WO2022128592A1 - Caméra thermique infrarouge et système embarqué d'assistance à la conduite d'un véhicule automobile comportant une telle caméra - Google Patents

Caméra thermique infrarouge et système embarqué d'assistance à la conduite d'un véhicule automobile comportant une telle caméra Download PDF

Info

Publication number
WO2022128592A1
WO2022128592A1 PCT/EP2021/084468 EP2021084468W WO2022128592A1 WO 2022128592 A1 WO2022128592 A1 WO 2022128592A1 EP 2021084468 W EP2021084468 W EP 2021084468W WO 2022128592 A1 WO2022128592 A1 WO 2022128592A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal camera
infrared thermal
front lens
lens
camera
Prior art date
Application number
PCT/EP2021/084468
Other languages
English (en)
Inventor
Nicolas PINCHON
Philippe Gougeon
Original Assignee
Valeo Schalter Und Sensoren Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Schalter Und Sensoren Gmbh filed Critical Valeo Schalter Und Sensoren Gmbh
Publication of WO2022128592A1 publication Critical patent/WO2022128592A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/12Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices with means for image conversion or intensification

Definitions

  • Infrared thermal camera and on-board driving assistance system for a motor vehicle comprising such a camera
  • the present invention relates generally to the field of motor vehicles, and more specifically to assistance in driving a motor vehicle by detecting objects surrounding a motor vehicle on the basis of images captured by a thermal camera. infrared.
  • ADAS systems use conventional vision devices, of the camera type operating in the visible wavelengths, in order to detect the presence of pedestrians, cyclists, animals and/or other motorized vehicles likely to be present in the environment of the vehicles carrying these ADAS systems. These vision systems are dependent on sunlight or street lighting, which affects the effectiveness of ADAS systems in low visibility driving situations, typically at night and/or in severe weather conditions such as fog, heavy rain and snow.
  • an infrared thermal camera 1 conventionally comprises an optical block 2 (also called lens) and an infrared sensor 3 placed behind the optical block 2 and centered on the optical axis 4 of the optical block 2.
  • the infrared sensor 3 is generally a microbolometer sensor forming a two-dimensional matrix of pixels with a ratio of 4/3 between the width of the matrix and its height.
  • a VGA format sensor is for example used to obtain a resolution of 640 ⁇ 480 pixels.
  • a QVGA format sensor can also be used if a resolution of 320 x 240 pixels is desired.
  • the infrared thermal camera 1 is capable of detecting the infrared radiation emitted, transmitted or reflected by an obstacle located in its field of vision, such as a pedestrian 5. More precisely, these infrared radiation penetrate the opening of the optical block 2 which concentrate them so that they strike some of the pixels of the matrix constituting the microbolometer sensor, thus modifying their electrical resistance by heating them.
  • the microbolometer sensor therefore provides a thermal image (or thermogram) whose resolution is that of the pixel matrix.
  • a typical optical unit of a thermal camera for the ADAS system is composed of two or three lenses, such as the lenses referenced Li, L2 and L3 in FIG. 1.
  • the number and type of lenses used depends mainly on the requirements required in terms of image quality and field of view.
  • Lenses are typically made of chalcogenide glass. Indeed, chalcogenide glass has excellent performance in terms of transmission at wavelengths located in the interval [8 pm; 14 ⁇ m], In addition, chalcogenide glass can be molded, which makes it possible to easily produce any type of lens, in particular aspherical lenses.
  • the camera 1 since the camera is on board outside the vehicle, for example on its front bumper, the camera 1 also comprises a protective glass 6 placed at the front of the optical unit 2.
  • This protective glass 6 is generally made of germanium and typically has a thickness of around 4 mm in order to guarantee effective resistance to impacts from stones and gravel.
  • the optical unit 2 and the protective glass 6 remain the most expensive parts (after the bolometer sensor 3), due to the use of specific materials such as germanium or chalcogenide glass.
  • the present invention aims to overcome the limitations of the prior art by providing a solution to overcome the glass 6 protection.
  • the subject of the present invention is an infrared thermal camera capable of being mounted on a motor vehicle, the thermal camera comprising an optical unit and being characterized in that the optical unit comprises a front lens forming an external part of the thermal camera, said front lens being made of germanium or silicon.
  • the front lens is made of germanium with a minimum average thickness of 3 mm.
  • the front germanium lens preferably has a maximum average thickness of 4 mm.
  • the front lens is made of silicon with a minimum average thickness of 1.5 mm.
  • the silicon front lens has a maximum average thickness of 2 mm.
  • the outer surface of the silicon front lens is preferably covered with a hard coating, of the DLC type.
  • the front lens can be spherical.
  • the optical unit further comprises at least one other aspherical lens made of chalcogenide glass located behind said front lens along the optical axis of the optical unit.
  • the front lens is preferably provided with an anti-reflection coating.
  • the infrared thermal camera is configured for example to operate with a wavelength comprised in the interval [8 ⁇ m; 14 pm] with an average transmission rate of the optical unit equal to at least 59%.
  • the infrared thermal camera further comprises a VGA or QVGA format microbolometer sensor centered on the optical axis and at the rear of the optical unit.
  • the invention also relates to a driving assistance system on board a motor vehicle, characterized in that it comprises a night detection device comprising an infrared thermal camera of the invention, mounted outside of the motor vehicle.
  • FIG. 2 schematically illustrates an example of an infrared thermal camera according to a possible embodiment of the invention
  • FIG. 3 represents the variations of the transmission rate of a silicon lens as a function of the wavelength for two different thicknesses of the lens
  • FIG. 4 illustrates a principle for reducing the coverage circle of an optical block to a panoramic format.
  • FIG. 2 schematically represents an example of an infrared thermal camera T according to a possible embodiment of the invention particularly suited to an ADAS system.
  • the infrared thermal camera T essentially comprises an optical block 2 'of optical axis 4, and an infrared sensor 3 placed behind the optical block 2 so as to be centered on the optical axis 4 of the optical block 2.
  • the infrared sensor 3 is preferably a VGA or QVGA format microbolometer sensor.
  • the optical unit 2′ is configured for example to have the following characteristics:
  • FOV Vertical field of view
  • the optical block 2′ comprises at least one lens L′ i .
  • the optical unit 2' here comprises three lenses L'i, L'2 and L'3, the lens L'i being the so-called front lens.
  • the camera T has no protective glass here.
  • the front lens L i here advantageously forms an external part of the thermal camera. This is due to the fact that the front lens L i is here made, in accordance with a first variant of the invention, of silicon, given its high resistance to the impacts of stones or gravel.
  • the Applicant has conducted various detection distance simulation tests obtained with conventional ADAS systems for the detection of pedestrians, cyclists and animals, which have been able to show, surprisingly, that a transmission of about 59% for the optical block of an infrared thermal camera on the 8 - 14 pm band is sufficient to obtain the minimum detection distances (or ranges) generally required by these ADAS systems (typically between 50 and 100 meters for a pedestrian ).
  • Figure 3 illustrates: - a first curve Ci showing the variations of the transmission rate of a silicon lens with an average thickness of 1.5 mm as a function of the IR wavelength;
  • Average thickness means the average of the different thicknesses of the lens measured parallel to the optical axis of the lens, over the entire optical surface of the lens.
  • the silicon lens is also equipped with a hard coating on the front side, and an anti-reflective treatment on the back side.
  • the average thickness of the front lens L'1 made of silicon is chosen to be at least 1.5 mm.
  • the average thickness of the front lens L'1 made of silicon is chosen to be a maximum of 2 mm.
  • the average thickness of the front lens L'1 made of silicon is chosen in the range [1.5 mm; 2mm],
  • the silicon lens L'1 is advantageously spherical, and the average thickness of the silicon lens L'1 is chosen equal to 1.5 mm, and thus has, as seen previously, a transmission rate of 75.8% for wavelengths in the interval [8 ⁇ m; 12 pm], and a transmission rate of 59.6% for wavelengths in the interval [12 m; 14 p.m.].
  • the other lenses L′2 and L′3 are aspherical lenses made of chalcogenide glass, each having a transmission rate of 96.2% for wavelengths in the interval [8 ⁇ m; 12 pm], and a transmission rate of 90.6% for wavelengths in the interval [12 pm; 14 p.m.],
  • the outer surface of the silicon lens L'1 is advantageously provided with a hard coating, for example an amorphous adamantine carbon coating (known by the acronym DLC) in order to resist stone impacts. All lens surfaces are preferably anti-reflective coated to maximize transmission.
  • a hard coating for example an amorphous adamantine carbon coating (known by the acronym DLC) in order to resist stone impacts. All lens surfaces are preferably anti-reflective coated to maximize transmission.
  • the overall transmission T g of the optical unit 2' is given by the product of the transmissions of each lens, that is to say in our example
  • the material used for the front lens L′1 is germanium.
  • the L’1 front lens has a minimum average thickness of 3 mm.
  • the average thickness of the germanium lens L'1 preferably does not exceed 4 mm.
  • the optical unit 2' in accordance with the present invention is not limited to the three lenses described with reference to FIG. 2. Other embodiments, in particular with a greater or lesser number of lenses, can be used. without departing from the framework of the present invention, from the moment when the front lens L′1, which gives directly onto the outside when the camera is mounted on a vehicle, is either made of silicon or of germanium, and where the average rate of overall transmission Tg of the optical block is at least equal to 59% at wavelengths comprised in the interval [8 ⁇ m; 14 p.m.]. [0041] In all cases, not only the cost of the thermal camera is optimized but also its size since it is no longer necessary to use protective glass.
  • the sensor 3 used in an infrared thermal camera for the ADAS system is generally rectangular in shape, with a VGA or QVGA format.
  • the objective or optical block
  • the objective is generally composed of circular lenses, so that it focuses the incoming infrared rays on a circle, called the circle of coverage.
  • the specific features of the optical block in particular in terms of the number of lenses and the type of lenses, are calculated by complex design algorithms making it possible to meet predetermined requirements in terms of desired image quality, and to ensure that the rectangle representing the sensor is inscribed in the circle associated with the optical block. This is illustrated in view (a) of FIG. 4 which shows the rectangular shape 7 of the sensor is inscribed in the circle 8 covering the optical block.
  • the design algorithms may not converge, especially if the predetermined requirements include a required field of view (FOV) greater than 40°. In other words, the design algorithms are not able to find a composition of the optical unit guaranteeing a field of vision greater than 40° if a spherical silicon front lens is imposed on it.
  • FOV field of view
  • the optical unit 2' is advantageously dimensioned so that its coverage circle 8' (see view (b) of FIG. 4) is circumscribed not to the rectangle 7 of 4/3 format, but to the rectangle 7' of panoramic format. Reducing the coverage circle allows design algorithms to converge to a solution while using a spherical front lens in silicon. The four corners of the image would become blurred but would be removed from the final output image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

L'invention a pour objet une caméra thermique infrarouge (1') apte à être embarquée sur un véhicule automobile, la caméra thermique (1') comportant un bloc optique (2') et étant caractérisée en ce que le bloc optique (2') comporte une lentille frontale (L'1) formant une partie externe de la caméra thermique (1'), ladite lentille frontale (L'1) étant en germanium ou en silicium. Application : Systèmes d'assistance à la conduite.

Description

Caméra thermique infrarouge et système embarqué d’assistance à la conduite d’un véhicule automobile comportant une telle caméra
Domaine technique
[0001 ] La présente invention concerne de manière générale le domaine des véhicules automobiles, et plus spécifiquement l’assistance à la conduite d’un véhicule automobile par détection d’objets environnant un véhicule automobile sur la base d’images capturées par une caméra thermique infrarouge.
Arrière-plan technologique
[0002] Afin d’augmenter la sécurité routière, certains véhicules automobiles, dits semi- autonomes, sont équipés de systèmes d’automatisation partielle ou de systèmes avancés d’assistance à la conduite (connus sous l’acronyme ADAS en terminologie anglo-saxonne), en particulier de systèmes réalisant, à la place du conducteur, le contrôle latéral et/ou le contrôle longitudinal du véhicule, ou alertant à tout le moins le conducteur d’une situation potentiellement dangereuse pour lui permettre de réagir à temps. Il est également prévu de rendre des véhicules automobiles complètement autonomes, c’est-à-dire sans conducteur.
[0003] Certains systèmes ADAS utilisent des dispositifs de vision classiques, de type caméra fonctionnant dans les longueurs d’ondes visibles, afin de détecter la présence de piétons, cyclistes, animaux et/ou autres véhicules motorisés susceptibles d’être présents dans l’environnement des véhicules embarquant ces systèmes ADAS. Ces systèmes de vision dépendent de la lumière du soleil ou de l'éclairage public, ce qui affecte l’efficacité des systèmes ADAS dans des situations de conduite pour lesquelles la visibilité est faible, typiquement la nuit et/ou dans des conditions météorologiques difficiles comme le brouillard, les fortes pluies et la neige.
[0004] Pour résoudre ce problème, certains systèmes ADAS utilisent des dispositifs de vision nocturne à imagerie thermique, tels que des caméras thermiques infrarouges fonctionnant pour au moins une longueur d’onde située dans l’intervalle [8 pm ; 14 pm]. [0005] Comme visible sur la représentation schématique donnée sur la figure 1 , une caméra thermique infrarouge 1 comporte classiquement un bloc optique 2 (encore appelé objectif) et un capteur infrarouge 3 placé derrière le bloc optique 2 et centré sur l’axe optique 4 du bloc optique 2. Pour l’application aux systèmes ADAS, le capteur infrarouge 3 est généralement un capteur microbolomètre formant une matrice bidimensionnelle de pixels avec un rapport de 4/3 entre la largeur de la matrice et sa hauteur. Un capteur de format VGA est par exemple utilisé pour obtenir une résolution de 640 x 480 pixels. Un capteur de format QVGA peut être également utilisé si l’on souhaite obtenir une résolution de 320 x 240 pixels. Dans tous les cas, la caméra thermique infrarouge 1 est capable de détecter les rayonnements infrarouges émis, transmis ou réfléchis par un obstacle situé dans son champ de vision, tel qu’un piéton 5. Plus précisément, ces rayonnements infrarouges pénètrent dans l’ouverture du bloc optique 2 qui les concentrent de façon à ce qu’ils viennent frapper certains des pixels de la matrice constituant le capteur microbolomètre, modifiant ainsi leur résistance électrique en les chauffant. Le capteur microbolomètre fournit en conséquence une image thermique (ou thermogramme) dont la résolution est celle de la matrice de pixels.
[0006] Un bloc optique typique d'une caméra thermique pour système ADAS est composé de deux ou trois lentilles, telles que les lentilles référencées Li , L2 et L3 sur la figure 1. Le nombre et le type de lentilles utilisées dépend principalement des exigences demandées en termes de qualité d’images et de champ de vision. Les lentilles sont classiquement en verre de chalcogénure. En effet, le verre de chalcogénure présente d’excellentes performances en termes de transmission aux longueurs d’ondes situées dans l’intervalle [8 pm ; 14 pm], En outre, le verre de chalcogénure peut être moulé, ce qui permet de réaliser facilement tout type de lentilles, en particulier des lentilles asphériques.
[0007] Cependant, le verre de chalcogénure n’est pas assez résistant aux chocs. En conséquence, vu que la caméra est embarquée à l'extérieur du véhicule, par exemple sur son pare-chocs avant, la caméra 1 comporte également une vitre 6 de protection placée à l’avant du bloc optique 2. Cette vitre 6 de protection est généralement réalisée en germanium et présente typiquement une épaisseur d’environ 4 mm afin de garantir une résistance efficace aux impacts de pierres et graviers. [0008] Ainsi, pour les caméras thermiques infrarouges connues du type de celle représentée schématiquement sur la figure 1 , le bloc optique 2 et le verre 6 de protection restent les parties les plus coûteuses (après le capteur bolomètre 3), du fait de l’utilisation de matériaux spécifiques tels que le germanium ou le verre de chalcogénure.
Résumé de l’invention
[0009] La présente invention a pour but de pallier les limitations de l’art antérieur en proposant une solution permettant de s’affranchir du verre 6 de protection.
[0010] En conséquence, la présente invention a pour objet une caméra thermique infrarouge apte à être embarquée sur un véhicule automobile, la caméra thermique comportant un bloc optique et étant caractérisée en ce que le bloc optique comporte une lentille frontale formant une partie externe de la caméra thermique, ladite lentille frontale étant en germanium ou en silicium.
[0011 ] Dans un mode de réalisation possible, la lentille frontale est en germanium avec une épaisseur moyenne minimale de 3 mm.
[0012] Dans ce cas, la lentille frontale en germanium a de préférence une épaisseur moyenne maximale de 4 mm.
[0013] Dans un autre mode de réalisation possible, la lentille frontale est en silicium avec une épaisseur moyenne minimale de 1 ,5 mm.
[0014] De préférence, la lentille frontale en silicium a une épaisseur moyenne maximale de 2 mm.
[0015] La surface extérieure de la lentille frontale en silicium est de préférence recouverte d’un revêtement dur, de type DLC.
[0016] Dans un mode de réalisation possible, La lentille frontale peut être sphérique.
[0017] Dans un mode de réalisation possible, le bloc optique comporte en outre au moins une autre lentille asphérique en verre de chalcogénure située derrière ladite lentille frontale selon l’axe optique du bloc optique.
[0018] La lentille frontale est dotée de préférence d’un revêtement anti-reflets. [0019] La caméra thermique infrarouge est configurée par exemple pour fonctionner avec une longueur d’ondes comprise dans l’intervalle [8 pm ; 14 pm] avec un taux moyen de transmission du bloc optique égal au minimum à 59%.
[0020] Dans un mode de réalisation possible, la caméra thermique infrarouge comporte en outre un capteur microbolomètre de format VGA ou QVGA centré sur l’axe optique et à l’arrière du bloc optique.
[0021] L’invention a également pour objet un système d’assistance à la conduite embarqué sur un véhicule automobile, caractérisé en ce qu’il comporte un dispositif de détection nocturne comportant une caméra thermique infrarouge l’invention, montée à l’extérieur du véhicule automobile.
Brève description des dessins
[0022] L’invention sera mieux comprise au vu de la description suivante faite en référence aux figures annexées, dans lesquelles :
- la figure 1 , déjà décrite ci-avant, illustre schématiquement un exemple d’une caméra thermique infrarouge connue ;
- la figure 2 illustre schématiquement un exemple d’une caméra thermique infrarouge selon un mode de réalisation possible de l’invention ;
- la figure 3 représente les variations du taux de transmission d’une lentille en silicium en fonction de la longueur d’onde pour deux épaisseurs différentes de la lentille ;
- la figure 4 illustre un principe de réduction du cercle de couverture d’un bloc optique à un format panoramique.
Description de mode(s) de réalisation
[0023] La figure 2 représente schématiquement un exemple de caméra thermique infrarouge T selon un mode de réalisation possible de l’invention particulièrement adaptée à un système ADAS.
[0024] A l’instar de la caméra 1 de l’art antérieur représenté sur la figure 1 , la caméra thermique infrarouge T comporte essentiellement un bloc optique 2’ d’axe optique 4, et un capteur infrarouge 3 placé derrière le bloc optique 2 de manière à être centré sur l’axe optique 4 du bloc optique 2. Le capteur infrarouge 3 est de préférence un capteur microbolomètre de format VGA ou QVGA. [0025] Pour une caméra thermique comprenant un capteur 3 de format VGA (640x480 pixels), le bloc optique 2’ est configuré par exemple pour avoir les caractéristiques suivantes :
- Champ de vision (ou FOV) horizontal : 40 degrés ;
- Champ de vision (ou FOV) vertical : 30 degrés ;
- Ouverture : F/1 ,2 ;
- Distance focale : 10,9 mm ;
- Diamètre utile : 15 mm ;
- Longueur totale L du chemin optique : 21 ,3 mm .
[0026] Le bloc optique 2’ comporte au moins une lentille L’i . A titre d’exemple non limitatif, le bloc optique 2’ comporte ici trois lentilles L’i , L’2 et L’3, la lentille L’i étant la lentille dite frontale.
[0027] Contrairement à la caméra 1 , la caméra T ne comporte ici aucun verre de protection. Autrement dit, la lentille frontale L’i forme ici avantageusement une partie externe de la caméra thermique. Ceci est dû au fait que la lentille frontale L’i est ici réalisée, conformément à une première variante de l’invention, en silicium, compte-tenu de sa forte résistance aux impacts des pierres ou graviers.
[0028] Ce choix du silicium va à l’encontre des enseignements jusqu’ici connus, lesquels considèrent que le silicium ne présente pas un taux de transmission suffisant aux longueurs d’ondes de l’infrarouge.
[0029] Or, la Demanderesse a conduit différents essais de simulation de distances de détection obtenues avec les systèmes classiques ADAS pour la détection des piétons, des cyclistes et des animaux, qui ont pu montrer, de façon surprenante, qu’une transmission d’environ 59% pour le bloc optique d’une caméra thermique infrarouge sur la bande 8 - 14 pm est suffisante pour obtenir les distances de détection minimales (ou portées) généralement requises par ces systèmes ADAS (typiquement comprises entre 50 et 100 mètres pour un piéton).
[0030] Or des essais ont par ailleurs montré que des taux de transmission supérieurs à 59% peuvent être obtenus même pour une lentille en silicium, selon l’épaisseur de la lentille. Ainsi, la figure 3 illustre : - une première courbe Ci montrant les variations du taux de transmission d’une lentille en silicium d’épaisseur moyenne de 1 ,5 mm en fonction de la longueur d’onde IR ;
- une deuxième courbe C2 montrant les variations du taux de transmission d’une lentille en silicium d’épaisseur moyenne de 2 mm en fonction de la longueur d’onde IR.
[0031 ] Par « épaisseur moyenne », on entend la moyenne des différentes épaisseurs de la lentille mesurées parallèlement à l’axe optique de la lentille, sur toute la surface optique de la lentille. Pour les deux courbes, la lentille en silicium est par ailleurs dotée d’un revêtement dur en face avant, et d’un traitement anti-reflet en face arrière.
[0032] D’après ces courbes, le taux moyen T de transmission obtenu pour chacune des épaisseurs (d=1 ,5mm ou d=2mm) de lentille en silicium dépend des longueurs d’onde comme résumé dans le tableau suivant :
Figure imgf000008_0001
[0033] Dans un mode de réalisation conforme à l’invention, l’épaisseur moyenne de la lentille frontale L’1 en silicium est choisie pour être au minimum de 1 ,5 mm.
[0034] Dans un autre mode de réalisation conforme à l’invention, l’épaisseur moyenne de la lentille frontale L’1 en silicium est choisie pour être au maximum de 2 mm.
[0035] Dans un mode de réalisation préféré, l’épaisseur moyenne de la lentille frontale L’1 en silicium est choisie dans l’intervalle [1 ,5 mm ; 2 mm],
[0036] Dans l’exemple schématisé sur la figure 2, la lentille L’1 en silicium est avantageusement sphérique, et l’épaisseur moyenne de la lentille L’1 en silicium est choisie égale à 1 ,5 mm, et présente ainsi, comme on l’a vu précédemment, un taux de transmission de 75,8% pour les longueurs d’onde dans l’intervalle [8 pm ; 12 pm], et un taux de transmission de 59,6% pour les longueurs d’onde dans l’intervalle [12 m ; 14 pm]. Les autres lentilles L’2 et L’3 sont des lentilles asphériques en verre de chalcogénure, présentant chacune un taux de transmission de 96.2% pour les longueurs d’onde dans l’intervalle [8 pm ; 12 pm], et un taux de transmission de 90,6% pour les longueurs d’onde dans l’intervalle [12 pm ; 14 pm],
[0037] La surface extérieure de la lentille de silicium L’1 est dotée avantageusement d'un revêtement dur, par exemple un revêtement de carbone amorphe adamantin (connu sous l’acronyme anglosaxon DLC) afin de résister aux impacts de pierres. Toutes les surfaces des lentilles ont de préférence un revêtement anti-reflets afin de maximiser la transmission.
[0038] Dans ce cas, la transmission globale Tg du bloc optique 2’ est donnée par le produit des transmissions de chaque lentille, c’est-à-dire dans notre exemple
Tg = 96.2% * 96.2% * 75.8% = 70.1 % sur la bande 8-12 pm
Tg = 90.6% * 90.6% * 59.6% = 48.9% sur la bande 12-14 pm soit une moyenne de 63% sur la bande 8-14 pm, ce qui est suffisant pour les applications ADAS.
[0039] Selon une deuxième variante de réalisation conforme à l’invention, le matériau utilisé pour la lentille frontale L’1 est le germanium. Dans ce cas, la lentille frontale L’1 possède une épaisseur moyenne minimale de 3 mm. L’épaisseur moyenne de la lentille L’1 en germanium n’excède pas de préférence 4 mm.
[0040] Le bloc optique 2’ conforme à la présente invention n’est pas limité aux trois lentilles décrites en référence à la figure 2. D’autres modes de réalisation, notamment avec un nombre plus ou moins important de lentilles, peuvent être utilisés sans départir du cadre de la présente invention, à partir du moment où la lentille frontale L’1 , qui donne directement sur l’extérieur lorsque la caméra est montée sur un véhicule est soit en silicium, soit en germanium, et où le taux moyen de transmission globale Tg du bloc optique est au minimum égal à 59% aux longueurs d’onde comprise dans l’intervalle [8 pm ; 14 pm]. [0041 ] Dans tous les cas, on optimise non seulement le coût de la caméra thermique mais également son encombrement puisqu’il n’est plus nécessaire d’utiliser un verre de protection.
[0042] Comme on l’a expliqué ci-avant, le capteur 3 utilisé dans une caméra thermique infrarouge pour système ADAS est généralement de forme rectangulaire, avec un format VGA ou QVGA. L’objectif (ou bloc optique) est quant à lui généralement composé de lentilles circulaires, de sorte qu’il focalise les rayons infrarouges entrant sur un cercle, appelé cercle de couverture. Classiquement, les spécificités du bloc optique en termes notamment de nombre de lentilles et de type de lentilles sont calculées par des algorithmes de conception complexes permettant de répondre à des exigences prédéterminées en termes de qualité d’images recherchée, et de faire en sorte que le rectangle représentatif du capteur soit inscrit dans le cercle associé au bloc optique. Ceci est illustré sur la vue (a) de la figure 4 qui montre la forme rectangulaire 7 du capteur est inscrit dans le cercle 8 de couverture du bloc optique. On a vu par ailleurs que, si la lentille frontale L’i est en silicium, cette lentille doit être de préférence sphérique, pour des raisons de coût de fabrication. Or, dans ce cas, il s’avère que les algorithmes de conception peuvent ne pas converger, notamment si les exigences prédéterminées requises comportent un champ de vision (FOV) requis supérieur à 40°. Autrement dit, les algorithmes de conception ne sont pas capables de trouver une composition du bloc optique garantissant un champ de vision supérieur à 40° si on lui impose une lentille frontale en silicium sphérique.
[0043] Ce problème peut être contourné en remarquant que, dans le cadre des détections d’objets pour les applications ADAS, on peut se contenter d’avoir un champ de vision vertical au plus égal à 20°. Cela signifie que le format 4/3 classiquement adopté du fait de l’utilisation de capteur VGA ou QVGA apparaît en fait comme surdimensionné, et qu’il suffirait d’avoir un format panoramique (16/9). Pour obtenir un tel format panoramique tout en continuant d’utiliser un capteur au format 4/3, on dimensionne avantageusement le bloc optique 2’ de manière à ce que son cercle de couverture 8’ (voir vue (b) de la figure 4) soit circonscrit non pas au rectangle 7 de format 4/3, mais au rectangle 7’ de format panoramique. Le fait de réduire le cercle de couverture permet aux algorithmes de conception de converger vers une solution tout en utilisant une lentille frontale sphérique en silicium. Les quatre coins de l'image deviendraient flous mais seraient supprimés de l'image finale de sortie.

Claims

Revendications Caméra thermique infrarouge (1’) apte à être embarquée sur un véhicule automobile, la caméra thermique (1’) comportant un bloc optique (2’) et étant caractérisée en ce que le bloc optique (2’) comporte une lentille frontale (L’i) formant une partie externe de la caméra thermique (T), ladite lentille frontale (L’i) étant en germanium ou en silicium. Caméra thermique infrarouge (T) selon la revendication 1 , caractérisée en ce que la lentille frontale (L’i) est en germanium avec une épaisseur moyenne minimale de 3 mm. Caméra thermique infrarouge (T) selon la revendication 2, caractérisée en ce que la lentille frontale (L’i) en germanium a une épaisseur moyenne maximale de 4 mm. Caméra thermique infrarouge (T) selon la revendication 1 , caractérisée en ce que la lentille frontale (L’i) est en silicium avec une épaisseur moyenne minimale de 1 ,5 mm. Caméra thermique infrarouge (T) selon la revendication 4, caractérisée en ce que la lentille frontale (L’i) en silicium a une épaisseur moyenne maximale de 2 mm. Caméra thermique infrarouge (T) selon l’une quelconque des revendications 4 ou 5, caractérisée en ce que la surface extérieure de la lentille frontale (L’i ) en silicium est recouverte d’un revêtement dur, de type DLC. Caméra thermique infrarouge (T) selon l’une quelconque des revendications précédentes, dans laquelle la lentille frontale (L’i ) est sphérique. Caméra thermique infrarouge (T) selon l’une quelconque des revendications précédentes, dans laquelle le bloc optique (2’) comporte en outre au moins une autre lentille (L’2, L’3) asphérique en verre de chalcogénure située derrière ladite lentille frontale (L’i ) selon l’axe optique (4) du bloc optique (2’). Caméra thermique infrarouge (T) selon l’une quelconque des revendications précédentes, dans laquelle la lentille frontale (L’i ) est dotée d’un revêtement anti-reflets. Caméra thermique infrarouge (T) selon l’une quelconque des revendications précédentes, comportant en outre un capteur microbolomètre (3) de format VGA ou QVGA centré sur l’axe optique (4) et à l’arrière du bloc optique (2’). Système d’assistance à la conduite embarqué sur un véhicule automobile, caractérisé en ce qu’il comporte un dispositif de détection nocturne comportant une caméra thermique infrarouge (1’) selon l’une quelconque des revendications précédentes, montée à l’extérieur du véhicule automobile.
PCT/EP2021/084468 2020-12-16 2021-12-07 Caméra thermique infrarouge et système embarqué d'assistance à la conduite d'un véhicule automobile comportant une telle caméra WO2022128592A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020133691.8A DE102020133691A1 (de) 2020-12-16 2020-12-16 Infrarot-Wärmebildkamera und bordeigenes System zur Unterstützung des Führens eines eine solche Kamera aufweisenden Kraftfahrzeugs
DE102020133691.8 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022128592A1 true WO2022128592A1 (fr) 2022-06-23

Family

ID=79185678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/084468 WO2022128592A1 (fr) 2020-12-16 2021-12-07 Caméra thermique infrarouge et système embarqué d'assistance à la conduite d'un véhicule automobile comportant une telle caméra

Country Status (2)

Country Link
DE (1) DE102020133691A1 (fr)
WO (1) WO2022128592A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4234721A1 (de) * 1991-10-16 1993-04-22 Bodenseewerk Geraetetech Dreilinsenobjektiv
US20120229892A1 (en) * 2011-03-09 2012-09-13 Samsung Techwin Co., Ltd. Infrared optical lens system
FR3016704A1 (fr) * 2014-01-17 2015-07-24 Commissariat Energie Atomique Capteur d'image infrarouge a grand champ de vision et grande ouverture numerique
US20180275378A1 (en) * 2015-12-03 2018-09-27 Kyocera Optec Co., Ltd. Infrared imaging lens system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL126309C (fr) 1965-06-10
GB1451276A (en) 1974-05-06 1976-09-29 Rank Organisation Ltd Lens structure
CH658731A5 (de) 1982-06-25 1986-11-28 Kern & Co Ag Lichtstarkes objektiv fuer waermestrahlung.
FR2667695B1 (fr) 1990-10-09 1993-08-27 Thomson Trt Defense Systeme d'objectifs a athermalisation optique.
US6145984A (en) 1997-12-23 2000-11-14 Maui Jim, Inc. Color-enhancing polarized lens
GB9809738D0 (en) 1998-05-08 1998-07-08 Pilkington Perkin Elmer Ltd Optical systems
SE518836C2 (sv) 1999-05-25 2002-11-26 Flir Systems Ab Anordning och förfarande för ett infrarött bildanalyserande autofokus
US7187505B2 (en) 2002-10-07 2007-03-06 Fresnel Technologies, Inc. Imaging lens for infrared cameras
IL153967A (en) 2003-01-15 2014-01-30 Elbit Systems Ltd Multifunctional camera for changing vision conditions
US6989537B2 (en) 2003-11-18 2006-01-24 Raytheon Company Compact inverse-telephoto infrared imaging optical system
US7329869B2 (en) 2005-09-13 2008-02-12 Autoliv Development Ab Camera system
US20150109456A1 (en) 2012-01-23 2015-04-23 Flir Systems, Inc. Tir imaging lens, image capturing system having the same, and associated methods
CN105324701B (zh) 2013-06-27 2018-03-30 尤米科尔公司 紧凑型消色差且被动的仅光学消热差摄远透镜
US9817158B2 (en) 2015-01-22 2017-11-14 INVIS Technologies Corporation Gradient index lens for infrared imaging
DE102015110004B4 (de) 2015-06-22 2017-02-23 Jenoptik Optical Systems Gmbh Thermisch kompensiertes IR-Objektiv und IR-Kamera mit einem solchen IR-Objektiv
DE102019125429B3 (de) 2019-09-20 2020-12-10 Motherson Innovations Company Limited Detektionssystem und ein Fahrzeug mit diesem System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4234721A1 (de) * 1991-10-16 1993-04-22 Bodenseewerk Geraetetech Dreilinsenobjektiv
US20120229892A1 (en) * 2011-03-09 2012-09-13 Samsung Techwin Co., Ltd. Infrared optical lens system
FR3016704A1 (fr) * 2014-01-17 2015-07-24 Commissariat Energie Atomique Capteur d'image infrarouge a grand champ de vision et grande ouverture numerique
US20180275378A1 (en) * 2015-12-03 2018-09-27 Kyocera Optec Co., Ltd. Infrared imaging lens system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"REARVIEW MIRROR PROJECTION SYSTEM", RESEARCH DISCLOSURE, KENNETH MASON PUBLICATIONS, HAMPSHIRE, UK, GB, no. 331, 1 November 1991 (1991-11-01), pages 870 - 871, XP000255246, ISSN: 0374-4353 *

Also Published As

Publication number Publication date
DE102020133691A1 (de) 2022-06-23

Similar Documents

Publication Publication Date Title
EP1923280B1 (fr) Capteur photosensible dans le domaine automobile
EP1724153B1 (fr) Dispositif d'éclairage ou de signalisation de véhicule automobile
EP3584126B1 (fr) Module de nettoyage d'un élément optique ou d'un dispositif de protection d'un élément optique et système d'assistance à la conduite associé
EP2367052A1 (fr) Caméra agencée pour pouvoir être embarquée sur un véhicule
EP3526065B1 (fr) Pare-brise d'aide a la conduite
FR2967107A1 (fr) Montage de camera et son procede pour un vehicule automobile
EP1890485B1 (fr) Détecteur de rayonnement infrarouge et dispositif d'aide à la conduite ou au pilotage comprenant un tel dispositif
WO2015033036A1 (fr) Equipements de véhicule automobile intégrant un dispositif de mesure de distance d'objets
EP0674775B1 (fr) Telescope pour imagerie infrarouge ou visible
WO2022128592A1 (fr) Caméra thermique infrarouge et système embarqué d'assistance à la conduite d'un véhicule automobile comportant une telle caméra
EP0546928B1 (fr) Dispositif intégré de détection et d'identification d'obstacles embarqué notamment à bord d'un véhicule automobile
WO2020070078A1 (fr) Procédé de pilotage de modules de projection de faisceaux de lumiere pixellise pour vehicule
WO2018073527A1 (fr) Pare-brise et dispositif pour aide a la conduite
FR2898092A1 (fr) Dispositif de retroviseur pour vehicule automobile et utilisation du dispositif
FR3039731A1 (fr) Dispositif d'imagerie, procede de commande associe, et vehicule automobile equipe d'un tel dispositif d'imagerie
EP3908873B1 (fr) Accessoire de vision de tres grand angle pour detecteur infrarouge
EP1713132B1 (fr) Capteur photosensible et ses applications dans le domaine automobile
WO2023030821A1 (fr) Dispositif pour véhicule comprenant une caméra et une zone de masquage en regard de ladite caméra
FR3101420A1 (fr) Méthode d’évaluation de la qualité optique d’une zone délimitée d’un vitrage
EP3729171A1 (fr) Système de projection d'images, dispositif d'affichage tête-haute comportant un tel système et méthode de conception optique associée
FR2945130A1 (fr) Organe guide de lumiere et capteur optique equipe d'un tel guide de lumiere
FR2973522A1 (fr) Module optique pour dispositif de vision panoramique, procede de fabrication et dispositif de vision panoramique
EP3740810A1 (fr) Afficheur tete-haute pour vehicule automobile et systeme d'aide a la conduite comportant un tel afficheur
FR3054171A1 (fr) Systeme de prises de vues anti-eblouissement
FR3100618A1 (fr) Elément de couverture de l’ouverture de projection d’un dispositif d’affichage tête-haute

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21835657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21835657

Country of ref document: EP

Kind code of ref document: A1