WO2022134899A1 - 侧壁导流预热凹槽及其连续加料预热装置与预热方法 - Google Patents

侧壁导流预热凹槽及其连续加料预热装置与预热方法 Download PDF

Info

Publication number
WO2022134899A1
WO2022134899A1 PCT/CN2021/129513 CN2021129513W WO2022134899A1 WO 2022134899 A1 WO2022134899 A1 WO 2022134899A1 CN 2021129513 W CN2021129513 W CN 2021129513W WO 2022134899 A1 WO2022134899 A1 WO 2022134899A1
Authority
WO
WIPO (PCT)
Prior art keywords
preheating
side wall
flue gas
groove
feeding
Prior art date
Application number
PCT/CN2021/129513
Other languages
English (en)
French (fr)
Inventor
黄其明
谈存真
张建
张豫川
杨宁川
刘春霆
Original Assignee
中冶赛迪工程技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶赛迪工程技术股份有限公司 filed Critical 中冶赛迪工程技术股份有限公司
Publication of WO2022134899A1 publication Critical patent/WO2022134899A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/527Charging of the electric furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/56Manufacture of steel by other methods
    • C21C5/562Manufacture of steel by other methods starting from scrap
    • C21C5/565Preheating of scrap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of electric furnace steelmaking, and in particular relates to a side wall diversion preheating groove, a continuous feeding preheating device with the side wall diversion preheating groove, and a preheating method thereof.
  • Scrap steel preheating type electric arc furnace is an energy-saving electric arc furnace.
  • the electric arc furnace waste steel flue gas preheating technology that emerged in the late 1980s is a typical energy-saving technology, such as CONSTEEL (US5400358).
  • CONSTEEL technology has experienced nearly 30 years of development and is relatively mature. Its flat molten pool smelting reduces the impact of the power grid, has the advantages of reducing the maintenance of the electric furnace body, and has certain energy-saving effects in actual production.
  • CONSTEEL has shown the problem that the power saving effect is not as good as that of the shaft furnace during use. Therefore, improving the utilization efficiency of the flue gas of the continuous feed furnace is the most important goal of energy saving, and it is also its long-term task and improvement direction.
  • the purpose of the present invention is to provide a side wall guide preheating groove, a continuous feeding preheating device with the side wall guide preheating groove and a preheating method thereof, so as to improve the preheating of materials Effect.
  • the present invention provides the following technical solutions:
  • a side wall diversion preheating groove comprises a feeding chute with a U-shaped structure, and also includes two baffle plates with an L-shaped structure.
  • the two blocking boards are arranged in an inverted form.
  • the two baffle plates are detachably connected to the two side walls of the feeding chute through connecting pieces, and the two side walls of the feeding chute cooperate with the corresponding baffle plates connected to them to form two
  • There is a side wall guide flue and there is a gap for flue gas overflow between the lower edges of the two baffle plates and the bottom surface of the inner cavity of the feeding trough.
  • the height of the flue gas overflow gap gradually increases.
  • the bottom surface of the trough body of the feeding chute has a step section downwards step by step along the material conveying direction, and the stepped section is arranged at one end of the feeding chute which is connected to the electric furnace.
  • the inner cavity surface of the side wall guide flue is provided with a heat insulation layer.
  • the width of the side wall guide flue formed by the cooperation of the feeding chute and the baffle plate gradually increases.
  • a continuous feeding preheating device comprises a batching conveying groove, a side wall diversion preheating groove and a trolley connecting groove which are connected in sequence along the material conveying direction, and a smoke hood is buckled above the side wall diversion preheating groove;
  • the tail of the hood is provided with a dust removal port;
  • the connecting groove of the trolley is mobile and its discharge end is connected with the feeding end of the electric furnace.
  • the stepped section connected with the grooves, the stepped section has at least one level and the steps are downward along the material conveying direction;
  • the upper cover of the connecting groove of the trolley is buckled with a front hood, and the two ends of the front hood are correspondingly connected to the electric furnace and the hood .
  • the side wall diversion preheating groove is as described above.
  • the material in the side wall diversion preheating groove and the exposed surface of the side wall diversion preheating groove are stacked.
  • the surface and the fume hood together form the top fume channel.
  • a smoke blocking mechanism is provided on the end of the front hood connected to the hood, and the smoke blocking mechanism corresponds to the inlet end of the top flue gas passage to adjust the inlet opening of the top flue gas passage.
  • the fume blocking mechanism is a baffle, and one end of the baffle is hinged on the front hood and its deflection is controlled by a deflection mechanism; or, the fume blocking mechanism is a telescopic baffle; or, the fume blocking mechanism It is a baffle, which is inserted into the front fume hood and controls the amount of its protruding into the front fume hood through the lifting mechanism.
  • the side wall diversion preheating groove and the trolley connecting groove are arranged at an angle, and the angle is -100° to 100°.
  • the preheating method applied to the above-mentioned continuous feeding preheating device is to preheat the material in the side wall diversion preheating groove through two side wall diversion flues and a top flue gas channel, and the two side walls flow into the preheating groove.
  • the flue gas in the diversion flue overflows from the flue gas overflow gap at the bottom, and guides the flue gas in the side wall diversion flue to the bottom of the material in the groove for penetrating material preheating.
  • a baffle is arranged at the end of the front hood which is connected with the hood, and the baffle corresponds to the inlet end of the top flue gas channel.
  • the proportion of the flue gas in the two side wall diversion flues and the top flue gas channel controls the preheating effect of the material and the dust removal effect.
  • the cross-sectional area of the top flue gas channel is adjusted and controlled to gradually increase.
  • the cross-sectional area of the top flue gas channel gradually increases.
  • the equipment has a simple structure, low investment, convenient maintenance, and high equipment reliability.
  • the side wall guide flue is improved by adding a baffle plate on the basis of the traditional feeding trough, with a simple structure and convenient maintenance.
  • the energy saving index is close to the energy saving effect, but the equipment height is low, the operation and maintenance are convenient, and the equipment reliability is high; more importantly, the continuous feeding is realized, which changes the batch feeding of the shaft furnace.
  • the smelting molten pool is unstable, grid flicker, smelting noise and flue gas emission pulse.
  • Figure 1 is a schematic cross-sectional view of the preheating formed by the sidewall diversion preheating groove and the fume hood;
  • Fig. 2 is the structural relationship diagram of the feeding chute and the baffle plate
  • Figure 3 is a 3D diagram of the working principle of the side wall diversion preheating groove and the ingredient conveying groove (without steps, half side)
  • Figure 4 is a 3D diagram of the working principle of the side wall diversion preheating groove and the ingredient conveying groove (with steps, half side);
  • FIG. 5 is a schematic cross-sectional view of the preheating (structural deformation) formed by the sidewall diversion preheating groove and the fume hood;
  • Fig. 6 is the schematic diagram of the continuous feeding preheating device with flue gas flow direction (also the A-A sectional view of Fig. 7 );
  • Fig. 7 is the top view of Fig. 6;
  • FIG. 8 is a schematic diagram of the angular arrangement of the trolley connecting groove and the side wall diversion preheating groove.
  • the feeding groove 101 the baffle plate 102, the connecting piece 103, the side wall diversion flue 104, the flue gas overflow gap 105, the stepped section 106, and the heat insulation layer 107;
  • the flue gas 201 (derived from the two side wall guide flues), the flue gas 202 (flowing through the top flue gas channel); the stepped section 401 and the top flue gas channel 501 .
  • FIGS. 1 to 5 it is a side wall diversion preheating groove 1 , which includes a U-shaped feeding chute 101 and two L-shaped baffles 102 .
  • the two baffle plates 102 are respectively arranged on both sides of the inner cavity of the feeding chute 101 in an inverted form.
  • the two side walls of the trough 101 cooperate with the corresponding baffle plates 102 connected to it to form two side wall guide flues 104. Air overflows the gap 105 .
  • the feeding trough 101 in the side wall diversion preheating groove 1 is a traditional feeding trough.
  • a baffle plate 102 By adding a baffle plate 102 on it, on the one hand, the pile shape of the material (ie scrap) in the trough is changed, and the other is On the one hand, the baffle plate 102 cooperates with the side wall of the feeding chute 101 to form a side wall guide flue 104 with a gap at the bottom.
  • the flue gas channel overflows from the gap at the bottom (that is, the flue gas overflow gap 105 ), and then enters the gap of the material and converges upward to the dust removal port, realizing penetrating material preheating.
  • the baffle plate 102 is connected to the top surface of the tank body of the feeding chute 101 by connecting parts 103 such as bolts and nuts, which can be disassembled and maintained.
  • this method has a small improvement on the existing feeding chute and can save more money. cost.
  • the bottom surface of the trough body of the feeding trough 101 has a step section 106 which is downward step by step along the material conveying direction, as shown in FIG. 4 .
  • the stepped section 106 is arranged at one end of the feeding chute 101 connected to the electric furnace 2 . Setting the stepped section 106 can increase the gap between the lower edge of the baffle plate 102 and the bottom surface of the inner cavity of the feeding chute 101, so that the gap gradually expands in the material conveying direction, which can not only prevent the material from jamming, but also increase the side wall.
  • the overflow amount of the flue gas in the guide flue 104 is further improved to improve the preheating effect.
  • the size of the flue gas overflow gap 105 can also be changed by adjusting the structural size of the baffle plate 102, such as the baffle plate 102 The height of the upper plate surface that forms a gap with the bottom surface of the tank body of the feeding chute 101 is gradually reduced.
  • a heat insulating layer 107 is provided on the inner cavity surface of the side wall guide flue 104 .
  • the heat insulating layer 107 can be a coated heat insulating paint or a laid heat insulating material, which can further improve the thermal efficiency.
  • the width of the side wall guide flue 104 formed by the cooperation of the feeding chute 101 and the baffle plate 102 is gradually increased.
  • the flue gas inlet area of the side wall guiding preheating groove 1 is enlarged, which can further improve the preheating effect of the discharge end (ie, the flue gas inlet end) of the side wall guiding preheating groove 1 .
  • a U-shaped feed chute 101 with a variable cross-sectional shape and two baffles 102 with a variable shape are used.
  • Such variations are diverse and can be used in optimizing the structure of the equipment. , such as increasing the ventilation area of the two side wall guide flues 104, improving the preheating of scrap steel in the central area, etc., but the structure still does not deviate from the basic scheme of matching the feeding chute 101 and the baffle plate 102.
  • a continuous feeding preheating device including a batching conveying groove 3, a side wall diversion preheating groove 1 and a trolley connecting groove 4 which are connected in sequence along the material conveying direction , a fume hood 5 is buckled on the top of the side wall diversion preheating groove 1; along the flow direction of the flue gas, a dust removal port 6 is arranged at the tail of the fume hood 5;
  • the feeding end of the trolley is connected to each other, and the feeding end of the trolley connecting groove 4 is provided with a stepped section 401 connected with the side wall diversion preheating groove 1.
  • the stepped section 401 has at least one stage and its steps are downward along the material conveying direction.
  • the upper cover of the trolley connection groove 4 is buckled with a front smoke cover 7, and the two ends of the front smoke cover 7 are connected to the electric furnace 2 and the smoke cover 5 correspondingly.
  • the trolley connecting groove 4 can move back and forth, so as to connect or disconnect the preheating device and the electric furnace 2 when necessary.
  • the tail (material feeding end) of the trolley connecting groove 4 is provided with a stepped section 401, and the number of steps of the stepped section 401 is at least one step.
  • a high-level ladder structure enables the material to produce a large "tumbling” action during the conveying process. The "tumbling” action can disturb and disperse the material, thereby improving the preheating effect of the scrap steel.
  • the structure and structural advantages of the side wall diversion preheating groove 1 As mentioned above, when the material 8 is transported in the side wall diversion preheating groove 1, the material 8 and the side wall stacked in the side wall diversion preheating groove 1 The exposed upper surface of the diversion preheating groove 1 and the fume hood 5 together constitute the top fume channel 501 .
  • the top flue gas channel 501 here is the third flue gas channel in the entire continuous feeding preheating device, which is swept from the upper surface of the material to preheat the material; while the two side walls guide the flue 104 Then, the flue gas of the electric furnace is led out from the gap at the bottom (that is, the flue gas overflow gap 105), and then enters the bottom of the material, and gathers upward to the dust removal port through the gap between the materials, realizing penetrating material preheating.
  • a smoke blocking mechanism 9 is provided at the end of the front hood 7 connected to the hood 5, and the smoke blocking mechanism 9 is in contact with the (flue gas) inlet end of the top flue gas channel 501. Correspondingly to adjust the inlet opening of the top flue gas channel 501 .
  • the rear end of the front fume hood 7 (one end connected to the fume hood 5 ) is provided with a fume blocking mechanism 9 . Therefore, adjusting the flue gas blocking mechanism 9 can realize the adjustment of the opening of the inlet of the top flue gas channel 501, thereby realizing the adjustment of the amount of flue gas entering the three flue gas channels.
  • the preheating effect is still better than that of the traditional surface preheating type continuous feeding device. It should also be noted here that: with regard to the size of the channel resistance, the optimal design can be achieved by changing the cross-sectional area of the three flue gas channels.
  • the aforementioned structural optimization method of the sidewall diversion preheating groove 1 records that "a step section 106 is provided at the end of the bottom surface of the tank body of the feeding chute 101 connecting with the electric furnace 2", see FIG. 4 .
  • the setting of the stepped section 106 can increase the depth of the feeding chute 101 at this section, thus increasing two of the sidewall diversion preheating grooves 1
  • the channel area of the side wall guide flue 104 (the channel area at the entrance area of the two side wall guide flues 104 can be increased by 20-40%) is beneficial to reduce the flow resistance of the flue gas 201, and the effect is obvious.
  • this structure is also conducive to the lap joint connection between the side wall diversion preheating groove 1 and the trolley connecting groove 4 .
  • the fume blocking mechanism 9 in this solution is a baffle.
  • the structural form of the deflection mechanism is not specifically limited in this solution. It can adopt existing mature devices or mechanisms.
  • the baffle is directly set on the front fume hood through the deflection mechanism.
  • the deflection mechanism is driven by the deflection mechanism.
  • the deflection mechanism can be a crank-rocker mechanism arranged on the front hood, that is, the crank rotates and pulls the connecting rod, and the connecting rod pulled by the crank drives the rocker to swing, and the rocker can It is rotatably installed on the front fume hood, and the baffle is installed on the rocker.
  • the baffle either blocks the top fume channel 501, or lifts up to the front fume hood to expose the top fume channel 501. It is also possible to directly hinge one end of the baffle to the front hood, and pull or lower the baffle through a mechanism such as a telescopic rod.
  • the flue gas blocking mechanism can also be set as a telescopic baffle, and the opening of the inlet of the top flue gas channel 501 can be adjusted by controlling the expansion and contraction amount of the baffle itself.
  • the baffle can also be inserted into the front fume hood, and the amount of its protruding into the front fume hood is controlled by the lifting mechanism arranged outside the front fume hood, that is, the elevating mechanism controls the baffle to lift, and the inlet of the top flue gas channel 501 is opened.
  • the opening degree of the inlet of the top flue gas channel 501 becomes smaller.
  • two side wall guide flues 104 are arranged in the side wall guide preheating groove 1, and the smoke hood 5 and the surface of the material form a flue gas channel, with a total of three flue gases aisle.
  • the furnace flue gas 201 from the two side wall guide flues 104 overflows from the flue gas overflow gap 105 into the gap of the material 8, and converges upward to the dust removal port 6, and preheats the material 8 after penetrating the material gap; the top smoke
  • the flue gas 201 from the gas passage 501 swept across the surface of the material 8 to preheat the material 8 .
  • the above-mentioned baffles are correspondingly added, and the inlet opening of the top flue gas passage 501 is controlled by adjusting the baffles, so as to adjust the entry into the two side wall guide flues 104 and
  • the distribution ratio of the flue gas 201 and 202 in the top flue gas channel 501 controls the material preheating effect and the dust removal effect.
  • the tail of the side wall diversion preheating groove 1 is connected to the (cold) ingredient conveying groove 3, the dust removal port 6 is arranged at the tail of the fume hood 5, and the fume hood 5 is buckled on the side wall for diversion.
  • the flue gas 201 derived from the two side wall guide flues 104 will be collected at the dust removal port 6, and the flue gas 202 flowing through the top flue gas channel 501 will also flow to and converge at the dust removal port 6. Therefore, the top flue gas channel 501 is preferably designed to have a structure in which the cross-sectional area gradually increases toward the dust removal port 6 .
  • the feeding speed of the trolley connecting groove 4 can also be controlled.
  • the faster feeding speed here can reduce the stacking thickness of the material 8 in the trolley connecting groove 4, which is beneficial to the preheating of the material in this section.
  • the side wall diversion preheating groove and its continuous feeding preheating device preferably use a non-resonant vibration exciter, the non-resonant vibration will bring the settled dust into the electric furnace, and the movement of a small amount of scrap steel will also take away When the dust enters the electric furnace, the process links of the equipment are few and the system is reliable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

本发明涉及一种侧壁导流预热凹槽、带有该侧壁导流预热凹槽的连续加料预热装置及其预热方法,属于电炉炼钢领域。该侧壁导流预热凹槽是在传统加料槽的基础上增加挡料板改进成的,通过侧壁导流烟道改变了烟气的流向,实现了在连续加料状态下的废钢穿透式预热这一难题,使废钢的预热效果比传统水平连续加料大大提高。而预热装置中增加的该烟气隔挡机构可以对应调节顶部烟气通道的入口开度。整个设备结构简单,投资较低,维护便利,不仅调控灵活,节能效果还更好。

Description

侧壁导流预热凹槽及其连续加料预热装置与预热方法 技术领域
本发明属于电炉炼钢领域,具体涉及一种侧壁导流预热凹槽、带有该侧壁导流预热凹槽的连续加料预热装置及其预热方法。
背景技术
“节能降耗、环保、自动化”始终是电弧炉炼钢技术发展的核心点,依据能量守恒定律,电炉冶炼中钢水熔炼所需要的能量是恒定的,欲降低电炉冶炼电耗,可通过电炉烟气的余热回收、化学能部分替代电能等技术手段。
废钢预热型电弧炉是一种节能型电弧炉,从上世纪80年代末兴起的电弧炉废钢烟气预热技术是典型的节能技术,代表性技术如CONSTEEL(US5400358)。CONSTEEL技术经历近30年的发展,相对较为成熟,其平熔池冶炼减少了电网冲击,具有减少电炉本体维护的优点,在实际生产中也有一定的节能效果。但CONSTEEL在使用过程中表现出了节电效果不如竖炉的问题。因此提高连续剧料炉子的烟气的利用效能是节能最求的重要目标,也是其长期的任务和改进方向。
发明内容
有鉴于此,本发明的目的在于提供一种侧壁导流预热凹槽、带有该侧壁导流预热凹槽的连续加料预热装置及其预热方法,以提高物料的预热效果。
为达到上述目的,本发明提供如下技术方案:
一种侧壁导流预热凹槽,包括U形结构的输料槽,还包括两个L形结构的挡料板,沿输料槽的长度方向,两个挡料板均以倒置形式分设在输料槽的内腔两侧,两挡料板通过连接件与输料槽的两侧壁对应可拆卸连接,输料槽的两侧壁与对应连接在其上的挡料板配合形成两个侧壁导流烟道,两挡料板的下边沿与输料槽的内腔底面间留有烟气溢出间隙。
进一步,沿物料输送方向,烟气溢出间隙的高度逐渐增大。
进一步,输料槽的槽体底面具有沿着物料输送方向逐级向下的阶梯段,该阶梯段设置在输料槽与电炉相接的一端头。
进一步,侧壁导流烟道的内腔表面设有隔热层。
进一步,沿物料输送方向,输料槽与挡料板配合形成的侧壁导流烟道的宽度逐渐增大。
一种连续加料预热装置,包括沿物料输送方向依次相接的配料输送槽、侧壁导流预热凹 槽以及小车连接槽,侧壁导流预热凹槽上方罩扣有烟罩;沿烟气流动方向,烟罩的尾部设置有除尘口;小车连接槽为移动式且其出料端与电炉的入料端相衔接,小车连接槽的入料端设置有与侧壁导流预热凹槽相衔接的阶梯段,该阶梯段至少有一级且其梯级沿物料输送方向向下;小车连接槽的上方罩扣有前烟罩,前烟罩的两端对应与电炉以及烟罩相接。
侧壁导流预热凹槽如上所述,侧壁导流预热凹槽内输送物料时,堆砌在侧壁导流预热凹槽内的物料与侧壁导流预热凹槽的裸露上表面、以及烟罩共同构成顶部烟气通道。
进一步,前烟罩上与烟罩相连一端头处设有烟气隔挡机构,该烟气隔挡机构与顶部烟气通道的入口端相对应以调节顶部烟气通道的入口开度。
进一步,烟气隔挡机构为挡板,该挡板一端铰接在前烟罩上并通过偏转机构控制其偏转;或,烟气隔挡机构为伸缩式的挡板;或,烟气隔挡机构为挡板,其插装在前烟罩上并通过升降机构控制其在前烟罩内的伸入量。
进一步,侧壁导流预热凹槽与小车连接槽间呈角度布置,该角度为-100°~100°。
应用于上述连续加料预热装置的预热方法,通过两条侧壁导流烟道以及一条顶部烟气通道对侧壁导流预热凹槽中的物料进行预热,其中流入两条侧壁导流烟道中的烟气从底部的烟气溢出间隙处溢出,并将侧壁导流烟道中的烟气导向槽内物料的底部,进行穿透式的物料预热。
进一步,在前烟罩上与烟罩相连一端头处设置挡板,该挡板与顶部烟气通道的入口端相对应,通过调节挡板以控制顶部烟气通道的入口开度,从而调节进入两个侧壁导流烟道以及顶部烟气通道中的烟气的比例,控制物料预热效果和除尘效果。
进一步,沿烟气流动方向,调节并控制顶部烟气通道的横截面积逐渐增大。
进一步,沿烟气流动方向,顶部烟气通道的截面面积逐渐增大。
本发明的有益效果在于:
(1)通过改变传统水平连续加料槽的槽型结构,形成了侧壁导流烟道,通过侧壁导流烟道改变了烟气的流向,烟气从料层的底部穿入废钢层,实现了在连续加料状态下的废钢穿透式预热这一难题。废钢的预热效果比传统水平连续加料大大提高,节能效果可达到60~80kwh/t以上(传统振动连续加料约30~40kwh/t),并降低了电极消耗。
(2)设备结构简单,投资较低,维护便利,且设备可靠性高。侧壁导流烟道是在传统加料槽的基础上增加挡料板改进成的,结构简单,维护便利。
(3)侧壁导流烟道不会堵塞,非谐振振动会把沉降的风尘带入电炉,少量废钢的移动也会带走粉尘进入电炉,设备的工艺环节少,系统可靠。
(4)可用于改造现有传统振动连续加料设备。
(5)节能指标与现有的竖炉比较,节能效果接近,但设备高度较低且操作维护便利,设备可靠性较高;更重要的是:实现了连续加料,改变了竖炉批次加料带来的冶炼熔池不稳定、电网闪变、冶炼噪音和烟气排放脉冲等问题。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为侧壁导流预热凹槽与烟罩构成的预热断面示意图;
图2为输料槽与挡料板的结构关系图;
图3为侧壁导流预热凹槽与配料输送槽的工作原理3D图(不带阶梯,半侧)
图4为侧壁导流预热凹槽与配料输送槽的工作原理3D图(带阶梯,半侧);
图5为侧壁导流预热凹槽与烟罩构成的预热断面示意图(结构变形);
图6为带有烟气流向的连续加料预热装置示意图(亦为图7的A-A剖视图);
图7为图6的俯视图;
图8为小车连接槽与侧壁导流预热凹槽呈角度布置的示意图。
附图标记:
侧壁导流预热凹槽1、电炉2、配料输送槽3、小车连接槽4、烟罩5、顶部烟气通道501、除尘口6、前烟罩7、物料8、烟气隔挡机构9;
侧壁导流预热凹槽中:输料槽101、挡料板102、连接件103、侧壁导流烟道104、烟气溢出间隙105、阶梯段106、隔热层107;
(从两个侧壁导流烟道导出的)烟气201、(从顶部烟气通道中流经的)烟气202;阶梯段401、顶部烟气通道501。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精 神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本发明的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
请参阅图1~图5,为一种侧壁导流预热凹槽1,包括U形结构的输料槽101,还包括两个L形结构的挡料板102,沿输料槽101的长度方向,两个挡料板102均以倒置形式分设在输料槽101的内腔两侧,两挡料板102通过连接件103与输料槽101的两侧壁对应可拆卸连接,输料槽101的两侧壁与对应连接在其上的挡料板102配合形成两个侧壁导流烟道104,两挡料板102的下边沿与输料槽101的内腔底面间留有烟气溢出间隙105。
该侧壁导流预热凹槽1中的输料槽101为传统的加料槽,通过在其上增设挡料板102,一方面改变了料槽中物料(即废钢)的堆形,另一方面,挡料板102与输料槽101的侧壁配合构成了底部有缝隙的侧壁导流烟道104,两个侧壁导流烟道104作为烟气通道,电炉烟气进入这两个烟气通道并从底部的缝隙(即烟气溢出间隙105)溢出,进而进入物料的空隙并向上汇聚到除尘口,实现了穿透式的物料预热。
本实施例中挡料板102用螺栓螺母这样的连接件103连接在输料槽101槽体的顶端面上,可拆卸维护,同时,该方式对现有加料槽的改进量小,更能节约成本。
作为上述方案的进一步改进,输料槽101的槽体底面具有沿着物料输送方向逐级向下的阶梯段106,如图4所示。该阶梯段106设置在输料槽101与电炉2相接的一端头。设置阶梯段106,可以增大挡料板102下沿与输料槽101内腔底面间的间隙,使得该间隙在物料输送方向上逐渐扩口,不仅能防止卡料,还能增大侧壁导流烟道104中烟气的溢出量,进而提高预热效果。
当然,按照“沿物料输送方向,烟气溢出间隙的高度逐渐增大”的改进思路,还可以通 过调节挡料板102的结构尺寸来实现烟气溢出间隙105大小的改变,如挡料板102上与输料槽101槽体底面形成间隙的那个板面的高度逐渐缩小。
优选的,侧壁导流烟道104的内腔表面设有隔热层107。该隔热层107可以是涂覆的隔热涂料,也可以是敷设的隔热材料,这样可以进一步提高热效率。
作为上述方案的进一步改进,沿物料输送方向,输料槽101与挡料板102配合形成的侧壁导流烟道104的宽度逐渐增大。这样,侧壁导流预热凹槽1的烟气入口面积加大,可进一步改善侧壁导流预热凹槽1的出料端(即烟气入口端)的预热效果。
参见图5,该图5与图1对应,采用了变异截面形状的U型输料槽101以及二个变异形状的挡料板102,这类变异是多样性的,可在优化设备结构是采用,如增大两个侧壁导流烟道104的通气面积、改善中心区域废钢的预热等,但该构造仍不脱离输料槽101与挡料板102相配合的基本方案。
请参阅图1、图5、图6及图7,一种连续加料预热装置,包括沿物料输送方向依次相接的配料输送槽3、侧壁导流预热凹槽1以及小车连接槽4,侧壁导流预热凹槽1上方罩扣有烟罩5;沿烟气流动方向,烟罩5的尾部设置有除尘口6;小车连接槽4为移动式且其出料端与电炉2的入料端相衔接,小车连接槽4的入料端设置有与侧壁导流预热凹槽1相衔接的阶梯段401,该阶梯段401至少有一级且其梯级沿物料输送方向向下;小车连接槽4的上方罩扣有前烟罩7,前烟罩7的两端对应与电炉2以及烟罩5相接。
该连续加料预热装置中,小车连接槽4可以前后移动,以便在需要时使得该预热装置与电炉2联接或脱离。小车连接槽4的尾部(物料入料端)设置有阶梯段401,该阶梯段401的步数至少为一步,通过该阶梯段401和侧壁导流预热凹槽1的搭接关系形成了一个高位的阶梯结构,使得物料在输送过程中能产生一个较大的“翻滚”动作,该“翻滚”动作可扰动、分散物料,从而提高废钢的预热效果。
侧壁导流预热凹槽1结构以及结构优势如上所述,侧壁导流预热凹槽1内输送物料8时,堆砌在侧壁导流预热凹槽1内的物料8与侧壁导流预热凹槽1的裸露上表面、以及烟罩5共同构成顶部烟气通道501。此处的顶部烟气通道501是整个连续加料预热装置中的第三个烟气通道,其从物料上表面处掠过,以对物料的预热;而两个侧壁导流烟道104则将电炉烟气从底部的缝隙(即烟气溢出间隙105)导出,进而进入物料的底部、并通过物料间的空隙向上汇聚到除尘口,实现了穿透式的物料预热。
作为上述方案的进一步优化,前烟罩7上与烟罩5相连一端头处设有烟气隔挡机构9,该烟气隔挡机构9与顶部烟气通道501的(烟气)入口端相对应以调节顶部烟气通道501的 入口开度。
参见图6,前烟罩7的后端(与烟罩5相连一端头)设置有烟气隔挡机构9,由于烟气隔挡机构9恰好挡在顶部烟气通道501的烟气入口端,故调节该烟气隔挡机构9,可实现对顶部烟气通道501入口开度大小的调节,进而实现进入三个烟气通道中的烟气量的调节。如:关闭/下放烟气隔挡机构9使其完全隔挡住顶部烟气通道501,此时烟气隔挡机构9的下端将抵在从侧壁导流预热凹槽1的物料出口端流出的物料8上,顶部烟气通道501的关闭会迫使电炉烟气主要从两个侧壁导流烟道104中流经、后穿透物料8内部的间隙并被除尘口6抽走,该设置下会强化物料8的穿透预热效果。又如:完全打开/提升起烟气隔挡机构9,使得顶部烟气通道501的烟气入口端不被烟气隔挡机构9隔挡,此时从电炉2中流出的电炉烟气会按三个烟气通道的阻力进行均衡自然分配。一般来说,顶部烟气通道501的通道阻力最小,此时大部分烟气会通过顶部烟气通道501(可设计为60%)被除尘口6抽走,这时能强化物料8的预热效果就会降低。但由于仍有部分烟气可穿透物料层的间隙,故预热效果仍然会好于传统的表面预热型连续加料装置。此处还需要说明的是:关于通道阻力的大小,可通过改变三个烟气通道的截面积大小实现优化设计。
前述的侧壁导流预热凹槽1的结构优化方式处记载了“输料槽101的槽体底面与电炉2相接一端头处设有阶梯段106”,参见图4。针对该优化方式,此处需要说明的是:该阶梯段106的设置,可使得该段处的输料槽101的深度增加,这样就增大了侧壁导流预热凹槽1中两个侧壁导流烟道104的通道面积(两个侧壁导流烟道104入口区域处的通道面积可增加20~40%),有利于减小烟气201的流动阻力,效果明显。同时,该结构也有利于侧壁导流预热凹槽1和小车连接槽4的搭接联接。
本方案中的烟气隔挡机构9为挡板,本方案中不具体限定偏转机构的结构形式,其可以采用现有成熟的装置或机构,如挡板直接通过偏转机构设置在前烟罩上并由偏转机构带动其偏摆,此时的偏转机构可以是设置在前烟罩上的曲柄摇杆机构,即曲柄转动拉动连杆,被曲柄拉动的连杆则驱动摇杆摆动,摇杆可转动安装在前烟罩上,挡板安装在摇杆上,随着摇杆的摆动,挡板或遮挡住顶部烟气通道501,或抬升至前烟罩上以露出顶部烟气通道501。也可以直接将挡板一端铰接在前烟罩上,通过伸缩杆等机构拉动或下方挡板。
当然,烟气隔挡机构也可以设置成伸缩式的挡板,通过控制挡板自身伸缩量实现顶部烟气通道501入口开度大小调节。挡板还可以插装在前烟罩上,并通过设置在前烟罩外的升降机构控制其在前烟罩内的伸入量,即升降机构控制挡板抬升,顶部烟气通道501入口开度变大,升降机构控制挡板下降,顶部烟气通道501入口开度变小。
该连续加料预热装置还有一种布置形式,如图8所示。即侧壁导流预热凹槽1与小车连接槽4间呈角度布置,该角度为-100°~100°。该形式可满足部分车间的布置需要。
上述连续加料预热装置的预热方法,在侧壁导流预热凹槽1中设置两个侧壁导流烟道104,烟罩5与物料表面构成一个烟气通道,共三个烟气通道。两个侧壁导流烟道104导出的炉子烟气201从烟气溢出间隙105溢出进入物料8的空隙中、并向上汇聚到除尘口6处,穿透物料间隙后预热物料8;顶部烟气通道501导出的烟气201掠过物料8的的表面对物料8进行预热,三路烟气(一路202、两路201)汇聚后由除尘口6抽除。
而对上述预热方法的进一步优化,则是对应增设如前所述的挡板,通过调节挡板控制顶部烟气通道501的入口开度,从而调节进入两个侧壁导流烟道104以及顶部烟气通道501中的烟气201、202的分配比例,控制物料预热效果和除尘效果。
参见图6、图7,侧壁导流预热凹槽1的尾部连接(冷)配料输送槽3,除尘口6设置在烟罩5的尾部,烟罩5又是罩扣在侧壁导流预热凹槽1上方,从两个侧壁导流烟道104导出的烟气201会汇集到除尘口6处,而从顶部烟气通道501中流经的烟气202也会流向并汇聚在除尘口6处,因此,优选将顶部烟气通道501设计成截面面积向除尘口6方向逐渐增大的结构。
另外,也可以控制小车连接槽4的加料速度,此处较快的加料速度可使物料8在小车连接槽4的堆料厚度减薄,有利于该段物料的预热。还需说明的是:该侧壁导流预热凹槽及其连续加料预热装置优选采用非谐振激振器,非谐振振动会把沉降的风尘带入电炉,少量废钢的移动也会带走粉尘进入电炉,设备的工艺环节少,系统可靠。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (13)

  1. 一种侧壁导流预热凹槽,包括U形结构的输料槽,其特征在于:还包括两个L形结构的挡料板,沿输料槽的长度方向,两个挡料板均以倒置形式分设在输料槽的内腔两侧,两挡料板通过连接件与输料槽的两侧壁对应可拆卸连接,输料槽的两侧壁与对应连接在其上的挡料板配合形成两个侧壁导流烟道,两挡料板的下边沿与输料槽的内腔底面间留有烟气溢出间隙。
  2. 根据权利要求1所述的侧壁导流预热凹槽,其特征在于:沿物料输送方向,烟气溢出间隙的高度逐渐增大。
  3. 根据权利要求2所述的侧壁导流预热凹槽,其特征在于:输料槽的槽体底面具有沿着物料输送方向逐级向下的阶梯段,该阶梯段设置在输料槽与电炉相接的一端头。
  4. 根据权利要求1所述的侧壁导流预热凹槽,其特征在于:侧壁导流烟道的内腔表面设有隔热层。
  5. 根据权利要求1所述的侧壁导流预热凹槽,其特征在于:沿物料输送方向,输料槽与挡料板配合形成的侧壁导流烟道的宽度逐渐增大。
  6. 一种连续加料预热装置,包括沿物料输送方向依次相接的配料输送槽、侧壁导流预热凹槽以及小车连接槽,侧壁导流预热凹槽上方罩扣有烟罩;沿烟气流动方向,烟罩的尾部设置有除尘口;小车连接槽为移动式且其出料端与电炉的入料端相衔接,小车连接槽的入料端设置有与侧壁导流预热凹槽相衔接的阶梯段,该阶梯段至少有一级且其梯级沿物料输送方向向下;小车连接槽的上方罩扣有前烟罩,前烟罩的两端对应与电炉以及烟罩相接;
    其特征在于:侧壁导流预热凹槽如权利要求1~5任一所述,侧壁导流预热凹槽内输送物料时,堆砌在侧壁导流预热凹槽内的物料与侧壁导流预热凹槽的裸露上表面、以及烟罩共同构成顶部烟气通道。
  7. 根据权利要求6所述的连续加料预热装置,其特征在于:前烟罩上与烟罩相连一端头处设有烟气隔挡机构,该烟气隔挡机构与顶部烟气通道的入口端相对应以调节顶部烟气通道的入口开度。
  8. 根据权利要求7所述的连续加料预热装置,其特征在于:烟气隔挡机构为挡板,该挡板一端铰接在前烟罩上并通过偏转机构控制其偏转;或,烟气隔挡机构为伸缩式的挡板;或,烟气隔挡机构为挡板,其插装在前烟罩上并通过升降机构控制其在前烟罩内的伸入量。
  9. 根据权利要求7所述的连续加料预热装置,其特征在于:侧壁导流预热凹槽与小车连接槽间呈角度布置,该角度为-100°~100°。
  10. 一种应用于如权利要求6所述的连续加料预热装置的预热方法,其特征在于:通过 两条侧壁导流烟道以及一条顶部烟气通道对侧壁导流预热凹槽中的物料进行预热,其中流入两条侧壁导流烟道中的烟气从底部的烟气溢出间隙处溢出,并将侧壁导流烟道中的烟气导向槽内物料的底部,进行穿透式的物料预热。
  11. 根据权利要求10所述的预热方法,其特征在于:在前烟罩上与烟罩相连一端头处设置挡板,该挡板与顶部烟气通道的入口端相对应,通过调节挡板以控制顶部烟气通道的入口开度,从而调节进入两个侧壁导流烟道以及顶部烟气通道中的烟气的比例,控制物料预热效果和除尘效果。
  12. 根据权利要求10或11所述的预热方法,其特征在于:沿烟气流动方向,调节并控制顶部烟气通道的横截面积逐渐增大。
  13. 根据权利要求10或11所述的预热方法,其特征在于:沿烟气流动方向,顶部烟气通道的截面面积逐渐增大。
PCT/CN2021/129513 2020-12-24 2021-11-09 侧壁导流预热凹槽及其连续加料预热装置与预热方法 WO2022134899A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011552146.9A CN112501383A (zh) 2020-12-24 2020-12-24 侧壁导流预热凹槽及其连续加料预热装置与预热方法
CN202011552146.9 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022134899A1 true WO2022134899A1 (zh) 2022-06-30

Family

ID=74923353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129513 WO2022134899A1 (zh) 2020-12-24 2021-11-09 侧壁导流预热凹槽及其连续加料预热装置与预热方法

Country Status (2)

Country Link
CN (1) CN112501383A (zh)
WO (1) WO2022134899A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501383A (zh) * 2020-12-24 2021-03-16 中冶赛迪工程技术股份有限公司 侧壁导流预热凹槽及其连续加料预热装置与预热方法
IT202200004565A1 (it) * 2022-03-10 2023-09-10 Danieli Off Mecc Apparato di alimentazione per alimentare una carica metallica verso un forno di fusione

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2906510Y (zh) * 2006-03-24 2007-05-30 李振洪 电弧炼钢炉水平连续加料废钢预热装置
CN202415600U (zh) * 2011-12-30 2012-09-05 中冶赛迪工程技术股份有限公司 一种电炉密封加料装置
CN203231651U (zh) * 2013-04-16 2013-10-09 中冶赛迪工程技术股份有限公司 电弧炉阶梯扰动函道废钢预热装置
CN111349749A (zh) * 2020-04-23 2020-06-30 中冶赛迪工程技术股份有限公司 预热凹槽及电炉连续加料强化预热装置与方法
CN112501383A (zh) * 2020-12-24 2021-03-16 中冶赛迪工程技术股份有限公司 侧壁导流预热凹槽及其连续加料预热装置与预热方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2906510Y (zh) * 2006-03-24 2007-05-30 李振洪 电弧炼钢炉水平连续加料废钢预热装置
CN202415600U (zh) * 2011-12-30 2012-09-05 中冶赛迪工程技术股份有限公司 一种电炉密封加料装置
CN203231651U (zh) * 2013-04-16 2013-10-09 中冶赛迪工程技术股份有限公司 电弧炉阶梯扰动函道废钢预热装置
CN111349749A (zh) * 2020-04-23 2020-06-30 中冶赛迪工程技术股份有限公司 预热凹槽及电炉连续加料强化预热装置与方法
CN112501383A (zh) * 2020-12-24 2021-03-16 中冶赛迪工程技术股份有限公司 侧壁导流预热凹槽及其连续加料预热装置与预热方法

Also Published As

Publication number Publication date
CN112501383A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2022134899A1 (zh) 侧壁导流预热凹槽及其连续加料预热装置与预热方法
US10928136B2 (en) Steel scrap preheating-type electric furnace and method for improving heating cold area of side wall charging electric arc furnace
CN2906510Y (zh) 电弧炼钢炉水平连续加料废钢预热装置
US11680749B2 (en) Feeder device utilized in electric arc furnace, and flue gas and temperature control method
EP2960607B1 (en) Arc furnace automatic feeding device
CN108034790B (zh) 一种原料分离式预热和加料的装置
CN201251349Y (zh) 一种木地板生产用的干燥装置
CN105466212B (zh) 一种垂直换热式合金烘烤炉系统
CN208983868U (zh) 一种具有自动上料出料功能的中频炉
CN214142435U (zh) 侧壁导流预热凹槽及其连续加料预热装置
CN212759489U (zh) 一种铝型材固化炉
CN210128616U (zh) 一种钢包用脱碳镁碳砖生产加热装置
CN204848979U (zh) 一种铜熔炼炉
CN207877770U (zh) 一种原料分离式预热和加料的装置
CN207231201U (zh) 一种密闭式熔炼炉
CN108662854B (zh) 一种利用转炉高温烟气加热合金的方法
CN111349749A (zh) 预热凹槽及电炉连续加料强化预热装置与方法
CN216337779U (zh) 连续化竖井废钢预热装置及电炉炼钢设备
CN111457740B (zh) 模块组合式废钢预热装置的槽体结构
CN209584320U (zh) 一种混合型黄铜管退火炉
CN215713261U (zh) 一种精馏法加料炉及精馏装置
CN216081007U (zh) 一种半密封通道式废钢连续预热系统
CN220144753U (zh) 一种改进的铁包烘烤器蓄热装置
CN210570034U (zh) 一种基于电炉烟气余热的废铁预热装置
CN219238295U (zh) 一种金属加工用熔炉的进料机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908899

Country of ref document: EP

Kind code of ref document: A1