Beschreibung
Titel
Verfahren und Vorrichtung zum Trainieren eines Klassifikators für molekularbiologische Untersuchungen
Technisches Gebiet
Die Erfindung betrifft ein Verfahren zum Trainieren eines Klassifikators, ein Verfahren zur Klassifikation mittels des trainierten Klassifikators, eine Trainingsvorrichtung, ein System zur Datenverarbeitung, ein Computerprogramm und ein maschinenlesbares Speichermedium
Stand der Technik
Aus der DE 10 2016 222 075 Al ist ein Verfahren zur Prozessierung einer Kartusche, insbesondere einer mikrofluidischen Kartusche, und einer in die Kartusche aufgenommenen biologische Probe mittels einer Prozessiereinheit bekannt.
Vorteile der Erfindung
Bei automatisierten Analysesystemen wie beispielsweise Lab-on-a-Chip-Syste- men für die In-vitro-Diagnostik werden hohe Anforderungen an die Korrektheit der Ergebnisse der Analysesysteme gestellt. Insbesondere falls ein solches Analysesystem für medizinische Tests von biologischen Proben menschlichen Ursprungs, z.B. in Hinblick auf Infektionskrankheiten, verwendet wird, wird erwartet, dass die Ergebnisse in Hinblick auf Sensitivität und Spezifität höchsten Anforderungen genügen.
Der Vorteil des Verfahrens mit Merkmalen des unabhängigen Anspruchs 1 ist, dass ein Klassifikator ermittelt werden kann, der eine höhere Klassifikationsgenauigkeit bezüglich eines medizinischen Testergebnisses aufweist. Der Klassifikator ist daher vorteilhafterweise in der Lage die Testgenauigkeit einer medizinischen Analysevorrichtung zu verbessern.
Offenbarung der Erfindung
In einem ersten Aspekt betrifft die Erfindung ein computerimplementiertes Verfahren zum Trainieren eines Klassifikators umfassend die Schritte:
• Ermitteln zumindest eines ersten Eingabesignals, wobei das erste Eingabesignal eine Mehrzahl von Auswertungspunkten eines molekularbiologischen Untersuchungssystems charakterisiert und dem ersten Eingabesignal ein gewünschtes Ausgabesignal zugeordnet ist, welches eine Klassifikation der Auswertungspunkte charakterisiert;
• Aufteilen des ersten Eingabesignals in eine Mehrzahl von zweiten Eingabesignalen gemäß einer Anordnung der Auswertungspunkte;
• Ermitteln einer Mehrzahl von ersten Repräsentationen, wobei für jedes zweite Eingabesignal zumindest einer ersten Untermenge der Mehrzahl von zweiten Eingabesignal eine erste Repräsentation mittels des Klassifikators ermittelt wird;
• Ermitteln eines Ausgabesignals mittels des Klassifikators und basierend auf der Mehrzahl von ersten Repräsentationen, wobei das Ausgabesignal eine Klassifikation des ersten Eingabesignals charakterisiert;
• Anpassen zumindest eines Parameters des Klassifikators gemäß eines Verlustwertes, wobei der Verlustwert einen Unterschied zwischen dem ermittelten Ausgabesignal und dem gewünschten Ausgabesignal charakterisiert.
Die Auswertungspunkte können insbesondere Auswertungspunkte eines Labors auf einem Chip (engl. lab-on-chip system) sein, welche eine biologische Probe, z.B. eine Blutprobe, eine Urinprobe, eine Speichelprobe oder eine Probe aus einem Abstrich, auswerten, insbesondere in Hinblick auf das Vorhandensein von zumindest einem Pathogen, z.B. zumindest einem Virus und/oder zumindest einem Bakterium und/oder zumindest einem Pilz, in der Probe. Das Verfahren
kann derart Verstanden werden, als dass der Klassifikator derart trainiert wird, dass er basierend auf den Auswertungspunkten eine Klassifikation ermittelt. Insbesondere kann die Klassifikation charakterisieren, ob das zumindest eine Pathogen in der Probe vorliegt oder nicht bzw. mit welcher Wahrscheinlich das zumindest eine Pathogen in der Probe vorliegt und/oder mit welcher Wahrscheinlichkeit das zumindest eine Pathogen nicht in der Probe vorliegt.
Das Verfahren kann weiterhin derart verstanden werden, als dass zum Training ein Vorhandensein oder eine Abwesenheit des zumindest einen Pathogens mittels des gewünschten Ausgabesignals dem Klassifikator angezeigt wird. Nach dem Training ist der Klassifikator in der Lage, basierend auf einer neuen Mehrzahl von Auswertungspunkten bezüglich einer neuen Probe zu ermitteln, ob das zumindest eine Pathogen in der neuen Probe vorliegt oder nicht.
Das Lab-on-Chip-System kann insbesondere eine Mikroreihe (engl. Microarray) umfassen. Unter einem Microarray kann ein Analysesystem verstanden werden, das die parallele Analyse von mehreren, insbesondere mehreren zehn oder mehreren hundert bis tausend, Einzelnachweisen in einer geringen Menge biologischen Probenmaterials ermöglicht. Es gibt unterschiedliche Arten von Microarrays, die auch als Genchips oder Biochips bezeichnet werden, da diese vergleichbar einem Computerchip viele Informationen auf kleinstem Raum enthalten können.
Das Mikroarray kann insbesondere über eine Mehrzahl von Auswertungspunkten (engl. Spots) verfügen, auf denen die Probe aufgetragen werden kann. Auf den Auswertungspunkten können insbesondere Reagenzien, z.B. bestimmte Proteine, aufgetragen sein, die beim Aufträgen der Probe zu einer biochemischen Reaktion führen, die den Nachweis des zumindest einen Pathogens ermöglichen. Insbesondere können die biochemischen Reaktionen dazu führen, dass an den entsprechenden Positionen der Auswertungspunkte des Microarrays basierend auf einer Chemilumineszenz eine elektromagnetische Strahlung abgesondert wird. Auch ist möglich, dass nach einer entsprechenden biochemischen Reaktion mittels Fluoreszenz eine elektromagnetische Strahlung an den entsprechenden Positionen abgesondert wird.
Unabhängig davon, ob die elektromagnetische Strahlung basierend auf Chemilu- mineszenz oder Fluoreszenz erzeugt wird, kann die erzeugte elektromagnetische Strahlung mittels eines optoelektronischen Sensors, insbesondere einer Kamera, gemessen werden und z.B. in Form eines Bildes bereitgestellt werden. Da die Auswertungspunkte abhängig von den Reagenzien und einem Vorhandensein oder einer Abwesenheit des zumindest einen Pathogens unterschiedlich starke elektromagnetische Strahlung absondern, entsteht ein für die Probe charakteristisches Bild. Insbesondere können in dem Bild abgebildeten Auswertungspunkte unterschiedliche Helligkeitsstufen aufweisen können.
Das Bild kann insbesondere als erstes Eingabesignal verwendet werden. Alternativ ist auch möglich, dass das Bild zunächst einen oder mehrere Vorverarbeitungsschritte, insbesondere Vorverarbeitungsschritte aus dem Bereich des maschinellen Sehens (engl. Computer Vision) durchläuft, bevor es als Eingabesignal zur Verfügung gestellt wird.
Bestimmte Teile des Eingabesignals können als zu einzelnen Auswertungspunkten zugehörig verstanden werden. Zum Beispiel können bestimmte Bereiche des Bildes jeweils einzelnen Auswertungspunkten zugeordnet werden. Insbesondere kann das Bild abhängig von der Position der Auswertungspunkte in eine Mehrzahl von zweiten Bildern zerlegt werden, wobei jeweils ein zweites Bild nur einen Auswertungspunkt darstellt. Die zweiten Bilder können hierbei als die zweiten Eingabesignale verstanden werden. Vorzugsweise sind die Auswertungspunkte in einem Raster angeordnet, wobei das Bild entsprechend des Rasters in die Mehrzahl von zweiten Bildern aufgeteilt wird.
Der Vorteil des Aufteilens des ersten Eingabesignals in die Mehrzahl von zweiten Eingabesignalen ist, dass so jeder Auswertungspunkt vom Klassifikator individuell ausgewertet werden kann. Insbesondere kann so zu jedem Auswertungspunkt eine erste Repräsentation ermittelt werden, die als den Auswertungspunkt charakterisierend verstanden werden kann. Die ersten Repräsentationen können jeweils in Form eines Vektors, einer Matrix oder eines Tensors vorliegen und Werte umfassen, die den Inhalt des jeweiligen zweiten Eingabesignals charakterisieren. Vorzugsweise können die ersten Repräsentationen mittels eines maschinellen Lernverfahrens ermittelt werden.
Überraschenderweise konnten die Erfinder feststellen, dass die Ermittlung des Ausgabesignals basierend auf der Mehrzahl von ersten Repräsentationen eine wesentlich bessere Klassifikationsgenauigkeit des Klassifikators ermöglicht.
Alternativ ist auch möglich, dass für zumindest ein zweites Eingabesignal keine erste Repräsentation ermittelt wird. Dies ist insbesondere dann vorteilhaft, wenn bestimmte Auswertungspunkte einem anderen Zweck dienen als der Analyse der Probe. Zum Beispiel kann ein Auswertungspunkt lediglich dazu dienen anzuzeigen, ob auf den Auswertungspunkten überhaupt eine Probe aufgetragen wurde oder nicht. Der Auswertungspunkt trägt in diesem Beispiel nicht zur Klassifikation des Vorhandenseins oder der Abwesenheit zumindest einen Pathogens innerhalb der Probe bei und kann daher vom Klassifikator vernachlässigt werden.
In einer bevorzugten Ausprägung des Verfahrens kann der Klassifikator zumindest ein erstes neuronales Netz umfassen, mittels welchem die ersten Repräsentationen ermittelt werden.
Der Vorteil des zumindest einen ersten neuronalen Netzes ist, dass neuronale Netze besonders geeignet sind aussagekräftige Repräsentationen aus Daten zu ermitteln. Durch die Ermittlung von aussagekräftigen Repräsentationen wird die Ermittlung der Klassifikation maßgeblich vereinfacht, wodurch eine Klassifikationsgenauigkeit des Klassifikators, also eine Fähigkeit korrekt zu prädizieren, ob das zumindest eine Pathogen in der Probe vorliegt oder nicht, gesteigert wird.
In einer bevorzugten Ausprägung umfasst der Klassifikator eine Mehrzahl von ersten neuronalen Netzen, wobei der Klassifikator für jeweils ein zweites Eingabesignal der ersten Untermenge ein erstes neuronales Netz umfasst, mittels welchem die erste Repräsentation des zweiten Eingabesignals ermittelt wird.
Dies kann derart verstanden werden, als das für jeweils einen Auswertungspunkt ein erstes neuronales Netz vom Klassifikator umfasst wird, wobei das erste neuronale Netz während des Trainings lernt, die charakteristischen Eigenschaften der zweiten Eingabesignale zu lernen, die jeweils den Auswertungspunkt zeigen. Das erste neuronale Netz kann mit dem Auswertungspunkt als korrespondierend
erachtet werden. Das erste neuronale Netz wird gewissermaßen auf den Auswertungspunkt spezialisiert. Der Vorteil dieser Herangehensweise liegt darin, dass jedes erste neuronale Netz sich auf den mit ihm jeweils korrespondierenden Auswertungspunkt bzw. die zweiten Eingabesignale, die den korrespondierenden Auswertungspunkt zeigen, fokussieren kann. Hierdurch wird die Lernaufgabe, nämlich aussagekräftige erste Repräsentationen aus dem ersten Eingabesignal ermitteln zu können, aus denen dann eine genaue Klassifikation ermittelt werden kann, vereinfacht, was zu einer besseren Klassifikationsgenauigkeit des Klassifikators führt.
Als Parameter können im Trainingsverfahren insbesondere eine Mehrzahl von Gewichten der jeweils ersten neuronalen Netze und/oder eine Mehrzahl von zweiten Gewichten des zweiten neuronalen Netzes verstanden werden.
Weiterhin ist möglich, dass das Ausgabesignal mittels eines vom Klassifikator umfassten zweiten neuronalen Netzes und basierend auf den ersten Repräsentationen ermittelt wird.
Die Erfinder konnten feststellen, dass der Einsatz eines zweiten neuronalen Netzes zu einer weiteren Steigerung der Klassifikationsgenauigkeit führt. Die Kombination aus ersten neuronalen Netzen und zweitem neuronalen Net kann auch als ein gesamtes neuronales Netz verstanden werden, wobei das gesamte neuronale Netz die Mehrzahl von zweiten Eingabesignalen zunächst auf separaten Pfaden durch das gesamte neuronale Netz führt (nämlich den jeweils ersten neuronalen Netzen) und die Informationen dieser Pfade danach zusammenführt (nämlich mittels des zweiten neuronalen Netzes), um anschließend das Ausgabesignal zu ermitteln.
Weiterhin betrifft die Erfindung ein computerimplementiertes Verfahren zum Ermitteln eines Ausgabesignals, wobei das Ausgabesignal eine Klassifikation eines ersten Eingabesignals charakterisiert, wobei das erste Eingabesignal eine Mehrzahl von Auswertungspunkten eines molekularbiologischen Untersuchungssystems charakterisiert, wobei das Verfahren die folgenden Schritte umfasst:
• Trainieren eines Klassifikators gemäß einem der oben beschriebenen Aspekte und/oder Ausprägungen;
• Aufteilen des ersten Eingabesignals in eine Mehrzahl von zweiten Eingabesignalen gemäß einer Anordnung der Mehrzahl von Auswertungspunkten;
• Ermitteln des Ausgabesignals basierend auf der Mehrzahl von zweiten Eingabesignalen mittels des Klassifikators.
Das Verfahren zur Ermittlung des Ausgabesignals kann als Inferenz mittels des Klassifikators verstanden werden, der vorher mittels einer Ausprägung des Verfahrens zum Trainieren trainiert wurde. Das Verfahren zur Ermittlung des Ausgabesignals erhält seine Vorteile daher vom Verfahren zum Training, nämlich eine verbesserte Klassifikationsgenauigkeit des Klassifikators.
Bevorzugt ist weiterhin möglich, dass eine Anzeigevorrichtung basierend auf dem ermittelten Ausgabesignal derart angesteuert wird, dass die Anzeigevorrichtung die Klassifikation geeignet darstellt.
Beispielsweise ist möglich, dass das Ergebnis der Klassifikation auf einem Display der Anzeigevorrichtung dargestellt wird. Alternativ oder zusätzlich ist möglich, dass, falls das Ausgabesignal eine Klassifikation eines Vorhandenseins zumindest eines Pathogens charakterisiert, die Anzeigevorrichtung ein akustisches Signal z.B. mittels eines Lautsprechers ausgibt.
Nachfolgend werden Ausführungsformen der Erfindung unter Bezugnahme auf die beiliegenden Zeichnungen näher erläutert. In den Zeichnungen zeigen:
Figur 1 schematisch einen Aufbau eines Klassifikators zur Klassifikation von Auswertungspunkten eines molekularbiologischen Untersuchungssystems;
Figur 2 schematisch ein Trainingssystem zum Trainieren des Klassifikators;
Figur 3 schematisch ein Steuerungssystem zur Steuerung eines molekularbiologischen Untersuchungssystems;
Figur 4 schematisch ein Ausführungsbeispiel eines molekularbiologischen Untersuchungssystems.
Beschreibung der Ausführungsbeispiele
Figur 1 zeigt einen Klassifikator (60) zur Klassifikation einer Mehrzahl von Auswertungspunkten eines molekularbiologischen Untersuchungssystems. Dem Klassifikator (60) wird ein erstes Eingabesignal (x) übermittelt, welches die Auswertungspunkte charakterisiert, wobei der Klassifikator (60) bezüglich des ersten Eingabesignals (x) ein Ausgabesignal (y) ermittelt, welches eine Klassifikation des Eingabesignals (x) charakterisiert. Insbesondere kann das erste Eingabesignal (x) ein Bild eines optoelektronischen Sensors bezüglich der Auswertungspunkte sein. Bevorzugt sind die Auswertungspunkte in einem rechtwinkligen Raster angeordnet.
Die Auswertungspunkte können insbesondere Auswertungspunkte eines Microarrays sein, die mittels einer Protein- Protein Interaktion von Proteinen auf den Auswertungspunkten zu Proteinen einer biologischen Probe das Vorhandensein oder die Abwesenheit bestimmter Proteine in der Probe anzeigen können. Insbesondere kann so angezeigt werden, ob die Probe spezifische Proteine eines Pathogens, z.B. eines Virus, enthält.
Das Eingabesignal (x) wird einer Aufteilungseinheit (61) zugeführt. Die Aufteilungseinheit zerlegt das erste Eingabesignal (x) in eine Mehrzahl von zweiten Eingabesignalen (xa, xb,xc). Hierfür kann die Aufteilungseinheit zumindest einen Vorverarbeitungsschritt durchführen. Zum Beispiel ist möglich, dass das erste Eingabesignal (x) ein Bild ist und die Aufteilungseinheit das Bild zunächst rotiert und/oder verschiebt und/oder skaliert und anschließend das vorverarbeitete Bild in rechteckige Ausschnitte zerlegt.
Die Zerlegung erfolgt gemäß einem Wissen der Aufteilungseinheit (61) über die Anordnung der Auswertungspunkte innerhalb des ersten Eingabesignal (x). Beispielsweise können die Auswertungspunkte in einem Raster angeordnet sein, wobei das erste Eingabesignal (x) ein Bild des Rasters ist. Der Aufteilungseinheit (61) kann in diesem Fall eine Information bezüglich des Aufbaus des Rasters
vorliegen. Insbesondere kann die Aufteilungseinheit das Bild so rotieren, dass die Auswertungspunkte innerhalb des rotierten Bildes entlang einer horizontalen Achse und einer vertikalen Achse liegen. Anschließend kann das Bild entlang der Achsen zerlegt werden, um die zweiten Eingabesignale (xa,xb, xc) zu ermitteln.
Die zweiten Eingabesignale (xa, xb,xc) werden anschließend jeweils einem ersten neuronalen Netz (62a, 62b, 63c) zugeführt, wobei für jedes zweite Eingabesignal (xa,xb, xc) ein erstes neuronales Netz (62a, 62b, 63c) im Klassifikator (60) vorliegt. In alternativen Ausführungsbeispielen kann auch vorgesehen sein, dass für zumindest ein zweites Eingabesignal (xa, xb, xc) kein erstes neuronales Netz vorliegt und daher für die Ermittlung des Ausgabesignals (y) das zweite Eingabesignal (xa,xb, xc) nicht berücksichtigt wird.
Die ersten neuronalen Netze (62a, 62b, 63c) ermitteln basierend auf den zweiten Eingabesignalen (xa, xb,xc) jeweils erste Repräsentationen (za,zb, zc). Die ersten Repräsentationen (za, zb,zc) werden dann einem zweiten neuronalen Netz (63) als Eingabe übergeben. Das zweite neuronale Netz (63) ermittelt dann auf Basis der ersten Repräsentationen (za, zb,zc) das Ausgabesignal (y)
Figur 2 zeigt ein Ausführungsbeispiel eines Trainingssystems (140) zum Trainieren des Klassifikators (60) mittels eines Trainingsdatensatzes (T). Der Trainingsdatensatz (T) umfasst eine Mehrzahl von ersten Eingabesignalen (x;), die zum Trainieren des Klassifikators (60) verwendet werden, wobei der Trainingsdatensatz (T) ferner zu jeweils einem Eingabesignal (x;) ein gewünschtes Ausgabesignal (tj) umfasst, welches mit dem ersten Eingabesignal (x;) korrespondiert und eine Klassifikation des Eingabesignals (x;) charakterisiert. Insbesondere kann ein erstes Eingabesignal (x;) ein Bild einer Mehrzahl von Auswertungspunkten eines Microarrays sein, während das mit dem ersten Eingabesignal (x;) korrespondierende gewünschte Ausgabesignal (tj) charakterisiert, ob in einer biologischen Probe, die auf den Auswertungspunkten aufgetragen wurde, zumindest ein Pathogen enthält oder nicht. Vorzugsweise wird bei einem Vorhandensein eines Pathogens in der Probe außerdem die Klasse des Pathogens im gewünschten Ausgabesignal (tj) charakterisiert.
Zum Training greift eine Trainingsdateneinheit (150) auf eine computerimplementierte Datenbank (Sts) zu, wobei die Datenbank (Sts) den Trainingsdatensatz (T) zur Verfügung stellt. Die Trainingsdateneinheit (150) ermittelt aus dem Trainingsdatensatz (T) vorzugsweise zufällig zumindest ein erstes Eingabesignal (x;) und das zum ersten Eingabesignal (x;) korrespondierende gewünschte Ausgabesignal (tj) und übermittelt das erste Eingabesignal (x;) an den Klassifikator (60). Der Klassifikator (60) ermittelt auf Basis des ersten Eingabesignals (x;) ein Ausgabesignal (y .
Das gewünschte Ausgabesignal (tj) und das ermittelte Ausgabesignal (y werden an eine Veränderungseinheit (180) übermittelt.
Basierend auf dem gewünschten Ausgabesignal (tj) und dem ermittelten Ausgabesignal (y werden dann von der Veränderungseinheit (180) neue Parameter (O') für den Klassifikator (60) bestimmt. Im Ausführungsbeispiel kann eine Mehrzahl von Gewichten der ersten neuronalen Netze (62a, 62b, 63c) und/oder eine Mehrzahl von Gewichten des zweiten neuronalen Netzes (63) als die Parameter (O) des Klassifikators (60) verstanden werden, für die von der Veränderungseinheit neue Parameter (O') ermittelt werden. Hierfür vergleicht die Veränderungseinheit (180) das gewünschte Ausgabesignal (tj) und das ermittelte Ausgabesignal (y mittels einer Verlustfunktion (engl. Loss Function). Die Verlustfunktion ermittelt einen ersten Verlustwert, der charakterisiert, wie weit das ermittelte Ausgabesignal (y vom gewünschten Ausgabesignal (tj) abweicht. Als Verlustfunktion wird im Ausführungsbeispiel eine negative logarithmierte Plausibilitätsfunktion (engl. negative log-likehood function) gewählt, insbesondere eine kategorische Kreuzentropiefunktion (engl. categorical cross entropy loss). In alternativen Ausführungsbeispielen sind auch andere Verlustfunktion denkbar.
Die Veränderungseinheit (180) ermittelt auf Grundlage des ersten Verlustwertes die neuen Parameter (O'). Im Ausführungsbeispiel geschieht dies mittels eines Gradientenabstiegsverfahren, vorzugsweise Stochastic Gradient Descent, Adam, oder AdamW.
Die ermittelten neuen Parameter (O') werden in einem Modellparameterspeicher (Sti) gespeichert. Vorzugsweise werden die ermittelten neuen Parameter (O') als Parameter (O) dem Klassifikator (60) bereitgestellt.
In weiteren bevorzugten Ausführungsbeispielen wird das beschriebene Training iterativ für eine vordefinierte Anzahl an Iterationsschritten wiederholt oder iterativ wiederholt, bis der erste Verlustwert einen vordefinierten Schwellenwert unterschreitet. Alternativ oder zusätzlich ist auch vorstellbar, dass das Training beendet wird, wenn ein durchschnittlicher erster Verlustwert bezüglich eines Test- o- der Validierungsdatensatzes einen vordefinierten Schwellenwert unterschreitet. In mindestens einer der Iterationen werden die in einer vorherigen Iteration bestimmten neuen Parameter (O') als Parameter (O) des Klassifikators (60) verwendet.
Des Weiteren kann das Trainingssystem (140) mindestens einen Prozessor (145) und mindestens ein maschinenlesbares Speichermedium (146) umfassen, welches Befehle enthält, welche, wenn sie durch den Prozessor (145) ausgeführt werden, das Trainingssystem (140) veranlassen, ein Trainingsverfahren nach einem der Aspekte der Erfindung auszuführen.
Figur 3 ein Steuerungssystem (40) einer Prozessiereinheit zur Prozessierung von biologischen Proben mittels des trainierten Klassifikators (60). Ein optoelektronischer Sensor (30), z.B. eine Kamera, der Prozessiereinheit ermittelt ein Sensorsignal (S), welches eine Mehrzahl von Auswertungspunkten charakterisiert.
Das Steuerungssystem (40) empfängt die das Sensorsignal (S) des Sensors (30) in einer optionalen Empfangseinheit (50), die das Sensorsignal (S) in ein erstes Eingabesignal (x) umwandelt (alternativ kann auch unmittelbar das Sensorsignal (S) als erstes Eingangssignal (x) übernommen werden). Das erste Eingabesignal (x) kann beispielsweise ein Ausschnitt oder eine Weiterverarbeitung des Sensorsignals (S) sein. Mit anderen Worten wird das erste Eingabesignal (x) abhängig von Sensorsignal (S) ermittelt. Das erste Eingabesignal (x) wird denn dem trainierten Klassifikator (60) zugeführt.
Der Klassifikator (60) wird vorzugsweise parametriert durch Parameter (e ), die in einem Parameterspeicher (P) hinterlegt sind und von diesem bereitgestellt werden.
Der Klassifikator (60) ermittelt aus dem ersten Eingabesignal (x) ein Ausgabesignal (y). Das Ausgabesignal (y) werden einer optionalen Umformeinheit (80) zugeführt, die hieraus ein Ansteuersignale (A) ermittelt, welches einer Anzeigevorrichtung (10a) zugeführt wird, um die Anzeigevorrichtung (10a) entsprechend anzusteuern.
In weiteren bevorzugten Ausführungsformen umfasst das Steuerungssystem (40) zumindest einen Prozessor (45) und zumindest ein maschinenlesbares Speichermedium (46), auf dem Anweisungen gespeichert sind, die dann, wenn sie auf dem zumindest einen Prozessor (45) ausgeführt werden, das Steuerungssystem (40) veranlassen, das erfindungsgemäße Verfahren auszuführen.
Figur 4 zeigt ein Ausführungsbeispiel, in dem das Steuerungssystem (40) die Prozessiereinheit (600) steuert. Der Prozessiereinheit (600) wird eine Mikroreihe (601, engl. Microarray) zugeführt, welche eine Mehrzahl von Auswertungspunkten (602) oder auch Testfeldern umfasst, wobei die Testfelder mit einer biologischen Probe bestrichen wurden. Die Probe kann beispielsweise einem Abstrich eines Menschen entstammen.
Das Microarray (601) kann insbesondere ein Protein-Microarray sein. Der Sensor (30) ist eingerichtet das Microarray (601) aufzuzeichnen. Als Sensor (30) kann insbesondere ein optoelektronischer Sensor verwendet werden, vorzugsweise eine Kamera. Der Klassifikator (60) kann daher als Bildklassifikator verstanden werden.
Das Ansteuersignal (A) kann dann derart gewählt werden, dass das Ergebnis der Klassifikation auf einem Display der der Anzeigevorrichtung (10a) dargestellt wird. Alternativ oder zusätzlich kann auch ein akustisches Signal mittels eines Lautsprechers der Anzeigevorrichtung (10a) ausgegeben werden, falls das Ausgabesignal (y) das Vorhandensein zumindest eines Pathogens in der Probe charakterisiert.
Der Begriff „Computer“ umfasst beliebige Geräte zur Abarbeitung vorgebbarer Rechenvorschriften. Diese Rechenvorschriften können in Form von Software vorliegen, oder in Form von Hardware, oder auch in einer Mischform aus Software und Hardware.
Im Allgemeinen kann eine Mehrzahl als indexiert verstanden werden, d.h. jedem Element der Mehrzahl wird ein eindeutiger Index zugewiesen, vorzugsweise durch Zuweisung aufeinanderfolgender Ganzzahlen an die in der Mehrzahl ent- haltenen Elemente. Vorzugsweise, wenn eine Mehrzahl N Elemente umfasst, wobei N die Anzahl der Elemente in der Mehrzahl ist, werden den Elementen die ganzen Zahlen von 1 bis N zugewiesen.