WO2022134643A1 - 滚筒洗衣机 - Google Patents

滚筒洗衣机 Download PDF

Info

Publication number
WO2022134643A1
WO2022134643A1 PCT/CN2021/115108 CN2021115108W WO2022134643A1 WO 2022134643 A1 WO2022134643 A1 WO 2022134643A1 CN 2021115108 W CN2021115108 W CN 2021115108W WO 2022134643 A1 WO2022134643 A1 WO 2022134643A1
Authority
WO
WIPO (PCT)
Prior art keywords
drum
ozone water
outer cylinder
water
ozone
Prior art date
Application number
PCT/CN2021/115108
Other languages
English (en)
French (fr)
Inventor
大久保晴加
鸢幸生
竹村结衣
Original Assignee
青岛海尔洗衣机有限公司
Aqua株式会社
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, Aqua株式会社, 海尔智家股份有限公司 filed Critical 青岛海尔洗衣机有限公司
Publication of WO2022134643A1 publication Critical patent/WO2022134643A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • A61L2/183Ozone dissolved in a liquid
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F23/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry 
    • D06F23/02Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry  and rotating or oscillating about a horizontal axis
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/43Control of cleaning or disinfection of washing machine parts, e.g. of tubs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/50Control of washer-dryers characterised by the purpose or target of the control
    • D06F33/69Control of cleaning or disinfection of washer-dryer parts, e.g. of tubs

Definitions

  • the present invention relates to a drum washing machine.
  • the drum washing machine may be a washing machine that continuously performs washing and drying, or may be a washing machine that performs washing without drying.
  • the drum washing machine may adopt a configuration in which the drum cleaning operation is performed.
  • Patent Document 1 describes a front-loading washing machine in which the inside of the water tub becomes high temperature and high humidity by spraying water into the water tub, which is an outer tub, and supplying warm air heated by a heater into the water tub during the tub cleaning operation. environment, kill bacteria and molds that multiply on the surface of the water tank and drum.
  • Patent Document 1 Japanese Patent Laid-Open No. 2020-039836
  • Patent Document 2 Japanese Patent Laid-Open No. 2020-103566
  • This application is made in view of this problem, and an object is to provide the front-loading washing machine which can suppress the growth of black mold etc. to a drum and an outer tub favorably by ozone water.
  • the front-loading washing machine is provided with: an outer tub disposed in the casing; a drum disposed in the outer tub and rotatable around a horizontal axis or a rotating shaft inclined with respect to the horizontal direction; and a drive motor for causing the the drum rotates; an ozone water supply unit for supplying ozone water into the lower outer cylinder; a drainage unit for draining water from the outer cylinder; and a control unit for controlling the drive motor, the ozone water supply unit, and the The operation of the drain unit performs the cylinder cleaning operation.
  • the control unit sequentially performs: a first drum cleaning process, in which the ozone water supply unit stores an amount of ozone water that can contact the drum in the outer drum. , using the drive motor to rotate the drum at a first rotational speed; a drainage process, using the drainage part to discharge ozone water from the outer cylinder; and a second cylinder cleaning process, using the ozone water supply part
  • the amount of ozone water that can be brought into contact with the drum is stored in the outer cylinder, and the drum is rotated at a second rotation speed higher than the first rotation speed by the drive motor.
  • the drum rotates, and the outer surface of the drum sequentially contacts the ozone water stored in the outer cylinder, and the outer surface is in a state where the ozone water is adhered.
  • the centrifugal force generated by the rotation can be reduced, and the ozone water adhering to the outer surface of the drum can be prevented from being scattered or, even if scattered, cannot reach the inside of the outer cylinder.
  • the momentum on the surface flies away.
  • the drum rotates at the relatively high second rotational speed, the centrifugal force generated by the rotation can be increased, and the ozone water adhering to the outer surface of the drum can be scattered and contacted with the inner surface of the outer cylinder.
  • the ozone water easily spreads over the inner surface of the outer cylinder, so that the sterilizing power of ozone can be effectively acted on the inner surface of the outer cylinder, and the removal effect of the biofilm formed on the inner surface of the outer cylinder can be improved.
  • the first rotational speed may be set in the range of 20 rpm to 40 rpm.
  • the ozone water adhering to the outer surface of the drum can be reliably prevented from being scattered or scattered with a force reaching the inner surface of the outer cylinder even if it is scattered during the cleaning process of the first cylinder.
  • the second rotational speed may be set in the range of 60 rpm to 120 rpm.
  • the centrifugal force capable of causing the ozone water adhering to the outer surface of the drum to fly to the inner surface of the outer cylinder can be sufficiently generated, and the rotating drum can be suppressed from violently flapping and accumulating in the outer cylinder.
  • the ozone dissolved in the water is vaporized by the ozone water in the water, and the decrease of the ozone concentration can be suppressed. Thereby, the removal effect of the ozone water with respect to the biofilm formed on the inner surface of an outer cylinder can be improved.
  • control unit may be configured to: compared with the cleaning process of the first tub, make the ozone water supply unit store the ozone water in the outer tub during the cleaning process of the second tub.
  • the amount of ozone water is more.
  • the water level in the outer cylinder is lowered due to the ozone water adhering to the inner peripheral surface of the outer cylinder, the water level can be prevented from being lower than the outer peripheral surface of the drum. Thereby, the ozone water can fully adhere to the inner peripheral surface of the outer cylinder.
  • control unit may be configured to: after the draining process and before the second drum cleaning process is performed, the drum is rotated at a third rotation speed higher than the second rotation speed. dehydration process.
  • the ozone water remaining in the drum and the organic substances, bacteria, and the like contained therein can be scattered from the drum and discharged from the outer cylinder.
  • control unit may be configured to rotate the drum in one direction during the cleaning process of the first tub and the cleaning process of the second tub.
  • the ozone water stored in the outer cylinder is not easily agitated strongly, and the ozone gasification and the reduction in the ozone concentration are less likely to occur.
  • the drum washing machine which can suppress the growth of black mold etc. to a drum and an outer tub favorably by ozone water can be provided.
  • FIG. 1 is a side cross-sectional view illustrating a configuration of a drum washing machine according to an embodiment.
  • FIG. 2 is a block diagram showing the configuration of the front-loading washing machine of the embodiment.
  • FIG. 3 is a flowchart showing a control process of the cartridge cleaning operation according to the embodiment.
  • FIGS. 4A and 4B are flowcharts showing control processing of the first cartridge cleaning process and the second cartridge cleaning process included in the cartridge cleaning operation of the embodiment, respectively.
  • FIGS. 5A and 5B are diagrams schematically showing a situation when the drum is rotated during the first drum cleaning process and the second drum cleaning process of the embodiment, respectively.
  • 10 box body; 20: outer cylinder; 23: drum; 30: drive motor; 40: drainage part; 60: ozone water supply part; 101: control part.
  • FIG. 1 is a side cross-sectional view showing the structure of the drum washing machine 1 .
  • the drum washing machine 1 includes a box 10 having a square shape.
  • a circular input port 11 into which the laundry is input is formed in the center portion of the front surface of the case 10 .
  • the input port 11 is covered with a door 12 which can be opened and closed.
  • the outer cylinder 20 is elastically supported in the case 10 by a plurality of dampers 21 and springs 22 .
  • a drum 23 is rotatably arranged in the outer cylinder 20 .
  • the drum 23 rotates around a horizontal axis.
  • the drum 23 has a circular opening 23a on the front surface, and the outer cylinder 20 has a circular opening 20a in front of the opening 23a of the drum 23.
  • casing 10 are connected by the annular gasket 24 which consists of elastic materials.
  • the gasket 24 has annular grooves 24a and 24b in the middle part and the rear end part.
  • the front end portion of the drum 23 is close to the rear end portion of the washer 24 .
  • the peripheral surface of the closed door 12 is in contact with the gasket 24 to seal the space between the inlet 11 and the door 12 with water.
  • a large number of dewatering holes 23b are formed on the inner peripheral surface of the drum 23 .
  • Each dewatering hole 23b is burred, and on the outer peripheral surface of the drum 23, the peripheral edge portion of each dewatering hole 23b protrudes from the outer peripheral surface.
  • an annular balancer 25 is provided in the front part of the inner peripheral surface of the drum 23, and three lifting ribs 26 having a substantially triangular prism shape are provided at equal intervals in the circumferential direction.
  • a drive motor 30 for generating torque for rotating the drum 23 is arranged behind the outer cylinder 20 .
  • the drive motor 30 is, for example, an outer rotor type DC brushless motor.
  • the driving motor 30 rotates the drum 23 at a rotational speed at which the centrifugal force applied to the laundry in the drum 23 is smaller than the gravity.
  • the driving motor 30 rotates the drum 23 at a rotational speed at which the centrifugal force applied to the laundry in the drum 23 is far greater than the gravity.
  • the drain port part 20b is formed in the bottom part of the outer cylinder 20. As shown in FIG.
  • the drain valve 41 is provided in the drain port part 20b.
  • the drain valve 41 includes, for example, a valve and a torque motor that opens and closes the valve.
  • the drain valve 41 is connected to the drain pipe 42 .
  • the drain valve 41 and the drain pipe 42 constitute a drain portion 40 that drains water from the inside of the outer cylinder 20 . When the drain valve 41 is opened, the water stored in the outer cylinder 20 is discharged out of the machine through the drain pipe 42 .
  • the water supply part 50 for supplying water into the outer cylinder 20 is arrange
  • the water supply unit 50 includes a first water supply valve 51 , a detergent box 52 , a water supply hose 53 and a water injection pipe 54 .
  • the 1st water supply valve 51 is arrange
  • the detergent box 52 is arrange
  • a detergent container 52a in which the detergent is accommodated is accommodated so as to be freely drawn from the front.
  • One end of the water supply hose 53 is connected to the first water supply valve 51 , and the other end is connected to the detergent box 52 .
  • One end of the water injection pipe 54 is connected to the detergent box 52 , and the other end is connected to the upper part of the outer cylinder 20 .
  • the ozone water supply part 60 for supplying ozone water into the outer cylinder 20 is arrange
  • the ozone water supply unit 60 includes: a second water supply valve 61 ; an ozone water generating device 62 for generating ozone water; an introduction pipe 63 ; and a discharge pipe 64 .
  • the second water supply valve 61 is arranged on the upper rear portion of the housing 10 , and is constituted by a double solenoid valve together with the first water supply valve 51 .
  • the ozone water generating device 62 is arranged on the upper part of the outer cylinder 20 , and includes a case 65 and an ozone electrode 66 .
  • a flow path is formed inside the casing 65, and the ozone electrode 66 is arranged in the flow path.
  • the ozone electrode 66 includes: a round rod-shaped anode; a wire-shaped cathode spirally wound around the outer periphery of the anode; and an ion exchange membrane sandwiched between the anode and the cathode.
  • diamond electrodes are used for the anode and platinum electrodes are used for the cathode.
  • One end of the introduction pipe 63 is connected to the second water supply valve 61 , and the other end is connected to the inflow port of the casing 65 .
  • One end of the lead-out pipe 64 is connected to the outflow port of the casing 65 , and the other end is connected to the lower part of the outer cylinder 20 .
  • FIG. 2 is a block diagram showing the configuration of the drum washing machine 1 .
  • the front-loading washing machine 1 includes a control unit 101 , a storage unit 102 , an operation unit 103 , a water level sensor 104 , a motor drive unit 105 , a water supply drive unit 106 , a drain drive unit 107 , and an electrode energization unit 108 in addition to the above-described configuration.
  • the operation unit 103 includes a power button for turning on and off the power to the device, a start button for starting the operation, and a mode selection button for selecting an arbitrary operation mode from among a plurality of operation modes of the washing operation.
  • the operation unit 103 includes a cartridge cleaning button for selecting a cartridge cleaning operation. The operation unit 103 outputs an input signal corresponding to the button operated by the user to the control unit 101 .
  • the water level sensor 104 detects the water level in the outer cylinder 20 and outputs a water level signal corresponding to the detected water level to the control unit 101 .
  • the motor drive unit 105 drives the drive motor 30 according to a control signal from the control unit 101 .
  • the motor drive unit 105 includes a rotation sensor that detects the rotational speed of the drive motor 30 , an inverter circuit, and the like, and adjusts the drive power so that the drive motor 30 rotates at the rotational speed set by the control unit 101 .
  • the water supply driving unit 106 drives the first water supply valve 51 and the second water supply valve 61 according to a control signal from the control unit 101.
  • the drain drive unit 107 drives the drain valve 41 in accordance with a control signal from the control unit 101 .
  • the electrode energizing unit 108 energizes the ozone electrode 66 according to a control signal from the control unit 101 .
  • the storage part 102 includes EEPROM (Electrically-Erasable Programmable Read-Only Memory; Electrically Erasable Programmable Read-Only Memory), RAM (Random Access Memory; Random Access Memory) and the like.
  • the storage unit 102 stores programs for executing the washing operation and the tub cleaning operation in various operation modes. In addition, the storage unit 102 stores various parameters and various control flags for executing these programs.
  • the control unit 101 controls the motor drive unit 105 , the water supply drive unit 106 , the drain drive unit 107 , the electrode energization unit 108 , and the like according to a program stored in the storage unit 102 based on signals from the operation unit 103 , the water level sensor 104 , and the like. As a result, the control unit 101 controls the operations of the drive motor 30 , the drain unit 40 , the water supply unit 50 , and the ozone water supply unit 60 .
  • the washing operation of various operation modes is performed based on the operation of the operation part 103 by the user.
  • a washing process, an intermediate dehydration process, a rinsing process, and a final dehydration process are sequentially performed. It should be noted that, depending on the operation mode, the intermediate spin-drying process and the rinsing process may be performed twice or more.
  • water is stored in the outer tub 20 to a specified water level.
  • the water stored in the outer tub 20 contains the detergent.
  • the drive motor 30 rotates forward or reverse alternately, and the drum 23 rotates forward or reverse alternately.
  • the drum 23 rotates at a rotational speed at which the centrifugal force acting on the laundry in the drum 23 is smaller than the gravity.
  • the laundry in the drum 23 is lifted and dropped by the lifting ribs 26 , thereby hitting the inner peripheral surface of the drum 23 . Thereby, the laundry is washed or rinsed.
  • the driving motor 30 rotates at high speed in one direction, and the drum 23 rotates at a rotational speed where the centrifugal force acting on the laundry in the drum 23 is far greater than gravity.
  • the drum 23 is rotated at a rotational speed of, for example, 750 rpm, which is higher than that in the intermediate spin-drying process, for example, 600 rpm.
  • FIG. 3 is a flowchart showing control processing of the cartridge cleaning operation.
  • (a) and (b) of Fig. 4 are flowcharts showing control processing of the first cartridge cleaning process and the second cartridge cleaning process included in the cartridge cleaning operation, respectively.
  • (a) and (b) of FIG. 5 are diagrams schematically showing the situation when the drum 23 is rotated in the first and second drum cleaning processes, respectively.
  • control section 101 when the cartridge cleaning operation is started, the control section 101 first performs the first cartridge cleaning process (S1).
  • the controller 101 opens the second water supply valve 61 ( S101 ) and energizes the ozone electrode 66 ( S102 ).
  • ozone water having a predetermined concentration, for example, a concentration of about 0.4 ppm, is supplied into the outer tube 20 from the ozone water supply unit 60 .
  • the drain valve 41 is closed, and the ozone water is stored in the outer cylinder 20 .
  • the supply flow rate of the ozone water in the outer cylinder 20 is about 2 liters/min, for example.
  • the control part 101 determines whether the ozone water of the 1st water quantity is stored in the outer cylinder 20 (S103).
  • the first amount of water is the amount of water at which the water level of the ozone water in the outer cylinder 20 reaches the water level L1 at which the ozone water contacts the outer peripheral surface of the drum 23 indicated by the dashed-dotted line in FIG. 1 .
  • the first amount of water is, for example, about 8 liters.
  • the control unit 101 determines that the first amount of ozone water is stored in the outer cylinder 20 (S103: YES). Based on this determination, the control unit 101 stops energization to the ozone electrode 66 ( S104 ), and then closes the second water supply valve 61 ( S105 ). The supply of ozone water from the ozone water supply unit 60 to the outer tube 20 is stopped.
  • the first water amount ie, the ozone water at the water level L1
  • the outer peripheral surface of the drum 23 contacts the ozone water, but the inner peripheral surface of the drum 23 does not contact the ozone water.
  • control part 101 rotates the drive motor 30, and rotates the drum 23 unidirectionally at the 1st rotational speed (S106).
  • the outer peripheral surface of the drum 23 sequentially contacts the ozone water stored in the outer cylinder 20, and the outer peripheral surface is in a state where the ozone water is adhered.
  • the first rotational speed is set so that the centrifugal force generated when the drum 23 is rotated is small, and the ozone water adhering to the outer peripheral surface of the drum 23 is not scattered or even if it is scattered, it will not be scattered with a force reaching the inner surface of the outer cylinder 20 Rotating speed.
  • the first rotational speed is set to a rotational speed in the range of 20 rpm to 40 rpm. In the present embodiment, for example, the first rotational speed is set to 30 rpm.
  • the drum 23 rotates in one direction and is not reversed. Therefore, the ozone water stored in the outer cylinder 20 is less likely to be strongly agitated, and it is less likely that the ozone is vaporized and the ozone concentration is lowered.
  • the control unit 101 stops the drive motor 30 and stops the drum 23 ( S108 ).
  • the first cartridge cleaning process ends.
  • the biofilm, black mold, etc. generated on the outer peripheral surface of the drum 23 are mainly removed.
  • the control unit 101 performs the drainage process ( S2 ) realized by the operation of the drainage unit 40 . That is, the control unit 101 opens the drain valve 41 .
  • the ozone water is discharged from the outer cylinder 20 .
  • the removed biofilm, black mold, etc. also flow out from the outer cylinder 20 together with the ozone water.
  • the water discharge process ends.
  • the drain valve 41 remains open.
  • the control part 101 performs a dehydration process (S3). That is, the control part 101 rotates the drum 23 at the 3rd rotational speed.
  • the third rotational speed is set to be higher than the second rotational speed described later and higher than the rotational speed of the drum 23 in the intermediate spin-drying process of the washing operation.
  • the third rotational speed is set to a rotational speed in the range of 650 rpm to 800 rpm.
  • the ozone water remaining in the drum 23 and the organic matter, bacteria, etc. contained therein are scattered from the drum 23 and discharged from the outer cylinder 20 .
  • a predetermined spin-drying time elapses, for example, 4 minutes
  • the control unit 101 stops the drum 23 and closes the drain valve 41 . In this way, the dehydration process ends.
  • the control section 101 performs the second cylinder cleaning process (S4).
  • the controller 101 opens the second water supply valve 61 ( S201 ) and energizes the ozone electrode 66 ( S202 ).
  • ozone water is supplied into the outer cylinder 20 from the ozone water supply unit 60 , and the ozone water is gradually accumulated in the outer cylinder 20 .
  • the control part 101 determines whether the ozone water of the 2nd water quantity is stored in the outer cylinder 20 (S203).
  • the inventors conducted experiments on the supply amount of ozone water, and found that there may be a water amount that becomes a point of change at which the ozone concentration rapidly attenuates in the stage in which the ozone water is stored in the outer cylinder 20 . This is expected to be caused by various factors such as the passage of time during which the ozone water is gradually accumulated, and the ozone water is easily contacted with various members such as the drum 23 and the door 12 as the ozone water is gradually accumulated, and ozone is consumed by this contact.
  • the second water amount is set to a water amount that is smaller than the water amount that becomes the above-mentioned change point and that can obtain a concentration close to the ozone concentration when the supply of ozone water into the outer cylinder 20 is started. Furthermore, the second water amount is set to be larger than the first water amount.
  • the second water amount is, for example, about 15 liters.
  • the water level in the outer cylinder 20 becomes the water level L2 at which the ozone water reaches the gasket 24 that seals the door 12 , as indicated by the double-dot chain line in FIG. 1 . .
  • the control unit 101 determines that the second amount of ozone water is stored in the outer cylinder 20 (S203: YES). Based on this determination, the control unit 101 stops energization to the ozone electrode 66 ( S204 ), and then closes the second water supply valve 61 ( S205 ). The supply of ozone water from the ozone water supply unit 60 to the outer tube 20 is stopped.
  • control part 101 rotates the drive motor 30, and rotates the drum 23 in one direction at the second rotation speed (S206).
  • the outer peripheral surface of the drum 23 sequentially contacts the ozone water stored in the outer cylinder 20, and the outer peripheral surface is in a state where the ozone water is adhered.
  • the second rotational speed is set to a rotational speed at which the centrifugal force generated when the drum 23 is rotated is large and the ozone water adhering to the outer peripheral surface of the drum 23 scatters and contacts the inner peripheral surface of the outer cylinder 20 .
  • the second rotational speed is set to a rotational speed of 60 rpm or more.
  • the rotational speed of the drum 23 is too high and the ozone water stored in the outer cylinder 20 is vigorously beaten by the drum 23, the ozone dissolved in the water is vaporized and the ozone concentration tends to decrease.
  • the second rotational speed in order to suppress the reduction of the ozone concentration, it is preferable to set the second rotational speed to a rotational speed in the range of 60 rpm to 120 rpm. In the present embodiment, for example, the second rotational speed is set to 100 rpm.
  • the ozone water is lifted from the bottom of the outer tube 20 and scattered from the outer peripheral surface of the drum 23 , and adheres to the inner circumference of the outer tube 20 face over the entire area of the inner peripheral face.
  • the sterilizing power of ozone acts effectively over the whole area of the inner peripheral surface of the outer cylinder 20, and the biofilm is removed over the whole area of the inner peripheral surface.
  • black mold or the like is generated, the black mold or the like is also killed.
  • the drum 23 rotates in one direction as in the first drum cleaning process, it is possible to suppress a decrease in the ozone concentration.
  • the second amount of ozone water larger than the first amount of water in the first tank cleaning process is stored in the outer cylinder 20, even if the ozone water adheres to the inner peripheral surface of the outer cylinder 20, the Even if the water level is lowered, the water level can be prevented from being lower than the outer peripheral surface of the drum 23 . Thereby, the ozone water can be sufficiently adhered to the inner peripheral surface of the outer cylinder 20 .
  • biofilms tend to form on the surface of the gasket 24, particularly in the portions of the grooves 24a and 24b.
  • the water level of the ozone water in the outer cylinder 20 reaches the lower part of the gasket 24, so when the drum 23 rotates, the ozone water easily spreads over the gasket 24 as a whole, especially the grooves 24a, 24b. Thereby, the biofilm formed on the gasket 24 can be easily removed.
  • the outer peripheral surface of the drum 23 is burred so that the peripheral edge of the dewatering hole 23b protrudes, so that the ozone water stored in the outer cylinder 20 can be easily lifted by the outer peripheral surface. Thereby, a large amount of ozone water can be scattered from the outer peripheral surface of the drum 23 .
  • the control unit 101 stops the drive motor 30 to stop the drum 23 ( S208 ).
  • the second cartridge cleaning process ends.
  • the biofilm, black mold, and the like generated on the inner peripheral surface of the outer cylinder 20 are mainly removed.
  • the control unit 101 when the second cylinder cleaning process ends, the control unit 101 performs the drainage process ( S5 ) in the same manner as when the first cylinder cleaning process ends. Furthermore, when the drainage process ends, the control unit 101 performs the dehydration process (S6). When the dehydration process ends, the drum cleaning operation ends.
  • the drum 23 is rotated at the first rotational speed during the cleaning of the first cylinder, and thus, the state in which the ozone water is adhered to the outer peripheral surface of the drum 23 is easily maintained, so that the sterilizing power of ozone can be effectively acted on
  • the outer surface of the drum 23 enhances the removal effect of the biofilm formed on the outer peripheral surface of the drum 23 .
  • the cleaning process of the first cylinder is completed, a drainage process is performed, and the ozone water whose ozone concentration has been greatly reduced by the consumption of ozone in the cleaning process of the first cylinder is discharged from the outer cylinder 20, and then regenerated during the cleaning process of the second cylinder.
  • the ozonated water is stored in the outer cylinder 20 . Thereby, a sufficient ozone concentration is ensured during the cleaning of the second cylinder.
  • the drum 23 is rotated at the second rotational speed, whereby the ozone water adhering to the outer peripheral surface of the drum 23 can be scattered and contacted with the inner peripheral surface of the outer cylinder 20 .
  • the ozone water easily spreads over the inner peripheral surface of the outer cylinder 20, so that the sterilizing power of ozone can be effectively acted on the inner peripheral surface of the outer cylinder 20, and the removal of the biofilm formed on the inner peripheral surface of the outer cylinder 20 can be improved. Effect.
  • the propagation of black mold and the like to the drum 23 and the outer cylinder 20 can be suppressed favorably.
  • the first rotational speed is set in the range of 20 rpm to 40 rpm.
  • the second rotational speed is set in the range of 60 rpm to 120 rpm.
  • the amount of ozone water stored in the outer cylinder 20 by the ozone water supply unit 60 is increased compared to the first cylinder cleaning process. Therefore, even if the water level in the outer cylinder 20 is lowered due to the ozone water adhering to the inner peripheral surface of the outer cylinder 20 , the water level can be prevented from being lower than the outer peripheral surface of the drum 23 . Thereby, the ozone water can be sufficiently adhered to the inner peripheral surface of the outer cylinder 20 .
  • the dehydration process of rotating the drum 23 at the third rotation speed higher than the second rotation speed is performed.
  • the ozone water remaining in the drum 23 and the organic substances, bacteria, and the like contained therein can be scattered from the drum 23 and discharged from the outer cylinder 20 .
  • the drum 23 rotates in one direction during the first drum cleaning process and the second drum cleaning process. Therefore, unlike the case where the drum 23 is reversed, the ozone water stored in the outer cylinder 20 is less likely to be strongly stirred, and the ozone gasification and the reduction of the ozone concentration are less likely to occur.
  • the first water amount in the first drum cleaning process is set so that the inner peripheral surface of the drum 23 does not take into account the consumption of ozone and the like. Amount of exposure to ozone water.
  • the first amount of water may be set to an amount by which the inner peripheral surface of the drum 23 comes into contact with the ozone water. Even in this case, the cleaning effect of the inner peripheral surface of the drum 23 can be expected.
  • the water level in the outer cylinder 20 reaches the water level L2 of the gasket 24 when the ozone water becomes the ozone water.
  • the water level when the ozone water of the second water amount is stored in the outer cylinder 20 may be a water level at which the ozone water does not reach the gasket 24 .
  • the amount of ozone water stored in the outer cylinder 20 by the ozone water supply unit 60 is increased in the second cylinder cleaning process compared to the first cylinder cleaning process. That is, the second water amount is larger than the first water amount.
  • the first water amount and the second water amount may be the same amount.
  • the dehydration process is performed after the drainage process after the first drum cleaning process and after the drainage process after the second drum cleaning process is completed.
  • the first cartridge cleaning process and the second cartridge cleaning process are each performed once.
  • the first cartridge cleaning process and the second cartridge cleaning process may be performed alternately, or the same cartridge cleaning process may be performed continuously.
  • the lead-out pipe 64 of the ozone water supply unit 60 may be formed in a corrugated shape by one pipe or a plurality of pipes.
  • the lead-out pipe 64 may be provided along the outer peripheral surface of the outer cylinder 20 .
  • the lead-out pipe 64 can be lengthened, so that ozone that is not dissolved in water in the casing 65 of the ozone water generator 62 is easily dissolved in water while flowing through the lead-out pipe 64 .
  • the drum washing machine 1 adopts a structure in which the drum 23 rotates around the horizontal axis.
  • the drum washing machine 1 may adopt a structure in which the drum 23 is rotated about a rotation axis inclined with respect to the horizontal direction.
  • the drum washing machine 1 of the above-described embodiment does not have a drying function
  • the present invention can also be applied to a drum type washing-drying machine, which is a drum washing machine equipped with a drying function.
  • the drum-type washing-drying machine further includes: a circulating air duct connecting the outlet provided at the bottom of the outer tub 20 with the inlet port provided at the upper portion of the outer tub 20; and
  • the drying unit includes a fan and a heater arranged in the circulating air duct.
  • the lead-out pipe 64 of the ozone water supply unit 60 may be connected to the circulating air passage, and the ozone water may be supplied into the outer tube 20 from the lead-out port through the circulating air passage.

Abstract

一种能够利用臭氧水来良好地抑制黑霉等向滚筒和外筒繁殖的滚筒洗衣机。滚筒洗衣机(1)具备进行筒清洁运转的控制部(101)。控制部(101)在筒清洁运转中依次进行:第一筒清洁过程,利用臭氧水供给部(60)来向外筒(20)内蓄留能够与滚筒(23)接触的量的臭氧水,利用驱动马达(30)来使滚筒(23)以第一转速旋转;排水过程,利用排水部(40)来从外筒(20)内排出臭氧水;以及第二筒清洁过程,利用臭氧水供给部(60)来向外筒(20)内蓄留能够与滚筒(23)接触的量的臭氧水,利用驱动马达(30)来使滚筒(23)以高于第一转速的第二转速旋转。

Description

滚筒洗衣机 技术领域
本发明涉及滚筒洗衣机。该滚筒洗衣机既可以是从洗涤到烘干连续进行的洗衣机,也可以是进行洗涤但不进行烘干的洗衣机。
背景技术
在滚筒洗衣机中,容易在滚筒的外表面、外筒的内表面形成生物膜,容易导致黑霉等的繁殖。因此,为了去除生物膜以抑制黑霉等的繁殖,在滚筒洗衣机中,可以采用进行筒清洁运转的结构。
例如,以下的专利文献1中记载了一种滚筒洗衣机,通过在筒清洁运转中向外筒即水筒内洒水和向水筒内供给由加热器进行了加热的暖风来使水筒内成为高温高湿环境,杀灭繁衍在水筒和滚筒的表面的细菌、霉菌。
另外,如以下的专利文献2所示,已知一种使用水中溶解有臭氧而成的臭氧水来进行洗涤物的除菌的滚筒洗衣机。因此,可以考虑不像专利文献1那样利用由热实现的除菌效果,而利用由臭氧水实现的除菌效果来进行筒清洁运转。
在实现利用臭氧水的筒清洁运转的情况下,为了提高形成于滚筒的外表面和外筒的内表面的生物膜的去除效果而良好地抑制黑霉等的繁殖,要求使臭氧水有效地作用于滚筒的外表面和外筒的内表面双方。
现有技术文献
专利文献
专利文献1:日本特开2020-039836号公报
专利文献2:日本特开2020-103566号公报
发明内容
发明所要解决的问题
本申请是鉴于该问题而完成的发明,目的在于提供一种能够利用臭氧水来良好地抑制黑霉等向滚筒和外筒繁殖的滚筒洗衣机。
用于解决问题的方案
本发明的主要方案的滚筒洗衣机具备:外筒,配置在箱体内;滚筒,配置在所述外筒内,能够绕水平轴或相对于水平方向倾斜的旋转轴旋转;驱动马达,用于使所述滚筒旋转;臭氧水供给部,下所述外筒内供给臭氧水;排水部,从所述外筒内进行排水;以及控制部,控制所述驱动马达、所述臭氧水供给部以及所述排水部的动作来进行筒清洁运转。在此,所述控制部在所述筒清洁运转中依次进行:第一筒清洁过程,利用所述臭氧水供给部来向所述外筒内蓄留能够与所述滚筒接触的量的臭氧水,利用所述驱动马达来使所述滚筒以第一转速旋转;排水过程,利用所述排水部来从所述外筒内排出臭氧水;以及第二筒清洁过程,利用所述臭氧水供给部来向所述外筒内蓄留能够与所述滚筒接触的量的臭氧水,利用所述驱动马达来使所述滚筒以高于所述第一转速的第二转速旋转。
根据上述的结构,在第一筒清洁过程中,滚筒旋转,滚筒的外表面依次接触蓄于外筒内的臭氧水,成为该外表面附着有臭氧水的状态。此时,滚筒以相对低的第一转速旋转,因此能减小因旋转而产生的离心力,能使附着于滚筒的外表面的臭氧水不会飞散或者即使飞散也不会以到达外筒的内表面的势头飞散。由此,容易保持臭氧水附着于滚筒的外表面的状态,因此能使臭氧的除菌力有效地作用于滚筒的外表面,提高形成于滚筒的外表面的生物膜的去除效果。
当第一筒清洁过程结束时,进行排水过程,从外筒内排出通过第一筒清洁过程中的臭氧的消耗而大幅降低了臭氧浓度的臭氧水。然后,在第二筒清洁过程中,新的臭氧水蓄下外筒内,确保充分的臭氧浓度。滚筒旋转,滚筒的外表面依次接触蓄于外筒内的臭氧水,成为该外表面附着有臭氧水的状态。此时,滚筒以相对高的第二转速旋转,因此能增大因旋转而产生的离心力,能使附着于滚筒的外表面的臭氧水飞散而接触外筒的内表面。由此,臭氧水容易遍及外 筒的内表面,因此能使臭氧的除菌力有效地作用于外筒的内表面,提高形成于外筒的内表面的生物膜的去除效果。
因此,能良好地抑制黑霉等向滚筒和外筒繁殖。
本方案的滚筒洗衣机中,所述第一转速可以设定为20rpm~40rpm的范围。
根据上述的结构,能在第一筒清洁过程中可靠地使附着于滚筒的外表面的臭氧水不会飞散或者即使飞散也不会以到达外筒的内表面的势头飞散。
本方案的滚筒洗衣机中,所述第二转速可以设定为60rpm~120rpm的范围。
根据上述的结构,在第二筒清洁过程中,能充分产生能够使附着于滚筒的外表面的臭氧水飞到外筒的内表面的离心力,并且能抑制旋转的滚筒剧烈地拍打蓄于外筒内的臭氧水而导致溶解于水的臭氧气化,能抑制臭氧浓度降低。由此,能提高臭氧水对形成于外筒的内表面的生物膜的去除效果。
本方案的滚筒洗衣机中,所述控制部可以配置为:与所述第一筒清洁过程相比,使所述第二筒清洁过程中由所述臭氧水供给部蓄至所述外筒内的臭氧水的量更多。
根据上述的结构,即使因臭氧水依附在外筒的内周面而使外筒内的水位降低,也能使该水位不会低于滚筒的外周面。由此,能使臭氧水充分依附在外筒的内周面。
本方案的滚筒洗衣机中,所述控制部可以配置为:在所述排水过程后且在进行所述第二筒清洁过程前进行使所述滚筒以高于所述第二转速的第三转速旋转的脱水过程。
根据上述的结构,能使残留于滚筒的臭氧水和其中所含的有机物、细菌等从滚筒飞散并从外筒内排出。
本方案的滚筒洗衣机中,所述控制部可以配置为:在所述第一筒清洁过程和所述第二筒清洁过程中使所述滚筒单向旋转。
根据上述的结构,与使滚筒反转的情况不同,蓄于外筒内的臭氧水不易被强力搅拌,不易发生臭氧气化而臭氧浓度降低的情况。
发明效果
根据本发明,能提供一种能够利用臭氧水来良好地抑制黑霉等向滚筒和外筒繁殖的滚筒洗衣机。
本发明效果及意义通过以下示出的实施方式的说明进一步阐明。但是,以下的实施方式不过是实施本发明时的一个例示,本发明不受以下的实施方式所记载的内容的任何限制。
附图说明
图1是示出实施方式的滚筒洗衣机的结构的侧剖视图。
图2是示出实施方式的滚筒洗衣机的结构的框图。
图3是示出实施方式的筒清洁运转的控制处理的流程图。
图4的(a)和(b)分别是示出实施方式的筒清洁运转中包含的第一筒清洁过程和第二筒清洁过程的控制处理的流程图。
图5的(a)和(b)分别是示意性地示出实施方式的第一筒清洁过程和第二筒清洁过程中滚筒进行了旋转时的情形的图。
附图标记说明
10:箱体;20:外筒;23:滚筒;30:驱动马达;40:排水部;60:臭氧水供给部;101:控制部。
具体实施方式
以下,参照附图对作为本发明的滚筒洗衣机的一个实施方式的不具有烘干功能的滚筒洗衣机进行说明。
图1是示出滚筒洗衣机1的结构的侧剖视图。
滚筒洗衣机1具备方形的箱体10。在箱体10的前表面于中央部形成有供洗涤物投入的圆形的投入口11。投入口11被开闭自如的门12覆盖。
在箱体10内利用多个减振器21和弹簧22弹性地支承有外筒20。在外筒20内旋转自由地配置有滚筒23。滚筒23绕水平轴旋转。滚筒23在前表面具有 圆形的开口部23a,外筒20在滚筒23的开口部23a的前方具有圆形的开口部20a。
外筒20的开口部20a的周缘部与箱体10的投入口11的周缘部通过由弹性材料构成的环状的垫圈24来连结。垫圈24在中间部和后端部具有环状的槽24a、24b。滚筒23的前端部接近垫圈24的后端部。关闭的门12的周面接触垫圈24,将投入口11与门12之间水密封。
在滚筒23的内周面形成有许多脱水孔23b。各脱水孔23b被实施了内缘翻边加工,在滚筒23的外周面,各脱水孔23b的周缘部从外周面突出。另外,在滚筒23的内周面于前部设有环状的平衡器25,并且以在周向上等间隔的方式设有具有大致三棱柱形状的三个提升筋26。
在外筒20的后方配置有用于产生使滚筒23旋转的力矩的驱动马达30。驱动马达30例如是外转子型的直流无刷马达。在清洗过程和漂洗过程时,驱动马达30使滚筒23以施加于滚筒23内的洗涤物的离心力小于重力的转速旋转。另一方面,在脱水过程时,驱动马达30使滚筒23以施加于滚筒23内的洗涤物的离心力远大于重力的转速旋转。
在外筒20的底部形成有排水口部20b。在排水口部20b设有排水阀41。排水阀41例如包括阀和使阀开闭的力矩马达。排水阀41连接于排水管42。排水阀41和排水管42构成从外筒20内进行排水的排水部40。当排水阀41打开时,蓄于外筒20内的水经过排水管42排出机外。
在箱体10内的上部配置有用于向外筒20内供水的供水部50。供水部50包括:第一供水阀51、洗涤剂盒52、供水软管53以及注水管54。第一供水阀51配置在箱体10的后方上部,洗涤剂盒52配置在箱体10的前方上部。在洗涤剂盒52中,以从前方自由拉出的方式容纳有供洗涤剂容纳的洗涤剂容器52a。供水软管53的一端连接于第一供水阀51,另一端连接于洗涤剂盒52。注水管54的一端连接于洗涤剂盒52,另一端连接于外筒20的上部。
当第一供水阀51打开时,自来水从水龙头流过供水软管53、洗涤剂盒52以及注水管54供给至外筒20内。此时,若洗涤剂容器52a中容纳有洗涤剂,则该洗涤剂会被水冲走而供给至外筒20内。
在箱体10内的后部配置有用于向外筒20内供给臭氧水的臭氧水供给部60。 臭氧水供给部60包括:第二供水阀61;臭氧水生成装置62,用于生成臭氧水;导入管63;以及导出管64。第二供水阀61配置在箱体10的后方上部,与第一供水阀51均由双联电磁阀构成。
臭氧水生成装置62配置在外筒20的上部,包括壳体65和臭氧电极66。在壳体65的内部形成有流路,在该流路内配置有臭氧电极66。臭氧电极66包括:圆棒状的阳极;线状的阴极,螺旋状地卷绕在阳极的外周;以及离子交换膜,夹在阳极与阴极之间。例如,阳极使用金刚石电极,阴极使用白金电极。
导入管63的一端连接于第二供水阀61,另一端连接于壳体65的流入口。导出管64的一端连接于壳体65的流出口,另一端连接于外筒20的下部。
当第二供水阀61打开时,自来水从水龙头经由导入管63流入壳体65内,流过流路。对臭氧电极66进行通电,流过流路的水被电解而产生臭氧。产生的臭氧溶解于水,生成臭氧水。臭氧水从壳体65流出,经由导出管64供给至外筒20内。需要说明的是,壳体65内未溶解于水的臭氧会在流过导出管64期间溶解于水。臭氧水是具有除菌性能的除菌水。
图2是示出滚筒洗衣机1的结构的框图。
滚筒洗衣机1除了上述的结构以外还具备:控制部101、存储部102、操作部103、水位传感器104、马达驱动部105、供水驱动部106、排水驱动部107以及电极通电部108。
操作部103包括:电源按钮,对设备进行电源的接通和切断;开始按钮,用于使运转开始;以及模式选择按钮,用于从洗涤运转的多个运转模式中选择任意的运转模式。另外,操作部103包括用于选择筒清洁运转的筒清洁按钮。操作部103向控制部101输出与用户操作的按钮相应的输入信号。
水位传感器104检测外筒20内的水位,向控制部101输出与检测到的水位相应的水位信号。
马达驱动部105根据来自控制部101的控制信号来驱动驱动马达30。马达驱动部105包括检测驱动马达30的转速的旋转传感器、变频电路等,调整驱动电力以使驱动马达30以由控制部101设定的转速旋转。
供水驱动部106根据来自控制部101的控制信号来驱动第一供水阀51和第 二供水阀61。排水驱动部107根据来自控制部101的控制信号来驱动排水阀41。电极通电部108根据来自控制部101的控制信号来对臭氧电极66进行通电。
存储部102包括EEPROM(Electrically-Erasable Programmable Read-Only Memory;电可擦可编程只读存储器)、RAM(Random Access Memory;随机存取存储器)等。存储部102存储有用于执行各种运转模式的洗涤运转和筒清洁运转的程序。另外,存储部102存储有用于执行这些程序的各种参数、各种控制标记。
控制部101基于来自操作部103、水位传感器104等的各信号,根据存储于存储部102的程序来控制马达驱动部105、供水驱动部106、排水驱动部107以及电极通电部108等。其结果是,控制部101控制驱动马达30、排水部40、供水部50以及臭氧水供给部60的动作。
那么,在滚筒洗衣机1中,基于用户对操作部103的操作,进行各种运转模式的洗涤运转。在洗涤运转中,依次执行清洗过程、中间脱水过程、漂洗过程以及最终脱水过程。需要说明的是,根据运转模式,有时候会进行两次以上中间脱水过程和漂洗过程。
在清洗过程和漂洗过程中,向外筒20内蓄水至规定水位。在清洗过程中,洗涤剂被投入洗涤剂容器50a,因此蓄于外筒20内的水含有洗涤剂。驱动马达30交替正转或反转,滚筒23交替正转或反转。此时,滚筒23以作用于滚筒23内的洗涤物的离心力小于重力的转速旋转。滚筒23内的洗涤物被提升筋26提升并落下,由此撞击滚筒23的内周面。由此,洗涤物被清洗或漂洗。
在中间脱水过程和最终脱水过程中,驱动马达30单向高速旋转,滚筒23以作用于滚筒23内的洗涤物的离心力远大于重力的转速旋转。通过离心力的作用,洗涤物被压在滚筒23的内周面而被脱水。在最终脱水过程中,滚筒23以高于例如600rpm的中间脱水过程中的转速的、例如750rpm的转速进行旋转。
在滚筒洗衣机1中,除了洗涤运转以外,还进行对滚筒23和外筒20进行清洁的筒清洁运转。以下对筒清洁运转进行详细说明。
图3是示出筒清洁运转的控制处理的流程图。图4的(a)和(b)分别是示出筒清洁运转中包含的第一筒清洁过程和第二筒清洁过程的控制处理的流程 图。图5的(a)和(b)分别是示意性地示出第一筒清洁过程和第二筒清洁过程中滚筒23进行了旋转时的情形的图。
当在操作部103中通过筒清洁按钮选择了筒清洁运转后按下开始按钮时,开始筒清洁运转。
参照图3,当开始筒清洁运转时,控制部101首先进行第一筒清洁过程(S1)。
参照图4的(a),在第一筒清洁过程中,控制部101打开第二供水阀61后(S101)对臭氧电极66通电(S102)。由此,从臭氧水供给部60向外筒20内供给规定浓度例如浓度0.4ppm左右的臭氧水。排水阀41关闭,向外筒20内蓄留臭氧水。需要说明的是,向外筒20内的臭氧水的供给流量例如为2升/分钟左右。
控制部101判定外筒20内是否蓄有第一水量的臭氧水(S103)。第一水量是外筒20内的臭氧水的水位达到图1中点划线所示的臭氧水接触滚筒23的外周面的水位L1的水量。第一水量例如为8升左右的量。
当由水位传感器104检测到水位L1时,控制部101判定外筒20内蓄有第一水量的臭氧水(S103:是)。基于该判定,控制部101停止向臭氧电极66通电(S104),然后关闭第二供水阀61(S105)。停止从臭氧水供给部60向外筒20供给臭氧水。在外筒20内蓄有第一水量即水位L1的臭氧水时,滚筒23的外周面接触臭氧水,而滚筒23的内周面不接触臭氧水。
接着,控制部101使驱动马达30旋转,使滚筒23以第一转速单向旋转(S106)。当滚筒23旋转时,滚筒23的外周面依次接触蓄于外筒20内的臭氧水,成为该外周面附着有臭氧水的状态。
在此,第一转速设定为使滚筒23旋转时产生的离心力小而附着于滚筒23的外周面的臭氧水不会飞散或者即使飞散也不会以到达外筒20的内表面的势头飞散的转速。具体而言,第一转速设定为20rpm~40rpm的范围的转速。本实施方式中,例如,第一转速设定为30rpm。
滚筒23以这样的第一转速旋转,由此,如图5的(a)所示,容易保持臭氧水附着于滚筒23的外周面的状态。由此,臭氧的除菌力遍及滚筒23的外周面的整个区域有效地作用,在外周面的整个区域去除生物膜。另外,在产生了 黑霉等的情况下,还会杀灭黑霉等。
另外,滚筒23单向旋转,不反转。因此,蓄于外筒20内的臭氧水不易被强力搅拌,不易产生臭氧气化而臭氧浓度降低的情况。
当滚筒23开始旋转后经过第一时间例如1分钟时(S107:是),控制部101使驱动马达30停止,使滚筒23停止(S108)。
这样,第一筒清洁过程结束。在第一筒清洁过程中,主要去除在滚筒23的外周面产生的生物膜、黑霉等。
回到图3,当第一筒清洁过程结束时,控制部101进行由排水部40的动作实现的排水过程(S2)。即,控制部101打开排水阀41。从外筒20内排出臭氧水。去除的生物膜、黑霉等也与臭氧水一同从外筒20内流出。当来自外筒20内的臭氧水的排出完毕时,排水过程结束。排水阀41仍然打开。
接着,控制部101进行脱水过程(S3)。即,控制部101使滚筒23以第三转速旋转。第三转速设为高于后述的第二转速且高于洗涤运转的中间脱水过程中滚筒23的转速。例如,第三转速设定为650rpm~800rpm的范围的转速。残留于滚筒23的臭氧水及其所含的有机物、细菌等从滚筒23飞散,从外筒20内排出。当经过规定的脱水时间例如经过4分钟时,控制部101使滚筒23停止并且关闭排水阀41。这样,脱水过程结束。
接着,控制部101进行第二筒清洁过程(S4)。参照图4的(b),在第二筒清洁过程中,控制部101打开第二供水阀61后(S201)对臭氧电极66通电(S202)。与第一筒清洁过程的情况同样地,从臭氧水供给部60向外筒20内供给臭氧水,臭氧水渐渐蓄于外筒20内。
控制部101判定外筒20内是否蓄有第二水量的臭氧水(S203)。
在此,发明人进行了臭氧水的供给量的实验,结果发现,可能存在成为向外筒20内蓄留臭氧水的阶段中臭氧浓度急剧衰减的变化点的水量。可以预测这是由于逐渐蓄留臭氧水期间的时间经过、臭氧水随着逐渐蓄留而容易接触滚筒23、门12等各种构件而臭氧因该接触消耗等各种原因而造成的。
因此,第二水量设为比成为上述变化点的水量少且能够得到与开始向外筒20内供给臭氧水时的臭氧浓度接近的浓度的水量。进而,第二水量设为比第一 水量多的水量。第二水量例如设为15升左右的量。
在本实施方式中,在外筒20内蓄有第二水量的臭氧水时,外筒20内的水位成为图1中双点划线所示的臭氧水到达将门12水密封的垫圈24的水位L2。
当利用水位传感器104检测到了水位L2时,控制部101判定外筒20内蓄有第二水量的臭氧水(S203:是)。基于该判定,控制部101停止向臭氧电极66通电(S204),然后关闭第二供水阀61(S205)。停止从臭氧水供给部60向外筒20供给臭氧水。
接着,控制部101使驱动马达30旋转,使滚筒23以第二转速单向旋转(S206)。当滚筒23旋转时,滚筒23的外周面依次接触蓄于外筒20内的臭氧水,成为该外周面附着有臭氧水的状态。
在此,第二转速设定为使滚筒23旋转时产生的离心力大而附着于滚筒23的外周面的臭氧水会飞散并接触外筒20的内周面的转速。具体而言,第二转速设定为60rpm以上的转速。但是,当滚筒23的转速过高而蓄于外筒20内的臭氧水被滚筒23剧烈拍打时,溶解于水的臭氧会气化而臭氧浓度容易降低。由此,为了抑制臭氧浓度降低,优选第二转速设定为60rpm~120rpm的范围的转速。本实施方式中,例如,第二转速设定为100rpm。
滚筒23以这样的第二转速旋转,由此,如图5的(b)所示,臭氧水从外筒20的底部被提升并从滚筒23的外周面飞散,依附于外筒20的内周面,遍及该内周面的整个区域。由此,臭氧的除菌力遍及外筒20的内周面的整个区域而有效地作用,在内周面的整个区域去除生物膜。另外,在产生了黑霉等的情况下,还杀灭黑霉等。
另外,与第一筒清洁过程同样地,滚筒23单向旋转,因此能抑制臭氧浓度降低。
进而,由于在外筒20内蓄有比第一筒清洁过程的第一水量多的第二水量的臭氧水,因此,即使因臭氧水依附于外筒20的内周面而使外筒20内的水位降低,也能使该水位不会低于滚筒23的外周面。由此,能使臭氧水充分依附于外筒20的内周面。
进而,在滚筒洗衣机1中,在垫圈24的表面,特别是槽24a、24b的部分 容易形成生物膜。在第二筒清洁过程中,外筒20内的臭氧水的水位到达垫圈24的下部,因此在滚筒23旋转时,臭氧水容易整体上遍及垫圈24尤其是槽24a、24b。由此,容易去除形成于垫圈24的生物膜。
需要说明的是,如上所述,滚筒23的外周面中,通过内缘翻边加工,脱水孔23b的周缘部突出,因此容易用该外周面来提升蓄于外筒20内的臭氧水。由此,能使大量臭氧水从滚筒23的外周面飞散。
当滚筒23开始旋转后经过第二时间例如2分钟时(S207:是),控制部101使驱动马达30停止,使滚筒23停止(S208)。
由于要使臭氧水从滚筒23飞散来润湿外筒20的内周面,因此外筒20的内周面的清洁比滚筒23的外周面的清洁更费时。在第二筒清洁过程中,第二时间设定为比第一时间长的时间,因此能防止外筒20的内周面清洁不足。
这样,第二筒清洁过程结束。在第二筒清洁过程中,主要去除在外筒20的内周面产生的生物膜、黑霉等。
回到图3,当第二筒清洁过程结束时,控制部101与第一筒清洁过程结束时同样地进行排水过程(S5)。进而,当排水过程结束时,控制部101进行脱水过程(S6)。当脱水过程结束时,筒清洁运转结束。
<实施方式的效果>
根据本实施方式,在第一筒清洁过程中,滚筒23以第一转速旋转,由此,容易保持臭氧水附着于滚筒23的外周面的状态,因此能使臭氧的除菌力有效地作用于滚筒23的外表面,提高形成于滚筒23的外周面的生物膜的去除效果。
另外,当第一筒清洁过程结束时进行排水过程,通过第一筒清洁过程中的臭氧的消耗而大幅降低了臭氧浓度的臭氧水从外筒20内排出,然后在第二筒清洁过程中新的臭氧水被蓄于外筒20内。由此,在第二筒清洁过程中确保了充分的臭氧浓度。
进而,在第二筒清洁过程中,滚筒23以第二转速旋转,由此,能使附着于滚筒23的外周面的臭氧水飞散而接触外筒20的内周面。由此,臭氧水容易遍及外筒20的内周面,因此能使臭氧的除菌力有效地作用于外筒20的内周面,提高形成于外筒20的内周面的生物膜的去除效果。
因此,根据本实施方式,能良好地抑制黑霉等向滚筒23和外筒20繁殖。
另外,根据本实施方式,第一转速设定为20rpm~40rpm的范围。由此,在第一筒清洁过程中,能可靠地使附着于滚筒23的外周面的臭氧水不会飞散或者即使飞散也不会以到达外筒20的内周面的势头飞散。
进而,根据本实施方式,第二转速设定为60rpm~120rpm的范围。由此,能充分产生能够使附着于滚筒23的外周面的臭氧水飞到外筒20的内周面的离心力,并且能抑制由于旋转的滚筒23剧烈拍打蓄于外筒20内的臭氧水而导致溶解于水的臭氧气化,能抑制臭氧浓度降低。由此,能提高臭氧水对形成于外筒20的内周面的生物膜的去除效果。
进而,根据本实施方式,与第一筒清洁过程相比,在第二筒清洁过程中,使利用臭氧水供给部60来蓄于外筒20内的臭氧水的量更多。由此,即使因臭氧水依附在外筒20的内周面而使外筒20内的水位降低,也能使该水位不会低于滚筒23的外周面。由此,能使臭氧水充分依附于外筒20的内周面。
进而,根据本实施方式,在排水过程后且在进行第二筒清洁过程前,进行使滚筒23以高于第二转速的第三转速旋转的脱水过程。由此,能使残留于滚筒23的臭氧水及其所含的有机物、细菌等从滚筒23飞散并从外筒20内排出。
进而,根据本实施方式,在第一筒清洁过程和第二筒清洁过程中,滚筒23单向旋转。由此,与滚筒23反转的情况不同,蓄于外筒20内的臭氧水不易被强烈搅拌,不易产生臭氧气化而臭氧浓度降低的情况。
以上说明了本发明的实施方式,但本发明不受上述实施方式等的任何限制,另外,本发明的实施方式也能够在上述以外进行各种变更。
例如,在上述实施方式中,由于不易在滚筒23的内周面形成生物膜,因此考虑到臭氧的消耗等,第一筒清洁过程中的第一水量设定为滚筒23的内周面不会接触臭氧水的量。然而,第一水量也可以设定为滚筒23的内周面会接触臭氧水的量。在该情况下,也能期待滚筒23的内周面的清洁效果。
另外,在上述实施方式中,在第二筒清洁过程中,在外筒20内蓄有第二水量的臭氧水时,外筒20内的水位成为臭氧水会到达垫圈24的水位L2。然而,外筒20内蓄有第二水量的臭氧水时的水位也可以成为臭氧水不会到达垫圈24 的水位。
进而,在上述实施方式中,与第一筒清洁过程相比,在第二筒清洁过程中,使利用臭氧水供给部60来蓄于外筒20内的臭氧水的量更多。即,第二水量比第一水量多。然而,第一水量与第二水量也可以设为相同的量。
进而,在上述实施方式中,在筒清洁运转中,在第一筒清洁过程后的排水过程结束后和第二筒清洁过程后的排水过程结束后进行脱水过程。然而,也可以省略至少任一排水过程结束后的脱水过程。
进而,在上述实施方式中,在筒清洁运转中,各进行一次第一筒清洁过程和第二筒清洁过程。然而,也可以各进行多次第一筒清洁过程和第二筒清洁过程。在该情况下,既可以交替进行第一筒清洁过程和第二筒清洁过程,也可以连续进行相同的筒清洁过程。
进而,在上述实施方式中,臭氧水供给部60的导出管64可以由一根管或多根管形成为波纹形状。在该情况下,导出管64可以设为沿着外筒20的外周面。该结构能使导出管64变长,因此臭氧水生成装置62的壳体65内未溶解于水的臭氧容易在流过导出管64期间溶解于水。
进而,在上述实施方式中,滚筒洗衣机1采用滚筒23绕水平轴旋转的结构。然而,滚筒洗衣机1也可以采用滚筒23绕相对于水平方向倾斜的旋转轴旋转的结构。
进而,上述实施方式的滚筒洗衣机1不具备烘干功能,但本发明也能应用于具备烘干功能的滚筒洗衣机即滚筒式洗干一体机。滚筒式洗干一体机除了上述实施方式的滚筒洗衣机1的结构以外,还包括:循环风路,将设于外筒20的底部的导出口与设于外筒20的上部的导入口相连;以及烘干单元,包括配置在循环风路内的风扇和加热器。在该情况下,也可以是,臭氧水供给部60的导出管64连接于循环风路,臭氧水流过循环风路而从导出口供给向外筒20内。
此外,本发明的实施方式能够在技术方案所示的技术思想的范围内适当进行各种变更。

Claims (6)

  1. 一种滚筒洗衣机,其特征在于,具备:
    外筒,配置在箱体内;
    滚筒,配置在所述外筒内,能够绕水平轴或相对于水平方向倾斜的旋转轴旋转;
    驱动马达,用于使所述滚筒旋转;
    臭氧水供给部,向所述外筒内供给臭氧水;
    排水部,从所述外筒内进行排水;以及
    控制部,控制所述驱动马达、所述臭氧水供给部以及所述排水部的动作来进行筒清洁运转,
    所述控制部在所述筒清洁运转中依次进行:
    第一筒清洁过程,利用所述臭氧水供给部来向所述外筒内蓄留能够与所述滚筒接触的量的臭氧水,利用所述驱动马达来使所述滚筒以第一转速旋转;
    排水过程,利用所述排水部来从所述外筒内排出臭氧水;以及
    第二筒清洁过程,利用所述臭氧水供给部来向所述外筒内蓄留能够与所述滚筒接触的量的臭氧水,利用所述驱动马达来使所述滚筒以高于所述第一转速的第二转速旋转。
  2. 根据权利要求1所述的滚筒洗衣机,其特征在于,
    所述第一转速设定为20rpm~40rpm的范围。
  3. 根据权利要求1或2所述的滚筒洗衣机,其特征在于,
    所述第二转速设定为60rpm~120rpm的范围。
  4. 根据权利要求1至3中任一项所述的滚筒洗衣机,其特征在于,
    所述控制部使所述第二筒清洁过程中由所述臭氧水供给部蓄至所述外筒内的臭氧水的量比所述第一筒清洁过程中由所述臭氧水供给部蓄至所述外筒内的臭氧水的量多。
  5. 根据权利要求1至4中任一项所述的滚筒洗衣机,其特征在于,
    所述控制部在所述排水过程后且在进行所述第二筒清洁过程前进行使所述滚筒以高于所述第二转速的第三转速旋转的脱水过程。
  6. 根据权利要求1至5中任一项所述的滚筒洗衣机,其特征在于,
    所述控制部在所述第一筒清洁过程和所述第二筒清洁过程中使所述滚筒单向旋转。
PCT/CN2021/115108 2020-12-21 2021-08-27 滚筒洗衣机 WO2022134643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020211876A JP2022098364A (ja) 2020-12-21 2020-12-21 ドラム式洗濯機
JP2020-211876 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022134643A1 true WO2022134643A1 (zh) 2022-06-30

Family

ID=82157002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115108 WO2022134643A1 (zh) 2020-12-21 2021-08-27 滚筒洗衣机

Country Status (2)

Country Link
JP (1) JP2022098364A (zh)
WO (1) WO2022134643A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040079141A (ko) * 2003-03-06 2004-09-14 엘지전자 주식회사 오존발생수단을 갖는 세탁기 및 이를 이용한 세탁제어방법
CN102628205A (zh) * 2012-04-12 2012-08-08 河南新飞电器有限公司 除菌、消毒、防霉洁桶洗衣机及其洁桶控制方法
US20150211166A1 (en) * 2014-01-28 2015-07-30 General Electric Company Washing Machine Appliances and Methods for Washing Articles Therein
CN110016782A (zh) * 2018-01-10 2019-07-16 无锡小天鹅股份有限公司 滚筒洗衣机及其除菌控制方法和除菌控制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040079141A (ko) * 2003-03-06 2004-09-14 엘지전자 주식회사 오존발생수단을 갖는 세탁기 및 이를 이용한 세탁제어방법
CN102628205A (zh) * 2012-04-12 2012-08-08 河南新飞电器有限公司 除菌、消毒、防霉洁桶洗衣机及其洁桶控制方法
US20150211166A1 (en) * 2014-01-28 2015-07-30 General Electric Company Washing Machine Appliances and Methods for Washing Articles Therein
CN110016782A (zh) * 2018-01-10 2019-07-16 无锡小天鹅股份有限公司 滚筒洗衣机及其除菌控制方法和除菌控制装置

Also Published As

Publication number Publication date
JP2022098364A (ja) 2022-07-01

Similar Documents

Publication Publication Date Title
JP3986470B2 (ja) ドラム式洗濯機
US8168004B2 (en) Method for controlling operation of the washing machine
AU2005328033A1 (en) Washing a tub or a drum in a washing machine
JP6706735B2 (ja) 洗濯機
WO2019230384A1 (ja) 洗濯機
JP2013223551A (ja) 洗濯機
JP2004236704A (ja) ドラム式洗濯機
WO2022134643A1 (zh) 滚筒洗衣机
JP3806662B2 (ja) ドラム式洗濯機
JP2018038699A (ja) 洗濯機
KR20070057567A (ko) 드럼 세탁기 및 드럼 세탁기의 터브 세척 방법
JP2013090736A (ja) 洗濯機
KR100751408B1 (ko) 세탁기의 증기발생장치 및 그 세척방법
JP2013094205A (ja) 洗濯機
JP2013017556A (ja) ドラム式洗濯機
JP2020081347A (ja) 洗濯機
WO2022134507A1 (zh) 滚筒洗衣机
TWI516656B (zh) Washing machine
WO2019184708A1 (zh) 洗干一体机
JP6415858B2 (ja) 洗濯機
JP7197858B2 (ja) ドラム式洗濯機
JP2003311094A (ja) ドラム式洗濯機
WO2024067554A1 (zh) 洗衣机
JP2015205109A (ja) ドラム式洗濯機
WO2023125408A1 (zh) 洗衣设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908646

Country of ref document: EP

Kind code of ref document: A1