WO2022130294A1 - Composición prebiótica de pectinoligosacáridos (pos) - Google Patents

Composición prebiótica de pectinoligosacáridos (pos) Download PDF

Info

Publication number
WO2022130294A1
WO2022130294A1 PCT/IB2021/061879 IB2021061879W WO2022130294A1 WO 2022130294 A1 WO2022130294 A1 WO 2022130294A1 IB 2021061879 W IB2021061879 W IB 2021061879W WO 2022130294 A1 WO2022130294 A1 WO 2022130294A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
pos
prebiotic
pectin
carbohydrates
Prior art date
Application number
PCT/IB2021/061879
Other languages
English (en)
French (fr)
Inventor
Bernadette Francisca KLOTZ CEBERIO
David ORREGO LÓPEZ
Original Assignee
Alpina Productos Alimenticios S.A. Bic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CONC2021/0017272A external-priority patent/CO2021017272A1/es
Application filed by Alpina Productos Alimenticios S.A. Bic filed Critical Alpina Productos Alimenticios S.A. Bic
Priority to US18/258,145 priority Critical patent/US20240049761A1/en
Publication of WO2022130294A1 publication Critical patent/WO2022130294A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/231Pectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/02Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation containing fruit or vegetable juices
    • A23L2/04Extraction of juices
    • A23L2/06Extraction of juices from citrus fruits
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0045Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Galacturonans, e.g. methyl ester of (alpha-1,4)-linked D-galacturonic acid units, i.e. pectin, or hydrolysis product of methyl ester of alpha-1,4-linked D-galacturonic acid units, i.e. pectinic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/06Pectin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K11/00Fructose
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class

Definitions

  • composition of the present development is related to the food industry and the pharmaceutical industry, particularly with compositions of prebiotic pectinoligosaccharides and non-caloric sugars.
  • a field of interest for the use of these agro-industrial residues consists of their recovery through the production of prebiotic compounds and non-caloric sugars.
  • the best known and commercially available prebiotics are non-digestible oligosaccharides such as inulin, fructooligosaccharides (FOS), galacto-oligosaccharides and lactulose, however, there is a growing interest in the identification and development of new prebiotic compounds with additional functions.
  • Non-caloric sugars such as galacturonic acid, mannose, rhamnose, arabinose, among others, allow increasing the concentration of soluble solids in food products without increasing their caloric load and avoiding the addition of caloric sugars such as sucrose, fructose and glucose. Additionally, some of these sugars can fulfill prebiotic functions.
  • Probiotic microorganisms are responsible for consuming prebiotics and proliferating in the human intestine, generating short-chain fatty acids with multiple benefits and competing and inhibiting the growth of pathogenic microorganisms that generate health problems (Guitón et al., 2013).
  • probiotics include Lactobacillus, Bifidobacterium, Saccharomyces, Enterococcus, Streptococcus, Bacillus and Escherichia.
  • Pectin-derived oligosaccharides have been evaluated as possible prebiotic compounds, finding a protective effect on colonocytes against E. coli verocytotoxins and stimulating apoptosis of cotton adenocarcinoma cells. Additionally, the benefits of POS derived from orange processing have been demonstrated by stimulating the growth of bifidobacteria and E.rectale.
  • These pectin-derived compounds can be formed with the use of pectinolytic enzymes on substrates such as the albedos of tropical fruits. For example, chemical methods such as (chemical) acid hydrolysis is commonly used for pectin extraction, however, the low specificity of the reaction results in unwanted compounds, lowering the extraction yield.
  • the arabinose is in an amount between 20 and 45 mol%
  • the galacturonic acid is between 1 and 50 mol%.
  • US20090305362 which is directed to a chemical-mechanical process for the manufacture of uronic acid oligosaccharides from the extrusion of pectin with an enzyme at basic pH conditions and the nutritional composition obtained from it.
  • the nutritional composition comprises pectinoligosaccharide between 25 and 100% wt with a DP between 2 and 250, which are preferably not digestible by the human upper intestinal tract.
  • K. Klingchongkon et al. (2015) describing an oligosaccharide extraction process from passion fruit peel powder (PFP) by means of a subcritical water treatment that hydrolyzes pectin at temperatures between 100 and 245°C, where the oligosaccharides obtained can be useful as dietary fiber.
  • the hydrolyzate obtained has galacturonic acid between 0.04 and 0.09g/100g of PFP, and arabinose between 0.06 and 0.15g/100g of PFP.
  • the development is directed to a prebiotic composition of carbohydrates obtained from a plant material comprising pectin oligosaccharides (POS), non-digestible monosaccharides such as arabinose, mannose, rhamnose and galacturonic acid, and pectin.
  • POS pectin oligosaccharides
  • non-digestible monosaccharides such as arabinose, mannose, rhamnose and galacturonic acid
  • pectin obtained allows incorporating the benefits of prebiotic fibers resulting from the enzymatic hydrolysis of pectin in fruit peel, with benefits such as high antioxidant capacity, resulting in a set of soluble solids with low caloric content and potential prebiotic activity, which It can be used as a texturizer in food products aimed at humans.
  • the development is aimed at the use of the prebiotic carbohydrate composition as a texturizer, prebiotic supplement, antioxidant and/or glycemic index reducer.
  • FIG. 1 Content of galacturonic acid in passion fruit and orange peel.
  • the letters a, b, c and d indicate a statistically significant difference between the measurements, with an a of 0.05.
  • FIG. 2 Quantity of POS produced by enzymatic hydrolysis of passion fruit and orange peel.
  • the letters a, b, c and d indicate a statistically significant difference between the measurements.
  • FIG. 3 Short chain fatty acid (SCFA) profiles such as acetic acid, butyric acid, formic acid, lactic acid, propionic acid and succinic acid at 20h of microcolon fermentation.
  • SCFA Short chain fatty acid
  • FIG. 4 Process diagram of Example 12 where 1 is a mill, 2 is a bioreactor
  • the prebiotic carbohydrate composition described below is rich in prebiotics.
  • Prebiotics are molecules that resist digestion in the gastrointestinal tract and are capable of modulating the growth of their own beneficial microorganisms (probiotics), suppressing the proliferation of less desirable bacteria.
  • the prebiotic composition of carbohydrates is composed mainly of pectinoligosaccharides (POS), non-digestible monosaccharides, pectin and digestible carbohydrates, additionally the composition could comprise organic acids typical of the fruit, lignin, hemicellulose, cellulose and antioxidants.
  • the prebiotic composition of carbohydrates can be obtained from different plant materials, among which are passionflowers, citrus fruits, tubers, or a combination of the above. These plant materials have in common that they are characterized by their pectin content in some fraction of their body (for example in the peel or in the pulp) or their entire body. In a preferred embodiment, the fraction of interest of the plant material is the peel. Preferably the plant material has more than 10% pectin, or between 10 and 20% pectin. In one embodiment, the plant material is Passiflora spp., citrus, or tubers. Among the passionflowers are those of the subgenus Passiflora, particularly the series Passiflora edulis f.
  • Plant material can also be selected from orange, lemon, tangerine, lime, grapefruit, grapefruit, apple, onion and sugar beet.
  • a preparation of the plant material is carried out before contacting with the enzyme.
  • the preparation of plant material does not involve chemical treatment.
  • a decrease in humidity and/or a decrease in particle size is carried out.
  • the decrease in humidity is carried out by any method known to a person of ordinary skill in the art, for example by drying for the necessary time until reaching a humidity between 4 and 8%, or less than 6%.
  • the particle size is decreased until the plant material has a size between 0.1 and 1 mm, or less than or equal to 1 mm, or until obtaining a ground plant material that looks like a powder.
  • the pectin is obtained directly from the shell, that is, a purification of the pectin in the shell is not carried out by other means such as acid hydrolysis and ethanol precipitation, or enzymatic hydrolysis and ethanol precipitation.
  • a purification of the pectin in the shell is not carried out by other means such as acid hydrolysis and ethanol precipitation, or enzymatic hydrolysis and ethanol precipitation.
  • pectin is not purified allows antioxidants and other useful carbohydrates to be preserved as bioactive compounds found in cellulose, hemicellulose and lignin.
  • pectinoligosaccharides or POS are understood as oligosaccharides derived from pectin with degrees of polymerization (DP) between 2 and 15 or between 2 and 10.
  • Pectinoligosaccharides (POS) are found in the composition between 1 and 80%. p/p, between 10 and 70% p/p, between 10 and 50% p/p, between 20 and 60% p/p, between 25 and 50% p/p, between 30 and 45% p/p or between 25 and 35% w/w on a dry basis (ds). Where dry basis is understood as the composition of the solid material in the mixture excluding all the water.
  • the POS are found in the composition of carbohydrates in an amount between 10 and 50%, where said POS are characterized by being mostly DP3, that is, a value greater than 50%, greater than 70%, greater than 80 %, between 50 and 95%, between 65 and 85% or between 70 and 95%.
  • indigestible monosaccharides these correspond to monomeric sugars that cannot be metabolized in the human gastrointestinal tract.
  • the indigestible monosaccharides are selected from the group comprising arabinose, mannose, rhamnose, galacturonic acid, or a mixture of the above.
  • the non-digestible monosaccharides are found in the composition between 1 and 30% w/w, between 1 and 50%, or between 1 and 60.
  • the prebiotic composition of carbohydrates is defined by its galacturonic acid content, as this indigestible monosaccharide is reported to be related to Elkeurti Khadidja et al (2016) In vitro fermentation and bifidogenic potential of galacturonic acid.
  • Galacturonic acid is found in the composition on a dry basis between 1 and 50% p/p, between 1 and 30% p/p, between 1 and 25% p/p, between 5 and 25%, between 5 and 20%, or between 1 and 15% w/w.
  • the monosaccharides are arabinose between 1 and 10% w/w; galacturonic acid between 1 and 5% w/w; rhamnose between 0 and 3% w/w; and mannose between 0.5 and 3% p/p.
  • the prebiotic carbohydrate composition may contain pectin or trace amounts of pectin.
  • Pectin is a kind of branched heteropolysaccharide that constitutes the main component of the middle lamella of the cell wall and constitutes 30% of the dry weight of the primary cell wall of plant cells.
  • Pectin is found in the composition in an amount between 0 and 20% p/p, between 1 and 15% p/p, between 1 and 10% p/p, between 1 and 5% p/p, between 0 and 5 % p/p, between 0 and 3% p/p or between 0 and 1% p/p.
  • the prebiotic carbohydrate composition also comprises digestible carbohydrates or carbohydrates with sweetening capacity.
  • Digestible carbohydrates correspond to the group of poly, oligo and monosaccharides that can be hydrolyzed and/or absorbed in the human gastrointestinal tract with caloric intake, galactose, glucose, fructose and sucrose.
  • Digestible carbohydrates can be found in the composition in dry base between 1 and 60% p/p, between 20 and 50% p/p, between 1 and 25% p/p, between 3 and 15% p/p or between 0 and 10% p/p.
  • the prebiotic carbohydrate composition comprises POS between 10 and 60% w/w; pectin between 0 and 15%w/w; and as non-digestible monosaccharide, at least galacturonic acid between 1 and 25% w/w.
  • the prebiotic carbohydrate composition comprises POS between 30 and 45% w/w; pectin between 0 and 15%w/w; and as non-digestible monosaccharide, at least between 1 and 20% galacturonic acid or between 1 and 25% p/p.
  • the prebiotic carbohydrate composition comprises POS between 30 and 40% w/w; pectin between 0 and 5%w/w; and the non-digestible monosaccharides are galacturonic acid between 1 and 15% w/w; where the content of DP3 in the POS is in an amount between 65 and 85% p/p.
  • the prebiotic carbohydrate composition may be a liquid or a powder.
  • the composition can be converted to a syrup by increasing the concentration of soluble solids by any method known to one of ordinary skill in the art.
  • the concentration of soluble solids in the composition can be modified according to the need for the product by any method known to a person of ordinary skill in the art.
  • the composition has an acidic pH, for example between 3.5 and 5.
  • the prebiotic composition of carbohydrates has bioactive potential.
  • the prebiotic composition of carbohydrates has antioxidant capacity, where the composition has a total phenol content between 1 and 15 mg of gallic acid (GAE) equivalent per g of dry matter, between 6 and 10 mg GAE / g bs, or between 6 .2 and 7.7 mg GAE / g bs.
  • the carbohydrate composition has a caloric load content between 1 and 3 kcal/g, between 1 and 2.5 kcal/g or between 1.5 and 2 kcal/g.
  • the composition is characterized by a glycemic index of less than 55.
  • the prebiotic composition of carbohydrates also includes ash between 30 and 45%, protein between 2 and 15%, fat between 0 and 1% or between 0 and 0.02%, identified carbohydrates (POS, non-caloric and caloric sugars derived from pectin ) between 35 and 70%, and unidentified carbohydrates 1 and 50%. Additionally, it may comprise, among other components, such as antioxidant compounds.
  • the prebiotic composition of carbohydrates is made, for example, by enzymatic hydrolysis of plant material and enzymes with pectinase, cellulase, hemicellulase activity, or combinations thereof, among others.
  • the enzyme has more than one pectinase, cellulase and hemicellulase activity, which synergistically allows more efficient access to pectin in this type of plant matrix, which can be more complex since pectin is not isolated.
  • Plant material hulls with an average humidity between 1 and 90% are used, or preferably dry hulls between 1 and 10%, or between 2 and 5%.
  • the shells are crushed to reduce their particle size, preferably to a particle size between 1 and 5cm, less than 2cm, 10mm, less than 5mm, less than or equal to 1mm, or between 0.2 and 0.7mm.
  • a bleaching stage can be carried out in which digestible sugars such as glucose are eliminated.
  • Said bleaching consists of subjecting the shell to high temperatures, for example, putting the plant material in hot water at temperatures between 70 and 95 °C for as long as necessary in such a way that some of the caloric sugars (such as glucose and fructose) are eliminated. present in the shell and endogenous enzymes that may affect the POS production process are inactivated. The shells are then drained.
  • the particles are subsequently suspended in an aqueous medium
  • the medium can be water with adjustment of pH or a buffer substance such as citrate (at a concentration of solids between 3 and 10% p/p, between 4 and 7% p/p), phosphate or any other known by a person moderately versed in the matter.
  • the enzyme is added and allowed to hydrolyze.
  • the enzyme is inactivated by increasing the temperature to between 80 and 100°C, up to between 85 and 95°C for the period of time necessary to completely inactivate the enzyme.
  • Insoluble solids are removed by solid-liquid separation, for example by centrifugation, filtration and/or decantation.
  • the inactivation of the enzyme can be carried out before or after the separation of the insoluble solids.
  • the resulting solution presents pectin oligosaccharides (POS) and galacturonic acid, as well as other possible carbohydrates such as pectin, glucose, arabinose, mannose, rhamnose, and galactose, among others.
  • POS pectin oligosaccharides
  • galacturonic acid as well as other possible carbohydrates such as pectin, glucose, arabinose, mannose, rhamnose, and galactose, among others.
  • the proposed product corresponds to a prebiotic carbohydrate composition
  • POS POS and non-caloric and caloric sugars derived from pectin and that can be used as an ingredient for the formulation of food products.
  • the composition is useful as a texturizer, prebiotic supplement, antioxidant and/or glycemic index reducer.
  • the prebiotic composition of carbohydrates is a mixture of pectinoligosaccharides (POS) and non-caloric monosaccharides such as galacturonic acid, and additionally mannose, rhamnose, arabinose, among others, which can be used as a replacement for caloric soluble solids in food products. Its content of non-caloric monosaccharides allows the rheological characteristics of the product to be maintained without increasing its caloric content. Additionally, in one embodiment the development composition can be used as a replacement for added sugar.
  • Example 1 Preparation of passion fruit and orange peels Orange and passion fruit peels were obtained from household waste and stored frozen at -20 °C until use.
  • the shells were thawed, they were cut to reduce their size and facilitate drying in a convection oven at 55 °C for 72 h, until reaching a humidity between 4 and 6%. After drying, the dried shells were brought to room temperature in a desiccator and crushed in a blender to a particle size of less than or equal to 1 mm. The resulting powdered shell was stored in a sealed bag at room temperature.
  • An enzymatic hydrolysis test of passion fruit peel (powdered, resulting from Example 1) was carried out using three commercial enzymes EnzA, EnzB and EnzC characterized by having pectinase, cellulase and hemicellulase activity.
  • 100 mL of a suspension of the powdered husk from Example 1 was prepared in 50 mM citrate buffer with a husk concentration of 4% w/v. 1% v/v of enzyme EnzA, EnzB or EnzC diluted to a protein concentration of 10 mg/mL was added.
  • the hydrolyses were carried out in shaker flasks at 150 rpm and 40 °C for 2 hours. Duplicate hydrolysis was performed for each enzyme.
  • a powdered husk solution from Example 1 was included as a control, to which no enzyme was added. After hydrolysis, 5 mL samples were taken in test tubes and placed in boiling water baths for 10 min, in order to inactivate the enzyme.
  • EnzC resulted in the greatest reduction in shell solution viscosity (Table 1) compared to the values obtained with EnzA and EnzB, which were slightly higher and very similar to each other.
  • EnzC Endopolygalacturonase activity
  • EnzD pectin-esterase activity
  • a unifactorial design was used where each enzyme was a level and the response variable was the concentration of galacturonic acid (AGA) at the end of the process.
  • IBM SPSS Statistics Base® software version 22 (IBM, USA) was used.
  • the enzymes with the highest hydrolysis capacity were used in the tests for the production of the prebiotic composition.
  • the hydrolyses were carried out with powder solutions from Example 1 at 4% w/v in 50 mM citrate buffer, pH 5.
  • the enzyme concentration was 5% (v/v), at an initial protein concentration of 10 mg/mL.
  • FIG. 1 presents the results of galacturonic acid obtained from the enzymatic hydrolysis of passion fruit and orange peel.
  • POS content in the samples obtained from the experimental design was quantified using high performance liquid chromatography (HPLC) coupled to an ELSD detector.
  • HPLC high performance liquid chromatography
  • a Hypercarb® 100x4.6 mm column (Thermo Scientific) was used at a temperature of 60 °C, flow rate of 0.8 mL/min using a gradient elution with 0.01% trifluoroacetic acid (TFA) and acetonitrile.
  • TFA trifluoroacetic acid
  • Standards of galacturonic acid monomers, dimers and trimers were used for the quantification of POS in the samples and the distribution of degrees of polymerization.
  • the POS yield per gram of shell (dry weight), that is, the amount of shell converted to POS, was used as the response variable. Additionally, the degrees of polymerization and the total concentration of monomers derived from pectin were determined. The analysis of variance and comparison of means were performed with the Duncan test and an a of 0.05.
  • FIG. 2 presents the POS production yields, expressed as g POS/g peel (dry basis), for the enzymatic hydrolyses carried out with passion fruit and orange peels.
  • Example 5 Carbohydrate compositions obtained from passion fruit peel
  • carbohydrate compositions No. 1 to 8 were obtained as described in Table 3:
  • the resulting composition presents content of pectinoligosaccharides with prebiotic properties, according to what is reported in the scientific literature. Additionally, the content of non-digestible carbohydrates (POS, galacturonic acid) allows increasing the concentration of solids in formulas without increasing its caloric load. The content of sucrose, glucose, fructose and galactose of natural origin enables the replacement of refined sugar in food products, avoiding declaring the ingredient as "added sugar".
  • POS non-digestible carbohydrates
  • oligosaccharides with degree of polymerization 3 represents a functional advantage of the product because it has been shown that POS with degrees of polymerization between 2-6 promote the selective growth of probiotic bacteria such as bifidobacteria, even above oligosaccharides with degrees of polymerization. higher polymerization rates (Al-Tamimi et al., 2006; Hoick et al., 2011). Additionally, it has been found that oligosaccharides derived from pectin, including those with short chains, have the ability to reduce the adhesion of pathogenic bacteria such as L. monocytogenes, E. coli and S.
  • the passion fruit shells were suitable for two different treatments: Drying and crushing, and hydrothermodynamic cavitation.
  • the shells were cut manually and placed in a convective oven at 55 °C for 48 hours, until reaching an average humidity of 5%. Subsequently, they were crushed in a kitchen blender and the resulting powder was passed through a 1 mm sieve. Finally, the shell powder was stored in a sealable bag at 4 °C.
  • a mixture of water: husk in a 45:55 ratio was passed through a hydrothermodynamic cavitation unit (Kavitec, Colombia) where the temperature of the mixture was raised to 45 °C before stopping the process.
  • the shell suspension in water was stored in sealable bags at -20 °C.
  • the previously described treated peels were used as raw materials.
  • the shell suspensions were found at a concentration of 6.6% w/w in 50 mM citrate buffer, pH 5.
  • An EnzC enzyme was used at a concentration of 1.32 mg protein/g shell. Additionally, a negative control was included that was obtained from the cavitation process, without the addition of enzyme.
  • the reactions were carried out in 2 L stirred tank reactors with a working volume of 1 L.
  • the medium was stirred at 450 rpm and kept at a temperature of 50 °C for 1 hour.
  • large solids were removed with a 1 mm sieve and 600 ml of medium were recovered and taken to a boiling water bath to inactivate the enzyme.
  • the medium was centrifuged at 4500 rpm for 10 min in order to remove small solids and obtain a translucent solution. This solution was taken to rotary evaporation, seeking to reduce the water content in the sample and facilitate analytical techniques for the quantification of POS and other carbohydrates.
  • the samples were stored frozen until use.
  • HPLC For the determination of oligosaccharides and galacturonic acid, HPLC was used coupled to an ELSD detector with a Hypercarb 100x4.6 mm 5 um column (Thermo Scientific) at a temperature of 60 °C, a flow rate of 0.8 ml/min, using two types of eluents: 0.01% trifluoroacetic acid and acetonitrile.
  • Component caloric load Said syrup-type composition obtained has a total caloric content, assuming these two components, of 0.94 kcal/g on average, while assuming a contribution with additional components such as other carbohydrates and protein, it has a caloric content between 1.5 and 2 kcal/g.
  • a caloric reduction equal to or greater than 50% is obtained.
  • Example 7 Kinetics of POS production in a 10L reactor.
  • the enzymatic reaction was carried out for the production of POS from passion fruit peel dried in a convective oven and crushed to a particle size of less than or equal to 1 mm.
  • the shell was diluted in 50 mM pH 5 citrate buffer at a concentration of 7% w/w.
  • the enzymatic reaction was carried out in a 10 L reactor using 5 L as working volume and an EnzC enzyme. The reaction was carried out at 50 °C and a stirring speed of 500 rpm. The enzyme concentration was 1.32 g protein/g shell. Medium samples were taken at 0.5, 1, and 1.5 hours of processing and solids were removed and the enzyme inactivated.
  • the antioxidant capacity of the syrup-type composition rich in POS obtained in Example 6 was measured at different concentrations of soluble solids, measured as degrees Brix (g soluble solids/100g of syrup).
  • the DPPH technique was used, as described by Brand-Williams, Cuvelier, & Berset (1995) and the result is expressed as percentage of inhibition:
  • the syrup-type composition has antioxidant activity at different concentrations of soluble solids, with considerable activity even at low values of soluble solids such as 4 g/100 g solution. With higher Brix degrees, greater will be its antioxidant activity that can be transferred to the products where it is applied.
  • Example 9 Incorporation of the prebiotic composition of carbohydrates as a texturizer in beverages
  • the identified carbohydrates correspond to POS, non-caloric and caloric sugars derived from pectin. In others there may be other unidentified carbohydrates.
  • MicroColon fermentation was performed using as a culture medium a mixture of feces obtained from 6 healthy adults.
  • the prebiotic activity was determined from the formation of short-chain fatty acids (SCFA) that are known as indicators of the growth of probiotic microorganisms in the human gastrointestinal system.
  • SCFA short-chain fatty acids
  • the presence of SCFA in the human body, mainly acetic, butyric and propionic, in adequate amounts, is essential for the health and well-being of the consumer, however, the formation of these acids depends on the adequate intake of substrates, such as dietary fibers and prebiotics, necessary for the correct evolution of fermentations.
  • organic acids have been identified and quantified in microcolon fermentation supernatants: acetic acid, butyric acid, formic acid, lactic acid, propionic acid, and succinic acid.
  • the enzymatic hydrolysis of passion fruit peel was carried out in a 50 L stirred tank reactor, with a working volume of 40 L.
  • the passion fruit peel was subjected to the drying treatment mentioned in Example 1 until obtaining a powder with the size of particle equal to or less than 1 mm.
  • a 7% w/w suspension of the shell was made in 50 mM sodium citrate buffer, pH 5.
  • the suspension was brought to 50°C in the stirred tank reactor and the EnzC enzyme was added at a concentration 1.32 mg protein/g shell.
  • the suspension was stirred for 50 min at 480 rpm.
  • the temperature in the reactor was increased to 80°C for between 15 and 20 minutes, in order to inactivate the enzyme.

Abstract

Se describe una composición prebiótica de carbohidratos que comprende POS y ácido galacturónico a partir de la cáscara de frutas y que puede ser usado como ingrediente para la formulación de productos alimenticios. La composición prebiótica de carbohidratos es útil como reemplazo de azúcares convencionales manteniendo las características reológicas del producto (texturizante) sin aumentar su contenido calórico, adicionalmente la composición de carbohidratos tiene potencial bioactivo, capacidad antioxidante y propiedades prebióticas.

Description

COMPOSICIÓN PREBIÓTICA DE PECTINOLIGOSACÁRIDOS (POS)
CAMPO TÉCNICO
La composición del presente desarrollo está relacionada con la industria de alimentos y la industria farmacéutica, particularmente con composiciones de pectinoligosacáridos prebióticos y azúcares no calóricos.
DESCRIPCIÓN DEL ESTADO DE LA TÉCNICA
El procesamiento de frutas para la obtención de ingredientes y productos alimenticios genera una alta cantidad de residuos, ya que entre 30 y 50% del peso de las frutas no se considera comestible. Estos residuos, a pesar de ser ricos en una variedad de moléculas de alto interés para las industrias de alimentos, cosmética y farmacéutica, muchas veces son dispuestos como desechos.
Un campo de interés para el aprovechamiento de estos residuos agroindustriales consiste en su valorización por medio de la producción de compuestos prebióticos y azúcares no calóricos. Los prebióticos disponibles comercialmente y más conocidos son oligosacáridos no digeribles como inulina, fructooligosacáridos (FOS), galacto-oligosacáridos y lactulosa, sin embargo, hay un creciente interés por la identificación y el desarrollo de nuevos compuestos prebióticos con funciones adicionales. Los azúcares no calóricos, como ácido galacturónico, mañosa, ramnosa, arabinosa, entre otros, permiten aumentar la concentración de sólidos solubles en productos alimenticios sin aumentar su carga calórica y evitando la adición de azúcares calóricos como sacarosa, fructosa y glucosa. Adicionalmente, algunos de estos azúcares pueden cumplir funciones prebióticas.
Los microorganismos probióticos se encargan de consumir los prebióticos y proliferar en el intestino humano, generando ácidos grasos de cadena corta con múltiples beneficios y compitiendo e inhibiendo el crecimiento de microorganismos patógenos que generan problemas a la salud (Guitón et al., 2013). Entre algunos géneros de microrganismos reconocidos como probióticos se encuentran: Lactobacillus, Bifidobacterium, Saccharomyces, Enterococcus, Streptococcus, Bacillus y Escherichia.
Los oligosacáridos derivados de pectina (POS) han sido evaluados como posibles compuestos prebióticos encontrando un efecto protector sobre colonocitos contra verocitotoxinas de E. coli y estimulando la apoptosis de células de adenocarcinoma de cotón. Adicionalmente, se han demostrado los beneficios de POS derivados del procesamiento de naranja al estimular el crecimiento de bifidobacterias y E. rectale. Estos compuestos derivados de la pectina pueden formarse con uso de enzimas pectinolíticas sobre sustratos como los albedos de frutas tropicales. Por ejemplo, métodos químicos como la hidrólisis ácida (química) es comúnmente usada para la extracción de pectina, sin embargo, la baja especificidad de la reacción resulta en compuestos no deseados, disminuyendo el rendimiento de la extracción.
Entre la información disponible, se encuentra US8313789 que está dirigido a un método para promover el crecimiento de bacterias benéficas en el intestino de un humano, en donde se administra una composición que comprende una cantidad efectiva de una fracción de pectinoligosacáridos que contiene Ara-(l-5)-(Ara)n-(l-5)-Ara, en donde n=0-18, y un radio arabinosa a lactosa de 5,7 a 14,2. De acuerdo a los ejemplos, la arabinosa está en una cantidad entre 20 y 45%mol, y el ácido galacturónico está entre 1 y 50%mol.
Adicionalmente, se encuentra US20090305362 que está dirigido a un proceso químico- mecánico para la manufactura de oligosacáridos de ácido urónico a partir de la extrusión de la pectina con una enzima a condiciones básicas de pH y la composición nutricional obtenida a partir del mismo. La composición nutricional comprende pectinoligosacárido entre 25 y 100% wt con un DP entre 2 y 250, que preferiblemente no son digeribles por el tracto intestinal superior humano.
Finalmente se encuentra K. Klingchongkon et al. (2015) que describe un proceso de extracción de oligosacáridos a partir de polvo de cáscara maracuyá (PFP) por medio de un tratamiento de agua subcrítica que hidroliza la pectina a temperaturas entre 100 y 245°C, en donde los oligosacáridos obtenidos pueden ser útiles como fibra dietaria. El hidrolizado obtenido tiene ácido galacturónico entre 0,04 y 0,09g/100g de PFP, y arabinosa entre 0,06 y 0,15g/100g de PFP.
Si bien en los documentos disponibles se describen métodos y composiciones que contienen pectinoligosacáridos a partir de residuos agroindustriales, es necesario diseñar composiciones alternativas que tengan un mayor valor nutricional para su incorporación en productos con características funcionales como actividad prebiótica, capacidad antioxidante, y disminución de calorías, sin dejar a un lado la viabilidad técnica y económica de su escalado.
BREVE DESCRIPCIÓN
En un primer aspecto, el desarrollo está dirigido a una composición prebiótica de carbohidratos obtenida a partir de un material vegetal que comprende pectinoligosacáridos (POS), monosacáridos no digeribles como arabinosa, mañosa, ramnosa y ácido galacturónico, y pectina. La composición prebiótica obtenida permite incorporar los beneficios de las fibras prebióticas producto de la hidrólisis enzimática de la pectina en cáscara de frutas, con los beneficios como alta capacidad antioxidante, resultando en un conjunto de sólidos solubles con bajo contenido calórico y potencial actividad prebiótica, que puede ser usado como texturizante en productos alimenticios dirigidos a humanos.
En un segundo aspecto, el desarrollo está dirigido al uso de la composición prebiótica de carbohidratos como texturizante, suplemento prebiótico, antioxidante y/o reductor de índice glicémico.
BREVE DESRIPCIÓN DE LAS FIGURAS FIG. 1 Contenido de ácido galacturónico en cáscara de maracuyá y naranja. Las letras a, b, c y d indican diferencia estadística significativa entre las medidas, con un a de 0,05.
FIG. 2 Cantidad de POS producidos por hidrólisis enzimática de cáscara de maracuyá y naranja. Las letras a, b, c y d indican diferencia estadística significativa entre las medidas.
FIG. 3 Perfiles de ácidos grasos de cadena corta (SCFA) como ácido acético, ácido butírico, ácido fórmico, ácido láctico, ácido propiónico y ácido succínico a 20h de fermentación de microcolon.
FIG. 4 Diagrama de proceso del Ejemplo 12 donde 1 es un molino, 2 es un biorreactor
(hidrólisis/inactivación de la enzima), 3 es un filtro, 4 es un evaporador y 5 es una pulverizadora.
DESCRIPCIÓN DETALLADA
Composición prebiótica de carbohidratos
La composición prebiótica de carbohidratos que se describe a continuación es rica en prebióticos. Los prebióticos son moléculas que presentan resistencia a la digestión en el tracto gastrointestinal y son capaces de modular el crecimiento de microrganismos benéficos propios (probióticos), reprimiendo la proliferación de bacterias menos deseables. Particularmente la composición prebiótica de carbohidratos está compuesta principalmente por pectinoligosacáridos (POS), monosacáridos no digeribles, pectina y carbohidratos digeribles, adicionalmente la composición podría comprender ácidos orgánicos propios de la fruta, lignina, hemicelulosa, celulosa y antioxidantes.
La composición prebiótica de carbohidratos puede ser obtenida a partir de diferentes materiales vegetales, entre los cuales se encuentran pasifloras, cítricos, tubérculos, o combinación de los anteriores. Estos materiales vegetales tienen en común que se caracterizan por su contenido de pectina en alguna fracción de su cuerpo (por ejemplo en la cáscara o en la pulpa) o la totalidad de su cuerpo. En una modalidad preferida la fracción de interés del material vegetal es la cáscara. Preferiblemente el material vegetal tiene más del 10% de pectina, o entre el 10 y el 20% de pectina. En una modalidad, el material vegetal es Passiflora spp., cítricos o tubérculos. Entre las pasifloras se encuentran las del subgénero Passiflora, particularmente de la serie Passiflora edulis f. edulis Sims y Passiflora ligularis como maracuyá, gulupa, curuba, granadilla y badea. El material vegetal también puede seleccionarse de naranja, limón, mandarina, lima, pomelo, toronja, manzana, cebolla y remolacha azucarera.
Posteriormente, se realiza una preparación del material vegetal antes de poner en contacto con la enzima. La preparación del material vegetal no involucra un tratamiento químico. En dicha preparación se realiza una disminución de la humedad y/o una disminución del tamaño de partícula. Particularmente, la disminución de la humedad se realiza por cualquier método conocido por una persona medianamente versada en la materia por ejemplo mediante secado durante tiempo necesario hasta alcanzar una humedad entre el 4 y el 8%, o inferior al 6%. El tamaño de partícula se disminuye hasta que el material vegetal tenga un tamaño entre 0,1 y 1 mm, o menor o igual a 1 mm, o hasta obtener un material vegetal triturado que parezca un polvo. Para efectos del presente desarrollo, la pectina se obtiene directamente de la cáscara, es decir no se realiza una purificación de la pectina en la cáscara por otros medios como la hidrólisis ácida y precipitación con etanol, o la hidrólisis enzimática y precipitación con etanol. El hecho que no se realice una purificación de la pectina permite conservar los antioxidantes y otros carbohidratos útiles como compuestos bioactivos que se encuentran en la celulosa, hemicelulosa y lignina.
Para efectos del presente desarrollo se entiende por pectinoligosacáridos o POS a los oligosacáridos derivados de la pectina con grados de polimerización (DP) entre 2 y 15 o entre 2 y 10. Los pectinoligosacáridos (POS) se encuentran en la composición entre 1 y 80%p/p, entre 10 y 70% p/p, entre 10 y 50% p/p, entre 20 y 60% p/p, entre 25 y 50%p/p, entre 30 y 45% p/p o entre 25 y 35% p/p en base seca (bs). En donde se entiende por base seca a la composición del material sólido en la mezcla excluyendo toda el agua. En una modalidad, los POS se encuentran en la composición de carbohidratos en una cantidad entre 10 y 50%, en donde dichos POS se caracterizan por ser en su mayoría DP3, es decir un valor mayor al 50%, mayor al 70%, mayor al 80%, entre 50 y 95%, entre 65 y 85% o entre 70 y 95%.
En cuanto a los monosacáridos no digeribles, estos corresponden a los azúcares monoméricos que no pueden ser metabolizados en el tracto gastrointestinal humano. Los monosacáridos no digeribles se seleccionan del grupo que comprende arabinosa, mañosa, ramnosa, ácido galacturónico, o mezcla de los anteriores. Los monosacáridos no digeribles se encuentran en la composición entre 1 y 30%p/p, entre 1 y 50%, o entre 1 y 60.
En particular, se define la composición prebiótica de carbohidratos por su contenido de ácido galacturónico en tanto se reporta que este monosacárido no digerible está relacionado con Elkeurti Khadidja et al (2016) In vitro fermentation and bifidogenic potential of galacturonic acid. El ácido galacturónico se encuentra en la composición en base seca entre 1 y 50%p/p, entre 1 y 30% p/p, entre 1 y 25% p/p, entre 5 y 25%, entre 5 y 20%, o entre 1 y 15% p/p. En otra modalidad los monosacáridos son arabinosa entre 1 y 10% p/p; ácido galacturónico entre 1 y 5% p/p; ramnosa entre 0 y 3% p/p; y mañosa entre 0,5 y 3% p/p.
Adicionalmente, la composición prebiótica de carbohidratos puede contener pectina o trazas de pectina. La pectina es un tipo de heteropolisacárido ramificado que constituye el principal componente de la lámina media de la pared celular y constituye 30% del peso seco de la pared celular primaria de células vegetales. La pectina se encuentra en la composición en una cantidad entre 0 y 20%p/p, entre 1 y 15%p/p, entre 1 y 10% p/p, entre 1 y 5% p/p, entre 0 y 5% p/p, entre 0 y 3% p/p o entre 0 y 1% p/p.
Opcionalmente la composición prebiótica de carbohidratos también comprende carbohidratos digeribles o carbohidratos con capacidad endulzante. Los carbohidratos digeribles corresponden al grupo de poli, oligo y monosacáridos que pueden ser hidrolizados y/o absorbidos en el tracto gastrointestinal humano con aporte calórico, galactosa, glucosa, fructosa y sacarosa. Los carbohidratos digeribles se pueden encontrar en la composición en base seca entre 1 y 60% p/p, entre 20 y 50% p/p, entre 1 y 25% p/p, entre 3 y 15 % p/p o entre 0 y 10% p/p.
En una modalidad la composición prebiótica de carbohidratos comprende POS entre 10 y 60% p/p; pectina entre 0 y 15%p/p; y como monosacárido no digerible, al menos ácido galacturónico entre 1 y 25% p/p.
En una modalidad la composición prebiótica de carbohidratos comprende POS entre 30 y 45% p/p; pectina entre 0 y 15%p/p; y como monosacárido no digerible, al menos ácido galacturónico entre 1 y 20% o entre 1 y 25% p/p.
En otra modalidad la composición prebiótica de carbohidratos comprende POS entre 30 y 40% p/p; pectina entre 0 y 5%p/p; y los monosacáridos no digeribles se encuentra ácido galacturónico entre 1 y 15% p/p; en donde el contenido de DP3 en los POS se encuentran en una cantidad entre 65 y 85%p/p.
La composición prebiótica de carbohidratos puede ser un líquido o un polvo. La composición se puede convertir en un jarabe si se aumenta la concentración de sólidos solubles por cualquier método conocido por una persona medianamente versada en la materia. La concentración de sólidos solubles de la composición se puede modificar de acuerdo a la necesidad de producto por cualquier método conocido por una persona medianamente versada en la materia. La composición tiene un pH ácido, por ejemplo entre 3,5 y 5.
La composición prebiótica de carbohidratos tiene potencial bioactivo. La composición prebiótica de carbohidratos tiene capacidad antioxidante, en donde la composición tiene un contenido de fenoles totales entre 1 y 15 mg de ácido gálico (GAE) equivalente por g de materia seca, entre 6 y 10 mg GAE / g bs, o entre 6,2 y 7,7 mg GAE / g bs. La composición de carbohidratos tiene un contenido de carga calórica entre 1 y 3 kcal/g, entre 1 y 2,5kcal/g o entre 1,5 y 2kcal/g. La composición se caracteriza por un índice glucémico menor a 55. La composición prebiótica de carbohidratos también comprende cenizas entre 30 y 45%, proteína entre 2 y 15%, grasa entre 0 y 1% o entre 0 y 0,02%, carbohidratos identificados (POS, azúcares no calóricos y calóricos derivados de la pectina) entre 35 y 70%, y carbohidratos no identificados 1 y 50%. Adicionalmente puede comprender entre otros componentes como compuestos antioxidantes.
Método de obtención
La composición prebiótica de carbohidratos se realiza por ejemplo mediante la hidrólisis enzimática de un material vegetal y enzimas con actividad pectinasa, celulasa, hemicelulasa, o combinaciones de las mismas, entre otras. En una modalidad preferida, la enzima tiene más de una actividad pectinasa, celulasa y hemicelulasa, que permite sinérgicamente acceder de forma más eficiente a la pectina en este tipo de matrices vegetales que puede resultar más compleja al no estar la pectina aislada.
Se usan cáscaras de material vegetal con una humedad promedio entre 1 y 90%, o preferiblemente cáscaras secas entre 1 y 10%, o entre 2 y 5%. Las cáscaras se trituran para disminuir su tamaño de partícula, preferiblemente hasta alcanzar un tamaño de partícula entre 1 y 5cm, menor a 2cm, 10mm, menor a 5mm, menor o igual a 1 mm, o entre 0,2 y 0,7mm.
Opcionalmente se puede realizar una etapa de blanqueamiento en donde se eliminan azúcares digeribles como la glucosa. Dicho blanqueamiento consiste en someter la cáscara a altas temperaturas por ejemplo poner el material vegetal en agua caliente a temperaturas entre 70 y 95 °C por el tiempo que sea necesario de tal manera que se eliminen algunos de los azúcares calóricos (como glucosa y fructosa) presentes en la cáscara y se inactiven enzimas endógenas que puedan afectar el proceso de producción de POS. Posteriormente las cáscaras se escurren.
Independientemente de que se realice o no la etapa de blanqueamiento, posteriormente se suspenden las partículas en un medio acuoso, por ejemplo el medio puede ser agua con ajuste de pH o una sustancia buffer como citrato (a una concentración de sólidos entre 3 y 10% p/p, entre 4 y 7% p/p), fosfato o cualquier otro conocido por una persona medianamente versada en la materia. Se adiciona la enzima y se deja hidrolizar. Se inactiva la enzima aumentando la temperatura hasta entre 80 y 100°C, hasta entre 85 y 95 °C por el periodo de tiempo necesario para inactivar completamente la enzima. Se separan los sólidos insolubles por medio de una separación sólido líquido, por ejemplo mediante centrifugación, filtración y/o decantación. La inactivación de la enzima se puede realizar antes o después de la separación de los sólidos insolubles.
La solución resultante presenta oligosacáridos de pectina (POS) y ácido galacturónico, al igual que otros posibles carbohidratos como pectina, glucosa, arabinosa, mañosa, ramnosa, y galactosa, entre otros.
Usos
El producto propuesto corresponde a una composición prebiótica de carbohidratos que comprende POS y azúcares no calóricos y calóricos derivados de la pectina y que puede ser usado como ingrediente para la formulación de productos alimenticios. La composición es útil como texturizante, suplemento prebiótico, antioxidante y/o reductor de índice glicémico.
La composición prebiótica de carbohidratos es una mezcla de pectinoligosacáridos (POS) y monosacáridos no calóricos como ácido galacturónico, y adicionalmente mañosa, ramnosa, arabinosa, entre otros, la cual puede ser usada como reemplazo de sólidos solubles calóricos en productos alimenticios. Su contenido de monosacáridos no calóricos permite mantener las características reológicas del producto sin aumentar su contenido calórico. Adicionalmente, en una modalidad la composición del desarrollo puede ser usada como reemplazo de azúcar añadido.
EJEMPLOS
Ejemplo 1. Preparación de cáscaras de maracayá y naranja Se obtuvieron cáscaras de naranja y de maracuyá de residuos domésticos y se almacenaron en congelación a -20 °C hasta su uso.
Una vez descongeladas las cáscaras se cortaron para disminuir su tamaño y facilitar el secado en horno de convección a 55 °C por 72 h, hasta llegar a una humedad entre el 4 y el 6%. Luego del secado se llevaron las cáscaras secas a temperatura ambiente en disecador y se trituraron en licuadora hasta un tamaño de partícula menor o igual a 1 mm. La cáscara en polvo resultante se almacenó en bolsa sellada a temperatura ambiente.
Ejemplo 2. Ensayo preliminar de hidrólisis con enzimas comerciales en términos de viscosidad
Se realizó un ensayo de hidrólisis enzimática de cáscara de maracuyá (en polvo, resultante del Ejemplo 1) usando tres enzimas comerciales EnzA, EnzB y EnzC caracterizadas por tener actividad pectinasa, celulasa y hemicelulasa.
Se preparó lOOmL de una suspensión de la cáscara en polvo del Ejemplo 1 en buffer citrato 50 mM con una concentración de cáscara al 4% p/v. Se le agregó 1% v/v de enzima EnzA, EnzB o EnzC diluida a una concentración de proteína de 10 mg/mL. Las hidrólisis se llevaron a cabo en matraces agitados a 150 rpm y 40 °C por 2 horas. Se realizó duplicado de hidrólisis para cada enzima. Se incluyó una solución de cáscara en polvo del Ejemplo 1 como control, a la cual no se le adicionó enzima. Luego de la hidrólisis se tomaron muestras de 5 mL en tubos de ensayo y se llevaron a baños de maría con agua en ebullición por 10 min, con el objetivo de inactivar la enzima.
Posteriormente, se centrifugaron los hidrolizados a 4500 rpm por 5 min para remover sólidos de gran tamaño. El sobrenadante se usó para las mediciones de viscosidad en reómetro Discovery HR-1®. Para las mediciones de viscosidad se usó una configuración de cono y plato con una velocidad de cizalla de 100 s'1 a 30 °C. Los valores de viscosidad reportados en la Tabla 1 corresponden al promedio de las medidas tomadas en un lapso de 20 min. Tabla 1. Viscosidad de soluciones de cáscara en polvo luego de 2h de hidrólisis con enzimas comerciales
Figure imgf000012_0001
Entre las enzimas evaluadas, EnzC resultó en la mayor reducción de viscosidad de la solución de cáscara (Tabla 1) comparada con los valores obtenidos con EnzA y EnzB, los cuales fueron ligeramente superiores y muy similares entre sí.
Ejemplo 3. Evaluación de la capacidad de hidrólisis de pectina en términos de ácido galacturónico suelto para cáscara de maracayá y naranja, catalizada por enzimas pectinasas
Se evaluó la capacidad de hidrólisis de las enzimas EnzC, EnzA, EnzB, y la combinación de una enzima con actividad Endopoligalacturonasa (EnzC) y otra con actividad pectin-esterasa (EnzD), para evaluar el efecto en la hidrólisis de pectina al reducir el grado de esterificación de la misma. La hidrólisis enzimática ha probado ser más eficiente y precisa que la hidrólisis total con ácidos diluidos cuyas reacciones de hidrólisis son más inespecíficas y llevan a la degradación indeseada de los monómeros de azúcares, alterando el resultado.
Se usó un diseño unifactorial donde cada enzima fue un nivel y la variable respuesta fue la concentración de ácido galacturónico (AGA) al final del proceso. Se realizó la prueba Tukey (a=0,05) para comparar las medias de los diferentes tratamientos y determinar la enzima capaz de hidrolizar la mayor cantidad de pectina en cáscaras de maracuyá y naranja. Para esto se usó el software IBM SPSS Statistics Base®, versión 22 (IBM, USA). Las enzimas con mayor capacidad de hidrólisis se usaron en los ensayos para la producción de la composición prebiótica. Las hidrólisis se realizaron con soluciones de polvo del Ejemplo 1 al 4% p/v en buffer citrato 50 rnM, pH 5. La concentración de enzima fue 5% (v/v), a una concentración inicial de proteína de 10 mg/mL, exceptuando EnzD que se adicionó al 1% (v/v). Las hidrólisis se realizaron en matraz con volumen de 50 mL, en agitador orbital a 150 rpm y 50 °C, por 24 horas. Todos los tratamientos se hicieron por duplicado. Se incluyó un control para cada solución de cáscara en polvo bajo las mismas condiciones de proceso pero sin adición de enzima.
Al finalizar la hidrólisis se recuperaron 10 mL de solución que se centrifugaron a 4500 rpm por 5 min para remover los sólidos. El sobrenadante se almacenó a -15 °C, hasta su uso.
La medición de AGA en las muestras hidrolizadas se realizó por cromatografía líquida de alta resolución (HPLC) con un equipo Elexar® (Perkin Elmer, USA), usando una columna C18 Acclaim Polar Advantage II ® (Thermo Fisher Scientific, USA) (120 Á, 150 x 4.6 mm, 5 pm p.s.) y un detector UV-Vis a 201 y 230 nm. Se usó un gradiente de buffer fosfato, pH 7,4 (solvente A) y acetonitrilo (solvente B) de la siguiente forma: 0-2 min, 100% solvente A; 2-10 min, 20% solvente A, 10-14min, 100% solvente A, finalizando con 10 min de reequilibrio (100% solvente A). El flujo fue de 1 mL/min y la temperatura de 60 °C, con un volumen de inyección de 10 pL. Cada muestra fue inyectada 6 veces. La curva de calibración se realizó con un estándar de ácido galacturónico monohidratado (Sigma Aldrich, Ref. 48280-5G-F, pureza >97%). La FIG. 1 presenta los resultados de ácido galacturónico obtenidos de la hidrólisis enzimática de cáscara de maracuyá y naranja.
De los resultados obtenidos se puede concluir que la acción de las enzimas tuvo un efecto significativo en la hidrólisis de pectina de ambas cáscaras dada la mayor concentración de AGA encontrada en estos tratamientos, en comparación con los blancos donde no se adicionó enzima. Para maracuyá, la enzima EnzC y la combinación EnzC+EnzD poseen la mayor capacidad de hidrólisis, comparada con las enzimas EnzA y EnzB, mientras que para naranja, las enzimas EnzA y EnzB presentan la mayor eficiencia en la hidrólisis de pectina. Comparando las concentraciones de AGA entre ambos sustratos, se encuentra que no hay diferencia significativa para los tratamientos con mayor eficiencia de hidrólisis, lo cual permite inferir que la concentración de pectina entre ambas cáscaras es similar.
Basado en los resultados obtenidos anteriormente, se continuó el trabajo experimental de producción de composición rica en prebióticos con las enzimas EnzC y EnzA para las hidrólisis de las cáscaras de maracuyá y naranja, respectivamente.
Ejemplo 4. Optimización de condiciones de hidrólisis para producción de POS a partir de cáscaras de maracuyá y naranja
Para evaluar la producción de POS a partir de cáscara de maracuyá y naranja se realizó un diseño factorial completo con dos factores y dos niveles (22), como se muestra en la Tabla 2. Todas las hidrólisis con cáscara de maracuyá se hicieron con la enzima comercial EnzC, y las hidrólisis con cáscara de naranja se hicieron con la preparación comercial EnzA.
Tabla 2. Diseño experimental para optimización de tiempo y concentración de enzima en la producción de pectinoligosacaridos
Figure imgf000014_0001
Todos los ensayos se hicieron por duplicado con soluciones de cáscara en polvo del Ejemplo 1 al 4% p/v en buffer citrato 50 rnM, pH 5. Las hidrólisis se realizaron en matraz agitado con volumen de trabajo de 50 mL, en agitador orbital a 150 rpm y 50 °C. Al finalizar la hidrólisis se recuperaron 10 mL de solución y se inactivó la enzima llevando las muestras a baño de María en ebullición por 10 min. Posteriormente, se centrifugaron a 4500 rpm por 5 min para remover los sólidos y el sobrenadante se almacenó a -15 °C, hasta su uso.
Se cuantificó el contenido de POS en las muestras obtenidas del diseño experimental usando cromatografía líquida de alta resolución (HPLC) acoplado a un detector ELSD. Se usó una columna Hypercarb® 100x4,6 mm (Thermo Scientific) a una temperatura de 60 °C, flujo de 0,8 mL/min usando un gradiente de elución con ácido trifluoroacético (TFA) al 0,01% y acetonitrilo. Se usaron patrones de monómeros, dímeros y trímeros de ácido galacturónico para la cuantificación de POS en las muestras y la distribución de los grados de polimerización.
Se usó como variable de respuesta el rendimiento de POS por gramo de cáscara (peso seco), es decir, la cantidad de cáscara convertida en POS. Adicionalmente, se determinaron los grados de polimerización y la concentración total de monómeros derivados de pectina. Se realizó el análisis de varianza y comparación de medias con la prueba Duncan y un a de 0,05.
La FIG. 2 presenta los rendimientos de producción de POS, expresados como g POS/g cáscara (base seca), para las hidrólisis enzimáticas realizadas con cáscaras de maracuyá y naranja.
Como se observa en la FIG. 2, no hubo diferencia en la producción de POS entre ninguno de los tratamientos realizados, a excepción de los tratamientos 5 y 8, para cáscara de naranja. Esto implica que a bajas concentraciones de enzima (0,5% v/v) y cortos tiempos de proceso (30 min) fue posible fraccionar la pectina y obtener un rendimiento de POS aproximado de 0,5 g/g, tanto en cáscara de maracuyá, como de naranja.
En el estudio realizado por Gómez et al. (2016) para la producción de pectin-oligosacáridos (POS) a partir de cáscaras de limón, por tres métodos diferentes (extracción con agua, hidrólisis enzimática, y filtración por membrana), se encontraron rendimientos de 0,45 a 0,55 g/g. Por otro lado, en el trabajo realizado por Martínez et al. (2012) para la generación de POS a partir de residuos de naranja por hidrólisis enzimática, se alcanzaron rendimientos de 0,31 g/g. En el estudio para la producción de oligosacáridos a partir de cáscara de maracuyá por tratamiento con agua subcrítica se lograron rendimientos de 0,21 g/g (Klinchongkon, Khuwijitjaru, Wiboonsirikul, & Adachi, 2017). Los estudios reportados anteriormente incluyen el pretratamiento de la materia prima previo al proceso para la producción de los oligosacáridos, ya sea a través de la purificación de la pectina o de la eliminación de compuestos solubles. Estos tratamientos adicionales acarrearían costos al momento de llevar el proceso a nivel industrial, lo cual puede afectar la viabilidad tecno-económica del proceso.
En la metodología planteada en este estudio, no solo se obtienen rendimientos de POS similares o superiores a los reportados en la literatura sino que se plantea un proceso sencillo de hidrólisis enzimática donde el único pretratamiento a la materia prima consiste en el secado y reducción de tamaño de partícula. Esto representa una ventaja técnica que afectará positivamente la evaluación económica del proceso y permitirá continuar la evaluación de la tecnología a mayores escalas.
Ejemplo 5. Composiciones de carbohidratos obtenidas a partir de cáscara de maracuyá
Siguiendo el proceso descrito en los ejemplos anteriores y empleando cascará de maracuyá como material vegetal de partida, se obtuvieron las composiciones de carbohidratos No. 1 a 8 como se describen en la Tabla 3:
Tabla 3. Composición prebiótica de carbohidratos a partir de cáscara de maracuyá (% p/p, base seca)
Figure imgf000016_0001
Figure imgf000017_0001
La composición resultante presenta contenido de pectinoligosacáridos con propiedades prebióticas, de acuerdo a lo reportado en la literatura científica. Adicionalmente, el contenido de carbohidratos no digeribles (POS, ácido galacturónico) permite aumentar concentración de sólidos en fórmulas sin incrementar la carga calórica de la misma. El contenido de sacarosa, glucosa, fructosa y galactosa de origen natural habilita el reemplazo de azúcar refinada en productos alimenticios, evitando declarar el ingrediente como “azúcar adicionada”.
Tabla 4. Grados de polimerización de POS obtenidos de composición prebiótica de carbohidratos a partir de cáscara de maracuyá (Participación en porcentaje, por grado de polimerización)
Figure imgf000017_0002
El alto contenido de oligosacáridos con grado de polimerización 3 representa una ventaja funcional del producto debido a que se ha demostrado que POS con grados de polimerización entre 2-6 promueven el crecimiento selectivo de bacterias probióticas como las bifidobacterias, inclusive por encima de oligosacáridos con grados de polimerización más elevados (Al-Tamimi et al., 2006; Hoick et al., 2011). Adicionalmente, se ha encontrado que los oligosacáridos derivados de pectina, incluyendo aquellos de cadena corta, tienen la capacidad se reducir la adhesión de bacterias patógenas como L. monocytogenes, E. coli y S. typhimurium a las paredes del intestino humano (Wilkowska et al., 2019). Ejemplo 6. Ensayo a escala de banco (2L) de hidrólisis de cáscara de maracuyá para producción de composición prebiótica de carbohidratos llevado a jarabe de 68°Brix
Las cáscaras de maracuyá fueron adecuadas por dos tratamientos diferentes: Secado y trituración, y cavitación hidrotermodinámica. Para el primer tratamiento, las cáscaras fueron cortadas manualmente y llevadas a horno convectivo a 55 °C por 48 horas, hasta alcanzar una humedad promedio de 5%. Posteriormente, se trituraron en licuadora de cocina y se pasó el polvo resultante por tamiz de 1 mm. Finalmente, el polvo de cáscara se almacenó en bolsa sellable a 4 °C. Para el segundo tratamiento, se pasó una mezcla de agua: cáscara en una proporción 45:55 por un equipo de cavitación hidrotermodinámica (Kavitec, Colombia) donde se llevó la temperatura de la mezcla hasta 45 °C antes de parar el proceso. La suspensión de cáscara en agua fue almacenada en bolsas sellables a -20 °C.
Para evaluar el efecto del pretratamiento de cavitación o secado por convección realizado a la cáscara de maracuyá sobre la producción enzimática de POS se usaron como materias primas las cáscaras tratadas descritas anteriormente. En ambos casos, las suspensiones de cáscara se encontraban a una concentración de 6,6% p/p en buffer citrato 50 rnM, pH 5. Se usó una enzima EnzC a una concentración de 1,32 mg proteína/g cáscara. Adicionalmente, se incluyó un control negativo que se obtuvo del proceso de cavitación, sin adición de enzima.
Las reacciones se llevaron a cabo en reactores de tanque agitado de 2 L con un volumen de trabajo de 1 L. Se agitó el medio a 450 rpm y se mantuvo a una temperatura de 50 °C, durante 1 hora. Terminado el tiempo de reacción, se removieron sólidos de gran tamaño con un tamiz de 1 mm y se recuperaron 600 mi de medio que fueron llevados a baño de maría en ebullición para inactivar la enzima. Posteriormente, se centrifugó el medio a 4500 rpm por 10 min con el objetivo de remover sólidos pequeños y obtener una solución traslúcida. Esta solución se llevó a rotaevaporación, buscando reducir el contenido de agua en la muestra y facilitar las técnicas analíticas para cuantificación de POS y otros carbohidratos. Las muestras se almacenaron en congelación hasta su uso. Para la determinación de oligosacáridos y ácido galacturónico se usó HPLC acoplado a un detector ELSD con una columna Hypercarb 100x4,6 mm 5 um (Thermo Scientific) a una temperatura de 60 °C, un flujo de 0,8 ml/min, usando dos tipos de eluyentes: ácido trifluoroacético al 0,01% y acetonitrilo. Se usaron como estándares el ácido galacturónico, ácido digalacturónico y ácido tr ¿galacturónico, en donde todos los picos entre el ácido galacturónico y el digalacturónico se sumaron como POS DP2, todos los picos entre el ácido digalacturónico y el trigalacturónico se sumaron como POS DP3, y finalmente, todos los picos superiores a trigalacturónico se sumaron como POS >DP3.
Tabla 5. Composición Jarabe POS (68°Brix)
Figure imgf000019_0001
Se obtuvo un total de POS entre 301,8 y 404,4 g/L, en promedio con un DP2 de 1,0, DP3 del 72% y >DP3 de 0,5.
Se evaluó el contenido calórico aportado por el componente de carbohidratos de la composición tipo jarabe descrita anteriormente para el tratamiento secado y triturado, asumiendo la siguiente carga calórica:
Tabla 6. Carga calórica componentes
Figure imgf000019_0002
Dicha composición tipo jarabe obtenida tiene un total de contenido calórico, asumiendo estos dos componentes, de 0,94 kcal/g en promedio, mientras que si se asume un aporte con componentes adicionales como otros carbohidratos y proteína tiene un contenido calórico entre 1,5 y 2 kcal/g. En comparación con un jarabe de sacarosa convencional que tiene una carga calórica de 4 kcal/g, se obtiene una reducción calórica igual o superior al 50%.
Ejemplo 7. Cinética de producción de POS en reactor de 10L.
Se realizó la reacción enzimática para la producción de POS a partir de cáscara de maracuyá secada en horno convectivo y triturada hasta un tamaño de partícula menor o igual a 1 mm. La cáscara fue diluida en buffer citrato 50 mM pH 5 a una concentración del 7% p/p.
La reacción enzimática se llevó a cabo en reactor de 10 L usando 5 L como volumen de trabajo y una enzima EnzC. La reacción se realizó a 50 °C y una velocidad de agitación de 500 rpm. La concentración de la enzima fue de 1,32 g proteína/g cáscara. Se tomaron muestras del medio a las 0,5, 1, y 1,5 horas de proceso y se removieron sólidos e inactivó la enzima.
Cada muestra fue almacenada en congelación previo al análisis de POS y azúcares presentes en la pectina como ácido galacturónico.
Tabla 7. Contenido de ácido galacturónico y POS a diferentes tiempos de reacción
Figure imgf000020_0001
Se obtuvo una cantidad de POS entre 335,6 y 376,3 g/L, en promedio con un DP2 de 0,53, DP3 del 71% y >DP3 de 1,1.
Ejemplo 8. Medición de la capacidad antioxidante de la composición prebiótica de carbohidratos tipo jarabe
Se realizó la medición de la capacidad antioxidante de la composición tipo jarabe rico en POS obtenido en el Ejemplo 6 a diferentes concentraciones de sólidos solubles, medidos como grados Brix (g sólidos solubles/100g de jarabe). Se usó la técnica DPPH, como la describe Brand-Williams, Cuvelier, & Berset (1995) y el resultado se expresa como porcentaje de inhibición:
Tabla 8
Figure imgf000021_0001
Como se observa en los resultados, la composición tipo jarabe presenta actividad antioxidante a diferentes concentraciones de sólidos solubles, siendo una actividad considerable inclusive en valores bajos de sólidos solubles como 4 g/100 g solución. Con mayores grados Brix, mayor será su actividad antioxidante que pueda transferirse a los productos donde se aplique.
Se realizó un análisis de fenoles totales a las composiciones de acuerdo con el Ejemplo 5 por la técnica de Folin-Ciocalteu, y se expresó el resultado en GAE (ácido gálico equivalente) en base seca (BS) en donde se obtuvieron los siguientes resultados:
Tabla 9
Figure imgf000021_0002
Al comparar dichos resultados con lo divulgado en el estado del arte, por ejemplo el reportado por Macagnan et al., (2015), donde se cuantificaron los fenoles totales de cáscara de maracuyá en polvo con la técnica Folin-Ciocalteu, encontrando una concentración de 6,9mg GAE/g BS. Lo que demuestra potencial bioactivo en la composición tipo jarabe preparado.
Ejemplo 9. Incorporación de la composición prebiótica de carbohidratos como texturizante en bebidas
Se tomaron dos productos tipo bebida a base de mora y a base de pera, en donde se agregó el jarabe POS obtenido de acuerdo al Ejemplo 6, a una concentración de 2,25%. Se midió la viscosidad tanto al patrón como al ensayo y se encontraron los siguientes resultados:
Tabla 10
Figure imgf000022_0001
Se puede observar que la adición del jarabe POS a las bebidas de frutas trae un aumento de la viscosidad, sin embargo, de acuerdo a los ejemplos anteriores, esto no implica un aumento calórico en el producto.
Ejemplo 10. Análisis proximal de la composición prebiótica de carbohidratos tipo jarabe
Se midió el contenido de proteína, grasa y cenizas en la composición tipo jarabe descrita en el Ejemplo 6, usando el método Dumas, arrastre con eter y gravimetría, respetivamente. Se obtuvieron los siguientes resultados:
Tabla 11
Figure imgf000022_0002
Figure imgf000023_0001
Los carbohidratos identificados corresponden a los POS, azúcares no calóricos y calóricos derivados de la pectina. En otros es posible que haya otros carbohidratos no identificados.
Ejemplo 11. Evaluación de actividad prebiótica de la composición prebiótica de carbohidratos
Para evaluar la actividad prebiótica del jarabe rico en POS generado a partir de la composición, se realizaron fermentación de MicroColon usando como medio de cultivo una mezcla de heces fecales obtenidas de 6 adultos sanos. La actividad prebiótica se determinó a partir de la formación de ácidos grasos de cadena corta (SCFA) que se conocen como indicadores del crecimiento de microorganismos probióticos en el sistema gastrointestinal humano. Según el artículo publicado por Markowiak-Kopec y colaboradores (2020), la presencia de SCFA en el cuerpo humano, principalmente, acético, butírico y propiónico, en cantidades adecuadas, es esencial para la salud y bienestar del consumidor, sin embargo, la formación de estos ácidos depende de la adecuada ingesta de substratos, como fibras dietarias y prebióticos, necesarios para la correcta evolución de las fermentaciones. Los beneficios atribuidos a los SCFA no solo se limitan a la salud gastrointestinal de los humanos, ya que también se han encontrado vínculos entre la presencia de estos compuestos con el correcto funcionamiento del cerebro, evitando afecciones como depresión, Alzheimer, Parkinson y desordenes autistas (Silva et al., 2020).
Para evaluar las concentraciones de ácidos orgánicos en las fermentaciones de microcolon, que pueden derivarse de la producción o el consumo por organismos microbianos, se analizaron los sobrenadantes de las fermentaciones de microcolon mediante un método de cromatografía líquida de alto rendimiento (HPLC), que separa, identifica y cuantifica cada componente en una mezcla. Concentraciones de ácidos orgánicos
Se han identificado y cuantificado los siguientes ácidos orgánicos en sobrenadantes de fermentación de microcolon: ácido acético, ácido butírico, ácido fórmico, ácido láctico, ácido propiónico y ácido succínico.
Los resultados SCFA totales después de 20 h de fermentación se muestran a continuación:
Tabla 12.
Figure imgf000024_0001
Tabla 13
Figure imgf000024_0002
Figure imgf000025_0001
La información resumida anteriormente se describe también en la FIG. 3.
Se concluye que después de 20 horas de fermentación, la mayoría de los componentes probados muestran un aumento en los SCFA totales, en donde los efectos más fuertes son provocados por Alpina POS (todas las concentraciones probadas), en donde los Alpina POS corresponde a la composición prebiótica de carbohidratos aquí reclamada. Adicionalmente se concluye que el principal impulsor del aumento de SCFA es el ácido láctico. Es notable el fuerte aumento de ácido succínico en las condiciones de Alpina POS 15 mg/mL.
Ejemplo 12. Ensayo a escala piloto (40L) de hidrólisis de cáscara de maracayá para producción de composición prebiótica de carbohidratos
Se realizó la hidrólisis enzimática de cáscara de maracuyá en un reactor de tanque agitado de 50 L, con un volumen de trabajo de 40 L. La cáscara de maracuyá fue sometida al tratamiento de secado mencionado en el Ejemplo 1 hasta conseguir un polvo con tamaño de partícula igual o inferior a 1 mm. Con este polvo se hizo una suspensión al 7% p/p de la cáscara en buffer citrato de sodio 50 rnM, pH 5. La suspensión se llevó a 50°C en el reactor de tanque agitado y se adicionó la enzima EnzC a una concentración de 1,32 mg proteína/ g de cáscara. La suspensión fue agitada por 50 min a 480 rpm. Finalizado el tiempo de la reacción enzimática, se aumentó la temperatura en el reactor a 80°C por entre 15 y 20 minutos, con el objetivo de inactivar la enzima. En vista que no hay información técnica que indique cómo es el proceso de escalado para la obtención de POS en volúmenes superiores (>10kg de suspensión), se propuso pasar la suspensión de sólidos por un filtro prensa con cinco placas, una capacidad de retención de entre 0,1 y 0,5kg/placa, un tamaño de poro inferior a 1 pm, un área de filtrado de 0,7m2, se obtiene un líquido de la composición. Este líquido se evaporó para concentrar los sólidos solubles hasta alcanzar 68-75 °Brix, obteniendo una composición tipo jarabe. Se obtiene una composición prebiótica de carbohidratos con características similares a las reportadas anteriormente y que se caracterizó por el siguiente contenido de monosacáricos.
Tabla 14.
Figure imgf000026_0001

Claims

26 REIVINDICACIONES
1. Una composición prebiótica de carbohidratos a partir de un material vegetal que comprende pectinoligosacáridos (POS) entre 10 y 50% p/p bs, y ácido galacturónico entre 1 y 30% p/p bs, en donde el material vegetal no tiene pretratamiento químico, en donde la composición de carbohidratos tiene un contenido de fenoles totales entre 1 y 10 mg de ácido gálico equivalente por gramos de materia seca; y en donde la composición tiene un contenido de carga calórica entre 1 y 2,5kcal/g.
2. La composición de la Reivindicación 1, en donde el material vegetal se selecciona entre pasifloras, cítricos, tubérculos, o combinación de los anteriores.
3. La composición de la Reivindicación 1, que además comprende carbohidratos con capacidad endulzante como glucosa, fructosa, galactosa y sacarosa entre 1 y 60% p/p.
4. La composición de la Reivindicación 1, en donde el contenido de DP3 en los POS se encuentran en una cantidad entre 65 y 85%p/p.
5. La composición de la Reivindicación 1, en donde el contenido de fenoles totales está entre 6,2 y 7,7 mg GAE / g bs y la carga calórica está entre 1,5 y 2kcal/g.
6. La composición de la Reivindicación 1, que además comprende monosacáridos no digeribles seleccionados del grupo que comprende arabinosa, mañosa, ramnosa, o mezcla de los anteriores entre 1 y 30%.
7. La composición de la Reivindicación 1, que comprende en base seca:
POS entre 30 y 45% p/p; ácido galacturónico entre 1 y 20% p/p; y pectina entre 0 y 15%p/p.
PCT/IB2021/061879 2020-12-17 2021-12-16 Composición prebiótica de pectinoligosacáridos (pos) WO2022130294A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/258,145 US20240049761A1 (en) 2020-12-17 2021-12-16 Prebiotic composition of pectinoligosaccharides (pos)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CO2020015908 2020-12-17
CONC2020/0015908 2020-12-17
CONC2021/0017272 2021-12-15
CONC2021/0017272A CO2021017272A1 (es) 2021-12-15 2021-12-15 Composición prebiótica de pectinoligosacáridos (pos)

Publications (1)

Publication Number Publication Date
WO2022130294A1 true WO2022130294A1 (es) 2022-06-23

Family

ID=82057382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/061879 WO2022130294A1 (es) 2020-12-17 2021-12-16 Composición prebiótica de pectinoligosacáridos (pos)

Country Status (2)

Country Link
US (1) US20240049761A1 (es)
WO (1) WO2022130294A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192247A1 (en) * 2014-06-21 2015-12-23 The Royal Institution For The Advancement Of Learning/Mcgill University Enzymatic production of prebiotic oligosaccharides from potato pulp
WO2020048609A1 (en) * 2018-09-07 2020-03-12 Nutrileads B.V. Prebiotic for treating disorders associated with disturbed composition or functionality of the intestinal microbiome

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192247A1 (en) * 2014-06-21 2015-12-23 The Royal Institution For The Advancement Of Learning/Mcgill University Enzymatic production of prebiotic oligosaccharides from potato pulp
WO2020048609A1 (en) * 2018-09-07 2020-03-12 Nutrileads B.V. Prebiotic for treating disorders associated with disturbed composition or functionality of the intestinal microbiome

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FERNANDA TEIXEIRA MACAGNAN, LUCCIÉLLI RODRIGUES DOS SANTOS, BRUNA SAMPAIO ROBERTO, FERNANDA ALINE DE MOURA, MARILIA BIZZANI, LEILA: "Biological properties of apple pomace, orange bagasse and passion fruit peel as alternative sources of dietary fibre", BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE, vol. 6, no. 1, 1 July 2015 (2015-07-01), pages 1 - 6, XP055950128 *
NEHA BABBAR, WINNIE DEJONGHE, MONICA GATTI, STEFANO SFORZA, KATHY ELST: "Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits", CRITICAL REVIEWS IN BIOTECHNOLOGY, CRC PRESS, BOCA RATON, FL, US, US , pages 1 - 13, XP055455253, ISSN: 0738-8551, DOI: 10.3109/07388551.2014.996732 *

Also Published As

Publication number Publication date
US20240049761A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
Zeaiter et al. Extraction and characterization of inulin-type fructans from artichoke wastes and their effect on the growth of intestinal bacteria associated with health
Behera et al. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care
Akbari-Alavijeh et al. Pistachio hull water-soluble polysaccharides as a novel prebiotic agent
Zhang et al. Phytochemical constituents and biological activities of longan (Dimocarpus longan Lour.) fruit: A review
US7919479B2 (en) Antiadhesive carbohydrates
EP2188315B1 (en) Method of preparing fibre-containing pectin product and pectin products hereof
TWI392496B (zh) 具有治療、預防或改善糖尿病或糖尿病併發症之效果的組成物及含其之飲料
Villanueva-Suárez et al. Sequential extraction of polysaccharides from enzymatically hydrolyzed okara byproduct: physicochemical properties and in vitro fermentability
Míguez et al. Pectic oligosaccharides and other emerging prebiotics
CN112244286A (zh) 一种钙果粉及其制备方法
Wang et al. The effects of different extraction methods on physicochemical, functional and physiological properties of soluble and insoluble dietary fiber from Rubus chingii Hu. fruits
Singh et al. Agro waste derived pectin poly and oligosaccharides: Synthesis and functional characterization
BR112021003637A2 (pt) composições de prebióticos e composição de simbióticos
JP3553866B2 (ja) マンノオリゴ糖類を主成分とする組成物
Castellino et al. Conventional and unconventional recovery of inulin rich extracts for food use from the roots of globe artichoke
CA2757067C (en) Water soluble defructosylated pea extract, and use thereof as prebiotic agent
WO2007140277A1 (en) Method for embedding and targeted release of micronutrients in activated dietary fibers
JP2004159659A (ja) マンノオリゴ糖類を主成分とする組成物
Yang et al. Functional carbohydrate polymers: Prebiotics
JP4684440B2 (ja) マンノオリゴ糖を含有する過酸化脂質上昇抑制組成物
WO2022130294A1 (es) Composición prebiótica de pectinoligosacáridos (pos)
JP3505474B2 (ja) キノコ類の成分の抽出方法
do Nascimento et al. Emerging Prebiotics: Nutritional and Technological Considerations
CN108936659A (zh) 一种食品添加剂及其制备方法
JP2006193489A (ja) 体脂肪蓄積抑制剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18258145

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905956

Country of ref document: EP

Kind code of ref document: A1