WO2022133688A1 - 一种测量间隙的共享方法及装置 - Google Patents

一种测量间隙的共享方法及装置 Download PDF

Info

Publication number
WO2022133688A1
WO2022133688A1 PCT/CN2020/138134 CN2020138134W WO2022133688A1 WO 2022133688 A1 WO2022133688 A1 WO 2022133688A1 CN 2020138134 W CN2020138134 W CN 2020138134W WO 2022133688 A1 WO2022133688 A1 WO 2022133688A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
measurement gap
gap
sharing
target
Prior art date
Application number
PCT/CN2020/138134
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/258,535 priority Critical patent/US20240056848A1/en
Priority to CN202080004066.1A priority patent/CN115299131A/zh
Priority to PCT/CN2020/138134 priority patent/WO2022133688A1/zh
Publication of WO2022133688A1 publication Critical patent/WO2022133688A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the method, device, communication device, and storage medium for sharing measurement gaps proposed in the present disclosure are used to configure a mechanism for sharing measurement gaps between measurement modes, so as to take into account multiple measurement modes to perform mobility measurement on target frequency points, so that UE can Obtain a suitable cell for handover.
  • the embodiment of the second aspect of the present disclosure provides a sharing method for measuring gap, which is applicable to network devices, and the method includes:
  • the measurement gap sharing mechanism is used to indicate the measurement gap sharing method among various measurement modes when the UE measures the target frequency point.
  • the embodiment of the third aspect of the present disclosure proposes a sharing device for measuring gap, which is suitable for UE.
  • the device includes: a measurement module, configured to respond to the coincidence of resource windows corresponding to each measurement mode, based on the measurement gap sharing mechanism, Use the target measurement mode to measure the mobility of the target frequency point.
  • the embodiment of the fourth aspect of the present disclosure provides an apparatus for sharing measurement gap, which is suitable for network equipment, and the apparatus includes: a sending module configured to send a measurement gap sharing mechanism to user equipment UE;
  • the measurement gap sharing mechanism is used to instruct the UE to measure a measurement gap sharing method among various measurement modes when the target frequency is measured.
  • Embodiments of a fifth aspect of the present disclosure provide a communication device, including: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores data executable by the at least one processor The instruction is executed by the at least one processor, so that the at least one processor can execute the sharing method for measuring the gap described in the embodiment of the first aspect of the present disclosure, or the embodiment of the second aspect of the present disclosure.
  • Embodiments of the sixth aspect of the present disclosure provide a computer storage medium, wherein the computer storage medium stores computer-executable instructions, and after the computer-executable instructions are executed by a processor, the first aspect of the present disclosure can be implemented.
  • the method for sharing the measurement gap, or the method for sharing the measurement gap according to the embodiment of the second aspect of the present disclosure are implemented.
  • FIG. 1 is a schematic flowchart of a sharing method for measuring gap provided by an embodiment of the present disclosure
  • FIG. 2 is an example diagram of SSB and CSI-RS scheduling under a measurement gap provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of another sharing method for measuring gap provided by an embodiment of the present disclosure.
  • FIG. 4 is another example diagram of SSB and CSI-RS scheduling under a measurement gap provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of another sharing method for measuring gap provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a sharing apparatus for measuring gap according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart of a method for sharing a measurement gap gap provided by an embodiment of the present disclosure, which is applied to the UE side. As shown in FIG. 1 , the method for sharing a gap includes the following steps:
  • a target measurement mode is used to perform mobility measurement on a target frequency point.
  • each measurement mode may include SSB, CSI-RS, and any other measurement mode that can perform mobility measurement on a designated frequency point.
  • the SSB and the CSI-RS are used as examples for specific description. It should be noted that the description is only a schematic description, and cannot be used as a specific limitation on the measurement method.
  • the resource window corresponding to the SSB may be the SSB based RRM Measurement Timing Configuration (SMTC) measurement time configuration window (SSB based RRM Measurement Timing Configuration, RRM) allocated by the network device to the UE.
  • the resource window corresponding to the CSI-RS may be a CSI-RS-based measurement time configuration window allocated by the network device to the UE.
  • the target frequency point is a frequency point to be measured determined by the UE according to the configuration information, and the target frequency point may correspond to one neighboring cell or may correspond to multiple neighboring cells, which is not limited in this embodiment of the present disclosure.
  • a network device or a protocol can configure a gap sharing mechanism for the UE, and send the configured gap sharing mechanism to the UE.
  • the network device may configure the mobility measurement mode of the target frequency point to the UE through measurement configuration signaling, such as IE MeasConfig signaling. That is to say, the measurement configuration signaling carries the target frequency to be measured and the corresponding measurement mode configured for the UE.
  • measurement configuration signaling such as IE MeasConfig signaling.
  • the measurement configuration signaling may include a target frequency point, a corresponding mobility measurement mode, and a resource window corresponding to each mobility measurement mode. In still other possible implementation forms, the measurement configuration signaling may include multiple target frequency points, a mobility measurement mode corresponding to each target frequency point, and a resource window corresponding to each mobility measurement mode. In still other possible implementation forms, the measurement configuration signaling may include multiple target frequencies, a mobility measurement mode configuration mode, and a resource window corresponding to each mobility measurement mode, that is, multiple target frequencies The corresponding mobility measurement modes are the same.
  • the measurement gap sharing mechanism may include first indication information for indicating how the two target frequency point mobility measurement modes based on SSB and CSI-RS share resource windows.
  • the parameter values in the above-mentioned measurement gap sharing mechanism can be set as required.
  • a parameter X is set to represent the opportunity that the CSI-RS-based target frequency mobility measurement mode occupies the measurement gap resource window, and the corresponding (1-X) can represent the SSB-based The target frequency point mobility measurement mode occupies the opportunity to measure the gap resource window.
  • a parameter X can be set to indicate that the CSI-RS-based target frequency mobility measurement mode occupies the opportunity to measure the gap resource window
  • a parameter Y can be set to indicate the SSB-based target frequency.
  • the above-mentioned measurement gap sharing mechanism can be determined by the UE based on the measurement gap sharing signaling sent by the received network device, wherein the measurement gap sharing signaling can be IE MeasGapSharingConfig, which can be determined by the measurement gap sharing signaling in the measurement gap sharing signaling.
  • the first indication information field of the measurement gap sharing mechanism such as MeasGapSharingScheme, is added to indicate to the UE how the two target frequency mobility measurement modes based on SSB and CSI-RS share resource windows.
  • the value of the MeasGapSharingScheme field in the measurement gap sharing signaling may be an encoded value corresponding to the above parameter X, or (1-X) or Y.
  • the value of the MeasGapSharingScheme field is the encoded value corresponding to the parameter X, and the value of X can be 0, 0.25, 0.5, 0.75, then the corresponding relationship between the MeasGapSharingScheme field and X can be as shown in Table 1:
  • each element and each corresponding relationship in Table 1 exist independently; these elements and corresponding relationships are exemplarily listed in the same table, but do not represent all the elements in the table, Correspondence must exist according to the coexistence shown in Table 1.
  • the value of each element and each corresponding relationship are independent of any other element value or corresponding relationship in Table 1. Therefore, those skilled in the art can understand that the value of each element and each corresponding relationship in Table 1 are each an independent embodiment.
  • the UE based on the measurement gap sharing mechanism, the UE first determines the proportion of the measurement gap used in each measurement mode, and then determines the current The target measurement method to be used, and then the target measurement method is used to measure the mobility of the target frequency point.
  • the parameter X in the above Table 1 represents the opportunity that the SSB-based target frequency mobility measurement mode occupies the measurement gap resource window, and (1-X) represents the CSI-RS-based target frequency mobility measurement.
  • the mode occupies the opportunity to measure the gap resource window.
  • the UE may determine the target measurement mode to be used under different measurement gap opportunities according to the measurement gap sharing mechanism, and then use the target measurement mode to perform mobility measurement on the target frequency point.
  • the UE determines that the SSB-based measurement mode and the CSI-RS-based measurement mode occupy the opportunity ratio of the measurement gap resource window to be 1:3, so that the UE has different measurement gap opportunities based on SSB or CSI-RS.
  • the scheduling diagram for CSI-RS measurement may be shown in FIG. 2 . That is, after the UE performs one mobility measurement on the target frequency based on SSB in one measurement gap, it needs to perform three mobility measurements on the target frequency based on CSI-RS in the following three measurement gaps.
  • the UE may select an appropriate cell for handover based on the quality of the signal measured in the target measurement mode.
  • the UE when the UE measures the gap, if the resource windows corresponding to each measurement mode overlap, the current target measurement mode can be determined based on the measurement gap sharing mechanism, and then the target measurement mode is used to perform mobility on the target frequency. Measurement. Therefore, without increasing the measurement resources, the mobility measurement of the target frequency point by multiple measurement modes of the shared resource window is taken into account, so that the UE can obtain a more suitable cell for handover under any circumstances.
  • FIG. 3 is a schematic flowchart of another method for sharing a measurement gap provided by an embodiment of the present disclosure, which is executed by a UE.
  • the sharing method for measuring gap includes the following steps:
  • the target frequency is a mobility measurement frequency based on SSB and CSI-RS, and the resource window corresponding to the SSB coincides with the resource window corresponding to the CSI-RS.
  • S302 Receive measurement gap sharing signaling sent by the network device, where the measurement gap sharing signaling includes a measurement gap sharing mechanism.
  • the measurement gap sharing mechanism may include the ratio of each measurement mode to the measurement resource window. In another possible implementation form, the measurement gap sharing mechanism may include the ratio of each measurement mode to the measurement gap and the execution sequence information of each measurement mode.
  • the value of the MeasGapSharingScheme field in the measurement gap sharing signaling is used to represent the proportion of the measurement gap occupied by the SSB measurement mode.
  • the measurement gap sharing signaling also includes a second indication information for characterizing the execution sequence of the SSB measurement mode.
  • the second indication information has different values, the execution sequence of the SSB measurement mode is different.
  • the value of the second indication information is 0, indicating that in the measurement gap, the SSB measurement mode is performed first, and when the field is 1, it indicates that the CSI-RS measurement mode is performed first in the measurement gap.
  • the value of the MeasGapSharingScheme field in the measurement gap sharing signaling is used to represent the proportion of the measurement gap occupied by the CSI-RS measurement mode.
  • the measurement gap sharing signaling further includes second indication information for representing the execution sequence of the CSI-RS measurement mode, and when the second indication information has different values, the execution sequence of the CSI-RS measurement mode is different.
  • the value of the second indication information is 0, which means that in the measurement gap, the CSI-RS measurement mode is performed first, and when the second indication information is 1, it means that in the measurement gap, the SSB measurement mode is performed first.
  • the second indication information used to represent the execution order of the CSI-RS measurement mode in the measurement gap sharing signaling corresponds to multiple fields. For example, when the value of the multiple fields is 01, it indicates that the execution sequence of the SSB and CSI-RS is interval execution, or, when the value of the multiple fields is 11, it indicates that the SSB-based mobility measurement is executed every two times. A CSI-RS based mobility measurement and so on.
  • the specific implementation manners of measuring the gap sharing signaling and measuring the gap sharing mechanism may adopt any of the implementation manners in the embodiments of the present disclosure, which are not limited in the embodiments of the present disclosure, and will not be Repeat.
  • S304 Determine the target measurement mode to be used currently according to the execution sequence information of each measurement mode, the ratio of the measurement gap used, and the number of times of execution.
  • the corresponding UE performs measurement based on SSB or CSI-RS under different measurement gap opportunities, as shown in FIG. 4 . That is, in each measurement gap, the UE needs to first perform two mobility measurements on the target frequency based on the SSB, and then perform two mobility measurements on the target frequency based on the CSI-RS. And so on.
  • the UE after the UE performs mobility measurement on the target frequency point based on the target measurement mode, it can select an appropriate cell for handover based on the quality of the signal.
  • FIG. 5 is a schematic flowchart of another sharing method for measuring gap provided by an embodiment of the present disclosure, which is executed by a network device.
  • the sharing method for measuring gap includes the following steps:
  • each of the above measurement modes may include SSB, CSI-RS, and any other measurement modes that can be used to perform mobility measurement on the target frequency point, which is not limited in the present disclosure.
  • the network device may send the measurement gap sharing mechanism to the UE based on the measurement gap sharing signaling, that is, the measurement gap sharing signaling includes the measurement gap sharing mechanism.
  • the measurement gap sharing mechanism may include first indication information for indicating the proportion of the measurement gap used in each measurement mode.
  • the measurement gap sharing mechanism may further include second indication information for indicating the execution order of each measurement mode.
  • the network device may also indicate the target frequency to be measured, each measurement mode corresponding to the target frequency, and the resource window corresponding to each measurement mode to the UE through the measurement gap configuration instruction.
  • the network device can send measurement gap configuration signaling to the UE, wherein, The configuration signaling is used to instruct the UE to perform mobility measurement on the target frequency based on the SSB and the CSI-RS, and the resource window corresponding to the SSB coincides with the resource window corresponding to the CSI-RS.
  • the specific implementation manner of the measurement gap configuration instruction may be any one of the implementation manners in the embodiment of the present disclosure, which is not limited in the embodiment of the present disclosure, and will not be described again.
  • the network device sends the measurement gap sharing mechanism to the UE, so that when the UE performs mobility measurement on the target frequency points that can perform mobility measurement based on multiple measurement modes, if the multiple measurement modes correspond to If the resource windows overlap, the current target measurement mode can be determined based on the measurement gap sharing mechanism, and then the target measurement mode is used to perform mobility measurement on the target frequency point. Therefore, without increasing the measurement resources, the mobility measurement of the target frequency point by multiple measurement modes of the shared resource window is taken into account, so that the UE can obtain a more suitable cell for handover under any circumstances.
  • the present disclosure also provides a sharing device for measuring gap, because the sharing device for measuring gap provided by the embodiments of the present disclosure is the same as the one provided by the above-mentioned embodiments of FIG. 1 to FIG. 5 .
  • the sharing method for measuring gap so the implementation of the sharing method for measuring gap is also applicable to the sharing apparatus for measuring gap provided in this embodiment, which will not be described in detail in this embodiment.
  • FIG. 6 is a schematic structural diagram of a sharing apparatus for measuring gap according to an embodiment of the present disclosure.
  • the apparatus 600 for sharing a measurement gap which is applicable to a UE, includes: a measurement module 610 .
  • the measurement module 610 is configured to use the target measurement mode to perform mobility measurement on the target frequency point based on the gap sharing mechanism in response to the coincidence of the resource windows corresponding to each measurement mode.
  • each measurement mode may include SSB, CSI-RS, and any other measurement mode that can perform mobility measurement on a designated frequency point.
  • the SSB and the CSI-RS are used as examples for specific description. It should be noted that the description is only a schematic description, and cannot be used as a specific limitation on the measurement method.
  • the sharing apparatus 600 for measuring gap further includes:
  • the receiving module is configured to receive the measurement gap sharing signaling sent by the network device, wherein the measurement gap sharing signaling includes the measurement gap sharing mechanism.
  • the sharing device 600 for measuring gap also includes:
  • the determining module is configured to, in response to the acquired measurement gap configuration signaling sent by the network device, determine that the target frequency is a mobility measurement frequency based on SSB and CSI-RS, and the resource window corresponding to the SSB is the same as the The resource windows corresponding to the CSI-RS are coincident.
  • the above-mentioned measurement module 610 may be specifically configured as:
  • the mobility measurement is performed on the target frequency point.
  • the UE when the UE is measuring the gap, if the resource windows corresponding to each measurement mode overlap, the current target measurement mode can be determined based on the measurement gap sharing mechanism, and then the target measurement mode can be used to move the target frequency. sex measurement. Therefore, without increasing the measurement resources, the mobility measurement of the target frequency point by multiple measurement modes of the shared resource window is taken into account, so that the UE can obtain a more suitable cell for handover under any circumstances.
  • the sending module 710 is configured to send a measurement gap sharing mechanism to a user equipment UE, wherein the measurement gap sharing mechanism is used to indicate a measurement gap sharing method among various measurement modes when the UE measures a target frequency point.
  • each measurement mode includes: a synchronization information block SSB, a channel state information reference signal CSI-RS, and any other measurement mode that can perform mobility measurement on a designated frequency point.
  • the above-mentioned sending module 710 may be specifically configured as:
  • the above-mentioned sending module 710 can also be configured as:
  • the optional measurement gap sharing mechanism further includes second indication information for indicating the execution order of each measurement mode.
  • the network device sends the measurement gap sharing mechanism to the UE, so that when the UE performs mobility measurement on the target frequency points that can perform mobility measurement based on multiple measurement modes, if the corresponding If the resource windows overlap, the current target measurement mode can be determined based on the acquired measurement gap sharing mechanism, and then the target measurement mode is used to perform mobility measurement on the target frequency point. Therefore, without increasing the measurement resources, the mobility measurement of the target frequency point by multiple measurement modes of the shared resource window is taken into account, so that the UE can obtain a more suitable cell for handover under any circumstances.
  • the present disclosure also provides a communication device and a readable storage medium.
  • the communication device includes: one or more processors 1100, a memory 1200, and interfaces for connecting various components, including a high-speed interface and a low-speed interface.
  • the various components are interconnected using different buses and may be mounted on a common motherboard or otherwise as desired.
  • the processor may process instructions executed within the communication device, including instructions stored in or on memory to display graphical information of the GUI on an external input/output device, such as a display device coupled to the interface.
  • multiple processors and/or multiple buses may be used with multiple memories and multiple memories, if desired.
  • multiple communication devices may be connected, with each device providing some of the necessary operations (eg, as a server array, a group of blade servers, or a multi-processor system).
  • FIG. 8 takes a processor 1100 as an example.
  • the memory 1200 is the non-transitory computer-readable storage medium provided by the present disclosure.
  • the memory stores instructions executable by at least one processor, so that the at least one processor executes the neighbor cell measurement method provided by the present disclosure.
  • the non-transitory computer-readable storage medium of the present disclosure stores computer instructions for causing the computer to execute the neighbor cell measurement method provided by the present disclosure.
  • the memory 1200 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as program instructions/modules corresponding to the sharing method for measuring gap in the embodiments of the present disclosure (for example, , the measurement module 610 shown in FIG. 6 , or the sending module 710 in FIG. 7 ).
  • the processor 1100 executes various functional applications and data processing of the server by running the non-transitory software programs, instructions and modules stored in the memory 1200, ie, implements the neighbor cell measurement method in the above method embodiments.
  • the communication device may further include: an input device 1300 and an output device 1400 .
  • the processor 1100 , the memory 1200 , the input device 1300 and the output device 1400 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 8 .
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user's computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.
  • a computer system can include clients and servers.
  • Clients and servers are generally remote from each other and usually interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • the UE when the UE measures the gap, if the resource window corresponding to the SSB coincides with the resource window corresponding to the CSI-RS, the current target measurement mode can be determined based on the acquired measurement gap sharing mechanism, and then the target measurement mode is adopted. , to measure the mobility of the target frequency point. Therefore, without increasing the measurement resources, the mobility measurement of the target frequency point by the SSB and CSI-RS of the shared resource window is taken into account, so that the UE can obtain a more suitable cell in any case. to switch.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
  • the above-mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出了一种测量间隙gap的共享方法及装置,涉及无线通信技术领域。该方案为:响应于各个测量模式分别对应的资源窗重合,基于测量gap共享机制,采用目标测量模式对目标频点进行移动性测量。从而在不增加测量资源的情况下,兼顾了共享资源窗的多种测量模式对目标频点的移动性测量,使UE可以在任何情况下,都可以获取到更合适的小区进行切换。

Description

一种测量间隙的共享方法及装置 技术领域
本公开涉及移动通信领域,特别是指一种测量间隙的共享方法及装置。
背景技术
用户设备(User Equipment,UE)在连接到通信网络后,仍然需要不断地搜索并测量邻小区的无线信道质量,以使得在适当的时候能够进行切换。相关技术中,定义了测量间隙(gap)机制用于邻小区的移动性测量,UE会根据网络设备配置的测量gap,进行邻小区测量。也就是说,预留一部分时间即测量gap,在这段间隙内,UE不会发送和接收任何数据,而将接收机调向邻小区的频点上进行邻小区的测量,测量gap时间结束时再转到当前所驻留的小区。实现中,在无线资源控制连接状态(Radio Resource Control_CONNECTED,RRC_CONNECTED)下,UE可以基于同步信号块(Synchronization Signal Bloc,SSB)和基于信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)进行邻小区的移动性测量。
发明内容
本公开提出的测量gap的共享方法、装置、通信设备和存储介质,用于通过配置各测量模式共享测量gap的机制,以兼顾多种测量模式对目标频点进行移动性测量,以便于UE可以获取到合适的小区进行切换。
本公开第一方面实施例提出了一种测量gap的共享方法,适用于用户设备UE,该方法包括:响应于各测量模式分别对应的资源窗重合,基于测量gap共享机制,采用目标测量模式对目标频点进行移动性测量。
本公开第二方面实施例提出了一种测量gap的共享方法,适用于网络设备,该方法包括:
向用户设备UE发送测量gap共享机制;
其中,测量gap共享机制用于指示UE在测量目标频点时,各个测量模式间的测量gap共享方法。
本公开第三方面实施例提出了一种测量gap的共享装置,适用于UE,所述装置包括:测量模块,被配置为响应于各测量模式分别对应的资源窗重合,基于测量gap共享机制,采用目标测量模式对目标频点进行移动性测量,。
本公开第四方面实施例提出了一种测量gap的共享装置,适用于网络设备,所述装置包括:发送模块,被配置为向用户设备UE发送测量gap共享机制;
其中,所述测量gap共享机制用于指示所述UE在测量目标频点时,各个测量模式间的测量gap共享方法。
本公开第五方面实施例提供了一种通信设备,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本公开第一方面实施例所述的测量gap的共享方法,或者本公开第二方面实施例所述的测量gap的共享方法。
本公开第六方面实施例提供了一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后,能够实现本公开第一方面实施例所述的测量gap的共享方法,或者本公开第二方面实施例所述的测量gap的共享方法。
附图说明
图1为本公开实施例提供的一种测量gap的共享方法的流程示意图;
图2为本公开实施例提供的一种测量gap下SSB和CSI-RS调度示例图;
图3为本公开实施例提供的另一种测量gap的共享方法的流程示意图;
图4为本公开实施例提供的另一种测量gap下SSB和CSI-RS调度示例图;
图5为本公开实施例提供的另一种测量gap的共享方法的流程示意图;
图6为本公开实施例提供的一种测量gap的共享装置的结构示意图;
图7为本公开实施例提供的另一种测量gap的共享装置的结构示意图;
图8为本公开实施例提供的一种通信设备的示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件、或具有相同或类似功能的元件。下面参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
图1为本公开实施例提供的一种测量间隙gap的共享方法的流程示意图,应用于UE侧,如图1所示,该gap的共享方法包括以下步骤:
S101,响应于各测量模式对应的资源窗重合,基于测量gap共享机制,采用目标测量模式对目标频点进行移动性测量。
可选的,各测量模式,可以包括SSB、CSI-RS及其它任意可对指定频点进行移动性测量的测量方式。本公开实施例中以SSB及CSI-RS为例进行具体说明,需要说明的是,该说明仅是示意性说明,而不能作为对测量方式的具体限定。
其中,SSB对应的资源窗,可以为网络设备为UE分配的基于SSB的无线资源管理(Radio Resource Management,RRM)测量时间配置窗口(SSB based RRM Measurement Timing Configuration,SMTC)。相应的,CSI-RS对应的资源窗,可以为网络设备为UE分配的基于CSI-RS的测量时间配置窗口。
目标频点,为UE根据配置信息,确定的待测量的频点,该目标频点可能对应一个邻小区,也可能对应多个邻小区,本公开实施例对此不做限定。
本公开实施例中,网络设备在为目标频点配置了基于SSB和CSI-RS的移动性测量、且SSB对应的资源窗与CSI-RS对应的资源窗重合的情况下,为了 兼顾基于SSB和基于CSI-RS的两种测量模式的目标频点移动性测量,可以由网络设备或者协议约定为UE配置gap共享机制,并将配置的gap共享机制发送给UE。
可选的,网络设备可以通过测量配置信令,如IE MeasConfig信令,向UE配置目标频点的移动性测量模式。也就是说,测量配置信令中携带有为UE所配置的待测量的目标频点、及对应的测量模式。
相应的,UE在基于获取的网络设备发送的测量gap配置信令,确定目标频点为基于SSB及CSI-RS的移动性测量频点、且SSB对应的资源窗与CSI-RS对应的资源窗重合的情况下,在对目标频点进行移动性测量时,就需要基于测量gap共享机制,来确定SSB和CSI-RS各自占用资源窗的机会。
在一些可能的实现形式中,测量配置信令中,可以包括一个目标频点、对应的移动性测量模式及每种移动性测量模式对应的资源窗。在又一些可能的实现形式中,测量配置信令中,可以包括多个目标频点、每个目标频点对应的移动性测量模式及每种移动性测量模式对应的资源窗。在又一些可能的实现形式中,测量配置信令中,可以包括多个目标频点、一种移动性测量模式配置方式,及每种移动性测量模式对应的资源窗,即多个目标频点对应的移动性测量模式相同。
可选的,测量gap共享机制中可以包括用于指示基于SSB和基于CSI-RS的两种目标频点移动性测量模式共享资源窗方式的第一指示信息。
比如,在测量gap共享机制中,设置一个指示信息X,用于表示基于SSB的目标频点移动性测量模式占用测量gap资源窗的机会,相应的(1-X),就可以表示基于CSI-RS的目标频点移动性测量模式占用测量gap资源窗的机会。
可选的,上述测量gap共享机制中的参数取值,可以根据需要设置。比如X可以为0.2、0.25、0.5、0.75、0.8、1等等。其中,X=0.25,表示基于SSB的目标频点移动性测量模式占用测量gap资源窗25%的机会为25%,相应的,基于CSI-RS的测量模式占用测量gap资源窗75%的机会。
或者,在测量gap共享机制中,设置一个参数X,用于表示基于CSI-RS的目标频点移动性测量模式占用测量gap资源窗的机会,相应的(1-X),就可以表示基于SSB的目标频点移动性测量模式占用测量gap资源窗的机会。
或者,还可以在测量gap共享机制中,设置一个参数X,用于表示基于CSI-RS的目标频点移动性测量模式占用测量gap资源窗的机会,同时设置一个参数Y表示基于SSB的目标频点移动性测量模式占用测量gap资源窗的机会,其中,X+Y<=1。
可以理解的是,上述测量gap共享机制的方式,仅是示意性说明,不能作为对本公开保护范围的限定。
可选的,上述测量gap共享机制,可以UE基于接收到的网络设备发送的测量gap共享信令确定的,其中,测量gap共享信令,可以为IE MeasGapSharingConfig,可以通过在该测量gap共享信令中增加测量gap共享机制的第一指示信息字段,比如MeasGapSharingScheme,来向UE指示基于SSB和基于CSI-RS的两种目标频点移动性测量模式共享资源窗的方式。
可选的,测量gap共享信令中的MeasGapSharingScheme字段的取值可以为与上述参数X、或(1-X)或Y对应的编码值。
举例来说,MeasGapSharingScheme字段的取值为与参数X对应的编码值、且X取值可以为0、0.25、0.5、0.75,那么MeasGapSharingScheme字段与X的对应关系可以如表一所示:
表一
Figure PCTCN2020138134-appb-000001
可以理解的是,表一中的每一个元素、每一条对应关系,都是独立存在的;这些元素、对应关系被示例性的列在同一张表格中,但是并不代表表格中的所有元素、对应关系必须根据表格一中所示的同时存在。其中每一个元素的值和每一对应关系,是不依赖于表一中任何其他元素值或对应关系。因此本领域内技术人员可以理解,该表一中的每一个元素的取值、每一条对应关系,各种都是一个独立的实施例。
在一些可能的实现形式中,UE基于测量gap共享机制,首先确定每个测量模式使用测量gap的比例,然后根据每个测量模式使用测量gap的比例及每个测量模式已执行的次数,确定当前待使用的目标测量方式,进而采用目标测量方式,对目标频点进行移动性测量。
举例来说,上述表一中参数X表征的是基于SSB的目标频点移动性测量模式占用测量gap资源窗的机会,(1-X)表征的是基于CSI-RS的目标频点移动性测量模式占用测量gap资源窗的机会。对应的,UE可以按照该测量gap共享机制在不同测量gap机会下,确定待采用的目标测量模式,进而采用目标测量模式对目标频点进行移动性测量。
比如,MeasGapSharingScheme字段为“01”时,UE确定基于SSB的测量模式与基于CSI-RS的测量模式占用测量gap资源窗的机会比为1:3,从而UE在不同测量gap机会下,基于SSB或者CSI-RS进行测量的调度图可以如图2所示。即,UE每在一个测量gap中,基于SSB对目标频点进行一次移动性测 量后,就需要在后续的3个测量gap中,基于CSI-RS对目标频点进行三次移动性测量。
进一步的,UE可以基于目标测量模式测量到的信号的质量情况,选取合适的小区进行切换。
本公开实施例中,UE在测量gap中,若各测量模式对应的资源窗重合,则可以基于测量gap共享机制,确定当前的目标测量模式,进而采用目标测量模式,对目标频点进行移动性测量。从而在不增加测量资源的情况下,兼顾了共享资源窗的多种测量模式对目标频点的移动性测量,使UE可以在任何情况下,都可以获取到更合适的小区进行切换。
本公开实施例提供了另一种测量gap的共享方法。图3为本公开实施例提供的另一种测量gap的共享方法流程示意图,由UE执行。如图3所示,该测量gap的共享方法包括如下步骤:
S301,响应于获取的网络设备发送的测量gap配置信令,确定目标频点为基于SSB及CSI-RS的移动性测量频点、且SSB对应的资源窗与CSI-RS对应的资源窗重合。
本公开实施例中,测量配置信令的具体实现方式,可以分别采用本公开实施例中任一种实现方式,本公开实施例对此不做限定,也不再赘述。
S302,接收网络设备发送的测量gap共享信令,其中,测量gap共享信令中包括测量gap共享机制。
在一种可能的实现形式中,测量gap共享机制中可以包括每种测量模式占测量资源窗口的比例。在另一种可能的实现形式中,测量gap共享机制中可以包括每种测量模式占测量gap的比例及每个测量模式的执行顺序信息。
举例来说,测量gap共享信令中的MeasGapSharingScheme字段的取值,用于表征SSB测量模式占用测量gap的比例。相应的,测量gap共享信令中还包括一个用于表征SSB测量模式的执行顺序的第二指示信息,该第二指示信息 取值不同时,表征SSB测量模式的执行顺序不同。比如,该第二指示信息取值为0,表征在测量gap中,首先执行SSB测量模式,该字段取值为1时,表征在测量gap中,首先执行CSI-RS测量模式。
或者,测量gap共享信令中的MeasGapSharingScheme字段的取值,用于表征CSI-RS测量模式占用测量gap的比例。相应的,测量gap共享信令中还包括一个用于表征CSI-RS测量模式的执行顺序的第二指示信息,该第二指示信息取值不同时,表征CSI-RS测量模式的执行顺序不同。比如,该第二指示信息取值为0,表征在测量gap中,首先执行CSI-RS测量模式,该第二指示信息取值为1时,表征在测量gap中,首先执行SSB测量模式。
或者,测量gap共享信令中用于表征CSI-RS测量模式的执行顺序的第二指示信息对应多个字段。比如该多个字段取值为01时,表征SSB与CSI-RS的执行顺序为间隔执行,或者,该多个字段取值为11时,表征每执行两次基于SSB的移动性测量后,执行一次基于CSI-RS的移动性测量等等。
需要说明的是,上述对用于表征SSB和/或CSI-RS的执行顺序的第二指示信息对应的字段数量及取值的说明,仅是示意性说明,并不能作为对本公开保护范围的限定。
另外,本公开实施例中,测量gap共享信令及测量gap共享机制的具体实现方式,可以分别采用本公开实施例中任一种实现方式,本公开实施例对此不做限定,也不再赘述。
S303,基于测量gap共享机制,确定每个测量模式的执行顺序信息及使用测量gap的比例。
S304,根据每个测量模式的执行顺序信息、使用测量gap的比例及已执行的次数,确定当前待使用的目标测量模式。
S305,采用目标测量模式,对目标频点进行移动性测量。
举例来说,测量gap共享机制中MeasGapSharingScheme字段的取值为“10”,其表征SSB测量模式占用测量gap的比例为50%,即基于CSI-RS的目标频点 移动性测量模式占用测量gap资源窗的机会为50%。且该gap共享机制中用于表征SSB执行顺序的字段取值为1,其表征在测量gap机会中,首先执行基于SSB的移动性测量。
其对应的UE在不同测量gap机会下,基于SSB或者CSI-RS进行测量的调度图可以如图4所示。即,UE在各测量gap中,需要首先基于SSB对目标频点进行两次移动性测量,再基于CSI-RS对目标频点进行两次移动性测量。依次类推。
进一步的,UE在基于目标测量模式,对目标频点进行移动性测量后,即可基于信号的质量情况,选取合适的小区进行切换。
本公开实施例中,UE接收网络设备发送的测量gap配置信令,确定目标频点为基于SSB及CSI-RS的移动性测量频点、且SSB对应的资源窗与CSI-RS对应的资源窗重合,之后,基于接收的网络设备发送的测量gap共享机制中每个测量模式的执行顺序及占的比例,确定当前的目标测量模式,进而采用目标测量模式,对目标频点进行移动性测量。从而在不增加测量资源的情况下,灵活的兼顾了共享资源窗的SSB和CSI-RS的两种方式对目标频点的移动性测量,使UE可以在任何情况下,都可以获取到更合适的小区进行切换。
本公开实施例提供了另一种测量gap的共享方法,图5为本公开实施例提供的另一种测量gap的共享方法的流程示意图,由网络设备执行。如图5所示,该测量gap的共享方法包括如下步骤:
S501,向UE发送测量gap共享机制,其中,所述测量gap共享机制用于指示所述UE在测量目标频点时,各个测量模式间的测量gap共享方法。
可选的,上述各个测量模式,可以包括SSB、CSI-RS及其它任意可用于对目标频点进行移动性测量的测量模式,本公开对此不作限定。
在一种可能的实现形式中,网络设备可以基于测量gap共享信令,向UE发送测量gap共享机制,即测量gap共享信令中包括测量gap共享机制。
可选的,测量gap共享机制中,可以包括用于指示每个测量模式使用所述测量gap的比例的第一指示信息。
可选的,测量gap共享机制中还可以包括用于指示每个测量模式的执行顺序的第二指示信息。
需要说明的是,本公开实施例中,测量gap共享信令及测量gap共享机制的具体实现方式,可以分别采用本公开实施例中任一种实现方式,本公开实施例对此不做限定,也不再赘述。
可选的,网络设备还可以通过测量gap配置指令,向UE指示待测量的目标频点、目标频点对应的各测量模式、及每个测量模式对应的资源窗。
可选的,若任一目标频点可基于SSB及CSI-RS进行移动性测量,且SSB及CSI-RS对应的资源窗重合,则网络设备即可向UE发送测量gap配置信令,其中,配置信令用于指示UE基于SSB及CSI-RS对所述目标频点进行移动性测量,且所述SSB对应的资源窗与所述CSI-RS对应的资源窗重合。
需要说明的是,本公开实施例中,测量gap配置指令的具体实现方式,可以分别采用本公开实施例中任一种实现方式,本公开实施例对此不做限定,也不再赘述。
本公开实施例中,网络设备通过向UE发送测量gap共享机制,从而使UE在对可基于多种测量模式分别进行移动性测量的目标频点进行移动性测量时,若多种测量模式分别对应的资源窗重合,则可以基于测量gap共享机制,确定当前的目标测量模式,进而采用目标测量模式,对目标频点进行移动性测量。从而在不增加测量资源的情况下,兼顾了共享资源窗的多种测量模式对目标频点的移动性测量,使UE可以在任何情况下,都可以获取到更合适的小区进行切换。
与上述几种实施例提供的测量gap的共享方法相对应,本公开还提供一种测量gap的共享装置,由于本公开实施例提供的测量gap的共享装置与上述图 1-图5实施例提供的测量gap的共享方法相对应,因此测量gap的共享方法的实施方式也适用于本实施例提供的测量gap的共享装置,在本实施例中不再详细描述。
图6是本公开实施例提出的一种测量gap的共享装置的结构示意图。
如图6所示,该测量gap的共享装置600,适用于UE,包括:测量模块610。
测量模块610,被配置为响应于各测量模式对应的资源窗重合,基于gap共享机制,采用目标测量模式对目标频点进行移动性测量。
可选的,各测量模式,可以包括SSB、CSI-RS及其它任意可对指定频点进行移动性测量的测量方式。本公开实施例中以SSB及CSI-RS为例进行具体说明,需要说明的是,该说明仅是示意性说明,而不能作为对测量方式的具体限定。
可选地,该测量gap的共享装置600,还包括:
接收模块,被配置为接收网络设备发送的测量gap共享信令,其中,所述测量gap共享信令中包括所述测量gap共享机制。
可选地,该测量gap的共享装置600,还包括:
确定模块,被配置为响应于获取的网络设备发送的测量gap配置信令,确定所述目标频点为基于SSB及CSI-RS的移动性测量频点、且所述SSB对应的资源窗与所述CSI-RS对应的资源窗重合。
可选的,上述测量模块610,可以被具体配置为:
基于所述测量gap共享机制,确定每个测量模式使用所述测量gap的比例;
根据所述每个测量模式使用所述测量gap的比例及每个所述测量模式已执行的次数,确定当前待使用的目标测量方式;
采用所述目标测量方式,对所述目标频点进行移动性测量。
可选的,上述测量模块610,还可以被具体配置为:
基于测量gap共享机制,确定每个测量模式的执行顺序信息及使用测量gap 的比例;
根据每个测量模式的执行顺序信息、使用测量gap的比例及已执行的次数,确定当前待使用的目标测量模式;
采用目标测量模式,对目标频点进行移动性测量。
本公开实施例中,UE在测量gap中,若各测量模式分别对应的资源窗重合,则可以基于测量gap共享机制,确定当前的目标测量模式,进而采用目标测量模式,对目标频点进行移动性测量。从而在不增加测量资源的情况下,兼顾了共享资源窗的多种测量模式对目标频点的移动性测量,使UE可以在任何情况下,都可以获取到更合适的小区进行切换。
图7是本公开实施例提出的另一种测量gap的共享装置的结构示意图。
如图7所示,该测量gap的共享装置700,适用于网络设备,包括:发送模块710。
发送模块710,被配置为向用户设备UE发送测量gap共享机制,其中,所述测量gap共享机制用于指示所述UE在测量目标频点时,各个测量模式间的测量gap共享方法。
可选的,各个测量模式包括:同步信息块SSB、信道状态信息参考信号CSI-RS及其它任意可对指定频点进行移动性测量的测量方式。
可选地,上述发送模块710,可以被具体配置为:
向UE发送测量gap共享信令,其中,测量gap共享信令中包括测量gap共享机制。
可选的,上述发送模块710,还可以被配置为:
向UE发送测量gap配置信令,其中,配置信令用于指示UE基于SSB及CSI-RS对目标频点进行移动性测量,且SSB对应的资源窗与所述CSI-RS对应的资源窗重合。
可选的,测量gap共享机制中包括用于指示每个测量模式使用所述测量gap 的比例的第一指示信息。
可选的测量gap共享机制中还包括用于指示每个测量模式的执行顺序的第二指示信息。
本公开实施例中,网络设备通过向UE发送测量gap共享机制,从而使UE在对可基于多种测量模式分别进行移动性测量的目标频点进行移动性测量时,若各测量模式分别对应的资源窗重合,则可以基于获取的测量gap共享机制,确定当前的目标测量模式,进而采用目标测量模式,对目标频点进行移动性测量。从而在不增加测量资源的情况下,兼顾了共享资源窗的多种测量模式对目标频点的移动性测量,使UE可以在任何情况下,都可以获取到更合适的小区进行切换。
根据本公开的实施例,本公开还提供了一种通信设备和一种可读存储介质。
如图8所示,该通信设备包括:一个或多个处理器1100、存储器1200,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在通信设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个通信设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图8中以一个处理器1100为例。
存储器1200即为本公开所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本公开所提供的邻小区测量方法。本公开的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本公开所提供的邻小区测量方法。
存储器1200作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件 程序、非瞬时计算机可执行程序以及模块,如本公开实施例中的测量gap的共享方法对应的程序指令/模块(例如,附图6所示的测量模块610,或者,图7中的发送模块710)。处理器1100通过运行存储在存储器1200中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的邻小区测量方法。
存储器1200可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据定位通信设备的使用所创建的数据等。此外,存储器1200可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。可选地,存储器1200可选包括相对于处理器1100远程设置的存储器,这些远程存储器可以通过网络连接至定位通信设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信设备还可以包括:输入装置1300和输出装置1400。处理器1100、存储器1200、输入装置1300和输出装置1400可以通过总线或者其他方式连接,图8中以通过总线连接为例。
输入装置1300可接收输入的数字或字符信息,以及产生与定位通信设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置1400可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执 行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且 通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
本公开实施例中,UE在测量gap中,若SSB对应的资源窗与CSI-RS对应的资源窗重合,则可以基于获取的测量gap共享机制,确定当前的目标测量模式,进而采用目标测量模式,对目标频点进行移动性测量。从而在不增加测量资源的情况下,兼顾了共享资源窗的SSB和CSI-RS的两种方式对目标频点的移动性测量,使UE可以在任何情况下,都可以获取到更合适的小区进行切换。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (14)

  1. 一种测量间隙gap的共享方法,其特征在于,应用于用户设备UE,所述方法包括:
    响应于各测量模式分别对应的资源窗重合,基于测量gap共享机制,采用目标测量模式对目标频点进行移动性测量。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    接收网络设备发送的测量gap共享信令,其中,所述测量gap共享信令中包括所述测量gap共享机制。
  3. 如权利要求1所述的方法,其特征在于,还包括:
    响应于获取的网络设备发送的测量gap配置信令,确定所述目标频点为基于同步信息块SSB及信道状态信息参考信号CSI-RS的移动性测量频点、且所述SSB对应的资源窗与所述CSI-RS对应的资源窗重合。
  4. 如权利要求1所述的方法,其特征在于,所述基于获取的测量gap共享机制,采用目标测量模式对目标频点进行移动性测量,包括:
    基于所述测量gap共享机制,确定每个测量模式使用所述测量gap的比例;
    根据所述每个测量模式使用所述测量gap的比例及每个所述测量模式已执行的次数,确定当前待使用的目标测量方式;以及
    采用所述目标测量方式,对所述目标频点进行移动性测量。
  5. 如权利要求1-4任一所述的方法,其特征在于,所述基于获取的测量gap共享机制,采用目标测量模式对目标频点进行移动性测量,包括:
    基于所述测量gap共享机制,确定每个测量模式的执行顺序信息及使用所述测量gap的比例;
    根据所述每个测量模式的执行顺序信息、使用所述测量gap的比例及已执行的次数,确定当前待使用的目标测量模式;
    采用所述目标测量模式,对所述目标频点进行移动性测量。
  6. 一种测量间隙gap的共享方法,其特征在于,应用于网络设备,所述方法包括:
    向用户设备UE发送测量gap共享机制;
    其中,所述测量gap共享机制用于指示所述UE在测量目标频点时,各个测量模式间的测量gap共享方法。
  7. 如权利要求6所述的方法,其特征在于,所述向用户设备UE发送测量gap共享机制,包括:
    向所述UE发送测量gap共享信令,其中,所述测量gap共享信令中包括测量gap共享机制。
  8. 如权利要求6所述的方法,其特征在于,还包括:
    向所述UE发送测量gap配置信令,其中,所述配置信令用于指示所述UE基于同步信息块SSB及信道状态信息参考信号CSI-RS对所述目标频点进行移动性测量,且所述SSB对应的资源窗与所述CSI-RS对应的资源窗重合。
  9. 如权利要求6-8任一所述的方法,其特征在于,所述测量gap共享机制中包括用于指示每个所述测量模式使用所述测量gap的比例的第一指示信息。
  10. 如权利要求9所述的方法,其特征在于,所述测量gap共享机制中还包括用于指示所述每个测量模式的执行顺序的第二指示信息。
  11. 一种测量间隙gap的共享装置,其特征在于,应用于用户设备UE,所 述装置包括:
    测量模块,被配置响应于各个测量模式分别对应的资源窗重合,基于测量gap共享机制,采用目标测量模式对目标频点进行移动性测量。
  12. 一种测量间隙gap的共享装置,其特征在于,应用于网络设备,所述装置包括:
    发送模块,被配置为向用户设备UE发送测量gap共享机制;
    其中,所述测量gap共享机制用于指示所述UE在测量目标频点时,各个测量模式间的测量gap共享方法。
  13. 一种通信设备,其特征在于,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1至5、或6至10任一项所述的方法。
  14. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1至5、或6至10任一项所述的方法。
PCT/CN2020/138134 2020-12-21 2020-12-21 一种测量间隙的共享方法及装置 WO2022133688A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/258,535 US20240056848A1 (en) 2020-12-21 2020-12-21 Method for sharing measurement gap
CN202080004066.1A CN115299131A (zh) 2020-12-21 2020-12-21 一种测量间隙的共享方法及装置
PCT/CN2020/138134 WO2022133688A1 (zh) 2020-12-21 2020-12-21 一种测量间隙的共享方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138134 WO2022133688A1 (zh) 2020-12-21 2020-12-21 一种测量间隙的共享方法及装置

Publications (1)

Publication Number Publication Date
WO2022133688A1 true WO2022133688A1 (zh) 2022-06-30

Family

ID=82156927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138134 WO2022133688A1 (zh) 2020-12-21 2020-12-21 一种测量间隙的共享方法及装置

Country Status (3)

Country Link
US (1) US20240056848A1 (zh)
CN (1) CN115299131A (zh)
WO (1) WO2022133688A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247852A (zh) * 2017-08-10 2020-06-05 苹果公司 用于测量间隙配置的方法和装置
CN111972010A (zh) * 2018-02-26 2020-11-20 上海诺基亚贝尔股份有限公司 用于用户设备测量性能需求确定的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247852A (zh) * 2017-08-10 2020-06-05 苹果公司 用于测量间隙配置的方法和装置
CN111972010A (zh) * 2018-02-26 2020-11-20 上海诺基亚贝尔股份有限公司 用于用户设备测量性能需求确定的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Introduce a new measurement triggering mechanism and interference reporting prohibit timer for UAV", 3GPP DRAFT; R2-1806416, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Sanya, China; 20180416 - 20180420, 20 April 2018 (2018-04-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051435924 *

Also Published As

Publication number Publication date
US20240056848A1 (en) 2024-02-15
CN115299131A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
EP4250618A1 (en) Transmission method and apparatus
WO2022170446A1 (zh) 一种卫星链路信息确定方法及装置
CN112771928B (zh) 一种卫星回传信息的确定方法及装置
WO2022126318A1 (zh) 直连通信方法、装置、通信设备和存储介质
WO2022147675A1 (zh) 上行天线面板的确定方法、装置及通信设备
WO2022099657A1 (zh) 终端的离开角aod获取方法、装置和通信设备
WO2022126343A1 (zh) 一种邻小区测量方法及装置
WO2022133688A1 (zh) 一种测量间隙的共享方法及装置
CN115039447B (zh) 一种天线切换配置的切换方法及设备
WO2022120536A1 (zh) 一种基于集成接入和回程的用户设备定位方法及装置
CN112771896B (zh) 一种测量相对位置的方法及装置
WO2022099645A1 (zh) Aod获取方法、装置和通信设备
WO2022120847A1 (zh) 配置候选重复传输次数的方法及装置
WO2022141575A1 (zh) 一种参考时间信息的使用方法及装置
WO2022116164A1 (zh) 定位方法、装置、通信设备和存储介质
WO2022109934A1 (zh) 一种信号传输方法及装置
WO2023011535A1 (zh) 低移动性状态的确定方法、装置、终端及网络侧设备
WO2022165761A1 (zh) 提前终止方法、装置、设备及存储介质
WO2022218202A1 (zh) 测量间隔模式的配置方法及装置、终端及网络侧设备
WO2022151102A1 (zh) 调度请求资源的确定方法、装置及通信设备
WO2023284827A1 (zh) 测量间隔共享规则的配置方法及装置
WO2024104078A1 (zh) 测量放松方法、终端及网络侧设备
WO2022120821A1 (zh) 一种小区选择或重选方法及装置
WO2022151286A1 (zh) 波束指示方法及装置以及波束确定方法及装置
WO2022126654A1 (zh) 解调参考信号映射、装置、设备及其存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966269

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18258535

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966269

Country of ref document: EP

Kind code of ref document: A1