WO2022131608A1 - 저온 충격인성이 우수한 극후물 강판 및 이의 제조방법 - Google Patents
저온 충격인성이 우수한 극후물 강판 및 이의 제조방법 Download PDFInfo
- Publication number
- WO2022131608A1 WO2022131608A1 PCT/KR2021/017472 KR2021017472W WO2022131608A1 WO 2022131608 A1 WO2022131608 A1 WO 2022131608A1 KR 2021017472 W KR2021017472 W KR 2021017472W WO 2022131608 A1 WO2022131608 A1 WO 2022131608A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- ultra
- impact toughness
- rolling
- temperature impact
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 92
- 239000010959 steel Substances 0.000 title claims abstract description 92
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 238000005096 rolling process Methods 0.000 claims description 66
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 27
- 239000011651 chromium Substances 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 21
- 239000011572 manganese Substances 0.000 claims description 21
- 239000010936 titanium Substances 0.000 claims description 20
- 239000010955 niobium Substances 0.000 claims description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 229910000859 α-Fe Inorganic materials 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 229910001562 pearlite Inorganic materials 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 238000005098 hot rolling Methods 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 238000001953 recrystallisation Methods 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 239000011574 phosphorus Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 abstract description 24
- 229910000746 Structural steel Inorganic materials 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 18
- 229910045601 alloy Inorganic materials 0.000 description 14
- 239000000956 alloy Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 9
- 239000006104 solid solution Substances 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/02—Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Definitions
- the present invention relates to structural steel that can be applied as a material for marine, bridge, construction, etc., and more particularly, to an ultra-thick steel sheet having excellent low-temperature impact toughness and a method for manufacturing the same.
- Ultra-thick material over a certain thickness can be manufactured through the plate process, and the rolling method at this time can be divided into general rolling, normalizing rolling, TMCP (Thermo mechanical controlled rolling), and the like.
- TMCP Thermo mechanical controlled rolling
- a heat treatment process may be performed after rolling.
- the heat treatment process includes normalizing, quenching, and quenching-tempering heat treatment processes.
- general rolling is a method of rolling without controlling the rolling temperature, and can be mainly applied to general steel that does not require impact toughness.
- TMCP performs recrystallization rolling and non-recrystallization rolling through temperature control, and it is possible to secure strength and impact toughness through cooling if necessary.
- TMCP performs recrystallization rolling and non-recrystallization rolling through temperature control, and it is possible to secure strength and impact toughness through cooling if necessary.
- a long waiting time to adjust the rolling temperature is required, resulting in a serious decrease in productivity.
- ultra-thick steel materials can be applied to various structural industries such as ships, various frames of offshore structures, bridges, and infrastructure industries such as construction, and wind power substructures.
- Patent Document 1 Korean Patent Publication No. 10-2014-0003010
- One aspect of the present invention is to overcome the metallurgical disadvantages of the existing ultra-thick steel material, and to provide an ultra-thick steel sheet excellent in strength as well as low-temperature impact toughness and a method for manufacturing the same.
- the subject of the present invention is not limited to the above.
- the subject of the present invention will be understood from the overall content of the present specification, and those of ordinary skill in the art to which the present invention pertains will have no difficulty in understanding the additional subject of the present invention.
- each element means a weight content.
- Another aspect of the present invention comprises the steps of: preparing a steel slab satisfying the above-described alloy composition and Relational Equation 1; heating the steel slab at 1020 to 1150 °C; rough rolling the heated steel slab at 1000° C. or higher; Finishing hot rolling directly above Tnr (No-Recrystallization Temperature) or in a temperature range of Tnr to A3 after the rough rolling; And it provides a method of manufacturing an ultra-thick steel sheet excellent in low-temperature impact toughness comprising the step of air cooling after the finish hot rolling.
- the ultra-thick steel sheet of the present invention has an effect applicable to various fields such as ships, various frames of offshore structures, bridges, and infrastructure industries such as construction, and wind power substructures.
- FIG. 1 shows a photograph observing the microstructure of an ultra-thick steel sheet according to an embodiment of the present invention.
- the inventors of the present invention have studied in depth ways to ensure excellent low-temperature impact toughness as well as strength in providing an ultra-thick steel material having a thickness of 100 mm or more (100 to 200 mm) suitable as a structural steel.
- the ultra-thick steel sheet excellent in low-temperature impact toughness is, by weight, carbon (C): 0.06 to 0.1%, silicon (Si): 0.3 to 0.5%, manganese (Mn): 1.35 to 1.65%, Aluminum (Sol.Al): 0.015 to 0.04%, Niobium (Nb): 0.015 to 0.04%, Titanium (Ti): 0.005 to 0.02%, Chromium (Cr): 0.15 to 0.4%, Nickel (Ni): 0.3 to 0.5 %, nitrogen (N): 0.002 to 0.008%, phosphorus (P): 0.01% or less (excluding 0%), sulfur (S): 0.003% or less (excluding 0%).
- the content of each element is based on the weight, and the ratio of the tissue is based on the area.
- Carbon (C) is an element advantageous in securing strength by causing solid solution strengthening and bonding with Nb in steel to form carbonitrides.
- C may be included in an amount of 0.06% or more, but when the content exceeds 0.1%, the pearlite phase is excessively formed as a microstructure, and the impact and fatigue properties at low temperature are deteriorated. there is In addition, as the content of solid solution C increases, the impact properties deteriorate.
- the C may be included in an amount of 0.06 to 0.1%, and more advantageously may be included in an amount of 0.07% or more and 0.09% or less.
- Si Silicon (Si) together with aluminum (Al) serves to deoxidize molten steel.
- Al aluminum
- Si also affects strength improvement, but if its content is excessive, it inhibits impact and fatigue properties at low temperatures, so it is necessary to add it appropriately.
- the Si may be included in an amount of 0.3 to 0.5%.
- Manganese (Mn) is an element having a large strength improvement effect by solid solution strengthening, and may be included in an amount of 1.35% or more. However, if the content is excessive, there is a fear that the toughness may be lowered due to the formation of MnS inclusions and segregation of the center, so it may be included in 1.65% or less in consideration of this.
- Aluminum (Sol.Al) is a major deoxidizing agent for steel, and is advantageous for fixing nitrogen (N) in steel.
- N nitrogen
- low-temperature toughness and low-temperature fatigue properties are inhibited by promoting the generation of MA phase in the base material and in the heat-affected zone of welding.
- the Al may be included in an amount of 0.015 to 0.04%.
- Niobium (Nb) has a solid solution strengthening effect, and by forming carbonitrides, it is advantageous for improving strength by suppressing recrystallization during rolling or cooling to form a fine structure.
- Nb may be contained in an amount of 0.015% or more.
- C concentration occurs due to C affinity and promotes the formation of the MA phase, thereby inhibiting toughness and fracture properties at low temperatures. Considering this, it can be limited to 0.04% or less.
- the Nb may be included in an amount of 0.015 to 0.04%, and more advantageously, it may be included in an amount of 0.02% or more.
- Titanium (Ti) forms Ti-based nitride (TiN) by combining with nitrogen (N), which can deteriorate the impact properties and surface quality of steel, and serves to reduce the content of solid solution N.
- the Ti-based precipitate is useful for suppressing the coarsening of the structure, contributing to the miniaturization, and improving toughness.
- Ti may be contained in an amount of 0.005% or more, but when the content exceeds 0.02%, it causes destruction by coarsening of the precipitates, and the solid solution Ti remaining after bonding with N is Ti-based carbide By forming (TiC), there is a problem of impairing the toughness of the base material and the weld zone.
- the Ti may be included in an amount of 0.005 to 0.02%, and more advantageously, it may be included in an amount of 0.01% or more.
- Chromium (Cr) is an element advantageous for strength improvement by increasing the hardenability of steel.
- Cr may be included in an amount of 0.15% or more, but when the content exceeds 0.4%, weldability is deteriorated, and as an expensive element, there is a problem of causing an increase in manufacturing cost.
- the Cr may be included in an amount of 0.15 to 0.4%.
- Nickel (Ni) is an element capable of simultaneously improving the strength and toughness of steel.
- Ni in order to sufficiently obtain the effect of improving strength and toughness in the rolling process according to the present invention, it is necessary to contain Ni in an amount of 0.3% or more. However, when the content exceeds 0.5%, the above-described effect is saturated, but there is a problem in that the manufacturing cost increases.
- the Ni may be included in an amount of 0.3 to 0.5%.
- Nitrogen (N) is combined with Ti, Nb, Al, etc. in steel to form precipitates, and these precipitates are effective in improving strength and toughness by finely forming an austenite structure upon reheating.
- the N may be included in an amount of 0.002 to 0.008%.
- Phosphorus (P) is an element that causes grain boundary segregation and may cause the steel to withdraw. Therefore, the content of P should be controlled as low as possible.
- the content of P may be limited to 0.01% or less. However, 0% may be excluded in consideration of the unavoidably added level.
- S Sulfur mainly combines with Mn in steel to form MnS inclusions, which is a factor inhibiting low-temperature toughness.
- the content of S should be controlled as low as possible, and may preferably be limited to 0.003% or less. However, 0% may be excluded in consideration of the unavoidably added level.
- the remaining component of the present invention is iron (Fe).
- Fe iron
- the relationship between Mn, Ni, and Cr in steel preferably satisfies the following Relational Expression 1.
- each element means a weight content.
- the present invention limits the content of C in the steel to 0.10% or less in order to improve the low-temperature toughness of the ultra-thick steel sheet having a thickness of 100 mm or more, preferably 100 to 200 mm.
- the present invention is characterized in that the relationship between Mn, Ni and Cr in steel is controlled by Relation 1 so that there is no adverse effect on securing strength even if the C content is relatively lowered.
- the ultra-thick steel sheet of the present invention satisfying the above-described alloy composition and Relational Equation 1 may have a microstructure of ferrite and pearlite composite structure.
- the ultra-thick steel sheet of the present invention contains ferrite having an area fraction of 80 to 90% and the balance pearlite.
- the fraction of ferrite is less than 80%, it becomes difficult to secure the low-temperature toughness of the ultra-thick steel sheet, whereas if the fraction exceeds 90%, the fraction of pearlite becomes insufficient, so that the target level of strength cannot be secured.
- the ultra-thick steel sheet of the present invention has an average grain size of 50 ⁇ m or less of the ferrite and has a fine structure.
- the average grain size is based on the equivalent circle diameter.
- the present invention has the effect of achieving both the target strength and the low-temperature toughness by implementing the microstructure of the ultra-thick steel sheet to be excellently secured.
- the ultra-thick steel sheet of the present invention has a yield strength of 300 MPa or more, and an impact toughness of 200 J or more at -20 ° C.
- the heating process may be performed in a temperature range of 1020 to 1150 °C.
- the heating temperature of the steel slab is less than 1020 °C, Ti, Nb, etc. may not be sufficiently dissolved to cause a decrease in strength, whereas if the temperature exceeds 1150 °C, the grains of austenite are coarsened and the toughness of the steel is reduced there is a risk of becoming
- the steel slab may have a thickness of 400 mm or less to secure a sufficient rolling amount to secure strength and toughness while having a maximum thickness of 200 mm by a subsequent rolling process.
- a hot-rolled steel sheet can be manufactured by hot-rolling the steel slab heated according to the above.
- the hot rolling is preferably performed in the [recrystallization region rolling (rough rolling) - non-recrystallization region rolling (finish rolling)] step.
- the austenite can be completely recrystallized by performing the rough rolling at 1000° C. or higher.
- finish rolling may be performed directly above the Tnr (No-Recrystallization Temperature) or in the austenite single-phase region within the Tnr to A3 temperature range.
- Tnr No-Recrystallization Temperature
- Directly above the Tnr temperature may be expressed as a temperature range of greater than Tnr ⁇ Tnr + 50 °C.
- Tnr and A3 temperatures can be obtained by the following formula, where each element means a weight content.
- Tnr 887 + 464C + (6445Nb - 644 ⁇ Nb) + (732V - 230 ⁇ V) + 890Ti + 363Al - 357Si
- A3 910 - 203 ⁇ C - 15.2Ni + 44.7Si + 104V + 31.5Mo - 30Mn + 11Cr + 20Cu - 700P - 400Al - 400Ti
- the finish rolling may be finished in a temperature range of 820 ⁇ 900 °C.
- the present invention intends to obtain an ultra-thick steel sheet having a maximum thickness of 200 mm by passing through the above-described rolling process. In the rolling process, it is necessary to consider the reduction ratio distribution during rough rolling and finish rolling.
- the residual pressure reduction immediately after the completion of rough rolling it is preferable to control the residual pressure reduction immediately after the completion of rough rolling to 25 to 35%. If the residual rolling reduction is less than 25%, there is a problem in that the rough rolling process is prolonged and productivity is lowered. On the other hand, if it exceeds 35%, there is a risk that sound rolling may not be achieved due to the generation of a load on the rolling mill during finish rolling after rough rolling.
- the residual rolling reduction means the remaining finish rolling amount up to the target thickness after rough rolling.
- the hot-rolled steel sheet obtained by completing the rolling process according to the above may be cooled, and at this time, it is preferable to perform air cooling in order to realize the normalizing effect.
- the ultra-thick steel sheet of the present invention as the intended microstructure is formed, it can be excellently secured by compatibility of strength and toughness properties for ultra-thick steel having a thickness of 100 to 200 mm.
- the present invention proposes a manufacturing method that can overcome the shortcomings of the ultra-thick material manufactured by the above-described process, and by optimizing the rolling and cooling conditions for a slab having a specific alloy composition system, an ultra-thick material with excellent strength and low-temperature toughness properties It has the effect of providing steel.
- Each hot-rolled steel sheet was manufactured by heating, hot rolling (rough rolling and finish rolling), and cooling (air cooling) of the prepared steel slab under the conditions shown in Table 2 below. At this time, rough rolling was performed at 1000 degreeC or more.
- each hot-rolled steel material was observed with an optical microscope (OM) of a specimen taken at a thickness of 1/4t (here, t means thickness (mm)), and a Charpy impact test at -20°C on the same specimen. was carried out to evaluate the impact toughness.
- OM optical microscope
- Inventive Examples 1 to 3 which satisfy all of the alloy composition, Relational Expression 1, and manufacturing conditions proposed in the present invention, have a yield strength of 300 MPa or more, and an impact toughness of 200 J or more at -20 ° C. It can be confirmed that it has high strength and excellent low-temperature impact properties.
- Comparative Example 1 which satisfies the alloy composition system proposed in the present invention but had an excessively high end temperature during finish rolling, coarse ferrite was formed and both strength and toughness were inferior.
- Example 1 is a photograph of observing the microstructure of Inventive Example 3, and it can be confirmed that a complex structure with pearlite is formed with a fine ferrite phase as a main phase.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
본 발명은 해양, 교량, 건설 등의 소재로서 적용할 수 있는 구조용 강재에 관한 것으로서, 보다 상세하게는 저온 충격인성이 우수한 극후물 강판 및 이의 제조방법에 관한 것이다.
Description
본 발명은 해양, 교량, 건설 등의 소재로서 적용할 수 있는 구조용 강재에 관한 것으로서, 보다 상세하게는 저온 충격인성이 우수한 극후물 강판 및 이의 제조방법에 관한 것이다.
일정 두께 이상의 극후물재는 후판공정을 통해 제조할 수 있으며, 이때의 압연 방법은 일반 압연, 노멀라이징 압연, TMCP(Thermo mechanical controlled rolling) 등으로 구분할 수 있다. 이외에 압연 후 열처리 공정을 거칠 수 있는데, 이때의 열처리 공정은 노멀라이징(normalizing), 켄칭(quenching), 켄칭-템퍼링(tempering) 열처리 공정 등이 있다.
전술한 압연 공정 중 일반 압연은 압연온도의 제어없이 압연하는 방법으로서, 주로 충격인성을 요구하지 않는 일반강에 적용할 수 있다.
이와 달리, TMCP는 온도제어를 통해 재결정역 압연, 미재결졍역 압연을 행하며, 필요에 따라 냉각을 통해 강도 및 충격인성의 확보가 가능하다. 하지만, 이러한 TMCP 공정을 통해 극후물재를 제조하는 경우 압연온도를 맞추기 위한 대기 시간이 오래 소요되어 심각한 생산성 저하를 초래하는 문제가 있다.
노멀라이징 압연은 비교적 높은 온도에서 압연이 종료되므로, 공냉 중 결정립 성장에 의해 강도와 인성의 하락을 가져올 수 있다.
이에, TMCP 공정, 노멀라이징 압연 공정 또는 압연 후 열처리 공정을 통해서 극후물재를 제조하는 경우, 강도 확보를 위해 0.12% 이상의 C를 함유하는 고탄소 성분계의 적용이 요구되나, 인성의 저하가 심하여 상온, 0℃에서 충격인성의 보증이 가능한 수준이며, 열처리에 의한 비용이 증가하는 문제가 있다.
한편, 극후물 강재는 선박, 해양구조물의 각종 프레임, 교량, 건설 등의 인프라산업용, 풍력하부구조용 등 다방면의 구조용 산업에 적용 가능하다.
최근, 대부분의 인프라 산업, 에너지용 산업 등의 분야에서는 설치 비용의 최소화, 설치 환경의 열악화 등에 의해 구조물이 대형화되는 추세에 있으며, 이러한 구조물 대형화 변화에 맞춰 여러 산업 분야에 적용되는 구조용 강재 중 두께 100mm 이상의 극후물재의 요구가 증가할 것으로 예측된다.
그런데, 극후물 강재의 금속학적 단점은 압연량의 저하, 냉각 공정의 한계로 강도 구현 및 인성의 확보가 어렵다는 점이다.
이러한 극후물 강재의 제조시 압연 및 냉각 공정의 한계로 인하여, 강재의 강도 구현을 위해 합금성분을 과도하게 첨가하는 경향이 있으며, 이 때문에 원가 상승의 문제뿐만 아니라 강재의 인성이 급격히 열위하게 되는 문제가 있다.
또한, 극후물 강재의 인성 확보를 위하여 인성에 악영향을 미치는 합금성분들을 제거하는 경우에는, 강도 하락의 원인이 된다.
따라서, 극후물 강재의 강도와 인성을 양립할 수 있는 기술의 개발이 요구되는 실정이다.
(특허문헌 1) 한국 공개특허공보 제10-2014-0003010호
본 발명의 일 측면은, 기존 극후물 강재의 금속학적 단점을 극복하여, 강도는 물론이고, 저온 충격인성이 우수한 극후물 강판 및 그 제조방법을 제공하고자 하는 것이다.
본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면은, 중량%로, 탄소(C): 0.06~0.1%, 실리콘(Si): 0.3~0.5%, 망간(Mn): 1.35~1.65%, 알루미늄(Sol.Al): 0.015~0.04%, 니오븀(Nb): 0.015~0.04%, 티타늄(Ti): 0.005~0.02%, 크롬(Cr): 0.15~0.4%, 니켈(Ni): 0.3~0.5%, 질소(N): 0.002~0.008%, 인(P): 0.01% 이하(0%는 제외), 황(S): 0.003% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식 1을 만족하며,
미세조직으로 면적분율 80~90%의 페라이트 및 잔부 펄라이트를 포함하는 저온 충격인성이 우수한 극후물 강판을 제공한다.
[관계식 1]
Mn + 5(Ni+Cr) ≥ 3.6
(여기서, 각 원소는 중량 함량을 의미한다.)
본 발명의 다른 일 측면은, 상술한 합금조성과 관계식 1을 만족하는 강 슬라브를 준비하는 단계; 상기 강 슬라브를 1020~1150℃에서 가열하는 단계; 상기 가열된 강 슬라브를 1000℃ 이상에서 조압연하는 단계; 상기 조압연 후 Tnr(No-Recrystallization Temperature) 직상 또는 Tnr~A3 온도 범위에서 마무리 열간압연하는 단계; 및 상기 마무리 열간압연 후 공냉하는 단계를 포함하는 저온 충격인성이 우수한 극후물 강판의 제조방법을 제공한다.
본 발명에 의하면, 두께 100~200mm의 극후물재에 대해 강도와 함께 저온 충격인성이 우수한 극후물 강판을 제공할 수 있다.
이러한 본 발명의 극후물 강판은 구조용 소재로서 선박, 해양구조물의 각종 프레임, 교량, 건설 등의 인프라산업용, 풍력 하부구조용 등의 다방면으로 적용 가능한 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 극후물 강판의 미세조직을 관찰한 사진을 나타낸 것이다.
본 발명의 발명자들은 구조용 강재로서 적합한 두께 100mm 이상(100~200mm)의 극후물 강재를 제공함에 있어서, 강도와 더불어 저온 충격인성을 우수하게 확보할 수 있는 방안을 깊이 연구하였다.
그 결과, 극후물 강재의 합금 성분계와 압연 공정을 최적화함에 의하여, 목표로 하는 물성을 가지는 극후물 강판을 제공할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
특별히, 본 발명에 의할 경우, 기존 TMCP 강재의 생산성 문제, 일반 압연재와 열처리재의 물성 확보 문제, 나아가 열처리재의 비용 문제 등의 해결이 가능함에 기술적 의의가 있다.
이하, 본 발명에 대하여 상세히 설명한다.
본 발명의 일 측면에 따른 저온 충격인성이 우수한 극후물 강판은 중량%로, 탄소(C): 0.06~0.1%, 실리콘(Si): 0.3~0.5%, 망간(Mn): 1.35~1.65%, 알루미늄(Sol.Al): 0.015~0.04%, 니오븀(Nb): 0.015~0.04%, 티타늄(Ti): 0.005~0.02%, 크롬(Cr): 0.15~0.4%, 니켈(Ni): 0.3~0.5%, 질소(N): 0.002~0.008%, 인(P): 0.01% 이하(0%는 제외), 황(S): 0.003% 이하(0%는 제외)를 포함할 수 있다.
이하에서는, 본 발명에서 제공하는 강판의 합금조성을 위와 같이 제한하는 이유에 대하여 상세히 설명한다.
한편, 본 발명에서 특별히 언급하지 않는 한 각 원소의 함량은 중량을 기준으로 하며, 조직의 비율은 면적을 기준으로 한다.
탄소(C): 0.06~0.1%
탄소(C)는 고용강화를 일으키고, 강 중 Nb 등과 결합하여 탄질화물을 형성함으로써 강도 확보에 유리한 원소이다.
이러한 C에 의한 강도 효과를 충분히 얻기 위해서는 0.06% 이상으로 C를 포함할 수 있으나, 그 함량이 0.1%를 초과하게 되면 미세조직으로 펄라이트 상이 과도하게 형성되어 저온에서의 충격 및 피로 특성이 열화하는 문제가 있다. 또한, 고용 C의 함량이 증가함에 따라 충격 특성이 저하된다.
따라서, 상기 C는 0.06~0.1%로 포함할 수 있으며, 보다 유리하게는 0.07% 이상, 0.09% 이하로 포함할 수 있다.
실리콘(Si): 0.3~0.5%
실리콘(Si)은 알루미늄(Al)과 함께 용강을 탈산시키는 역할을 한다. 이러한 Si은 강도 향상에도 영향을 미치지만, 그 함량이 과도할 경우 저온에서의 충격 및 피로 특성을 저해하므로 적절히 첨가할 필요가 있다.
상기 Si의 함량이 0.3% 미만이면 충분한 강도를 확보할 수 없으며, 반면 그 함량이 0.5%를 초과하게 되면 C의 확산을 방해하여 MA 상(마르텐사이트-오스테나이트 혼합조직)의 형성을 조장하는 문제가 있다.
따라서, 상기 Si은 0.3~0.5%로 포함할 수 있다.
망간(Mn): 1.35~1.65%
망간(Mn)은 고용강화에 의한 강도 향상 효과가 큰 원소로서, 1.35% 이상으로 포함할 수 있다. 다만, 그 함량이 과도할 경우 MnS 개재물의 형성 및 중심부 편석에 의해 인성이 저하될 우려가 있으므로, 이를 고려하여 1.65% 이하로 포함할 수 있다.
알루미늄(Sol.Al): 0.015~0.04%
알루미늄(Sol.Al)은 강의 주요한 탈산제이며, 강 중 질소(N)를 고정시키는데 유리하다. 이를 위해서는 Al을 0.015% 이상으로 포함하는 것이 유리한 반면, 그 함량이 0.04%를 초과하게 되면 Al2O3 개재물의 분율 및 크기의 증가로 저온 인성을 저해하는 원인이 된다. 또한, 상기 Si과 유사하게 모재 및 용접열영향부에서 MA 상의 생성을 촉진하여 저온 인성 및 저온 피로 특성을 저해하는 문제가 있다.
따라서, 상기 Al은 0.015~0.04%로 포함할 수 있다.
니오븀(Nb): 0.015~0.04%
니오븀(Nb)은 고용강화 효과가 있고, 탄질화물을 형성함으로써 압연 또는 냉각 중 재결정을 억제하여 조직을 미세하게 형성함으로써 강도를 향상시키는데 유리하다.
상술한 효과를 충분히 얻기 위해서는 0.015% 이상으로 Nb을 함유할 수 있다. 반면, 그 함량이 과도할 경우 C 친화력에 의해 C 집중이 발생하여 MA 상의 형성을 조장하여 저온에서의 인성과 파괴 특성을 저해하는 문제가 있으므로, 이를 고려하여 0.04% 이하로 제한할 수 있다.
따라서, 상기 Nb은 0.015~0.04%로 포함할 수 있으며, 보다 유리하게는 0.02% 이상으로 포함할 수 있다.
티타늄(Ti): 0.005~0.02%
티타늄(Ti)은 강의 충격 특성과 표면 품질을 열화시킬 수 있는 질소(N)와 결합하여 Ti계 질화물(TiN)을 형성하고, 고용 N의 함량을 감소시키는 역할을 한다. 상기 Ti계 석출물은 조직의 조대화를 억제하여 미세화에 기여하고, 인성을 향상시키는데 유용하다.
상술한 효과를 충분히 얻기 위해서는 0.005% 이상으로 Ti을 함유할 수 있으나, 그 함량이 0.02%를 초과하게 되면 석출물의 조대화에 의해 파괴의 원인이 되며, N과 결합하고 남은 고용 Ti이 Ti계 탄화물(TiC)을 형성함으로써 모재 및 용접부의 인성을 저해하는 문제가 있다.
따라서, 상기 Ti은 0.005~0.02%로 포함할 수 있으며, 보다 유리하게는 0.01% 이상으로 포함할 수 있다.
크롬(Cr): 0.15~0.4%
크롬(Cr)은 강의 소입성을 증가시켜 강도 향상에 유리한 원소이다.
상술한 효과를 충분히 얻기 위해서는 0.15% 이상으로 Cr을 포함할 수 있으나, 그 함량이 0.4%를 초과하게 되면 용접성이 저하될 뿐만 아니라, 고가의 원소로서 제조비용의 상승을 초래하는 문제가 있다.
따라서, 상기 Cr은 0.15~0.4%로 포함할 수 있다.
니켈(Ni): 0.3~0.5%
니켈(Ni)은 강의 강도와 인성을 동시에 향상시킬 수 있는 원소이다.
특히, 본 발명에 따른 압연 공정에서 강도 및 인성 향상 효과를 충분히 얻기 위해서는 0.3% 이상으로 Ni을 함유할 필요가 있다. 다만, 그 함량이 0.5%를 초과하게 되면 상술한 효과는 포화되는 반면, 제조비용이 상승하는 문제가 있다.
따라서, 상기 Ni은 0.3~0.5%로 포함할 수 있다.
질소(N): 0.002~0.008%
질소(N)는 강 중 Ti, Nb, Al 등과 결합하여 석출물을 형성하며, 이 석출물들은 재가열시 오스테나이트 조직을 미세하게 형성함으로써 강도 및 인성 향상에 유효하다.
상술한 효과를 충분히 얻기 위해서는 0.002% 이상 N를 첨가하는 것이 유리하나, 그 함량이 0.008%를 초과하게 되면 고온에서 표면 크랙을 유발하고, 석출물을 형성하고 남은 N이 원자 상태로 존재하여 강의 인성을 저해하는 원인이 된다.
따라서, 상기 N은 0.002~0.008%로 포함할 수 있다.
인(P): 0.01% 이하(0%는 제외)
인(P)은 입계 편석을 일으키는 원소로서, 강을 취하시키는 원인이 될 수 있다. 따라서, P은 그 함량을 가능한 낮게 제어하여야 한다.
본 발명에서 상기 P은 최대 0.01%로 함유하더라도 의도하는 물성 확보에는 무리가 없는 바, 상기 P의 함량을 0.01% 이하로 제한할 수 있다. 다만, 불가피하게 첨가되는 수준을 고려하여 0%는 제외할 수 있다.
황(S): 0.003% 이하(0%는 제외)
황(S)은 주로 강 중의 Mn과 결합하여 MnS 개재물을 형성하며, 이는 저온 인성을 저해하는 요인이 된다.
따라서, 본 발명에서 목표로 하는 저온 인성과 저온 피로 특성을 확보하기 위해서는 상기 S의 함량을 가능한 낮게 제어하여야 하며, 바람직하게 0.003% 이하로 제한할 수 있다. 다만, 불가피하게 첨가되는 수준을 고려하여 0%는 제외할 수 있다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
상술한 합금조성을 만족하는 본 발명의 강재는 강 중 Mn, Ni 및 Cr의 관계가 하기 관계식 1을 만족하는 것이 바람직하다.
[관계식 1]
Mn + 5(Ni+Cr) ≥ 3.6
(여기서, 각 원소는 중량 함량을 의미한다.)
본 발명은 두께 100mm 이상, 바람직하게는 100~200mm의 두께를 가지는 극후물 강판의 저온 인성을 향상시키기 위하여, 강 중 C의 함량을 0.10% 이하로 제한한다. 본 발명은 상대적으로 C 함량을 낮추더라도 강도 확보에 불리한 영향이 없도록, 강 중 Mn, Ni 및 Cr의 관계를 관계식 1로 제어하는 특징이 있다.
구체적으로, 본 발명에서 제안하는 합금조성 내에서 상기 Mn, Ni 및 Cr의 함량 관계가 상기 관계식 1을 만족하지 못할 경우, 즉 관계식 1의 값이 3.6 미만이면 최대 두께 200mm의 극후물 강판의 강도를 확보할 수 없게 된다.
상술한 합금조성과 관계식 1을 만족하는 본 발명의 극후물 강판은 미세조직이 페라이트 및 펄라이트 복합조직으로 구성될 수 있다.
구체적으로, 본 발명의 극후물 강판은 면적분율 80~90%의 페라이트 및 잔부 펄라이트를 포함하는 것이 바람직하다.
상기 페라이트의 분율이 80% 미만이면 극후물 강판의 저온 인성의 확보가 어려워지며, 반면 그 분율이 90%를 초과하게 되면 펄라이트의 분율이 불충분해져 목표 수준의 강도를 확보할 수 없다.
또한, 본 발명의 극후물 강판은 상기 페라이트의 평균 결정립 크기가 50㎛ 이하로서 조직이 미세한 특징을 갖는다.
여기서, 평균 결정립 크기는 원 상당 직경을 기준으로 함을 밝혀둔다.
이와 같이, 본 발명은 극후물 강판의 조직을 미세하게 구현함으로써 목표로 하는 강도 및 저온 인성을 양립하여 우수하게 확보할 수 있는 효과가 있다.
구체적으로, 본 발명의 극후물 강판은 300MPa 이상의 항복강도와 더불어, -20℃에서 충격 인성이 200J 이상으로 고강도와 더불어 저온 인성이 우수한 효과가 있다.
이하, 본 발명의 다른 일 측면에 따른 저온 충격인성이 우수한 극후물 강판을 제조하는 방법에 대하여 상세히 설명한다.
간략히 설명하면, 본 발명에서 제안하는 합금조성 및 관계식 1을 만족하는 강 슬라브를 준비한 후, 이를 [가열 - 압연 - 공냉]의 공정을 거쳐 제조할 수 있다. 특히, 본 발명에서는 압연 공정을 완료한 후 별도의 열처리를 행하지 아니하며, 압연 공정으로서 노멀라이징(normalizing) 열처리 영역에서 압연 공정을 행함에 기술적 의의가 있다.
각 공정 조건에 대해서는 하기에 상세히 설명한다.
[강 슬라브 가열]
본 발명에서는 압연 공정을 행하기에 앞서 강 슬라브를 가열하여 균질화 처리하는 공정을 거치는 것이 바람직하며, 이때 1020~1150℃의 온도 범위에서 가열 공정을 행할 수 있다.
상기 강 슬라브의 가열 온도가 1020℃ 미만이면 Ti, Nb 등이 충분히 고용되지 못하여 강도 하락을 초래할 우려가 있으며, 반면 그 온도가 1150℃를 초과하게 되면 오스테나이트의 결정립이 조대화되어 강의 인성이 저하될 우려가 있다.
상기 강 슬라브는 후속하는 압연 공정에 의해 최대 200mm의 두께를 가지면서, 강도 및 인성의 확보를 위하여 충분한 압연량을 확보할 수 있도록 400mm 이하의 두께를 가지는 것일 수 있다.
[압연 공정]
상기에 따라 가열된 강 슬라브를 열간압연하여 열연강판을 제조할 수 있다.
본 발명에서 상기 열간압연은 [재결정역 압연(조압연) - 미재결정역 압연(마무리 압연)] 단계로 행하는 것이 바람직하다.
상기 조압연은 1000℃ 이상에서 행함함으로써 오스테나이트를 완전히 재결정할 수 있다.
이후, Tnr(No-Recrystallization Temperature) 직상 또는 Tnr~A3 온도 범위 내의 오스테나이트 단상 영역에서 마무리 압연을 행할 수 있다. 이때, 결정립 미세화 효과를 더욱 도모하기 위해서는 A3 온도에 근접하여 마무리 압연을 수행하는 것이 유리하지만, 노멀라이징 효과를 얻기 위해서는 Tnr 온도 직상에서 행하는 것이 유리하다. 상기 Tnr 온도 직상은 Tnr 초과~Tnr+50℃의 온도범위로 나타낼 수 있다.
상기 Tnr과 A3 온도는 다음의 식에 의해 구할 수 있으며, 하기 식에서 각 원소는 중량 함량을 의미한다.
Tnr = 887 + 464C + (6445Nb - 644√Nb) + (732V - 230√V) + 890Ti + 363Al - 357Si
A3 = 910 - 203√C - 15.2Ni + 44.7Si + 104V + 31.5Mo - 30Mn + 11Cr + 20Cu - 700P - 400Al - 400Ti
상기 마무리 압연시 온도가 A3 미만이면 이상역(two-phase region) 압연이 되어 노멀라이징 효과가 미비해져, 추가적인 열처리 공정이 요구될 우려가 있다.
보다 바람직하게, 상기 마무리 압연은 820~900℃의 온도범위에서 종료할 수 있다.
본 발명은 상술한 압연 공정을 거침으로써 최대 두께 200mm의 극후물 강판을 얻고자 하는 바, 상기 압연 공정에서 조압연 및 마무리 압연 시의 압하율 배분을 고려할 필요가 있다.
본 발명에서는 조압연을 완료한 직후의 잔압하량을 25~35%로 제어하는 것이 바람직하다. 상기 잔압하량이 25% 미만이면 조압연 공정이 길어져 생산성이 저하되는 문제가 있으며, 반면 35%를 초과하게 되면 조압연 후 마무리 압연시 압연기 부하의 발생으로 건전한 압연이 이루어지지 못할 우려가 있다.
여기서, 잔압하량이라 하면 조압연 후, 목표 두께까지의 남은 마무리 압연량을 의미함을 밝혀둔다.
[공냉]
상기에 따른 압연 공정을 완료하여 얻은 열연강판에 대해 냉각을 행할 수 있으며, 이때 노멀라이징 효과를 구현하기 위하여 공냉을 행하는 것이 바람직하다.
본 발명에 따른 압연 공정을 완료한 후 공냉을 행함으로써 결정립 미세화 효과를 달성할 수 있을 뿐만 아니라, 후속 열처리 공정을 행하지 않고서도 강도 및 인성이 우수한 극후물 강판을 얻는 효과가 있다.
보다 구체적으로, 본 발명의 극후물 강판은 의도하는 미세조직이 형성됨에 따라, 두께 100~200mm의 극후물 강에 대해 강도 및 인성 특성을 양립하여 우수하게 확보할 수 있다.
기존 노멀라이징 열처리에 의해 제조되는 강재는 강도 확보를 위하여, 제어압연+냉각에 의해 제조되는 TMCP 강재 대비 탄소 함량이 높기 때문에 열처리 후에도 충격 인성이 열위하는 경향이 있다. 또한, 열처리 온도가 지나치게 높거나, 그 시간이 길어지면 결정립 성장에 의해 열처리 전 압연 상태의 강재 대비 강도가 하락하는 경우도 발생한다.
TMCP 공정에 의하여 극후물 강재를 제조하는 경우에는 온도 제어로 인해 수 분의 공냉 대기 시간이 필요하므로, 생산성이 저하되고 수(water) 처리에 의한 비용이 요구되는 바 경제적으로 불리하다.
본 발명은 상술한 공정에 의해 제조되는 극후물재의 단점을 극복할 수 있는 제조방법을 제안하는 것이며, 특정 합금 성분계를 가지는 슬라브에 대해 압연 및 냉각 조건을 최적화함으로써 강도 및 저온 인성 특성이 우수한 극후물 강재를 제공하는 효과가 있는 것이다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실시예)
하기 표 1의 합금조성을 가지는 강 슬라브를 준비하였다. 이때, 상기 합금조성의 함량은 중량%이며, 나머지는 Fe와 불가피한 불순물을 포함한다.
상기 준비된 강 슬라브를 하기 표 2에 나타낸 조건으로 가열, 열간압연(조압연 및 마무리 압연) 및 냉각(공냉)하여 각각의 열연강판을 제조하였다. 이때, 조압연은 1000℃ 이상에서 행하였다.
강종 | 합금조성 (중량%) | 관계 식1 |
||||||||||
C | Si | Mn | P | S* | Sol.Al | Cr | Ni | Ti | Nb | N | ||
A | 0.079 | 0.43 | 1.54 | 0.007 | <0.002 | 0.023 | 0.247 | 0.364 | 0.012 | 0.029 | 0.0034 | 4.595 |
B | 0.077 | 0.38 | 1.53 | 0.005 | <0.002 | 0.028 | 0.261 | 0.378 | 0.011 | 0.027 | 0.0038 | 4.725 |
C | 0.082 | 0.40 | 1.56 | 0.005 | <0.002 | 0.025 | 0.246 | 0.410 | 0.013 | 0.031 | 0.0033 | 4.84 |
D | 0.153 | 0.44 | 1.53 | 0.006 | <0.002 | 0.022 | 0.245 | 0.384 | 0.013 | 0.027 | 0.0040 | 4.675 |
E | 0.083 | 0.38 | 1.44 | 0.007 | <0.002 | 0.025 | 0.137 | 0.243 | 0.013 | 0.024 | 0.0036 | 3.34 |
S*는 모든 강종에서 그 함량이 0.002% 미만임을 의미한다. |
시험번호 | 강종 | 가열온도 (℃) |
마무리 압연 | 구분 | ||
개시온도(℃) | 종료온도(℃) | 잔압하율(%) | ||||
1 | A | 1148 | 912 | 890 | 28 | 발명예 1 |
2 | B | 1135 | 899 | 872 | 27 | 발명예 2 |
3 | C | 1145 | 851 | 831 | 30 | 발명예 3 |
4 | A | 1143 | 966 | 942 | 28 | 비교예 1 |
5 | D | 1138 | 903 | 888 | 27 | 비교예 2 |
6 | E | 1140 | 873 | 852 | 29 | 비교예 3 |
상기에 따라 제조된 각각의 강판의 대해 미세조직과 기계적 물성을 측정하고, 그 결과를 하기 표 3에 나타내었다.
각 열연 강재의 미세조직은 두께 1/4t(여기서, t는 두께(mm)를 의미함) 지점에서 채취된 시편을 광학현미경(OM)으로 관찰하였으며, 동일한 시편에 대해 -20℃에서 샤르피 충격시험을 실시하여 충격인성을 평가하였다.
또한, JIS 5호 규격에 의거하여 채취된 시험편에 대해 만능인장시험기를 이용하여 인장강도, 항복강도, 연신율을 측정하였다.
구분 | 두께 (mm) |
미세조직 | 기계적 물성 | |||||
F*분율 (%) |
F 크기* (㎛) |
P*분율 (%) |
항복강도 (MPa) |
인장강도 (MPa) |
연신율 (%) |
충격인성 (J. -20℃) |
||
발명예 1 | 200 | 87 | 45 | 13 | 361 | 486 | 34 | 298 |
발명예 2 | 200 | 85 | 38 | 15 | 323 | 458 | 32 | 275 |
발명예 3 | 200 | 83 | 42 | 17 | 343 | 467 | 30 | 230 |
비교예 1 | 200 | 78 | 77 | 22 | 295 | 423 | 39 | 36 |
비교예 2 | 200 | 72 | 44 | 28 | 356 | 481 | 29 | 21 |
비교예 3 | 200 | 84 | 40 | 16 | 287 | 396 | 38 | 223 |
F*는 페라이트, P*는 펄라이트를 의미한다. F 크기*는 원 상당 직경을 기준으로, 평균 결정립 크기를 의미한다. |
상기 표 1 내지 3에 나타낸 바와 같이, 본 발명에서 제안하는 합금조성, 관계식 1 및 제조조건을 모두 만족하는 발명예 1 내지 3은 항복강도가 300MPa 이상이며, -20℃에서 충격인성이 200J 이상으로 고강도를 가지면서 저온 충격 특성이 우수함을 확인할 수 있다.
반면, 본 발명에서 제안하는 합금 성분계를 만족하지만 마무리 압연시 종료온도가 과도하게 높은 비교예 1의 경우, 조대한 페라이트가 형성되어 강도 및 인성이 모두 열위하였다.
또한, 강 중 C 함량이 과도한 비교예 2는 펄라이트가 과도하게 형성되어 강도의 확보는 가능한 반면, 인성이 크게 열위하였다.
그리고, 본 발명에서 제안하는 관계식 1을 벗어나는 비교예 3은 미세조직이 본 발명에서 목표하는 바로 형성됨에도 불구하고, 강도가 저하된 것을 확인할 수 있다. 이는, 강 중 경화능 원소들의 함량이 본 발명의 관계식 1로 최적화되지 못할 경우, 목표로 하는 강도의 확보가 어려움을 증명하는 것이다.
도 1은 발명예 3의 미세조직을 관찰한 사진으로서, 미세한 페라이트 상을 주상으로 하여 펄라이트와의 복합조직이 형성된 것을 확인할 수 있다.
Claims (8)
- 중량%로, 탄소(C): 0.06~0.1%, 실리콘(Si): 0.3~0.5%, 망간(Mn): 1.35~1.65%, 알루미늄(Sol.Al): 0.015~0.04%, 니오븀(Nb): 0.015~0.04%, 티타늄(Ti): 0.005~0.02%, 크롬(Cr): 0.15~0.4%, 니켈(Ni): 0.3~0.5%, 질소(N): 0.002~0.008%, 인(P): 0.01% 이하(0%는 제외), 황(S): 0.003% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식 1을 만족하며,미세조직으로 면적분율 80~90%의 페라이트 및 잔부 펄라이트를 포함하는 저온 충격인성이 우수한 극후물 강판.[관계식 1]Mn + 5(Ni+Cr) ≥ 3.6(여기서, 각 원소는 중량 함량을 의미한다.)
- 제 1항에 있어서,상기 페라이트의 평균 결정립 크기가 50㎛ 이하인 저온 충격인성이 우수한 극후물 강판.
- 제 1항에 있어서,상기 강판은 항복강도 300MPa 이상, -20℃에서 충격인성이 200J 이상인 저온 충격인성이 우수한 극후물 강판.
- 제 1항에 있어서,상기 강판은 100~200mm의 두께를 가지는 저온 충격인성이 우수한 극후물 강판.
- 중량%로, 탄소(C): 0.06~0.1%, 실리콘(Si): 0.3~0.5%, 망간(Mn): 1.35~1.65%, 알루미늄(Sol.Al): 0.015~0.04%, 니오븀(Nb): 0.015~0.04%, 티타늄(Ti): 0.005~0.02%, 크롬(Cr): 0.15~0.4%, 니켈(Ni): 0.3~0.5%, 질소(N): 0.002~0.008%, 인(P): 0.01% 이하(0%는 제외), 황(S): 0.003% 이하(0%는 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식 1을 만족하는 강 슬라브를 준비하는 단계;상기 강 슬라브를 1020~1150℃에서 가열하는 단계;상기 가열된 강 슬라브를 1000℃ 이상에서 조압연하는 단계;상기 조압연 후 Tnr(No-Recrystallization Temperature) 직상 또는 Tnr~A3 온도 범위에서 마무리 열간압연하는 단계; 및상기 마무리 열간압연 후 공냉하는 단계를 포함하는 저온 충격인성이 우수한 극후물 강판의 제조방법.[관계식 1]Mn + 5(Ni+Cr) ≥ 3.6(여기서, 각 원소는 중량 함량을 의미한다.)
- 제 5항에 있어서,상기 마무리 열간압연은 820~900℃의 온도범위에서 종료하는 것인 저온 충격인성이 우수한 극후물 강판의 제조방법.
- 제 5항에 있어서,상기 조압연 후 잔압하량은 25~35%인 저온 충격인성이 우수한 극후물 강판의 제조방법.
- 제 5항에 있어서,상기 강판은 100~200mm의 두께를 가지는 저온 충격인성이 우수한 극후물 강판의 제조방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180083754.6A CN116568847A (zh) | 2020-12-15 | 2021-11-25 | 具有优异的低温冲击韧性的超厚钢板及其制造方法 |
EP21906913.5A EP4265795A1 (en) | 2020-12-15 | 2021-11-25 | Ultrathick steel plate having excellent low-temperature impact toughness and method for manufacturing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200175751A KR102498134B1 (ko) | 2020-12-15 | 2020-12-15 | 저온 충격인성이 우수한 극후물 강판 및 이의 제조방법 |
KR10-2020-0175751 | 2020-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022131608A1 true WO2022131608A1 (ko) | 2022-06-23 |
Family
ID=82059669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/017472 WO2022131608A1 (ko) | 2020-12-15 | 2021-11-25 | 저온 충격인성이 우수한 극후물 강판 및 이의 제조방법 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4265795A1 (ko) |
KR (1) | KR102498134B1 (ko) |
CN (1) | CN116568847A (ko) |
WO (1) | WO2022131608A1 (ko) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3849244B2 (ja) * | 1997-09-16 | 2006-11-22 | Jfeスチール株式会社 | 繰返し大変形下での延性き裂進展抵抗の優れた鋼材及びその製造方法 |
JP4329583B2 (ja) * | 2004-03-17 | 2009-09-09 | Jfeスチール株式会社 | 耐震性に優れた低降伏比h形鋼およびその製造方法 |
KR20140003010A (ko) | 2012-06-28 | 2014-01-09 | 현대제철 주식회사 | 강재 및 그 제조 방법 |
JP2015227483A (ja) * | 2014-05-30 | 2015-12-17 | 新日鐵住金株式会社 | 耐衝撃性に優れた鋼板及びその製造方法 |
JP2016125077A (ja) * | 2014-12-26 | 2016-07-11 | 新日鐵住金株式会社 | 高強度高延性厚板鋼板とその製造方法 |
KR20200017025A (ko) * | 2018-08-08 | 2020-02-18 | 주식회사 포스코 | 강도 및 dwtt 저온인성이 우수한 극후물 열연강판 및 그 제조방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101417231B1 (ko) * | 2011-12-28 | 2014-07-08 | 주식회사 포스코 | 저온인성 및 인장특성이 우수한 압력용기용 극후강판 및 그 제조 방법 |
-
2020
- 2020-12-15 KR KR1020200175751A patent/KR102498134B1/ko active IP Right Grant
-
2021
- 2021-11-25 EP EP21906913.5A patent/EP4265795A1/en active Pending
- 2021-11-25 CN CN202180083754.6A patent/CN116568847A/zh active Pending
- 2021-11-25 WO PCT/KR2021/017472 patent/WO2022131608A1/ko active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3849244B2 (ja) * | 1997-09-16 | 2006-11-22 | Jfeスチール株式会社 | 繰返し大変形下での延性き裂進展抵抗の優れた鋼材及びその製造方法 |
JP4329583B2 (ja) * | 2004-03-17 | 2009-09-09 | Jfeスチール株式会社 | 耐震性に優れた低降伏比h形鋼およびその製造方法 |
KR20140003010A (ko) | 2012-06-28 | 2014-01-09 | 현대제철 주식회사 | 강재 및 그 제조 방법 |
JP2015227483A (ja) * | 2014-05-30 | 2015-12-17 | 新日鐵住金株式会社 | 耐衝撃性に優れた鋼板及びその製造方法 |
JP2016125077A (ja) * | 2014-12-26 | 2016-07-11 | 新日鐵住金株式会社 | 高強度高延性厚板鋼板とその製造方法 |
KR20200017025A (ko) * | 2018-08-08 | 2020-02-18 | 주식회사 포스코 | 강도 및 dwtt 저온인성이 우수한 극후물 열연강판 및 그 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20220085575A (ko) | 2022-06-22 |
CN116568847A (zh) | 2023-08-08 |
KR102498134B1 (ko) | 2023-02-08 |
EP4265795A1 (en) | 2023-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015174605A1 (ko) | 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법 | |
WO2016104975A1 (ko) | Pwht 후 인성이 우수한 고강도 압력용기용 강재 및 그 제조방법 | |
WO2017171366A1 (ko) | 항복강도와 연성이 우수한 고강도 냉연강판, 도금강판 및 이들의 제조방법 | |
WO2021125621A1 (ko) | 저온 충격인성이 우수한 고경도 내마모강 및 이의 제조방법 | |
WO2018117676A1 (ko) | 내마모성과 인성이 우수한 오스테나이트계 강재 및 그 제조방법 | |
WO2018117646A1 (ko) | 극저온 충격인성이 우수한 후강판 및 이의 제조방법 | |
WO2017105025A1 (ko) | 화성처리성 및 굽힘가공성이 우수한 초고강도 강판 및 이의 제조방법 | |
WO2018117497A1 (ko) | 길이방향 균일 연신율이 우수한 용접강관용 강재, 이의 제조방법 및 이를 이용한 강관 | |
WO2018004297A1 (ko) | 저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법 | |
WO2018117450A1 (ko) | 저온인성 및 후열처리 특성이 우수한 내sour 후판 강재 및 그 제조방법 | |
WO2020022778A1 (ko) | 내충돌 특성이 우수한 고강도 강판 및 이의 제조방법 | |
WO2020111856A2 (ko) | 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법 | |
WO2022139191A1 (ko) | 저온 충격인성이 우수한 극후물 강재 및 그 제조방법 | |
WO2018117507A1 (ko) | 저온인성이 우수한 저항복비 강판 및 그 제조방법 | |
WO2018117470A1 (ko) | 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법 | |
WO2022065797A1 (ko) | 연신율이 우수한 고강도 후물 열연강판 및 그 제조방법 | |
WO2018117466A1 (ko) | 용접성이 우수한 전봉강관용 열연강판 및 이의 제조방법 | |
WO2017111398A1 (ko) | 저온인성 및 수소유기균열 저항성이 우수한 후판 강재 및 그 제조방법 | |
WO2017111345A1 (ko) | 저항복비형 고강도 강재 및 그 제조방법 | |
WO2021112488A1 (ko) | 내구성이 우수한 후물 복합조직강 및 그 제조방법 | |
WO2020226301A1 (ko) | 전단가공성이 우수한 초고강도 강판 및 그 제조방법 | |
WO2020111891A1 (ko) | 저온파괴인성 및 연신율이 우수한 고강도 강판 및 그 제조방법 | |
WO2022086049A1 (ko) | 열적 안정성이 우수한 고강도 강판 및 이의 제조방법 | |
WO2020080602A1 (ko) | 방진성 및 성형성이 우수한 고망간 강재의 제조방법 및 이에 의해 제조된 고망간 강재 | |
WO2018117539A1 (ko) | 용접성 및 연성이 우수한 고강도 열연강판 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21906913 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180083754.6 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021906913 Country of ref document: EP Effective date: 20230717 |