WO2022099645A1 - Aod获取方法、装置和通信设备 - Google Patents

Aod获取方法、装置和通信设备 Download PDF

Info

Publication number
WO2022099645A1
WO2022099645A1 PCT/CN2020/128804 CN2020128804W WO2022099645A1 WO 2022099645 A1 WO2022099645 A1 WO 2022099645A1 CN 2020128804 W CN2020128804 W CN 2020128804W WO 2022099645 A1 WO2022099645 A1 WO 2022099645A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
aod
terminal
sending
beams
Prior art date
Application number
PCT/CN2020/128804
Other languages
English (en)
French (fr)
Inventor
江小威
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/128804 priority Critical patent/WO2022099645A1/zh
Priority to US18/036,759 priority patent/US20230408621A1/en
Priority to CN202080003205.9A priority patent/CN114766081A/zh
Publication of WO2022099645A1 publication Critical patent/WO2022099645A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to an AOD acquisition method, apparatus, communication device and storage medium.
  • the relative angle may include an angle of arrival (Angel Of Arrival, AOA) and an angle of departure (Angel Of Depature, AOD).
  • AOA Angel Of Arrival
  • AOD Angel Of Depature
  • LTE Long Term Evolution
  • NR New Radio
  • the AOD acquisition method, device, communication device and storage medium proposed in the present application are used to solve the problem that the acquisition of AOD cannot be realized in the Long Term Evolution (Long Term Evolution, LTE) network and the New Radio (New Radio, NR) in the related art .
  • LTE Long Term Evolution
  • NR New Radio
  • An embodiment of the first aspect of the present application proposes an AOD acquisition method, including: sending multiple scanning beams to a receiving terminal; receiving at least one beam identifier, wherein the at least one beam identifier is based on the signal quality of the multiple scanning beams determining; determining a target scanning beam based on the at least one beam identifier, and determining the AOD of the sending terminal based on the target scanning beam.
  • the embodiment of the second aspect of the present application provides another AOD acquisition method, including: receiving multiple scanning beams sent by a sending terminal; measuring the signal quality of each of the scanning beams; according to the signal quality of the multiple scanning beams , and send at least one beam identifier to the sending terminal.
  • An embodiment of a third aspect of the present application provides an AOD acquisition device, including: a beam sending module configured to send multiple scanning beams to a receiving terminal; an identification receiving module configured to receive at least one beam identification, wherein the At least one beam identifier is determined according to the signal quality of the plurality of scanning beams; the determining module is configured to determine a target scanning beam based on the at least one beam identifier, and determine the AOD of the sending terminal based on the target scanning beam.
  • the embodiment of the fourth aspect of the present application provides another AOD acquisition device, including: a beam receiving module configured to receive multiple scanning beams sent by a sending terminal; a quality measurement module configured to detect the signals of each of the scanning beams The quality is measured; the identifier sending module is configured to send at least one beam identifier to the sending terminal according to the signal quality of the multiple scanning beams.
  • Embodiments of the fifth aspect of the present application provide a communication device, including: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores data executable by the at least one processor.
  • the instruction is executed by the at least one processor, so that the at least one processor can execute the AOD acquisition method described in the embodiment of the first aspect of the present application, or the embodiment of the second aspect of the present application.
  • AOD acquisition method AOD acquisition method.
  • Embodiments of the sixth aspect of the present application provide a computer storage medium, wherein the computer storage medium stores computer-executable instructions, and after the computer-executable instructions are executed by a processor, the embodiments of the first aspect of the present application can be implemented The AOD acquisition method, or the AOD acquisition method described in the embodiments of the second aspect of the present application.
  • the sending terminal may send multiple scanning beams to the receiving terminal, and then receive at least one beam identifier, where the at least one beam identifier is determined according to the signal quality of the multiple scanning beams, and then based on the at least one beam identifier
  • the identification determines the target scanning beam, and determines the AOD of the transmitting terminal based on the target scanning beam.
  • the transmitting terminal can transmit the scanning beam to the receiving terminal and determine the AOD of the transmitting terminal according to the beam identifier, so as to realize the acquisition of the AOD in the long-term evolution LTE network and the new air interface NR.
  • FIG. 1 is a schematic diagram of a method for obtaining an AOD according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of multiple scanning beams in an AOD acquisition method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of another AOD acquisition method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another AOD acquisition method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another AOD acquisition method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another AOD acquisition method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another AOD acquisition method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another AOD acquisition method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another AOD acquisition method provided by an embodiment of the present application.
  • FIG. 10 is an interactive schematic diagram of an AOD acquisition method provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an AOD acquisition device provided by an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of another AOD acquisition device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another AOD acquisition device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another AOD acquisition apparatus provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a communication device according to an embodiment of the present application.
  • first, second, third, etc. may be used in the embodiments of the present application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • FIG. 1 is a schematic diagram of an AOD acquisition method provided by an embodiment of the present application.
  • the AOD acquisition method of the embodiment of the present application includes the following steps:
  • S101 Send a plurality of scanning beams to a receiving terminal.
  • the execution subject is the sending terminal.
  • the sending terminals include but are not limited to mobile phones, computers, smart wearable devices, smart home appliances, vehicle-mounted terminals, etc., which are not limited here.
  • the sending terminal may send multiple scanning beams to the receiving terminal.
  • an antenna array is provided on the transmitting terminal, and the transmitting terminal can transmit multiple scanning beams to the receiving terminal through its own antenna array.
  • the sending terminal may send a plurality of scanning beams with different beam azimuth angles to the receiving terminal.
  • the transmitting terminal can transmit scanning beams with azimuth angles of 0°, 10°, 20° to 350°, and the beam azimuths between two adjacent scanning beams differ by 10°.
  • S102 Receive at least one beam identifier, where the received at least one beam identifier is determined according to signal quality of multiple scanning beams.
  • the sending terminal may receive at least one beam identifier, where the at least one beam identifier is determined according to the signal quality of the multiple scanning beams.
  • each scan beam may correspond to a beam identifier, and different scan identifiers are used to distinguish different scan beams.
  • the beam identifier may be in the form of numbers, characters, etc., which is not limited here.
  • the beam identifier of each scanning beam is determined according to the sending position of the corresponding scanning beam.
  • the sending position of the scanning beam may include the beam azimuth angle of the scanning beam.
  • the beam identifier of each scanning beam can be determined according to the beam azimuth angle of the corresponding scanning beam, the beam identifier of the scanning beam with a beam azimuth angle of 0° can be #0, and the scanning beam with a beam azimuth angle of 10° can be #0.
  • the beam identifier of 1 can be #1, the beam identifier of the scanning beam with the beam azimuth angle of 20° can be #2, and so on, the beam identifier of the scanning beam with the beam azimuth angle of 350° can be #35.
  • each scanning beam carries its own beam identifier.
  • the receiving terminal can extract the corresponding beam identifier from each scanning beam.
  • the at least one beam identifier received by the above-mentioned sending terminal is selected according to the signal quality of multiple scanning beams.
  • the at least one beam identifier may be a beam identifier corresponding to at least one scanning beam selected in descending order of the signal quality of the multiple scanning beams. Assuming that the sending terminal sends 10 scanning beams to the receiving terminal, the beam identifier of the scanning beam ranked 1 (that is, the scanning beam with the best signal quality) can be selected according to the order of the signal quality of the 10 scanning beams from high to low.
  • the number of at least one beam identifier received by the transmitting end is one, which is the beam identifier of the scan beam with the best signal quality among the 10 scan beams, or the beam identifier of the scan beams in the order of 1 to 3 can be selected , at this time, the number of at least one beam identifier received by the transmitting end is 3, which are the beam identifiers of the top 3 scanning beams in the order of signal quality among the 10 scanning beams. Therefore, the method can obtain the beam identifier of at least one scanning beam with better signal quality from the plurality of scanning beams.
  • the receiving terminal may select at least one beam identifier corresponding to at least one scanning beam according to the signal quality of the multiple scanning beams, and send the at least one beam identifier to the sending terminal.
  • the terminal further, the sending terminal may receive the above-mentioned at least one beam identifier sent by the receiving terminal.
  • S103 Determine a target scanning beam based on the received at least one beam identifier, and determine an AOD of the sending terminal based on the target scanning beam.
  • the sending terminal may determine the target scanning beam based on the beam identifier.
  • the beam identifier is the beam identifier of the scan beam with the best signal quality among the multiple scan beams, and can be determined directly according to the one-to-one correspondence between the beam identifier and the scan beam.
  • Target scan beam is the beam identifier of the scan beam with the best signal quality among the multiple scan beams.
  • determining the target scanning beam based on the above-mentioned unique beam identification may include pre-establishing a mapping relationship or a mapping table between the beam identification and the scanning beam, and after obtaining the beam identification, querying the mapping relationship or mapping table, the beam can be determined. Identify the corresponding scanning beam as the target scanning beam. It should be noted that the mapping relationship or the mapping table can be set according to the actual situation, and set in the storage space of the sending terminal.
  • the scanning beam may fluctuate due to interference factors such as the environment. If only the unique beam identifier is received and the target scanning beam is determined based on the unique beam identifier, the selected target scanning beam may be inaccurate and the stability may be poor. .
  • the transmitting terminal can also receive multiple beam identifiers, and then obtain the signal qualities of multiple candidate scanning beams identified by the multiple beam identifiers for multiple measurements, and select the signal quality with the highest signal quality according to the multiple measured signal qualities. Good candidate scan beams serve as target scan beams. It can be understood that the stability of the signal quality is also an influencing factor of the quality of the signal. For example, the variance of the signal quality measured multiple times for each candidate scanning beam may be obtained, and the candidate scanning beam with the smallest variance may be selected as the target scanning beam.
  • the method can effectively avoid the situation that the selected target scanning beam is inaccurate when the scanning beam is subject to interference and fluctuation, and the stability of the selected target scanning beam is also good.
  • the sending terminal determines the target scanning beam based on the at least one beam identifier
  • the angle of departure (Angel Of Depature, AOD) of the sending terminal may be determined based on the target scanning beam.
  • the beam identifier of the scanning beam with the beam azimuth angle of 0° can be #0
  • the beam identifier of the scanning beam with the beam azimuth angle of 10° can be #1
  • the beam identifier of the scanning beam with the beam azimuth angle of 20° can be #1. It can be #2, and so on, the beam identifier of the scanning beam with the beam azimuth angle of 350° can be #35.
  • the beam identifier received by the transmitting terminal is #1, it can be determined based on the beam identifier #1 that the target scanning beam is a scanning beam with a beam azimuth angle of 10°, and the AOD of the transmitting terminal is determined to be 10°.
  • the signal qualities of the candidate scanning beams identified by the beam identifiers #7, #18, and #9 can be obtained for multiple measurements, and based on the above multiple measurements, the signal quality can be obtained.
  • the signal quality of the second measurement is selected, and the candidate scanning beam with the best signal quality is selected as the target scanning beam. If it is determined that the signal quality of the identified candidate scanning beam with beam ID #7 is the best according to the signal quality of the above multiple measurements, then the identified candidate scanning beam with beam ID #7 may be used as the target scanning beam, and Determine the AOD of the sending terminal to be 70°.
  • the AOD acquisition method of the embodiment of the present application can determine the AOD of the sending terminal, and can be applied to the field of angle measurement.
  • the sending terminal may further determine the relative position of the receiving terminal relative to the sending terminal according to the AOD of the sending terminal and the distance between the sending terminal and the receiving terminal. Therefore, the AOD acquisition method of the embodiment of the present application can also be applied to the field of positioning.
  • the transmitting terminal may send multiple scanning beams to the receiving terminal, and then receive the beam identifiers, wherein the beam identifiers are determined according to the signal quality of the multiple scanning beams, and then the target scan is determined based on at least one beam identifier. beam, and determine the AOD of the transmitting terminal based on the target scanning beam.
  • the transmitting terminal can transmit the scanning beam to the receiving terminal and determine the AOD of the transmitting terminal according to the beam identifier, so as to realize the acquisition of the AOD in the long-term evolution LTE network and the new air interface NR.
  • FIG. 3 is a schematic diagram of another AOD acquisition method provided by an embodiment of the present application.
  • the AOD acquisition method of the embodiment of the present application includes the following steps:
  • S201 Periodically send a plurality of scanning beams to a receiving terminal according to the angle measurement period.
  • the transmitting terminal can periodically send multiple scanning beams to the receiving terminal according to the angle measurement period, and then the AOD of the transmitting terminal can be re-determined at fixed angle measurement periods, which is helpful to update the AOD of the transmitting terminal in time .
  • the angle measurement period can be set according to the actual situation, for example, it can be set to 10 minutes.
  • the transmitting terminal may send multiple scanning beams to the receiving terminal in each angle measurement period, and the interval between two adjacent transmissions is 10 minutes.
  • S202 Receive at least one beam identifier, where the at least one beam identifier is determined according to signal quality of multiple scanning beams.
  • S203 Determine the target scanning beam based on the at least one beam identifier, and determine the AOD of the sending terminal based on the target scanning beam.
  • step S202-step S203 For the related content of step S202-step S203, reference may be made to the foregoing embodiment, and details are not repeated here.
  • the transmitting terminal may periodically send multiple scanning beams to the receiving terminal according to the angle measurement period, and then receive at least one beam identifier, wherein the at least one beam identifier is based on the signal quality of the multiple scanning beams
  • the target scanning beam is determined based on the unique beam identifier obtained through at least one beam identifier
  • the AOD of the sending terminal is determined based on the target scanning beam. Therefore, the transmitting terminal can periodically send multiple scanning beams to the receiving terminal according to the angle measurement period, and the AOD of the transmitting terminal can be re-determined at fixed angle measurement periods, which is helpful for updating the AOD of the transmitting terminal in time.
  • FIG. 4 is a schematic diagram of another AOD acquisition method provided by an embodiment of the present application.
  • the AOD acquisition method of the embodiment of the present application includes the following steps:
  • the transmitting terminal may scan the beam in rounds, and send the scanning beam of each round of scanning to the receiving terminal, then the AOD of the transmitting terminal can be re-determined in each round of scanning, which is helpful for timely checking the AOD of the transmitting terminal to update.
  • performing beam scanning by wheel may include the following two possible implementations:
  • Mode 1 Perform beam scanning according to the number of scanning rounds negotiated with the receiving terminal.
  • the sending terminal may negotiate the number of scanning rounds with the receiving terminal in advance, and perform beam scanning according to the number of scanning rounds negotiated with the receiving terminal.
  • the number of scanning rounds can be negotiated and set according to the actual situation, for example, it can be set to 10 rounds.
  • the transmitting terminal may send multiple scanning beams to the receiving terminal in each scanning round, and 10 scanning rounds are accumulated.
  • Manner 2 Send indication information to the receiving terminal after each scan or each time a beam identifier is received, where the indication information is used to indicate whether there is a next round of scanning beams.
  • the sending terminal may send indication information to the receiving terminal, where the indication information is used to indicate whether there is a next round of scanning beams for the receiving terminal to use according to Instructs information to receive scanning beams.
  • the indication information further includes a start time of the next round of scanning, so that the receiving terminal can receive the scanning beam according to the start time of the next round of scanning.
  • the beam identification can be the beam identification corresponding to the scanning beam with the best signal quality among the scanning beams scanned in each round, and the beam identification can be re-determined in each round of scanning, which helps to update the AOD of the sending terminal in time. .
  • performing beam scanning by round may include determining the first beam azimuth of the scanning beam in the next round according to the beam identifier received in the previous round and the current round number, and performing the next round according to the first beam azimuth. Beam scanning.
  • the beam identification is the beam identification corresponding to the scanning beam with the best signal quality in the scanning beams scanned in each round
  • the beam identification sent by the receiving terminal in the previous round is the scanning beam with the best signal quality in the previous round of scanning.
  • the first beam azimuth of the next round of scanning beams can be determined, and the next round can be carried out according to the first beam azimuth. Beam scanning helps to reduce the number of beam scanning while ensuring the angle measurement accuracy.
  • the first beam azimuth angle of the scanning beam in the next round can be marked by the beam identifier #1
  • the beam azimuth angle corresponding to the scanning beam is 10°, and then the next round of beam scanning can be performed according to the first beam azimuth angle of 10°.
  • determining the first beam azimuth of the scanning beam in the next round according to the beam identification received in the previous round and the current round number, and may also include the scanning beam identified according to the beam identification and the current round number. , determine the second beam azimuth of the scanning beam, and then divide the second beam azimuth according to the number of beams to be scanned in each round to determine the first beam azimuth of the next round.
  • the number of beams to be scanned in each round can be set according to the actual situation, for example, it can be set to 10.
  • the second beam of the scanning beam can be determined If the azimuth angle is 10°, the azimuth angle of the second beam can be divided into 10°, and the azimuth angle of the first beam in the next round is determined to be 5/18°, 5/9°, 5/6° to 10°. Further, the next round of beam scanning may be performed according to the first beam azimuth angles of 5/18°, 5/9°, 5/6° to 10°. At this time, the method only needs to scan 72 beams to achieve the same angle measurement accuracy of scanning 36*36 beams, which greatly reduces the number of beam scans.
  • coarse-grained beam scanning can be performed first according to the number of beams to be scanned in each round, and then the next round can be determined according to the scanning beams identified by the beam identifier and the current round number.
  • the first beam azimuth of the scanning beam is determined, and the next round of beam scanning is performed according to the first beam azimuth, that is, fine-grained beam scanning is performed, which helps to reduce the number of beam scanning while ensuring the angle measurement accuracy.
  • S302 Receive at least one beam identifier, where the beam identifier is determined according to signal quality of multiple scanning beams.
  • S303 Determine the target scanning beam based on the at least one beam identifier, and determine the AOD of the sending terminal based on the target scanning beam.
  • step S302-step S303 For the related content of step S302-step S303, reference may be made to the above-mentioned embodiment, and details are not repeated here.
  • the sending terminal performs beam scanning in rounds, sends the scanning beam scanned in each round to the receiving terminal, and then receives at least one beam identifier, wherein the at least one beam identifier is based on the number of scan beams.
  • the signal quality is determined, and then the target scanning beam is determined based on the unique beam identifier obtained from the at least one beam identifier, and the AOD of the transmitting terminal is determined based on the target scanning beam. Therefore, the transmitting terminal can scan the beam in rounds, and send the scanning beam of each round to the receiving terminal, and the AOD of the transmitting terminal can be re-determined in each round of scanning, which is helpful to update the AOD of the transmitting terminal in time.
  • FIG. 5 is a schematic diagram of another AOD acquisition method provided by an embodiment of the present application.
  • the AOD acquisition method of the embodiment of the present application includes the following steps:
  • S401 Send a capability negotiation request to a receiving terminal, where the capability negotiation request is used to negotiate whether the receiving terminal supports beam-based AOD angle measurement.
  • the sending terminal may send a capability negotiation request to the receiving terminal, where the capability negotiation request is used to negotiate whether the receiving terminal supports beam-based AOD angle measurement.
  • S402 Receive a capability negotiation request response sent by the receiving terminal, where the negotiation request response indicates that the receiving terminal supports beam-based AOD angle measurement.
  • the sending terminal can receive a capability negotiation request response sent by the receiving terminal, and the negotiation request response indicates that the receiving terminal supports beam-based AOD angle measurement, indicating that the AOD obtaining method in the embodiment of the present application can be applied to the receiving terminal,
  • the following steps S403-S407 can be continued.
  • the negotiation request response indicates that the receiving terminal does not support beam-based AOD angle measurement, it indicates that the AOD acquisition method in this embodiment of the present application cannot be applied to the receiving terminal, and it is unnecessary to continue to perform the following step S403- S407.
  • the capability negotiation request may be sent or the capability negotiation request response may be received through the terminal capability request side link (User EquipmentCapabilityEnquirySidelink) or the terminal capability information side link (User Equipment CapabilityInformationSidelink).
  • the terminal capability request side link User EquipmentCapabilityEnquirySidelink
  • the terminal capability information side link User Equipment CapabilityInformationSidelink
  • the sending terminal may negotiate the angle measurement parameters of the AOD with the receiving terminal. It can be understood that the angle measurement parameter is used to instruct the sending terminal to send multiple scanning beams to the receiving terminal.
  • the angle measurement parameters include one or more of the following parameters: the number of sent scanning beams, the scanning interval, the number of returned beam identifiers, the number of scanning rounds, the scanning interval of each round, and the scanning interval of each round.
  • the scanning interval may include the time interval between adjacent scanning beams sent, the scanning interval of each round may include the time interval between two adjacent rounds of sending scanning beams, and the time-frequency resource information used by the scanning beams may include The resource pool used by the scanning beam, the start time of the scanning beam, etc.
  • one of the following methods can be used to negotiate the angle measurement parameters of the AOD with the receiving terminal:
  • Mode 1 Send an angle measurement request to the receiving terminal, wherein the angle measurement request carries angle measurement parameters.
  • Manner 2 Receive a goniometric request response sent by the receiving terminal, wherein the goniometric request response carries goniometric parameters.
  • the above-mentioned angle measurement request or angle measurement request response can be performed through a radio resource control (Radio Resource Control, RRC) message (referred to as “PC5-RRC”) corresponding to the link interface (PC5) between the terminals, between the terminals.
  • RRC Radio Resource Control
  • PC5-RRC Radio Resource Control
  • the signalling protocol (Signalling Protocol) message (referred to as "PC5-S”) corresponding to the link interface (PC5) is sent.
  • Manner 3 Send resource scheduling information to the receiving terminal, where the resource scheduling information includes angle measurement parameters.
  • a resource pool is pre-configured for the sending terminal, and the sending terminal can schedule resources from the resource pool according to certain resource scheduling rules.
  • the sending terminal can send the corresponding resource scheduling to the receiving terminal. information.
  • Manner 4 Send negotiation indication information to the receiving terminal, where the negotiation indication information carries angle measurement parameters.
  • the angle measurement request, the angle measurement request response, the resource scheduling information, and the negotiation indication information in the above four manners can be sent through radio resource control (Radio Resource Control, RRC) signaling, or other signaling.
  • RRC Radio Resource Control
  • S404 Send multiple scanning beams to the receiving terminal.
  • S405. Receive at least one beam identifier, where the at least one beam identifier is determined according to the channel quality of the multiple scanning beams.
  • step S404-step S405 For the related content of step S404-step S405, reference may be made to the foregoing embodiment, and details are not repeated here.
  • S406 Receive a measurement result of the scanning beam, where the measurement result includes the reference signal received power RSRP and/or the reference signal received quality RSRQ.
  • the measurement result of the scanning beams can also be received.
  • the measurement result includes reference signal receiving power (Reference Signal Receiving Power, RSRP) and/or reference signal receiving quality (Reference Signal Receiving Quality, RSRQ).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the receiving terminal can obtain the measurement results of the multiple scanning beams, and feed back the measurement results of the multiple scanning beams to the sending terminal.
  • the measurement result of the scanning beam sent by the terminal can be obtained.
  • S407 Determine the target scanning beam based on the at least one beam identifier, and determine the AOD of the sending terminal based on the target scanning beam.
  • step S407 For the relevant content of step S407, reference may be made to the foregoing embodiments, and details are not described herein again.
  • the sending terminal sends a capability negotiation request to the receiving terminal, and can receive a capability negotiation request response sent by the receiving terminal, wherein the negotiation request response indicates that the receiving terminal supports beam-based AOD angle measurement, and then sends
  • the terminal sends multiple scanning beams to the receiving terminal, and then receives at least one beam identifier sent by the receiving terminal, wherein the at least one beam identifier is determined according to the signal quality of the multiple scanning beams, and can also receive the measurement results of the scanning beams, which can be determined later
  • the beam direction of the target scanning beam identified by the unique beam identifier obtained through the at least one beam identifier is determined, and the AOD of the sending terminal is determined based on the beam direction of the target scanning beam.
  • the sending terminal can send the scanning beam to the receiving terminal, and determine the AOD of the sending terminal according to the beam identifier.
  • FIG. 6 is a schematic diagram of another AOD acquisition method provided by an embodiment of the present application.
  • the AOD acquisition method of the embodiment of the present application includes the following steps:
  • S501 Receive multiple scanning beams sent by a sending terminal.
  • the execution subject is the receiving terminal.
  • the receiving terminals include but are not limited to mobile phones, computers, smart wearable devices, smart home appliances, vehicle-mounted terminals, etc., which are not limited here.
  • the receiving terminal may receive multiple scanning beams sent by the transmitting terminal.
  • an antenna array is provided on the receiving terminal, and the receiving terminal can receive multiple scanning beams sent by the transmitting terminal through its own antenna array.
  • the receiving terminal may measure the signal quality of each scanning beam.
  • measuring the signal quality of each scanning beam may include measuring the reference signal receiving power (Reference Signal Receiving Power, RSRP) and/or the reference signal receiving quality (Reference Signal Receiving Quality, RSRQ) of each scanning beam .
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • S503 Send at least one beam identifier to the sending terminal according to the signal quality of the multiple scanning beams.
  • the receiving terminal may determine at least one scanning beam from the multiple scanning beams according to the signal quality of the multiple scanning beams, and then send the beam identifier of the at least one scanning beam to the sending terminal.
  • each scanning beam may correspond to a beam identifier, which is used to distinguish different scanning beams.
  • the beam identifier may be in the form of numbers, characters, etc., which is not limited here.
  • the receiving terminal may determine the beam identifier of the scanning beam according to the sending position of the scanning beam.
  • the sending position of the scanning beam may include the beam azimuth angle of the scanning beam.
  • the beam identifier of the scanning beam with the beam azimuth angle of 0° can be #0
  • the beam identifier of the scanning beam with the beam azimuth angle of 10° can be #1
  • the beam identifier of the scanning beam with the beam azimuth angle of 20° can be #1.
  • It can be #2, and so on, the beam identifier of the scanning beam with the beam azimuth angle of 350° can be #35.
  • each scanning beam carries its own beam identifier.
  • the receiving terminal may extract the beam identifier of the scanning beam from the scanning beam.
  • the above-mentioned at least one beam identifier is selected according to the signal quality of the multiple scanning beams.
  • the at least one beam identifier may be a beam identifier corresponding to at least one scanning beam selected in descending order of the signal quality of the multiple scanning beams. Assuming that the sending terminal sends 10 scanning beams to the receiving terminal, the beam identifier of the scanning beam ranked 1 (that is, the scanning beam with the best signal quality) can be selected according to the order of the signal quality of the 10 scanning beams from high to low.
  • the number of at least one beam identifier received by the transmitting end is one, which is the beam identifier of the scan beam with the best signal quality among the 10 scan beams, or the beam identifier of the scan beams in the order of 1 to 3 can be selected , at this time, the number of at least one beam identifier received by the transmitting end is 3, which are the beam identifiers of the top 3 scanning beams in the order of signal quality among the 10 scanning beams. Therefore, the method can obtain the beam identifier of at least one scanning beam with better signal quality from the plurality of scanning beams.
  • the receiving terminal can receive multiple scanning beams sent by the sending terminal, measure the signal quality of each scanning beam, and then send at least one scanning beam to the sending terminal according to the signal quality of the multiple scanning beams.
  • a beam identifier can be used to determine the AOD of the transmitting terminal according to the beam identifier.
  • FIG. 7 is a schematic diagram of another AOD acquisition method provided by an embodiment of the present application.
  • the AOD acquisition method of the embodiment of the present application includes the following steps:
  • S601 Receive a plurality of scanning beams periodically sent by a sending terminal according to the angle measurement period.
  • the receiving terminal may receive a plurality of scanning beams periodically sent by the transmitting terminal according to the angle measurement period, and then the beam identifiers may be re-determined at intervals of a fixed angle measurement period, so that the transmitting terminal can update and transmit the beam identifiers according to the re-determined beam identifiers. AOD of the terminal.
  • S602 measure the signal quality of each scanning beam.
  • S603 according to the signal quality of the multiple scanning beams, send at least one beam identifier to the sending terminal.
  • step S602-step S603 For the related content of step S602-step S603, reference may be made to the foregoing embodiment, and details are not repeated here.
  • the receiving terminal can receive multiple scanning beams periodically sent by the sending terminal according to the angle measurement period, measure the signal quality of each scanning beam, and then , and send at least one beam identifier to the sending terminal.
  • the receiving terminal can receive a plurality of scanning beams periodically sent by the transmitting terminal according to the angle measurement period, and then can re-determine the beam identifier at a fixed angle measurement period, so that the transmitting terminal can update the AOD of the transmitting terminal according to the re-determined beam identifier, It is helpful to update the AOD of the sending terminal in time.
  • FIG. 8 is an interactive schematic diagram of an AOD acquisition method provided by an embodiment of the present application.
  • the AOD acquisition method of the embodiment of the present application includes the following steps:
  • the AOD of the sending terminal may also change.
  • the receiving terminal can receive the scanning beams after each round of scanning sent by the sending terminal in rounds, and then at least one beam identifier can be re-determined in each round of scanning, so that the sending terminal can re-determine at least one beam identifier according to the re-determined at least one beam identifier. Updating the AOD of the sending terminal helps to update the AOD of the sending terminal in time.
  • the scanning beams after each round of scanning sent by the sending terminal in rounds may include the following two possible implementations:
  • Mode 1 According to the number of scanning rounds negotiated with the sending terminal, receive the scanning beam after each round of scanning sent by the sending terminal.
  • the receiving terminal may negotiate the number of scanning rounds with the transmitting terminal in advance, and receive the scanning beams after each round of scanning sent by the transmitting terminal according to the number of scanning rounds negotiated with the transmitting terminal.
  • the number of scanning rounds can be negotiated and set according to the actual situation, for example, it can be set to 10 rounds.
  • the receiving terminal can receive multiple scanning beams sent by the receiving terminal in each round of scanning, and receive 10 rounds in total.
  • Manner 2 Receive indication information sent by the sending terminal, where the indication information is used to indicate whether there is a next round of scanning beams, and the indication information is sent by the sending terminal after each scan or after each receiving a beam identifier.
  • the sending terminal may send indication information to the receiving terminal after each scan or after each beam identifier is received, and the indication information is used to indicate whether there is a next round of scanning beams. Further, the receiving terminal The indication information sent by the sending terminal can be received.
  • the receiving terminal in response to the indication information indicating that there is a next round of scanning beams, can receive the scanning beams sent by the sending terminal after the next round of scanning. On the contrary, the receiving terminal may stop receiving the scanning beam sent by the sending terminal after the next round of scanning in response to the indication information indicating that there is no next round of scanning beams.
  • the indication information further includes the start time of the next round of scanning.
  • the receiving terminal may receive the scanning beam according to the start time of the next round of scanning.
  • the beam identifier can be the beam identifier corresponding to the scanning beam with the best signal quality among the scanning beams scanned in each round, and then the beam identifier can be re-determined in each round of scanning for the sending terminal to update and send according to the re-determined beam identifier.
  • the AOD of the terminal helps to update the AOD of the sending terminal in time.
  • S703 according to the signal quality of the multiple scanning beams, send at least one beam identifier to the sending terminal.
  • step S702-step S703 For the related content of step S702-step S703, reference may be made to the foregoing embodiment, and details are not repeated here.
  • the receiving terminal receives the scanning beams after each round of scanning sent by the sending terminal in rounds, and measures the signal quality of each scanning beam, and then can send the scanning beams to the scanning beams according to the signal quality of multiple scanning beams.
  • the sending terminal sends at least one beam identifier.
  • the receiving terminal can receive the scanning beams after each round of scanning sent by the transmitting terminal in rounds, and the beam identifier can be re-determined in each round of scanning, so that the transmitting terminal can update the AOD of the transmitting terminal according to the re-determined beam identifier, which helps Update the AOD of the sending terminal in time.
  • FIG. 9 is a schematic diagram of an AOD acquisition method provided by an embodiment of the present application.
  • the AOD acquisition method of the embodiment of the present application includes the following steps:
  • S801 Receive a capability negotiation request sent by a sending terminal, where the capability negotiation request is used to negotiate whether the receiving terminal supports beam-based AOD angle measurement.
  • the receiving terminal before receiving the multiple scanning beams sent by the sending terminal, the receiving terminal may receive a capability negotiation request sent by the sending terminal, and the capability negotiation request is used to negotiate whether the receiving terminal supports beam-based AOD angle measurement.
  • S802 Send a capability negotiation request response to the sending terminal, where the negotiation request response is used to instruct the receiving terminal to support beam-based AOD angle measurement.
  • the receiving terminal may send a capability negotiation request response to the sending terminal, and the negotiation request response indicates that the receiving terminal supports beam-based AOD angle measurement, indicating that the AOD acquisition method of the terminal in the embodiment of the present application can be applied to the receiving terminal , the following steps S803-S807 can be continued.
  • the negotiation request response indicates that the receiving terminal does not support beam-based AOD angle measurement, indicating that the AOD acquisition method of the terminal in this embodiment of the present application cannot be applied to the receiving terminal, and the following step S803 does not need to be continued. -S807.
  • a capability negotiation request may be received or a capability negotiation request response may be sent through a terminal capability request side link (User Equipment Capability Enquiry Sidelink) or a terminal capability information side link (User Equipment Capability Information Sidelink).
  • a terminal capability request side link User Equipment Capability Enquiry Sidelink
  • a terminal capability information side link User Equipment Capability Information Sidelink
  • the receiving terminal may negotiate the angle measurement parameters of the AOD with the sending terminal. It can be understood that the angle measurement parameter is used to instruct the sending terminal to send multiple scanning beams to the receiving terminal.
  • the angle measurement parameters include one or more of the following parameters: the number of sent scanning beams, the scanning interval, the number of returned beam identifiers, the number of scanning rounds, the scanning interval of each round, and the scanning interval of each round.
  • the scanning interval may include the time interval between adjacent scanning beams sent, the scanning interval of each round may include the time interval between two adjacent rounds of sending scanning beams, and the time-frequency resource information used by the scanning beams may include The resource pool used by the scanning beam, the start time of the scanning beam, etc.
  • one of the following methods can be used to negotiate the angle measurement parameters of the AOD with the sending terminal:
  • Mode 1 Receive an angle measurement request sent by the sending terminal, wherein the angle measurement request carries angle measurement parameters.
  • Manner 2 Send an angle measurement request response to the sending terminal, wherein the angle measurement request response carries the angle measurement parameter.
  • the above-mentioned angle measurement request or angle measurement request response can be performed through a radio resource control (Radio Resource Control, RRC) message (referred to as “PC5-RRC”) corresponding to the link interface (PC5) between the terminals, between the terminals.
  • RRC Radio Resource Control
  • PC5-RRC Radio Resource Control
  • the signalling protocol (Signalling Protocol) message (referred to as "PC5-S”) corresponding to the link interface (PC5) is sent.
  • Manner 3 Receive resource scheduling information sent by the sending terminal, where the resource scheduling information includes angle measurement parameters.
  • a resource pool is pre-configured for the sending terminal, and the sending terminal can schedule resources from the resource pool according to certain resource scheduling rules.
  • the sending terminal can send the corresponding resource scheduling to the receiving terminal. information.
  • Manner 4 Receive negotiation indication information sent by the sending terminal, where the negotiation indication information carries angle measurement parameters.
  • the angle measurement request, the angle measurement request response, the resource scheduling information, and the negotiation indication information in the above four manners can be sent through radio resource control (Radio Resource Control, RRC) signaling, or other signaling.
  • RRC Radio Resource Control
  • S804 Receive multiple scanning beams sent by the sending terminal.
  • step S804-step S806 For the related content of step S804-step S806, reference may be made to the above-mentioned embodiment, and details are not repeated here.
  • S807 Send a measurement result of the scanning beam to the sending terminal, where the measurement result includes the reference signal received power RSRP and/or the reference signal received quality RSRQ.
  • the receiving terminal may also send the measurement result of the scanning beam to the sending terminal.
  • the measurement result includes reference signal receiving power (Reference Signal Receiving Power, RSRP) and/or reference signal receiving quality (Reference Signal Receiving Quality, RSRQ).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the receiving terminal may receive the capability negotiation request sent by the sending terminal, and then send the capability negotiation request response to the sending terminal, wherein the negotiation request response is used to indicate that the receiving terminal supports beam-based AOD angle measurement, Then negotiate the angle measurement parameters of the AOD with the sending terminal, then receive multiple scanning beams sent by the sending terminal, measure the signal quality of each scanning beam, and then send at least one beam to the sending terminal according to the signal quality of the multiple scanning beams
  • the measurement result of the scanning beam may also be sent to the transmitting terminal, where the measurement result includes the reference signal received power RSRP and/or the reference signal received quality RSRQ.
  • the receiving terminal can send at least one beam identifier to the transmitting terminal, so that the transmitting terminal can determine the AOD of the transmitting terminal according to the beam identifier.
  • FIG. 10 is an interactive schematic diagram of an AOD acquisition method provided by an embodiment of the present application.
  • the AOD acquisition method of the embodiment of the present application includes the following steps:
  • the sending terminal sends a capability negotiation request to the receiving terminal, where the capability negotiation request is used to negotiate whether the receiving terminal supports beam-based AOD angle measurement.
  • the receiving terminal sends a capability negotiation request response to the sending terminal, where the negotiation request response is used to indicate whether the receiving terminal supports beam-based AOD angle measurement.
  • the receiving terminal may send a capability negotiation request response to the sending terminal, and the negotiation request response indicates that the receiving terminal supports beam-based AOD angle measurement, indicating that the AOD acquisition method of the embodiment of the present application can be applied to the receiving terminal, and can Continue to execute the following steps S903-S908.
  • the negotiation request response indicates that the receiving terminal does not support beam-based AOD angle measurement, indicating that the AOD acquisition method in this embodiment of the present application cannot be applied to the receiving terminal, and the following steps S903-S908 do not need to be continued. .
  • the sending terminal and the receiving terminal negotiate the angle measurement parameters of the AOD.
  • the sending terminal sends a plurality of scanning beams to the receiving terminal.
  • the receiving terminal measures the signal quality of each scanning beam.
  • the receiving terminal sends at least one beam identifier to the transmitting terminal according to the signal quality of the multiple scanning beams.
  • the receiving terminal sends a measurement result of the scanning beam to the transmitting terminal, where the measurement result includes the reference signal received power RSRP and/or the reference signal received quality RSRQ.
  • the sending terminal determines a target scanning beam based on at least one beam identifier, and determines an AOD of the sending terminal based on the target scanning beam.
  • step S901 to step S908 For the related content of step S901 to step S908, reference may be made to the above-mentioned embodiment, and details are not repeated here.
  • PC5 interface supports two protocols, including the Radio Resource Control (RRC) protocol corresponding to PC5. (referred to as “PC5-RRC” protocol), the corresponding signaling protocol (Signalling Protocol) of PC5 (referred to as "PC5-S” protocol).
  • RRC Radio Resource Control
  • the PC5 interface supports communication modes such as broadcast, multicast and unicast.
  • both terminal A and terminal B can determine their own target identifier for receiving, and the vehicle to everything (V2X) application layer of terminal A
  • V2X vehicle to everything
  • the service type that can be provided to the PC5 protocol layer V2X application, after which terminal A can send a Direct Communication Request to terminal B, and terminal B can feed back a Security Establishment Message to terminal A, and then terminal A, terminal After the security establishment of both terminal B
  • the PC5 interface identifier can be provided to an application server (Application Server, AS) to establish communication between terminal A and terminal B.
  • AS Application Server
  • the present application also provides an AOD acquisition device, because the AOD acquisition device provided by the embodiments of the present application corresponds to the AOD acquisition methods provided by the above-mentioned embodiments of FIG. 1 to FIG. 5 . , so the implementation of the AOD acquisition method is also applicable to the AOD acquisition apparatus provided in this embodiment, which is not described in detail in this embodiment.
  • FIG. 11-FIG. 12 are schematic structural diagrams of the AOD acquisition device proposed in the present application.
  • FIG. 11 is a schematic structural diagram of an AOD acquisition apparatus provided by an embodiment of the present application.
  • the AOD obtaining apparatus 100 includes: a beam sending module 110, an identification receiving module 120 and a determining module 130, wherein:
  • the beam sending module 110 is configured to send a plurality of scanning beams to the receiving terminal;
  • the identification receiving module 120 is configured to receive at least one beam identification, wherein the at least one beam identification is determined according to the signal quality of the plurality of scanning beams;
  • the determining module 130 is configured to determine a target scanning beam based on the unique beam identifier obtained through the at least one beam identifier, and determine the AOD of the sending terminal based on the target scanning beam.
  • the at least one beam identifier is to select the beam identifiers in descending order of the signal quality of the plurality of scanned beams.
  • the beam sending module 110 includes: a first beam sending unit 1101, the first beam sending unit 1101 is configured to periodically send to the receiving terminal according to the angle measurement period the plurality of scanning beams.
  • the beam sending module 110 includes: a second beam sending unit 1102, the second beam sending unit 1102 is configured to perform beam scanning in rounds, and send the beam to the receiving terminal The scanning beams are sent for each scan round.
  • the second beam sending unit 1102 is further configured to: perform beam scanning according to the number of scanning rounds negotiated with the receiving terminal; or, after each scanning ends or after each receiving the beam identifier Sending indication information to the receiving terminal, where the indication information is used to indicate whether there is a next round of scanning beams.
  • the indication information further includes the start time of the next round of scanning.
  • the beam identifier is the beam identifier corresponding to the scanning beam with the best signal quality among the scanning beams scanned in each round
  • the second beam sending unit 1102 includes: a first determining subunit, which is is configured to determine the first beam azimuth of the scanning beam in the next round according to the beam identifiers received in the previous round and the current round number; the scanning subunit is configured to perform the scanning according to the first beam azimuth. Next round of beam scanning.
  • the second beam sending unit 1102 further includes: a second determining subunit, configured to determine the second scanning beam according to the scanning beam identified by the beam identifier and the current number of rounds Beam azimuth; the dividing subunit is configured to divide the second beam azimuth according to the number of beams to be scanned in each round, and determine the first beam azimuth in the next round.
  • a second determining subunit configured to determine the second scanning beam according to the scanning beam identified by the beam identifier and the current number of rounds Beam azimuth
  • the dividing subunit is configured to divide the second beam azimuth according to the number of beams to be scanned in each round, and determine the first beam azimuth in the next round.
  • the beam identifier of each of the scanning beams is determined according to the sending position of the corresponding scanning beam, or each of the scanning beams carries its own beam identifier.
  • the AOD obtaining apparatus 100 further includes: a result receiving module 140, the result receiving module 140 is configured to receive the measurement result of the scanning beam, wherein the measurement result Including reference signal received power RSRP and/or reference signal received quality RSRQ.
  • the AOD obtaining apparatus 100 further includes: a first parameter negotiation module 150, the first parameter negotiation module 150 is configured to send multiple scanning beams to the receiving terminal before the , negotiate the angle measurement parameters of the AOD with the receiving terminal in one of the following ways: send a measurement request to the receiving terminal, wherein the measurement request carries the measurement parameters; or, receive The angle measurement request response sent by the receiving terminal, wherein the angle measurement request response carries the angle measurement parameter; or, sending resource scheduling information to the receiving terminal, wherein the resource scheduling information includes the angle measurement parameters; or, sending negotiation indication information to the receiving terminal, where the negotiation indication information carries the angle measurement parameters.
  • a first parameter negotiation module 150 is configured to send multiple scanning beams to the receiving terminal before the , negotiate the angle measurement parameters of the AOD with the receiving terminal in one of the following ways: send a measurement request to the receiving terminal, wherein the measurement request carries the measurement parameters; or, receive The angle measurement request response sent by the receiving terminal, wherein the angle measurement request response carries the angle measurement parameter; or, sending resource scheduling
  • the angle measurement parameters include one or more of the following parameters: the number of the sent scanning beams, the scanning interval, the number of the returned beam identifiers, the number of scanning rounds, the The scanning interval, the number of the scanning beams in each round of scanning, the time-frequency resource information used by the scanning beams, and the angle measurement period for triggering angle measurement.
  • the AOD obtaining apparatus 100 further includes: a first capability negotiation module 160, and the first capability negotiation module 160 includes: a request sending unit 1601, configured to send a request to the receiving unit 1601.
  • the terminal sends a capability negotiation request, wherein the capability negotiation request is used to negotiate whether the receiving terminal supports beam-based AOD angle measurement;
  • the response receiving unit 1602 is configured to receive a capability negotiation request response sent by the receiving terminal, wherein , the negotiation request response is used to indicate whether the receiving terminal supports beam-based AOD angle measurement.
  • the first capability negotiation module 160 is configured to send the capability negotiation request or receive the capability negotiation request response through the terminal capability request side link or the terminal capability information side link.
  • the AOD acquisition apparatus in this embodiment of the present application may send multiple scanning beams to the receiving terminal, and then receive at least one beam identifier, where the at least one beam identifier is determined according to the signal quality of the multiple scanning beams, and then based on the at least one beam identifier via the above-mentioned at least one beam identifier.
  • the obtained unique beam identifier determines the target scanning beam, and determines the AOD of the transmitting terminal based on the target scanning beam. Therefore, the transmitting terminal can transmit the scanning beam to the receiving terminal, and determine the AOD of the transmitting terminal according to the unique beam identifier, so that the AOD can be obtained in the long-term evolution LTE network and the new air interface NR.
  • the present application also provides an AOD acquisition device, because the AOD acquisition device provided by the embodiment of the present application corresponds to the AOD acquisition method provided by the above-mentioned FIG. 6-FIG. 9 embodiment. , so the implementation of the AOD acquisition method is also applicable to the AOD acquisition apparatus provided in this embodiment, which is not described in detail in this embodiment. 13-14 are schematic structural diagrams of an AOD acquisition device proposed in the present application.
  • FIG. 13 is a schematic structural diagram of an AOD acquisition apparatus provided by an embodiment of the present application.
  • the AOD obtaining apparatus 200 includes: a beam receiving module 210 , a quality measuring module 220 and an identification sending module 230 .
  • the beam receiving module 210 is configured to receive multiple scanning beams sent by the sending terminal;
  • a quality measurement module 220 configured to measure the signal quality of each of the scanning beams
  • the identifier sending module 230 is configured to send at least one beam identifier to the sending terminal according to the signal quality of the multiple scanning beams.
  • the at least one beam identifier is a beam identifier selected in descending order of signal quality of the multiple scanning beams.
  • the beam receiving module 210 includes: a first beam receiving unit 2101, the first beam receiving unit 2101 is configured to receive periodic transmissions from the sending terminal according to the angle measurement period of the plurality of scanning beams.
  • the beam receiving module 210 includes: a second beam receiving unit 2102, the second beam receiving unit 2102 receives, in rounds, all scans sent by the sending terminal after each round of scanning. the scanning beam.
  • the second beam receiving unit 2102 is further configured to receive the scanning beam after each round of scanning sent by the sending terminal according to the number of scanning rounds negotiated with the sending terminal;
  • the indication information sent by the sending terminal wherein the indication information is used to indicate whether there is a next round of scanning beams; the indication information is that the sending terminal receives the at least one beam after each scan or each time sent after the identification; and in response to the indication information indicating that there is a next round of scanning beams, receiving the scanning beams sent by the sending terminal after the next round of scanning.
  • the indication information further includes the start time of the next round of scanning.
  • the beam identifier is a beam identifier corresponding to the scan beam with the best signal quality among the scan beams scanned in each round.
  • the AOD obtaining apparatus 200 further includes: an identification determining module 240, the identification determining module 240 is configured to determine the beam of the scanning beam according to the transmission position of the scanning beam identification; or, extracting the beam identification of the scanning beam from the scanning beam.
  • the AOD obtaining apparatus 200 further includes: a result sending module 250, the result sending module 250 is configured to send the measurement result of the scanning beam to the sending terminal, wherein , the measurement result includes reference signal received power RSRP and/or reference signal received quality RSRQ.
  • the AOD obtaining apparatus 200 further includes: a second parameter negotiation module 260, the second parameter negotiation module 260 is configured to receive the multiple scanning beams sent by the sending terminal Before, negotiate the angle measurement parameters of the AOD with the sending terminal in one of the following ways: receive a measurement request sent by the transmission terminal, wherein the measurement request carries the measurement parameters; or , sending an angle measurement request response to the sending terminal, where the angle measurement request response carries the angle measurement parameter; or, receiving resource scheduling information sent by the sending terminal, where the resource scheduling information includes the angle measurement parameter; or, receive negotiation indication information sent by the sending terminal, where the negotiation indication information carries the angle measurement parameter.
  • the angle measurement parameters include one or more of the following parameters: the number of the sent scanning beams, the scanning interval, the number of the returned beam identifiers, the number of scanning rounds, the The scanning interval, the number of the scanning beams in each round of scanning, the time-frequency resource information used by the scanning beams, and the angle measurement period for triggering angle measurement.
  • the AOD obtaining apparatus 200 further includes: a second capability negotiation module 270, and the second capability negotiation module 270 includes: a request receiving unit 2701 configured to receive the sending A capability negotiation request sent by the terminal, where the capability negotiation request is used to negotiate whether the receiving terminal supports beam-based AOD angle measurement; the response sending unit 2702 is configured to send a capability negotiation request response to the sending terminal, wherein the The negotiation request response is used to indicate whether the receiving terminal supports beam-based AOD angle measurement.
  • the second capability negotiation module 270 is configured to receive the capability negotiation request or send the capability negotiation request response through the terminal capability request side link or the terminal capability information side link.
  • multiple scanning beams sent by the sending terminal can be received, the signal quality of each scanning beam can be measured, and then at least one beam can be sent to the sending terminal according to the signal quality of the multiple scanning beams logo. Therefore, at least one beam identifier can be sent to the transmitting terminal, so that the transmitting terminal can determine the AOD of the transmitting terminal according to the beam identifier.
  • the present application further provides a communication device and a readable storage medium.
  • FIG. 15 it is a block diagram of a communication device according to an embodiment of the present application.
  • Communication devices are intended to represent various forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Communication devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the application described and/or claimed herein.
  • the communication device includes: one or more processors 1100, a memory 1200, and interfaces for connecting various components, including a high-speed interface and a low-speed interface.
  • the various components are interconnected using different buses and may be mounted on a common motherboard or otherwise as desired.
  • the processor may process instructions executed within the communication device, including instructions stored in or on memory to display graphical information of the GUI on an external input/output device, such as a display device coupled to the interface.
  • multiple processors and/or multiple buses may be used with multiple memories and multiple memories, if desired.
  • multiple communication devices may be connected, with each device providing some of the necessary operations (eg, as a server array, a group of blade servers, or a multi-processor system).
  • a processor 1100 is used as an example.
  • the memory 1200 is the non-transitory computer-readable storage medium provided by the present application.
  • the memory stores instructions executable by at least one processor, so that the at least one processor executes the AOD acquisition method provided by the present application.
  • the non-transitory computer-readable storage medium of the present application stores computer instructions, and the computer instructions are used to cause the computer to execute the AOD acquisition method provided by the present application.
  • the memory 1200 can be used to store non-transitory software programs, non-transitory computer-executable programs, and modules, such as program instructions/modules corresponding to the AOD acquisition method in the embodiments of the present application (for example, appendix).
  • the processor 1100 executes various functional applications and data processing of the server by running the non-transitory software programs, instructions and modules stored in the memory 1200, ie, implements the AOD acquisition method in the above method embodiments.
  • the memory 1200 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the positioning communication device, and the like. Additionally, memory 1200 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device. Optionally, the memory 1200 may optionally include memory located remotely from the processor 1100, and these remote memories may be connected to the positioning communication device via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the communication device may further include: an input device 1300 and an output device 1400 .
  • the processor 1100, the memory 1200, the input device 1300, and the output device 1400 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 11 .
  • the input device 1300 may receive input numerical or character information and generate key signal input related to user settings and functional control of the positioning communication device, such as a touch screen, keypad, mouse, trackpad, touchpad, pointing stick, one or more Input devices such as mouse buttons, trackballs, joysticks, etc.
  • the output device 1400 may include a display device, auxiliary lighting devices (eg, LEDs), haptic feedback devices (eg, vibration motors), and the like.
  • the display device may include, but is not limited to, a liquid crystal display (LCD), a light emitting diode (LED) display, and a plasma display. In some implementations, the display device may be a touch screen.
  • Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • the processor which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer.
  • a display device eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.
  • a computer system can include clients and servers.
  • Clients and servers are generally remote from each other and usually interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • the sending terminal may send multiple scanning beams to the receiving terminal, and then receive at least one beam identifier, where the at least one beam identifier is determined according to the signal quality of the multiple scanning beams, and then based on the at least one beam identifier via the at least one
  • the unique beam identifier obtained from the beam identifier determines the target scanning beam, and determines the AOD of the transmitting terminal based on the target scanning beam. Therefore, the transmitting terminal can transmit the scanning beam to the receiving terminal, and determine the AOD of the transmitting terminal according to the beam identifier, so as to realize the acquisition of the AOD in the long-term evolution LTE network and the new air interface NR.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出了一种AOD获取方法、装置和通信设备,涉及无线通信技术领域。该方案为:向接收终端发送多个扫描波束;接收至少一个波束标识,其中,所述至少一个波束标识根据所述多个扫描波束的信号质量确定;基于至少一个波束标识确定目标扫描波束,基于目标扫描波束确定发送终端的AOD。本申请中,发送终端可通过向接收终端发送扫描波束,并根据波束标识确定发送终端的AOD。

Description

AOD获取方法、装置和通信设备 技术领域
本申请涉及无线通信技术领域,尤其涉及一种AOD获取方法、装置、通信设备和存储介质。
背景技术
目前,测距领域中大多利用两个设备之间的相对距离、相对角度来确定两个设备中的一个设备相对于另一个设备的相对位置。其中,相对角度可包括到达角(Angel Of Arrival,AOA)、离开角(Angel Of Depature,AOD)。然而,相关技术中,在长期演进(Long Term Evolution,LTE)网络、新空口(New Radio,NR)中无法实现AOD的获取。
申请内容
本申请提出的AOD获取方法、装置、通信设备和存储介质,用于解决相关技术中在长期演进(Long Term Evolution,LTE)网络、新空口(New Radio,NR)中无法实现AOD的获取的问题。
本申请第一方面实施例提出了一种AOD获取方法,包括:向接收终端发送多个扫描波束;接收至少一个波束标识,其中,所述至少一个波束标识根据所述多个扫描波束的信号质量确定;基于所述至少一个波束标识确定目标扫描波束,基于所述目标扫描波束确定发送终端的AOD。
本申请第二方面实施例提供了另一种AOD获取方法,包括:接收发送终端发送的多个扫描波束;对各所述扫描波束的信号质量进行测量;根据所述多个扫描波束的信号质量,向所述发送终端发送至少一个波束标识。
本申请第三方面实施例提供了一种AOD获取装置,包括:波束发送模块,被配置为向接收终端发送多个扫描波束;标识接收模块,被配置为接收至少一个波束标识,其中,所述至少一个波束标识根据所述多个扫描波束的信号质量确定;确定模块,被配置为基于所述至少一个波束标识确定目标扫描波束,基于所述目标扫描波束确定发送终端的AOD。
本申请第四方面实施例提供了另一种AOD获取装置,包括:波束接收模块,被配置为接收发送终端发送的多个扫描波束;质量测量模块,被配置为对各所述扫描波束的信号质量进行测量;标识发送模块,被配置为根据所述多个扫描波束的信号质量,向所述发送终端发送至少一个波束标识。
本申请第五方面实施例提供了一种通信设备,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本申请第一方面实施例所述的AOD获取方法,或者本申请第二方面实施例所述的AOD获取方法。
本申请第六方面实施例提供了一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后,能够实现本申请第一方面实施例所述的AOD获取方法,或者本申请第二方面实施例所述的AOD获取方法。
本申请提供的实施例,至少具有如下有益技术效果:
根据本申请实施例的AOD获取方法,发送终端可向接收终端发送多个扫描波束,之后接收至少一个波束标识,其中,至少一个波束标识根据多个扫描波束的信号质量确定,之后基于至少一个波束标识确定目标扫描波束,并基于目标扫描波束确定发送终端的AOD。由此,发送终端可通过向接收终端发送扫描波束,并根据波束标识确定发送终端的AOD,可在长期演进LTE网络、新空口NR中实现AOD的获取。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例提供的一种AOD获取方法的示意图;
图2为本申请实施例提供的一种AOD获取方法中多个扫描波束的示意图;
图3为本申请实施例提供的另一种AOD获取方法的示意图;
图4为本申请实施例提供的另一种AOD获取方法的示意图;
图5为本申请实施例提供的另一种AOD获取方法的示意图;
图6为本申请实施例提供的另一种AOD获取方法的示意图;
图7为本申请实施例提供的另一种AOD获取方法的示意图;
图8为本申请实施例提供的另一种AOD获取方法的示意图;
图9为本申请实施例提供的另一种AOD获取方法的示意图;
图10为本申请实施例提供的一种AOD获取方法的交互示意图;
图11为本申请实施例提供的一种AOD获取装置的结构示意图;
图12为本申请实施例提供的另一种AOD获取装置的结构示意图;
图13为本申请实施例提供的另一种AOD获取装置的结构示意图;
图14为本申请实施例提供的另一种AOD获取装置的结构示意图;以及
图15为本申请实施例提供的一种通信设备的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本申请实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图对本申请提供的AOD获取方法、装置、通信设备和存储介质进行详细描述。
图1为本申请实施例提供的一种AOD获取方法的示意图。
如图1所示,本申请实施例的AOD获取方法,包括如下步骤:
S101,向接收终端发送多个扫描波束。
需要说明的是,本申请实施例的AOD获取方法,执行主体为发送终端。其中,发送终端包括但不限于手机、电脑、智能可穿戴设备、智能家电、车载终端等,这里不做过多限定。
本申请的实施例中,发送终端可向接收终端发送多个扫描波束。可选的,发送终端上设置有天线阵列,发送终端可通过自身的天线阵列向接收终端发送多个扫描波束。
可选的,发送终端可向接收终端发送多个不同波束方位角的扫描波束。例如,如图2所示,发送终端可发送0°、10°、20°至350°波束方位角的扫描波束,两两相邻扫描波束之间的波束方位角相差10°。
S102,接收至少一个波束标识,其中,该接收到的至少一个波束标识根据多个扫描波束的信号质量确定。
本申请的实施例中,发送终端向接收终端发送多个扫描波束之后,可接收至少一个波束标识,该至少一个波束标识根据上述多个扫描波束的信号质量确定。
可以理解的是,每个扫描波束可对应一个波束标识,不同的扫描标识用于区分不同的扫描波束。其中,波束标识可为数字、字符等形式,这里不做过多限定。
可选的,每个扫描波束的波束标识是根据对应的扫描波束的发送位置确定的。其中,扫描波束的发送位置可包括扫描波束的波束方位角。继续以图2为例,每个扫描波束的波束标识可根据对应的扫描波束的波束方位角确定,波束方位角0°的扫描波束的波束标识可为#0,波束方位角10°的扫描波束的波束标识可为#1,波束方位角20°的扫描波束的波束标识可为#2,以此类推,波束方位角350°的扫描波束的波束标识可为#35。
可选的,每个扫描波束中携带自身的波束标识。此时,接收终端可从每个扫描波束中提取出对应的波束标识。
可以理解的是,不同的扫描波束可对应不同的信号质量。可选的,上述发送终端接收到的至少一个波束标识是根据多个扫描波束的信号质量选出的。例如,该至少一个波束标识可为按照多个扫描波束的信号质量从高到低的顺序选出的至少一个扫描波束对应的波束标识。假设发送终端向接收终端发送10个扫描波束,则可按照10个扫描波束的信号质量从高到低的顺序,选出排序为1的扫描波束(即信号质量最好的扫描波束)的波束标识,此时发送端接收到的至少一个波束标识的数量为一个,为10个扫描波束中信号质量最好的扫描波束的波束标识,或者,可选出排序为1至3的扫描波束的波束标识,此时发送端接收到的至少一个波束标识的数量为3个,为10个扫描波束中信号质量排序前3的扫描波束的波束标识。由此,该方法可从多个扫描波束中获取信号质量较好的至少一个扫描波束的波束标识。
可选的,发送终端向接收终端发送多个扫描波束之后,接收终端可根据多个扫描波束的信号质量选出至少一个扫描波束对应的至少一个波束标识,并将该至少一个波束标识发送至发送终端,进一步地,发送终端可接收接收终端发送的上述至少一个波束标识。
S103,基于接收到的至少一个波束标识确定目标扫描波束,基于目标扫描波束确定发送终端的AOD。
本申请的实施例中,发送终端在接收所述至少一个波束标识之后,可基于波束标识,确定目标扫描波束。
可以理解的是,当接收的波束标识唯一时,该波束标识为多个扫描波束中信号质量最好的扫描波束的波束标识,可直接根据波束标识与扫描波束之间的一一对应关系,确定目标扫描波束。
可选的,基于上述唯一波束标识确定目标扫描波束,可包括预先建立波束标识和扫描波束之间的映射关系或者映射表,在获取到波束标识之后,查询映射关系或者映射表,能够确定出波束标识对应的扫描波束,作为目标扫描波束。应说明的是,映射关系或者映射表可根据实际情况进行设置,并设置在发送终端的存储空间中。
可以理解的是,扫描波束可能会由于环境等干扰因素出现波动,若只接收唯一的波束标识,并基于唯一的波束标识确定目标扫描波束,选出的目标扫描波束存在不准确,稳定性差的风险。为了解决上述问题,发送终端还可接收多个波束标识,之后获取多个波束标识所标识的多个候选扫描波束多次测量的信号质量,并根据上述多次测量的信号质量,选取信号质量最好的候选扫描波束作为目标扫描波束。可以理解的是,信号质量的稳定性也是信号质量好坏的影响因素。例如,可获取每个候选扫描波束多次测量的信号质量的方差,选取方差最小的候选扫描波束作为目标扫描波束。
由此,该方法可有效避免扫描波束受到干扰波动时,选出的目标扫描波束不准确的情况,选出的目标扫描波束的稳定性也较好。
进一步地,发送终端基于至少一个波束标识确定目标扫描波束之后,可基于目标扫描波束确定发送终端的的离开角(Angel Of Depature,AOD)。
继续以图2为例,波束方位角0°的扫描波束的波束标识可为#0,波束方位角10°的扫描波束的波束标识可为#1,波束方位角20°的扫描波束的波束标识可为#2,以此类推,波束方位角350°的扫描波 束的波束标识可为#35。
若发送终端接收的波束标识为#1,则可基于波束标识#1确定目标扫描波束为波束方位角10°的扫描波束,以及确定发送终端的AOD为10°。
或者,若发送终端接收的波束标识为#7、#18、#9,则可获取波束标识为#7、#18、#9所标识的候选扫描波束多次测量的信号质量,并根据上述多次测量的信号质量,选取信号质量最好的候选扫描波束作为目标扫描波束。若根据上述多次测量的信号质量,确定波束标识为#7的所标识的候选扫描波束的信号质量最好,则可将波束标识为#7的所标识的候选扫描波束作为目标扫描波束,以及确定发送终端的AOD为70°。
可以理解的是,本申请实施例的AOD获取方法可确定发送终端的AOD,可应用于测角领域。可选的,确定发送终端的AOD之后,发送终端还可根据发送终端的AOD以及发送终端与接收终端之间的距离,确定接收终端相对发送终端的相对位置。由此,本申请实施例的AOD获取方法还可应用于定位领域。
根据本申请实施例的AOD获取方法,发送终端可向接收终端发送多个扫描波束,之后接收波束标识,其中,波束标识根据多个扫描波束的信号质量确定,之后基于至少一个波束标识确定目标扫描波束,并基于目标扫描波束确定发送终端的AOD。由此,发送终端可通过向接收终端发送扫描波束,并根据波束标识确定发送终端的AOD,可在长期演进LTE网络、新空口NR中实现AOD的获取。
图3为本申请实施例提供的另一种AOD获取方法的示意图。
如图3所示,本申请实施例的AOD获取方法,包括如下步骤:
S201,按照测角周期向接收终端周期性发送多个扫描波束。
可以理解的是,由于发送终端、接收终端的位置可能会改变,则发送终端的AOD也可能会改变。本申请的实施例中,发送终端可按照测角周期向接收终端周期性发送多个扫描波束,则可间隔固定测角周期重新确定发送终端的AOD,有助于及时对发送终端的AOD进行更新。
其中,测角周期可根据实际情况进行设置,例如,可设置为10分钟。
例如,若测角周期为10分钟,发送终端可在每个测角周期内向接收终端发送多个扫描波束,相邻两次发送间隔10分钟。
S202,接收至少一个波束标识,其中,该至少一个波束标识根据多个扫描波束的信号质量确定。
S203,基于上述至少一个波束标识确定目标扫描波束,基于目标扫描波束确定发送终端的AOD。
步骤S202-步骤S203的相关内容可参见上述实施例,此处不再赘述。
根据本申请实施例的AOD获取方法,发送终端可按照测角周期向接收终端周期性发送多个扫描波束,之后接收至少一个波束标识,其中,该至少一个波束标识根据多个扫描波束的信号质量确定,之后基于经由至少一个波束标识得到的唯一波束标识确定目标扫描波束,并基于目标扫描波束确定发送终端的AOD。由此,发送终端可按照测角周期向接收终端周期性发送多个扫描波束,则可间隔固定测角周期重新确定发送终端的AOD,有助于及时对发送终端的AOD进行更新。
图4为本申请实施例提供的另一种AOD获取方法的示意图。
如图4所示,本申请实施例的AOD获取方法,包括如下步骤:
S301,按轮进行波束扫描,并向接收终端发送每轮扫描的扫描波束。
可以理解的是,由于发送终端、接收终端的位置可能会改变,则发送终端的AOD也可能会改变。本申请的实施例中,发送终端可按轮进行波束扫描,并向接收终端发送每轮扫描的扫描波束,则每轮扫描均可重新确定发送终端的AOD,有助于及时对发送终端的AOD进行更新。
其中,按轮进行波束扫描,可包括如下两种可能的实施方式:
方式1、按照与接收终端协商的扫描轮数进行波束扫描。
本申请的实施例中,发送终端可预先与接收终端协商扫描轮数,并按照与接收终端协商的扫描轮数进行 波束扫描。
其中,扫描轮数可根据实际情况进行协商设置,例如,可设置为10轮。
例如,若扫描轮数为10轮,发送终端可在每轮扫描内向接收终端发送多个扫描波束,累计扫描10轮。
方式2、每次扫描结束后或者每次接收到波束标识后向接收终端发送指示信息,其中,指示信息用于指示是否存在下一轮扫描波束。
本申请的实施例中,发送终端在每次扫描结束后或者每次接收到波束标识后,可向接收终端发送指示信息,指示信息用于指示是否存在下一轮扫描波束,以供接收终端根据指示信息来接收扫描波束。
可选的,指示信息还包括下一轮扫描的开始时间,以供接收终端根据下一轮扫描的开始时间来接收扫描波束。
可以理解的是,波束标识可为每轮扫描的扫描波束中信号质量最好的扫描波束对应的波束标识,则每轮扫描均可重新确定波束标识,有助于及时对发送终端的AOD进行更新。
此时,按轮进行波束扫描,可包括根据上一轮接收到的波束标识和当前轮数,确定下一轮的扫描波束的第一波束方位角,并按照第一波束方位角进行下一轮波束扫描。
可以理解的是,波束标识为每轮扫描的扫描波束中信号质量最好的扫描波束对应的波束标识时,上一轮接收终端发送的波束标识为上一轮扫描的扫描波束中信号质量最好的扫描波束对应的波束标识,此时可根据上一轮接收到的波束标识和当前轮数,确定下一轮的扫描波束的第一波束方位角,并按照第一波束方位角进行下一轮波束扫描,在保证测角精度的同时有助于减少波束扫描的次数。
例如,继续以图2为例,若上一轮接收终端发送的波束标识为#1,当前轮数为1,则下一轮扫描波束的第一波束方位角可为波束标识为#1所标识的扫描波束对应的波束方位角10°,之后可按照第一波束方位角10°进行下一轮波束扫描。
其中,根据上一轮接收到的的波束标识和当前轮数,确定下一轮的扫描波束的第一波束方位角,还可包括根据所述波束标识所标识的扫描波束和所述当前轮数,确定所述扫描波束的第二波束方位角,之后按照每轮需要扫描的波束个数,对第二波束方位角进行划分,确定下一轮的第一波束方位角。其中,每轮需要扫描的波束个数可根据实际情况进行设置,例如可设置为10个。
例如,继续以图2为例,若每轮需要扫描的波束个数为36个,若上一轮接收终端发送的波束标识为#1,当前轮数为1,可确定扫描波束的第二波束方位角为10°,则可对第二波束方位角为10°进行划分,确定下一轮的第一波束方位角依次为5/18°、5/9°、5/6°至10°,进一步地,之后可按照第一波束方位角5/18°、5/9°、5/6°至10°进行下一轮波束扫描。此时,该方法只需要扫描72个波束就可以达到扫描36*36个波束同样的测角精度,大大减少了波束扫描的次数。
由此,在按轮进行波束扫描时,可先按照每轮需要扫描的波束个数进行粗粒度的波束扫描,之后可根据波束标识所标识的扫描波束和所述当前轮数,确定下一轮的扫描波束的第一波束方位角,并按照第一波束方位角进行下一轮波束扫描,即进行细粒度的波束扫描,在保证测角精度的同时有助于减少波束扫描的次数。
S302,接收至少一个波束标识,其中,波束标识根据多个扫描波束的信号质量确定。
S303,基于上述至少一个波束标识确定目标扫描波束,基于目标扫描波束确定发送终端的AOD。
步骤S302-步骤S303的相关内容可参见上述实施例,此处不再赘述。
根据本申请实施例的AOD获取方法,发送终端按轮进行波束扫描,并向接收终端发送每轮扫描的扫描波束,之后接收至少一个波束标识,其中,该至少一个波束标识根据多个扫描波束的信号质量确定,之后基于由上述至少一个波束标识得到的唯一波束标识确定目标扫描波束,并基于目标扫描波束确定发送终端的AOD。由此,发送终端可按轮进行波束扫描,并向接收终端发送每轮扫描的扫描波束,则每轮扫描均可重新确定发送终端的AOD,有助于及时对发送终端的AOD进行更新。
图5为本申请实施例提供的另一种AOD获取方法的示意图。
如图5所示,本申请实施例的AOD获取方法,包括如下步骤:
S401,向接收终端发送能力协商请求,其中,能力协商请求用于协商接收终端是否支持基于波束的AOD测角。
本申请的实施例中,发送终端在向接收终端发送多个扫描波束之前,可向接收终端发送能力协商请求,能力协商请求用于协商接收终端是否支持基于波束的AOD测角。
S402,接收接收终端发送的能力协商请求响应,其中,协商请求响应指示接收终端支持基于波束的AOD测角。
本申请的实施例中,发送终端可接收接收终端发送的能力协商请求响应,协商请求响应指示接收终端支持基于波束的AOD测角,表明本申请实施例的AOD获取方法可应用于该接收终端,可继续执行下述步骤S403-S407。
作为另一种可能的实施方式,协商请求响应指示接收终端不支持基于波束的AOD测角时,表明本申请实施例的AOD获取方法不可应用于该接收终端,不需要继续执行下述步骤S403-S407。
可选的,可通过终端能力请求侧链路(User EquipmentCapabilityEnquirySidelink)或者终端能力信息侧链路(User Equipment CapabilityInformationSidelink)发送能力协商请求或者接收能力协商请求响应。
S403,与接收终端协商AOD的测角参数。
本申请的实施例中,发送终端在向接收终端发送多个扫描波束之前,可与接收终端协商AOD的测角参数。可以理解的是,测角参数用于指示发送终端向接收终端发送多个扫描波束。
可选的,测角参数包括下述参数中的一个或多个:发送的扫描波束的个数、扫描间隔、返回的波束标识的个数、扫描轮数、各轮的扫描间隔以及各轮扫描的扫描波束的个数、扫描波束所采用的时频资源信息、触发测角的测角周期。
其中,扫描间隔可包括发送的相邻扫描波束之间的时间间隔,各轮的扫描间隔可包括发送的相邻两轮扫描波束之间的时间间隔,扫描波束所采用的时频资源信息可包括扫描波束所采用的资源池、扫描波束的起始时间等。
可选的,可采用如下方式中的一种与接收终端协商AOD的测角参数:
方式1、向接收终端发送测角请求,其中,测角请求中携带测角参数。
方式2、接收接收终端发送的测角请求响应,其中,测角请求响应中携带测角参数。
可选地,上述测角请求或者测角请求响应可以通过终端之间的链路接口(PC5)对应的无线资源控制(Radio Resource Control,RRC)消息(简称“PC5-RRC”)、终端之间的链路接口(PC5)对应的信号协议(Signalling Protocol)消息(简称“PC5-S”)发送。
方式3、向接收终端发送资源调度信息,其中,资源调度信息中包括测角参数。
可选地,预先为发送终端配置有资源池,发送终端可以按照一定的资源调度规则,从该资源池中调度资源,为了能够保证与接收终端的信息传输,可以向接收终端发送相应的资源调度信息。
方式4、向接收终端发送协商指示信息,其中,协商指示信息携带测角参数。
可选的,上述四种方式中的测角请求、测角请求响应、资源调度信息、协商指示信息均可通过无线资源控制(Radio Resource Control,RRC)信令发送,或者其他信令发送。
S404,向接收终端发送多个扫描波束。
S405,接收至少一个波束标识,其中,该至少一个波束标识根据多个扫描波束的信道质量确定。
步骤S404-步骤S405的相关内容可参见上述实施例,此处不再赘述。
S406,接收扫描波束的测量结果,其中,测量结果包括参考信号接收功率RSRP和/或参考信号接收质量RSRQ。
本申请的实施例中,发送终端向接收终端发送多个扫描波束之后,还可接收扫描波束的测量结果。其中,测量结果包括参考信号接收功率(Reference Signal Receiving Power,RSRP)和/或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)。
可选的,发送终端向接收终端发送多个扫描波束之后,接收终端可获取多个扫描波束的测量结果,并将多个扫描波束的测量结果反馈给发送终端,进一步地,发送终端可接收接收终端发送的扫描波束的 测量结果。
S407,基于上述至少一个波束标识确定目标扫描波束,基于目标扫描波束确定发送终端的AOD。
步骤S407的相关内容可参见上述实施例,此处不再赘述。
根据本申请实施例的AOD获取方法,发送终端向接收终端发送能力协商请求,并可接收接收终端发送的能力协商请求响应,其中,协商请求响应指示接收终端支持基于波束的AOD测角,之后发送终端向接收终端发送多个扫描波束,之后接收接收终端发送的至少一个波束标识,其中,该至少一个波束标识根据多个扫描波束的信号质量确定,还可接收扫描波束的测量结果,之后可确定经由至少一个波束标识得到的唯一波束标识所标识的目标扫描波束的波束方向,并基于目标扫描波束的波束方向确定发送终端的AOD。由此,发送终端可通过向接收终端发送扫描波束,并根据波束标识确定发送终端的AOD。
图6为本申请实施例提供的另一种AOD获取方法的示意图。
如图6所示,本申请实施例的AOD获取方法,包括如下步骤:
S501,接收发送终端发送的多个扫描波束。
需要说明的是,本申请实施例的AOD获取方法,执行主体为接收终端。其中,接收终端包括但不限于手机、电脑、智能可穿戴设备、智能家电、车载终端等,这里不做过多限定。
本申请的实施例中,接收终端可接收发送终端发送的多个扫描波束。可选的,接收终端上设置有天线阵列,接收终端可通过自身的天线阵列接收发送终端发送的多个扫描波束。
S502,对各扫描波束的信号质量进行测量。
本申请的实施例中,接收终端在接收发送终端发送的多个扫描波束之后,可对各扫描波束的信号质量进行测量。
可选的,对各扫描波束的信号质量进行测量,可包括对各扫描波束的参考信号接收功率(Reference Signal Receiving Power,RSRP)和/或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)进行测量。
S503,根据多个扫描波束的信号质量,向发送终端发送至少一个波束标识。
本申请的实施例中,接收终端可根据多个扫描波束的信号质量,从多个扫描波束中确定出至少一个扫描波束,进而将至少一个扫描波束的波束标识发送给发送终端。
可以理解的是,每个扫描波束可对应一个波束标识,用于区分不同的扫描波束。其中,波束标识可为数字、字符等形式,这里不做过多限定。
可选的,接收终端可根据扫描波束的发送位置确定扫描波束的波束标识。其中,扫描波束的发送位置可包括扫描波束的波束方位角。继续以图2为例,波束方位角0°的扫描波束的波束标识可为#0,波束方位角10°的扫描波束的波束标识可为#1,波束方位角20°的扫描波束的波束标识可为#2,以此类推,波束方位角350°的扫描波束的波束标识可为#35。
可选的,每个扫描波束中携带自身的波束标识,此时接收终端可从扫描波束中提取扫描波束的波束标识。
可以理解的是,不同的扫描波束可对应不同的信号质量。可选的,上述至少一个波束标识是根据多个扫描波束的信号质量选出的。例如,该至少一个波束标识可为按照多个扫描波束的信号质量从高到低的顺序选出的至少一个扫描波束对应的波束标识。假设发送终端向接收终端发送10个扫描波束,则可按照10个扫描波束的信号质量从高到低的顺序,选出排序为1的扫描波束(即信号质量最好的扫描波束)的波束标识,此时发送端接收到的至少一个波束标识的数量为一个,为10个扫描波束中信号质量最好的扫描波束的波束标识,或者,可选出排序为1至3的扫描波束的波束标识,此时发送端接收到的至少一个波束标识的数量为3个,为10个扫描波束中信号质量排序前3的扫描波束的波束标识。由此,该方法可从多个扫描波束中获取信号质量较好的至少一个扫描波束的波束标识。
根据本申请实施例的AOD获取方法,接收终端可接收发送终端发送的多个扫描波束,并对各扫描波束的信号质量进行测量,之后可根据多个扫描波束的信号质量,向发送终端发送至少一个波束标识。由此,接收终端可向发送终端发送至少一个波束标识,以供发送终端根据波束标识确定发送终端的AOD。
图7为本申请实施例提供的另一种AOD获取方法的示意图。
如图7所示,本申请实施例的AOD获取方法,包括如下步骤:
S601,按照测角周期接收发送终端周期性发送的多个扫描波束。
可以理解的是,由于发送终端、接收终端的位置可能会改变,则发送终端的AOD也可能会改变。本申请的实施例中,接收终端可按照测角周期接收发送终端周期性发送的多个扫描波束,则可间隔固定测角周期重新确定波束标识,以供发送终端根据重新确定的波束标识更新发送终端的AOD。
S602,对各扫描波束的信号质量进行测量。
S603,根据多个扫描波束的信号质量,向发送终端发送至少一个波束标识。
步骤S602-步骤S603的相关内容可参见上述实施例,此处不再赘述。
根据本申请实施例的AOD获取方法,接收终端可按照测角周期接收发送终端周期性发送的多个扫描波束,并对各扫描波束的信号质量进行测量,之后可根据多个扫描波束的信号质量,向发送终端发送至少一个波束标识。由此,接收终端可按照测角周期接收发送终端周期性发送的多个扫描波束,则可间隔固定测角周期重新确定波束标识,以供发送终端根据重新确定的波束标识更新发送终端的AOD,有助于及时对发送终端的AOD进行更新。
图8为本申请实施例提供的一种AOD获取方法的交互示意图。
如图8所示,本申请实施例的AOD获取方法,包括如下步骤:
S701,按轮接收发送终端发送的每轮扫描后的扫描波束。
可以理解的是,由于发送终端、接收终端的位置可能会改变,则发送终端的AOD也可能会改变。本申请的实施例中,接收终端可按轮接收发送终端发送的每轮扫描后的扫描波束,则每轮扫描均可重新确定至少一个波束标识,以供发送终端根据重新确定的至少一个波束标识更新发送终端的AOD,有助于及时对发送终端的AOD进行更新。
其中,按轮接收发送终端发送的每轮扫描后的扫描波束,可包括如下两种可能的实施方式:
方式1、按照与发送终端协商的扫描轮数,接收发送终端发送的每轮扫描后的扫描波束。
本申请的实施例中,接收终端可预先与发送终端协商扫描轮数,并按照与发送终端协商的扫描轮数,接收发送终端发送的每轮扫描后的扫描波束。
其中,扫描轮数可根据实际情况进行协商设置,例如,可设置为10轮。
例如,若扫描轮数为10轮,接收终端可在每轮扫描内接收接收终端发送的多个扫描波束,累计接收10轮。
方式2、接收发送终端发送的指示信息,其中,指示信息用于指示是否存在下一轮扫描波束,指示信息为发送终端在每次扫描结束后或者每次接收到波束标识后发送的。
本申请的实施例中,发送终端在每次扫描结束后或者每次接收到波束标识后,可向接收终端发送指示信息,指示信息用于指示是否存在下一轮扫描波束,进一步地,接收终端可接收发送终端发送的指示信息。
可以理解的是,接收终端可响应于指示信息指示存在下一轮扫描波束,接收发送终端下一轮扫描后发送的扫描波束。反之,接收终端可响应于指示信息指示不存在下一轮扫描波束,停止接收发送终端下一轮扫描后发送的扫描波束。
可选的,指示信息还包括下一轮扫描的开始时间,此时接收终端可根据下一轮扫描的开始时间来接收扫描波束。
可选的,波束标识可为每轮扫描的扫描波束中信号质量最好的扫描波束对应的波束标识,则每轮扫描均可重新确定波束标识,以供发送终端根据重新确定的波束标识更新发送终端的AOD,有助于及时对发送终端的AOD进行更新。
S702,对各扫描波束的信号质量进行测量。
S703,根据多个扫描波束的信号质量,向发送终端发送至少一个波束标识。
步骤S702-步骤S703的相关内容可参见上述实施例,此处不再赘述。
根据本申请实施例的AOD获取方法,接收终端按轮接收发送终端发送的每轮扫描后的扫描波束,并对各扫描波束的信号质量进行测量,之后可根据多个扫描波束的信号质量,向发送终端发送至少一个波束标识。由此,接收终端可按轮接收发送终端发送的每轮扫描后的扫描波束,则每轮扫描均可重新确定波束标识,以供发送终端根据重新确定的波束标识更新发送终端的AOD,有助于及时对发送终端的AOD进行更新。
图9为本申请实施例提供的一种AOD获取方法的示意图。
如图9所示,本申请实施例的AOD获取方法,包括如下步骤:
S801,接收发送终端发送的能力协商请求,其中,能力协商请求用于协商接收终端是否支持基于波束的AOD测角。
本申请的实施例中,接收终端在接收发送终端发送的多个扫描波束之前,可接收发送终端发送的能力协商请求,能力协商请求用于协商接收终端是否支持基于波束的AOD测角。
S802,向发送终端发送能力协商请求响应,其中,协商请求响应用于指示接收终端支持基于波束的AOD测角。
本申请的实施例中,接收终端可向发送终端发送能力协商请求响应,协商请求响应指示接收终端支持基于波束的AOD测角,表明本申请实施例的终端的AOD获取方法可应用于该接收终端,可继续执行下述步骤S803-S807。
作为另一种可能的实施方式,协商请求响应指示接收终端不支持基于波束的AOD测角,表明本申请实施例的终端的AOD获取方法不可应用于该接收终端,不需要继续执行下述步骤S803-S807。
可选的,可通过终端能力请求侧链路(User Equipment Capability Enquiry Sidelink)或者终端能力信息侧链路(User Equipment Capability Information Sidelink)接收能力协商请求或者发送能力协商请求响应。
S803,与发送终端协商AOD的测角参数。
本申请的实施例中,接收终端在接收发送终端发送的多个扫描波束之前,可与发送终端协商AOD的测角参数。可以理解的是,测角参数用于指示发送终端向接收终端发送多个扫描波束。
可选的,测角参数包括下述参数中的一个或多个:发送的扫描波束的个数、扫描间隔、返回的波束标识的个数、扫描轮数、各轮的扫描间隔以及各轮扫描的扫描波束的个数、扫描波束所采用的时频资源信息、触发测角的测角周期。
其中,扫描间隔可包括发送的相邻扫描波束之间的时间间隔,各轮的扫描间隔可包括发送的相邻两轮扫描波束之间的时间间隔,扫描波束所采用的时频资源信息可包括扫描波束所采用的资源池、扫描波束的起始时间等。
可选的,可采用如下方式中的一种与发送终端协商AOD的测角参数:
方式1、接收发送终端发送的测角请求,其中,测角请求中携带测角参数。
方式2、向发送终端发送测角请求响应,其中,测角请求响应中携带测角参数。
可选地,上述测角请求或者测角请求响应可以通过终端之间的链路接口(PC5)对应的无线资源控制(Radio Resource Control,RRC)消息(简称“PC5-RRC”)、终端之间的链路接口(PC5)对应的信号协议(Signalling Protocol)消息(简称“PC5-S”)发送。
方式3、接收发送终端发送的资源调度信息,其中,资源调度信息中包括测角参数。
可选地,预先为发送终端配置有资源池,发送终端可以按照一定的资源调度规则,从该资源池中调度资源,为了能够保证与接收终端的信息传输,可以向接收终端发送相应的资源调度信息。
方式4、接收发送终端发送的协商指示信息,其中,协商指示信息携带测角参数。
可选的,上述四种方式中的测角请求、测角请求响应、资源调度信息、协商指示信息均可通过无线资源控制(Radio Resource Control,RRC)信令发送,或者其他信令发送。
S804,接收发送终端发送的多个扫描波束。
S805,对各扫描波束的信号质量进行测量。
S806,根据多个扫描波束的信号质量,向发送终端发送至少一个波束标识。
步骤S804-步骤S806的相关内容可参见上述实施例,此处不再赘述。
S807,向发送终端发送扫描波束的测量结果,其中,测量结果包括参考信号接收功率RSRP和/或参考信号接收质量RSRQ。
本申请的实施例中,接收终端向发送终端发送至少一个波束标识之后,还可向发送终端发送扫描波束的测量结果。其中,测量结果包括参考信号接收功率(Reference Signal Receiving Power,RSRP)和/或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)。
根据本申请实施例的AOD获取方法,接收终端可接收发送终端发送的能力协商请求,之后向发送终端发送能力协商请求响应,其中,协商请求响应用于指示接收终端支持基于波束的AOD测角,之后与发送终端协商AOD的测角参数,之后接收发送终端发送的多个扫描波束,并对各扫描波束的信号质量进行测量,之后根据多个扫描波束的信号质量,向发送终端发送至少一个波束标识,还可向发送终端发送扫描波束的测量结果,其中,测量结果包括参考信号接收功率RSRP和/或参考信号接收质量RSRQ。由此,接收终端可向发送终端发送至少一个波束标识,以供发送终端根据波束标识确定发送终端的AOD。
图10为本申请实施例提供的一种AOD获取方法的交互示意图。
如图10所示,本申请实施例的AOD获取方法,包括如下步骤:
S901,发送终端向接收终端发送能力协商请求,其中,能力协商请求用于协商接收终端是否支持基于波束的AOD测角。
S902,接收终端向发送终端发送能力协商请求响应,其中,协商请求响应用于指示接收终端是否支持基于波束的AOD测角。
本申请的实施例中,接收终端可向发送终端发送能力协商请求响应,协商请求响应指示接收终端支持基于波束的AOD测角,表明本申请实施例的AOD获取方法可应用于该接收终端,可继续执行下述步骤S903-S908。
作为另一种可能的实施方式,协商请求响应指示接收终端不支持基于波束的AOD测角,表明本申请实施例的AOD获取方法不可应用于该接收终端,不需要继续执行下述步骤S903-S908。
S903,发送终端与接收终端协商AOD的测角参数。
S904,发送终端向接收终端发送多个扫描波束。
S905,接收终端对各扫描波束的信号质量进行测量。
S906,接收终端根据多个扫描波束的信号质量,向发送终端发送至少一个波束标识。
S907,接收终端向发送终端发送扫描波束的测量结果,其中,测量结果包括参考信号接收功率RSRP和/或参考信号接收质量RSRQ。
S908,发送终端基于至少一个波束标识确定目标扫描波束,基于目标扫描波束确定发送终端的AOD。
步骤S901-步骤S908的相关内容可参见上述实施例,此处不再赘述。
本申请的实施例中,长期演进(Long Term Evolution,LTE)网络、新空口(New Radio,NR)中支持设备之间直接通信。设备之间可基于旁链路(Sidelink)技术直接通信,两个终端之间的sidelink接口称为PC5接口,PC5接口支持两种协议,包括PC5对应的无线资源控制(Radio Resource Control,RRC)协议(简称“PC5-RRC”协议)、PC5对应的信号协议(Signalling Protocol)(简称“PC5-S”协议)。
PC5接口支持广播、组播和单播等通信模式。
当终端A和终端B通过PC5接口的单播通信模式建立通信时,终端A、终端B均可确定自身用于接收的目标标识,终端A的车用无线通信(vehicle to everything,V2X)应用层可提供给PC5协议层V2X应用的服务类型,之后终端A可向终端B发送指示信息请求(Direct Communication Request),终端B可向终端A反馈安全建立消息(Security Establishment Message),之后终端A、终端B均进行安全 建立,之后终端A可向终端B发送互联网协议(Internet Protocol,IP)地址配置信息,终端B可向终端A反馈接受指示信息(Direct Communication Accept)消息,最后终端A、终端B均可提供PC5接口标识给应用服务器(ApplicationServer,AS),以建立终端A和终端B之间的通信。
与上述几种实施例提供的AOD获取方法相对应,本申请还提供一种AOD获取装置,由于本申请实施例提供的AOD获取装置与上述图1-图5实施例提供的AOD获取方法相对应,因此AOD获取方法的实施方式也适用于本实施例提供的AOD获取装置,在本实施例中不再详细描述。图11-图12是根据本申请提出的AOD获取装置的结构示意图。
图11为本申请实施例提供的AOD获取装置的结构示意图。
如图11所示,该AOD获取装置100,包括:波束发送模块110、标识接收模块120和确定模块130,其中:
波束发送模块110,被配置为向接收终端发送多个扫描波束;
标识接收模块120,被配置为接收至少一个波束标识,其中,所述至少一个波束标识根据所述多个扫描波束的信号质量确定;
确定模块130,被配置为基于经由所述至少一个波束标识的得到的唯一波束标识确定目标扫描波束,基于所述目标扫描波束确定发送终端的AOD。
可选的,所述至少一个波束标识为按照所述多个扫描波束的信号质量从高到低的顺序选出波束标识。
可选的,如图12所示,所述波束发送模块110,包括:第一波束发送单元1101,所述第一波束发送单元1101,被配置为按照测角周期向所述接收终端周期性发送所述多个扫描波束。
可选的,如图12所示,所述波束发送模块110,包括:第二波束发送单元1102,所述第二波束发送单元1102,被配置为按轮进行波束扫描,并向所述接收终端发送每轮扫描的所述扫描波束。
可选的,所述第二波束发送单元1102,还被配置为:按照与所述接收终端协商的扫描轮数进行波束扫描;或者,每次扫描结束后或者每次接收到所述波束标识后向所述接收终端发送指示信息,其中,所述指示信息用于指示是否存在下一轮扫描波束。
可选的,所述指示信息还包括下一轮扫描的开始时间。
可选的,所述波束标识为每轮扫描的所述扫描波束中信号质量最好的所述扫描波束对应的波束标识,所述第二波束发送单元1102,包括:第一确定子单元,被配置为根据上一轮接收到的所述波束标识和当前轮数,确定下一轮的所述扫描波束的第一波束方位角;扫描子单元,被配置为按照所述第一波束方位角进行下一轮波束扫描。
可选的,所述第二波束发送单元1102,还包括:第二确定子单元,被配置为根据所述波束标识所标识的扫描波束和所述当前轮数,确定所述扫描波束的第二波束方位角;划分子单元,被配置为按照每轮需要扫描的波束个数,对所述第二波束方位角进行划分,确定下一轮的所述第一波束方位角。
可选的,每个所述扫描波束的波束标识是根据对应的所述扫描波束的发送位置确定的,或者,每个所述扫描波束中携带自身的波束标识。
可选的,如图12所示,所述AOD获取装置100,还包括:结果接收模块140,所述结果接收模块140,被配置为接收所述扫描波束的测量结果,其中,所述测量结果包括参考信号接收功率RSRP和/或参考信号接收质量RSRQ。
可选的,如图12所示,所述AOD获取装置100,还包括:第一参数协商模块150,所述第一参数协商模块150,被配置为所述向接收终端发送多个扫描波束之前,采用如下方式中的一种与所述接收终端协商所述AOD的测角参数:向所述接收终端发送测角请求,其中,所述测角请求中携带所述测角参数;或者,接收所述接收终端发送的测角请求响应,其中,所述测角请求响应中携带所述测角参数;或者,向所述接收终端发送资源调度信息,其中,所述资源调度信息中包括所述测角参数;或者,向所述接收终端发送协商指示信息,其中,所述协商指示信息携带所述测角参数。
可选的,所述测角参数包括下述参数中的一个或多个:发送的所述扫描波束的个数、扫描间隔、返回的所述波束标识的个数、扫描轮数、各轮的扫描间隔以及各轮扫描的所述扫描波束的个数、所述扫描 波束所采用的时频资源信息、触发测角的测角周期。
可选的,如图12所示,所述AOD获取装置100,还包括:第一能力协商模块160,所述第一能力协商模块160,包括:请求发送单元1601,被配置为向所述接收终端发送能力协商请求,其中,所述能力协商请求用于协商所述接收终端是否支持基于波束的AOD测角;响应接收单元1602,被配置为接收所述接收终端发送的能力协商请求响应,其中,所述协商请求响应用于指示所述接收终端是否支持基于波束的AOD测角。
可选的,所述第一能力协商模块160,被配置为通过终端能力请求侧链路或者终端能力信息侧链路发送所述能力协商请求或者接收所述能力协商请求响应。
本申请实施例的AOD获取装置,可向接收终端发送多个扫描波束,之后接收至少一个波束标识,其中,至少一个波束标识根据多个扫描波束的信号质量确定,之后基于经由上述至少一个波束标识得到的唯一波束标识确定目标扫描波束,并基于目标扫描波束确定发送终端的AOD。由此,发送终端可通过向接收终端发送扫描波束,并根据唯一波束标识确定发送终端的AOD,可在长期演进LTE网络、新空口NR中实现AOD的获取。
与上述几种实施例提供的AOD获取方法相对应,本申请还提供一种AOD获取装置,由于本申请实施例提供的AOD获取装置与上述图6-图9实施例提供的AOD获取方法相对应,因此AOD获取方法的实施方式也适用于本实施例提供的AOD获取装置,在本实施例中不再详细描述。图13-图14是根据本申请提出的AOD获取装置的结构示意图。
图13为本申请实施例提供的AOD获取装置的结构示意图。
如图13所示,该AOD获取装置200,包括:波束接收模块210、质量测量模块220和标识发送模块230。
波束接收模块210,被配置为接收发送终端发送的多个扫描波束;
质量测量模块220,被配置为对各所述扫描波束的信号质量进行测量;
标识发送模块230,被配置为根据所述多个扫描波束的信号质量,向所述发送终端发送至少一个波束标识。
可选的,所述至少一个波束标识为按照所述多个扫描波束的信号质量从高到低的顺序选出的波束标识。
可选的,如图14所示,所述波束接收模块210,包括:第一波束接收单元2101,所述第一波束接收单元2101,被配置为按照测角周期接收所述发送终端周期性发送的所述多个扫描波束。
可选的,如图14所示,所述波束接收模块210,包括:第二波束接收单元2102,所述第二波束接收单元2102,按轮接收所述发送终端发送的每轮扫描后的所述扫描波束。
可选的,所述第二波束接收单元2102,还被配置为按照与所述发送终端协商的扫描轮数,接收所述发送终端发送的每轮扫描后的所述扫描波束;或者,接收所述发送终端发送的指示信息,其中,所述指示信息用于指示是否存在下一轮扫描波束;所述指示信息为所述发送终端在每次扫描结束后或者每次接收到所述至少一个波束标识后发送的;响应于所述指示信息指示存在下一轮扫描波束,接收所述发送终端下一轮扫描后发送的所述扫描波束。
可选的,所述指示信息还包括下一轮扫描的开始时间。
可选的,所述波束标识为每轮扫描的所述扫描波束中信号质量最好的所述扫描波束对应的波束标识。
可选的,如图14所示,所述AOD获取装置200,还包括:标识确定模块240,所述标识确定模块240,被配置为根据所述扫描波束的发送位置确定所述扫描波束的波束标识;或者,从所述扫描波束中提取所述扫描波束的波束标识。
可选的,如图14所示,所述AOD获取装置200,还包括:结果发送模块250,所述结果发送模块250,被配置为向所述发送终端发送所述扫描波束的测量结果,其中,所述测量结果包括参考信号接收功率RSRP和/或参考信号接收质量RSRQ。
可选的,如图14所示,所述AOD获取装置200,还包括:第二参数协商模块260,所述第二参数 协商模块260,被配置为所述接收发送终端发送的多个扫描波束之前,采用如下方式中的一种与所述发送终端协商所述AOD的测角参数:接收所述发送终端发送的测角请求,其中,所述测角请求中携带所述测角参数;或者,向所述发送终端发送测角请求响应,其中,所述测角请求响应中携带所述测角参数;或者,接收所述发送终端发送的资源调度信息,其中,所述资源调度信息中包括所述测角参数;或者,接收所述发送终端发送的协商指示信息,其中,所述协商指示信息携带所述测角参数。
可选的,所述测角参数包括下述参数中的一个或多个:发送的所述扫描波束的个数、扫描间隔、返回的所述波束标识的个数、扫描轮数、各轮的扫描间隔以及各轮扫描的所述扫描波束的个数、所述扫描波束所采用的时频资源信息、触发测角的测角周期。
可选的,如图14所示,所述AOD获取装置200,还包括:第二能力协商模块270,所述第二能力协商模块270,包括:请求接收单元2701,被配置为接收所述发送终端发送的能力协商请求,其中,所述能力协商请求用于协商接收终端是否支持基于波束的AOD测角;响应发送单元2702,被配置为向所述发送终端发送能力协商请求响应,其中,所述协商请求响应用于指示所述接收终端是否支持基于波束的AOD测角。
可选的,所述第二能力协商模块270,被配置为通过终端能力请求侧链路或者终端能力信息侧链路接收所述能力协商请求或者发送所述能力协商请求响应。
根据本申请实施例的AOD获取装置,可接收发送终端发送的多个扫描波束,并对各扫描波束的信号质量进行测量,之后可根据多个扫描波束的信号质量,向发送终端发送至少一个波束标识。由此,可向发送终端发送至少一个波束标识,以供发送终端根据波束标识确定发送终端的AOD。
根据本申请的实施例,本申请还提供了一种通信设备和一种可读存储介质。
如图15所示,是根据本申请实施例的通信设备的框图。通信设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。通信设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
如图15所示,该通信设备包括:一个或多个处理器1100、存储器1200,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在通信设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个通信设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图15中以一个处理器1100为例。
存储器1200即为本申请所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本申请所提供的AOD获取方法。本申请的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本申请所提供的AOD获取方法。
存储器1200作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本申请实施例中的AOD获取方法对应的程序指令/模块(例如,附图11所示的波束发送模块110、标识接收模块120和确定模块130)。处理器1100通过运行存储在存储器1200中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的AOD获取方法。
存储器1200可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据定位通信设备的使用所创建的数据等。此外,存储器1200可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。可选地,存储器1200可选包括相对于处理器1100远程设置的存储器,这些 远程存储器可以通过网络连接至定位通信设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信设备还可以包括:输入装置1300和输出装置1400。处理器1100、存储器1200、输入装置1300和输出装置1400可以通过总线或者其他方式连接,图11中以通过总线连接为例。
输入装置1300可接收输入的数字或字符信息,以及产生与定位通信设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置1400可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
根据本申请实施例的AOD获取方法,发送终端可向接收终端发送多个扫描波束,之后接收至少一个波束标识,其中,至少一个波束标识根据多个扫描波束的信号质量确定,之后基于经由至少一个波束标识得到的唯一波束标识确定目标扫描波束,并基于目标扫描波束确定发送终端的AOD。由此,发送终端可通过向接收终端发送扫描波束,并根据波束标识确定发送终端的AOD,可在长期演进LTE网络、新空口NR中实现AOD的获取。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本申请保护范围的限制。本领域技术人员应该明白的是,根据设计 要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本申请的精神和原则之内所作的修改、等同替换和改进等,均应包含在本申请保护范围之内。

Claims (32)

  1. 一种AOD获取方法,其特征在于,包括:
    向接收终端发送多个扫描波束;
    接收至少一个波束标识,其中,所述至少一个波束标识根据所述多个扫描波束的信号质量确定;
    基于所述至少一个波束标识确定目标扫描波束,基于所述目标扫描波束确定发送终端的AOD。
  2. 根据权利要求1所述的AOD获取方法,其特征在于,基于所述至少一个波束标识确定目标扫描波束具体为:基于所述至少一个波束标识得到唯一波束标识,基于所述唯一波束标识确定目标扫描波束。
  3. 根据权利要求2所述的AOD获取方法,其特征在于,
    所述至少一个波束标识为按照所述多个扫描波束的信号质量从高到低的顺序选出的波束标识。
  4. 根据权利要求1所述的AOD获取方法,其特征在于,所述向接收终端发送多个扫描波束,包括:
    按照测角周期向所述接收终端周期性发送所述多个扫描波束。
  5. 根据权利要求1所述的AOD获取方法,其特征在于,所述向接收终端发送多个扫描波束,包括:
    按轮进行波束扫描,并向所述接收终端发送每轮扫描的所述扫描波束。
  6. 根据权利要求5所述的AOD获取方法,其特征在于,其中,所述按轮进行波束扫描,包括:
    按照与所述接收终端协商的扫描轮数进行波束扫描;或者,
    每次扫描结束后或者每次接收到所述波束标识后向所述接收终端发送指示信息,其中,所述指示信息用于指示是否存在下一轮扫描波束。
  7. 根据权利要求6所述的AOD获取方法,其特征在于,其中,所述指示信息还包括下一轮扫描的开始时间。
  8. 根据权利要求5-7任一项所述的AOD获取方法,其特征在于,所述波束标识为每轮扫描的所述扫描波束中信号质量最好的所述扫描波束对应的波束标识,其中,所述按轮进行波束扫描,包括:
    根据上一轮接收到的所述波束标识和当前轮数,确定下一轮的所述扫描波束的第一波束方位角;
    按照所述第一波束方位角进行下一轮波束扫描。
  9. 根据权利要求7所述的AOD获取方法,其特征在于,还包括:
    根据所述波束标识所标识的扫描波束和所述当前轮数,确定所述扫描波束的第二波束方位角;
    按照每轮需要扫描的波束个数,对所述第二波束方位角进行划分,确定下一轮的所述第一波束方位角。
  10. 根据权利要求1所述的AOD获取方法,其特征在于,每个所述扫描波束的波束标识是根据对应的所述扫描波束的发送位置确定的,或者,每个所述扫描波束中携带自身的波束标识。
  11. 根据权利要求1的AOD获取方法,其特征在于,还包括:
    接收所述扫描波束的测量结果,其中,所述测量结果包括参考信号接收功率RSRP和/或参考信号 接收质量RSRQ。
  12. 根据权利要求1所述的AOD获取方法,其特征在于,所述向接收终端发送多个扫描波束之前,还包括:
    采用如下方式中的一种与所述接收终端协商所述AOD的测角参数:
    向所述接收终端发送测角请求,其中,所述测角请求中携带所述测角参数;或者,
    接收所述接收终端发送的测角请求响应,其中,所述测角请求响应中携带所述测角参数;或者,
    向所述接收终端发送资源调度信息,其中,所述资源调度信息中包括所述测角参数;或者,
    向所述接收终端发送协商指示信息,其中,所述协商指示信息携带所述测角参数。
  13. 根据权利要求12所述的AOD获取方法,其特征在于,所述测角参数包括下述参数中的一个或多个:
    发送的所述扫描波束的个数、扫描间隔、返回的所述波束标识的个数、扫描轮数、各轮的扫描间隔以及各轮扫描的所述扫描波束的个数、所述扫描波束所采用的时频资源信息、触发测角的测角周期。
  14. 根据权利要求1所述的AOD获取方法,其特征在于,所述向接收终端发送多个扫描波束之前,还包括:
    向所述接收终端发送能力协商请求,其中,所述能力协商请求用于协商所述接收终端是否支持基于波束的AOD测角;
    接收所述接收终端发送的能力协商请求响应,其中,所述协商请求响应用于指示所述接收终端是否支持基于波束的AOD测角。
  15. 根据权利要求14所述的AOD获取方法,其特征在于,通过终端能力请求侧链路或者终端能力信息侧链路发送所述能力协商请求或者接收所述能力协商请求响应。
  16. 一种AOD获取方法,其特征在于,包括:
    接收发送终端发送的多个扫描波束;
    对各所述扫描波束的信号质量进行测量;
    根据所述多个扫描波束的信号质量,向所述发送终端发送至少一个波束标识。
  17. 根据权利要求16所述的AOD获取方法,其特征在于,所述至少一个波束标识为按照所述多个扫描波束的信号质量从高到低的顺序选出的至少一个波束标识。
  18. 根据权利要求16所述的AOD获取方法,其特征在于,所述接收发送终端发送的多个扫描波束,包括:
    按照测角周期接收所述发送终端周期性发送的所述多个扫描波束。
  19. 根据权利要求16所述的AOD获取方法,其特征在于,所述接收发送终端发送的多个扫描波束,包括:
    按轮接收所述发送终端发送的每轮扫描后的所述扫描波束。
  20. 根据权利要求19所述的AOD获取方法,其特征在于,其中,所述按轮接收所述发送终端发送的每轮扫描后的所述扫描波束,包括:
    按照与所述发送终端协商的扫描轮数,接收所述发送终端发送的每轮扫描后的所述扫描波束;或者,接收所述发送终端发送的指示信息,其中,所述指示信息用于指示是否存在下一轮扫描波束;所述 指示信息为所述发送终端在每次扫描结束后或者每次接收到所述波束标识后发送的;
    响应于所述指示信息指示存在下一轮扫描波束,接收所述发送终端下一轮扫描后发送的所述扫描波束。
  21. 根据权利要求20所述的AOD获取方法,其特征在于,其中,所述指示信息还包括下一轮扫描的开始时间。
  22. 根据权利要求19-21任一项所述的AOD获取方法,其特征在于,所述波束标识为每轮扫描的所述扫描波束中信号质量最好的所述扫描波束对应的波束标识。
  23. 根据权利要求16所述的AOD获取方法,其特征在于,还包括:
    根据所述扫描波束的发送位置确定所述扫描波束的波束标识;或者,
    从所述扫描波束中提取所述扫描波束的波束标识。
  24. 根据权利要求16所述的AOD获取方法,其特征在于,还包括:
    向所述发送终端发送所述扫描波束的测量结果,其中,所述测量结果包括参考信号接收功率RSRP和/或参考信号接收质量RSRQ。
  25. 根据权利要求16所述的AOD获取方法,其特征在于,所述接收发送终端发送的多个扫描波束之前,还包括:
    采用如下方式中的一种与所述发送终端协商所述AOD的测角参数:
    接收所述发送终端发送的测角请求,其中,所述测角请求中携带所述测角参数;或者,
    向所述发送终端发送测角请求响应,其中,所述测角请求响应中携带所述测角参数;或者,
    接收所述发送终端发送的资源调度信息,其中,所述资源调度信息中包括所述测角参数;或者,
    接收所述发送终端发送的协商指示信息,其中,所述协商指示信息携带所述测角参数。
  26. 根据权利要求25所述的AOD获取方法,其特征在于,所述测角参数包括下述参数中的一个或多个:
    发送的所述扫描波束的个数、扫描间隔、返回的所述波束标识的个数、扫描轮数、各轮的扫描间隔以及各轮扫描的所述扫描波束的个数、所述扫描波束所采用的时频资源信息、触发测角的测角周期。
  27. 根据权利要求16所述的AOD获取方法,其特征在于,所述接收发送终端发送的多个扫描波束之前,还包括:
    接收所述发送终端发送的能力协商请求,其中,所述能力协商请求用于协商接收终端是否支持基于波束的AOD测角;
    向所述发送终端发送能力协商请求响应,其中,所述协商请求响应用于指示所述接收终端是否支持基于波束的AOD测角。
  28. 根据权利要求27所述的AOD获取方法,其特征在于,通过终端能力请求侧链路或者终端能力信息侧链路接收所述能力协商请求或者发送所述能力协商请求响应。
  29. 一种AOD获取装置,其特征在于,包括:
    波束发送模块,被配置为向接收终端发送多个扫描波束;
    标识接收模块,被配置为接收至少一个波束标识,其中,所述至少一个波束标识根据所述多个扫描波束的信号质量确定;
    确定模块,被配置为基于所述至少一个波束标识确定目标扫描波束,基于所述目标扫描波束确定发送终端的AOD。
  30. 一种AOD获取装置,其特征在于,包括:
    波束接收模块,被配置为接收发送终端发送的多个扫描波束;
    质量测量模块,被配置为对各所述扫描波束的信号质量进行测量;
    标识发送模块,被配置为根据所述多个扫描波束的信号质量,向所述发送终端发送至少一个波束标识。
  31. 一种通信设备,其特征在于,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1至15或16至28任一项所述的方法。
  32. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后,能够实现权利要求1至15或16至28任一项所述的方法。
PCT/CN2020/128804 2020-11-13 2020-11-13 Aod获取方法、装置和通信设备 WO2022099645A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/128804 WO2022099645A1 (zh) 2020-11-13 2020-11-13 Aod获取方法、装置和通信设备
US18/036,759 US20230408621A1 (en) 2020-11-13 2020-11-13 Aod acquisition method and apparatus, and communication device
CN202080003205.9A CN114766081A (zh) 2020-11-13 2020-11-13 Aod获取方法、装置和通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/128804 WO2022099645A1 (zh) 2020-11-13 2020-11-13 Aod获取方法、装置和通信设备

Publications (1)

Publication Number Publication Date
WO2022099645A1 true WO2022099645A1 (zh) 2022-05-19

Family

ID=81602011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128804 WO2022099645A1 (zh) 2020-11-13 2020-11-13 Aod获取方法、装置和通信设备

Country Status (3)

Country Link
US (1) US20230408621A1 (zh)
CN (1) CN114766081A (zh)
WO (1) WO2022099645A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190387423A1 (en) * 2016-12-20 2019-12-19 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, and communication method
CN111201721A (zh) * 2017-10-12 2020-05-26 高通股份有限公司 波束管理方案
CN111698008A (zh) * 2019-03-15 2020-09-22 华为技术有限公司 生成波束的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190387423A1 (en) * 2016-12-20 2019-12-19 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, and communication method
CN111201721A (zh) * 2017-10-12 2020-05-26 高通股份有限公司 波束管理方案
CN111698008A (zh) * 2019-03-15 2020-09-22 华为技术有限公司 生成波束的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Composite Beam Transmission for SS blocks", 3GPP DRAFT; R1-1709031_COMPOSITE BEAM TRANSMISSION FOR SS BLOCK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 14 May 2017 (2017-05-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051274190 *

Also Published As

Publication number Publication date
CN114766081A (zh) 2022-07-19
US20230408621A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
JP6385593B2 (ja) ネットワーク発見および同期のためのシステム
KR101776542B1 (ko) Ap 위치 조회
US9288682B2 (en) White space utilization
US20230413142A1 (en) Method and apparatus for determining satellite backhaul information
KR20210008081A (ko) 핸드오버 방법 및 시스템, 및 디바이스
WO2022099657A1 (zh) 终端的离开角aod获取方法、装置和通信设备
WO2022170446A1 (zh) 一种卫星链路信息确定方法及装置
CN113194531B (zh) 定位方法及通信设备
JP2023517246A (ja) 基地局支援によるサイドリンクビーム取得
WO2022178779A1 (zh) 波束指示方法及装置
WO2022099645A1 (zh) Aod获取方法、装置和通信设备
WO2024066569A1 (zh) 定位方法及终端
CN115379420A (zh) 用于执行感知任务的通信方法及通信装置
WO2022120536A1 (zh) 一种基于集成接入和回程的用户设备定位方法及装置
WO2022126343A1 (zh) 一种邻小区测量方法及装置
WO2022268197A1 (zh) 定位处理方法、定位参考信号发送方法、装置及设备
CN115039447B (zh) 一种天线切换配置的切换方法及设备
WO2022116200A1 (zh) 一种测量相对位置的方法及装置
WO2022133688A1 (zh) 一种测量间隙的共享方法及装置
CN109195226B (zh) 数据传输方法及装置、电子设备和计算机可读存储介质
WO2022120847A1 (zh) 配置候选重复传输次数的方法及装置
WO2022174374A1 (zh) 一种用户设备定位验证的确认方法及装置
WO2022174375A1 (zh) 一种用户设备定位验证方法及装置
EP4255065A1 (en) Signal transmission method and apparatus
WO2022141575A1 (zh) 一种参考时间信息的使用方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961201

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18036759

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961201

Country of ref document: EP

Kind code of ref document: A1