WO2022134310A1 - 一种量子点显示器件及其制备方法 - Google Patents

一种量子点显示器件及其制备方法 Download PDF

Info

Publication number
WO2022134310A1
WO2022134310A1 PCT/CN2021/079119 CN2021079119W WO2022134310A1 WO 2022134310 A1 WO2022134310 A1 WO 2022134310A1 CN 2021079119 W CN2021079119 W CN 2021079119W WO 2022134310 A1 WO2022134310 A1 WO 2022134310A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
quantum dot
quantum dots
pixel
composite quantum
Prior art date
Application number
PCT/CN2021/079119
Other languages
English (en)
French (fr)
Inventor
高丹鹏
张志宽
杨丽敏
徐冰
孙小卫
Original Assignee
深圳扑浪创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳扑浪创新科技有限公司 filed Critical 深圳扑浪创新科技有限公司
Publication of WO2022134310A1 publication Critical patent/WO2022134310A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the present application belongs to the technical field of quantum dot display, and relates to a quantum dot display device and a preparation method thereof.
  • Quantum dot materials can excite red light, green light or blue light in some wavelength bands by absorbing some wavelength bands of blue light or ultraviolet light.
  • the particle size of quantum dot materials is generally between 1 and 10 nm. Since electrons and holes are quantum confined, the continuous energy band structure becomes a discrete energy level structure, so the emission spectrum is very narrow (20-30 nm), and the chromaticity is very narrow. High purity and wide display color gamut, which can greatly exceed the color gamut range of NTSC (>100%); at the same time, the light absorption loss through color filters is small, and low-power display can be realized. Due to its special characteristics, quantum dots are gradually emerging as a new generation of luminescent materials in display applications.
  • Quantum dot color film is a key component for display devices to achieve ultra-high color gamut full-color display.
  • the existing technology is to disperse quantum dots in photoresist, and then realize quantum dots on specific areas of the substrate through photocuring and etching. Dot material coating.
  • CN 105242442A discloses a method for preparing a quantum dot color film.
  • the blue sub-pixel part is a transparent organic photoresist layer
  • the green sub-pixel part is a green quantum dot cured adhesive layer
  • the red sub-pixel part is a Lamination of green quantum dot cured adhesive layer and red quantum dot cured adhesive layer.
  • the quantum dot color film is used with a blue light backlight. Since the red sub-pixel contains both green quantum dots and red quantum dots, a red color blocking layer needs to be set on the red sub-pixel to filter out green light. This will reduce the light pass rate, resulting in higher overall power consumption of the device.
  • CN 105242449A discloses a method for preparing a quantum dot color filter substrate. First, a red color resist layer, a green color resist layer and an organic transparent photoresist layer corresponding to the red, green and blue sub-pixel regions are formed on the substrate, and then coated with The cloth contains a cured glue of red quantum dots and green quantum dots, and the fluorescence of the quantum dots in this area is quenched by irradiating ultraviolet light to the blue sub-pixel area for a long time.
  • the quantum dot color film is used with a blue light backlight, but since both the red sub-pixel area and the green sub-pixel area contain both green quantum dots and red quantum dots, the red color blocking layer and the green color blocking layer are required to filter out green light and Red light, resulting in a lower light transmission rate.
  • CN 105278153A discloses a method for preparing a quantum dot color filter substrate.
  • a quencher is used to quench red and green quantum dots in a blue sub-pixel region.
  • CN 105301827A discloses a method for preparing a quantum dot color filter substrate, which uses an ultraviolet photoinitiator to quench red and green quantum dots in a blue sub-pixel region.
  • this solution also has the disadvantages of complicated process, difficult to achieve pixel-level quantum dot arrangement, and the need to use optical filters, resulting in low light transmission rate and high overall power consumption of the device, which needs to be improved.
  • the purpose of the present application is to provide a quantum dot display device and a preparation method thereof.
  • the quantum dot display device provided by the application has high resolution and can realize full-color display with high color gamut; each pixel layer only emits light of a single color, and the filter can be eliminated to improve the light transmission rate and display light efficiency.
  • the overall power consumption of the device is reduced; and the process is simple, the manufacturing cost is low, and the precision is high, and mass production can be realized.
  • the present application provides a quantum dot display device, the quantum dot display device comprising: a substrate, a driving circuit, an LED array layer and a pixel array layer stacked in sequence;
  • the display area of the quantum dot display device includes a red pixel area, a green pixel area and a blue pixel area;
  • the LED array layer includes a plurality of LED light sources arranged in a pixel array, the driving circuit is used to drive the LED light sources, and the LED light sources are blue LEDs or ultraviolet LEDs;
  • the pixel array layer includes a red pixel layer, a green pixel layer and a blue pixel layer;
  • the red pixel layer is located on the surface of the LED light source within the red pixel area;
  • the green pixel layer is located on the surface of the LED light source within the green pixel area;
  • the blue pixel layer is located on the surface of the LED light source within the blue pixel area;
  • the material of the red pixel layer is red light composite quantum dots
  • the material of the green pixel layer is green light composite quantum dots
  • the LED light source is a blue light LED, and the blue pixel layer is a blue light transmission layer; when the LED light source is an ultraviolet LED, the material of the blue pixel layer is a blue light composite quantum dot;
  • the red light composite quantum dots, the green light composite quantum dots, and the blue light composite quantum dots all include an inner core, a cladding layer wrapping the inner core, and a ligand connected to the outer surface of the cladding layer;
  • the core is red light quantum dots, green light quantum dots or blue light quantum dots
  • the ligand is an organic salt with ionic bonds
  • the red light composite quantum dots, green light composite quantum dots, and blue light composite quantum dots are in the ligand. It is positively or negatively charged in the dissociated state.
  • the LED light sources are arranged in a pixel array, which means that the LED light sources are arranged according to the arrangement of pixel points. Each LED light source corresponds to a pixel area.
  • the pixel size is the same.
  • the blue light transmission layer refers to a layer that can transmit blue light, and in an embodiment of the present application, it may be a layer with no entity, that is, no material is deposited on the surface of the LED light source in the blue pixel area.
  • red light composite quantum dots and green light composite quantum dots can emit red light and green light respectively under the excitation of blue light or ultraviolet light; blue light composite quantum dots can emit blue light under the excitation of ultraviolet light.
  • the LED light source is a blue light LED
  • the blue light composite quantum dot layer is not needed, and the red light and green light emitted by the red light and green light composite quantum dots are combined with the blue light of the LED light source transmitted by the blue light transmission layer.
  • the dots show the full-color display of the device.
  • the LED light source is an ultraviolet LED
  • the red light, green light and blue light emitted by the composite quantum dots of red light, green light and blue light are combined to realize the full-color display of the quantum dot display device.
  • the composite quantum dots have positive or negative charges in the state of ligand dissociation, and can form a quantum dot layer by an electrodeposition method, thereby preparing a quantum dot display device.
  • the coating layer is used for binding ligands; on the other hand, it can protect the quantum dots, avoid the invasion of the quantum dots by water and oxygen, and prevent the quantum dots from agglomerating.
  • the composite quantum dot layer is directly deposited on the pixel-level LED light source, so the composite quantum dot layer is also arranged at the pixel level, and the obtained quantum dot display device has high resolution;
  • the light of a single color does not need to use a filter, which helps to improve the light transmission rate and display light efficiency, and reduces the overall power consumption of the device.
  • red light composite quantum dot layers all refer to the layers composed of red light composite quantum dots
  • green light composite quantum dot layers all refer to the layers composed of green light composite quantum dots
  • blue light composite quantum dots are all layers composed of green light composite quantum dots.
  • Each layer refers to a layer composed of blue light composite quantum dots.
  • the pixel area, pixel layer, composite quantum dot, and composite quantum dot layer are used in some places to refer to the pixel area and the pixel layer of different emission colors, respectively. , any one of the composite quantum dots with different luminescent colors, and the composite quantum dot layers with different luminescent colors, or all of them.
  • the display area of the quantum dot display device further includes a white pixel area
  • the pixel array layer further includes a white pixel layer located on the surface of the LED light source in the white pixel area
  • the white pixel layer is a mixed layer of the red light composite quantum dots and the green light composite quantum dots, or a stack of the red light composite quantum dots layer and the green light composite quantum dot layer;
  • the white pixel layer is a mixed layer of the red light composite quantum dots, green light composite quantum dots and blue light composite quantum dots, or a red light composite quantum dot layer and a green light composite quantum dot layer. layer and a stack of blue light composite quantum dot layers.
  • the LED light source when the LED light source is a blue LED, it is necessary to control the intensities of the red light, green light and transmitted blue light emitted by the red light and green light composite quantum dots in the white pixel layer when they are excited to be basically equal to ensure that The three can be combined into white light.
  • the LED light source is an ultraviolet LED, it is necessary to control the intensities of the red light, green light and blue light emitted by the red light, green light and blue light composite quantum dots in the white pixel layer when they are excited respectively to be basically equal to ensure that the three can be combined. into white light.
  • the brightness can be improved while ensuring the full-color display of the quantum dot display device.
  • the quantum dot display device further includes an encapsulation layer covering the driving circuit, the LED array layer and the pixel array layer.
  • the red light quantum dots, the green light quantum dots and the blue light quantum dots are AxMyEz system materials ;
  • element A is selected from one or a combination of at least two of Ba, Ag, Na, Fe, In, Cd, Zn, Ga, Mg, Pb and Cs;
  • M element is selected from one or a combination of at least two of S, Cl, O, As, N, P, Se, Te, Ti, Zr and Pb;
  • the E element is selected from one or a combination of at least two of S, As, Se, O, Cl, Br and I;
  • x is from 0.3 to 2.0, for example, it can be 0.3, 0.5, 0.8, 1, 1.2, 1.3, 1.5, 1.6, 1.8 or 2, etc.;
  • y is 0.5 to 3.0, for example, it can be 0.5, 0.8, 1, 1.2, 1.3, 1.5, 1.6, 1.8, 2, 2.2, 2.3, 2.5, 2.6, 2.8 or 3, etc.;
  • z is 0 to 4.0, for example, 0, 0.2, 0.3, 0.5, 0.8, 1, 1.2, 1.3, 1.5, 1.6, 1.8, 2, 2.2, 2.3, 2.5, 2.6, 2.8, 3, 3.2, 3.3, 3.5 , 3.6, 3.8 or 4, etc.
  • the material of the coating layer is polymer material, metal oxide, metal sulfide, metal or metal alloy.
  • the polymer material is selected from one or a combination of at least two of PMA, PVDF, and long-chain phosphate.
  • the long-chain phosphoric acid ester is a phosphoric acid ester having 16-18 carbon atoms.
  • the metal oxide is selected from one or a combination of at least two of ZnO, SiO 2 , TiO 2 or MgO.
  • the metal sulfide is selected from one or a combination of at least two of ZnS, CdS or TeS.
  • the metal is selected from one or a combination of at least two of Ti, Zr, Zn, Cd or Te.
  • the organic salt having an ionic bond includes an organic negative ion salt or an organic positive ion salt.
  • the organic anion salt includes an organic acid salt.
  • the organic acid salt includes one or a combination of at least two of sodium acetate, pyridoxate or sodium ethoxide.
  • the organic cationic salt includes an organic ammonium salt.
  • the organic ammonium salt includes one or a combination of at least two of tetrabutylammonium bromide, ammonium bromide, ammonium chloride or ammonium sulfate.
  • the particle size of the red light quantum dots is 6-12 nm
  • the particle size of the green light quantum dots is 3-6 nm
  • the particle size of the blue light quantum dots is 1-3 nm.
  • red light composite quantum dots green light composite quantum dots, and blue light composite quantum dots are as follows:
  • a drop the coating material into the red light quantum dots, green light quantum dots or blue light quantum dots, control pH, reaction temperature and reaction time, so that the coating material is coated on the red light quantum dots, green light quantum dots Or the surface of blue quantum dots to form a coating layer to obtain a core-shell material of quantum dots/cladding layer;
  • step b Disperse the quantum dot/coating layer core-shell material and ligand obtained in step a in a solvent, control pH, reaction temperature and reaction time, so that the ligand is connected to the surface of the coating layer to obtain the A solution of red light composite quantum dots, green light composite quantum dots or blue light composite quantum dots.
  • the pH in step a is 5.5-11, such as 5, 6, 7, 8, 9, 10 or 11;
  • the reaction temperature in step a is 240-320°C (for example, 240 °C, 250 °C, 270 °C, 280 °C, 300 °C or 320 °C), and the reaction time is 0.5 to 10 min (for example, 0.5 min, 0.8 min, 1 min, 3 min, 5 min, 7 min, 9 min or 10 min).
  • the pH in step b is 7-10, for example, 7, 7.4, 7.8, 8, 8.3, 8.5, 8.8, 9, 9.4, 9.7 or 10;
  • the reaction temperature in step b is 120-320°C (for example, 120°C, 140°C, 150°C, 170°C, 200°C, 220°C, 240°C, 260°C, 280°C, 300°C or 320°C),
  • the reaction time is 3-120min (for example, 3min, 5min, 8min, 10min, 15min, 20min, 30min, 50min, 70min, 90min, 100min or 120min).
  • the solvent in step b is one or a combination of at least two of octadecene, n-hexane, n-octane, oleyl ammonia, n-dodecanethiol, 1-octanethiol or trioctylamine.
  • the present application provides a preparation method of a quantum dot display device as described in the first aspect, wherein the preparation method includes the following steps:
  • a laminated structure of a substrate, a driving circuit and an LED array layer and deposit a red light composite quantum dot layer on the surface of the LED light source in the red pixel area by electrodeposition as a red pixel layer; deposit green on the surface of the LED light source in the green pixel area.
  • the optical composite quantum dot layer is used as the green pixel layer; the blue light composite quantum dot layer is deposited on the surface of the LED light source in the blue pixel area or not, as the blue pixel layer; the quantum dot display device is obtained;
  • the electrodeposition method is a separate deposition method, and the separate deposition method is: selecting one of a red light composite quantum dot layer, a green light composite quantum dot layer and a blue light composite quantum dot layer, and placing the stacked structure in the In the solution of the composite quantum dots to be deposited, the LED light source to be deposited is applied with a voltage opposite to that of the composite quantum dots to be deposited through the drive circuit, and the solution of the composite quantum dots to be deposited is applied with the same voltage.
  • the composite quantum dots to be deposited are deposited at the same voltage.
  • the LED light source is welded on the substrate and the driving circuit through a conductive soldering material, because the soldering material only plays a role of connection and fixation, not a light-emitting function. Therefore, it is not limited in the structure of the quantum dot display device.
  • This application adopts composite quantum dots combined with electrodeposition process, which can directly deposit red, green or blue composite quantum dot layers on each LED light source independently of each other. Therefore, each pixel layer only emits light of a single color, and does not require
  • filters can help to improve the light transmission rate and display light efficiency, and reduce the overall power consumption of the device.
  • the method provided by the present application is simple, low in cost and high in precision, which is beneficial to the mass production of quantum dot color filters.
  • the electrodeposition method is a separate deposition method.
  • a separate deposition method is used to deposit the red light composite quantum dot layer and the green light composite quantum dot layer, respectively.
  • the red light, green light, and blue light composite quantum dot layers all exist, the red light, green light, and blue light composite quantum dot layers can be deposited one by one by a separate deposition method.
  • the conditions (voltage, deposition time) when electrodepositing the composite quantum dot layer need to be selected comprehensively considering factors such as the charge amount of the composite quantum dots, the content of the quantum dots in the composite quantum dots, and the luminous intensity of the LED light source.
  • factors such as the charge amount of the composite quantum dots, the content of the quantum dots in the composite quantum dots, and the luminous intensity of the LED light source.
  • the quantum dots in the deposited composite quantum dot layer can completely absorb the light emitted by the LED light source.
  • the electrodeposition voltage is 1-12V (eg 1V, 3V, 5V, 8V, 10V or 12V), and the current density is 5-10A/dm 2 (eg 5A/dm 2 , 6A/dm 2 , 7A) /dm 2 , 8A/dm 2 , 9A/dm 2 or 10A/dm 2 ), the deposition time is 0.5-30min (eg 0.5min, 5min, 8min, 10min, 13min, 15min, 20min, 25min, 28min or 30min).
  • the preparation method further includes depositing a white pixel layer on the surface of the LED light source in the white pixel area;
  • the deposition method of the white pixel layer is: placing the laminated structure in a mixed solution of red light composite quantum dots and green light composite quantum dots with the same electrical properties, or placing the red light composite quantum dots with the same electrical properties in a mixed solution , in the mixed solution of green light composite quantum dots and blue light composite quantum dots, the LED light source in the white pixel area is applied with a voltage opposite to that of the composite quantum dots to be deposited through the driving circuit, and the mixed solution is applied with The composite quantum dots to be deposited are deposited at the same voltage;
  • the red light composite quantum dot layer and the green light composite quantum dot layer are deposited layer by layer on the surface of the LED light source in the white pixel area, or the red light composite quantum dot layer is deposited layer by layer, A stack of green light composite quantum dot layers and blue light composite quantum dot layers.
  • the conditions for electrodepositing the white pixel layer need to be selected comprehensively considering factors such as the charge amount of the composite quantum dots, the content of the quantum dots in the composite quantum dots, and the luminous intensity of the LED light source.
  • the LED light source is a blue LED, it is necessary to ensure that the red light and green light composite quantum dots in the deposited white pixel layer are excited to emit red light, green light and transmitted blue light.
  • the intensity of the three is basically equal to ensure that the three can be combined into white light.
  • the LED light source is an ultraviolet LED, it is necessary to ensure that the red light, green light and blue light composite quantum dots in the deposited white pixel layer are excited and emit red light, green light and blue light respectively.
  • the intensity is basically equal to ensure that the three can be combined into white light.
  • the white pixel layer can be a stack of red light composite quantum dot layer and green light composite quantum dot layer, or a stack of red light composite quantum dot layer, green light composite quantum dot layer and blue light composite quantum dot layer.
  • the preparation method further includes: after each electrodeposition, taking out the deposited laminated structure, drying, heating, freezing or illuminating.
  • the purpose of this operation is to stably attach the deposited composite quantum dots to the LED light source.
  • the heating temperature is 80-150°C, such as 80°C, 85°C, 90°C, 100°C, 120°C, 140°C or 150°C.
  • the freezing is freezing below -40°C.
  • the light is cured under ultraviolet light of 230-395 nm.
  • the preparation method further includes: after the preparation of the pixel array layer is completed, coating an encapsulation glue covering the driving circuit, the LED array layer and the pixel array layer, and forming an encapsulation layer after curing.
  • the application does not specifically limit the type of the encapsulation glue.
  • one or more of epoxy glue, silicone glue, and polyurethane glue can be selected to mix, and the curing method can be thermal curing and/or or light curing.
  • This application adopts composite quantum dots combined with electrodeposition process, which can directly deposit a composite quantum dot layer on each pixel-level LED light source independently of each other. Compared with the existing lithography process, the method provided by this application is simple, Low cost and high precision, which is conducive to the mass production of quantum dot display devices;
  • the composite quantum dot layer is directly deposited on the pixel-level LED light source, so the composite quantum dot layer is also arranged at the pixel level, realizing pixel-level light emission, and the obtained quantum dot display device With high resolution, it can realize high color gamut full color display;
  • each pixel layer only emits light of a single color, so no filter is required, which helps to improve the light transmission rate and display light efficiency, and reduce the overall power consumption of the device.
  • FIG. 1 is a schematic cross-sectional structure diagram of the quantum dot display device provided in Embodiment 1 of the present application;
  • FIG. 2 is a schematic top-view structure diagram of the quantum dot display device provided in Embodiment 1 or 2 of the present application;
  • FIG. 3 is a schematic structural diagram of an LED light source in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a laminated structure of a substrate, a driving circuit and an LED array layer in an embodiment of the present application;
  • Example 5 is a schematic diagram of the deposition process of the red light composite quantum dot layer in Example 1 of the application;
  • Example 6 is a schematic diagram of the deposition process of the green light composite quantum dot layer in Example 1 of the application;
  • Example 7 is a schematic diagram of the deposition process of the blue-light composite quantum dot layer in Example 1 of the application;
  • FIG. 8 is a schematic cross-sectional structure diagram of the quantum dot display device provided in Embodiment 2 of the present application.
  • Example 10 is a schematic diagram of the deposition process of the blue light composite quantum dot layer in Example 2 of the application;
  • FIG. 11 is a schematic cross-sectional structure diagram of the quantum dot display device provided in Embodiment 3 of the present application.
  • FIG. 12 is a schematic top-view structural diagram of the quantum dot display device provided in Embodiment 3 or 4 of the present application;
  • FIG. 13 is a schematic cross-sectional structure diagram of the quantum dot display device provided in Embodiment 4 of the present application.
  • Example 16 is a schematic cross-sectional structural diagram of a quantum dot display device located in a white pixel region in Example 5 of the present application;
  • FIG. 17 is a schematic cross-sectional structure diagram of the quantum dot display device provided in Embodiment 6 of the present application.
  • Example 19 is a schematic cross-sectional structural diagram of a quantum dot display device located in a white pixel region in Example 6 of the present application;
  • 10 is the substrate, 20 is the driving circuit, 30 is the LED array layer, 40 is the pixel array layer, 50 is the encapsulation layer, 301 is the LED light source, 3011 is the P electrode, 3012 is the N electrode, 3013 is the P-type semiconductor, 3014 It is an N-type semiconductor, 3015 is a light-emitting layer, 3016 is a substrate, 401 is a red pixel layer, 402 is a green pixel layer, 403 is a blue pixel layer, 404 is a white pixel layer, 4041 is a red light composite quantum dot sublayer, 4042 is a green light composite quantum dot sublayer, and 4043 is a blue light composite quantum dot sublayer.
  • a positively charged red light composite quantum dot solution is provided, and the preparation method is as follows:
  • a negatively charged red light composite quantum dot solution is provided, and the preparation method is as follows:
  • a positively charged green light composite quantum dot solution is provided, and the preparation method is as follows:
  • a negatively charged green light composite quantum dot solution is provided, and the preparation method is as follows:
  • a positively charged blue light composite quantum dot solution is provided, and the preparation method is as follows:
  • a negatively charged blue light composite quantum dot solution is provided, and the preparation method is as follows:
  • This embodiment provides a quantum dot display device, the structure of which is shown in FIG. 1 and FIG. 2 , including: a substrate 10 , a driving circuit 20 , an LED array layer 30 , a pixel array layer 40 stacked in sequence, and a layer covering the driver the encapsulation layer 50 of the circuit 20, the LED array layer 30 and the pixel array layer 40;
  • the display area of the quantum dot display device includes a red pixel area, a green pixel area and a blue pixel area;
  • the LED array layer 30 includes a plurality of LED light sources 301 arranged in a pixel array (the LED light sources 301 are welded on the substrate 10 and the driving circuit 20 through conductive welding materials, and the welding materials are not shown in the figure), so the The driving circuit 2 is used to drive the LED light source 301, and the LED light source 301 is an ultraviolet LED;
  • the structure of the LED light source 301 is shown in FIG. 3, including a substrate 3016, an N-type semiconductor 3014, a light-emitting layer 3015, a P-type semiconductor 3013, a P-electrode 3011 and an N-electrode 3012, wherein the substrate 3016 and the pixel array layer 40 connected, the P electrode 3011 and the N electrode 3012 are connected to the drive circuit 20;
  • the pixel array layer 40 includes a red pixel layer 401, a green pixel layer 402 and a blue pixel layer 403;
  • the red pixel layer 401 is located on the surface of the LED light source within the red pixel area;
  • the green pixel layer 402 is located on the surface of the LED light source within the green pixel area;
  • the blue pixel layer 403 is located on the surface of the LED light source within the blue pixel area;
  • the material of the red pixel layer 401 is the red light composite quantum dots provided in Preparation Example 1;
  • the material of the green pixel layer 402 is the green light composite quantum dots provided in Preparation Example 4.
  • the material of the blue pixel layer 403 is the blue light composite quantum dots provided in Preparation Example 5.
  • 401 depositing a green light composite quantum dot layer on the surface of the LED light source in the green pixel area, as the green pixel layer 402; depositing a blue light composite quantum dot layer on the surface of the LED light source in the blue pixel area, as the blue pixel layer 403;
  • the method for electrodeposition is to separately deposit the red light composite quantum dot layer, the green light composite quantum dot layer and the blue light composite quantum dot layer, and the specific steps are as follows:
  • the laminated structure is placed in the positively charged red light composite quantum dot solution provided in Preparation Example 1, and a negative voltage is applied to the LED light source in the red pixel area through the driving circuit 20, and the A positive voltage is applied to the positively charged red light composite quantum dot solution provided in Preparation Example 1, the voltage difference is 8V, and the current density is 5A/dm 2 for 10min, and red light composite quantum dots are deposited on the surface of the LED light source in the red pixel area.
  • the dot layer as the red pixel layer 401, is taken out of the laminated structure on which the red light composite quantum dot layer is deposited, dried, and heated at 100°C, so that the deposited red light composite quantum dots are stably attached to the LED light source in the red pixel area. superior;
  • the stacked structure on which the red light composite quantum dot layer is deposited is placed in the negatively charged green light composite quantum dot solution provided in Preparation Example 4, and the LEDs in the green pixel area are controlled by the driving circuit 20.
  • a positive voltage was applied to the light source
  • a negative voltage was applied to the negatively charged green light composite quantum dot solution provided in Preparation Example 4
  • the voltage difference was 12V
  • the current density was 5A/dm 2 for 10min
  • the LED light source was deposited on the surface of the green pixel area.
  • the green light composite quantum dot layer is taken out as the green pixel layer 402, and the laminated structure on which the red light and green light composite quantum dot layers are deposited is taken out, dried, and frozen at -40°C to make the deposited green light composite quantum dots The point is stably attached to the LED light source in the green pixel area;
  • the stacked structure on which the red light and green light composite quantum dot layers are deposited is placed in the positively charged blue light composite quantum dot solution provided in Preparation Example 5, and the blue pixels are driven by the driving circuit 20.
  • a negative voltage was applied to the LED light source in the area, and a positive voltage was applied to the positively charged blue-light composite quantum dot solution provided in Preparation Example 5.
  • the voltage difference was 3V, and the current density was 10A/dm 2 for 3 minutes.
  • a blue light composite quantum dot layer is deposited on the surface of the LED light source, and as the blue pixel layer 403, the laminated structure on which the red light, green light, and blue light composite quantum dot layers are deposited is taken out, dried, and carried out under ultraviolet light of 230-395 nm. Curing, so that the deposited blue light composite quantum dots are stably attached to the LED light source in the blue pixel area;
  • the deposition steps of the red light, green light, and blue light composite quantum dot layers are independent of each other, the deposition steps of the three composite quantum dot layers can be performed in any order, and the deposition order is very important to the prepared quantum dot display device. No effect.
  • the composite quantum dots combined with the electrodeposition process can be directly deposited on each pixel-level LED light source independently of each other.
  • the method is simple, low-cost and high-precision, which is conducive to the mass production of quantum dot display devices; the prepared quantum dot display device has no filter, which helps to improve the light pass rate and display light efficiency, and reduce the overall power consumption of the device.
  • This embodiment provides a quantum dot display device, the structure of which is shown in FIG. 8 and FIG. 2 , including: a substrate 10 , a driving circuit 20 , an LED array layer 30 and a pixel array layer 40 stacked in sequence;
  • the display area of the quantum dot display device includes a red pixel area, a green pixel area and a blue pixel area;
  • the LED array layer 30 includes a plurality of LED light sources 301 arranged in a pixel array (the LED light sources 301 are welded on the substrate 10 and the driving circuit 20 through conductive welding materials, and the welding materials are not shown in the figure), so the The driving circuit 2 is used to drive the LED light source 301, and the LED light source 301 is an ultraviolet LED;
  • the structure of the LED light source 301 is shown in FIG. 3, including a substrate 3016, an N-type semiconductor 3014, a light-emitting layer 3015, a P-type semiconductor 3013, a P-electrode 3011 and an N-electrode 3012, wherein the substrate 3016 and the pixel array layer 40 connected, the P electrode 3011 and the N electrode 3012 are connected to the drive circuit 20;
  • the pixel array layer 40 includes a red pixel layer 401, a green pixel layer 402 and a blue pixel layer 403;
  • the red pixel layer 401 is located on the surface of the LED light source within the red pixel area;
  • the green pixel layer 402 is located on the surface of the LED light source within the green pixel area;
  • the blue pixel layer 403 is located on the surface of the LED light source within the blue pixel area;
  • the material of the red pixel layer 401 is the red light composite quantum dots provided in Preparation Example 2;
  • the material of the green pixel layer 402 is the green light composite quantum dots provided in Preparation Example 3;
  • the material of the blue pixel layer 403 is the blue light composite quantum dots provided in Preparation Example 6.
  • a laminated structure of a substrate, a driving circuit and an LED array layer is provided (the structure is shown in Figure 4), and a red light composite quantum dot layer is deposited on the surface of the LED light source in the red pixel region by electrodeposition as the red pixel layer 401; A green light composite quantum dot layer is deposited on the surface of the LED light source in the green pixel area, as the green pixel layer 402; a blue light composite quantum dot layer is deposited on the surface of the LED light source in the blue pixel area, as the blue pixel layer 403; point display device;
  • the method of electrodeposition is to deposit the red light composite quantum dot layer and the green light composite quantum dot layer simultaneously by one-step deposition method, and deposit the blue light composite quantum dot layer by separate deposition method, and the specific steps are as follows:
  • the driving circuit 20 applies a positive voltage to the LED light source in the red pixel area, and applies a negative voltage to the LED light source in the green pixel area, the voltage difference is 5V, and the current density is 8A/dm 2 for 10min.
  • a red light composite quantum dot layer is deposited on the LED light source in the red pixel area, as the red pixel layer 401, and a green light composite quantum dot layer is deposited on the LED light source in the green pixel area.
  • the laminated structure of the light and green light composite quantum dot layers is taken out, dried, and cured under ultraviolet light, so that the deposited red light and green light composite quantum dots are stably attached to the LED light sources in the red and green pixel areas respectively;
  • the laminated structure on which the red light and green light composite quantum dot layers are deposited is placed in the negatively charged blue light composite quantum dot solution provided in Preparation Example 6, and the blue pixel area is controlled by the driving circuit 20.
  • a positive voltage is applied to the LED light source inside, and a negative voltage is applied to the negatively charged blue-light composite quantum dot solution provided in Preparation Example 6, the voltage difference is 5V, and the current density is 8A/dm 2 for 10min.
  • a blue light composite quantum dot layer is deposited on the surface of the light source, which is used as the blue pixel layer 403.
  • the laminated structure on which the red light and green light composite quantum dot layers are deposited is taken out, dried, and cured under ultraviolet light, so that the deposited green light
  • the composite quantum dots are stably attached to the LED light source in the green pixel area;
  • the blue light composite quantum dot layer can also be deposited by a separate deposition method, and then the red light composite quantum dot layer and the green light composite quantum dot layer can be simultaneously deposited by a one-step deposition method.
  • the deposition sequence has no effect on the prepared quantum dot display device. influences.
  • the composite quantum dots combined with the electrodeposition process can be directly deposited on each pixel-level LED light source independently of each other.
  • the method is simple, low-cost and high-precision, which is conducive to the mass production of quantum dot display devices; the prepared quantum dot display device has no filter, which helps to improve the light pass rate and display light efficiency, and reduce the overall power consumption of the device.
  • This embodiment provides a quantum dot display device, the structure of which is shown in FIG. 11 and FIG. 12 , including: a substrate 10 , a driving circuit 20 , an LED array layer 30 , a pixel array layer 40 that are stacked in sequence, and a layer covering the driver the encapsulation layer 50 of the circuit 20, the LED array layer 30 and the pixel array layer 40;
  • the display area of the quantum dot display device includes a red pixel area, a green pixel area and a blue pixel area;
  • the LED array layer 30 includes a plurality of LED light sources 301 arranged in a pixel array (the LED light sources 301 are welded on the substrate 10 and the driving circuit 20 through conductive welding materials, and the welding materials are not shown in the figure), so the The driving circuit 2 is used to drive the LED light source 301, and the LED light source 301 is a blue LED;
  • the structure of the LED light source 301 is shown in FIG. 3, including a substrate 3016, an N-type semiconductor 3014, a light-emitting layer 3015, a P-type semiconductor 3013, a P-electrode 3011 and an N-electrode 3012, wherein the substrate 3016 and the pixel array layer 40 connected, the P electrode 3011 and the N electrode 3012 are connected to the drive circuit 20;
  • the pixel array layer 40 includes a red pixel layer 401, a green pixel layer 402 and a blue pixel layer;
  • the red pixel layer 401 is located on the surface of the LED light source within the red pixel area;
  • the green pixel layer 402 is located on the surface of the LED light source within the green pixel area;
  • the non-solid area on the surface of the LED light source is called blue light. color pixel layer;
  • the material of the red pixel layer 401 is the red light composite quantum dots provided in Preparation Example 1;
  • the material of the green pixel layer 402 is the green light composite quantum dots provided in Preparation Example 4.
  • the method for electrodeposition is to use a one-step deposition method to simultaneously deposit the red light composite quantum dot layer and the green light composite quantum dot layer, and the specific steps are as follows:
  • the circuit 20 applies a negative voltage to the LED light source in the red pixel area, and applies positive and negative voltages to the LED light source in the green pixel area.
  • the voltage difference is 2V, and the current density is 5A/dm 2 for 30 minutes.
  • a red light composite quantum dot layer is deposited on the LED light source, as the red pixel layer 401, and a green light composite quantum dot layer is deposited on the LED light source in the green pixel area, as the green pixel layer 402, and the LED light source in the blue pixel area is not Carry out deposition; take out the laminated structure on which the red light and green light composite quantum dot layers are deposited, dry and heat, and the heating temperature is 100 ° C, so that the deposited red light and green light composite quantum dots are stably attached to the red light and green light composite quantum dots respectively. , on the LED light source in the green pixel area.
  • the composite quantum dots combined with the electrodeposition process can be directly deposited on each pixel-level LED light source to deposit the composite quantum dot layer independently of each other, so as to realize full-color display with high color gamut; compared with the existing complex photolithography process
  • the method is simple, low-cost and high-precision, which is conducive to the mass production of quantum dot display devices; the prepared quantum dot display device has no filter, which helps to improve the light pass rate and display light efficiency, and reduce the overall power consumption of the device.
  • This embodiment provides a quantum dot display device, the structure of which is shown in FIG. 13 and FIG. 12 , including: a substrate 10 , a driving circuit 20 , an LED array layer 30 and a pixel array layer 40 stacked in sequence;
  • the display area of the quantum dot display device includes a red pixel area, a green pixel area and a blue pixel area;
  • the LED array layer 30 includes a plurality of LED light sources 301 arranged in a pixel array (the LED light sources 301 are welded on the substrate 10 and the driving circuit 20 through conductive welding materials, and the welding materials are not shown in the figure), so the The driving circuit 2 is used to drive the LED light source 301, and the LED light source 301 is a blue LED;
  • the structure of the LED light source 301 is shown in FIG. 3, including a substrate 3016, an N-type semiconductor 3014, a light-emitting layer 3015, a P-type semiconductor 3013, a P-electrode 3011 and an N-electrode 3012, wherein the substrate 3016 and the pixel array layer 40 connected, the P electrode 3011 and the N electrode 3012 are connected to the drive circuit 20;
  • the pixel array layer 40 includes a red pixel layer 401, a green pixel layer 402 and a blue pixel layer;
  • the red pixel layer 401 is located on the surface of the LED light source within the red pixel area;
  • the green pixel layer 402 is located on the surface of the LED light source within the green pixel area;
  • the non-solid area on the surface of the LED light source is called blue light. color pixel layer;
  • the material of the red pixel layer 401 is the red light composite quantum dots provided in Preparation Example 1;
  • the material of the green pixel layer 402 is the green light composite quantum dots provided in Preparation Example 3.
  • a laminated structure of a substrate, a driving circuit and an LED array layer is provided (the structure is shown in Figure 4), and a red light composite quantum dot layer is deposited on the surface of the LED light source in the red pixel region by electrodeposition as the red pixel layer 401;
  • the green light composite quantum dot layer is deposited on the surface of the LED light source in the green pixel area, as the green pixel layer 402; no material is deposited on the surface of the LED light source in the blue pixel area, and the insubstantial area there is used as the blue pixel layer;
  • the quantum dot display device is provided.
  • the electrodeposition method is to deposit the red light composite quantum dot layer and the green light composite quantum dot layer respectively by a separate deposition method, and the specific steps are as follows:
  • the laminated structure is placed in the positively charged red light composite quantum dot solution provided in Preparation Example 1, and a negative voltage is applied to the LED light source in the red pixel region through the driving circuit 20, and the strip provided in Preparation Example 1 is applied with a negative voltage.
  • a positive voltage is applied to the positively charged red light composite quantum dot solution, the voltage difference is 12V, and the current density is 5A/dm 2 for 10 minutes, and a red light composite quantum dot layer is deposited on the surface of the LED light source in the red pixel area as a red pixel.
  • the laminated structure on which the red light composite quantum dot layer is deposited is taken out, dried, and cured under ultraviolet light, so that the deposited red light composite quantum dots are stably attached to the LED light source in the red pixel area;
  • the stacked structure on which the red light composite quantum dot layer is deposited is placed in the positively charged green light composite quantum dot solution provided in Preparation Example 3, and a negative voltage is applied to the LED light source in the green pixel area through the driving circuit 20, A positive voltage was applied to the positively charged green light composite quantum dot solution provided in Preparation Example 3, the voltage difference was 2V, and the current density was 5A/dm 2 for 20min, and green light composite was deposited on the surface of the LED light source in the green pixel area.
  • the quantum dot layer as the green pixel layer 402, is taken out of the laminated structure on which the red light and green light composite quantum dot layers are deposited, dried, and cured under ultraviolet light, so that the deposited green light composite quantum dots are stably attached to the green light.
  • the LED light source in the pixel area On the LED light source in the pixel area;
  • the LED light source within the blue pixel region is not deposited.
  • the green light composite quantum dot layer can also be deposited first, and then the red light composite quantum dot layer can be deposited, and the deposition sequence has no effect on the prepared quantum dot display device.
  • the composite quantum dots combined with the electrodeposition process can be directly deposited on each pixel-level LED light source independently of each other.
  • the method is simple, low-cost and high-precision, which is conducive to the mass production of quantum dot display devices; the prepared quantum dot display device has no filter, which helps to improve the light pass rate and display light efficiency, and reduce the overall power consumption of the device.
  • This embodiment provides a quantum dot display device, the structure of which is shown in FIG. 14 and FIG. 15 , and includes: a substrate 10 , a driving circuit 20 , an LED array layer 30 , a pixel array layer 40 stacked in sequence, and a layer covering the driver the encapsulation layer 50 of the circuit 20, the LED array layer 30 and the pixel array layer 40;
  • the display area of the quantum dot display device includes a red pixel area, a green pixel area, a blue pixel area and a white pixel area;
  • the LED array layer 30 includes a plurality of LED light sources 301 arranged in a pixel array (the LED light sources 301 are welded on the substrate 10 and the driving circuit 20 through conductive welding materials, and the welding materials are not shown in the figure), so the The driving circuit 2 is used to drive the LED light source 301, and the LED light source 301 is an ultraviolet LED;
  • the structure of the LED light source 301 is shown in FIG. 3, including a substrate 3016, an N-type semiconductor 3014, a light-emitting layer 3015, a P-type semiconductor 3013, a P-electrode 3011 and an N-electrode 3012, wherein the substrate 3016 and the pixel array layer 40 connected, the P electrode 3011 and the N electrode 3012 are connected to the drive circuit 20;
  • the pixel array layer 40 includes a red pixel layer 401, a green pixel layer 402, a blue pixel layer 403 and a white pixel layer 404; every two red pixel layers 401, two green pixel layers 402, one blue pixel layer 403 and A white pixel layer 404 constitutes a display unit;
  • the red pixel layer 401 is located on the surface of the LED light source within the red pixel area;
  • the green pixel layer 402 is located on the surface of the LED light source within the green pixel area;
  • the blue pixel layer 403 is located on the surface of the LED light source within the blue pixel area;
  • the white pixel layer 404 is located on the surface of the LED light source within the white pixel area;
  • the material of the red pixel layer 401 is the red light composite quantum dots provided in Preparation Example 1;
  • the material of the green pixel layer 402 is the green light composite quantum dots provided in Preparation Example 4.
  • the material of the blue pixel layer 403 is the blue light composite quantum dots provided in Preparation Example 5;
  • the white pixel layer 404 is a stack of a red light composite quantum dot sublayer 4041, a green light composite quantum dot sublayer 4042 and a blue light composite quantum dot sublayer 4043, and the structure of the quantum dot display device located in the white pixel area is shown in Figure 16;
  • the materials of the red light composite quantum dot sublayer 4041, the green light composite quantum dot sublayer 4042, and the blue light composite quantum dot sublayer 4043 are the red light composite quantum dots provided in Preparation Example 1, the green light composite quantum dots provided in Preparation Example 4, and the preparation examples, respectively. 5 Supplied with blue light composite quantum dots.
  • the deposition conditions of the red light composite quantum dot sublayer 4041 are that the voltage difference is 10V, the current density is 7A/dm 2 for 10min;
  • the deposition conditions of the green light composite quantum dot sublayer 4042 are that the voltage difference is 8V, and the current density is 5A/dm 2 . dm 2 , for 20 minutes;
  • the deposition conditions of the blue-light composite quantum dot sublayer 4043 are a voltage difference of 8V and a current density of 10A/dm 2 for 5 minutes;
  • the composite quantum dots combined with the electrodeposition process can be directly deposited on each pixel-level LED light source independently of each other.
  • the method is simple, low-cost and high-precision, which is conducive to the mass production of quantum dot display devices; the prepared quantum dot display device has no filter, which helps to improve the light pass rate and display light efficiency, and reduce the overall power consumption of the device.
  • This embodiment provides a quantum dot display device, the structure of which is shown in FIG. 17 and FIG. 18 , including: a substrate 10 , a driving circuit 20 , an LED array layer 30 , a pixel array layer 40 that are stacked in sequence, and a layer covering the driver the encapsulation layer 50 of the circuit 20, the LED array layer 30 and the pixel array layer 40;
  • the display area of the quantum dot display device includes a red pixel area, a green pixel area, a blue pixel area and a white pixel area;
  • the LED array layer 30 includes a plurality of LED light sources 301 arranged in a pixel array (the LED light sources 301 are welded on the substrate 10 and the driving circuit 20 by conductive welding materials, and the welding materials are not shown in the figure), so The driving circuit 2 is used to drive the LED light source 301, and the LED light source 301 is a blue LED;
  • the structure of the LED light source 301 is shown in FIG. 3 , including a substrate 3016, an N-type semiconductor 3014, a light-emitting layer 3015, a P-type semiconductor 3013, a P electrode 3011 and an N electrode 3012, wherein the substrate 3016 and the pixel array layer 40 connected, the P electrode 3011 and the N electrode 3012 are connected to the drive circuit 20;
  • the pixel array layer 40 includes a red pixel layer 401, a green pixel layer 402, a blue pixel layer and a white pixel layer 404; every two red pixel layers 401, two green pixel layers 402, one blue pixel layer and one white pixel layer
  • the pixel layer 404 constitutes a display unit
  • the red pixel layer 401 is located on the surface of the LED light source within the red pixel area;
  • the green pixel layer 402 is located on the surface of the LED light source within the green pixel area;
  • the non-solid area on the surface of the LED light source is called blue light. color pixel layer;
  • the white pixel layer 404 is located on the surface of the LED light source within the white pixel area;
  • the material of the red pixel layer 401 is the red light composite quantum dots provided in Preparation Example 1;
  • the material of the green pixel layer 402 is the green light composite quantum dots provided in Preparation Example 4.
  • the white pixel layer 404 is a stack of a red light composite quantum dot sublayer 4041 and a green light composite quantum dot sublayer 4042, and the structure of the quantum dot display device located in the white pixel area is shown in FIG. 19;
  • the materials of the red light composite quantum dot sublayer 4041 and the green light composite quantum dot sublayer 4042 are the red light composite quantum dots provided in Preparation Example 1 and the green light composite quantum dots provided in Preparation Example 4, respectively.
  • the deposition conditions of the red light composite quantum dot sublayer 4041 are that the voltage difference is 10V, the current density is 6A/dm 2 for 10min;
  • the deposition conditions of the green light composite quantum dot sublayer 4042 are that the voltage difference is 1V, and the current density is 10A/ dm 2 for 10min;
  • the composite quantum dots combined with the electrodeposition process can be directly deposited on each pixel-level LED light source to deposit the composite quantum dot layer independently of each other, so as to realize full-color display with high color gamut; compared with the existing complex photolithography process
  • the method is simple, low-cost and high-precision, which is beneficial to the mass production of quantum dot display devices; the prepared quantum dot display device has no filter, which helps to improve the light pass rate and display light efficiency, and reduce the overall power consumption of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Optical Filters (AREA)

Abstract

一种量子点显示器件及其制备方法。量子点显示器件包括:依次层叠的基板(10)、驱动电路(20)、LED 阵列层(30)和像素阵列层(40);LED 阵列层(30)包括多个呈像素阵列排布的LED 光源(301);像素阵列层(40)包括红色像素层(401)、绿色像素层(402)和蓝色像素层(403),分别位于红色像素区、绿色像素区和蓝色像素区内的LED 光源(301)表面;红色像素层(401)、绿色像素层(402)的材料分别为红光复合量子点(4041)、绿光复合量子点(4042),蓝色像素层为蓝光透射层或蓝光复合量子点层(4043),从而实现量子点较高分辨率的全彩显示。采用电沉积工艺实现量子点层的制备。

Description

一种量子点显示器件及其制备方法 技术领域
本申请属于量子点显示技术领域,涉及一种量子点显示器件及其制备方法。
背景技术
量子点材料(Quantum Dot,QD)通过吸收部分波段的蓝光或紫外光,可激发出部分波段的红光、绿光或蓝光。量子点材料的粒径一般介于1~10nm之间,由于电子和空穴被量子限域,连续的能带结构变成分立能级结构,因此发光光谱非常窄(20-30nm),色度纯高,显示色域广,可大幅超过NTSC的色域范围(>100%);同时通过彩色滤光片光吸收损耗小,可实现低功耗显示。量子点由于其特殊的特性,作为新一代发光材料,在显示应用中正逐渐崭露头角。
量子点彩膜是显示器件实现超高色域全彩显示的关键部件,现有技术是将量子点分散在光刻胶中,再通过光固化和蚀刻等方式,在基材特定区域上实现量子点材料涂布。
CN 105242442A公开了一种量子点彩膜的制备方法,制备的量子点彩膜中蓝色子像素部分为透明有机光阻层,绿色子像素部分为绿色量子点固化胶层,红色子像素部分为绿色量子点固化胶层和红色量子点固化胶层的叠层。该量子点彩膜配合蓝光背光源使用,由于红色子像素部分同时含有绿色量子点和红色量子点,因此红色子像素上还需要设置红色色阻层以滤除绿光。这样会降低光通过率,导致器件整体功耗较高。
CN 105242449A公开了一种量子点彩膜基板的制备方法,先在基板上形成分别对应红色、绿色、蓝色子像素区域的红色色阻层、绿色色阻层、有机透明光阻层,然后涂布包含红色量子点和绿色量子点的固化胶,通过对蓝色子像素区域长时间照射紫外光使该区域量子点荧光猝灭。该量子点彩膜配合蓝光背光源使用,但由于红色子像素区域和绿色子像素区域都同时含有绿色量子点和红色量子点,因此需要红色色阻层和绿色色阻层分别滤除绿光和红光,导致光通过率较低。
CN 105278153A公开了一种量子点彩膜基板的制备方法,采用猝灭剂对蓝色子像素区域的红、绿量子点进行猝灭。CN 105301827A公开了一种量子点彩膜基板的制备方法,采用紫外光引发剂对蓝色子像素区域的红、绿量子点进行猝灭。但是,该方案也同样存在工艺过程复杂,难以实现像素级量子点排布,需要使用滤光片,导致光通过率低,器件整体功耗高的缺点,有待于改进。
发明内容
本申请的目的在于提供一种量子点显示器件及其制备方法。本申请提供的量子点显示器件具有较高的分辨率,能够实现高色域全彩显示;每一个像素层只发出单一颜色的光,可取消滤光片,提升光通过率和显示光效,降低器件整体功耗;且工艺简单,制造成本低,精度高,可以实现批量化生产。
为达此目的,本申请采用以下技术方案:
第一方面,本申请提供一种量子点显示器件,所述量子点显示器件包括: 依次层叠的基板、驱动电路、LED阵列层和像素阵列层;
所述量子点显示器件的显示区域包括红色像素区、绿色像素区和蓝色像素区;
所述LED阵列层包括多个呈像素阵列排布的LED光源,所述驱动电路用于驱动所述LED光源,所述LED光源为蓝光LED或紫外LED;
所述像素阵列层包括红色像素层、绿色像素层和蓝色像素层;
所述红色像素层位于所述红色像素区内的LED光源表面;
所述绿色像素层位于所述绿色像素区内的LED光源表面;
所述蓝色像素层位于所述蓝色像素区内的LED光源表面;
所述红色像素层的材料为红光复合量子点;
所述绿色像素层的材料为绿光复合量子点;
所述LED光源为蓝光LED,所述蓝色像素层为蓝光透射层;所述LED光源为紫外LED时,所述蓝色像素层的材料为蓝光复合量子点;
所述红光复合量子点、绿光复合量子点、蓝光复合量子点均包括内核、包裹所述内核的包覆层,以及连接在所述包覆层外表面的配体;
所述内核为红光量子点、绿光量子点或蓝光量子点,所述配体为具有离子键的有机盐,所述红光复合量子点、绿光复合量子点、蓝光复合量子点在所述配体解离的状态下呈正电性或负电性。
需要说明的是,本申请中LED光源呈像素阵列排布,是指LED光源是按照像素点的排布方式排列的,每一个LED光源对应一个像素点区域,LED光源的尺寸与本领域常规的像素点尺寸相当。所述蓝光透射层是指能透过蓝光的层,在本申请一实施方式中,其可以是不存在实体的层,即在蓝色像素区内的LED光源表面不沉积任何材料。
本申请中,红光复合量子点、绿光复合量子点在蓝光或紫外光的激发下可分别发出红光、绿光;蓝光复合量子点在紫外光的激发下可发出蓝光。当LED光源为蓝光LED时,无需蓝光复合量子点层,利用红光、绿光复合量子点受激发发出的红光、绿光,和蓝光透射层透射的LED光源的蓝光复合,从而实现了量子点显示器件的全彩显示。当LED光源为紫外LED时,利用红光、绿光和蓝光复合量子点受激发发出的红光、绿光和蓝光复合,从而实现了量子点显示器件的全彩显示。
所述复合量子点在配体解离的状态下带有正电或负电,能够通过电沉积法形成量子点层,从而制备量子点显示器件。其中,所述包覆层一方面用于结合配体;另一方面,可以保护量子点,避免水氧对量子点的侵袭,并防止量子点团聚。
本申请中,复合量子点层直接沉积在像素级LED光源上,因此复合量子点层也是像素级排布的,得到的量子点显示器件具有较高的分辨率;而且由于每一个像素层只发出单一颜色的光,因此不需要使用滤光片,有助于提升光通过率和显示光效,降低器件整体功耗。
需要说明的是,本申请中红光复合量子点层均是指由红光复合量子点构成的层,绿光复合量子点层均是指由绿光复合量子点构成的层,蓝光复合量子点层均是指由蓝光复合量子点构成的层。
本申请中,为了简要地描述量子点显示器件及其制备方法,部分地方采用像素区、像素层、复合量子点、复合量子点层分别指代不同发光颜色的像素区、不同发光颜色的像素层、不同发光颜色的复合量子点、不同发光颜色的复合量子点层中的任意一个,或其全体。
作为本申请的可选技术方案,所述量子点显示器件的显示区域还包括白色像素区,所述像素阵列层还包括位于所述白色像素区内的LED光源表面的白色像素层;
所述LED光源为蓝光LED时,所述白色像素层为所述红光复合量子点和绿光复合量子点的混合层,或者红光复合量子点层和绿光复合量子点层的叠层;
所述LED光源为紫外LED时,所述白色像素层为所述红光复合量子点、绿光复合量子点和蓝光复合量子点的混合层,或者红光复合量子点层、绿光复合量子点层和蓝光复合量子点层的叠层。
本申请中,当LED光源为蓝光LED时,需要控制白色像素层中的红光、绿光复合量子点分别受激发发出的红光、绿光和透射的蓝光三者的强度基本相等,以保证三者能复合成白光。当LED光源为紫外LED时,需要控制白色像素层中的红光、绿光、蓝光复合量子点分别受激发发出的红光、绿光和蓝光三者的强度基本相等,以保证三者能复合成白光。
通过在红、绿、蓝三种像素层外再增加白色像素层,能够在保证量子点显示器件全彩显示的同时提高亮度。
作为本申请的可选技术方案,所述量子点显示器件还包括包覆所述驱动电路、LED阵列层和像素阵列层的封装层。
作为本申请的可选技术方案,所述红光量子点、绿光量子点和蓝光量子点为A xM yE z体系材料;
其中,A元素选自Ba、Ag、Na、Fe、In、Cd、Zn、Ga、Mg、Pb和Cs中的一种或至少两种的组合;
M元素选自S、Cl、O、As、N、P、Se、Te、Ti、Zr和Pb中的一种或至少两种的组合;
E元素选自S、As、Se、O、Cl、Br和I中的一种或至少两种的组合;
x为0.3~2.0,例如可以是0.3、0.5、0.8、1、1.2、1.3、1.5、1.6、1.8或2等;
y为0.5~3.0,例如可以是0.5、0.8、1、1.2、1.3、1.5、1.6、1.8、2、2.2、2.3、2.5、2.6、2.8或3等;
z为0~4.0,例如可以是0、0.2、0.3、0.5、0.8、1、1.2、1.3、1.5、1.6、1.8、2、2.2、2.3、2.5、2.6、2.8、3、3.2、3.3、3.5、3.6、3.8或4等。
作为本申请的可选技术方案,所述包覆层的材料为高分子材料、金属氧化 物、金属硫化物、金属或金属合金。
可选地,所述高分子材料选自PMA、PVDF、长链磷酸酯中的一种或至少两种的组合。
可选地,所述长链磷酸酯为碳原子数为16-18的磷酸酯。
可选地,所述金属氧化物选自ZnO、SiO 2、TiO 2或MgO中的一种或至少两种的组合。
可选地,所述金属硫化物选自ZnS、CdS或TeS中的一种或至少两种的组合。
可选地,所述金属选自Ti、Zr、Zn、Cd或Te中的一种或至少两种的组合。
可选地,所述具有离子键的有机盐包括有机负离子盐或有机正离子盐。
可选地,所述有机负离子盐包括有机酸盐。
可选地,所述有机酸盐包括醋酸钠、乙吡啶酸盐或乙醇钠中一种或至少两种的组合。
可选地,所述有机正离子盐包括有机铵盐。
可选地,所述有机铵盐包括溴化四丁基铵盐、溴化铵、氯化铵或硫酸铵的一种或至少两种的组合。
作为本申请的可选技术方案,所述红光量子点的粒径为6-12nm,绿光量子点的粒径为3-6nm、蓝光量子点的粒径为1-3nm。
作为本申请的可选技术方案,所述红光复合量子点、绿光复合量子点、蓝光复合量子点的制备方法如下:
a:向红光量子点、绿光量子点或蓝光量子点中滴加包覆层材料,控制pH、反应温度和反应时间,使所述包覆层材料包覆在所述红光量子点、绿光量子点或蓝光量子点表面,形成包覆层,得到量子点/包覆层核壳材料;
b:将步骤a得到的量子点/包覆层核壳材料和配体分散于溶剂中,控制pH、反应温度和反应时间,使所述配体连接到所述包覆层表面,得到所述红光复合量子点、绿光复合量子点或蓝光复合量子点的溶液。
作为本申请的可选技术方案,步骤a中所述pH为5.5-11,例如5、6、7、8、9、10或11;步骤a中所述反应温度为240-320℃(例如240℃、250℃、270℃、280℃、300℃或320℃),反应时间为0.5~10min(例如0.5min、0.8min、1min、3min、5min、7min、9min或10min)。
可选地,步骤b所述pH为7-10,例如7、7.4、7.8、8、8.3、8.5、8.8、9、9.4、9.7或10;步骤b所述反应温度为120-320℃(例如120℃、140℃、150℃、170℃、200℃、220℃、240℃、260℃、280℃、300℃或320℃),反应时间为3-120min(例如3min、5min、8min、10min、15min、20min、30min、50min、70min、90min、100min或120min)。
可选地,步骤b所述溶剂为十八烯、正己烷、正辛烷、油氨、正十二硫醇、1-辛硫醇或三辛胺中一种或至少两种的组合。
第二方面,本申请提供一种如第一方面所述的量子点显示器件的制备方法, 所述制备方法包括如下步骤:
提供基板、驱动电路和LED阵列层的叠层结构,通过电沉积在红色像素区内的LED光源表面沉积红光复合量子点层,作为红色像素层;在绿色像素区内的LED光源表面沉积绿光复合量子点层,作为绿色像素层;在蓝色像素区内的LED光源表面沉积蓝光复合量子点层或不进行沉积,作为蓝色像素层;得到所述量子点显示器件;
所述电沉积的方法为单独沉积法,所述单独沉积法为:选择红光复合量子点层、绿光复合量子点层和蓝光复合量子点层中的一种,将所述叠层结构置于待沉积的复合量子点的溶液中,通过所述驱动电路对待沉积的LED光源施加与所述待沉积的复合量子点电性相反的电压,对所述待沉积的复合量子点的溶液施加与所述待沉积的复合量子点电性相同的电压,进行沉积。
需要说明的是,上述基板、驱动电路和LED阵列层的叠层结构中,LED光源是通过导电的焊接材料焊接在基板和驱动电路上,由于焊接材料只是起到连接固定的作用,并非发光功能性结构,因此在量子点显示器件的结构中未进行限定。
本申请采用复合量子点结合电沉积工艺,可以直接在每一个LED光源上相互独立地沉积出红光、绿光或蓝光复合量子点层,因此每一个像素层只发出单一颜色的光,不需要使用滤光片,有助于提升光通过率和显示光效,降低器件整体功耗。与现有复杂的光刻工艺相比,本申请提供的方法简单、成本低且精度高,利于量子点彩膜的批量化生产。
本申请中,所述电沉积的方法为单独沉积法。例如,当不存在蓝光复合量子点层时,采用单独沉积法分别沉积红光复合量子点层和绿光复合量子点层。当红光、绿光、蓝光复合量子点层均存在时,可以采用单独沉积法逐个沉积红光、绿光、蓝光复合量子点层。
本申请中,电沉积复合量子点层时的条件(电压、沉积时间)需要综合考虑复合量子点的带电量、复合量子点中量子点的含量、LED光源的发光强度等因素进行选择。对于红、绿、蓝三种像素层,需要保证所沉积的复合量子点层中的量子点能够完全吸收LED光源发出的光。
可选地,所述电沉积电压为1~12V(例如1V、3V、5V、8V、10V或12V),电流密度为5~10A/dm 2(例如5A/dm 2、6A/dm 2、7A/dm 2、8A/dm 2、9A/dm 2后果10A/dm 2),沉积时间为0.5~30min(例如0.5min、5min、8min、10min、13min、15min、20min、25min、28min或30min)。
作为本申请的可选技术方案,所述制备方法还包括在白色像素区内的LED光源表面沉积白色像素层;
所述白色像素层的沉积方法为:将所述叠层结构置于电性相同的红光复合量子点和绿光复合量子点的混合溶液中,或置于电性相同的红光复合量子点、绿光复合量子点和蓝光复合量子点的混合溶液中,通过所述驱动电路对白色像素区内的LED光源施加与待沉积的复合量子点电性相反的电压,对所述混合溶 液施加与待沉积的复合量子点电性相同的电压,进行沉积;
或者按照所述单独沉积法,在白色像素区内的LED光源表面逐层沉积出红光复合量子点层和绿光复合量子点层的叠层,或逐层沉积出红光复合量子点层、绿光复合量子点层和蓝光复合量子点层的叠层。
本申请中,电沉积白色像素层的条件需要综合考虑复合量子点的带电量、复合量子点中量子点的含量、LED光源的发光强度等因素进行选择。当LED光源为蓝光LED时,需要保证所沉积的白色像素层中的红光、绿光复合量子点分别受激发发出的红光、绿光和透射的蓝光三者的强度基本相等,以保证三者能复合成白光。当LED光源为紫外LED时,需要保证所沉积的白色像素层中的红光、绿光、蓝光复合量子点分别受激发发出的红光、绿光和蓝光三者的强度基本相等,以保证三者能复合成白光。
考虑到白色像素层为红光、绿光复合量子点的混合层时,或红光、绿光、蓝光复合量子点的混合层时,不同复合量子点的沉积量难以精确控制,因此本申请中白色像素层更可选为红光复合量子点层和绿光复合量子点层的叠层,或红光复合量子点层、绿光复合量子点层和蓝光复合量子点层的叠层。
可选地,所述制备方法还包括:在每一次电沉积之后,将沉积后的叠层结构取出,干燥,进行加热、冷冻或光照。该操作的目的是使已沉积的复合量子点稳定附着在LED光源上。
可选地,所述加热的温度为80~150℃,例如80℃、85℃、90℃、100℃、120℃、140℃或150℃。
可选地,所述冷冻为在-40℃以下冷冻。
可选地,所述光照为230-395nm的紫外光照下进行固化。
可选地,所述制备方法还包括:在像素阵列层制备完成之后,涂布包覆所述驱动电路、LED阵列层和像素阵列层的封装胶水,固化后形成封装层。
本申请对所述封装胶水的种类不做特殊限定,示例性地,可以选择环氧类胶水、有机硅类胶水、聚氨酯类胶水中的一种或多种混合,固化方法可以采用热固化和/或光固化。
与现有技术相比,本申请具有以下有益效果:
(1)本申请采用复合量子点结合电沉积工艺,可以直接在每一个像素级LED光源上相互独立地沉积出复合量子点层,与现有光刻工艺相比,本申请提供的方法简单、成本低且精度高,利于量子点显示器件的批量化生产;
(2)本申请提供的量子点显示器件中,复合量子点层直接沉积在像素级LED光源上,因此复合量子点层也是像素级排布的,实现了像素级发光,得到的量子点显示器件具有较高的分辨率,能够实现高色域全彩显示;
(3)本申请提供的量子点显示器件中,每一个像素层只发出单一颜色的光,因此不需要使用滤光片,有助于提升光通过率和显示光效,降低器件整体功耗。
附图说明
图1为本申请实施例1提供的量子点显示器件的剖面结构示意图;
图2为本申请实施例1或2提供的量子点显示器件的俯视结构示意图;
图3为本申请实施例中LED光源的结构示意图;
图4为本申请实施例中基板、驱动电路和LED阵列层的叠层结构示意图;
图5为本申请实施例1中红光复合量子点层的沉积过程示意图;
图6为本申请实施例1中绿光复合量子点层的沉积过程示意图;
图7为本申请实施例1中蓝光复合量子点层的沉积过程示意图;
图8为本申请实施例2提供的量子点显示器件的剖面结构示意图;
图9为本申请实施例2中红光、绿光复合量子点层的沉积过程示意图;
图10为本申请实施例2中蓝光复合量子点层的沉积过程示意图;
图11为本申请实施例3提供的量子点显示器件的剖面结构示意图;
图12为本申请实施例3或4提供的量子点显示器件的俯视结构示意图;
图13为本申请实施例4提供的量子点显示器件的剖面结构示意图;
图14为本申请实施例5提供的量子点显示器件的剖面结构示意图;
图15为本申请实施例5提供的量子点显示器件的俯视结构示意图;
图16为本申请实施例5中位于白色像素区的量子点显示器件的剖面结构示意图;
图17为本申请实施例6提供的量子点显示器件的剖面结构示意图;
图18为本申请实施例6提供的量子点显示器件的俯视结构示意图;
图19为本申请实施例6中位于白色像素区的量子点显示器件的剖面结构示意图;
其中,10为基板,20为驱动电路,30为LED阵列层,40为像素阵列层,50为封装层,301为LED光源,3011为P电极,3012为N电极,3013为P型半导体,3014为N型半导体,3015为发光层,3016为衬底,401为红色像素层,402为绿色像素层,403为蓝色像素层,404为白色像素层,4041为红光复合量子点子层,4042为绿光复合量子点子层,4043为蓝光复合量子点子层。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述具体实施方式仅仅是帮助理解本申请,不应视为对本申请的具体限制。
制备例1
提供一种带正电的红光复合量子点溶液,制备方法如下:
a:向红光量子点(TeSe,粒径11nm)中滴加包覆层材料PVDF,在pH=7.5,温度为290℃的条件下反应5mins,使所述包覆层材料包覆在所述量子点表面,形成包覆层,得到量子点/包覆层核壳材料;
b:将步骤a得到的量子点/包覆层核壳材料分散于十八烯溶剂中,加入配体硫酸铵,在pH=8,温度为175℃的条件下反应90mins,使所述配体连接到所述包覆层表面,得到浓度为3.5%的带正电的红光复合量子点溶液。
制备例2
提供一种带负电的红光复合量子点溶液,制备方法如下:
a:向红光量子点(CdSe,粒径9nm)中滴加包覆层材料钛酸四丁酯,在pH=6,温度为300℃的条件下反应5min,使所述包覆层材料包覆在所述量子点表面,形成包覆层,得到量子点/包覆层核壳材料;
b:将步骤a得到的量子点/包覆层核壳材料分散于溶剂正己烷中,加入配体醋酸钠,在pH=7.4,温度为200℃的条件下反应10min,使所述配体连接到所述包覆层表面,得到浓度为3.8%的带负电的红光复合量子点溶液。
制备例3
提供一种带正电的绿光复合量子点溶液,制备方法如下:
a:向绿光量子点(CsPbBr 3,粒径5nm)中滴加包覆层材料乙烯基三甲氧基硅烷,在pH=5.5,温度为240℃的条件下反应10min,使所述包覆层材料包覆在所述量子点表面,形成包覆层,得到量子点/包覆层核壳材料;
b:将步骤a得到的量子点/包覆层核壳材料分散于溶剂正己烷中,加入配体溴化四丁基铵,在pH=9,温度为300℃的条件下反应10min,使所述配体连接到所述包覆层表面,得到浓度为5%的带正电的绿光复合量子点溶液。
制备例4
提供一种带负电的绿光复合量子点溶液,制备方法如下:
a:向绿光量子点(InP,粒径6nm)中滴加包覆层材料PMA,在pH=6,温度为320℃的条件下反应2min,使所述包覆层材料包覆在所述量子点表面,形成包覆层,得到量子点/包覆层核壳材料;
b:将步骤a得到的量子点/包覆层核壳材料分散于溶剂正己烷中,加入配体乙醇钠,在pH=8.5,温度为240℃的条件下反应60min,使所述配体连接到所述包覆层表面,得到浓度为4.5%的带负电的绿光复合量子点溶液。
制备例5
提供一种带正电的蓝光复合量子点溶液,制备方法如下:
a:向蓝光量子点(CsPbCl 3,粒径3nm)中滴加包覆层材料异丙醇锆,在pH=10,温度为280℃的条件下反应10min,使所述包覆层材料包覆在所述量子点表面,形成包覆层,得到量子点/包覆层核壳材料;
b:将步骤a得到的量子点/包覆层核壳材料分散于溶剂正辛烷中,加入配体氯化铵,在pH=10,温度为150℃的条件下反应60min,使所述配体连接到所述包覆层表面,得到浓度为3.5%的带正电的蓝光复合量子点溶液。
制备例6
提供一种带负电的蓝光复合量子点溶液,制备方法如下:
a:向蓝光量子点(CdS 0.2Se 0.8,2nm)中滴加包覆层材料十八烷基磷酸,在pH=11,温度为300℃的条件下反应5min,使所述包覆层材料包覆在所述量子点表面,形成包覆层,得到量子点/包覆层核壳材料;
b:将步骤a得到的量子点/包覆层核壳材料分散于溶剂正十二硫醇中,加入配体磺酸钠,在pH=7,温度为320的条件下反应5min,使所述配体连接到所述 包覆层表面,得到浓度为4%的带负电的蓝光复合量子点溶液。
实施例1
本实施例提供一种量子点显示器件,其结构如图1和图2所示,包括:依次层叠的基板10、驱动电路20、LED阵列层30、像素阵列层40,以及包覆所述驱动电路20、LED阵列层30和像素阵列层40的封装层50;
所述量子点显示器件的显示区域包括红色像素区、绿色像素区和蓝色像素区;
所述LED阵列层30包括多个呈像素阵列排布的LED光源301(LED光源301是通过导电的焊接材料焊接在基板10和驱动电路上20上,焊接材料在图中未示出),所述驱动电路2用于驱动所述LED光源301,所述LED光源301为紫外LED;
所述LED光源301的结构如图3所示,包括衬底3016、N型半导体3014、发光层3015、P型半导体3013、P电极3011和N电极3012,其中,衬底3016与像素阵列层40相接,P电极3011和N电极3012与驱动电路20相接;
所述像素阵列层40包括红色像素层401、绿色像素层402和蓝色像素层403;
所述红色像素层401位于所述红色像素区内的LED光源表面;
所述绿色像素层402位于所述绿色像素区内的LED光源表面;
所述蓝色像素层403位于所述蓝色像素区内的LED光源表面;
所述红色像素层401的材料为制备例1提供的红光复合量子点;
所述绿色像素层402的材料为制备例4提供的绿光复合量子点;
所述蓝色像素层403的材料为制备例5提供的蓝光复合量子点。
本实施例提供的量子点显示器件的制备方法如下:
(1)提供基板、驱动电路和LED阵列层的叠层结构(其结构如图4所示),通过电沉积在红色像素区内的LED光源表面沉积红光复合量子点层,作为红色像素层401;在绿色像素区内的LED光源表面沉积绿光复合量子点层,作为绿色像素层402;在蓝色像素区内的LED光源表面沉积蓝光复合量子点层,作为蓝色像素层403;
(2)涂布包覆驱动电路20、LED阵列层30和像素阵列层40的封装胶水,固化后形成封装层50,得到所述量子点显示器件;
其中,所述电沉积的方法为采用单独沉积法分别进行红光复合量子点层、绿光复合量子点层和蓝光复合量子点层的沉积,具体步骤如下:
如图5所示,将所述叠层结构置于制备例1提供的带正电的红光复合量子点溶液中,通过所述驱动电路20对红色像素区内的LED光源施加负电压,对制备例1提供的带正电的红光复合量子点溶液施加正电压,电压差为8V,电流密度为5A/dm 2,持续10min,在红色像素区内的LED光源表面沉积出红光复合量子点层,作为红色像素层401,将沉积了红光复合量子点层的叠层结构取出,烘干,100℃加热,使已沉积的红光复合量子点稳定附着在红色像素区内的LED光源上;
如图6所示,将沉积了红光复合量子点层的叠层结构置于制备例4提供的带负电的绿光复合量子点溶液中,通过所述驱动电路20对绿色像素区内的LED光源施加正电压,对制备例4提供的带负电的绿光复合量子点溶液施加负电压,电压差为12V,电流密度为5A/dm 2,持续10min,在绿色像素区内的LED光源表面沉积出绿光复合量子点层,作为绿色像素层402,将沉积了红光、绿光复合量子点层的叠层结构取出,烘干,在-40℃下冷冻,使已沉积的绿光复合量子点稳定附着在绿色像素区内的LED光源上;
如图7所示,将沉积了红光、绿光复合量子点层的叠层结构置于制备例5提供的带正电的蓝光复合量子点溶液中,通过所述驱动电路20对蓝色像素区内的LED光源施加负电压,对制备例5提供的带正电的蓝光复合量子点溶液施加正电压,电压差为3V,电流密度为10A/dm 2,持续3min,在蓝色像素区内的LED光源表面沉积出蓝光复合量子点层,作为蓝色像素层403,将沉积了红光、绿光、蓝光复合量子点层的叠层结构取出,烘干,230-395nm的紫外光照下进行固化,使已沉积的蓝光复合量子点稳定附着在蓝色像素区内的LED光源上;
本实施例中,由于红光、绿光、蓝光复合量子点层的沉积步骤是相互独立的,因此三种复合量子点层的沉积步骤可以以任意顺序进行,沉积顺序对制备的量子点显示器件没有影响。
本实施例采用复合量子点结合电沉积工艺,可以直接在每一个像素级LED光源上相互独立地沉积出复合量子点层,实现高色域全彩显示;与现有复杂的光刻工艺相比,该方法简单、成本低且精度高,利于量子点显示器件的批量化生产;制备的量子点显示器件无滤光片,有助于提升光通过率和显示光效,降低器件整体功耗。
实施例2
本实施例提供一种量子点显示器件,其结构如图8和图2所示,包括:依次层叠的基板10、驱动电路20、LED阵列层30和像素阵列层40;
所述量子点显示器件的显示区域包括红色像素区、绿色像素区和蓝色像素区;
所述LED阵列层30包括多个呈像素阵列排布的LED光源301(LED光源301是通过导电的焊接材料焊接在基板10和驱动电路上20上,焊接材料在图中未示出),所述驱动电路2用于驱动所述LED光源301,所述LED光源301为紫外LED;
所述LED光源301的结构如图3所示,包括衬底3016、N型半导体3014、发光层3015、P型半导体3013、P电极3011和N电极3012,其中,衬底3016与像素阵列层40相接,P电极3011和N电极3012与驱动电路20相接;
所述像素阵列层40包括红色像素层401、绿色像素层402和蓝色像素层403;
所述红色像素层401位于所述红色像素区内的LED光源表面;
所述绿色像素层402位于所述绿色像素区内的LED光源表面;
所述蓝色像素层403位于所述蓝色像素区内的LED光源表面;
所述红色像素层401的材料为制备例2提供的红光复合量子点;
所述绿色像素层402的材料为制备例3提供的绿光复合量子点;
所述蓝色像素层403的材料为制备例6提供的蓝光复合量子点。
本实施例提供的量子点显示器件的制备方法如下:
提供基板、驱动电路和LED阵列层的叠层结构(其结构如图4所示),通过电沉积在红色像素区内的LED光源表面沉积红光复合量子点层,作为红色像素层401;在绿色像素区内的LED光源表面沉积绿光复合量子点层,作为绿色像素层402;在蓝色像素区内的LED光源表面沉积蓝光复合量子点层,作为蓝色像素层403;得到所述量子点显示器件;
其中,所述电沉积的方法为采用一步沉积法同时沉积红光复合量子点层和绿光复合量子点层,用单独沉积法沉积蓝光复合量子点层,具体步骤如下:
如图9所示,将制备例2提供的带负电的红光复合量子点溶液和制备例3提供的带正电的绿光复合量子点溶液混合,将所述叠层结构置于该混合溶液中,通过所述驱动电路20对红色像素区内的LED光源施加正电压,对绿色像素区内的LED光源施加负电压,电压差为5V,电流密度为8A/dm 2,持续10min,同时在红色像素区内的LED光源上沉积出红光复合量子点层,作为红色像素层401,绿色像素区内的LED光源上沉积出绿光复合量子点层,作为绿色像素层402,将沉积了红光、绿光复合量子点层的叠层结构取出,烘干,紫外光照下进行固化,使已沉积的红光、绿光复合量子点分别稳定附着在红色、绿色像素区内的LED光源上;
如图10所示,将沉积了红光、绿光复合量子点层的叠层结构置于制备例6提供的带负电的蓝光复合量子点溶液中,通过所述驱动电路20对蓝色像素区内的LED光源施加正电压,对制备例6提供的带负电的蓝光复合量子点溶液施加负电压,电压差为5V,电流密度为8A/dm 2,持续10min,在蓝色像素区内的LED光源表面沉积出蓝光复合量子点层,作为蓝色像素层403,将沉积了红光、绿光复合量子点层的叠层结构取出,烘干,紫外光照下进行固化,使已沉积的绿光复合量子点稳定附着在绿色像素区内的LED光源上;
本实施例中,也可以先用单独沉积法沉积蓝光复合量子点层,再采用一步沉积法同时沉积红光复合量子点层和绿光复合量子点层,沉积顺序对制备的量子点显示器件没有影响。
本实施例采用复合量子点结合电沉积工艺,可以直接在每一个像素级LED光源上相互独立地沉积出复合量子点层,实现高色域全彩显示;与现有复杂的光刻工艺相比,该方法简单、成本低且精度高,利于量子点显示器件的批量化生产;制备的量子点显示器件无滤光片,有助于提升光通过率和显示光效,降低器件整体功耗。
实施例3
本实施例提供一种量子点显示器件,其结构如图11和图12所示,包括:依次层叠的基板10、驱动电路20、LED阵列层30、像素阵列层40,以及包覆 所述驱动电路20、LED阵列层30和像素阵列层40的封装层50;
所述量子点显示器件的显示区域包括红色像素区、绿色像素区和蓝色像素区;
所述LED阵列层30包括多个呈像素阵列排布的LED光源301(LED光源301是通过导电的焊接材料焊接在基板10和驱动电路上20上,焊接材料在图中未示出),所述驱动电路2用于驱动所述LED光源301,所述LED光源301为蓝光LED;
所述LED光源301的结构如图3所示,包括衬底3016、N型半导体3014、发光层3015、P型半导体3013、P电极3011和N电极3012,其中,衬底3016与像素阵列层40相接,P电极3011和N电极3012与驱动电路20相接;
所述像素阵列层40包括红色像素层401、绿色像素层402和蓝色像素层;
所述红色像素层401位于所述红色像素区内的LED光源表面;
所述绿色像素层402位于所述绿色像素区内的LED光源表面;
位于所述蓝色像素区内的LED光源表面无复合量子点层,可以透射LED光源301发出的蓝光,为了方便说明量子点显示器件的结构,将该处LED光源表面无实体的区域称为蓝色像素层;
所述红色像素层401的材料为制备例1提供的红光复合量子点;
所述绿色像素层402的材料为制备例4提供的绿光复合量子点。
本实施例提供的量子点显示器件的制备方法如下:
(1)提供基板、驱动电路和LED阵列层的叠层结构(其结构如图4所示),通过电沉积在红色像素区内的LED光源表面沉积红光复合量子点层,作为红色像素层401;在绿色像素区内的LED光源表面沉积绿光复合量子点层,作为绿色像素层402;在蓝色像素区内的LED光源表面不沉积材料,该处无实体的区域作为蓝色像素层;
(2)涂布包覆驱动电路20、LED阵列层30和像素阵列层40的封装胶水,固化后形成封装层50,得到所述量子点显示器件;
其中,所述电沉积的方法为采用一步沉积法同时沉积红光复合量子点层和绿光复合量子点层,具体步骤如下:
将制备例1提供的带正电的红光复合量子点溶液和制备例4提供的带负电的绿光复合量子点溶液混合,将所述叠层结构置于该混合溶液中,通过所述驱动电路20对红色像素区内的LED光源施加负电压,对绿色像素区内的LED光源施正负电压,电压差为2V,电流密度为5A/dm 2,持续30min,同时在红色像素区内的LED光源上沉积出红光复合量子点层,作为红色像素层401,绿色像素区内的LED光源上沉积出绿光复合量子点层,作为绿色像素层402,蓝色像素区内的LED光源不进行沉积;将沉积了红光、绿光复合量子点层的叠层结构取出,烘干,进行加热,加热的温度100℃,使已沉积的红光、绿光复合量子点分别稳定附着在红色、绿色像素区内的LED光源上。
本实施例采用复合量子点结合电沉积工艺,可以直接在每一个像素级LED 光源上相互独立地沉积出复合量子点层,实现高色域全彩显示;与现有复杂的光刻工艺相比,该方法简单、成本低且精度高,利于量子点显示器件的批量化生产;制备的量子点显示器件无滤光片,有助于提升光通过率和显示光效,降低器件整体功耗。
实施例4
本实施例提供一种量子点显示器件,其结构如图13和图12所示,包括:依次层叠的基板10、驱动电路20、LED阵列层30和像素阵列层40;
所述量子点显示器件的显示区域包括红色像素区、绿色像素区和蓝色像素区;
所述LED阵列层30包括多个呈像素阵列排布的LED光源301(LED光源301是通过导电的焊接材料焊接在基板10和驱动电路上20上,焊接材料在图中未示出),所述驱动电路2用于驱动所述LED光源301,所述LED光源301为蓝光LED;
所述LED光源301的结构如图3所示,包括衬底3016、N型半导体3014、发光层3015、P型半导体3013、P电极3011和N电极3012,其中,衬底3016与像素阵列层40相接,P电极3011和N电极3012与驱动电路20相接;
所述像素阵列层40包括红色像素层401、绿色像素层402和蓝色像素层;
所述红色像素层401位于所述红色像素区内的LED光源表面;
所述绿色像素层402位于所述绿色像素区内的LED光源表面;
位于所述蓝色像素区内的LED光源表面无复合量子点层,可以透射LED光源301发出的蓝光,为了方便说明量子点显示器件的结构,将该处LED光源表面无实体的区域称为蓝色像素层;
所述红色像素层401的材料为制备例1提供的红光复合量子点;
所述绿色像素层402的材料为制备例3提供的绿光复合量子点。
本实施例提供的量子点显示器件的制备方法如下:
提供基板、驱动电路和LED阵列层的叠层结构(其结构如图4所示),通过电沉积在红色像素区内的LED光源表面沉积红光复合量子点层,作为红色像素层401;在绿色像素区内的LED光源表面沉积绿光复合量子点层,作为绿色像素层402;在蓝色像素区内的LED光源表面不沉积材料,该处无实体的区域作为蓝色像素层;得到所述量子点显示器件;
其中,所述电沉积的方法为采用单独沉积法分别沉积红光复合量子点层和绿光复合量子点层,具体步骤如下:
将所述叠层结构置于制备例1提供的带正电的红光复合量子点溶液中,通过所述驱动电路20对红色像素区内的LED光源施加负电压,对制备例1提供的带正电的红光复合量子点溶液施加正电压,电压差为12V,电流密度为5A/dm 2,持续10min,在红色像素区内的LED光源表面沉积出红光复合量子点层,作为红色像素层401,将沉积了红光复合量子点层的叠层结构取出,烘干,紫外光照下进行固化,使已沉积的红光复合量子点稳定附着在红色像素区内的 LED光源上;
将沉积了红光复合量子点层的叠层结构置于制备例3提供的带正电的绿光复合量子点溶液中,通过所述驱动电路20对绿色像素区内的LED光源施加负电压,对制备例3提供的带正电的绿光复合量子点溶液施加正电压,电压差为2V,电流密度为5A/dm 2,持续20min,在绿色像素区内的LED光源表面沉积出绿光复合量子点层,作为绿色像素层402,将沉积了红光、绿光复合量子点层的叠层结构取出,烘干,紫外光照下进行固化,使已沉积的绿光复合量子点稳定附着在绿色像素区内的LED光源上;
蓝色像素区内的LED光源不进行沉积。
本实施例中,也可以先沉积绿光复合量子点层,后沉积红光复合量子点层,沉积顺序对制备的量子点显示器件没有影响。
本实施例采用复合量子点结合电沉积工艺,可以直接在每一个像素级LED光源上相互独立地沉积出复合量子点层,实现高色域全彩显示;与现有复杂的光刻工艺相比,该方法简单、成本低且精度高,利于量子点显示器件的批量化生产;制备的量子点显示器件无滤光片,有助于提升光通过率和显示光效,降低器件整体功耗。
实施例5
本实施例提供一种量子点显示器件,其结构如图14和图15所示,包括:依次层叠的基板10、驱动电路20、LED阵列层30、像素阵列层40,以及包覆所述驱动电路20、LED阵列层30和像素阵列层40的封装层50;
所述量子点显示器件的显示区域包括红色像素区、绿色像素区、蓝色像素区和白色像素区;
所述LED阵列层30包括多个呈像素阵列排布的LED光源301(LED光源301是通过导电的焊接材料焊接在基板10和驱动电路上20上,焊接材料在图中未示出),所述驱动电路2用于驱动所述LED光源301,所述LED光源301为紫外LED;
所述LED光源301的结构如图3所示,包括衬底3016、N型半导体3014、发光层3015、P型半导体3013、P电极3011和N电极3012,其中,衬底3016与像素阵列层40相接,P电极3011和N电极3012与驱动电路20相接;
所述像素阵列层40包括红色像素层401、绿色像素层402、蓝色像素层403和白色像素层404;每两个红色像素层401、两个绿色像素层402、一个蓝色像素层403和一个白色像素层404构成一个显示单元;
所述红色像素层401位于所述红色像素区内的LED光源表面;
所述绿色像素层402位于所述绿色像素区内的LED光源表面;
所述蓝色像素层403位于所述蓝色像素区内的LED光源表面;
所述白色像素层404位于所述白色像素区内的LED光源表面;
所述红色像素层401的材料为制备例1提供的红光复合量子点;
所述绿色像素层402的材料为制备例4提供的绿光复合量子点;
所述蓝色像素层403的材料为制备例5提供的蓝光复合量子点;
所述白色像素层404为红光复合量子点子层4041、绿光复合量子点子层4042和蓝光复合量子点子层4043的叠层,位于白色像素区的量子点显示器件的结构如图16所示;
红光复合量子点子层4041、绿光复合量子点子层4042、蓝光复合量子点子层4043的材料分别为制备例1提供的红光复合量子点、制备例4提供的绿光复合量子点、制备例5提供的蓝光复合量子点。
本实施例提供的量子点显示器件的制备方法如下:
(1)提供基板、驱动电路和LED阵列层的叠层结构(其结构如图4所示),按照实施例1的方法,在红色像素区内的LED光源表面沉积红光复合量子点层,作为红色像素层401;在绿色像素区内的LED光源表面沉积绿光复合量子点层,作为绿色像素层402;在蓝色像素区内的LED光源表面沉积蓝光复合量子点层,作为蓝色像素层403;
(2)采用单独沉积法在白色像素区内的LED光源表面逐层沉积红光复合量子点子层4041、绿光复合量子点子层4042和蓝光复合量子点子层4043的叠层,作为白色像素层404;
其中,红光复合量子点子层4041的沉积条件为电压差为10V,电流密度为7A/dm 2,持续10min;绿光复合量子点子层4042的沉积条件为电压差为8V,电流密度为5A/dm 2,持续20min;蓝光复合量子点子层4043的沉积条件为电压差为8V,电流密度为10A/dm 2,持续5min;
(3)涂布包覆驱动电路20、LED阵列层30和像素阵列层40的封装胶水,固化后形成封装层50,得到所述量子点显示器件。
本实施例采用复合量子点结合电沉积工艺,可以直接在每一个像素级LED光源上相互独立地沉积出复合量子点层,实现高色域全彩显示;与现有复杂的光刻工艺相比,该方法简单、成本低且精度高,利于量子点显示器件的批量化生产;制备的量子点显示器件无滤光片,有助于提升光通过率和显示光效,降低器件整体功耗。
实施例6
本实施例提供一种量子点显示器件,其结构如图17和图18所示,包括:依次层叠的基板10、驱动电路20、LED阵列层30、像素阵列层40,以及包覆所述驱动电路20、LED阵列层30和像素阵列层40的封装层50;
所述量子点显示器件的显示区域包括红色像素区、绿色像素区、蓝色像素区和白色像素区;
所述LED阵列层30包括多个呈像素阵列排布的LED光源301(LED光源301是通过导电的焊接材料焊接在基板10和驱动电路上20上,焊接材料在图中未示出),所述驱动电路2用于驱动所述LED光源301,所述LED光源301为蓝光LED;
所述LED光源301的结构如图3所示,包括衬底3016、N型半导体3014、 发光层3015、P型半导体3013、P电极3011和N电极3012,其中,衬底3016与像素阵列层40相接,P电极3011和N电极3012与驱动电路20相接;
所述像素阵列层40包括红色像素层401、绿色像素层402、蓝色像素层和白色像素层404;每两个红色像素层401、两个绿色像素层402、一个蓝色像素层和一个白色像素层404构成一个显示单元;
所述红色像素层401位于所述红色像素区内的LED光源表面;
所述绿色像素层402位于所述绿色像素区内的LED光源表面;
位于所述蓝色像素区内的LED光源表面无复合量子点层,可以透射LED光源301发出的蓝光,为了方便说明量子点显示器件的结构,将该处LED光源表面无实体的区域称为蓝色像素层;
所述白色像素层404位于所述白色像素区内的LED光源表面;
所述红色像素层401的材料为制备例1提供的红光复合量子点;
所述绿色像素层402的材料为制备例4提供的绿光复合量子点;
所述白色像素层404为红光复合量子点子层4041和绿光复合量子点子层4042的叠层,位于白色像素区的量子点显示器件的结构如图19所示;
红光复合量子点子层4041、绿光复合量子点子层4042的材料分别为制备例1提供的红光复合量子点、制备例4提供的绿光复合量子点。
本实施例提供的量子点显示器件的制备方法如下:
(1)提供基板、驱动电路和LED阵列层的叠层结构(其结构如图4所示),按照实施例3的方法,在红色像素区内的LED光源表面沉积红光复合量子点层,作为红色像素层401;在绿色像素区内的LED光源表面沉积绿光复合量子点层,作为绿色像素层402;在蓝色像素区内的LED光源表面不沉积材料,该处无实体的区域作为蓝色像素层;
(2)采用单独沉积法在白色像素区内的LED光源表面逐层沉积红光复合量子点子层4041和绿光复合量子点子层4042的叠层,作为白色像素层404;
其中,红光复合量子点子层4041的沉积条件为电压差为10V,电流密度为6A/dm 2,持续10min;绿光复合量子点子层4042的沉积条件为电压差为1V,电流密度为10A/dm 2,持续10min;
(3)涂布包覆驱动电路20、LED阵列层30和像素阵列层40的封装胶水,固化后形成封装层50,得到所述量子点显示器件。
本实施例采用复合量子点结合电沉积工艺,可以直接在每一个像素级LED光源上相互独立地沉积出复合量子点层,实现高色域全彩显示;与现有复杂的光刻工艺相比,该方法简单、成本低且精度高,利于量子点显示器件的批量化生产;制备的量子点显示器件无滤光片,有助于提升光通过率和显示光效,降低器件整体功耗。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此。

Claims (10)

  1. 一种量子点显示器件,其包括:依次层叠的基板、驱动电路、LED阵列层和像素阵列层;
    所述量子点显示器件的显示区域包括红色像素区、绿色像素区和蓝色像素区;
    所述LED阵列层包括多个呈像素阵列排布的LED光源,所述驱动电路用于驱动所述LED光源,所述LED光源为蓝光LED或紫外LED;
    所述像素阵列层包括红色像素层、绿色像素层和蓝色像素层;
    所述红色像素层位于所述红色像素区内的LED光源表面;
    所述绿色像素层位于所述绿色像素区内的LED光源表面;
    所述蓝色像素层位于所述蓝色像素区内的LED光源表面;
    所述红色像素层的材料为红光复合量子点;
    所述绿色像素层的材料为绿光复合量子点;
    所述LED光源为蓝光LED,所述蓝色像素层为蓝光透射层;所述LED光源为紫外LED时,所述蓝色像素层的材料为蓝光复合量子点;
    所述红光复合量子点、绿光复合量子点、蓝光复合量子点均包括内核、包裹所述内核的包覆层,以及连接在所述包覆层外表面的配体;
    所述内核为红光量子点、绿光量子点或蓝光量子点,所述配体为具有离子键的有机盐,所述红光复合量子点、绿光复合量子点、蓝光复合量子点在所述配体解离的状态下呈正电性或负电性。
  2. 根据权利要求1所述的量子点显示器件,其中,所述量子点显示器件的显示区域还包括白色像素区,所述像素阵列层还包括位于所述白色像素区内的LED光源表面的白色像素层;
    所述LED光源为蓝光LED时,所述白色像素层为所述红光复合量子点和绿光复合量子点的混合层,或者红光复合量子点层和绿光复合量子点层的叠层;
    所述LED光源为紫外LED时,所述白色像素层为所述红光复合量子点、绿光复合量子点和蓝光复合量子点的混合层,或者红光复合量子点层、绿光复合量子点层和蓝光复合量子点层的叠层。
  3. 根据权利要求1或2所述的量子点显示器件,其中,所述红光量子点、绿光量子点和蓝光量子点为A xM yE z体系材料;
    其中,A元素选自Ba、Ag、Na、Fe、In、Cd、Zn、Ga、Mg、Pb和Cs中的一种或至少两种的组合;
    M元素选自S、Cl、O、As、N、P、Se、Te、Ti、Zr和Pb中的一种或至少两种的组合;
    E元素选自S、As、Se、O、Cl、Br和I中的一种或至少两种的组合;
    x为0.3~2.0,y为0.5~3.0,z为0~4.0。
  4. 根据权利要求1-3任一项所述的量子点显示器件,其中,所述量子点显示器件还包括包覆所述驱动电路、LED阵列层和像素阵列层的封装层。
  5. 根据权利要求1-4任一项所述的量子点显示器件,其中,所述包覆层的 材料为高分子材料、金属氧化物、金属硫化物、金属或金属合金;
    可选地,所述高分子材料选自PMA、PVDF、长链磷酸酯中的一种或至少两种的组合;
    可选地,所述长链磷酸酯为碳原子数为16-18的磷酸酯;
    可选地,所述金属氧化物选自ZnO、SiO 2、TiO 2或MgO中的一种或至少两种的组合;
    可选地,所述金属硫化物选自ZnS、CdS或TeS中的一种或至少两种的组合;
    可选地,所述金属选自Ti、Zr、Zn、Cd或Te中的一种或至少两种的组合;
    可选地,所述具有离子键的有机盐包括有机负离子盐或有机正离子盐;
    可选地,所述有机负离子盐包括有机酸盐;
    可选地,所述有机酸盐包括醋酸钠、乙吡啶酸盐或乙醇钠中一种或至少两种的组合;
    可选地,所述有机正离子盐包括有机铵盐;
    可选地,所述有机铵盐包括溴化四丁基铵盐、溴化铵、氯化铵或硫酸铵的一种或至少两种的组合。
  6. 根据权利要求1-5任一项所述的量子点显示器件,其中,所述红光量子点的粒径为6-12nm,绿光量子点的粒径为3-6nm、蓝光量子点的粒径为1-3nm。
  7. 根据权利要求1-6任一项所述的量子点显示器件,其中,所述红光复合量子点、绿光复合量子点、蓝光复合量子点的制备方法如下:
    a:向红光量子点、绿光量子点或蓝光量子点中滴加包覆层材料,控制pH、反应温度和反应时间,使所述包覆层材料包覆在所述红光量子点、绿光量子点或蓝光量子点表面,形成包覆层,得到量子点/包覆层核壳材料;
    b:将步骤a得到的量子点/包覆层核壳材料和配体分散于溶剂中,控制pH、反应温度和反应时间,使所述配体连接到所述包覆层表面,得到所述红光复合量子点、绿光复合量子点或蓝光复合量子点的溶液。
  8. 根据权利要求7所述的量子点显示器件,其中,步骤a中所述pH PH为5.5-11,反应温度为240-320℃,反应时间为0.5~10min;
    可选地,步骤b中所述pH为7-10,反应温度为120-320℃,反应时间为3-120min;
    可选地,步骤b所述溶剂为十八烯、正己烷、正辛烷、油氨、正十二硫醇、1-辛硫醇或三辛胺中一种或至少两种的组合。
  9. 一种如权利要求1-8任一项所述的量子点显示器件的制备方法,其包括如下步骤:
    提供基板、驱动电路和LED阵列层的叠层结构,通过电沉积在红色像素区内的LED光源表面沉积红光复合量子点层,作为红色像素层;在绿色像素区内的LED光源表面沉积绿光复合量子点层,作为绿色像素层;在蓝色像素区内的LED光源表面沉积蓝光复合量子点层或不进行沉积,作为蓝色像素层;得到所 述量子点显示器件;
    所述电沉积的方法为单独沉积法,所述单独沉积法为:选择红光复合量子点层、绿光复合量子点层和蓝光复合量子点层中的一种,将所述叠层结构置于待沉积的复合量子点的溶液中,通过所述驱动电路对待沉积的LED光源施加与所述待沉积的复合量子点电性相反的电压,对所述待沉积的复合量子点的溶液施加与所述待沉积的复合量子点电性相同的电压,进行沉积;
    可选地,所述电沉积电压为1~12V,电流密度为5~10A/dm 2,沉积时间为0.5~30min。
  10. 根据权利要求9所述的制备方法,其中,所述制备方法还包括在白色像素区内的LED光源表面沉积白色像素层;
    所述白色像素层的沉积方法为:将所述叠层结构置于电性相同的红光复合量子点和绿光复合量子点的混合溶液中,或置于电性相同的红光复合量子点、绿光复合量子点和蓝光复合量子点的混合溶液中,通过所述驱动电路对白色像素区内的LED光源施加与待沉积的复合量子点电性相反的电压,对所述混合溶液施加与待沉积的复合量子点电性相同的电压,进行沉积;
    或者按照所述单独沉积法,在白色像素区内的LED光源表面逐层沉积出红光复合量子点层和绿光复合量子点层的叠层,或逐层沉积出红光复合量子点层、绿光复合量子点层和蓝光复合量子点层的叠层;
    可选地,所述制备方法还包括:在每一次电沉积之后,将沉积后的叠层结构取出,干燥,进行加热、冷冻或光照;
    可选地,所述加热的温度为80~150℃;
    可选地,所述冷冻为在-40℃以下冷冻;
    可选地,所述光照为230-395nm的紫外光照下进行固化;
    可选地,所述制备方法还包括:在像素阵列层制备完成之后,涂布包覆所述驱动电路、LED阵列层和像素阵列层的封装胶水,固化后形成封装层。
PCT/CN2021/079119 2020-12-21 2021-03-04 一种量子点显示器件及其制备方法 WO2022134310A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011518863.XA CN112802947A (zh) 2020-12-21 2020-12-21 一种量子点显示器件及其制备方法
CN202011518863.X 2020-12-21

Publications (1)

Publication Number Publication Date
WO2022134310A1 true WO2022134310A1 (zh) 2022-06-30

Family

ID=75807131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079119 WO2022134310A1 (zh) 2020-12-21 2021-03-04 一种量子点显示器件及其制备方法

Country Status (2)

Country Link
CN (1) CN112802947A (zh)
WO (1) WO2022134310A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802947A (zh) * 2020-12-21 2021-05-14 深圳扑浪创新科技有限公司 一种量子点显示器件及其制备方法
CN113363361B (zh) * 2021-06-23 2023-05-16 安徽省东超科技有限公司 量子点复合体、三维显示元件及其加工方法
CN114284417B (zh) * 2021-12-29 2024-04-30 深圳市思坦科技有限公司 颜色转换基板及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576957A (zh) * 2013-10-10 2015-04-29 乐金显示有限公司 有机电致发光显示设备及其制造方法
CN105097878A (zh) * 2015-07-17 2015-11-25 京东方科技集团股份有限公司 有机电致发光显示面板及制备方法、显示装置
CN105388660A (zh) * 2015-12-17 2016-03-09 深圳市华星光电技术有限公司 Coa型阵列基板的制备方法
JP2016058172A (ja) * 2014-09-08 2016-04-21 一般財団法人電力中央研究所 発光素子および電子機器
CN107004699A (zh) * 2014-12-18 2017-08-01 Lg电子株式会社 有机发光二极管显示装置
CN111276510A (zh) * 2018-12-04 2020-06-12 昆山工研院新型平板显示技术中心有限公司 发光器件和显示装置
CN111509025A (zh) * 2020-05-26 2020-08-07 京东方科技集团股份有限公司 基于量子点的显示面板及其制备方法、显示装置
CN112802947A (zh) * 2020-12-21 2021-05-14 深圳扑浪创新科技有限公司 一种量子点显示器件及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090322670A1 (en) * 2008-06-30 2009-12-31 Achintya Bhowmik Color bistable display
CN106200103A (zh) * 2016-09-19 2016-12-07 合肥鑫晟光电科技有限公司 彩膜基板及制造方法、显示面板和显示装置
CN108493223B (zh) * 2018-04-20 2021-08-10 京东方科技集团股份有限公司 一种阵列基板、显示装置及其防窥方法
CN108615742A (zh) * 2018-07-10 2018-10-02 南方科技大学 一种显示面板制作方法、显示面板及显示装置
CN110120451B (zh) * 2019-04-12 2021-01-26 成都辰显光电有限公司 一种显示面板及显示装置
CN111607234B (zh) * 2020-06-15 2022-12-06 Tcl华星光电技术有限公司 一种量子点组合物及其制备方法、量子点图案化方法以及图案化量子点固态膜
CN111769109B (zh) * 2020-06-30 2022-02-18 上海天马微电子有限公司 显示面板和显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576957A (zh) * 2013-10-10 2015-04-29 乐金显示有限公司 有机电致发光显示设备及其制造方法
JP2016058172A (ja) * 2014-09-08 2016-04-21 一般財団法人電力中央研究所 発光素子および電子機器
CN107004699A (zh) * 2014-12-18 2017-08-01 Lg电子株式会社 有机发光二极管显示装置
CN105097878A (zh) * 2015-07-17 2015-11-25 京东方科技集团股份有限公司 有机电致发光显示面板及制备方法、显示装置
CN105388660A (zh) * 2015-12-17 2016-03-09 深圳市华星光电技术有限公司 Coa型阵列基板的制备方法
CN111276510A (zh) * 2018-12-04 2020-06-12 昆山工研院新型平板显示技术中心有限公司 发光器件和显示装置
CN111509025A (zh) * 2020-05-26 2020-08-07 京东方科技集团股份有限公司 基于量子点的显示面板及其制备方法、显示装置
CN112802947A (zh) * 2020-12-21 2021-05-14 深圳扑浪创新科技有限公司 一种量子点显示器件及其制备方法

Also Published As

Publication number Publication date
CN112802947A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2022134310A1 (zh) 一种量子点显示器件及其制备方法
CN107079559B (zh) 图像显示装置
US6608439B1 (en) Inorganic-based color conversion matrix element for organic color display devices and method of fabrication
US4143297A (en) Information display panel with zinc sulfide powder electroluminescent layers
US6218774B1 (en) Photoluminescent/electroluminescent display screen
US20230352642A1 (en) A FULL-COLOR uLED MICRO-DISPLAY DEVICE WITHOUT ELECTRICAL CONTACT AND A MANUFACTURING METHOD THEREFOR
WO2022134308A1 (zh) 一种量子点显示装置及其制备方法与应用
CN103346265A (zh) 一种发光器件、显示面板及其制造方法
CN103346266A (zh) 一种发光器件、显示面板及其制造方法
JP2010526420A (ja) 電力の分配が改善されたエレクトロルミネッセンス・デバイス
CN112631021A (zh) 一种量子点显示面板及其自组装制备方法
TWI224295B (en) Color tunable panel of organic electroluminescent displays
WO2022134309A1 (zh) 一种显示器件及其制备方法和应用
US20020001050A1 (en) Fluorescent liquid crystal displays and methods of making same
CN112635642B (zh) 一种基于量子点电沉积的显示装置及其应用
CN112802877B (zh) 复合量子点、量子点彩膜、其制备方法及量子点显示器件
CN112652694A (zh) 一种发光层及其制备方法和应用
TW200415935A (en) Electroluminescent device with a color filter
CN111200044B (zh) 薄膜型白光led芯片
GB1594357A (en) Production of electroluminescent powder
CN114106814A (zh) 量子点光致发光膜及其制备方法、显示装置
CN112510076A (zh) 一种量子点显示装置及其应用
CN113421986A (zh) Qd发光层、量子点发光器件及其制备方法
JP2000106280A (ja) 有機発光素子
WO2024180583A1 (ja) ナノ粒子、発光素子、表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.10.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21908324

Country of ref document: EP

Kind code of ref document: A1