一种太阳能电池及生产方法、光伏光伏组件。A solar cell, a production method, and a photovoltaic photovoltaic assembly provided by the present disclosure will be described in detail below by listing several specific embodiments.
图1示出了本公开实施例提供的第一种太阳能电池的结构示意图,参照图1,太阳能电池可以包括:硅基底10、氮化钛层20、低功函数金属层30和金属电极层40。FIG. 1 shows a schematic structural diagram of a first solar cell provided by an embodiment of the present disclosure. Referring to FIG. 1 , the solar cell may include: a silicon substrate 10 , a titanium nitride layer 20 , a low work function metal layer 30 and a metal electrode layer 40 .
其中,氮化钛层20设置在硅基底10的一面,低功函数金属层30设置在氮化钛层20远离硅基底10的一面,金属电极层40设置在低功函数金属层30远离氮化钛层20的一面,且低功函数金属层30中包含的低功函数金属高于金属钛的活性。The titanium nitride layer 20 is disposed on one side of the silicon substrate 10 , the low work function metal layer 30 is disposed on the side of the titanium nitride layer 20 away from the silicon substrate 10 , and the metal electrode layer 40 is disposed on the low work function metal layer 30 away from the nitride One side of the titanium layer 20, and the low work function metal contained in the low work function metal layer 30 is more active than the metal titanium.
在本公开实施例中,硅基底可以为n型硅基底,即硅基底的掺杂类型为n型掺杂,对应的掺杂物可以包括V族元素中的磷元素(P)、砷元素(As)、铋元素(Bi)和锑元素(Sb)中的任意一种或多种,掺杂浓度为5×10 14-1×10 16cm -3,n型硅基底对污染物有更高的抵抗能力,可以减少污染物对寿命的影响,从而具有更高的寿命,并且,由于n型硅基底没有硼氧缺陷,从而可以避免性能退化。而轻掺杂的硅基底可以降低掺杂引起的俄歇复合和带隙变窄效应,提高少数载流子的寿命和载流子扩散长度,提高太阳能电池的电流密度,从而可以获得较高的转换效率。所述硅基底也可以为p型硅基底,即硅基底的掺杂类型为p型掺杂,对应的掺杂物可以包括III族元素中的硼元素(B)、铝元素(Al)、镓元素(Ga)和铟元素(In)中的任意一种或多种。 In the embodiment of the present disclosure, the silicon substrate may be an n-type silicon substrate, that is, the doping type of the silicon substrate is n-type doping, and the corresponding dopants may include phosphorus (P), arsenic ( Any one or more of As), bismuth element (Bi) and antimony element (Sb), the doping concentration is 5×10 14 -1×10 16 cm -3 , and the n-type silicon substrate has higher contamination The resistance of the contaminants on the lifetime can be reduced, resulting in a higher lifetime, and since the n-type silicon substrate has no boron-oxygen defects, performance degradation can be avoided. The lightly doped silicon substrate can reduce the Auger recombination and band gap narrowing effects caused by doping, improve the lifetime and carrier diffusion length of minority carriers, and improve the current density of solar cells, so that higher conversion efficiency. The silicon substrate may also be a p-type silicon substrate, that is, the doping type of the silicon substrate is p-type doping, and the corresponding dopants may include boron (B), aluminum (Al), gallium in group III elements. Any one or more of element (Ga) and indium element (In).
在本公开实施例中,上述氮化钛层可以设置在硅基底的背光面,也可以设置在硅基底的向光面,氮化钛层可以具有空穴选择性或电子选择性,因而 可以作为空穴选择传输层或电子选择传输层,以收集硅基底中的空穴或电子,从而分离硅基底中的载流子,而无需对硅基底进行重掺杂就可以形成用于分离载流子的空穴选择性接触或电子选择性接触。同时,可以通过针对氮化钛层的氧化处理,从而在氮化钛层和硅基底的界面形成具有隧穿钝化功能的氧化硅层,以及在氮化钛层远离硅基底的一面形成氧化钛层。氧化硅层可以钝化表面缺陷,使得不需要单独生长氧化硅层以改善氮化钛层钝化能力不足的缺陷,氧化钛层可以增强表面钝化效果,而且氮化钛层也具有优良的钝化性能,综上,在本公开实施例中,可以通过一次氧化处理即可大大增强表面的钝化效果,具有工艺简单的优点。此外,由于不同类型的氮化钛层对应的工艺条件不同,因此,可以通过调节工艺条件,制备得到具有不同功函数和不同类型的氮化钛层。In the embodiments of the present disclosure, the above-mentioned titanium nitride layer may be disposed on the backlight surface of the silicon substrate, or may be disposed on the light-facing surface of the silicon substrate. The titanium nitride layer may have hole selectivity or electron selectivity, and thus can be used as a A hole-selective transport layer or an electron-selective transport layer to collect holes or electrons in a silicon substrate to separate carriers in a silicon substrate, which can be formed without heavily doping the silicon substrate for carrier separation hole-selective contact or electron-selective contact. At the same time, by oxidizing the titanium nitride layer, a silicon oxide layer with tunneling passivation can be formed at the interface between the titanium nitride layer and the silicon substrate, and titanium oxide can be formed on the side of the titanium nitride layer away from the silicon substrate. Floor. The silicon oxide layer can passivate the surface defects, so that there is no need to grow the silicon oxide layer separately to improve the defects of the insufficient passivation ability of the titanium nitride layer. The titanium oxide layer can enhance the surface passivation effect, and the titanium nitride layer also has excellent passivation. In conclusion, in the embodiments of the present disclosure, the passivation effect of the surface can be greatly enhanced by one oxidation treatment, which has the advantage of a simple process. In addition, since the process conditions corresponding to different types of titanium nitride layers are different, titanium nitride layers with different work functions and different types can be prepared by adjusting the process conditions.
在本公开实施例中,上述低功函数金属层设置在氮化钛层远离硅基底的一面,若氮化钛层的表面形成氧化钛层,则氧化钛层位于低功函数金属层和氮化钛层之间,由于低功函数金属层中包含低功函数金属,且低功函数金属高于金属钛的活性,因此,低功函数金属层中包含低功函数金属可以还原氧化钛层,避免由于氮化钛的表面由于氧化生成的氧化钛的导电性较差,导致接触电阻增大的问题,从而提高氮化钛层的导电性,使得电子传输效率得到提升,降低了金属电极与氮化钛层之间的势垒高度,从而可以降低太阳能电池的接触电阻,提高太阳能电池的效率。In the embodiment of the present disclosure, the above-mentioned low work function metal layer is disposed on the side of the titanium nitride layer away from the silicon substrate. If a titanium oxide layer is formed on the surface of the titanium nitride layer, the titanium oxide layer is located between the low work function metal layer and the nitrided surface. Between the titanium layers, since the low work function metal layer contains low work function metal, and the low work function metal is more active than the metal titanium, therefore, the low work function metal layer containing the low work function metal can reduce the titanium oxide layer, avoiding Due to the poor conductivity of the titanium oxide generated by oxidation on the surface of the titanium nitride, the contact resistance increases, thereby improving the conductivity of the titanium nitride layer, improving the electron transfer efficiency and reducing the metal electrode and the nitride. The height of the potential barrier between the titanium layers can reduce the contact resistance of the solar cell and improve the efficiency of the solar cell.
需要说明的是,若硅基底为n型硅基底,则低功函数金属层中低功函数金属的功函数可以低于铝的功函数(4.28电子伏特)。It should be noted that, if the silicon substrate is an n-type silicon substrate, the work function of the low work function metal in the low work function metal layer may be lower than that of aluminum (4.28 eV).
在本公开实施例中,上述金属电极层用于收集和导出载流子。在受到光照的情况下,硅基底作为光吸收层,产生电子-空穴对,由于氮化钛层和低功函数金属层具有少数载流子选择传输作用,少数载流子被传输至低功函数金属层中,然后被与其连接的金属电极层导出,从而实现载流子的分离,使得金属电极层与硅基底之间产生电势差,即产生电压,从而将光能转换为电能。In the embodiment of the present disclosure, the above-mentioned metal electrode layer is used for collecting and exporting carriers. When exposed to light, the silicon substrate acts as a light absorbing layer to generate electron-hole pairs. Due to the selective transport of minority carriers by the titanium nitride layer and the low work function metal layer, the minority carriers are transported to the low work function. The functional metal layer is then extracted by the metal electrode layer connected to it, so as to realize the separation of carriers, so that a potential difference is generated between the metal electrode layer and the silicon substrate, that is, a voltage is generated, thereby converting light energy into electrical energy.
在本公开实施例中,一种太阳能电池,包括:硅基底、氮化钛层、低功 函数金属层和金属电极层;氮化钛层设置在硅基底的一面,低功函数金属层设置在氮化钛层远离硅基底的一面,金属电极层设置在低功函数金属层远离氮化钛层的一面;其中,低功函数金属层中包含的低功函数金属高于金属钛的活性。本公开中,由于在氮化钛层远离硅基底的一面设置有低功函数金属层,且低功函数金属层中包含的低功函数金属高于金属钛的活性,因此,若作为载流子选择传输层的氮化钛层被氧化而生成氧化钛层,则低功函数金属层可以还原氧化钛层,从而提高氮化钛层的导电性,使得电子传输效率得到提升,降低了金属电极与氮化钛层之间的势垒高度,从而可以降低太阳能电池的接触电阻,提高太阳能电池的效率。In an embodiment of the present disclosure, a solar cell includes: a silicon substrate, a titanium nitride layer, a low work function metal layer and a metal electrode layer; the titanium nitride layer is disposed on one side of the silicon substrate, and the low work function metal layer is disposed on one side of the silicon substrate. The titanium nitride layer is on the side away from the silicon substrate, and the metal electrode layer is arranged on the side of the low work function metal layer away from the titanium nitride layer; wherein, the low work function metal contained in the low work function metal layer is more active than the metal titanium. In the present disclosure, since a low work function metal layer is provided on the side of the titanium nitride layer away from the silicon substrate, and the low work function metal contained in the low work function metal layer is more active than the metal titanium, if it is used as a carrier The titanium nitride layer of the selective transport layer is oxidized to form a titanium oxide layer, and the low work function metal layer can reduce the titanium oxide layer, thereby improving the conductivity of the titanium nitride layer, improving the electron transfer efficiency, and reducing the metal electrode and the metal electrode. The potential barrier height between the titanium nitride layers can reduce the contact resistance of the solar cell and improve the efficiency of the solar cell.
可选地,上述低功函数金属包括:钙、镁、铝、钡、铯、锶、镱、铈、钐、铕、钕、钍、钆、铪、镥和镧中的任意一种,即低功函数金属的金属活动性顺序位于金属钛之前,低功函数金属高于金属钛的活性,同时,低功函数金属的活性越强,对氧化钛的还原程度越大,通过氧化钛的还原可以增加其导电性来提高通过该层的电子传输,改善与硅基底表面的能带排列,降低了金属/氧化钛层的势垒高度,克服典型n型硅基底-金属接触的局限性,实现了在轻掺杂n型硅基底上的无掺杂欧姆接触。Optionally, the above-mentioned low work function metals include: any one of calcium, magnesium, aluminum, barium, cesium, strontium, ytterbium, cerium, samarium, europium, neodymium, thorium, gadolinium, hafnium, lutetium and lanthanum, that is, low work function metals. The metal activity order of the work function metal is before the metal titanium, and the low work function metal is higher than the metal titanium activity. At the same time, the stronger the activity of the low work function metal, the greater the reduction degree of titanium oxide. Increasing its conductivity to improve electron transport through this layer, improving band alignment with the surface of the silicon substrate, lowering the barrier height of the metal/titania layer, overcoming the limitations of typical n-type silicon substrate-metal contact, enabling Undoped ohmic contacts on lightly doped n-type silicon substrates.
可选地,图2示出了本公开实施例提供的第二种太阳能电池的结构示意图,参照图2,太阳能电池还可以包括:氧化钛层60和氧化硅层50,氧化硅层50设置在硅基底10和氮化钛层20之间,氧化钛层60设置在氮化钛层20和低功函数金属层30之间,其中,氧化钛层60和氧化硅层50是在对氮化钛层20进行氧化处理的过程中生成。Optionally, FIG. 2 shows a schematic structural diagram of a second type of solar cell provided by an embodiment of the present disclosure. Referring to FIG. 2 , the solar cell may further include: a titanium oxide layer 60 and a silicon oxide layer 50 , and the silicon oxide layer 50 is disposed on the Between the silicon substrate 10 and the titanium nitride layer 20, the titanium oxide layer 60 is disposed between the titanium nitride layer 20 and the low work function metal layer 30, wherein the titanium oxide layer 60 and the silicon oxide layer 50 are opposite to the titanium nitride layer 30. The layer 20 is formed during the oxidation treatment.
具体的,在硅基底的一面制备得到氮化钛层之后,可以通过针对氮化钛层的一次氧化处理,从而在氮化钛层和硅基底的界面形成具有隧穿钝化功能的氧化硅层,以及在氮化钛层远离硅基底的一面形成氧化钛层。由于氧化硅层可以钝化表面缺陷,使得不需要单独生长氧化硅层以改善氮化钛层钝化能力不足的缺陷,氧化钛层可以增强表面钝化效果,而且氮化钛层也具有优良的钝化性能,综上,可以通过一次氧化处理即可大大增强表面的钝化效果,具有工艺简单的优点。Specifically, after the titanium nitride layer is prepared on one side of the silicon substrate, a silicon oxide layer with tunneling passivation can be formed at the interface between the titanium nitride layer and the silicon substrate by performing an oxidation treatment on the titanium nitride layer. , and a titanium oxide layer is formed on the side of the titanium nitride layer away from the silicon substrate. Since the silicon oxide layer can passivate the surface defects, there is no need to grow the silicon oxide layer separately to improve the defects of the insufficient passivation ability of the titanium nitride layer, the titanium oxide layer can enhance the surface passivation effect, and the titanium nitride layer also has excellent In summary, the passivation performance of the surface can be greatly enhanced by one oxidation treatment, which has the advantage of a simple process.
可选地,图3示出了本公开实施例提供的第三种太阳能电池的结构示意图,参照图3,所述太阳能电池还可以包括:硅化物层70,硅化物层70设置在硅基底10与氮化钛层20之间,从而可以进一步降低接触电阻,提高太阳能电池的效率。Optionally, FIG. 3 shows a schematic structural diagram of a third solar cell provided by an embodiment of the present disclosure. Referring to FIG. 3 , the solar cell may further include: a silicide layer 70 , and the silicide layer 70 is disposed on the silicon substrate 10 Between the titanium nitride layer 20 and the titanium nitride layer 20, the contact resistance can be further reduced and the efficiency of the solar cell can be improved.
其中,硅化物层可以包括:二硅化钴、硅化铂和二硅化钛中的任意一种。The silicide layer may include any one of cobalt disilicide, platinum silicide and titanium disilicide.
可选地,上述硅基底可以为n型硅基底,由于n型硅基底对污染物有更高的抵抗能力,可以减少污染物对寿命的影响,从而具有更高的寿命,并且,由于n型硅基底没有硼氧缺陷,从而可以避免性能退化。Optionally, the above-mentioned silicon substrate may be an n-type silicon substrate. Since the n-type silicon substrate has a higher resistance to contaminants, the influence of contaminants on the lifespan can be reduced, thereby having a higher lifespan. The silicon substrate has no boron-oxygen defects, thus avoiding performance degradation.
可选地,上述金属电极层可以包括:铝、铝/银、镍/铜、镍/铜/锡、铬/钯/银和镍/铜/银中的任意一种。Optionally, the above-mentioned metal electrode layer may include any one of aluminum, aluminum/silver, nickel/copper, nickel/copper/tin, chromium/palladium/silver, and nickel/copper/silver.
可选地,上述氮化钛层的厚度可以小于20纳米,优选小于15纳米,例如8纳米,同时,氮化钛层表面形成的氧化钛层的厚度可以小于氮化钛层的厚度。Optionally, the thickness of the titanium nitride layer may be less than 20 nanometers, preferably less than 15 nanometers, such as 8 nanometers, and the thickness of the titanium oxide layer formed on the surface of the titanium nitride layer may be less than the thickness of the titanium nitride layer.
本公开还提供了一种太阳能电池的生产方法,参见图4,示出了本公开实施例提供的一种太阳能电池的生产方法的步骤流程图,该方法可以包括如下步骤:The present disclosure also provides a method for producing a solar cell. Referring to FIG. 4 , it shows a flow chart of the steps of the method for producing a solar cell provided by an embodiment of the present disclosure. The method may include the following steps:
步骤101,在硅基底的一面制备氮化钛层。In step 101, a titanium nitride layer is prepared on one side of the silicon substrate.
在该步骤中,可以首先获取硅基底,进而在硅基底的一面上制备氮化钛层。In this step, a silicon substrate can be obtained first, and then a titanium nitride layer is prepared on one side of the silicon substrate.
在本公开实施例中,所述硅基底可以为n型硅基底,所述硅基底可以为经过表面去损伤、抛光或者制绒扩散后的硅片。In the embodiment of the present disclosure, the silicon substrate may be an n-type silicon substrate, and the silicon substrate may be a silicon wafer after surface de-damage, polishing, or texturing and diffusion.
具体的,可以采用热原子沉积或等离子体辅助或增强原子沉积的方式沉积形成氮化钛层,该氮化钛层可以为电子选择传输层或空穴选择传输层。Specifically, the titanium nitride layer can be deposited by means of thermal atomic deposition or plasma-assisted or enhanced atomic deposition, and the titanium nitride layer can be an electron selective transport layer or a hole selective transport layer.
可选地,在沉积氮化钛层之前,可以在硅基底的表面沉积金属层,并对金属层进行退火处理,使得金属层与硅基底反应生成硅化物层,从而在硅基底和氮化钛层之间制备得到硅化物层。Optionally, before depositing the titanium nitride layer, a metal layer may be deposited on the surface of the silicon substrate, and the metal layer may be annealed, so that the metal layer reacts with the silicon substrate to form a silicide layer, thereby forming a silicide layer between the silicon substrate and the titanium nitride layer. A silicide layer is prepared between the layers.
其中,上述金属层可以包括:钴、铂和钛中的任意一种,相应的,上述硅化物层可以包括:二硅化钴、硅化铂和二硅化钛中的任意一种。Wherein, the metal layer may include any one of cobalt, platinum and titanium, and correspondingly, the silicide layer may include any one of cobalt disilicide, platinum silicide and titanium disilicide.
可选地,在制备得到氮化钛层之后,可以对氮化钛层进行氧化处理,从而在氮化钛层和硅基底之间形成超薄氧化硅层,在氧化钛层远离硅基底的一面形成氧化钛层。Optionally, after the titanium nitride layer is prepared, the titanium nitride layer can be oxidized, so as to form an ultra-thin silicon oxide layer between the titanium nitride layer and the silicon substrate, on the side of the titanium oxide layer away from the silicon substrate A titanium oxide layer is formed.
需要说明的是,若需要在氮化钛层和硅基底之间形成硅化物层,则可以在硅基底的表面沉积金属层之后,在金属层远离硅基底的一面沉积氮化钛层,并经过一次氧化处理,使得金属层中的金属与硅基底反应形成硅化物层,同时形成超薄氧化硅层和氧化钛层。It should be noted that, if a silicide layer needs to be formed between the titanium nitride layer and the silicon substrate, after the metal layer is deposited on the surface of the silicon substrate, the titanium nitride layer can be deposited on the side of the metal layer away from the silicon substrate, and the In one oxidation treatment, the metal in the metal layer reacts with the silicon substrate to form a silicide layer, and at the same time, an ultra-thin silicon oxide layer and a titanium oxide layer are formed.
可选地,上述氧化处理可以包括:干式氧化、湿式氧化和等离子体氧化中的任意一种。Optionally, the above oxidation treatment may include any one of dry oxidation, wet oxidation and plasma oxidation.
可选地,在上述氧化处理为干式氧化的情况下,氧化处理的热处理温度为300-600摄氏度,氧化处理的氧化气氛包括氮气和氧气;在上述氧化处理为湿式氧化的情况下,氧化处理的热处理温度为300-600摄氏度,氧化处理的氧化环境包括氮气和水;在上述氧化处理为等离子体氧化的情况下,氧化处理的热处理温度为25-300摄氏度,所述等离子体氧化可以使用电感耦合等离子体(Inductively Coupled Plasma,ICP)反应器或微波等离子体氧化仪完成。Optionally, in the case that the above-mentioned oxidation treatment is dry oxidation, the heat treatment temperature of the oxidation treatment is 300-600 degrees Celsius, and the oxidizing atmosphere of the oxidation treatment includes nitrogen and oxygen; in the case that the above-mentioned oxidation treatment is wet oxidation, the oxidation treatment The heat treatment temperature of the oxidation treatment is 300-600 degrees Celsius, and the oxidation environment of the oxidation treatment includes nitrogen and water; in the case that the above oxidation treatment is plasma oxidation, the heat treatment temperature of the oxidation treatment is 25-300 degrees Celsius, and the plasma oxidation can use an inductor Coupled plasma (Inductively Coupled Plasma, ICP) reactor or microwave plasma oxidizer to complete.
步骤102、在所述氮化钛层远离所述硅基底的一面制备低功函数金属层。 Step 102 , preparing a low work function metal layer on the side of the titanium nitride layer away from the silicon substrate.
在该步骤中,在硅基底的一面制备得到氮化钛层之后,可以进一步在氮化钛层远离硅基底的一面制备低功函数金属层。In this step, after the titanium nitride layer is prepared on one side of the silicon substrate, a low work function metal layer can be further prepared on the side of the titanium nitride layer away from the silicon substrate.
其中,上述低功函数金属层中包含的低功函数金属高于金属钛的活性。The activity of the low work function metal contained in the low work function metal layer is higher than that of titanium metal.
步骤103、在所述低功函数金属层远离所述氮化钛层的一面制备金属电极层。 Step 103 , preparing a metal electrode layer on the side of the low work function metal layer away from the titanium nitride layer.
在该步骤中,在制备得到低功函数金属层之后,可以进一步在低功函数金属层远离氮化钛层的一面制备金属电极层。In this step, after the low work function metal layer is prepared, a metal electrode layer may be further prepared on the side of the low work function metal layer away from the titanium nitride layer.
在本公开实施例中,所述金属电极可以通过各种已知的方法制作,并且可以不用高温烧结工艺,以降低热预算和对电池性能的不利影响,例如,可以通过丝网印刷、打印、激光转印低温浆料或电子束蒸发、热蒸镀、电镀的方式形成金属电极层。In the embodiments of the present disclosure, the metal electrodes may be fabricated by various known methods, and may not require a high-temperature sintering process to reduce thermal budget and adverse effects on battery performance, for example, by screen printing, printing, laser The metal electrode layer is formed by transfer of low temperature paste or electron beam evaporation, thermal evaporation and electroplating.
下面通过列举几个具体的实施例详细介绍本公开提供的一种太阳能电池及生产方法、光伏光伏组件。A solar cell, a production method, and a photovoltaic photovoltaic assembly provided by the present disclosure will be described in detail below by listing several specific embodiments.
图5示出了本公开实施例提供的第一种太阳能电池的结构示意图,参照图5,太阳能电池可以包括:硅基底110、掺杂氮化钛层120、低功函数金属层130和金属电极层140。FIG. 5 shows a schematic structural diagram of a first solar cell provided by an embodiment of the present disclosure. Referring to FIG. 5 , the solar cell may include: a silicon substrate 110 , a doped titanium nitride layer 120 , a low work function metal layer 130 and a metal electrode Layer 140.
其中,掺杂氮化钛层120设置在硅基底110的一面,低功函数金属层30设置在掺杂氮化钛层120远离硅基底110的一面,金属电极层40设置在低功函数金属层130远离掺杂氮化钛层120的一面,且低功函数金属层30包含的低功函数金属高于金属钛的活性。The doped titanium nitride layer 120 is disposed on one side of the silicon substrate 110, the low work function metal layer 30 is disposed on the side of the doped titanium nitride layer 120 away from the silicon substrate 110, and the metal electrode layer 40 is disposed on the low work function metal layer 130 is away from the side of the doped titanium nitride layer 120, and the low work function metal layer 30 contains a low work function metal which is more active than metal titanium.
具体的,掺杂氮化钛层120中包含低功函数金属,且掺杂氮化钛层120中包含的低功函数金属是在对低功函数金属层130进行退火处理的过程中,从低功函数金属层130中扩散进入形成的。Specifically, the doped titanium nitride layer 120 contains a low work function metal, and the low work function metal contained in the doped titanium nitride layer 120 is annealed from the low work function metal layer 130 during the annealing process. The work function metal layer 130 is diffused into the formed.
在本公开实施例中,硅基底的掺杂类型可以为n型掺杂,也可以为p型掺杂,在硅基底的掺杂类型为n型掺杂时,对应的掺杂物可以包括V族元素中的磷元素(P)、砷元素(As)、铋元素(Bi)和锑元素(Sb)中的任意一种或多种;在硅基底的掺杂类型为P型掺杂时,对应的掺杂物可以包括III族元素中的硼元素(B)、铝元素(Al)、镓元素(Ga)和铟元素(In)中的任意一种或多种。In the embodiment of the present disclosure, the doping type of the silicon substrate may be n-type doping or p-type doping. When the doping type of the silicon substrate is n-type doping, the corresponding dopant may include V Any one or more of phosphorus (P), arsenic (As), bismuth (Bi) and antimony (Sb) among the group elements; when the doping type of the silicon substrate is P-type doping, The corresponding dopant may include any one or more of boron element (B), aluminum element (Al), gallium element (Ga), and indium element (In) among the group III elements.
其中,设置在硅基底上的掺杂氮化钛层,可以设置在硅基底的背光面,也可以设置在硅基底的向光面。由于氮化钛是一种准金属材料,其高导电性和低接触电阻率使其成为一种有助于载流子传输和收集的材料,另外,氮化钛本身可以钝化硅基底表面以抑制载流子的表面复合,且氮化钛的沉积速率较快,因此,可以通过在硅基底的一面设置具有电子选择性或者空穴选择性的氮化钛层作为载流子选择层,以收集硅基底中的电子或空穴,从而分离硅基底中的载流子,而无需对硅基底进行掺杂。但是,采用常规方法制备得到的氮化钛的功函数较大,使得氮化钛的电子输运效率较差,并不适用于提取和收集电子载流子,从而导致太阳能电池的效率较低。Wherein, the doped titanium nitride layer disposed on the silicon substrate may be disposed on the backlight surface of the silicon substrate, or may be disposed on the light-directing surface of the silicon substrate. Since titanium nitride is a metalloid material, its high electrical conductivity and low contact resistivity make it a material that facilitates carrier transport and collection. In addition, titanium nitride itself can passivate the silicon substrate surface to The surface recombination of carriers is inhibited, and the deposition rate of titanium nitride is relatively fast. Therefore, a titanium nitride layer with electron selectivity or hole selectivity can be arranged on one side of the silicon substrate as a carrier selection layer. The electrons or holes in the silicon substrate are collected, thereby separating charge carriers in the silicon substrate without doping the silicon substrate. However, the work function of titanium nitride prepared by conventional methods is large, which makes the electron transport efficiency of titanium nitride poor, and is not suitable for extracting and collecting electron carriers, resulting in low efficiency of solar cells.
因此,在本公开实施例中,可以将设置在硅基底表面的氮化钛层制备为掺杂氮化钛层,即在氮化钛层远离硅基底的表面设置包含的低功函数金属的 低功函数金属层,且低功函数金属层包含的低功函数金属高于金属钛的活性,从而在对低功函数金属层进行退火处理的过程中,低功函数金属层中的低功函数金属扩散进入氮化钛层,形成掺杂氮化钛层,使得掺杂氮化钛层的功函数降低,促进电子输运,进而提高太阳能电池的效率。Therefore, in the embodiments of the present disclosure, the titanium nitride layer disposed on the surface of the silicon substrate can be prepared as a doped titanium nitride layer, that is, the titanium nitride layer is disposed on the surface of the titanium nitride layer far from the silicon substrate. The work function metal layer, and the low work function metal layer contained in the low work function metal layer is more active than the metal titanium, so that in the process of annealing the low work function metal layer, the low work function metal layer in the low work function metal layer has a low work function metal layer. Diffusion into the titanium nitride layer to form a doped titanium nitride layer, so that the work function of the doped titanium nitride layer is reduced, electron transport is promoted, and the efficiency of the solar cell is improved.
具体的,掺杂氮化钛层中低功函数金属的掺杂水平,取决于低功函数金属层中低功函数金属的功函数和扩散能力,以及氮化钛层的厚度和退火条件,氮化钛层的厚度越厚,低功函数金属的扩散受到的阻碍越大,掺杂效果越差,因此,可以通过选择扩散能力高,即活性较强的低功函数金属,以及降低氮化钛层的厚度、调节退火条件等,提高掺杂氮化钛层中低功函数金属的掺杂水平。Specifically, the doping level of the low work function metal in the doped titanium nitride layer depends on the work function and diffusivity of the low work function metal in the low work function metal layer, as well as the thickness and annealing conditions of the titanium nitride layer, nitrogen The thicker the thickness of the titanium oxide layer, the more hindered the diffusion of the low work function metal, and the worse the doping effect. Therefore, it is possible to select the low work function metal with high diffusion ability, that is, the active low work function metal, and reduce the titanium nitride. The thickness of the layer, the adjustment of annealing conditions, etc., can improve the doping level of the low work function metal in the doped titanium nitride layer.
需要说明的是,低功函数金属层中低功函数金属的功函数可以低于铝的功函数(4.28电子伏特),以提高对于电子载流子的选择传输。It should be noted that the work function of the low work function metal in the low work function metal layer may be lower than that of aluminum (4.28 eV) to improve the selective transport of electron carriers.
在本公开实施例中,上述金属电极层用于收集和导出载流子。在受到光照的情况下,硅基底作为光吸收层,产生电子-空穴对,由于掺杂氮化钛层和低功函数金属层具有良好的载流子选择传输作用,载流子被传输至低功函数金属层中,然后被与其连接的金属电极层导出,从而实现载流子的分离,使得金属电极层与硅基底之间产生电势差,即产生电压,从而将光能转换为电能。In the embodiment of the present disclosure, the above-mentioned metal electrode layer is used for collecting and exporting carriers. When exposed to light, the silicon substrate acts as a light absorbing layer to generate electron-hole pairs. Since the doped titanium nitride layer and the low work function metal layer have good carrier selection and transport, the carriers are transported to The low work function metal layer is then extracted by the metal electrode layer connected to it, so as to realize the separation of carriers, so that a potential difference is generated between the metal electrode layer and the silicon substrate, that is, a voltage is generated, thereby converting light energy into electrical energy.
在本公开实施例中,一种太阳能电池,包括:硅基底、掺杂氮化钛层、低功函数金属层和金属电极层;掺杂氮化钛层设置在硅基底的一面,低功函数金属层设置在掺杂氮化钛层远离硅基底的一面,金属电极层设置在低功函数金属层远离掺杂氮化钛层的一面;低功函数金属层包含的低功函数金属高于金属钛的活性;其中,掺杂氮化钛层中包含低功函数金属,且掺杂氮化钛层中包含的低功函数金属是在对低功函数金属层进行退火处理的过程中,从低功函数金属层中扩散进入形成的。本公开中,由于低功函数金属层可以在退火处理的过程中发生扩散,从而生成掺杂有低功函数金属层中低功函数金属的掺杂氮化钛层,使得掺杂氮化钛层的功函数降低,促进电子输运,进而提高太阳能电池的效率。In an embodiment of the present disclosure, a solar cell includes: a silicon substrate, a doped titanium nitride layer, a low work function metal layer and a metal electrode layer; the doped titanium nitride layer is disposed on one side of the silicon substrate, and the low work function The metal layer is arranged on the side of the doped titanium nitride layer away from the silicon substrate, and the metal electrode layer is arranged on the side of the low work function metal layer away from the doped titanium nitride layer; the low work function metal layer contains a lower work function metal than the metal layer. The activity of titanium; wherein, the doped titanium nitride layer contains low work function metal, and the low work function metal contained in the doped titanium nitride layer is in the process of annealing the low work function metal layer. Formed by diffusion into the work function metal layer. In the present disclosure, since the low work function metal layer can be diffused during the annealing process, a doped titanium nitride layer doped with the low work function metal in the low work function metal layer is generated, so that the doped titanium nitride layer is The work function is reduced, which promotes electron transport, thereby improving the efficiency of solar cells.
可选地,图6示出了本公开实施例提供的第二种太阳能电池的结构示意图,参照图6,硅基底110和掺杂氮化钛层120之间还可以包括:第一氧化层150和第二氧化层160,第一氧化层150设置在硅基底110的一面,第二氧化层160设置在第一氧化层150远离硅基底110的一面。Optionally, FIG. 6 shows a schematic structural diagram of a second type of solar cell provided by an embodiment of the present disclosure. Referring to FIG. 6 , between the silicon substrate 110 and the doped titanium nitride layer 120 may further include: a first oxide layer 150 and the second oxide layer 160 , the first oxide layer 150 is disposed on one side of the silicon substrate 110 , and the second oxide layer 160 is disposed on the side of the first oxide layer 150 away from the silicon substrate 110 .
其中,低功函数金属层130中的低功函数金属高于第一氧化层150中包含的金属的活性,第二氧化层160是由低功函数金属层130中的低功函数金属穿过掺杂氮化钛层120,与第一氧化层150发生反应生成的金属氧化层,即由于低功函数金属层130中的低功函数金属高于第一氧化层150中包含的金属的活性,则低功函数金属层130中的低功函数金属可以扩散通过掺杂氮化钛层120,与第一氧化层150发生反应从而形成第二氧化层160,生成的第二氧化层160可以增强太阳能电池的表面钝化效果,同时还可以促进低功函数金属层130中的低功函数金属在掺杂氮化钛层120中的扩散。The activity of the low work function metal in the low work function metal layer 130 is higher than that of the metal contained in the first oxide layer 150 , and the second oxide layer 160 is doped by the low work function metal in the low work function metal layer 130 through doping. The titanium hetero nitride layer 120 is a metal oxide layer formed by reacting with the first oxide layer 150, that is, since the low work function metal in the low work function metal layer 130 is more active than the metal contained in the first oxide layer 150, then The low work function metal in the low work function metal layer 130 can diffuse through the doped titanium nitride layer 120, react with the first oxide layer 150 to form a second oxide layer 160, and the generated second oxide layer 160 can enhance the solar cell The surface passivation effect can be improved, and at the same time, the diffusion of the low work function metal in the low work function metal layer 130 in the doped titanium nitride layer 120 can be promoted.
可选地,第一氧化层可以包括:氧化镁(MgO x)、三氧化二铝(Al 2O 3)、二氧化铪(HfO 2)、氧化钛(TiO x)、氧化铌(NbO x),氧化钽(TaO x)、氧化镓(GaO x)、氧化锌(ZnO x)和氧化铯(CsO x)中的任意一种,需要说明的是化学式中的x本领域技术人员可以根据实际需要确定。第一氧化层可以作为电子选择接触,促进硅基底中电子载流子的选择和传输,其中,二氧化钛(TiO 2)、一氧化锌(ZnO)和氧化钽(TaO x)与硅具有较小的导带差异和较大的价带差异,为空穴提供了障碍,MgO x和CsO x能产生偶极矩,可以通过费米能级的脱钉降低电极的功函数,从而使电子输运的势垒高度变小。 Optionally, the first oxide layer may include: magnesium oxide (MgO x ), aluminum oxide (Al 2 O 3 ), hafnium dioxide (HfO 2 ), titanium oxide (TiO x ), niobium oxide (NbO x ) , any one of tantalum oxide (TaO x ), gallium oxide (GaO x ), zinc oxide (ZnO x ) and cesium oxide (CsO x ). Sure. The first oxide layer can act as an electron-selective contact to facilitate the selection and transport of electron carriers in the silicon substrate, wherein titanium dioxide (TiO 2 ), zinc monoxide (ZnO), and tantalum oxide (TaO x ) have smaller The conduction band difference and the large valence band difference provide obstacles for holes, and MgO x and CsO x can generate a dipole moment, which can reduce the work function of the electrode through the de-pinning of the Fermi level, thereby making the electron transport more efficient. The barrier height becomes smaller.
此外,第一氧化层还可以包括二氧化硅(SiO 2),SiO 2也可以与穿过掺杂氮化钛层的低功函数金属发生反应生成第二氧化层。 In addition, the first oxide layer may also include silicon dioxide (SiO 2 ), and SiO 2 may also react with the low work function metal passing through the doped titanium nitride layer to form the second oxide layer.
可选地,掺杂氮化钛层中低功函数金属的浓度,从靠近低功函数金属层的一面向靠近硅基底的一面逐渐减小。Optionally, the concentration of the low work function metal in the doped titanium nitride layer gradually decreases from the side close to the low work function metal layer to the side close to the silicon substrate.
具体的,由于掺杂氮化钛层中的低功函数金属,是由掺杂氮化钛层远离硅基底一面的低功函数金属层中的低功函数金属扩散产生的,因此,掺杂氮化钛层中低功函数金属的浓度从远离硅基底到靠近硅基底的方向呈梯度分 布,且由于低功函数金属的扩散距离的增加,其浓度逐渐减小。Specifically, since the low work function metal in the doped titanium nitride layer is generated by the diffusion of the low work function metal in the low work function metal layer on the side of the doped titanium nitride layer away from the silicon substrate, the doping nitrogen The concentration of the low work function metal in the titanium oxide layer is distributed in a gradient from the direction away from the silicon substrate to the direction close to the silicon substrate, and the concentration of the low work function metal decreases gradually due to the increase of the diffusion distance of the low work function metal.
可选地,图7示出了本公开实施例提供的第三种太阳能电池的结构示意图,参照图7,太阳能电池还可以包括第一氮化钛层170,其中,第一氮化钛层设置在低功函数金属层130和金属电极层140之间。Optionally, FIG. 7 shows a schematic structural diagram of a third solar cell provided by an embodiment of the present disclosure. Referring to FIG. 7 , the solar cell may further include a first titanium nitride layer 170 , wherein the first titanium nitride layer is provided between the low work function metal layer 130 and the metal electrode layer 140 .
由于氮化钛层设置在低功函数金属层130靠近硅基底110的一面,用于在硅基底110和低功函数金属层130之间形成掺杂氮化钛层120,而第一氮化钛层170设置在低功函数金属层130远离硅基底110的一面,由于氮化钛具有准金属导电性,因此,可以直接利用第一氮化钛层170作为太阳能电池的电极层,以收集并导出载流子,金属电极层140设置在第一氮化钛层170远离低功函数金属层130的一面,从而可以阻止第一氮化钛层170在空气中的氧化,避免电池性能的下降。Since the titanium nitride layer is disposed on the side of the low work function metal layer 130 close to the silicon substrate 110, it is used to form the doped titanium nitride layer 120 between the silicon substrate 110 and the low work function metal layer 130, and the first titanium nitride layer is The layer 170 is disposed on the side of the low work function metal layer 130 away from the silicon substrate 110. Since the titanium nitride has metalloid conductivity, the first titanium nitride layer 170 can be directly used as the electrode layer of the solar cell to collect and export the For carriers, the metal electrode layer 140 is disposed on the side of the first titanium nitride layer 170 away from the low work function metal layer 130 , so as to prevent the first titanium nitride layer 170 from being oxidized in the air and avoid the degradation of the battery performance.
可选地,掺杂氮化钛层的厚度可以为1-10纳米,即用于形成掺杂氮化钛层的氮化钛层的厚度也为1-10纳米,氮化钛层的厚度对低功函数金属的扩散具有重要影响,氮化钛层的厚度越厚,低功函数金属元素的扩散受到的阻碍越大,掺杂效果越差,氮化钛掺杂后得到的掺杂氮化钛功函数降低不明显,因此,并不能促进电子输运的提高。第一氮化钛层的厚度可以为5-500纳米,使得相比于氮化钛层,第一氮化钛层的厚度较大,可以用作太阳能电池的电极层,同时,使得低功函数金属层中的低功函数金属向硅基底方向的氮化钛层扩散掺杂形成掺杂氮化钛层,而不会影响第一氮化钛层的功函数,因此,第一氮化钛层的功函数大于掺杂氮化钛层的功函数。Optionally, the thickness of the doped titanium nitride layer can be 1-10 nanometers, that is, the thickness of the titanium nitride layer used to form the doped titanium nitride layer is also 1-10 nanometers, and the thickness of the titanium nitride layer is about 1-10 nanometers. The diffusion of low work function metal has an important influence. The thicker the thickness of the titanium nitride layer, the greater the hindrance to the diffusion of low work function metal elements, and the worse the doping effect. The doped nitride obtained after titanium nitride doping The decrease in the work function of titanium is not obvious, therefore, the improvement of electron transport cannot be promoted. The thickness of the first titanium nitride layer may be 5-500 nanometers, so that the thickness of the first titanium nitride layer is larger than that of the titanium nitride layer, which can be used as an electrode layer of a solar cell, and at the same time, a low work function is obtained The low work function metal in the metal layer is diffused and doped to the titanium nitride layer in the direction of the silicon substrate to form a doped titanium nitride layer without affecting the work function of the first titanium nitride layer. Therefore, the first titanium nitride layer The work function of is greater than that of the doped titanium nitride layer.
可选地,低功函数金属包括:钙、镁、铝、钡、铯、锶、镱、铈、钐、铕、钕、钍、钆、铪、镥和镧中的任意一种,上述低功函数金属的活性均大于金属钛的活性,即金属活动性顺序位于金属钛之前,从而能够在氮化钛层中进行扩散从而形成掺杂氮化钛层。同时,若需要低功函数金属与第一氧化层反应生成第二氧化层,则低功函数金属的活动顺序位于第一氧化层中金属元素之前,且低功函数金属的活动性越强,与第一氧化层的反应程度越大,对氮化钛层的掺杂效果也越显著。Optionally, the low work function metal includes: any one of calcium, magnesium, aluminum, barium, cesium, strontium, ytterbium, cerium, samarium, europium, neodymium, thorium, gadolinium, hafnium, lutetium and lanthanum. The activity of the functional metal is greater than that of the metal titanium, that is, the activity of the metal precedes the metal titanium, so that it can diffuse in the titanium nitride layer to form the doped titanium nitride layer. At the same time, if the low work function metal is required to react with the first oxide layer to form a second oxide layer, the activity sequence of the low work function metal is located before the metal element in the first oxide layer, and the activity of the low work function metal is stronger, and The greater the reaction degree of the first oxide layer is, the more significant the doping effect on the titanium nitride layer is.
可选地,金属电极层可以包括:铝、银、铝/银、镍/铜/锡、铬/钯/银和 镍/铜/银中的任意一种,金属电极层的设置一方面可以避免第一氮化钛在空气中的氧化,避免电池性能恶化,另一方面可以改善晶体硅表面的能带排列,降低电阻,从而促进电子的传输和收集效果,提高电池性能。Optionally, the metal electrode layer may include any one of aluminum, silver, aluminum/silver, nickel/copper/tin, chromium/palladium/silver, and nickel/copper/silver, and the arrangement of the metal electrode layer can be avoided on the one hand. The oxidation of the first titanium nitride in the air can avoid the deterioration of the battery performance. On the other hand, it can improve the energy band alignment on the surface of the crystalline silicon and reduce the resistance, thereby promoting the transmission and collection of electrons and improving the battery performance.
本公开还提供了一种太阳能电池的生产方法,参见图8,示出了本公开实施例提供的一种太阳能电池的生产方法的步骤流程图,该方法可以包括如下步骤:The present disclosure also provides a method for producing a solar cell, referring to FIG. 8 , which shows a flow chart of the steps of the method for producing a solar cell provided by an embodiment of the present disclosure, and the method may include the following steps:
步骤1101,在硅基底的一面制备氮化钛层。In step 1101, a titanium nitride layer is prepared on one side of the silicon substrate.
在该步骤中,可以首先获取硅基底,进而在硅基底的一面制备氮化钛层,即未进行掺杂的氮化钛层。In this step, a silicon substrate can be obtained first, and then a titanium nitride layer, that is, an undoped titanium nitride layer, is prepared on one side of the silicon substrate.
具体的,可以在硅基底的一面制备氮化钛层,以供进一步在氮化钛层远离硅基底的一面制备低功函数金属层,从而在退火的条件下,使得低功函数金属层中的低功函数金属扩散进入氮化钛层中,从而制备得到掺杂氮化钛层。Specifically, a titanium nitride layer can be prepared on one side of the silicon substrate, so as to further prepare a low work function metal layer on the side of the titanium nitride layer away from the silicon substrate, so that under the condition of annealing, the low work function metal layer in the low work function metal layer can be prepared. The low work function metal diffuses into the titanium nitride layer, thereby preparing a doped titanium nitride layer.
可选地,可以在制备氮化钛层之前,在硅基底的一面首先制备第一氧化层,进一步在第一氧化层远离硅基底的一面制备氮化钛层,以供进一步在氮化钛层远离硅基底的一面制备低功函数金属层,从而在退火的条件下,使得低功函数金属层中的低功函数金属扩散进入氮化钛层中,从而制备得到掺杂氮化钛层,并且,低功函数金属层中的低功函数金属穿过掺杂氮化钛层之后,可以与第一氧化层发生反应生成第二氧化层。Optionally, before preparing the titanium nitride layer, a first oxide layer may be first prepared on one side of the silicon substrate, and a titanium nitride layer may be further prepared on the side of the first oxide layer away from the silicon substrate, so as to further prepare the titanium nitride layer on the side of the first oxide layer. A low work function metal layer is prepared on the side away from the silicon substrate, so that under the condition of annealing, the low work function metal in the low work function metal layer is diffused into the titanium nitride layer, thereby preparing a doped titanium nitride layer, and , after the low work function metal in the low work function metal layer passes through the doped titanium nitride layer, it can react with the first oxide layer to form a second oxide layer.
步骤1102、在所述氮化钛层远离所述硅基底的一面制备低功函数金属层。Step 1102 , preparing a low work function metal layer on the side of the titanium nitride layer away from the silicon substrate.
在该步骤中,在硅基底的一面制备氮化钛层之后,可以进一步在氮化钛层远离硅基底的一面制备低功函数金属层。In this step, after the titanium nitride layer is prepared on one side of the silicon substrate, a low work function metal layer may be further prepared on the side of the titanium nitride layer away from the silicon substrate.
步骤1103、在所述低功函数金属层远离所述氮化钛层的一面制备金属电极层。 Step 1103 , preparing a metal electrode layer on the side of the low work function metal layer away from the titanium nitride layer.
在该步骤中,可以在氮化钛层远离硅基底的一面制备低功函数金属层之后,在所述低功函数金属层远离氮化钛层的一面制备金属电极层。In this step, after the low work function metal layer is prepared on the side of the titanium nitride layer away from the silicon substrate, a metal electrode layer may be prepared on the side away from the titanium nitride layer of the low work function metal layer.
可选地,在太阳能电池还包含第一氮化钛层的情况下,可以在氮化钛层远离硅基底的一面制备低功函数金属层之后,在低功函数金属层远离氮化钛层的一面首先制备第一氮化钛层,进一步在第一氮化钛层远离低功函数金属 层的一面制备金属电极层,从而可以直接利用第一氮化钛层作为太阳能电池的电极层,以收集并导出载流子,金属电极层设置在第一氮化钛层远离低功函数金属层的一面,从而可以阻止第一氮化钛层在空气中的氧化,避免电池性能的下降。Optionally, in the case where the solar cell further includes the first titanium nitride layer, after the low work function metal layer is prepared on the side of the titanium nitride layer far away from the silicon substrate, the low work function metal layer may be separated from the titanium nitride layer on the side of the low work function metal layer away from the titanium nitride layer. A first titanium nitride layer is first prepared on one side, and a metal electrode layer is further prepared on the side of the first titanium nitride layer away from the low work function metal layer, so that the first titanium nitride layer can be directly used as the electrode layer of the solar cell to collect And the carriers are derived, and the metal electrode layer is arranged on the side of the first titanium nitride layer away from the low work function metal layer, so that the oxidation of the first titanium nitride layer in the air can be prevented and the performance of the battery can be prevented from being degraded.
步骤1104、对所述低功函数金属层进行退火处理,所述低功函数金属层中的低功函数金属扩散进入所述氮化钛层中,形成掺杂氮化钛层。 Step 1104 , annealing the low work function metal layer, and the low work function metal in the low work function metal layer diffuses into the titanium nitride layer to form a doped titanium nitride layer.
在该步骤中,可以在制备得到低功函数金属层或制备得到金属电极层之后,对低功函数金属层进行退火处理,使得低功函数金属层中的低功函数金属扩散进入氮化钛层中,从而形成掺杂氮化钛层。In this step, after the low work function metal layer or the metal electrode layer is prepared, the low work function metal layer may be annealed, so that the low work function metal in the low work function metal layer diffuses into the titanium nitride layer , thereby forming a doped titanium nitride layer.
在本公开实施例中,若硅基底和待掺杂氮化钛之间设置有第一氧化层,对低功函数金属层进行的退火处理,还可以使得低功函数金属层中的低功函数金属穿过掺杂氮化钛层之后,与第一氧化层发生反应生成第二氧化层。In the embodiment of the present disclosure, if the first oxide layer is disposed between the silicon substrate and the titanium nitride to be doped, the annealing treatment of the low work function metal layer can also make the low work function metal layer in the low work function metal layer. After the metal passes through the doped titanium nitride layer, it reacts with the first oxide layer to form a second oxide layer.
可选地,上述针对低功函数金属层的退火处理可以包括:在350-450摄氏度的温度范围内,在氮气和氢气的混合气体中进行退火,且混合气体中氮气和氢气的比例为10:1。Optionally, the above-mentioned annealing treatment for the low work function metal layer may include: in a temperature range of 350-450 degrees Celsius, annealing is performed in a mixed gas of nitrogen and hydrogen, and the ratio of nitrogen and hydrogen in the mixed gas is 10: 1.
可选地,在针对低功函数金属层进行了上述退火处理之后,还可以进一步在400-700摄氏度的温度范围内,在氮气退火气氛中进行二次退火。退火温度越高,氮化钛层的功函数降低越大,得到的掺杂氮化钛层的功函数越小。但是,退火温度存在一个临界值,若退火温度低于临界值,则掺杂氮化钛层的功函数随着退火温度的升高而降低,若温度高于临界值,氮化钛层的功函数不仅不会降低,还会有一定程度的增加。同时,若硅基底和待掺杂氮化钛之间设置有第一氧化层,则随着退火温度的升高,第一氧化层的厚度降低,这是由于低功函数金属的掺入形成了金属氧化层(即第二氧化层),导致氧清除。Optionally, after the above-mentioned annealing treatment is performed on the low work function metal layer, secondary annealing may be further performed in a nitrogen annealing atmosphere within a temperature range of 400-700 degrees Celsius. The higher the annealing temperature, the greater the reduction in the work function of the titanium nitride layer, and the smaller the work function of the resulting doped titanium nitride layer. However, there is a critical value of the annealing temperature. If the annealing temperature is lower than the critical value, the work function of the doped titanium nitride layer will decrease with the increase of the annealing temperature. If the temperature is higher than the critical value, the work function of the titanium nitride layer will decrease. Not only will the function not decrease, but it will also increase to some extent. At the same time, if a first oxide layer is arranged between the silicon substrate and the titanium nitride to be doped, the thickness of the first oxide layer decreases with the increase of the annealing temperature. The metal oxide layer (ie, the second oxide layer), resulting in oxygen scavenging.
需要说明的是,上述太阳能电池和太阳能电池的生产方法对应的部分两者可以参照,且具有相同或相似的有益效果。It should be noted that, the corresponding parts of the above-mentioned solar cell and the production method of the solar cell can be referred to, and have the same or similar beneficial effects.
此外,本公开实施例还提供了一种光伏组件,包括前述任一所述的太阳能电池,太阳能电池的两侧可以设置有封装胶膜、盖板、背板等。具有与前 述的太阳能电池相同或相似的有益效果。In addition, an embodiment of the present disclosure also provides a photovoltaic assembly, including any one of the aforementioned solar cells, and both sides of the solar cell may be provided with an encapsulation film, a cover plate, a back plate, and the like. Has the same or similar beneficial effects as the aforementioned solar cells.
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本公开的保护之内。The embodiments of the present disclosure have been described above in conjunction with the accompanying drawings, but the present disclosure is not limited to the above-mentioned specific embodiments, which are merely illustrative rather than restrictive. Under the inspiration of the present disclosure, many forms can be made without departing from the scope of the present disclosure and the protection scope of the claims, which all fall within the protection of the present disclosure.

Claims (26)

  1. 一种太阳能电池,其特征在于,所述太阳能电池包括:A solar cell, characterized in that the solar cell comprises:
    硅基底、氮化钛层、低功函数金属层和金属电极层;Silicon substrate, titanium nitride layer, low work function metal layer and metal electrode layer;
    所述氮化钛层设置在所述硅基底的一面,所述低功函数金属层设置在所述氮化钛层远离所述硅基底的一面,所述金属电极层设置在所述低功函数金属层远离所述氮化钛层的一面;The titanium nitride layer is arranged on one side of the silicon substrate, the low work function metal layer is arranged on the side of the titanium nitride layer away from the silicon substrate, and the metal electrode layer is arranged on the low work function a side of the metal layer away from the titanium nitride layer;
    其中,所述低功函数金属层中包含的低功函数金属高于金属钛的活性。Wherein, the low work function metal contained in the low work function metal layer has higher activity than metal titanium.
  2. 根据权利要求1所述的太阳能电池,其特征在于,所述太阳能电池还包括:氧化钛层和氧化硅层;The solar cell according to claim 1, wherein the solar cell further comprises: a titanium oxide layer and a silicon oxide layer;
    所述氧化硅层设置在所述硅基底和所述氮化钛层之间,所述氧化钛层设置在所述氮化钛层和所述低功函数金属层之间;the silicon oxide layer is arranged between the silicon substrate and the titanium nitride layer, and the titanium oxide layer is arranged between the titanium nitride layer and the low work function metal layer;
    其中,所述氧化钛层和所述氧化硅层是在对所述氮化钛层进行氧化处理的过程中生成。Wherein, the titanium oxide layer and the silicon oxide layer are formed in the process of oxidizing the titanium nitride layer.
  3. 根据权利要求1所述的太阳能电池,其特征在于,所述太阳能电池还包括:硅化物层;The solar cell according to claim 1, wherein the solar cell further comprises: a silicide layer;
    所述硅化物层设置在所述硅基底与所述氮化钛层之间;the silicide layer is disposed between the silicon substrate and the titanium nitride layer;
    所述硅化物层包括:二硅化钴、硅化铂和二硅化钛中的任意一种。The silicide layer includes any one of cobalt disilicide, platinum silicide and titanium disilicide.
  4. 根据权利要求1中所述的太阳能电池,其特征在于,所述硅基底为n型硅基底。The solar cell according to claim 1, wherein the silicon substrate is an n-type silicon substrate.
  5. 根据权利要求1中所述的太阳能电池,其特征在于,所述氮化钛层的厚度小于20纳米。The solar cell of claim 1, wherein the thickness of the titanium nitride layer is less than 20 nanometers.
  6. 根据权利要求1所述的太阳能电池,其特征在于,所述氮化钛层为掺杂氮化钛层,所述掺杂氮化钛层中包含所述低功函数金属,且所述掺杂氮化钛层中包含的低功函数金属是在对所述低功函数金属层进行退火处理的过程中,从所述低功函数金属层中扩散进入形成的。The solar cell according to claim 1, wherein the titanium nitride layer is a doped titanium nitride layer, the doped titanium nitride layer comprises the low work function metal, and the doped titanium nitride layer comprises the low work function metal. The low work function metal contained in the titanium nitride layer is formed by diffusing into the low work function metal layer during the annealing process of the low work function metal layer.
  7. 根据权利要求6所述的太阳能电池,其特征在于,所述硅基底和所述掺杂氮化钛层之间还包括:第一氧化层和第二氧化层;The solar cell according to claim 6, wherein the silicon substrate and the doped titanium nitride layer further comprise: a first oxide layer and a second oxide layer;
    所述第一氧化层设置在所述硅基底的一面,所述第二氧化层设置在所述第一氧化层远离所述硅基底的一面;The first oxide layer is arranged on one side of the silicon substrate, and the second oxide layer is arranged on the side of the first oxide layer away from the silicon substrate;
    其中,所述低功函数金属高于所述第一氧化层中包含的金属的活性;wherein the low work function metal is more active than the metal contained in the first oxide layer;
    所述第二氧化层是由所述低功函数金属层中的低功函数金属穿过所述掺 杂氮化钛层,与所述第一氧化层发生反应生成的金属氧化层。The second oxide layer is a metal oxide layer formed by the low work function metal in the low work function metal layer passing through the doped titanium nitride layer and reacting with the first oxide layer.
  8. 根据权利要求7所述的太阳能电池,其特征在于,所述第一氧化层包括:氧化镁、三氧化二铝、二氧化铪、氧化钛、氧化铌,氧化钽、氧化镓、氧化锌和氧化铯中的任意一种。The solar cell according to claim 7, wherein the first oxide layer comprises: magnesium oxide, aluminum oxide, hafnium oxide, titanium oxide, niobium oxide, tantalum oxide, gallium oxide, zinc oxide and oxide Any of cesium.
  9. 根据权利要求6所述的太阳能电池,其特征在于,所述掺杂氮化钛层中低功函数金属的浓度,从靠近所述低功函数金属层的一面向靠近所述硅基底的一面逐渐减小。The solar cell according to claim 6, wherein the concentration of the low work function metal in the doped titanium nitride layer gradually increases from the side close to the low work function metal layer to the side close to the silicon substrate decrease.
  10. 根据权利要求6所述的太阳能电池,其特征在于,所述太阳能电池还包括:第一氮化钛层;The solar cell according to claim 6, wherein the solar cell further comprises: a first titanium nitride layer;
    所述第一氮化钛层设置在所述低功函数金属层和所述金属电极层之间。The first titanium nitride layer is disposed between the low work function metal layer and the metal electrode layer.
  11. 根据权利要求10所述的太阳能电池,其特征在于,所述掺杂氮化钛层的厚度为1-10纳米,所述第一氮化钛层的厚度为5-500纳米。The solar cell according to claim 10, wherein the thickness of the doped titanium nitride layer is 1-10 nanometers, and the thickness of the first titanium nitride layer is 5-500 nanometers.
  12. 根据权利要求1-11中任一项所述的太阳能电池,其特征在于,The solar cell according to any one of claims 1-11, characterized in that,
    所述低功函数金属包括:钙、镁、铝、钡、铯、锶、镱、铈、钐、铕、钕、钍、钆、铪、镥和镧中的任意一种。The low work function metal includes any one of calcium, magnesium, aluminum, barium, cesium, strontium, ytterbium, cerium, samarium, europium, neodymium, thorium, gadolinium, hafnium, lutetium and lanthanum.
  13. 根据权利要求1-11中任一项所述的太阳能电池,其特征在于,所述金属电极层包括:铝、铝/银、镍/铜、镍/铜/锡、铬/钯/银和镍/铜/银中的任意一种。The solar cell according to any one of claims 1-11, wherein the metal electrode layer comprises: aluminum, aluminum/silver, nickel/copper, nickel/copper/tin, chromium/palladium/silver, and nickel /copper/silver any of them.
  14. 根据权利要求6-11中任一项所述的太阳能电池,其特征在于,所述低功函数金属层的厚度为0.1-10纳米。The solar cell according to any one of claims 6-11, wherein the thickness of the low work function metal layer is 0.1-10 nanometers.
  15. 一种太阳能电池的生产方法,其特征在于,所述方法包括:A production method of a solar cell, characterized in that the method comprises:
    在硅基底的一面制备氮化钛层;A titanium nitride layer is prepared on one side of the silicon substrate;
    在所述氮化钛层远离所述硅基底的一面制备低功函数金属层;preparing a low work function metal layer on the side of the titanium nitride layer away from the silicon substrate;
    在所述低功函数金属层远离所述氮化钛层的一面制备金属电极层;preparing a metal electrode layer on the side of the low work function metal layer away from the titanium nitride layer;
    其中,所述低功函数金属层中包含的低功函数金属高于金属钛的活性。Wherein, the low work function metal contained in the low work function metal layer has higher activity than metal titanium.
  16. 根据权利要求15所述的方法,其特征在于,在硅基底的一面制备氮化钛层的步骤之后,所述方法还包括:The method according to claim 15, wherein after the step of preparing the titanium nitride layer on one side of the silicon substrate, the method further comprises:
    对所述氮化钛层进行氧化处理,在所述氮化钛层与所述硅基底的中间生成氧化硅层,在所述氮化钛层远离所述硅基底的一面生成氧化钛层。The titanium nitride layer is oxidized to form a silicon oxide layer between the titanium nitride layer and the silicon substrate, and a titanium oxide layer is formed on the side of the titanium nitride layer away from the silicon substrate.
  17. 根据权利要求16中所述的方法,其特征在于,所述氧化处理包括:干式氧化、湿式氧化和等离子体氧化中的任意一种。The method according to claim 16, wherein the oxidation treatment comprises any one of dry oxidation, wet oxidation and plasma oxidation.
  18. 根据权利要求16所述的方法,其特征在于,The method of claim 16, wherein:
    在所述氧化处理为干式氧化的情况下,所述氧化处理的热处理温度为300-600摄氏度,所述氧化处理的氧化气氛包括氮气和氧气;When the oxidation treatment is dry oxidation, the heat treatment temperature of the oxidation treatment is 300-600 degrees Celsius, and the oxidation atmosphere of the oxidation treatment includes nitrogen and oxygen;
    在所述氧化处理为湿式氧化的情况下,所述氧化处理的热处理温度为300-600摄氏度,所述氧化处理的氧化气氛包括氮气和水;When the oxidation treatment is wet oxidation, the heat treatment temperature of the oxidation treatment is 300-600 degrees Celsius, and the oxidation atmosphere of the oxidation treatment includes nitrogen and water;
    在所述氧化处理为等离子体氧化的情况下,所述氧化处理的热处理温度为25-300摄氏度。When the oxidation treatment is plasma oxidation, the heat treatment temperature of the oxidation treatment is 25-300 degrees Celsius.
  19. 根据权利要求15所述的方法,其特征在于,在硅基底的一面制备氮化钛层的步骤之前,所述方法还包括:The method according to claim 15, wherein before the step of preparing the titanium nitride layer on one side of the silicon substrate, the method further comprises:
    在所述硅基底的一面制备金属层;preparing a metal layer on one side of the silicon substrate;
    对所述金属层进行退火处理,所述金属层与所述硅基底反应生成硅化物层;annealing the metal layer, and the metal layer reacts with the silicon substrate to form a silicide layer;
    其中,所述金属层包括:钴、铂和钛中的任意一种。Wherein, the metal layer includes any one of cobalt, platinum and titanium.
  20. 根据权利要求15所述的方法,其特征在于,所述方法包括:对所述低功函数金属层进行退火处理,所述低功函数金属层中的低功函数金属扩散进入所述氮化钛层中,形成掺杂氮化钛层。The method of claim 15, wherein the method comprises: annealing the low work function metal layer, and the low work function metal in the low work function metal layer diffuses into the titanium nitride layer, a doped titanium nitride layer is formed.
  21. 根据权利要求20所述的方法,其特征在于,所述在硅基底的一面制备氮化钛层的步骤,具体包括:The method according to claim 20, wherein the step of preparing the titanium nitride layer on one side of the silicon substrate specifically comprises:
    在所述硅基底的一面制备第一氧化层;preparing a first oxide layer on one side of the silicon substrate;
    在所述第一氧化层远离所述硅基底的一面制备所述氮化钛层;preparing the titanium nitride layer on the side of the first oxide layer away from the silicon substrate;
    所述对所述低功函数金属层进行退火处理,所述低功函数金属层中的低功函数金属扩散进入所述氮化钛层中,形成掺杂氮化钛层的步骤,具体包括:The step of performing annealing treatment on the low work function metal layer and diffusing the low work function metal in the low work function metal layer into the titanium nitride layer to form a doped titanium nitride layer specifically includes:
    对所述低功函数金属层进行退火处理,所述低功函数金属层中的低功函数金属扩散进入所述氮化钛层中,形成所述掺杂氮化钛层,且所述低功函数金属层中的低功函数金属穿过所述掺杂氮化钛层,与所述第一氧化层发生反应生成第二氧化层。The low work function metal layer is annealed, the low work function metal in the low work function metal layer diffuses into the titanium nitride layer to form the doped titanium nitride layer, and the low work function metal layer is diffused into the titanium nitride layer. The low work function metal in the functional metal layer passes through the doped titanium nitride layer and reacts with the first oxide layer to form a second oxide layer.
  22. 根据权利要求20或21所述的方法,其特征在于,所述退火处理的步骤,包括:The method according to claim 20 or 21, wherein the step of annealing comprises:
    在350-450摄氏度的温度范围内,在氮气和氢气的混合气体中进行退火,所述混合气体中氮气和氢气的比例为10:1。The annealing is carried out in a mixed gas of nitrogen and hydrogen in a temperature range of 350-450 degrees Celsius, and the ratio of nitrogen and hydrogen in the mixed gas is 10:1.
  23. 根据权利要求22所述的方法,其特征在于,在350-450摄氏度的温度范围内,在氮气和氢气的混合气体中进行退火的步骤之后,所述方法还包括:The method according to claim 22, characterized in that, after the step of annealing in a mixed gas of nitrogen and hydrogen in a temperature range of 350-450 degrees Celsius, the method further comprises:
    在400-700摄氏度的温度范围内,在氮气退火气氛中进行二次退火。The secondary annealing is carried out in a nitrogen annealing atmosphere in the temperature range of 400-700 degrees Celsius.
  24. 根据权利要求20或21所述的方法,其特征在于,在所述低功函数金属层远离所述氮化钛层的一面制备金属电极层的步骤,具体包括:The method according to claim 20 or 21, wherein the step of preparing a metal electrode layer on the side of the low work function metal layer away from the titanium nitride layer specifically includes:
    在所述低功函数金属层远离所述氮化钛层的一面制备第一氮化钛层;preparing a first titanium nitride layer on the side of the low work function metal layer away from the titanium nitride layer;
    在所述第一氮化钛层远离所述低功函数金属层的一面制备所述金属电极层。The metal electrode layer is prepared on the side of the first titanium nitride layer away from the low work function metal layer.
  25. 根据权利要求21所述的方法,其特征在于,所述第一氧化层包括:氧化镁、三氧化二铝、二氧化铪、氧化钛、氧化铌,氧化钽、氧化镓、氧化锌和氧化铯中的任意一种。The method of claim 21, wherein the first oxide layer comprises: magnesium oxide, aluminum oxide, hafnium oxide, titanium oxide, niobium oxide, tantalum oxide, gallium oxide, zinc oxide, and cesium oxide any of the .
  26. 一种光伏组件,其特征在于,包括权利要求1-14中任一所述的太阳能电池。A photovoltaic module is characterized by comprising the solar cell of any one of claims 1-14.
PCT/CN2021/132485 2020-12-23 2021-11-23 Solar cell, production method therefor and photovoltaic module WO2022134992A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011548705.9 2020-12-23
CN202011548705.9A CN114744064B (en) 2020-12-23 2020-12-23 Solar cell, production method and photovoltaic module
CN202011556800.3 2020-12-24
CN202011556800.3A CN114678433B (en) 2020-12-24 2020-12-24 Solar cell, production method and photovoltaic module

Publications (1)

Publication Number Publication Date
WO2022134992A1 true WO2022134992A1 (en) 2022-06-30

Family

ID=82158784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132485 WO2022134992A1 (en) 2020-12-23 2021-11-23 Solar cell, production method therefor and photovoltaic module

Country Status (1)

Country Link
WO (1) WO2022134992A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110146766A1 (en) * 2008-02-26 2011-06-23 Solar Cells Based On Quantum Dot Or Colloidal Nanocrystal Films Solar cells based on quantum dot or colloidal nanocrystal films
CN104157333A (en) * 2013-05-13 2014-11-19 英飞凌科技德累斯顿有限责任公司 Electrode, an electronic device, and a method for manufacturing an optoelectronic device
WO2020091193A1 (en) * 2018-10-31 2020-05-07 한국생산기술연구원 Carrier-selective contact junction silicon solar cell and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110146766A1 (en) * 2008-02-26 2011-06-23 Solar Cells Based On Quantum Dot Or Colloidal Nanocrystal Films Solar cells based on quantum dot or colloidal nanocrystal films
CN104157333A (en) * 2013-05-13 2014-11-19 英飞凌科技德累斯顿有限责任公司 Electrode, an electronic device, and a method for manufacturing an optoelectronic device
WO2020091193A1 (en) * 2018-10-31 2020-05-07 한국생산기술연구원 Carrier-selective contact junction silicon solar cell and manufacturing method therefor

Similar Documents

Publication Publication Date Title
Battaglia et al. High-efficiency crystalline silicon solar cells: status and perspectives
CN109037359B (en) Solar cell
JP6108858B2 (en) P-type semiconductor material and semiconductor device
CN112310232B (en) Solar cell, production method and cell module
WO2022134991A1 (en) Solar cell and production method, and photovoltaic module
CN112310233B (en) Solar cell, production method and cell module
CN111816726B (en) Back contact solar cell, production method thereof and back contact cell assembly
EP4195301A1 (en) Solar cell and photovoltaic module
CN114050105A (en) TopCon battery preparation method
CN115148838B (en) Solar cell, production method and photovoltaic module
WO2024060933A1 (en) Solar cell and manufacturing method therefor
WO2022134992A1 (en) Solar cell, production method therefor and photovoltaic module
WO2022134994A1 (en) Solar cell, production method, and photovoltaic module
CN114744052B (en) Solar cell and photovoltaic module
CN114678433B (en) Solar cell, production method and photovoltaic module
CN114744064B (en) Solar cell, production method and photovoltaic module
CN213692066U (en) Solar cell and cell module
CN111864014A (en) Solar cell and manufacturing method thereof
US20230327034A1 (en) Photovoltaic cell and photovoltaic module
CN114744053B (en) Solar cell, production method and photovoltaic module
WO2022134990A1 (en) Solar cell and production method, and photovoltaic module
WO2021196606A1 (en) Laminated photovoltaic device, and production method
CN115172522B (en) Solar cell, preparation method and photovoltaic module
CN114759100A (en) Silicon-based heterojunction solar cell and preparation method thereof
CN116799075A (en) Photovoltaic cell and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908991

Country of ref document: EP

Kind code of ref document: A1