WO2022131365A1 - グラフト共重合体及び樹脂フィルム - Google Patents

グラフト共重合体及び樹脂フィルム Download PDF

Info

Publication number
WO2022131365A1
WO2022131365A1 PCT/JP2021/046730 JP2021046730W WO2022131365A1 WO 2022131365 A1 WO2022131365 A1 WO 2022131365A1 JP 2021046730 W JP2021046730 W JP 2021046730W WO 2022131365 A1 WO2022131365 A1 WO 2022131365A1
Authority
WO
WIPO (PCT)
Prior art keywords
crosslinked
film
weight
graft copolymer
meth
Prior art date
Application number
PCT/JP2021/046730
Other languages
English (en)
French (fr)
Inventor
史延 北山
拓也 上村
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2022570076A priority Critical patent/JPWO2022131365A1/ja
Priority to CN202180084884.1A priority patent/CN116635475A/zh
Publication of WO2022131365A1 publication Critical patent/WO2022131365A1/ja
Priority to US18/210,832 priority patent/US20230322994A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the present invention relates to a graft copolymer capable of forming a resin film, a resin composition for producing a film containing the copolymer, a dope, and a resin film.
  • Methacrylic resin is an excellent polymer that is used in large quantities in various fields in industry because it has excellent transparency, color tone, appearance, weather resistance, luster and processability.
  • resin films molded from methacrylic resin take advantage of their excellent transparency, appearance, and weather resistance, and are used for interior and exterior materials for automobiles, exterior materials for electrical appliances such as mobile phones and smartphones, and floors, windows, and interior and exterior walls. It is used for various purposes such as interior and exterior materials for civil engineering and construction such as light collecting parts and road signs.
  • methacrylic resins have been applied to optical members such as liquid crystal display devices and organic EL display devices by taking advantage of their excellent optical characteristics.
  • a resin film molded from a general methacrylic resin has a drawback of low impact resistance. Therefore, for the purpose of improving impact resistance, a method of blending a graft copolymer containing a rubber component with a methacrylic resin is widely used.
  • a core-shell type graft copolymer having a core layer made of rubber and a shell layer for improving compatibility with a methacrylic resin is known (for example, Patent Document 1). See).
  • the strength of the methacrylic resin can be improved by blending the conventional core-shell type graft copolymer, there is a problem that the core-shell type graft copolymer tends to aggregate due to the contained rubber component and the storage stability is low. rice field. Further, when producing a resin film by the solution casting method, the dope tends to become turbid, especially after a lapse of time after the conventional core-shell type graft copolymer is dissolved in a solvent together with a methacrylic resin to prepare a dope. The resin film produced from the dope also has a problem that the haze is lowered.
  • the present invention is formed from a graft copolymer having excellent heat resistance, capable of forming a high-strength and low-haze film, and having good storage stability, and the graft copolymer. It is an object of the present invention to provide a resin film.
  • the present inventors have contained a specific crosslinked (meth) acrylic polymer particle and a specific non-crosslinked methacrylic polymer component in a specific ratio, and said the non-crosslinked methacrylic.
  • a graft copolymer obtained by graft-bonding a system polymer component to the crosslinked (meth) acrylic polymer particles, and have reached the present invention.
  • the present invention comprises crosslinked (meth) acrylic polymer particles (a) having an average particle diameter of 150 nm or less and a glass transition temperature of ⁇ 10 ° C. or less, and a non-crosslinked methacrylic polymer having a weight average molecular weight of 250,000 or more. At least a part of the non-crosslinked methacrylic polymer component (b) containing the component (b) is graft-bonded to the crosslinked (meth) acrylic polymer particles (a), and the crosslinked (meth) acrylic polymer is grafted.
  • the non-crosslinked methacrylic polymer component (b) contains 70% by weight or more and 99% by weight or less of the methyl methacrylate unit.
  • the non-bridged methacrylic polymer component (b) is an N-substituted maleimide-based monomer unit, and the ester moiety is a primary or secondary hydrocarbon group having 2 to 20 carbon atoms or an aromatic hydrocarbon group.
  • the non-crosslinked methacrylic polymer component (b) is an N-substituted maleimide-based monomer unit and a methacrylic acid ester unit in which the ester moiety is a saturated hydrocarbon group having a condensed ring structure and having 7 to 16 carbon atoms.
  • the non-crosslinked methacrylic polymer component (b) has a glass transition temperature of 118 ° C. or higher.
  • the crosslinked (meth) acrylic polymer particles (a) contain 90% by weight of an acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms among the monomer components excluding the polyfunctional monomer. Includes% or more and 100% by weight or less.
  • the crosslinked (meth) acrylic polymer particles (a) have 100 parts by weight of a monomer component excluding the polyfunctional monomer and 0.1 to 2.0 parts by weight of the polyfunctional monomer. Formed from.
  • the present invention also comprises a resin composition for film production by a solution casting method containing the graft copolymer; a resin composition for film production and a dope containing a solvent; the dope is cast on the surface of a support.
  • the present invention also relates to a method for producing a resin film, which comprises a step of evaporating a solvent; or a resin film formed from the resin composition for producing a film by a solution casting method.
  • the resin film has a thickness of 1 to 500 ⁇ m.
  • the resin film is a film for protecting the laminate on the surface of another substrate.
  • the resin film is an optical film.
  • the optical film is a polarizing element protective film.
  • the present invention also relates to a polarizing plate formed by laminating a polarizing element and the resin film; and a display device including the polarizing plate.
  • a graft copolymer having excellent heat resistance capable of forming a film having high strength and low haze, and having good storage stability, and a resin film formed from the polymer. be able to.
  • the graft copolymer according to the present invention can form a high-strength resin film even if the resin component is only the copolymer. Further, since it is not necessary to mix and disperse the core-shell type graft copolymer in the methacrylic resin as in the conventional case, a resin film having a low haze can be easily formed.
  • the graft copolymer has good storage stability even though it contains a rubber component, and has an advantage that the dope is less likely to become turbid when it is dissolved in a solvent to prepare a dope. There is also. As a result, the dope can be used to reduce the haze of the resin film produced by the solution casting method.
  • the graft copolymer according to the present embodiment contains crosslinked (meth) acrylic polymer particles (a) and a non-crosslinked methacrylic polymer component (b). Since the crosslinked (meth) acrylic polymer particles (a) are rubber components, they can contribute to the improvement of strength. Further, excellent heat resistance can be achieved by the non-crosslinked methacrylic polymer component (b).
  • the crosslinked (meth) acrylic polymer particles (a) correspond to the rubber component of the core in the core-shell type graft copolymer.
  • the non-crosslinked methacrylic polymer component (b) can correspond to the methacrylic resin which is a matrix.
  • At least a part of the non-crosslinked methacrylic polymer component (b) is graft-bonded to the crosslinked (meth) acrylic polymer particles (a).
  • the graft bond can be realized by producing a graft copolymer by emulsion polymerization as described later. Due to this production method, the graft copolymer may also contain a non-crosslinked methacrylic polymer component (b) that is not graft-bonded to the crosslinked (meth) acrylic polymer particles (a).
  • the graft copolymer according to the present embodiment has a configuration in which crosslinked (meth) acrylic polymer particles (a) having a small particle size are dispersed in a high-molecular-weight non-crosslinked methacrylic polymer component (b). Therefore, the aggregation of the crosslinked (meth) acrylic polymer particles (a) does not easily proceed in the graft copolymer. As a result, the stability is good both when the graft copolymer according to the present embodiment is stored in the form of powder and when it is stored as a dope dissolved in a solvent. Further, since the aggregation of the crosslinked (meth) acrylic polymer particles (a) is suppressed, the graft copolymer according to the present embodiment has an advantage that it is easily dissolved in a solvent.
  • the crosslinked (meth) acrylic polymer particles (a) are (meth) acrylic rubber particles.
  • high strength can be achieved, for example, when formed into a film.
  • the crosslinked (meth) acrylic polymer particles (a) have a relatively small particle size, specifically, an average particle size of 150 nm or less.
  • a relatively small particle size specifically, an average particle size of 150 nm or less.
  • the graft copolymer can be, for example, a film. High strength can be achieved when it is polymerized.
  • the average particle size is preferably 130 nm or less, more preferably 120 nm or less, further preferably 110 nm or less, still more preferably 100 nm or less.
  • the lower limit of the average particle size is not particularly limited, but from the viewpoint of film strength or ease of particle production, 30 nm or more is preferable, 50 nm or more is more preferable, and 60 nm or more is further preferable.
  • the average particle size is the volume average particle size, and can be measured as described in the section of Examples. Further, the average particle size can be controlled by adjusting the conditions at the time of particle preparation (specifically, the type and amount of the emulsifier, the stirring conditions at the time of emulsion polymerization, etc.).
  • the crosslinked (meth) acrylic polymer particles (a) show a glass transition temperature of ⁇ 10 ° C. or lower.
  • the glass transition temperature can be controlled by adjusting the type and ratio of the monomers constituting the crosslinked (meth) acrylic polymer particles (a).
  • the glass transition temperature of the crosslinked (meth) acrylic polymer particles (a) is preferably ⁇ 20 ° C. or lower, more preferably ⁇ 30 ° C. or lower, further preferably ⁇ 40 ° C. or lower, and particularly preferably ⁇ 45 ° C. or lower.
  • the lower limit of the glass transition temperature is not particularly limited, but for example, ⁇ 130 ° C. or higher is preferable, ⁇ 110 ° C. or higher is more preferable, ⁇ 100 ° C. or higher is further preferable, ⁇ 80 ° C. or higher is further preferable, and ⁇ 70 ° C. or higher. Is particularly preferable.
  • the Fox formula was used using the values described in the Polymer Handbook [Polymer Hand Book (J. Brandrup, Interscience 1989)]. (For example, n-butyl polyacrylate is ⁇ 54 ° C.).
  • the crosslinked (meth) acrylic polymer particles (a) are crosslinked (meth) acrylic polymers obtained by polymerizing a monomer component containing a (meth) acrylic monomer and a polyfunctional monomer. It is a particle formed from.
  • the monomer component other than the polyfunctional monomer contains an acrylic monomer and / or a methacrylic monomer, but it is preferable that the monomer component contains at least an acrylic monomer.
  • an acrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms is preferable. Specific examples thereof include ethyl acrylate, n-butyl acrylate, n-octyl acrylate, and 2-ethylhexyl acrylate.
  • the acrylic acid alkyl ester only one kind may be used, or two or more kinds may be used in combination. Of these, n-butyl acrylate is preferable.
  • a methacrylic acid alkyl ester having an alkyl group having 1 to 8 carbon atoms is preferable. Specific examples thereof include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, octyl methacrylate and the like.
  • the methacrylic acid alkyl ester only one kind may be used, or two or more kinds may be used in combination. Of these, a methacrylic acid alkyl ester having an alkyl group having 1 to 4 carbon atoms is preferable. In particular, methyl methacrylate is preferable.
  • a monomer other than the above-mentioned acrylic acid alkyl ester and methacrylic acid alkyl ester may be used.
  • examples of such a monomer include acrylic acid esters other than the acrylic acid alkyl ester, methacrylic acid esters other than the methacrylic acid alkyl ester, aromatic vinyl-based monomers, and other copolymerizable vinyl monomers. Be done.
  • examples of the acrylic acid ester other than the acrylic acid alkyl ester include phenyl acrylate, benzyl acrylate, cyclohexyl acrylate, and isobornyl acrylate.
  • Examples of the methacrylic acid ester other than the methacrylic acid alkyl ester include phenyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate and the like.
  • Examples of the aromatic vinyl-based monomer include styrene, ⁇ -methylstyrene, chlorostyrene, and other styrene derivatives.
  • Examples of the other copolymerizable vinyl monomer include unsaturated nitrile-based monomers such as acrylonitrile and methacrylonitrile, ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and acetic acid.
  • Olefin monomers such as vinyl, ethylene and propylene, vinyl halide monomers such as vinyl chloride, vinylidene chloride and vinylidene fluoride, N-ethylmaleimide, N-propylmaleimide, N-cyclohexylmaleimide, N-phenyl Examples thereof include maleimide-based monomers such as maleimide and NO-chlorophenylmaleimide. All of these may be used alone or in combination of two or more.
  • the monomer component constituting the crosslinked (meth) acrylic polymer particles (a) is an acrylic acid ester (particularly alkyl) among the monomer components excluding the polyfunctional monomer.
  • Acrylic acid alkyl ester having 1 to 8 carbon atoms as a group is preferably contained in an amount of 70% by weight or more and 100% by weight or less, more preferably 80% by weight or more and 100% by weight or less, and 90% by weight or more and 100% by weight or less. It is more preferably contained below, and particularly preferably 95% by weight or more and 100% by weight or less.
  • the crosslinked (meth) acrylic polymer particles (a) are formed by polymerizing the monomer component in the presence of a polyfunctional monomer.
  • the polyfunctional monomer is also known as a cross-linking agent or a cross-linking monomer, and is a compound having two or more unsaturated bonds in one molecule that can be copolymerized with a (meth) acrylic monomer.
  • the amount of the polyfunctional monomer used can be appropriately set from the viewpoint of strength, but specifically, the monomer component constituting the crosslinked (meth) acrylic polymer particles (a) (provided that it is used).
  • Monomer component excluding polyfunctional monomer It may be about 0.1 parts by weight or more and 5.0 parts by weight or less with respect to 100 parts by weight.
  • the amount of the polyfunctional monomer used is preferably 0.2 to 3.5 parts by weight, more preferably 0.2 to 3.0 parts by weight, and 0. .3 to 2.0 parts by weight is more preferable, and 0.4 to 1.5 parts by weight is particularly preferable.
  • Non-crosslinked methacrylic polymer component (b) The non-crosslinked methacrylic polymer component (b) is mainly composed of a methacrylic monomer polymerized and does not have a crosslinked structure (that is, obtained by polymerization without using a polyfunctional monomer). It is a coalescence. At least a part of the non-crosslinked methacrylic polymer component (b) is graft-bonded to the crosslinked (meth) acrylic polymer particles (a), whereby the crosslinked (meth) acrylic polymer particles (a). Is less likely to aggregate, the graft copolymer according to the present embodiment has good storage stability, and low haze can be achieved when formed into a film.
  • the non-crosslinked methacrylic polymer component (b) is a polymer having a high molecular weight, and specifically, has a weight average molecular weight of 250,000 or more. Since the non-crosslinked methacrylic polymer component (b) has a high molecular weight, the graft copolymer according to the present embodiment can achieve high heat resistance and can be formed into a film by a solution casting method. Become.
  • the weight average molecular weight is preferably 300,000 or more, more preferably 350,000 or more, further preferably 400,000 or more, and particularly preferably 450,000 or more, from the viewpoint of facilitating film formation by the solution casting method.
  • the upper limit of the weight average molecular weight is not particularly limited, but is preferably 1 million or less, more preferably 900,000 or less, from the viewpoint of facilitating film formation by the solution casting method.
  • the weight average molecular weight of the non-crosslinked methacrylic polymer component (b) can be measured according to the description in the section of Examples.
  • the non-crosslinked methacrylic polymer component (b) preferably has a glass transition temperature of 115 ° C. or higher, more preferably 118 ° C. or higher, and even more preferably 120 ° C. or higher, from the viewpoint of heat resistance of the graft copolymer.
  • the upper limit of the glass transition temperature is not particularly limited, but may be, for example, 160 ° C. or lower, or 150 ° C. or lower.
  • the glass transition temperature can be controlled by adjusting the type and ratio of the monomers constituting the non-crosslinked methacrylic polymer component (b).
  • the glass transition temperature of the non-crosslinked methacrylic polymer component (b) can be measured as described in the section of Examples, but it is described in the Polymer Handbook [Polymer Hand Book (J. Brandrup, Interscience 1989)]. The values described can also be calculated using Fox's equation (eg, polymethylmethacrylate is 105 ° C.).
  • the non-crosslinked methacrylic polymer component (b) is a polymer mainly composed of methacrylic monomer units. From the viewpoint of heat resistance of the graft copolymer and film formation, the methyl methacrylate unit is preferable as the methacrylic monomer unit. In particular, among the monomer components constituting the non-crosslinked methacrylic polymer component (b), it is preferable that the methyl methacrylate unit is contained in an amount of 70% by weight or more and 99% by weight or less. As a result, the heat resistance can be improved and film formation by the solution casting method can be more easily realized.
  • the content of the methyl methacrylate unit is more preferably 75 to 98% by weight, further preferably 80 to 97% by weight, further preferably 85 to 96% by weight, further preferably 88 to 95% by weight, still more preferably 90 to 95% by weight. % By weight is particularly preferred.
  • the non-bridged methacrylic polymer component (b) is an N-substituted maleimide-based monomer unit as a monomer unit other than the methyl methacrylate unit, and the ester moiety is a primary or secondary hydrocarbon having 2 to 20 carbon atoms.
  • it preferably contains at least one selected from the group consisting of a methacrylic acid ester unit as a branched group and a styrene-based monomer unit.
  • a methacrylic acid ester unit as a branched group
  • a styrene-based monomer unit By including such a monomer unit, the heat resistance of the graft copolymer is not significantly reduced, and the solvent is used when the solvent is evaporated from the cast film when the film is produced by the solution casting method. It is possible to increase the volatilization rate.
  • the above-mentioned monomer unit is also referred to as "drying-promoting comonomer unit" below.
  • N-substituted maleimide-based monomer examples include N-phenylmaleimide, N-benzylmaleimide, N-cyclohexylmaleimide, and N-methylmaleimide.
  • maleimide-based monomer units having a cyclic substituent on the N atom are preferable, that is, N-phenylmaleimide, N-benzylmaleimide, and N-cyclohexylmaleimide are preferable.
  • methacrylic acid ester in which the ester moiety is a primary or secondary hydrocarbon group having 2 to 20 carbon atoms or an aromatic hydrocarbon group
  • examples of the methacrylic acid ester in which the ester moiety is a primary or secondary hydrocarbon group having 2 to 20 carbon atoms or an aromatic hydrocarbon group include ethyl methacrylate, propyl methacrylate, and n-butyl methacrylate.
  • ethyl methacrylate, n-butyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, and benzyl methacrylate are preferable.
  • Examples of the methacrylic acid ester in which the ester moiety is a saturated hydrocarbon group having 7 to 16 carbon atoms having a condensed ring structure include dicyclopentanyl methacrylate and isobornyl methacrylate.
  • the saturated hydrocarbon group preferably has 8 to 14 carbon atoms, more preferably 9 to 12 carbon atoms.
  • the fused ring structure is not particularly limited, but is preferably a structure in which two five-membered rings are fused by three consecutive carbon atoms.
  • Examples of the methacrylic acid ester in which the ester moiety is a linear or branched group containing an ether bond include 2-methoxyethyl methacrylate.
  • styrene-based monomer examples include styrene, ⁇ -methylstyrene, monochlorostyrene, dichlorostyrene and the like. Of these, styrene is preferable.
  • the drying-promoting comonomer unit is an N-substituted maleimide-based unit. It is preferable to contain at least one of a monomer unit and a methacrylic acid ester unit in which the ester moiety is a saturated hydrocarbon group having 7 to 16 carbon atoms having a condensed ring structure.
  • drying-promoting comonomer unit at least one of an N-substituted maleimide-based monomer unit and a methacrylic acid ester unit which is a saturated hydrocarbon group having 7 to 16 carbon atoms whose ester moiety has a condensed ring structure. Only seeds may be used, but at least one of an N-substituted maleimide-based monomer unit and a methacrylic acid ester unit which is a saturated hydrocarbon group having 7 to 16 carbon atoms and whose ester moiety has a condensed ring structure.
  • Other drying-promoting comonomer units may be used in combination. By such a combined use, it is possible to adjust the heat resistance of the graft copolymer and the volatilization rate of the solvent to improve both in a well-balanced manner.
  • the ester moiety as described above is carbon.
  • the proportion of the drying-promoting comonomer unit is preferably 1% by weight or more and 30% by weight or less, more preferably 2 to 25% by weight.
  • 3 to 20% by weight is still more preferable, 4 to 18% by weight is further preferable, 4 to 15% by weight is further preferable, 4 to 12% by weight is further preferable, and 5 to 10% by weight is particularly preferable.
  • the ratio of the drying-promoting comonomer units means the ratio of the total amount of all the drying-promoting comonomer units contained in the total monomer units. By setting such a weight ratio, the volatilization rate of the solvent in the solution casting method can be increased while the graft copolymer has excellent heat resistance.
  • the weight ratio of each of these units can be determined by proton nuclear magnetic resonance spectroscopy.
  • the non-crosslinked methacrylic polymer component (b) may be a copolymer that does not contain other comonomer units that do not correspond to the drying-promoting comonomer unit, or may contain other comonomer units that do not correspond to the drying-promoting comonomer unit. It may be a copolymer containing. Examples of such other comonomers include glycidyl methacrylate, epoxycyclohexylmethyl methacrylate, dimethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2,2,2-trifluoroethyl.
  • Methacrylic acid esters such as methacrylate, 2,2,2-trichloroethyl methacrylate, methacrylic acid, N-methylol methacrylic acid; methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate.
  • Acrylic acid esters such as benzyl acrylate, octyl acrylate, glycidyl acrylate, epoxycyclohexylmethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, acrylamide, N-methylol acrylamide; methacrylic acid , Acrylic acid and other carboxylic acids and salts thereof; vinyl cyanides such as acrylonitonyl and methacrylic acid; maleic acid, fumaric acid and their esters, etc .; vinyl halides such as vinyl chloride, vinyl bromide, chloroprene; , Vinyl acetate, vinyl ester such as vinyl propionate; alkenes such as ethylene, propylene, butylene, butadiene, isobutylene and the like.
  • the ratio of such other comonomer units to the monomer components constituting the non-crosslinked methacrylic polymer component (b) is preferably 10% by weight or less, more preferably 8% by weight or less. It is preferably 5% by weight or less, and more preferably 5% by weight or less.
  • the crosslinked (meth) acrylic polymer particles (a) out of the total of the crosslinked (meth) acrylic polymer particles (a) and the non-crosslinked methacrylic polymer component (b).
  • the proportion of the non-crosslinked methacrylic polymer component (b) is 99% by weight or less and more than 50% by weight.
  • the ratio of the crosslinked (meth) acrylic polymer particles (a) is preferably 3% by weight or more and 45% by weight or less, more preferably 4 to 40% by weight, further preferably 5 to 35% by weight, and 6 to 30%. % By weight is particularly preferred.
  • the crosslinked (meth) acrylic polymer particles (meth) among the total of the crosslinked (meth) acrylic polymer particles (a) and the non-crosslinked methacrylic polymer component (b) (
  • the proportion of a) is preferably 5% by weight or more, more preferably 6% by weight or more, still more preferably 7% by weight or more.
  • the upper limit of the ratio is preferably 25% by weight or less, more preferably 20% by weight or less, further preferably 15% by weight or less, still more preferably 12% by weight or less, and 10%. Weight% or less is particularly preferable.
  • 6% by weight or more is preferable, 7% by weight or more is more preferable, 20% by weight or less is preferable, 15% by weight or less is more preferable, and 12% by weight is preferable. % Or less is more preferable, and 10% by weight or less is particularly preferable.
  • the graft copolymer according to the present embodiment can be produced by ordinary emulsion polymerization using an emulsifier and a polymerization initiator. Specifically, after forming crosslinked (meth) acrylic polymer particles (a) by emulsion polymerization, a monomer component constituting the non-crosslinked methacrylic polymer component (b) is added to the polymerization system. Subsequently, emulsion polymerization is carried out to form the non-crosslinked methacrylic polymer component (b).
  • the emulsifier is not particularly limited, but for example, sodium alkylsulfonate, sodium alkylbenzenesulfonate, sodium dioctylsulfocuccinate (sodium sulfosuccinate (2-ethylhexyl)), sodium lauryl sulfate, sodium fatty acid, polyoxyethylene lauryl.
  • Anionic surfactants such as phosphate ester salts such as ether sodium phosphate, nonionic surfactants and the like are shown. These surfactants may be used alone or in combination of two or more.
  • phosphoric acid such as sodium dioctyl sulphosuccinate (di (2-ethylhexyl) sulfosuccinate), sodium polyoxyethylene lauryl ether phosphate, etc. It is preferable to polymerize using an ester salt (alkali metal or alkaline earth metal), and in particular, using a phosphate ester salt (alkali metal or alkaline earth metal) such as polyoxyethylene lauryl ether sodium phosphate. It is preferable to polymerize.
  • the polymerization initiator is not particularly limited, but from the viewpoint of improving the thermal stability of the film, a polymerization initiator having a 10-hour half-life temperature of 100 ° C. or less is preferable.
  • the polymerization initiator is not particularly limited, but a persulfate is preferable. Specific examples thereof include potassium persulfate, sodium persulfate, ammonium persulfate and the like.
  • the polymerization initiator is preferably added at least at the stage of forming the crosslinked (meth) acrylic polymer particles (a), and may be additionally added at the stage of forming the non-crosslinked methacrylic polymer component (b). good.
  • polymerization may be carried out in the presence of a chain transfer agent in order to control the molecular weight of the polymer component (b).
  • the chain transfer agent that can be used at that time is not particularly limited, and is, for example, a primary alkyl mercaptan such as n-butyl mercaptan, n-octyl mercaptan, n-hexadecyl mercaptan, n-dodecyl mercaptan, and n-tetradecyl mercaptan.
  • Secondary alkyl mercaptan chain transfer agent such as s-butyl mercaptan, s-dodecyl mercaptan, tertiary alkyl mercaptan chain transfer agent such as t-dodecyl mercaptan, t-tetradecyl mercaptan, 2-ethylhexylthio.
  • Glycolate ethylene glycol dithioglycolate, trimethylolpropanetris (thioglycolate), thioglycolic acid esters such as pentaerythritol tetrakis (thioglycolate), thiophenols, tetraethylthium disulfide, pentanphenylethane, achlorine, metachlorine, Examples thereof include allyl alcohol, carbon tetrachloride, ethylene bromide, styrene oligomers such as ⁇ -methylstyrene dimer, and terpinolene. These may be used alone or in combination of two or more.
  • the latex of the graft copolymer obtained by the emulsion polymerization is subjected to heat drying or spray drying, or a water-soluble electrolyte such as a salt or an acid is added to solidify the latex, and the aqueous phase is further subjected to heat treatment.
  • a solid or powdery graft copolymer can be obtained by subjecting the resin component to a known method such as separating the resin component from the polymer and drying the polymer. Above all, a method of coagulating with a salt is preferable.
  • the salt is not particularly limited, but a divalent salt is preferable, and specific examples thereof include calcium salts such as calcium chloride and calcium acetate, and magnesium salts such as magnesium chloride and magnesium sulfate. Of these, magnesium salts such as magnesium chloride and magnesium sulfate are preferable.
  • commonly added additives such as an antiaging agent and an ultraviolet absorber may be added.
  • the latex Before the solidification operation, it is preferable to filter the latex with a filter, mesh, etc. to remove fine polymerization scale.
  • a filter, mesh, etc. to remove fine polymerization scale.
  • the graft copolymer according to the present embodiment can form a resin composition for film production by a solution casting method.
  • the resin composition may contain only the graft copolymer according to the present embodiment as a resin component, but may contain other resins in addition to the graft copolymer according to the present embodiment. May be good.
  • Such resins are not particularly limited, and are, for example, styrene resins such as methacrylic resins, acrylonitrile styrene resins, and styrene anhydride maleic acid resins, polycarbonate resins, polyvinyl acetal resins, cellulose acylate resins, polyvinylidene fluorides, and polyfluorides.
  • Examples thereof include fluororesins such as alkyl (meth) acrylate resins, silicone resins, polyolefin resins, polyethylene terephthalate resins, and polybutylene terephthalate resins.
  • the content of the other resin is not particularly limited, but may be, for example, about 0 to 50 parts by weight with respect to 100 parts by weight of the graft copolymer according to the present embodiment. Further, it may be 0 to 30 parts by weight, 0 to 10 parts by weight, 0 to 5 parts by weight, or 0 to 1 part by weight.
  • the resin composition for film production includes a light stabilizer, an ultraviolet absorber, a heat stabilizer, a matting agent, a light diffusing agent, a colorant, a dye, a pigment, an antioxidant, a heat ray reflecting material, a lubricant, and a plasticizing agent.
  • a light stabilizer an ultraviolet absorber, a heat stabilizer, a matting agent, a light diffusing agent, a colorant, a dye, a pigment, an antioxidant, a heat ray reflecting material, a lubricant, and a plasticizing agent.
  • UV absorbers, stabilizers, fillers and other known additives may be further contained.
  • a conventionally known core-shell type graft copolymer may be further contained.
  • Dope By dissolving or dispersing the resin composition for film production in a solvent, it is possible to form a dope used when producing a resin film by a solution casting method.
  • the solvent is a solvent capable of dissolving or dispersing the resin composition for film production, and is not particularly limited, but a solvent (c-1) having a hydrogen bond term ⁇ H of 1 or more and 12 or less in the Hansen solubility parameter. It is preferable to include it. By constructing the dope using such a solvent, good solubility or dispersibility of the graft copolymer according to the present embodiment in the solvent can be realized.
  • a solvent having the hydrogen bond term ⁇ H of 3 or more and 10 or less is preferable, and a solvent having 5 or more and 8 or less is more preferable.
  • solubility parameter has been known as an index indicating the solubility of a substance, and the term of the aggregation energy of the SP value is the type of interaction energy acting between molecules (London dispersion force, between bipolars).
  • a Hansen solubility parameter has been proposed, which is divided by force (force, hydrogen bond force) and expressed as a London dispersion force term, an intramolecular force term, and a hydrogen bond force term, respectively.
  • the hydrogen bond term ⁇ H in this Hansen solubility parameter is used as an index showing the solubility of the graft copolymer when it is dissolved in a solvent.
  • Examples of the solvent (c-1) in which the hydrogen bond term ⁇ H is 1 or more and 12 or less include 1,4-dioxane (9.0), 2-phenylethanol (11.2), and acetone (7.0). , Acetonitrile (6.1), chloroform (5.7), dibasic acid ester (8.4), diacetone alcohol (10.8), N, N-dimethylformamide (11.3), dimethylsulfoxide (10).
  • methyl ethyl ketone, chloroform, and methylene chloride are preferable, and methylene chloride is more preferable because the graft copolymer according to the present embodiment has excellent solubility and a high volatilization rate.
  • the solvent contained in the dope may be composed only of the solvent (c-1) having the hydrogen bond term ⁇ H of 1 or more and 12 or less.
  • Examples of the solvent (c-2) having ⁇ H of 14 or more and 24 or less include methanol (22.3), ethanol (19.4), isopropanol (16.4), butanol (15.8), and ethylene glycol. Examples thereof include monoethyl ether (14.3). Only one kind of these solvents may be used, or two or more kinds of these solvents may be mixed and used.
  • the content of the solvent (c-1) having a hydrogen bond term ⁇ H of 1 or more and 12 or less is applied to the entire solvent contained in the dope.
  • 55% by weight or more and 95% by weight or less is preferable, 60% by weight or more and 90% by weight or less is more preferable, 65% by weight or more and 85% by weight or less is further preferable, and 70% by weight or more and 85% by weight or less is further preferable.
  • the ratio of the graft copolymer in the dope is not particularly limited, and is appropriately determined in consideration of the solubility or dispersibility of the graft copolymer in the solvent used, the conditions for carrying out the solution casting method, and the like. However, it is preferably 5 to 50% by weight, more preferably 10 to 45% by weight, still more preferably 15 to 40% by weight.
  • the dope is used to produce a resin film by the solution casting method.
  • the resin film can be produced by casting the dope on the surface of the support and then evaporating the solvent.
  • the graft copolymer according to the present embodiment and in some cases, pellets containing other components are prepared, and then the pellets are mixed with a solvent to prepare a dope in which each component is dissolved or dispersed in the solvent.
  • the graft copolymer according to the present embodiment and other components are mixed with a solvent simultaneously or sequentially to prepare a dope in which each component is dissolved or dispersed in the solvent.
  • the step of dissolving or dispersing can be carried out by appropriately adjusting the temperature and pressure. After the above dissolution or dispersion step, the obtained dope can be filtered or defoamed.
  • the dope is sent to the pressure die by a liquid feed pump, and the dope is poured from the slit of the pressure die onto the surface (mirror surface) of a support such as an endless belt or a drum made of metal or synthetic resin. To form a dope film.
  • the formed dope film is heated on the support to evaporate the solvent to form a film.
  • the conditions for evaporating the solvent can be appropriately determined according to the boiling point of the solvent used.
  • the film thus obtained is peeled off from the surface of the support. After that, the obtained film may be appropriately subjected to a drying step, a heating step, a stretching step, or the like.
  • the resin film according to the present embodiment is composed of the resin composition for film production, and can be formed by the above-mentioned dope solution casting method.
  • the thickness of the resin film is not particularly limited, but is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 200 ⁇ m or less. Further, it is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
  • the resin film according to the present embodiment preferably has a total light transmittance of 85% or more, more preferably 88% or more, still more preferably 90% or more when measured at a film thickness of 80 ⁇ m.
  • the resin film can be suitably used for optical members, decorative applications, interior applications, and vacuum forming applications where light transmittance is required.
  • the resin film according to the present embodiment preferably has a glass transition temperature of 100 ° C. or higher, more preferably 105 ° C. or higher, further preferably 110 ° C. or higher, still more preferably 115 ° C. or higher. 120 ° C. or higher is even more preferable, 124 ° C. or higher is particularly preferable, and 125 ° C. or higher is most preferable.
  • the resin film according to the present embodiment preferably has a haze of 0.8% or less, more preferably 0.6% or less, still more preferably 0.5% or less, and 0. 4% or less is even more preferable, and 0.3% or less is particularly preferable.
  • the internal haze of the resin film is preferably 0.5% or less, more preferably 0.4% or less, still more preferably 0.3% or less, and 0.2% when measured at a film thickness of 50 ⁇ m. The following are particularly preferred.
  • the resin film can be suitably used for optical members requiring light transmission, decorative applications, interior applications, and vacuum forming applications.
  • the haze consists of the haze inside the film and the haze on the surface of the film (outside), and each is expressed as an internal haze and an external haze.
  • the resin film according to this embodiment can be used as an optical film.
  • the optical anisotropy is small.
  • the absolute value of the phase difference in the thickness direction is preferably 50 nm or less, more preferably 20 nm or less, further preferably 15 nm or less, further preferably 10 nm or less, and further preferably 8 nm or less. It is particularly preferable, and it is most preferably 5 nm or less.
  • Such a resin film having a small phase difference can be suitably used as a polarizing element protective film included in a polarizing plate of a liquid crystal display device.
  • phase difference is an index value calculated based on birefringence
  • in-plane phase difference (Re) and the thickness direction phase difference (Rth) can be calculated by the following equations, respectively.
  • both the in-plane phase difference Re and the thickness direction phase difference Rth are 0.
  • nx, ny, and nz have an in-plane extension direction (polymer chain orientation direction) as the X-axis, a direction perpendicular to the X-axis as the Y-axis, and a film thickness direction as the Z-axis, respectively.
  • d represents the thickness of the film
  • nx-ny represents the orientation birefringence.
  • the MD direction of the film is the X-axis, but in the case of a stretched film, the stretching direction is the X-axis.
  • the resin film according to the present embodiment has high toughness and high flexibility, and may be an unstretched film or a stretched film. By stretching, the mechanical strength of the resin film can be improved and the film thickness accuracy can be improved.
  • a step of forming a film and degassing the solvent by performing uniaxial stretching or biaxial stretching after producing an unstretched film, or during film molding a step of forming a film and degassing the solvent by performing uniaxial stretching or biaxial stretching after producing an unstretched film, or during film molding.
  • a stretched film (uniaxially stretched film or biaxially stretched film) can be produced by appropriately adding a stretching operation along with the progress of the above. Further, stretching during film molding and stretching after film molding may be appropriately combined.
  • the draw ratio of the stretched film is not particularly limited, and may be determined according to the mechanical strength, surface properties, thickness accuracy, etc. of the stretched film to be manufactured. Although it depends on the stretching temperature, the stretching ratio is generally preferably selected in the range of 1.1 times to 5 times, more preferably in the range of 1.3 times to 4 times. It is more preferable to select in the range of 1.5 times to 3 times. When the draw ratio is within the above range, the mechanical properties such as the elongation rate, the tear propagation strength, and the kneading resistance of the film can be significantly improved.
  • the resin film according to the present embodiment can reduce the gloss of the film surface by a known method, if necessary.
  • a method of adding an inorganic filler or crosslinkable polymer particles include a method of adding an inorganic filler or crosslinkable polymer particles.
  • embossing the obtained film it is possible to form a surface uneven layer such as a prism shape, a pattern, a design, and knurling, and to reduce the gloss of the film surface.
  • the resin film according to the present embodiment may be laminated with another film by using a dry laminating method and / or a thermal laminating method using an adhesive, an adhesive or the like, or may be hard-coated on the front surface or the back surface of the film, if necessary. It can be used by forming a functional layer such as a layer, an antireflection layer, an antifouling layer, an antistatic layer, a printing decoration layer, a metallic gloss layer, a surface uneven layer, and a matte layer.
  • a functional layer such as a layer, an antireflection layer, an antifouling layer, an antistatic layer, a printing decoration layer, a metallic gloss layer, a surface uneven layer, and a matte layer.
  • the resin film according to this embodiment can be used for various purposes by utilizing properties such as heat resistance, transparency, and flexibility.
  • Lens field such as pickup lens for optical disk in CD player, DVD player, MD player, optical recording field for optical disk such as CD, DVD, MD, organic EL film, light guide plate for liquid crystal, diffuser plate, back sheet, reflection Sheets, polarizing element protective films, polarizing film transparent resin sheets, retardation films, light diffusion films, films for liquid crystal displays such as prism sheets, information equipment fields such as surface protective films, optical fibers, optical switches, optical connectors, etc.
  • Communication field automobile headlight, tail lamp lens, inner lens, instrument cover, sun roof and other vehicle fields, eyeglasses, contact lenses, endoscope lenses, medical equipment fields such as medical supplies that require sterilization, road signs, bathrooms Equipment, floor materials, road translucent plates, lenses for paired glass, light windows, carports, lenses for lighting, lighting covers, sizing for building materials, and other construction and building materials fields, microwave cooking containers (tableware), housings for home appliances , Can be used for toys, sunglasses, stationery, etc. It can also be used as a substitute for a molded product using a transfer foil sheet.
  • the resin film according to this embodiment can be used by laminating it on a base material such as metal or plastic.
  • Resin film laminating methods include laminating molding, wet laminating in which an adhesive is applied to a metal plate such as a steel plate, and then the film is placed on the metal plate and dried and bonded, dry laminating, extraction laminating, and hot melt laminating. And so on.
  • the film is placed in a mold, insert molding or laminate injection press molding in which resin is filled by injection molding, or placement in the mold after preforming the film.
  • In-mold molding in which resin is filled by injection molding, can be mentioned.
  • the laminate of the resin film according to the present embodiment is used as a substitute for painting such as automobile interior materials and automobile exterior materials, and civil engineering such as window frames, bathroom equipment, wallpaper, floor materials, light collection / dimming members, soundproof walls, and road signs.
  • civil engineering such as window frames, bathroom equipment, wallpaper, floor materials, light collection / dimming members, soundproof walls, and road signs.
  • housings for furniture and electronic and electrical equipment housings for OA equipment such as facsimiles, laptop computers, and copy machines, front panels of LCD screens for terminals such as mobile phones, smartphones, and tablets, and lighting.
  • the resin film according to this embodiment is suitable for an optical film in that it is excellent in heat resistance and optical characteristics, and can be used for various optical members.
  • the front plate of the liquid crystal screen of terminals such as mobile phones, smartphones, and tablets, lighting lenses, automobile headlights, optical lenses, optical fibers, optical fibers, light guide plates for liquid crystal, diffuser plates, back sheets, reflective sheets, and polarizing films.
  • Example 1 Manufacturing of graft copolymer (A1)> The following substances were charged into an 8L polymerization apparatus equipped with a stirrer. Deionized water 133 parts Sodium hydroxide 0.004 parts Di (2-ethylhexyl) sulfosuccinate 0.2 parts After sufficiently replacing the inside of the polymer with nitrogen gas, the internal temperature was set to 80 ° C. and sodium persulfate 0.03. Add 0.001 part of sodium pyrosulfite in 0.5% aqueous solution, and then add 40 parts of the monomer (a) for crosslinked (meth) acrylic polymer particles shown in Table 1 at a rate of 0.523 parts / minute. Added continuously.
  • the polymerization was continued for 30 minutes to obtain crosslinked (meth) acrylic polymer particles (a).
  • the polymerization conversion was 99.5%.
  • the average particle size is shown in Table 2.
  • 60 parts of the monomer (b) for the non-crosslinked methacrylic polymer component shown in Table 1 was continuously added at a rate of 1.353 parts / min.
  • 0.4 part of sodium di (2-ethylhexyl) sulfosuccinate was continuously added in a 5% aqueous solution over the same time as the monomer (b).
  • the polymerization was continued for 60 minutes to obtain a graft copolymer latex.
  • the polymerization conversion was 100.0%.
  • the average particle size is shown in Table 2.
  • the obtained latex was dried at 75 ° C. for 12 hours to obtain a white powdery graft copolymer (A1).
  • Example 1 The graft copolymers (A2) to (A9) were produced in the same manner as in Example 1 except that the types and amounts of the raw materials used were changed as shown in Table 1.
  • Weight average molecular weight of non-crosslinked methacrylic polymer component (b) Among the graft copolymers obtained by polymerization, the weight average molecular weight of the non-crosslinked methacrylic polymer component (b) was calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC), and is shown in Table 2. Described. However, a GPC column packed with polystyrene cross-linked gel (model: TSKgel Super HZM-H, manufactured by Tosoh Corporation) was used, and tetrahydrofuran (THF) was used as the GPC solvent.
  • GPC gel permeation chromatography
  • sample solution a clear supernatant obtained by centrifuging a polymer solution consisting of 20 mg of graft copolymer powder and 10 ml of THF at 43,000 G for 30 minutes was used.
  • the column temperature of GPC was set to 40 ° C.
  • the average particle size is the volume average particles measured in the state of the respective latex obtained at the time of completion of the polymerization of the crosslinked (meth) acrylic polymer particles (a) and the graft copolymers (A1) to (A9).
  • the diameter As a measuring device, Microtrac UPA150 manufactured by Nikkiso Co., Ltd. was used, and the measured volume average particle diameter is shown in Table 2 as the average particle diameter. The measurement was carried out at room temperature, and the refractive index of the measured particles was the weight average value of the refractive index of the homopolymer composed of the monomers used for the polymerization. For the refractive index of the homopolymer, the values described in the Polymer Handbook [Polymer Hand Book (J. Brandrup, Interscience 1989)] were used.
  • ADEKA PLRONIC F-68 polyoxyethylene-polyoxypropylene block copolymer manufactured by ADEKA Corporation
  • ADEKA PLRONIC F-68 polyoxyethylene-polyoxypropylene block copolymer manufactured by ADEKA Corporation
  • the weight average molecular weight of the suspended polymer is the same as the weight average molecular weight of the non-crosslinked methacrylic polymer component (b) except that a polymer solution consisting of 20 mg of suspended polymer beads and 10 ml of THF was used as a sample solution. It was calculated in the same way.
  • the polymerization conversion was 99.5%. Then, 0.08 part of potassium persulfate is added in a 2% aqueous solution, and then the mixture (II) (41 parts of BA, 9 parts of St, 0.75 parts of ALMA, 0.2 parts of sodium polyoxyethylene lauryl ether phosphate) is added for 150 minutes. It was added continuously over. After completion of the addition, 0.015 part of pure potassium persulfate was added in a 2% aqueous solution, and the polymerization was continued for 120 minutes to obtain the polymer of (II). The polymerization conversion was 99.7% and the average particle size was 220 nm.
  • the average particle size of the graft copolymer (A11) up to the rubber intermediate layer was measured in the state of the latex obtained by the polymerization up to the polymerization step (II). It was calculated in the same manner as the average particle size of (A9).
  • Weight average molecular weight of the outermost layer of the graft copolymer (A11) The weight average molecular weight of the outermost layer of the graft copolymer (A11) is calculated in the same manner as the weight average molecular weight of the non-crosslinked methacrylic polymer component (b) except that the graft copolymer (A11) is used. did.
  • the resin dope having a solid content concentration of 10% for the graft copolymers (A1) to (A9) alone and the suspension polymer (A10) alone was added to 41.5 g of a mixed solvent consisting of 92% methylene chloride and 8% ethanol. It was prepared by adding 4.5 g of coalesced powder or beads and stirring with a magnetic stirrer until completely dissolved.
  • the resin dope having a solid content concentration of 10% containing the suspension polymer (A10) and the graft polymer (A11) was prepared by adding 41.5 g of the mixed solvent to the powder of the graft polymer (A11). Add 68 g and stir with a magnetic stirrer until uniform, and disperse the obtained dispersion in an ultrasonic bath (Branson Nick 1510J manufactured by Yamato Scientific Co., Ltd.) for another 15 minutes, and then suspend the weight in the dispersion. It was prepared by adding 3.82 g of the compound (A10) beads little by little and stirring until it was completely dissolved.
  • an ultrasonic bath Branson Nick 1510J manufactured by Yamato Scientific Co., Ltd.
  • the above resin dope was cast on a PET film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) and applied in a uniform film form with an applicator. The clearance was adjusted so that the thickness after drying was about 70 ⁇ m.
  • the coating film was dried in a dry atmosphere at 40 ° C. for 1 hour and then peeled off from the PET film.
  • the obtained film was fixed to a stainless steel frame and dried in a drying atmosphere at 140 ° C. for 90 minutes to remove residual solvent to obtain a cast film.
  • the film thickness was measured using a digital indicator (manufactured by Mitutoyo Co., Ltd.).
  • MIT The repeated bending strength of the uniaxially stretched film was measured using a MIT-DA type MIT tester manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the test piece was cut out with a width of 1.5 cm, a load of 200 g was applied under the conditions of a bending radius of 0.4 mm and a bending angle of 135 °, and the test was performed in a direction in which a crease was formed perpendicular to the stretching direction.
  • the test was performed 3 times each, and the average value is shown in Table 2.
  • the uniaxially stretched film was quickly cut with a cutter blade (Quick Knife Q-100P manufactured by NT Cutter) in a direction parallel to the stretching direction with a ruler, and the appearance of the cut surface was evaluated on a 5-point scale according to the following criteria.
  • the test was performed 5 times for each uniaxially stretched film, and the average of the 5 evaluation points is shown in Table 2. It can be evaluated that the trimming property is good when the average of the evaluation points of 5 times is 3 points or more.
  • Glass-transition temperature The glass transition temperature of the crosslinked (meth) acrylic polymer particles (a) is calculated using the Fox formula using the values described in the Polymer Handbook [Polymer Hand Book (J. Brandrup, Interscience 1989)]. did.
  • the glass transition temperature of the beads of the non-crosslinked methacrylic polymer component (b) or the suspended polymer was measured using a differential scanning calorimeter DSC7000X manufactured by Hitachi High-Tech Science Co., Ltd.
  • the sample graft copolymer powder or suspended polymer beads are placed under a nitrogen stream, heated to 190 ° C. at a heating rate of 10 ° C./min, and then held at 190 ° C. for 3 minutes before 40. It was rapidly cooled to ° C. and heated again to 190 ° C. at a heating rate of 10 ° C./min.
  • the average of the extra glass transition start temperature and the extra glass transition end temperature was calculated, and this value was taken as the glass transition temperature.
  • Table 2 The results are shown in Table 2.
  • the glass transition temperature of the film was measured as a sample of a cast film dried at 140 ° C. and further dried at 175 ° C. for 1 hour, except that the above-mentioned non-crosslinked methacrylic polymer component (b) or suspended weight was measured. It was determined in the same manner as the glass transition temperature of the coalesced beads. The results are shown in Table 2.
  • the storage stability of the graft copolymer in the powder state was evaluated by the time course of the particle size distribution using a laser diffraction type particle size distribution meter (Mastersizer 3000 manufactured by Malvern). A mixed solvent consisting of 92% methylene chloride and 8% ethanol was used as the dispersion medium for measuring the particle size distribution. A resin dope having a solid content concentration of 10% as a measurement sample was prepared from the powder and the mixed solvent immediately before the measurement. The resin dope was dropped while circulating the dispersion medium in the apparatus, and the measurement was performed so that the laser scattering intensity was 0.5 to 2.0%. The graft copolymer powder was stored under the conditions of 50 ° C. and 95% RH, and the above measurement was performed for each of the powders at the start of storage 0, 3, or 14 days. Table 2 shows the volume% occupied by particles having a diameter of 1 ⁇ m or more with respect to the total particles.
  • the storage stability of the resin dope containing the graft copolymer was evaluated in the same manner as the storage stability of the graft copolymer powder described above.
  • As the mixed solvent for preparing the resin dope a mixed solvent consisting of 82% methylene chloride and 18% methanol or a mixed solvent consisting of 92% methylene chloride and 8% ethanol was used.
  • the resin dope prepared at a solid content concentration of 10% was stored at room temperature, and measurement was performed for each of the resin dops on the 0th, 3rd, or 14th days of storage using a mixed solvent having the same composition as the resin dope as a dispersion medium. rice field.
  • Table 2 shows the volume% occupied by particles having a diameter of 1 ⁇ m or more with respect to the total particles.
  • Comparative Example 1 using a graft copolymer in which the weight average molecular weight of the non-crosslinked methacrylic polymer component was set as low as less than 250,000, the glass transition temperature of the produced resin film was low and the heat resistance was low. ..
  • Comparative Example 2 in which a core-shell type graft copolymer was blended with a methacrylic resin as in the conventional case to prepare a resin film, the haze of the resin film was large, and the core-shell type graft copolymer powder and the core-shell type graft copolymer weight were also increased. In both of the coalesced-containing dopes, the content of coarse particles increased with time, and the storage stability was poor.
  • the resin film of Comparative Example 3 produced only from a general methacrylic resin had insufficient bending resistance and trimming resistance. Further, as shown in Comparative Example 4, a resin film could not be produced only from the conventional core-shell type graft copolymer.
  • the resin film to be used for the measurement was prepared by the following procedure. First, 2 g of each graft copolymer was added and dissolved in 18 g of a mixed solvent consisting of 92% methylene chloride and 8% ethanol to prepare a dope having a solid content concentration of 10%. This dope is applied on a PET film (product name: Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.) with a wet film thickness of 0.6 mm, immediately covered with a bat, dried at room temperature for 30 minutes, and then dried with a hot air dryer at 40 ° C. It was dried in the room for 60 minutes to prepare a dry film.
  • a PET film product name: Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.
  • the resin film to be used for the measurement was prepared by the following procedure. First, 2 g of each graft copolymer was added and dissolved in 18 g of a mixed solvent consisting of 82% methylene chloride and 18% methanol to prepare a dope having a solid content concentration of 10%. This dope is applied on a PET film (product name: Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.) with a wet film thickness of 0.5 mm, and immediately dried in a hot air dryer at 40 ° C. for 10 minutes to form a dry film. Made.
  • a PET film product name: Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.
  • This freshly dried film was peeled off from the PET film, fixed to a metal frame of an appropriate size, and further dried in a hot air dryer at 140 ° C. for 1 hour to prepare a film having a thickness of 50 ⁇ m.
  • Moisture permeability was measured according to JIS Z 0208-1976 using the cup method.
  • a sample prepared using a circular film with a thickness of 50 ⁇ m, a cup with a measurement area of 28.3 cm 2 (manufactured by Tester Sangyo Co., Ltd.), and 8 g of calcium chloride (Wako) for moisture measurement was prepared using a constant temperature and humidity chamber (type: LH33-13P,). It was placed in Nagano Science Co., Ltd.) and measured at 40 ° C. and 90% RH.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

平均粒子径150nm以下、ガラス転移温度が-10℃以下である架橋(メタ)アクリル系重合体粒子(a)と、重量平均分子量が25万以上である非架橋メタクリル系重合体成分(b)を含む、グラフト共重合体。非架橋重合体成分(b)の少なくとも一部は、架橋重合体粒子(a)にグラフト結合しており、架橋重合体粒子(a)と非架橋重合体成分(b)の合計のうち架橋重合体粒子(a)の占める割合が1重量%以上50重量%未満である。

Description

グラフト共重合体及び樹脂フィルム
 本発明は、樹脂フィルムを形成することが可能なグラフト共重合体、該共重合体を含むフィルム製造用樹脂組成物、ドープ、及び、樹脂フィルムに関する。
 メタクリル系樹脂は、優れた透明性、色調、外観、耐候性、光沢および加工性を有するため、産業上さまざまな分野で大量に使用されている優れたポリマーである。特に、メタクリル系樹脂から成形された樹脂フィルムは、優れた透明性、外観、耐候性を活かし、自動車内外装材、携帯電話やスマートフォンなどの電化製品の外装材や、床、窓、内外壁、採光部、道路標識などの土木建築用内外装材など各種用途に使用されている。近年、メタクリル系樹脂はその優れた光学特性を生かし、液晶表示装置や有機EL表示装置等の光学部材にも適用されている。
 しかし、一般的なメタクリル系樹脂から成形された樹脂フィルムは、耐衝撃性が低い欠点がある。そこで、耐衝撃性を改善することを目的に、メタクリル系樹脂に、ゴム成分を含むグラフト共重合体を配合する手法が広く使用されている。
 このようなゴム含有グラフト共重合体としては、ゴムからなるコア層と、メタクリル系樹脂との相溶性を改善するシェル層を有するコアシェル型グラフト共重合体が知られている(例えば、特許文献1を参照)。
国際公開第99/055779号公報
 従来のコアシェル型グラフト共重合体の配合によってメタクリル系樹脂の強度は改善され得るものの、含まれるゴム成分に起因してコアシェル型グラフト共重合体は凝集しやすく、貯蔵安定性が低いという問題があった。また、溶液流延法によって樹脂フィルムを製造するに際して、従来のコアシェル型グラフト共重合体をメタクリル系樹脂と共に溶剤に溶かしてドープを作製した後、特に時間が経過すると、ドープに濁りが生じやすく、該ドープから作製した樹脂フィルムはヘイズが低下するという問題もあった。
 本発明は、上記現状に鑑み、優れた耐熱性を有し、高強度かつ低ヘイズのフィルムを形成可能で、貯蔵安定性が良好なグラフト共重合体、及び、該グラフト共重合体から形成した樹脂フィルムを提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意研究を重ねた結果、特定の架橋(メタ)アクリル系重合体粒子と特定の非架橋メタクリル系重合体成分を特定比率で含み、前記非架橋メタクリル系重合体成分が前記架橋(メタ)アクリル系重合体粒子にグラフト結合してなるグラフト共重合体によって、上記課題を解決できることを見出し、本発明に至った。
 すなわち本発明は、平均粒子径150nm以下、ガラス転移温度が-10℃以下である架橋(メタ)アクリル系重合体粒子(a)と、重量平均分子量が25万以上である非架橋メタクリル系重合体成分(b)を含み、非架橋メタクリル系重合体成分(b)の少なくとも一部は、架橋(メタ)アクリル系重合体粒子(a)にグラフト結合しており、架橋(メタ)アクリル系重合体粒子(a)と非架橋メタクリル系重合体成分(b)の合計のうち架橋(メタ)アクリル系重合体粒子(a)の占める割合が1重量%以上50重量%未満である、グラフト共重合体に関する。
 好ましくは、非架橋メタクリル系重合体成分(b)は、メタクリル酸メチル単位を70重量%以上99重量%以下含む。
 好ましくは、非架橋メタクリル系重合体成分(b)は、N-置換マレイミド系モノマー単位、エステル部位が炭素数2~20の第一級もしくは第二級炭化水素基または芳香族系炭化水素基であるメタクリル酸エステル単位、エステル部位が縮合環構造を有する炭素数7~16の飽和炭化水素基であるメタクリル酸エステル単位、エステル部位がエーテル結合を含む直鎖状又は分岐状の基であるメタクリル酸エステル単位、及び、スチレン系モノマー単位からなる群より選択される少なくとも1種を更に含む。
 好ましくは、非架橋メタクリル系重合体成分(b)は、N-置換マレイミド系モノマー単位、及び、エステル部位が縮合環構造を有する炭素数7~16の飽和炭化水素基であるメタクリル酸エステル単位、のうち少なくとも1種を更に含む。
 好ましくは、非架橋メタクリル系重合体成分(b)は、ガラス転移温度が118℃以上である。
 好ましくは、架橋(メタ)アクリル系重合体粒子(a)は、多官能性単量体を除く単量体成分のうち、アルキル基の炭素数が1~8であるアクリル酸アルキルエステルを90重量%以上100重量%以下含む。
 好ましくは、架橋(メタ)アクリル系重合体粒子(a)は、多官能性単量体を除く単量体成分100重量部、及び、多官能性単量体0.1~2.0重量部から形成される。
 また本発明は、前記グラフト共重合体を含む、溶液流延法によるフィルム製造用樹脂組成物;当該フィルム製造用樹脂組成物、及び、溶剤を含む、ドープ;当該ドープを支持体表面に流延した後、溶剤を蒸発させる工程を含む、樹脂フィルムの製造方法;又は、前記フィルム製造用樹脂組成物から溶液流延法により成形される樹脂フィルムにも関する。
 好ましくは、前記樹脂フィルムは厚みが1~500μmである。
 好ましくは、前記樹脂フィルムは、他基材表面への積層保護用フィルムである。
 好ましくは、前記樹脂フィルムは、光学用フィルムである。
 好ましくは、前記光学用フィルムは、偏光子保護フィルムである。
 さらに本発明は、偏光子と、前記樹脂フィルムを積層してなる、偏光板;及び、当該
偏光板を含む、ディスプレイ装置にも関する。
 本発明によれば、優れた耐熱性を有し、高強度かつ低ヘイズのフィルムを形成可能で、貯蔵安定性が良好なグラフト共重合体、及び、該重合体から形成した樹脂フィルムを提供することができる。
 本発明に係るグラフト共重合体は、樹脂成分が当該共重合体のみであっても、高強度の樹脂フィルムを形成することができる。また、従来のようにメタクリル系樹脂にコアシェル型グラフト共重合体を配合して分散させる必要がないため、低ヘイズの樹脂フィルムを容易に形成することができる。更に、前記グラフト共重合体は、ゴム成分を含有しているにも関わらず、貯蔵安定性が良好であり、また、溶剤に溶かしてドープを作製した時に、該ドープに濁りが生じにくいという利点もある。結果、該ドープを使用して溶液流延法により製造される樹脂フィルムのヘイズを低くすることができる。
 以下に本発明の実施形態を詳細に説明するが、本発明はこれらの実施形態に限定されない。
 (グラフト共重合体)
 本実施形態に係るグラフト共重合体は、架橋(メタ)アクリル系重合体粒子(a)と、非架橋メタクリル系重合体成分(b)を含む。架橋(メタ)アクリル系重合体粒子(a)はゴム成分であるため、強度の改善に寄与し得る。また、非架橋メタクリル系重合体成分(b)によって優れた耐熱性を達成することができる。メタクリル系樹脂にコアシェル型グラフト共重合体を配合してなる従来の系と対比すると、架橋(メタ)アクリル系重合体粒子(a)は、前記コアシェル型グラフト共重合体におけるコアのゴム成分に相当し、非架橋メタクリル系重合体成分(b)は、マトリックスである前記メタクリル系樹脂に相当し得る。
 非架橋メタクリル系重合体成分(b)の少なくとも一部は、架橋(メタ)アクリル系重合体粒子(a)にグラフト結合している。当該グラフト結合は、後述するように乳化重合でグラフト共重合体を製造することによって実現できる。この製造方法に起因して、グラフト共重合体には、架橋(メタ)アクリル系重合体粒子(a)にグラフト結合していない非架橋メタクリル系重合体成分(b)も含まれ得る。
 本実施形態に係るグラフト共重合体は、粒子径の小さい架橋(メタ)アクリル系重合体粒子(a)が高分子量の非架橋メタクリル系重合体成分(b)中に分散している構成を有することができ、そのため、グラフト共重合体中で架橋(メタ)アクリル系重合体粒子(a)の凝集が進行しにくい。その結果、本実施形態に係るグラフト共重合体をパウダー状で貯蔵する時、また、溶剤に溶かしたドープとして貯蔵する時いずれの場合でも安定性が良好となる。また、架橋(メタ)アクリル系重合体粒子(a)の凝集が抑制されていることから、本実施形態に係るグラフト共重合体は溶剤に溶解しやすいという利点もある。
 (架橋(メタ)アクリル系重合体粒子(a))
 架橋(メタ)アクリル系重合体粒子(a)は、(メタ)アクリル系ゴム粒子である。本実施形態に係るグラフト共重合体は架橋(メタ)アクリル系重合体粒子(a)を含むことによって、例えばフィルム化した時に高い強度を達成することができる。
 架橋(メタ)アクリル系重合体粒子(a)は、粒子径が比較的小さいものであり、具体的には平均粒子径が150nm以下のものである。このように粒子径が小さい架橋(メタ)アクリル系重合体粒子を使用することによって、本実施形態に係るグラフト共重合体を例えばフィルム化した時に低いヘイズを達成することができる。また、架橋(メタ)アクリル系重合体粒子を小粒子化することで架橋(メタ)アクリル系重合体粒子(a)と非架橋メタクリル系重合体成分(b)の屈折率を合わせる必要がなくなる。その結果、屈折率を考慮することなく、架橋(メタ)アクリル系重合体粒子(a)のガラス転移温度が低くなるような単量体組成を採用でき、これにより、グラフト共重合体を例えばフィイム化した時に高い強度を達成することができる。
 前記平均粒子径は、低ヘイズの観点から、130nm以下が好ましく、120nm以下がより好ましく、110nm以下がさらに好ましく、100nm以下がより更に好ましい。前記平均粒子径の下限は特に限定されないが、フィルムの強度、又は、粒子の製造の容易さの観点から、30nm以上が好ましく、50nm以上がより好ましく、60nm以上がさらに好ましい。尚、平均粒子径は体積平均粒子径であり、実施例の項で記載のように測定することができる。また、平均粒子径は、粒子作製時の条件(具体的には乳化剤の種類や量、乳化重合時の撹拌条件など)を調節することによって制御可能である。
 架橋(メタ)アクリル系重合体粒子(a)は、ガラス転移温度が-10℃以下を示すものである。このようにガラス転移温度が低い架橋(メタ)アクリル系重合体粒子を使用することによって、グラフト共重合体を例えばフィルム化した時に高い強度を達成することができる。ガラス転移温度は、架橋(メタ)アクリル系重合体粒子(a)を構成する単量体の種類や比率などを調節することによって制御できる。
 架橋(メタ)アクリル系重合体粒子(a)のガラス転移温度は-20℃以下が好ましく、-30℃以下がより好ましく、-40℃以下がさらに好ましく、-45℃以下が特に好ましい。前記ガラス転移温度の下限は特に限定されないが、例えば、-130℃以上が好ましく、-110℃以上がより好ましく、-100℃以上がさらに好ましく、-80℃以上がより更に好ましく、-70℃以上が特に好ましい。尚、架橋(メタ)アクリル系重合体粒子(a)のガラス転移温度は、ポリマーハンドブック[Polymer Hand Book(J.Brandrup,Interscience 1989)]に記載されている値を使用してFoxの式を用いて算出した値である(例えば、ポリアクリル酸n-ブチルは-54℃である)。
 架橋(メタ)アクリル系重合体粒子(a)は、(メタ)アクリル系単量体を含む単量体成分、及び、多官能性単量体を重合してなる架橋(メタ)アクリル系重合体から形成される粒子である。多官能性単量体を除く単量体成分は、アクリル系単量体及び/又はメタクリル系単量体を含むものであるが、少なくともアクリル系単量体を含むことが好ましい。
 架橋(メタ)アクリル系重合体粒子(a)に含まれるアクリル系単量体としては、アルキル基の炭素数が1~8であるアクリル酸アルキルエステルが好ましい。具体的には、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸n-オクチル、アクリル酸2-エチルヘキシル等が挙げられる。前記アクリル酸アルキルエステルとしては1種のみを使用してもよいし、2種以上を併用してもよい。中でも、アクリル酸n-ブチルが好ましい。
 架橋(メタ)アクリル系重合体粒子(a)に含まれ得る任意のメタクリル系単量体としては、アルキル基の炭素数が1~8であるメタクリル酸アルキルエステルが好ましい。具体的には、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル等が挙げられる。前記メタクリル酸アルキルエステルとしては1種のみを使用してもよいし、2種以上を併用してもよい。中でも、アルキル基の炭素数が1~4のメタクリル酸アルキルエステルが好ましい。特に、メタクリル酸メチルが好ましい。
 架橋(メタ)アクリル系重合体粒子(a)では、上述したアクリル酸アルキルエステル及びメタクリル酸アルキルエステル以外の単量体を使用してもよい。そのような単量体としては、前記アクリル酸アルキルエステル以外のアクリル酸エステル、前記メタクリル酸アルキルエステル以外のメタクリル酸エステル、芳香族ビニル系単量体、他の共重合性ビニル単量体が挙げられる。前記アクリル酸アルキルエステル以外のアクリル酸エステルとしては、例えば、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸シクロヘキシル、アクリル酸イソボルニル等が挙げられる。前記メタクリル酸アルキルエステル以外のメタクリル酸エステルとしては、例えば、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸シクロヘキシル、メタクリル酸イソボルニル等が挙げられる。前記芳香族ビニル系単量体としては、例えば、スチレン、α-メチルスチレン、クロロスチレン、その他のスチレン誘導体等が挙げられる。前記他の共重合性ビニル単量体としては、例えば、アクリロニトリル、メタクリロニトリル等の不飽和ニトリル系単量体、アクリル酸、メタクリル酸、クロトン酸等のα,β-不飽和カルボン酸類、酢酸ビニル、エチレンやプロピレン等のオレフィン系単量体、塩化ビニル、塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニル系単量体、N-エチルマレイミド、N-プロピルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-o-クロロフェニルマレイミド等のマレイミド系単量体等が挙げられる。これらはいずれも単独で使用してもよいし、2種以上を併用してもよい。
 架橋(メタ)アクリル系重合体粒子(a)を構成する単量体成分は、強度や耐熱性の観点から、多官能性単量体を除く単量体成分のうち、アクリル酸エステル(特にアルキル基の炭素数が1~8であるアクリル酸アルキルエステル)を70重量%以上100重量%以下含むことが好ましく、80重量%以上100重量%以下含むことがより好ましく、90重量%以上100重量%以下含むことがさらに好ましく、95重量%以上100重量%以下含むことが特に好ましい。
 架橋(メタ)アクリル系重合体粒子(a)は、前記単量体成分を、多官能性単量体の存在下で重合することにより形成される。当該多官能性単量体は、架橋剤または架橋性単量体としても知られており、(メタ)アクリル系単量体と共重合可能な不飽和結合を1分子中に2個以上有する化合物である。具体的には、アリルメタクリレート、アリルアクリレート、ジアリルマレエート、ジアリルフマレート、ジアリルイタコネート、モノアリルマレエート、モノアリルフマレート、ブタジエン、ジビニルベンゼン、トリアリルイソシアヌレート、アルキレングリコールジメタクリレート、アルキレングリコールジアクリレート等が挙げられる。これらは1種のみを使用してもよいし、2種以上を使用してもよい。好ましくは、アリルメタクリレートである。
 前記多官能性単量体の使用量は、強度の観点から適宜設定することができるが、具体的には、架橋(メタ)アクリル系重合体粒子(a)を構成する単量体成分(但し、多官能性単量体を除く単量体成分)100重量部に対して0.1重量部以上5.0重量部以下程度であってよい。しかし、グラフト共重合体の強度の観点から、前記多官能性単量体の使用量は、0.2~3.5重量部が好ましく、0.2~3.0重量部がより好ましく、0.3~2.0重量部がさらに好ましく、0.4~1.5重量部が特に好ましい。
 (非架橋メタクリル系重合体成分(b))
 非架橋メタクリル系重合体成分(b)は、主にメタクリル系単量体が重合して構成され、架橋構造を有しない(即ち、多官能性単量体を使用しない重合によって得られた)重合体である。非架橋メタクリル系重合体成分(b)の少なくとも一部は、架橋(メタ)アクリル系重合体粒子(a)にグラフト結合しており、これによって、架橋(メタ)アクリル系重合体粒子(a)は凝集しにくくなり、本実施形態に係るグラフト共重合体は貯蔵安定性が良好になり、また、フィルム化した時に低ヘイズを達成することができる。
 非架橋メタクリル系重合体成分(b)は、高分子量の重合体であり、具体的には重量平均分子量が25万以上を示すものである。非架橋メタクリル系重合体成分(b)が高分子量であることによって、本実施形態に係るグラフト共重合体は高い耐熱性を達成することができ、また、溶液流延法によるフィルム化が可能となる。前記重量平均分子量は、溶液流延法によるフィルム化を容易にする観点から、30万以上が好ましく、35万以上がより好ましく、40万以上がさらに好ましく、45万以上が特に好ましい。重量平均分子量の上限は特に限定されないが、溶液流延法によるフィルム化を容易にする観点から、100万以下が好ましく、90万以下がより好ましい。非架橋メタクリル系重合体成分(b)の重量平均分子量は実施例の項の記載に従って測定することができる。
 非架橋メタクリル系重合体成分(b)は、グラフト共重合体の耐熱性の観点から、ガラス転移温度が115℃以上を示すことが好ましく、118℃以上がより好ましく、120℃以上がさらに好ましい。ガラス転移温度の上限は特に限定されないが、例えば、160℃以下であってもよく、150℃以下であってもよい。ガラス転移温度は、非架橋メタクリル系重合体成分(b)を構成する単量体の種類や比率などを調節することによって制御できる。尚、非架橋メタクリル系重合体成分(b)のガラス転移温度は、実施例の項で記載のように測定することができるが、ポリマーハンドブック[Polymer Hand Book(J.Brandrup,Interscience 1989)]に記載されている値を使用してFoxの式を用いて算出することもできる(例えば、ポリメタクリル酸メチルは105℃である)。
 非架橋メタクリル系重合体成分(b)は、主にメタクリル系単量体単位から構成される重合体である。グラフト共重合体の耐熱性及びフィルム化の観点から、メタクリル系単量体単位としては、メタクリル酸メチル単位が好ましい。特に、非架橋メタクリル系重合体成分(b)を構成する単量体成分のうち、メタクリル酸メチル単位を、70重量%以上99重量%以下含むことが好ましい。これにより、耐熱性を改善すると共に、溶液流延法によるフィルム化をより容易に実現することができる。メタクリル酸メチル単位の含有量は、75~98重量%がより好ましく、80~97重量%がさらに好ましく、85~96重量%がより更に好ましく、88~95重量%がよりさらに好ましく、90~95重量%が特に好ましい。
 非架橋メタクリル系重合体成分(b)は、メタクリル酸メチル単位以外の単量体単位として、N-置換マレイミド系モノマー単位、エステル部位が炭素数2~20の第一級もしくは第二級炭化水素基または芳香族系炭化水素基であるメタクリル酸エステル単位、エステル部位が縮合環構造を有する炭素数7~16の飽和炭化水素基であるメタクリル酸エステル単位、エステル部位がエーテル結合を含む直鎖状又は分岐状の基であるメタクリル酸エステル単位、及び、スチレン系モノマー単位からなる群より選択される少なくとも1種を含むことが好ましい。このような単量体単位を含むことによって、グラフト共重合体の耐熱性を大きく低下させることなく、溶液流延法でフィルムを製造するに際して、流延膜から溶剤を蒸発させる際に該溶剤の揮発速度を速くすることが可能となる。上述した単量体単位を、以下では「乾燥促進性コモノマー単位」ともいう。
 前記N-置換マレイミド系モノマーとしては、例えば、N-フェニルマレイミド、N-ベンジルマレイミド、N-シクロヘキシルマレイミド、N-メチルマレイミド等が挙げられる。このうち、N原子上に環状の置換基を有するマレイミド系モノマー単位が好ましく、すなわち、N-フェニルマレイミド、N-ベンジルマレイミド、N-シクロヘキシルマレイミドが好ましい。
 前記エステル部位が炭素数2~20の第一級もしくは第二級炭化水素基または芳香族系炭化水素基であるメタクリル酸エステルとしては、例えば、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ベンジル等が挙げられる。このうち、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ベンジルが好ましい。
 前記エステル部位が縮合環構造を有する炭素数7~16の飽和炭化水素基であるメタクリル酸エステルとしては、例えば、メタクリル酸ジシクロペンタニル、メタクリル酸イソボルニル等が挙げられる。前記飽和炭化水素基の炭素数は8~14が好ましく、9~12がより好ましい。また、縮合環構造とは、特に限定されないが、連続する3つの炭素原子によって2つの五員環が縮環した構造であることが好ましい。
 前記エステル部位がエーテル結合を含む直鎖状又は分岐状の基であるメタクリル酸エステルとしては、例えば、メタクリル酸2-メトキシエチル等が挙げられる。
 前記スチレン系モノマーとしては、例えば、スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレン等が挙げられる。このうちスチレンが好ましい。
 溶液流延法で流延膜からの溶剤の揮発速度を速くすることに加えて、グラフト共重合体の耐熱性をより高めることができるため、前記乾燥促進性コモノマー単位は、N-置換マレイミド系モノマー単位、及び、エステル部位が縮合環構造を有する炭素数7~16の飽和炭化水素基であるメタクリル酸エステル単位、のうち少なくとも1種を含むことが好ましい。
 この時、前記乾燥促進性コモノマー単位として、N-置換マレイミド系モノマー単位、及び、エステル部位が縮合環構造を有する炭素数7~16の飽和炭化水素基であるメタクリル酸エステル単位、のうち少なくとも1種のみを用いても良いが、N-置換マレイミド系モノマー単位、及び、エステル部位が縮合環構造を有する炭素数7~16の飽和炭化水素基であるメタクリル酸エステル単位、のうち少なくとも1種と、これら以外の乾燥促進性コモノマー単位を組み合わせて用いても良い。このような併用により、グラフト共重合体の耐熱性と溶剤の揮発速度を調節して、両者をバランス良く高めることが可能となる。
 該N-置換マレイミド系モノマー単位及びエステル部位が縮合環構造を有する炭素数7~16の飽和炭化水素基であるメタクリル酸エステル単位以外の乾燥促進性コモノマー単位は、上述したようなエステル部位が炭素数2~20の第一級もしくは第二級炭化水素基または芳香族系炭化水素基であるメタクリル酸エステル単位、エステル部位がエーテル結合を含む直鎖状又は分岐状の基であるメタクリル酸エステル単位、及び、スチレン系モノマー単位からなる群より選択される少なくとも1種であってもよい。
 非架橋メタクリル系重合体成分(b)を構成する単量体成分のうち、前記乾燥促進性コモノマー単位の割合は1重量%以上30重量%以下であることが好ましく、2~25重量%がより好ましく、3~20重量%がさらに好ましく、4~18重量%がより更に好ましく、4~15重量%がより更に好ましく、4~12重量%がより更に好ましく、5~10重量%が特に好ましい。乾燥促進性コモノマー単位が2種類以上含まれる場合、乾燥促進性コモノマー単位の割合とは、含まれる全ての乾燥促進性コモノマー単位の合計量が全モノマー単位のうちに占める割合のことをいう。このような重量割合とすることで、グラフト共重合体が優れた耐熱性を有しながら、溶液流延法での溶剤の揮発速度を速めることができる。なお、これら各単位の重量割合は、プロトン核磁気共鳴分光法により求めることができる。
 非架橋メタクリル系重合体成分(b)は、乾燥促進性コモノマー単位に該当しない他のコモノマー単位を含まない共重合体であってもよいし、乾燥促進性コモノマー単位に該当しない他のコモノマー単位を含む共重合体であってよい。そのような他のコモノマーとしては、例えば、メタクリル酸グリシジル、メタクリル酸エポキシシクロヘキシルメチル、メタクリル酸ジメチルアミノエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、2,2,2-トリフルオロエチルメタクリレート、2,2,2-トリクロロエチルメタクリレート、メタクリルアミド、N-メチロ-ルメタクリルアミド等のメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸ベンジル、アクリル酸オクチル、アクリル酸グリシジル、アクリル酸エポキシシクロヘキシルメチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリルアミド、N-メチロ-ルアクリルアミド等のアクリル酸エステル類;メタクリル酸、アクリル酸などのカルボン酸類およびその塩;アクリロニトニル、メタクリロニトリルなどのビニルシアン類;マレイン酸、フマル酸およびそれらのエステル等;塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル;エチレン、プロピレン、ブチレン、ブタジエン、イソブチレンなどのアルケン類等が挙げられる。このような他のコモノマー単位が、非架橋メタクリル系重合体成分(b)を構成する単量体成分のうち占める割合は10重量%以下であることが好ましく、8重量%以下であることがより好ましく、5重量%以下であることがさら好ましい。
 本実施形態に係るグラフト共重合体において、架橋(メタ)アクリル系重合体粒子(a)と非架橋メタクリル系重合体成分(b)の合計のうち架橋(メタ)アクリル系重合体粒子(a)が占める割合は1重量%以上50重量%未満であり、非架橋メタクリル系重合体成分(b)の占める割合は99重量%以下50重量%超である。本実施形態に係るグラフト共重合体はこのように非架橋メタクリル系重合体成分(b)を高い割合で含有することによって、架橋(メタ)アクリル系重合体粒子(a)が凝集しにくく、高強度かつ低ヘイズのフィルムを形成可能となり、しかも、当該グラフト共重合体又はそのドープの貯蔵安定性が良好となり得る。架橋(メタ)アクリル系重合体粒子(a)が占める前記割合は、3重量%以上45重量%以下が好ましく、4~40重量%がより好ましく、5~35重量%がさらに好ましく、6~30重量%が特に好ましい。
 更に、得られるフィルムの耐折り曲げ性の観点から、架橋(メタ)アクリル系重合体粒子(a)と非架橋メタクリル系重合体成分(b)の合計のうち架橋(メタ)アクリル系重合体粒子(a)が占める割合は、5重量%以上であることが好ましく、6重量%以上がより好ましく、7重量%以上がさらに好ましい。透湿度と弾性率の観点から、前記割合の上限は25重量%以下であることが好ましく、20重量%以下がより好ましく、15重量%以下がさらに好ましく、12重量%以下がより更に好ましく、10重量%以下が特に好ましい。透湿度と弾性率、耐折り曲げ性のバランスの観点からは、6重量%以上が好ましく、7重量%以上がより好ましく、また、20重量%以下が好ましく、15重量%以下がより好ましく、12重量%以下がさらに好ましく、10重量%以下が特に好ましい。
 (グラフト共重合体の製造方法)
 本実施形態に係るグラフト共重合体は、乳化剤と重合開始剤を用いた通常の乳化重合により製造することができる。具体的には、乳化重合により架橋(メタ)アクリル系重合体粒子(a)を形成した後、その重合系に、非架橋メタクリル系重合体成分(b)を構成する単量体成分を添加して引き続き乳化重合を行って非架橋メタクリル系重合体成分(b)を形成する。これにより、非架橋メタクリル系重合体成分(b)の少なくとも一部が、架橋(メタ)アクリル系重合体粒子(a)にグラフト結合したグラフト共重合体を製造することができる。以上の方法によってグラフト共重合体を製造することで、架橋(メタ)アクリル系重合体粒子(a)が非架橋メタクリル系重合体成分(b)中に十分に分散している構成とすることができる。
 前記乳化剤としては特に限定されないが、例えば、アルキルスルフォン酸ナトリウム、アルキルベンゼンスルフォン酸ナトリウム、ジオクチルスルフォコハク酸ナトリウム(スルホコハク酸ジ(2-エチルヘキシル)ナトリウム)、ラウリル硫酸ナトリウム、脂肪酸ナトリウム、ポリオキシエチレンラウリルエーテルリン酸ナトリウム等のリン酸エステル塩等の陰イオン界面活性剤や、非イオン性界面活性剤等が示される。これらの界面活性剤は、単独で用いてもよく、2種以上併用しても良い。前記グラフト共重合体から形成されるフィルムの熱安定性を向上させる観点から、ジオクチルスルフォコハク酸ナトリウム(スルホコハク酸ジ(2-エチルヘキシル)ナトリウム)、ポリオキシエチレンラウリルエーテルリン酸ナトリウム等のリン酸エステル塩(アルカリ金属、又はアルカリ土類金属)を用いて重合することが好ましく、特にはポリオキシエチレンラウリルエーテルリン酸ナトリウム等のリン酸エステル塩(アルカリ金属、又はアルカリ土類金属)を用いて重合することが好ましい。
 前記重合開始剤としては特に限定されないが、前記フィルムの熱安定性向上の観点から、10時間半減期温度が100℃以下の重合開始剤が好ましい。当該重合開始剤としては特に限定されないが、過硫酸塩が好ましい。具体的には、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられる。
 前記重合開始剤は、少なくとも架橋(メタ)アクリル系重合体粒子(a)を形成する段階で添加することが好ましく、非架橋メタクリル系重合体成分(b)を形成する段階で追加添加してもよい。
 非架橋メタクリル系重合体成分(b)を形成する段階では、該重合体成分(b)の分子量を制御するために、連鎖移動剤の存在下で重合を行ってもよい。その際に使用可能な連鎖移動剤としては特に限定されないが、例えば、n-ブチルメルカプタン、n-オクチルメルカプタン、n-ヘキサデシルメルカプタン、n-ドデシルメルカプタン、n-テトラデシルメルカプタンなどの1級アルキルメルカプタン系連鎖移動剤、s-ブチルメルカプタン、s-ドデシルメルカプタンなどの2級アルキルメルカプタン系連鎖移動剤、t-ドデシルメルカプタン、t-テトラデシルメルカプタンなどの3級アルキルメルカプタン系連鎖移動剤、2-エチルヘキシルチオグリコレート、エチレングリコールジチオグリコレート、トリメチロールプロパントリス(チオグリコレート)、ペンタエリスリトールテトラキス(チオグリコレート)などのチオグリコール酸エステル、チオフェノール、テトラエチルチウラムジスルフィド、ペンタンフェニルエタン、アクロレイン、メタクロレイン、アリルアルコール、四塩化炭素、臭化エチレン、α-メチルスチレンダイマーなどのスチレンオリゴマー、テルピノレンなどが挙げられる。これらは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 前記乳化重合によって得られたグラフト共重合体のラテックスを、加熱乾燥または噴霧乾燥に付すことにより、あるいは、塩または酸等の水溶性電解質を添加して凝固させ、更に熱処理を実施した後に水相から樹脂成分を分離して乾燥を行なう等の公知の方法に付すことにより、固体状または粉末状のグラフト共重合体を取得することができる。中でも、塩を用いて凝固を行う方法が好ましい。当該塩としては特に限定されないが、2価の塩が好ましく、具体的には、塩化カルシウム、酢酸カルシウム等のカルシウム塩、塩化マグネシウム、硫酸マグネシウム等のマグネシウム塩等が挙げられる。中でも、塩化マグネシウム、硫酸マグネシウム等のマグネシウム塩が好ましい。凝固時に、老化防止剤や紫外線吸収剤等の、一般的に添加される添加剤を加えてもよい。
 凝固操作前には、前記ラテックスを、フィルター、メッシュ等でろ過し、微細な重合スケールを取り除くことが好ましい。これにより、微細な重合スケールに起因するフィッシュアイや異物等を低減させることができ、また、ドープ中の粗大粒子を低減することもできる。
 (樹脂組成物)
 本実施形態に係るグラフト共重合体は、溶液流延法によるフィルム製造用樹脂組成物を構成することができる。当該樹脂組成物は、樹脂成分として、本実施形態に係るグラフト共重合体のみを含むものであってもよいが、本実施形態に係るグラフト共重合体に加えて、他の樹脂を含有してもよい。そのような樹脂としては特に限定されず、例えば、メタクリル系樹脂、アクリロニトリルスチレン樹脂、スチレン無水マレイン酸樹脂等のスチレン系樹脂、ポリカーボネート樹脂、ポリビニルアセタール樹脂、セルロースアシレート樹脂、ポリフッ化ビニリデンやポリフッ化アルキル(メタ)アクリレート樹脂等のフッ素系樹脂、シリコーン系樹脂、ポリオレフィン系樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等が挙げられる。
 前記他の樹脂の含有量としては特に限定されないが、例えば、本実施形態に係るグラフト共重合体100重量部に対して、0~50重量部程度であってもよい。さらに、0~30重量部であってもよく、0~10重量部であってもよく、0~5重量部であってもよく、0~1重量部であってもよい。
 また、前記フィルム製造用樹脂組成物は、光安定剤、紫外線吸収剤、熱安定剤、艶消し剤、光拡散剤、着色剤、染料、顔料、帯電防止剤、熱線反射材、滑剤、可塑剤、紫外線吸収剤、安定剤、フィラー等の公知の添加剤をさらに含有してもよい。また、従来公知のコアシェル型グラフト共重合体をさらに含有してもよい。
 (ドープ)
 前記フィルム製造用樹脂組成物は、これを溶剤に溶解または分散させることで、溶液流延法によって樹脂フィルムを製造する際に使用するドープを構成することができる。
 前記溶剤は、前記フィルム製造用樹脂組成物を溶解または分散することができる溶剤であり、特に限定されないが、ハンセン溶解度パラメーターにおける水素結合項δHが1以上12以下である溶剤(c-1)を含むことが好ましい。このような溶剤を用いてドープを構成することで、本実施形態に係るグラフト共重合体の溶剤への良好な溶解性または分散性を実現することができる。前記水素結合項δHが3以上10以下を示す溶剤が好ましく、5以上8以下を示す溶剤がより好ましい。
 従来から、物質の溶解性を示す指標として溶解度パラメーター(SP値)が知られており、当該SP値の凝集エネルギーの項が、分子間に働く相互作用エネルギーの種類(London分散力、双極子間力、水素結合力)によって分割され、それぞれをLondon分散力項、双極子間力項、水素結合力項として表したハンセン溶解度パラメーターが提案されている。グラフト共重合体が溶剤に溶解する際の溶解性を示す指標として、このハンセン溶解度パラメーターのうちの水素結合項δHを使用する。当該水素結合項δHの詳細は、例えば、山本秀樹著、「特集:ポリマー相溶化設計 1.Hansen溶解度パラメーター(HSP値)を用いた溶解性評価」、接着の技術、Vol.34 No.3 (2014) 通巻116号) 第1-8頁を参照することができる。
 前記水素結合項δHが1以上12以下である溶剤(c-1)としては、例えば、1,4-ジオキサン(9.0)、2-フェニルエタノール(11.2)、アセトン(7.0)、アセトニトリル(6.1)、クロロホルム(5.7)、二塩基酸エステル(8.4)、ジアセトンアルコール(10.8)、N,N-ジメチルホルムアミド(11.3)、ジメチルスルホキシド(10.2)、酢酸エチル(7.2)、γ-ブチロラクトン(7.4)、メチルエチルケトン(5.1)、メチルイソブチルケトン(4.1)、塩化メチレン(7.1)、酢酸n-ブチル(6.3)、N-メチル-2-ピロリドン(7.2)、炭酸プロピレン(4.1)、1,1,2,2-テトラクロロエタン(5.3)、テトラヒドロフラン(8.0)、トルエン(2.0)等が挙げられる。なお、カッコ内の数字は水素結合項δHを示す。これら溶剤は1種類のみを使用してもよいし、2種類以上を混合して使用してもよい。
 これら溶剤のなかでも、本実施形態に係るグラフト共重合体の溶解性に優れると共に、揮発速度も速いため、メチルエチルケトン、クロロホルム、塩化メチレンが好ましく、塩化メチレンがより好ましい。
 前記ドープに含まれる溶剤は、前記水素結合項δHが1以上12以下である溶剤(c-1)のみから構成されるものであってもよい。しかし、溶液流延実施時の成膜性、フィルムの離型性、ハンドリング性の改善などを考慮して、前記水素結合項δHが1以上12以下である溶剤(c-1)、及び、δHが14以上24以下である溶剤(c-2)を含有することが好ましい。
 前記δHが14以上24以下である溶剤(c-2)としては、例えば、メタノール(22.3)、エタノール(19.4)、イソプロパノール(16.4)、ブタノール(15.8)、エチレングリコールモノエチルエーテル(14.3)等が挙げられる。これら溶剤は1種類のみを使用してもよいし、2種類以上を混合して使用してもよい。
 前記δHが14以上24以下である溶剤(c-2)と併用する場合、前記水素結合項δHが1以上12以下である溶剤(c-1)の含有量は、ドープに含まれる溶剤全体に対して55重量%以上95重量%以下が好ましく、60重量%以上90重量%以下がより好ましく、65重量%以上85重量%以下がさらに好ましく、70重量%以上85重量%以下がよりさらに好ましい。
 前記ドープ中における前記グラフト共重合体の割合は特に限定されず、用いた溶剤に対する前記グラフト共重合体の溶解性または分散性や、溶液流延法の実施条件などを考慮して適宜決定することが可能であるが、5~50重量%であることが好ましく、10~45重量%がより好ましく、15~40重量%がさらに好ましい。
 (溶液流延法)
 前記ドープは、溶液流延法によって樹脂フィルムを製造するのに使用される。具体的には、前記ドープを支持体表面に流延した後、溶剤を蒸発させることにより樹脂フィルムを製造することができる。
 前記溶液流延法の実施態様を以下に説明するが、これに限定されるものではない。まず、本実施形態に係るグラフト共重合体、場合によって他の成分を含むペレットを作製した後、該ペレットを溶剤と混合して、各成分を溶剤に溶解又は分散させたドープを作製する。あるいは、ペレットを作製せずに、本実施形態に係るグラフト共重合体と他の成分を、同時に又は順次、溶剤に混合して、各成分を溶剤に溶解又は分散させたドープを作製する。溶解又は分散させる工程は、温度および圧力を適宜調節して実施することができる。以上の溶解又は分散工程の後、得られたドープをろ過したり、脱泡することもできる。
 次いで、前記ドープを送液ポンプにより加圧ダイに送液し、加圧ダイのスリットから、金属製または合成樹脂製の無端ベルトやドラム等の支持体の表面(鏡面)に前記ドープを流延して、ドープ膜を形成する。
 形成されたドープ膜を前記支持体上で加熱し、溶剤を蒸発させてフィルムを形成させる。溶剤を蒸発させる際の条件としては、使用する溶剤の沸点に応じて適宜決定することができる。
 このようにして得られたフィルムは支持体表面から剥離される。その後、得られたフィルムは、適宜、乾燥工程や加熱工程、延伸工程等に付してもよい。
 (樹脂フィルム)
 本実施形態に係る樹脂フィルムは、前記フィルム製造用樹脂組成物から構成されるものであり、前述したドープの溶液流延法により形成することができる。該樹脂フィルムの厚みは特に限定されないが、500μm以下であることが好ましく、300μm以下がより好ましく、200μm以下がさらに好ましい。また、1μm以上であることが好ましく、5μm以上がより好ましく、10μm以上がさらに好ましく、30μm以上が特に好ましい。
 本実施形態に係る樹脂フィルムは、膜厚80μmで測定した時に、全光線透過率が85%以上であることが好ましく、88%以上がより好ましく、90%以上がさらに好ましい。全光線透過率が前記範囲内にあれば、樹脂フィルムを、光透過性が要求される光学部材、加飾用途、インテリア用途、真空成形用途に好適に使用できる。
 本実施形態に係る樹脂フィルムは、耐熱性の観点から、ガラス転移温度が100℃以上であることが好ましく、105℃以上がより好ましく、110℃以上がさらに好ましく、115℃以上がより更に好ましく、120℃以上がより更に好ましく、124℃以上が特に好ましく、125℃以上が最も好ましい。
 本実施形態に係る樹脂フィルムは、膜厚50μmで測定した時に、ヘイズが0.8%以下であることが好ましく、0.6%以下がより好ましく、0.5%以下がさらに好ましく、0.4%以下がより更に好ましく、0.3%以下が特に好ましい。さらに、樹脂フィルムの内部ヘイズが、膜厚50μmで測定した時に、0.5%以下であることが好ましく、0.4%以下がより好ましく、0.3%以下がさらに好ましく、0.2%以下が特に好ましい。ヘイズ及び内部ヘイズが上述の範囲内にあれば、樹脂フィルムを、光透過性が要求される光学部材、加飾用途、インテリア用途、真空成形用途に好適に使用できる。なお、ヘイズはフィルム内部とフィルム表面(外部)のヘイズからなり、それぞれを内部ヘイズ、外部ヘイズと表現する。
 本実施形態に係る樹脂フィルムは光学フィルムとして使用することができる。特に偏光子保護フィルムとして使用する場合、光学異方性が小さいことが好ましい。特に、フィルムの面内方向(長さ方向、幅方向)の光学異方性だけでなく、厚み方向の光学異方性についても小さいことが好ましい。つまり、面内位相差および厚み方向位相差の絶対値がともに小さいことが好ましい。より具体的には、面内位相差の絶対値は30nm以下であることが好ましく、20nm以下であることがより好ましく、15nm以下であることがさらに好ましく、13nm以下であることがより更に好ましく、12nm以下であることが特に好ましく、10nm以下であることが最も好ましい。また、厚み方向位相差の絶対値は50nm以下であることが好ましく、20nm以下であることがより好ましく、15nm以下であることがさらに好ましく、10nm以下であることがより更に好ましく、8nm以下であることが特に好ましく、5nm以下であることが最も好ましい。このように位相差が小さい樹脂フィルムは、液晶表示装置の偏光板が備える偏光子保護フィルムとして好適に使用することができる。
 位相差は複屈折をベースに算出される指標値であり、面内位相差(Re)および厚み方向位相差(Rth)は、それぞれ、以下の式により算出することができる。3次元方向について完全光学等方である理想的なフィルムでは、面内位相差Re、厚み方向位相差Rthがともに0となる。
 Re=(nx-ny)×d
 Rth=((nx+ny)/2-nz)×d
 各式中、nx、ny、およびnzは、それぞれ、面内において伸張方向(ポリマー鎖の配向方向)をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸とし、それぞれの軸方向の屈折率を表す。また、dはフィルムの厚さを表し、nx-nyは配向複屈折を表す。なお、フィルムのMD方向をX軸とするが、延伸フィルムの場合は延伸方向をX軸とする。
 (延伸)
 本実施形態に係る樹脂フィルムは靭性が高く柔軟性に富むものであり、未延伸フィルムであってもよいが、延伸フィルムであってもよい。延伸することにより、樹脂フィルムの機械的強度の向上、膜厚精度の向上を図ることができる。
 本実施形態に係る樹脂フィルムを延伸する場合は、未延伸状態のフィルムを製造した後、一軸延伸または二軸延伸を行うことにより、あるいは、フィルム成形中に、成膜及び溶剤の脱気の工程の進展と共に延伸操作を適宜加えることにより、延伸フィルム(一軸延伸フィルムまたは二軸延伸フィルム)を製造することができる。また、フィルム成形中の延伸と、フィルム成形後の延伸を適宜組み合わせても良い。
 延伸フィルムの延伸倍率は、特に限定されず、製造する延伸フィルムの機械的強度、表面性、および厚み精度等に応じて、決定すればよい。延伸温度にも依存するが、延伸倍率は、一般的には、1.1倍~5倍の範囲で選択することが好ましく、1.3倍~4倍の範囲で選択することがより好ましく、1.5倍~3倍の範囲で選択することがさらに好ましい。延伸倍率が上記範囲内であれば、フィルムの伸び率、引裂伝播強度、および耐揉疲労等の力学的性質を大幅に改善することができる。
 (用途)
 本実施形態に係る樹脂フィルムは、必要に応じて、公知の方法によりフィルム表面の光沢を低減させることができる。そのような方法としては、例えば、無機充填剤または架橋性高分子粒子を添加する方法が挙げられる。また、得られるフィルムにエンボス加工を施すことにより、プリズム形状やパターン、意匠、ナーリングなどの表面凹凸層を形成したり、フィルム表面の光沢を低減させることも可能である。
 本実施形態に係る樹脂フィルムは、必要に応じて、粘着剤、接着剤等によるドライラミネート法及び/または熱ラミネート法などを用いて別のフィルムを積層したり、フィルムの表面あるいは裏面にハードコート層、反射防止層、防汚層、帯電防止層、印刷加飾層、金属光沢層、表面凹凸層、艶消し層等の機能性層を形成して用いることができる。
 本実施形態に係る樹脂フィルムは、耐熱性、透明性、柔軟性などの性質を利用して、各種用途に使用することができる。例えば、自動車内外装、パソコン内外装、携帯内外装、太陽電池内外装、太陽電池バックシート;カメラ、VTR、プロジェクター用の撮影レンズ、ファインダー、フィルター、プリズム、フレネルレンズ、レンズカバーなどの映像分野、CDプレイヤー、DVDプレイヤー、MDプレイヤーなどにおける光ディスク用ピックアップレンズなどのレンズ分野、CD、DVD、MDなどの光ディスク用の光記録分野、有機EL用フィルム、液晶用導光板、拡散板、バックシート、反射シート、偏光子保護フィルム、偏光フィルム透明樹脂シート,位相差フィルム,光拡散フィルム、プリズムシートなどの液晶ディスプレイ用フィルム、表面保護フィルムなどの情報機器分野、光ファイバ、光スイッチ、光コネクターなどの光通信分野、自動車ヘッドライト、テールランプレンズ、インナーレンズ、計器カバー、サンルーフなどの車両分野、眼鏡、コンタクトレンズ、内視鏡用レンズ、滅菌処理の必要な医療用品などの医療機器分野、道路標識、浴室設備、床材、道路透光板、ペアガラス用レンズ、採光窓、カーポート、照明用レンズ、照明カバー、建材用サイジングなどの建築・建材分野、電子レンジ調理容器(食器)、家電製品のハウジング、玩具、サングラス、文房具などに使用することができる。また、転写箔シートを使用した成形品の代替用途としても使用できる。
 本実施形態に係る樹脂フィルムは、金属、プラスチックなどの基材に積層して用いることができる。樹脂フィルムの積層方法としては、積層成形や、鋼板などの金属板に接着剤を塗布した後、金属板にフィルムを載せて乾燥させ貼り合わせるウエットラミネートや、ドライラミネート、エキストルージョンラミネート、ホットメルトラミネートなどがあげられる。
 プラスチック部品にフィルムを積層する方法としては、フィルムを金型内に配置しておき、射出成形にて樹脂を充填するインサート成形またはラミネートインジェクションプレス成形や、フィルムを予備成形した後に金型内に配置し、射出成形にて樹脂を充填するインモールド成形などがあげられる。
 本実施形態に係る樹脂フィルムの積層体は、自動車内装材、自動車外装材などの塗装代替用途、窓枠、浴室設備、壁紙、床材、採光・調光部材、防音壁、道路標識などの土木建築用部材、日用雑貨品、家具や電子電気機器のハウジング、ファクシミリ、ノートパソコン、コピー機などのOA機器のハウジング、携帯電話、スマートフォン、タブレットなどの端末の液晶画面の前面板や、照明用レンズ、自動車ヘッドライト、光学レンズ、光ファイバ、光ディスク、液晶用導光板などの光学部材、光学用素子、電気または電子装置の部品、滅菌処理の必要な医療用品、玩具またはレクリエーション品目、繊維強化樹脂複合材料などに使用することができる。
 特に、本実施形態に係る樹脂フィルムは、耐熱性および光学特性に優れる点では、光学用フィルムに好適であり、各種光学部材に用いられうる。例えば、携帯電話、スマートフォン、タブレットなどの端末の液晶画面の前面板、照明用レンズ、自動車ヘッドライト、光学レンズ、光ファイバ、光ディスク、液晶用導光板、拡散板、バックシート、反射シート、偏光フィルム透明樹脂シート、位相差フィルム、光拡散フィルム、プリズムシート、表面保護フィルム、光学的等方フィルム、偏光子保護フィルムや透明導電フィルム等液晶表示装置周辺や、有機EL装置周辺、光通信分野等の公知の光学的用途に適用できる。
 以下、本発明を実施例にて具体的に説明するが、本発明はこれら実施例に限定されるものではない。以下で「部」および「%」は、特記ない限り、「重量部」および「重量%」を意味する。
 (実施例1)
 <グラフト共重合体(A1)の製造>
 撹拌機付き8L重合装置に、以下の物質を仕込んだ。
 脱イオン水 133部
 水酸化ナトリウム 0.004部
 スルホコハク酸ジ(2-エチルヘキシル)ナトリウム 0.2部
 重合機内を窒素ガスで充分に置換した後、内温を80℃にし、過硫酸ナトリウム0.03部、ピロ亜硫酸ナトリウム0.001部を0.5%水溶液で入れ、次いで表1記載の架橋(メタ)アクリル系重合体粒子用のモノマー(a)40部を0.523部/分の速度で連続的に添加した。さらに30分重合を継続することにより、架橋(メタ)アクリル系重合体粒子(a)を得た。重合転化率は99.5%であった。平均粒子径は表2に記載する。
 その後、表1記載の非架橋メタクリル系重合体成分用のモノマー(b)60部を1.353部/分の速度で連続的に添加した。また、モノマー(b)追加開始と同時にスルホコハク酸ジ(2-エチルヘキシル)ナトリウム0.4部を5%水溶液で、モノマー(b)と同じ時間をかけて連続的に添加した。添加終了後、60分重合を継続し、グラフト共重合体ラテックスを得た。重合転化率は100.0%であった。平均粒子径は表2に記載する。
 得られたラテックスを75℃で12時間乾燥させることにより、白色粉末状のグラフト共重合体(A1)を得た。
 (実施例2~8及び比較例1)
 使用原料の種類と量を表1に示すように変更した以外は、実施例1と同様にして、グラフト共重合体(A2)~(A9)を製造した。
Figure JPOXMLDOC01-appb-T000001
 (重合転化率)
 重合により得られた重合体の重合転化率を以下の方法で求めた。重合系から重合体を含む約2gのラテックスを採取・精秤し、それを熱風乾燥機中で120℃、1時間乾燥し、その乾燥後の重量を固形分量として精秤した。次に、乾燥前後の精秤結果の比率を試料中の固形分比率として求めた。最後に、この固形分比率を用いて、以下の計算式により重合転化率を計算した。なお、この計算式において、多官能性単量体および連鎖移動剤は仕込み単量体として取り扱った。
重合転化率(%)={(仕込み原料総重量×固形分比率-水および単量体以外の原料総重量)/仕込み単量体重量}×100
(非架橋メタクリル系重合体成分(b)の重量平均分子量)
 重合により得られたグラフト共重合体のうち、非架橋メタクリル系重合体成分(b)の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出し、表2に記載した。ただし、GPCカラムとしてポリスチレン架橋ゲルを充填したもの(型式:TSKgel Super HZM-H、東ソー株式会社製)を、GPC溶媒としてテトラヒドロフラン(THF)を用いた。試料溶液としては、グラフト共重合体の粉末20mgとTHF10mlからなる重合体溶液を43,000Gで30分間遠心分離して得た清澄な上澄み液を用いた。またGPCのカラム温度は40℃に設定した。
 (架橋(メタ)アクリル系重合体粒子(a)およびグラフト共重合体(A1)~(A9)の平均粒子径)
 平均粒子径は、前記の架橋(メタ)アクリル系重合体粒子(a)およびグラフト共重合体(A1)~(A9)の重合完了時点で得られたそれぞれのラテックスの状態で測定した体積平均粒子径である。測定装置として、日機装株式会社のMicrotrac UPA150を用い、測定した体積平均粒子径を平均粒子径として表2に記載した。尚、測定は室温で行い、測定粒子の屈折率は、重合に使用したモノマーからなるホモポリマーの屈折率の重量平均値を用いた。ホモポリマーの屈折率は、ポリマーハンドブック[Polymer Hand Book(J.Brandrup,Interscience 1989)]に記載されている値を使用した。
 (比較例3)
 撹拌機を備えた8リットルガラス製反応器に脱イオン水200部、懸濁助剤であるリン酸水素2ナトリウム0.5部を仕込んだ。次に300rpmで撹拌しながら、反応器にラウロイルパーオキサイド0.3部を溶解させたMMA91部、BMA9部、連鎖移動剤であるチオグリコール酸2-エチルヘキシル(2-EHTG)0.018部からなる単量体混合液を加え、反応機内を窒素置換しながら60℃に昇温して重合を開始した。60℃到達後50分間経過時点で、懸濁安定剤としてノニオン系水溶性高分子であるアデカプルロニックF-68(株式会社ADEKA製、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体)を0.15部添加した。その後60℃でさらに200分間反応させたのち、80℃に昇温して3時間撹拌し、重合を完結させた。得られた重合体に対して、樹脂量の3倍量の脱イオン水を用いた水洗を4回実施し、乾燥させることで、ビーズ状の懸濁重合体(A10)(重量平均分子量97万)を得た。
 (懸濁重合体の重量平均分子量)
 懸濁重合体の重量平均分子量は、懸濁重合体のビーズ20mgとTHF10mlからなる重合体溶液を試料溶液として用いたこと以外は前記の非架橋メタクリル系重合体成分(b)の重量平均分子量と同様にして算出した。
 (比較例4)
 撹拌機付き8L重合装置に、以下の物質を仕込んだ。
 脱イオン水 175部
 ポリオキシエチレンラウリルエーテルリン酸ナトリウム 0.002部
 炭酸ナトリウム 0.04725部
 重合機内を窒素ガスで充分に置換した後、内温を80℃にし、過硫酸カリウム0.03部を2%水溶液で入れ、次いで混合物(I)(MMA25.2部、BA1.6部、St0.2部、ALMA0.135部、n-OM0.3部、ポリオキシエチレンラウリルエーテルリン酸ナトリウム0.1部)を81分かけて連続的に添加した。さらに60分重合を継続することにより、(I)の重合物を得た。重合転化率は99.5%であった。
 その後、過硫酸カリウム0.08部を2%水溶液で添加し、次いで混合物(II)(BA41部、St9部、ALMA0.75部、ポリオキシエチレンラウリルエーテルリン酸ナトリウム0.2部)を150分かけて連続的に添加した。添加終了後、過硫酸カリウム純分0.015部を2%水溶液で添加し、120分重合を継続し、(II)の重合物を得た。重合転化率は99.7%であり、平均粒子径は220nmであった。
 その後、過硫酸カリウム0.023部を2%水溶液で添加し、次いで混合物(III)(MMA18.4部、BA4.6部)を70分かけて連続的に添加し、60分重合を継続することにより、コアシェル型グラフト共重合体粒子ラテックスを得た。重合転化率は100.0%であった。得られたラテックスを塩化マグネシウムで塩析、凝固し、水洗、乾燥を行い、白色粉末状のコアシェル型グラフト共重合体(A11)を得た。尚、(A11)は、従来のコアシェル型グラフト共重合体の代表例である。
 (グラフト共重合体(A11)のゴム中間層までの平均粒子径)
 グラフト共重合体(A11)のゴム中間層までの平均粒子径は、前記重合段階(II)までの重合で得られたラテックスの状態で測定したこと以外は前記のグラフト共重合体(A1)~(A9)の平均粒子径と同様にして算出した。
 (グラフト共重合体(A11)の最外層の重量平均分子量)
 グラフト共重合体(A11)の最外層の重量平均分子量は、グラフト共重合体(A11)を使用する以外は、前記の非架橋メタクリル系重合体成分(b)の重量平均分子量と同様にして算出した。
 (樹脂ドープの作製)
 グラフト共重合体(A1)~(A9)単体および懸濁重合体(A10)単体の固形分濃度10%の樹脂ドープは、塩化メチレン92%とエタノール8%からなる混合溶媒41.5gに各重合体の粉末又はビーズ4.5gを加え、完全に溶解するまでマグネチックスターラーで攪拌して作製した。
 比較例2では、懸濁重合体(A10)およびグラフト共重合体(A11)を含む固形分濃度10%の樹脂ドープは、前記混合溶媒41.5gにグラフト共重合体(A11)の粉末0.68gを加えて均一になるまでマグネチックスターラーで撹拌し、得られた分散液を超音波バス(ヤマト科学社製 ブランソンニック1510J)でさらに15分間分散処理を行った後、分散液に懸濁重合体(A10)のビーズ3.82gを少しずつ添加し、完全に溶解するまで攪拌して作製した。
 (キャストフィルムの作製)
 前記の樹脂ドープを、PETフィルム(東洋紡製 コスモシャインA4100)上に流延し、アプリケーターで均一な膜状に塗布した。乾燥後の厚みがおよそ70μmとなるようにクリアランスを調整した。塗膜を40℃の乾燥雰囲気下で1時間乾燥させた後、PETフィルムから剥離した。得られたフィルムをステンレス製の枠に固定し、140℃の乾燥雰囲気にて90分間乾燥させて残存溶剤を除去し、キャストフィルムを得た。
 (一軸延伸フィルムの作製)
 未延伸のキャストフィルムから16cm四方の試験片を切り出し、135℃で幅固定一軸延伸を行った。延伸倍率は1.4倍、延伸速度は150mm/分で実施した。
 (膜厚)
 フィルムの膜厚は、デジマティックインジケーター(株式会社ミツトヨ製)を用いて測定した。
 (MIT)
 一軸延伸フィルムの繰り返し折り曲げ強度は、株式会社東洋精機製作所のMIT-DA型MIT試験機を用いて測定した。試験片は幅1.5cmで切り出し、屈曲半径0.4mm、屈曲角135°の条件で200gの荷重をかけ、延伸方向に対して垂直に折り目が付く向きに対し試験した。試験は3回ずつ行い、その平均値を表2に記載した。
 (トリミング試験)
 一軸延伸フィルムを、定規を当てて延伸方向と平行の方向にカッター刃(NTカッター製クイックナイフQ-100P)で素早く切断し、その切断面の外観を下記基準により5段階評価で評価した。試験は一軸延伸フィルム1枚について5回ずつ行い、5回の評価点の平均を表2に記載した。5回の評価点の平均が3点以上をトリミング性良好と評価できる。
1:半分以上の長さで切断面が平滑でなく、加えて、5mm以上のクラックまたは欠け、またはフィルムの破断が発生した。
2:半分以上の長さで切断面が平滑でなく、加えて、5mm未満のクラックまたは欠けが発生したが、フィルムの破断は発生しなかった。
3:半分以上の長さで切断面が平滑でなかったが、クラック、欠け、フィルムの破断のいずれも発生しなかった。
4:半分以上の長さで切断面が平滑であり、かつ、クラック、欠け、フィルムの破断のいずれも発生しなかった。
5:切断面が全て平滑であった。
 (ヘイズ)
 未延伸フィルムの全体ヘイズは、ヘイズメーター(スガ試験機株式会社製 HZ-V3)を用い、JIS K7105に記載の方法にて測定した。一方、未延伸フィルムの両面をグリセリン、次いでガラスの順で挟んで同様の測定を行って得られた値を内部ヘイズとした。得られた結果を膜厚50μm相当に換算して表2に記載した。
 (一軸延伸フィルムの面内位相差および厚み方向位相差)
 延伸フィルムの中央部から試験片を切り出した。この試験片の面内位相差を、自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて波長590nm、入射角0゜で測定した。併せて入射角40°の測定も行い、厚み方向位相差も算出した。測定は、試験片を動かして測定箇所を変えながら3回ずつ行い、その平均値を膜厚50μm相当に換算して表2に記載した。
 (ガラス転移温度)
 架橋(メタ)アクリル系重合体粒子(a)のガラス転移温度は、ポリマーハンドブック[Polymer Hand Book(J.Brandrup,Interscience 1989)]に記載されている値を使用してFoxの式を用いて算出した。
 非架橋メタクリル系重合体成分(b)又は懸濁重合体のビーズのガラス転移温度は、株式会社 日立ハイテクサイエンス製の示差走査熱量計DSC7000Xを用いて測定した。試料であるグラフト共重合体の粉末又は懸濁重合体のビーズを窒素気流下に置いて、10℃/分の昇温速度で190℃まで加熱したのち、3分間190℃で保持してから40℃まで急冷し、再度10℃/分の昇温速度で190℃まで加熱した。2度目の昇温中に観測されたガラス転移に対して、補外ガラス転移開始温度と補外ガラス転移終了温度の平均を求め、この数値をガラス転移温度とした。結果を表2に記載した。
 フィルムのガラス転移温度は、140℃乾燥後のキャストフィルムを更に175℃で1時間乾燥させたものを試料として測定したこと以外は、前記の非架橋メタクリル系重合体成分(b)又は懸濁重合体のビーズのガラス転移温度と同様にして求めた。結果を表2に記載した。
 (グラフト共重合体パウダーの貯蔵安定性)
 パウダー状態におけるグラフト共重合体の貯蔵安定性は、レーザー回折式粒度分布計(マルバーン社製 マスターサイザー3000)を用いた粒度分布の経時変化によって評価した。粒度分布の測定における分散媒には、塩化メチレン92%とエタノール8%からなる混合溶媒を用いた。測定サンプルとなる固形分濃度10%の樹脂ドープは、測定直前にパウダーと前記混合溶媒から作製した。前記分散媒を装置内で循環させながら前記樹脂ドープを滴下して、レーザー散乱強度が0.5~2.0%になるようにして測定を行った。グラフト共重合体パウダーは50℃、95%RHの条件で貯蔵し、貯蔵開始0、3、又は14日目のパウダーそれぞれについて上記の測定を行った。粒子全体に対して1μm以上の粒子が占める体積%を表2に記載した。
 (グラフト共重合体を含有する樹脂ドープの貯蔵安定性)
 グラフト共重合体を含有する樹脂ドープの貯蔵安定性は、前記のグラフト共重合体パウダーの貯蔵安定性と同様にして評価した。樹脂ドープ作製のための混合溶媒には、塩化メチレン82%とメタノール18%からなる混合溶媒、または塩化メチレン92%とエタノール8%からなる混合溶媒を用いた。固形分濃度10%で作製した樹脂ドープを室温で貯蔵し、貯蔵開始0、3、又は14日目の樹脂ドープそれぞれについて、該樹脂ドープと同じ組成の混合溶媒を分散媒として用いて測定を行った。粒子全体に対して1μm以上の粒子が占める体積%を表2に記載した。
Figure JPOXMLDOC01-appb-T000002
 表2より次のことが分かる。実施例1~8では、グラフト共重合体単体から、耐折り曲げ性、耐トリミング性、及び耐熱性が高く、かつヘイズが低い樹脂フィルムを成形することができた。また、グラフト共重合体パウダー及びグラフト共重合体含有ドープの貯蔵安定性が良好であった。
 一方、非架橋メタクリル系重合体成分の重量平均分子量を25万未満と低く設定したグラフト共重合体を用いた比較例1では、製造された樹脂フィルムのガラス転移温度が低く、耐熱性が低かった。従来のようにメタクリル系樹脂にコアシェル型グラフト共重合体を配合して樹脂フィルムを作製した比較例2では、樹脂フィルムのヘイズが大きく、また、コアシェル型グラフト共重合体パウダー及びコアシェル型グラフト共重合体含有ドープの双方で、経時的に粗大粒子の含有量が増大し、貯蔵安定性が不良であった。一般的なメタクリル系樹脂のみから作製した比較例3の樹脂フィルムは、耐折り曲げ性及び耐トリミング性が不十分であった。また、比較例4で示す通り、従来のコアシェル型グラフト共重合体のみからは、樹脂フィルムを作製できなかった。
 実施例4、6-8で得たグラフト共重合体に関して、以下の方法に沿って弾性率と透湿度を測定した。結果を表3に示す。
 (弾性率)
 測定に供する樹脂フィルムは、以下の手順で作製した。まず、塩化メチレン92%とエタノール8%からなる混合溶媒18gに、各グラフト共重合体2gを加えて溶解し、固形分濃度10%のドープを調製した。このドープをPETフィルム(製品名:コスモシャインA4100、東洋紡株式会社製)上にウェット膜厚0.6mmで塗工し、速やかにバットをかぶせ、室温で30分乾燥後、40℃の熱風乾燥機中で60分間乾燥して、生乾きフィルムを作製した。この生乾きフィルムをPETフィルムから剥離した後、金属枠に固定し、熱風乾燥機中で140℃、1時間乾燥して、厚さ40μmのフィルムを作製した。
 得られたフィルムを幅10mm、長さ130mmの短冊状にカットし、チャック間距離100mm、引張速度13mm/分の条件で引張試験を行い、3から12mmの範囲において弾性率を計算した。計算結果はn=7の平均値として求めた。
 (透湿度)
 測定に供する樹脂フィルムは、以下の手順で作製した。まず、塩化メチレン82%とメタノール18%からなる混合溶媒18gに、各グラフト共重合体2gを加えて溶解し、固形分濃度10%のドープを調製した。このドープをPETフィルム(製品名:コスモシャインA4100、東洋紡株式会社製)上にウェット膜厚0.5mmで塗工し、速やかに熱風乾燥機中で40℃、10分間乾燥して、生乾きフィルムを作製した。この生乾きフィルムをPETフィルムから剥離したのち適したサイズの金属枠に固定し、更に熱風乾燥機中で140℃、1時間乾燥して、厚さ50μmのフィルムを作製した。
 透湿度は、カップ法を用いて、JIS Z 0208-1976に準拠して測定した。厚み50μmの円形フィルム、測定面積28.3cmのカップ(テスター産業株式会社製)、水分測定用塩化カルシウム(Wako)8gを用いて作製したサンプルを、恒温恒湿機(形式:LH33-13P、ナガノサイエンス株式会社製)に入れ、40℃、90%RHで測定した。
Figure JPOXMLDOC01-appb-T000003
 表3より次のことが分かる。実施例4、6~8では、グラフト共重合体単体から、上述した耐折り曲げ性、耐トリミング性に加えて、透湿度と弾性率が良好な樹脂フィルムを成形することができた。中でも、実施例6及び7で得られた樹脂フィルムは、透湿度と弾性率のバランスが良好であった。 

Claims (17)

  1.  平均粒子径150nm以下、ガラス転移温度が-10℃以下である架橋(メタ)アクリル系重合体粒子(a)と、
     重量平均分子量が25万以上である非架橋メタクリル系重合体成分(b)を含み、
     非架橋メタクリル系重合体成分(b)の少なくとも一部は、架橋(メタ)アクリル系重合体粒子(a)にグラフト結合しており、
     架橋(メタ)アクリル系重合体粒子(a)と非架橋メタクリル系重合体成分(b)の合計のうち架橋(メタ)アクリル系重合体粒子(a)の占める割合が1重量%以上50重量%未満である、グラフト共重合体。
  2.  非架橋メタクリル系重合体成分(b)は、メタクリル酸メチル単位を70重量%以上99重量%以下含む、請求項1に記載のグラフト共重合体。
  3.  非架橋メタクリル系重合体成分(b)は、N-置換マレイミド系モノマー単位、エステル部位が炭素数2~20の第一級もしくは第二級炭化水素基または芳香族系炭化水素基であるメタクリル酸エステル単位、エステル部位が縮合環構造を有する炭素数7~16の飽和炭化水素基であるメタクリル酸エステル単位、エステル部位がエーテル結合を含む直鎖状又は分岐状の基であるメタクリル酸エステル単位、及び、スチレン系モノマー単位からなる群より選択される少なくとも1種を更に含む、請求項2に記載のグラフト共重合体。
  4.  非架橋メタクリル系重合体成分(b)は、N-置換マレイミド系モノマー単位、及び、エステル部位が縮合環構造を有する炭素数7~16の飽和炭化水素基であるメタクリル酸エステル単位、のうち少なくとも1種を更に含む、請求項2に記載のグラフト共重合体。
  5.  非架橋メタクリル系重合体成分(b)は、ガラス転移温度が118℃以上である、請求項1~4のいずれか1項に記載のグラフト共重合体。
  6.  架橋(メタ)アクリル系重合体粒子(a)は、多官能性単量体を除く単量体成分のうち、アルキル基の炭素数が1~8であるアクリル酸アルキルエステルを90重量%以上100重量%以下含む、請求項1~5のいずれか1項に記載のグラフト共重合体。
  7.  架橋(メタ)アクリル系重合体粒子(a)は、多官能性単量体を除く単量体成分100重量部、及び、多官能性単量体0.1~2.0重量部から形成される、請求項1~6のいずれか1項に記載のグラフト共重合体。
  8.  請求項1~7のいずれか1項に記載のグラフト共重合体を含む、溶液流延法によるフィルム製造用樹脂組成物。
  9.  請求項8に記載のフィルム製造用樹脂組成物、及び、溶剤を含む、ドープ。
  10.  請求項9に記載のドープを支持体表面に流延した後、溶剤を蒸発させる工程を含む、樹脂フィルムの製造方法。
  11.  請求項8に記載のフィルム製造用樹脂組成物から溶液流延法により成形される樹脂フィルム。
  12.  前記樹脂フィルムは厚みが1~500μmである、請求項11に記載の樹脂フィルム。
  13.  前記樹脂フィルムは、他基材表面への積層保護用フィルムである、請求項11又は12に記載の樹脂フィルム。
  14.  前記樹脂フィルムは、光学用フィルムである、請求項11~13のいずれか1項に記載の樹脂フィルム。
  15.  前記光学用フィルムは、偏光子保護フィルムである、請求項14に記載の樹脂フィルム。
  16.  偏光子と、請求項15に記載の樹脂フィルムを積層してなる、偏光板。
  17.  請求項16に記載の偏光板を含む、ディスプレイ装置。
PCT/JP2021/046730 2020-12-17 2021-12-17 グラフト共重合体及び樹脂フィルム WO2022131365A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022570076A JPWO2022131365A1 (ja) 2020-12-17 2021-12-17
CN202180084884.1A CN116635475A (zh) 2020-12-17 2021-12-17 接枝共聚物和树脂薄膜
US18/210,832 US20230322994A1 (en) 2020-12-17 2023-06-16 Graft copolymer and resin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-209480 2020-12-17
JP2020209480 2020-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/210,832 Continuation-In-Part US20230322994A1 (en) 2020-12-17 2023-06-16 Graft copolymer and resin film

Publications (1)

Publication Number Publication Date
WO2022131365A1 true WO2022131365A1 (ja) 2022-06-23

Family

ID=82057836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046730 WO2022131365A1 (ja) 2020-12-17 2021-12-17 グラフト共重合体及び樹脂フィルム

Country Status (4)

Country Link
US (1) US20230322994A1 (ja)
JP (1) JPWO2022131365A1 (ja)
CN (1) CN116635475A (ja)
WO (1) WO2022131365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149421A1 (ja) * 2022-02-07 2023-08-10 株式会社カネカ フレキシブルディスプレイ用の透明樹脂基材、及びハードコートフィルム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022704A1 (ja) * 2015-08-05 2017-02-09 日本製紙株式会社 成型用コーティングフィルム
JP2020147653A (ja) * 2019-03-12 2020-09-17 株式会社カネカ フィルム用アクリル樹脂組成物、及びアクリル樹脂フィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022704A1 (ja) * 2015-08-05 2017-02-09 日本製紙株式会社 成型用コーティングフィルム
JP2020147653A (ja) * 2019-03-12 2020-09-17 株式会社カネカ フィルム用アクリル樹脂組成物、及びアクリル樹脂フィルム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149421A1 (ja) * 2022-02-07 2023-08-10 株式会社カネカ フレキシブルディスプレイ用の透明樹脂基材、及びハードコートフィルム

Also Published As

Publication number Publication date
JPWO2022131365A1 (ja) 2022-06-23
US20230322994A1 (en) 2023-10-12
CN116635475A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
JP5666751B1 (ja) 光学樹脂材料および光学フィルム
US10578773B2 (en) Optical resin composition and film
TW201420662A (zh) 丙烯酸系樹脂膜
WO2016139927A1 (ja) アクリル系樹脂組成物、その成形体及びフィルム
JPWO2017171008A1 (ja) 樹脂組成物、その成形体及びフィルム
US11845820B2 (en) Resin composition and dope for use in film production by solution casting
US9803078B2 (en) Optical resin composition and film
JP7145150B2 (ja) フィルム製造用ドープ、及びフィルムの製造方法
JP7401271B2 (ja) フィルム製造用ドープ、フィルム及びその製造方法
US20230322994A1 (en) Graft copolymer and resin film
JP6913668B2 (ja) グラフト共重合体、および、それを含有するアクリル系樹脂組成物
WO2022131366A1 (ja) グラフト共重合体及び樹脂フィルム
JP2023147507A (ja) 樹脂フィルムの製造方法
JP2021161245A (ja) アクリル系熱可塑性樹脂組成物、ドープ、及びフィルム
WO2022181791A1 (ja) フィルム製造用ドープ、及びアクリル系樹脂フィルム
WO2023149421A1 (ja) フレキシブルディスプレイ用の透明樹脂基材、及びハードコートフィルム
JP2023127128A (ja) 置換マレイミド含有(メタ)アクリル系重合体の製造方法及び該重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570076

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180084884.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906723

Country of ref document: EP

Kind code of ref document: A1