WO2022127715A1 - 一种基于pcs和mii分离的信号质量优化方法、装置及系统 - Google Patents
一种基于pcs和mii分离的信号质量优化方法、装置及系统 Download PDFInfo
- Publication number
- WO2022127715A1 WO2022127715A1 PCT/CN2021/137229 CN2021137229W WO2022127715A1 WO 2022127715 A1 WO2022127715 A1 WO 2022127715A1 CN 2021137229 W CN2021137229 W CN 2021137229W WO 2022127715 A1 WO2022127715 A1 WO 2022127715A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mii
- pcs
- reset
- state
- port
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000005457 optimization Methods 0.000 title claims abstract description 18
- 238000000926 separation method Methods 0.000 title claims abstract description 10
- 230000005540 biological transmission Effects 0.000 claims abstract description 12
- 230000001360 synchronised effect Effects 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 10
- 238000003860 storage Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000004590 computer program Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03878—Line equalisers; line build-out devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03878—Line equalisers; line build-out devices
- H04L25/03885—Line equalisers; line build-out devices adaptive
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/50—Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate
Definitions
- the invention relates to the technical field of Ethernet, in particular to a method, device and system for optimizing signal quality based on separation of PCS and MII.
- the IEEE802.3 standard defines the implementation of the PCS (Physical Coding Sublayer, physical coding sublayer) and MII (Media Independent Interface, media independent interface) sublayers.
- PCS and MII at different rates are basically similar in structure. Taking the 10G rate as an example, the PCS and MII structures are shown in Figure 1.
- 10G BASE-R PCS PCS layer of 10G BASE-R protocol
- encodes the signal in 64B/66B can perform error detection, and sends the encoded data to the lower PMA (Physical Media Accessory). Physical medium attachment) module, and then send it to the transmission medium and send it to the opposite end. It can judge whether the link status has been established and notify the upper management system.
- XGMII 10 Gigabit Media Independent Interface
- PHY Physical layer
- PCS Physical layer
- the signal obtained by the receiving end SerDes may exist compared with the original signal.
- SerDes short for SERializer (serializer)/DESerializer (deserializer)
- Various losses or distortions if the loss is too large, the receiving end cannot recover the data signal, which will cause bit errors or loss of data. Therefore, after the Ethernet link is established, it is necessary to adjust the parameters of the equalizer at the receiving end, so that the loss of the signal on the link can be reasonably compensated and the system bit error rate can be reduced.
- the link status is established depends on the PCS layer for judgment. Once the establishment is completed, the upper-layer system perceives it and allows users to send and receive data. If equalizer tuning is performed at this time, due to different tuning algorithms, link quality may fluctuate during execution, resulting in bit errors. Therefore, the safest way to adjust the equalizer is to complete the adjustment before user data is sent and received. Once the user data is sent and received, the equalizer must be fixed.
- the equalizer is adjusted to a fixed position before the completion of the PCS chain establishment. Once the PCS chain is established, the upper-layer system immediately starts to send and receive data without adjustment. In the current common design, the performance of the SerDes receiving end is closely related to the transmitted pattern. If the received pattern is not random enough, it is difficult for CDR (Clock Data Recovery) to recover the user data, so the equalizer adjustment is performed. Excellent is inaccurate. That is to say, before the PCS chain is established, it is impossible to actually determine what kind of code pattern is on the link. If the pattern is not random enough (such as 8180 code), the result of equalizer tuning will not be ideal at this time.
- CDR Chip Data Recovery
- the equalizer is adjusted to reduce bit errors.
- the link quality may fluctuate, resulting in bit errors.
- the main purpose of the embodiments of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to propose a signal quality optimization method, device and system based on the separation of PCS and MII.
- the operation based on the MII layer is temporarily Hide the link up (connection) state, and then notify the system to perform equalizer tuning, release the state after completion, and start sending and receiving user data, thereby avoiding link fluctuations caused by equalizer adjustment.
- a method for optimizing signal quality based on PCS and MII separation comprising:
- Step 1 Set the initialization state of the system port and prevent the transmission of MAC data
- Step 2 Separately perform equalizer adjustment control based on the physical coding sublayer PCS and MII;
- Step 3 Check the port status, and transmit the MAC data when the port connection link up status is set.
- preventing the transmission of MAC data includes:
- the MII sender sends the remote fault to the peer MII receiver to prevent the peer from sending MAC data.
- the step 1 of setting the initialization state of the system port includes:
- Step 1.1 the PCS sending end is de-reset
- Step 1.2 the MII transmitter is de-reset
- Step 1.3 MAC de-reset
- Step 1.4 the MII sender sends the remote fault to the peer MII receiver
- Step 1.5 The PCS receiving end is de-reset.
- performing equalizer adjustment control in step 2 includes:
- the performing equalizer adjustment control according to the synchronization state and the reset state includes:
- the step 3 checking the port status includes:
- Step 3.1 Determine whether PCS synchronization is completed, if so, go to Step 3.2, if not, continue to the current step;
- Step 3.2 Determine whether the MII receiver has been reset, if so, go to Step 3.3, if not, go to Step 3.1;
- Step 3.3 Determine whether there is a local end failure, if not, set the port status to link up and start transmitting user data, if so, go to step 3.1.
- the present application also provides a signal quality optimization device based on PCS and MII separation, including:
- the port initialization setting module is used to set the initialization state of the system port and prevent the data transmission of the MII receiving end of the medium independent interface;
- an equalizer adjustment control module for performing equalizer adjustment control separately based on the physical coding sublayer PCS and MII;
- the port status check module is used to check the port status and start transmitting user data when the port connection link up status is set.
- the port initialization setting module includes:
- a port de-reset unit used for the de-reset operation of the PCS transmitter, the MII transmitter, the MAC port and the PCS receiver;
- the remote fault sending unit is configured to control the MII sending end to send the remote fault to the opposite MII receiving end.
- the equalizer adjustment control module includes:
- the first state acquisition unit is used to acquire the current PCS synchronization state and the reset state of the MII receiver;
- an equalizer adjustment control unit configured to perform equalizer adjustment control according to the synchronization state and the reset state;
- the port status checking module includes:
- the second state acquisition unit is used to acquire the current PCS synchronization state and the reset state of the MII receiver;
- the link up state setting unit is used to set the port state to link up and start to transmit MAC data when the PCS synchronization has been completed, the MII receiving end has been de-reset, and there is no local end failure.
- the present application also provides an Ethernet communication system, including the above-mentioned signal quality optimization device.
- the MAC data transmission is blocked, and the equalizer adjustment control and the port link up status check are combined to perform silent adjustment on the SerDes receiver equalizer without the user's perception, to ensure that Once the user data is sent and received, the link quality is the best, so as to avoid the bit error caused by the equalizer adjustment and reduce the system bit error rate.
- Fig. 1 is the structure diagram of the Ethernet communication system
- FIG. 2 is a flowchart of a signal quality optimization method according to an embodiment of the present invention.
- FIG. 3 is a flowchart of a method for setting an initialization state of a system port according to an embodiment of the present invention
- FIG. 4 is a flowchart of a method for adjusting and controlling an equalizer according to an embodiment of the present invention
- FIG. 5 is a flow chart of a method for checking the link up state according to an embodiment of the present invention.
- FIG. 6 is a structural diagram of an apparatus for optimizing signal quality according to an embodiment of the present invention.
- FIG. 1 is a block diagram of an Ethernet communication system.
- the PCS layer includes the Block Synchronization function. Taking the 10G rate as an example, the standard section 49.2.2 describes the block synchronization process. After the synchronization is completed, the PCS will continuously monitor the signal quality through the BER monitor. Very few, the receiving channel of the PCS starts to continuously receive the encoded data blocks. In principle, user data can already be sent and received at this time.
- the MII layer above the PCS can control the sending of Link fault (connection fault) signaling. If a fault (fault) is received, the underlying PHY module will consider that a local fault (local fault) has occurred, and the MII will stop sending MAC packets and start sending remote faults to the peer end, so that the peer end can also perceive the link abnormality. .
- the embodiment of the present invention uses the MII layer to hide the state of the establishment of the PCS link.
- the method is to abstract the concept of link up from the MII layer, which requires that the following conditions must be met: (1) PCS synchronization is completed; (2) The MII receiver has been enabled; (3) There is no local fault. Only when the system sees that the port is link up, does it start transmitting user data.
- the MII receiver After the PCS synchronization is completed, the MII receiver is not manually enabled, but the equalizer adjustment module is allowed to work to improve the signal quality. The MII receiver is not enabled until the equalizer adjustment module is completed. At the same time, another process will repeatedly judge whether these three conditions are established, and once all are established, the link up status will be reported to the system.
- FIG. 2 is a flowchart of a method for optimizing signal quality according to an embodiment of the present invention. As can be seen from Figure 2, it includes:
- Step 1 Set the initialization state of the system port and prevent the transmission of MAC data
- Step 2 Separately perform equalizer adjustment control based on the physical coding sublayer PCS and MII;
- Step 3 Check the port status, and transmit the MAC data when the port connection link up status is set.
- FIG. 3 is a flowchart of a method for setting an initialization state of a system port according to an embodiment of the present invention.
- the de-reset action of the port in Figure 3 is essentially to enable it and start working.
- De-resetting the port includes: de-resetting the PCS sending end; de-resetting the MII sending-end; de-resetting the MAC; and de-resetting the PCS receiving end. All modules, except the MII receiver, are enabled here. In addition to enabling the MII sender, it also needs to send a remote fault remote fault to the peer MII receiver. The reason is that the peer end cannot perceive the completion of the link establishment.
- the peer end may consider PCS Synchronization is complete and data can be sent, but the equalizer has not actually been tuned yet. If a remote fault is sent, according to Section 46.3.4 of the IEEE 802.3 standard, the peer end will stop sending MAC packets, thereby preventing user data, and will not start sending packets until the equalizer is tuned.
- Fig. 4 is a flow chart of a method for adjusting and controlling an equalizer according to an embodiment of the present invention; the flow of adjusting and controlling the equalizer is arranged in a separate process, and is repeatedly executed during system operation.
- PCS coded signal PCS coded signal
- equalizer adjustment different systems have different implementation details, but the performance of the SerDes receiver is closely related to the transmitted pattern. If the received pattern is not random enough, the equalizer adjustment is inaccurate. Since the adjustment and equalization can only occur after the PCS synchronization is completed, the code pattern must be the PCS Idle code at the beginning of the adjustment, which is randomly distributed, which ensures that this adjustment is completed on a stable and available code pattern.
- FIG. 5 is a flowchart of a method for checking a port status according to an embodiment of the present invention.
- the port connection link up state must meet the following conditions at the same time: (1) PCS synchronization is completed; (2) MII receiver is enabled; (3) There is no local fault at the local end.
- the link up status polling is also in its own separate process, and the delay can be adjusted through delay_time1.
- the optional status polling process is as follows: determine whether PCS synchronization is completed, if so, go to the next step, if not, continue to the current step; determine whether the MII receiver has been reset, if so, go to the next step, if not, skip Go to the previous step; judge whether the local fault is received, if not, set the port status to link up, start transmitting user data, and continue to start status polling. Only when the system sees that the port is link up, does it start transmitting user data.
- FIG. 6 is a structural diagram of an apparatus for optimizing signal quality according to an embodiment of the present invention.
- the device includes: a port initialization setting module, which is used to set the initialization state of the system port and prevent the transmission of MAC data; an equalizer adjustment control module, which is used to separate and execute the equalizer based on the physical coding sublayer PCS and MII. Adjustment control; the port status check module is used to check the port status and transmit the MAC data when the port connection link up status is set.
- the port initialization setting module includes: a port de-resetting unit, used for de-resetting the PCS sending end, the MII sending end, the MAC port and the PCS receiving end; a remote fault sending unit, used In controlling the MII sending end to send Remote Fault to the opposite end MII receiving end.
- the equalizer adjustment control module includes: a first state acquisition unit for acquiring the current PCS synchronization state and the reset state of the MII receiver; an equalizer adjustment control unit for acquiring the synchronization state and the reset state according to the Makes equalizer adjustment controls.
- the port state inspection module includes: a second state acquisition unit for acquiring the current PCS synchronization state and the reset state of the MII receiver; link up state setting unit for when the PCS synchronization has been completed, all When the MII receiving end has been de-reset and there is no local fault, set the port status to link up and start transmitting user data.
- an embodiment of the present invention also provides an Ethernet communication system, which includes the above signal quality optimization device.
- the port link up state is temporarily hidden based on the operation of the MII layer, and then the system is notified to perform equalizer tuning. After the tuning is completed, the state is released, and the start of Send and receive user data to avoid link fluctuations caused by equalizer adjustments.
- embodiments of one or more of the embodiments of this specification may be provided as a method, system or computer program product. Accordingly, one or more embodiments of this specification may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, one or more embodiments of the present specification may employ a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein form.
- computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
- One or more embodiments of this specification may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer.
- program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
- One or more embodiments of this specification may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
- program modules may be located in both local and remote computer storage media including storage devices.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Small-Scale Networks (AREA)
Abstract
本发明实施例涉及一种基于PCS和MII分离的信号质量优化方法、装置及系统,其中该方法包括:步骤1:设置系统端口的初始化状态,并阻止MAC数据的传输;步骤2:基于物理编码子层PCS和MII分离执行均衡器调整控制;步骤3:检查端口状态,并在端口连接link up状态置起时传输MAC数据。本发明通过在PCS层链路建立完成后,基于MII层的操作暂时将端口link up状态隐藏起来,然后通知系统做均衡器调优,在调优完成后再放开该状态,并开始收发用户数据,从而避免均衡器调整带来的链路波动。
Description
本发明要求于2020年12月15日提交中国专利局、申请号为202011476971.5、发明名称“一种基于PCS和MII分离的信号质量优化方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
本发明涉及以太网技术领域,具体涉及一种基于PCS和MII分离的信号质量优化方法、装置及系统。
IEEE802.3标准定义了PCS(Physical Coding Sublayer,物理编码子层)和MII(Media Independent Interface,介质无关接口)子层的实现方式。不同速率的PCS和MII结构上基本类似。以10G速率为例,PCS和MII结构如图1所示。根据802.3第49章,10G BASE-R PCS(10G BASE-R协议的PCS层)对信号进行64B/66B编码,可进行误码检测,并且将编码后的数据发往更底层的PMA(Physical MediaAccessory物理介质附件)模块,进而送到传输介质发给对端。它可以判断链路状态是否已经建立完成,并通知给上层管理系统。根据802.3第46章,XGMII(10 Gigabit Media Independent Interface)是10Gb独立于媒体的接口,是一个可选的层,它存在的意义是给底层的PHY(Physics物理层)(包括PCS)到更上层的MAC(Media Access Control介质访问控制)之间架起一个桥梁。
在以太网通信系统中,由于端口之间连线的介质情况不同,导致接收端SerDes(SERializer(串行器)/DESerializer(解串器)的简称)获取到的信号与原始信号相比可能存在各种损耗或失真,如果这个损耗大到一定程度,接收端无法恢复出数据信号,就会造成数据的误码或丢失。所以以太网链 路在建立起来之后,必须进行接收端的均衡器参数调优,从而使信号在链路上的损耗得到合理补偿,降低系统误码率。
由于链路状态是否建立起来,是依赖PCS层进行判断的,一旦建立完成,上层系统感知到,就会允许用户进行数据收发。如果此时再进行均衡器调优,由于调优算法的不同,在执行期间可能会让链路质量产生波动,导致误码产生。因此调整均衡器的最保险的做法是,在用户数据收发之前把调整动作做完,一旦开始收发用户数据,均衡器就要固定下来。
现有技术在PCS建链完成之前,将均衡器调整到固定的位置。一旦PCS建链完成,上层系统立刻开始收发数据,不再调整。目前普遍的设计中,SerDes接收端的性能与发送的码型密切相关,如果收到的码型不够随机,则CDR(Clock Data Recovery时钟数据恢复)很难恢复出用户数据,由此进行均衡器调优是不准确的。也就是说,在PCS建链完成之前,实际无法确定链路上到底是何种码型,如果这个码型不够随机(如8180码),此时做均衡器调优的结果不会理想。
以太网PCS层判断链路建立完成后,用户数据开始收发,此时为了降低误码而调整均衡器,在执行期间可能会让链路质量产生波动,导致误码产生。
发明内容
本发明实施例的主要目的在于克服现有技术的缺点与不足,提出一种基于PCS和MII分离的信号质量优化方法、装置及系统,当PCS层链路建立完成后,基于MII层的操作暂时将link up(连接)状态隐藏起来,然后通知系统做均衡器调优,完成后再放开该状态,并开始收发用户数据,从而避免均衡器调整带来的链路波动。
根据本申请的一个方面,提供一种基于PCS和MII分离的信号质量优化方法,包括:
步骤1:设置系统端口的初始化状态,并阻止MAC数据的传输;
步骤2:基于物理编码子层PCS和MII分离执行均衡器调整控制;
步骤3:检查端口状态,并在端口连接link up状态置起时传输MAC数据。
一实施例中,阻止MAC数据的传输,包括:
MII发送端向对端MII接收端发送远端故障,以阻止对端发送MAC数据。
一实施例中,所述步骤1设置系统端口的初始化状态包括:
步骤1.1:所述PCS发送端解复位;
步骤1.2:所述MII发送端解复位;
步骤1.3:MAC解复位;
步骤1.4:所述MII发送端向对端MII接收端发送远端故障;
步骤1.5:所述PCS接收端解复位。
一实施例中,所述步骤2执行均衡器调整控制包括:
获取当前的PCS同步状态和MII接收端的复位状态,根据所述同步状态和复位状态进行均衡器调整控制。
一实施例中,所述根据所述同步状态和复位状态进行均衡器调整控制包括:
若所述PCS已同步,且所述MII接收端复位,则轮询均衡器是否调整完成,并将轮询结果保存在临时变量is_rxeq_tuning中,若is_rxeq_tuning=1且均衡器调整已结束,则进入所述步骤3;
若所述PCS未同步,且所述MII接收端解复位,则使所述MII接收端恢复复位,并重新向对端MII接收端发送远端故障,将is_rxeq_tuning设置为0,等待下次出现is_rxeq_tuning=1时重新调整均衡器;
若所述PCS未同步,且所述MII接收端复位,则将均衡器恢复到默认值,并将is_rxeq_tuning设置为0,等待PCS同步成功;
若所述PCS已同步,且所述MII接收端解复位,则将is_rxeq_tuning设置为0,进入所述步骤3。
一实施例中,所述步骤3检查端口状态包括:
步骤3.1:判断PCS同步是否完成,若是则进入步骤3.2,若否则继续进行当前步骤;
步骤3.2:判断MII接收端是否已解复位,若是则进入到步骤3.3,若否则跳转到步骤3.1;
步骤3.3:判断是否存在本端故障,若否则将端口状态设置为link up,并开始传输用户数据,若是则跳转到步骤3.1。
本申请还提供一种基于PCS和MII分离的信号质量优化装置,包括:
端口初始化设置模块,用于设置系统端口的初始化状态,并阻止介质无关接口MII接收端的数据传输;
均衡器调整控制模块,用于基于物理编码子层PCS和MII分离执行均衡器调整控制;
端口状态检查模块,用于检查端口状态,并在端口连接link up状态置起时开始传输用户数据。
一实施例中,所述端口初始化设置模块包括:
端口解复位单元,用于所述PCS发送端、所述MII发送端、MAC端口和所述PCS接收端解复位操作;
远端故障发送单元,用于控制所述MII发送端向对端MII接收端发送远端故障。
一实施例中,所述均衡器调整控制模块包括:
第一状态获取单元,用于获取当前的PCS同步状态和MII接收端的复位状态;
均衡器调整控制单元,用于根据所述同步状态和复位状态进行均衡器调整控制;和/或,
所述端口状态检查模块包括:
第二状态获取单元,用于获取当前的PCS同步状态和MII接收端的复位状态;
link up状态设置单元,用于在所述PCS同步已完成、所述MII接收端已解复位,且不存在本端故障时,将端口状态设置为link up,开始传输MAC数据。
本申请还提供一种以太网通信系统,包括如上所述的信号质量优化装置。
本发明实施例通过在端口初始化时,阻止MAC数据传输,并结合均衡器调整控制和端口link up状态检查的步骤,在用户不感知的情况下,对SerDes接收端均衡器做静默调优,确保一旦开始收发用户数据,链路质量即是最好的,从而避免均衡器调整带来的误码,降低系统误码率。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是以太网通信系统的结构图;
图2是本发明实施例的信号质量优化方法的流程图;
图3是本发明实施例设置系统端口的初始化状态的方法流程图;
图4是本发明实施例进行均衡器调整控制的方法流程图;
图5是本发明实施例检查link up状态的方法流程图;
图6是本发明实施例的信号质量优化装置的结构图。
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
图1是以太网通信系统的结构图。
PCS层包括Block Synchronization(块同步)功能,以10G速率为例,标准49.2.2章节描述了块同步的过程,当同步完成后,PCS会通过BER monitor持续监测信号质量,如果已同步且误码很少,则PCS的接收通道就开始持续接收编码后的数据块。原则上此时已经可以进行用户数据的收发了。
但是由于PCS的BER monitor相对于用户数据对误码率的要求来说,是一个更宽松条件,即使PCS同步上了,长时间的用户数据还是会有误码。所以需要调整更底层的SerDes接收端均衡器,以补偿信号的损耗。
PCS上面的MII层,根据标准46.3.4,可以控制Link fault(连接故障)信令的发出。如果收到fault(故障),底层的PHY模块会认为产生了local fault(局部故障),同时MII会停止发送MAC数据包,并且开始向对端发送remote fault,让对端也感知到链路异常。
为了让用户不感知均衡器调整带来的丢包等影响,本发明实施例利用 MII层将PCS链路建立的状态隐藏起来。方法是,从MII层抽象出link up的概念,它要求必须满足以下条件:(1)PCS同步完成;(2)MII接收端已使能;(3)没有local fault。只有系统上看到端口是link up的,才开始传输用户数据。
在PCS同步完成之后,人为不使能MII接收端,而是让均衡器调整模块工作,提升信号质量,直到均衡器调整模块工作完成,才把MII接收端使能。与此同时,另一进程会反复判断这三个条件是否成立,一旦全部成立,则将link up状态上报至系统。
图2是本发明实施例的信号质量优化的方法流程图。由图2可见,其包括:
步骤1:设置系统端口的初始化状态,并阻止MAC数据的传输;
步骤2:基于物理编码子层PCS和MII分离执行均衡器调整控制;
步骤3:检查端口状态,并在端口连接link up状态置起时传输MAC数据。
下面针对每个步骤做详细描述。
图3是本发明实施例设置系统端口的初始化状态的方法流程图。图3中对端口的解复位动作,实质是让其使能并开始工作。对端口进行解复位包括:PCS发送端解复位;MII发送端解复位;MAC解复位;PCS接收端解复位。所有的模块,除了MII接收端,其余都在这里使能。MII的发送端除了使能,还需要向对端MII接收端发送远端故障remote fault,原因是不能让对端感知到链路建立完成,如果此时不发remote fault,对端可能就认为PCS同步完成,可以开始发送数据了,但实际上均衡器还没调。如果发remote fault,根据IEEE 802.3标准46.3.4章节,对端会停止发送MAC数据包,从而阻止了用户数据,直到均衡器调优完毕,才开始发包。
图4是本发明实施例进行均衡器调整控制的方法流程图;均衡器调整 控制流程安排在一个单独的进程中,在系统运行期间反复执行。
在可选的均衡器调整控制中,首先获取当前的PCS同步状态,和MII接收端的复位状态。将其分为4种情况:
若PCS已同步,且MII接收端复位。这种情况意味着链路即将建立完成,需要去做均衡器调整,这里的一个典型场景如通信系统中交换机初次插线并开始建立链路。由于均衡器调整是在自己的进程中做的,所以需要每次轮询是否调整完成,并保存在临时变量is_rxeq_tuning中。如果发现is_rxeq_tuning为1并且已经调整完了,说明链路往link up的方向更进一步,可以让MII接收方向解复位了,并且停止发remote fault,等待另一进程检查link up即可。
若PCS未同步,且MII接收端解复位。这种情况意味着曾经处于link up状态,PCS开始是同步上的,但是后来失步了。即链路发生了由好变差的过程,这里的一个典型场景如链路建立完成之后,突然拔出线缆。这种情况需要MII接收端恢复复位,并重新向对端MII接收端发remote fault,等待下次出现状态1重新调整均衡器。
若PCS未同步,且MII接收端复位。这种情况即链路持续无法建立,对端没有任何有效信号(PCS编码信号)进来,此时是不可能进行用户数据传输的,这里的一个典型场景如通信系统中交换机启动后,端口不插线。这时要做的事情就是将均衡器恢复到默认值,等待PCS同步成功。
若PCS已同步,且MII接收端解复位。这种情况意味着所有动作已经做完,这里的一个典型场景如通信系统中交换机已经完成建链动作,等待link up之后就可以传输用户数据。此时只需清零is_rxeq_tuning,等待另一进程检查link up即可。
关于均衡器调整,不同的系统其实现细节有区别,但是SerDes接收端的性能与发送的码型密切相关,如果收到的码型不够随机,由此进行均衡器调优是不准确的。由于调均衡只可能出现在PCS同步完成之后,所以 开始调的时候码型一定是PCS Idle码,它是随机分布的,这就确保本次调优在一个稳定可用的码型上完成。
图5是本发明实施例检查端口状态的方法流程图。端口连接link up状态的置起必须同时满足以下条件:(1)PCS同步完成;(2)MII接收端已使能;(3)没有本端故障local fault。
link up状态轮询也是在自己单独的进程中,可通过delay_time1调整延时。可选的状态轮询过程如下:判断PCS同步是否完成,若是则进入下一步骤,若否则继续进行当前步骤;判断MII接收端是否已解复位,若是则进入到下一步骤,若否则跳转到上一步骤;判断是否接收到local fault,若否则将端口状态设置为link up,开始传输用户数据,若继续开始状态轮询。只有系统上看到端口是link up的,才开始传输用户数据。
本发明实施例通过上述设置,使得当PCS同步完成后,不立刻进行用户数据传输,而是通过MII层的复位和remote fault操作制造出一个时间间隙,在间隙中做完均衡器调优,之后才进行用户数据传输。从而避免均衡器调整带来的误码,降低系统误码率。
本发明实施例还提出了一种信号质量优化装置。图6是本发明实施例的信号质量优化装置的结构图。由图6可见,该装置包括:端口初始化设置模块,用于设置系统端口的初始化状态,并阻止MAC数据的传输;均衡器调整控制模块,用于基于物理编码子层PCS和MII分离执行均衡器调整控制;端口状态检查模块,用于检查端口状态,并在端口连接link up状态置起时传输MAC数据。
可选地,所述端口初始化设置模块包括:端口解复位单元,用于所述PCS发送端、所述MII发送端、MAC端口和所述PCS接收端解复位操作;远端故障发送单元,用于控制所述MII发送端向对端MII接收端发送Remote Fault。
可选地,所述均衡器调整控制模块包括:第一状态获取单元,用于获 取当前的PCS同步状态和MII接收端的复位状态;均衡器调整控制单元,用于根据所述同步状态和复位状态进行均衡器调整控制。
可选地,所述端口状态检查模块包括:第二状态获取单元,用于获取当前的PCS同步状态和MII接收端的复位状态;link up状态设置单元,用于当所述PCS同步已完成、所述MII接收端已解复位,且不存在local fault时,将端口状态设置为link up,开始传输用户数据。
该装置的工作方法流程如上述,此不赘述。
另外,本发明实施例还提出了一种以太网通信系统,其中包括上述信号质量优化装置。
本发明实施例通过在PCS层链路建立完成后,基于MII层的操作暂时将端口link up状态隐藏起来,然后通知系统做均衡器调优,在调优完成后再放开该状态,并开始收发用户数据,从而避免均衡器调整带来的链路波动。
上述实施例阐明的系统、装置、模块或单元,可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。
为了描述的方便,描述以上装置时以功能分为各种模块分别描述。当然,在实施本说明书一个或多个实施例时可以把各模块的功能在同一个或多个软件和/或硬件中实现。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本说明书一个或多个实施例的实施例可提供 为方法、系统或计算机程序产品。因此,本说明书一个或多个实施例可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本说明书一个或多个实施例可采用在一个或多个其中包括计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书一个或多个实施例可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书一个或多个实施例,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
对于本领域技术人员而言,显然本发明实施例不限于上述示范性实施例的细节,而且在不背离本发明实施例的精神或基本特征的情况下,能够以其他的形式实现本发明实施例。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明实施例的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明实施例内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包括一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
Claims (10)
- 一种基于PCS和MII分离的信号质量优化方法,包括:步骤1:设置系统端口的初始化状态,并阻止MAC数据的传输;步骤2:基于物理编码子层PCS和MII分离执行均衡器调整控制;步骤3:检查端口状态,并在端口连接link up状态置起时传输MAC数据。
- 如权利要求1所述的信号质量优化方法,其中,阻止MAC数据的传输,包括:MII发送端向对端MII接收端发送远端故障,以阻止对端发送MAC数据。
- 如权利要求2所述的信号质量优化方法,其中,所述步骤1设置系统端口的初始化状态包括:步骤1.1:所述PCS发送端解复位;步骤1.2:所述MII发送端解复位;步骤1.3:MAC解复位;步骤1.4:所述MII发送端向对端MII接收端发送远端故障;步骤1.5:所述PCS接收端解复位。
- 如权利要求1所述的信号质量优化方法,其中,所述步骤2执行均衡器调整控制包括:获取当前的PCS同步状态和MII接收端的复位状态,根据所述同步状态和复位状态进行均衡器调整控制。
- 如权利要求4所述的信号质量优化方法,其中,所述根据所述同步状态和复位状态进行均衡器调整控制包括:若所述PCS已同步,且所述MII接收端复位,则轮询均衡器是否调整完成,并将轮询结果保存在临时变量is_rxeq_tuning中,若is_rxeq_tuning=1且均衡器调整已结束,则进入所述步骤3;若所述PCS未同步,且所述MII接收端解复位,则使所述MII接收端恢复复位,并重新向对端MII接收端发送远端故障,将is_rxeq_tuning设置为0,等待下次出现is_rxeq_tuning=1时重新调整均衡器;若所述PCS未同步,且所述MII接收端复位,则将均衡器恢复到默认值,并将is_rxeq_tuning设置为0,等待PCS同步成功;若所述PCS已同步,且所述MII接收端解复位,则将is_rxeq_tuning设置为0,进入所述步骤3。
- 如权利要求4或5所述的信号质量优化方法,其中,所述步骤3检查端口状态包括:步骤3.1:判断PCS同步是否完成,若是则进入步骤3.2,若否则继续进行当前步骤;步骤3.2:判断MII接收端是否已解复位,若是则进入到步骤3.3,若否则跳转到步骤3.1;步骤3.3:判断是否存在本端故障,若否则将端口状态设置为link up,并开始传输MAC数据,若是则跳转到步骤3.1。
- 一种基于PCS和MII分离的信号质量优化装置,包括:端口初始化设置模块,被设置为设置系统端口的初始化状态,并阻止MAC数据的传输;均衡器调整控制模块,被设置为基于物理编码子层PCS和MII分离执行均衡器调整控制;端口状态检查模块,被设置为检查端口状态,并在端口连接link up状态置起时传输MAC数据。
- 如权利要求7所述的信号质量优化装置,其中,所述端口初始化设置模块包括:端口解复位单元,被设置为所述PCS发送端、所述MII发送端、MAC端口和所述PCS接收端解复位操作;远端故障发送单元,被设置为控制所述MII发送端向对端MII接收端发送远端故障。
- 如权利要求7所述的信号质量优化装置,其中,所述均衡器调整控制模块包括:第一状态获取单元,被设置为获取当前的PCS同步状态和MII接收端的复位状态;均衡器调整控制单元,被设置为根据所述同步状态和复位状态进行均衡器调整控制;和/或,所述端口状态检查模块包括:第二状态获取单元,被设置为获取当前的PCS同步状态和MII接收端的复位状态;端口状态设置单元,被设置为在所述PCS同步已完成、所述MII接收端已解复位,且不存在本端故障时,将端口状态设置为link up,开始传输MAC数据。
- 一种以太网通信系统,包括如权利要求7-9之一所述的信号质量优化装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011476971.5A CN112491762B (zh) | 2020-12-15 | 2020-12-15 | 一种基于pcs和mii分离的信号质量优化方法、装置及系统 |
CN202011476971.5 | 2020-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022127715A1 true WO2022127715A1 (zh) | 2022-06-23 |
Family
ID=74917024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/137229 WO2022127715A1 (zh) | 2020-12-15 | 2021-12-10 | 一种基于pcs和mii分离的信号质量优化方法、装置及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112491762B (zh) |
WO (1) | WO2022127715A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112491762B (zh) * | 2020-12-15 | 2022-08-12 | 苏州盛科通信股份有限公司 | 一种基于pcs和mii分离的信号质量优化方法、装置及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6154464A (en) * | 1997-05-09 | 2000-11-28 | Level One Communications, Inc. | Physical layer device having a media independent interface for connecting to either media access control entitices or other physical layer devices |
CN1665225A (zh) * | 2005-03-22 | 2005-09-07 | 复旦大学 | 用于以太网物理层的判决反馈均衡器 |
CN103685104A (zh) * | 2013-12-03 | 2014-03-26 | 苏州仙林力齐电子科技有限公司 | 一种两步自适应均衡器及其逻辑控制方法 |
US20170288843A1 (en) * | 2015-05-29 | 2017-10-05 | Corning Optical Communications Wireless Ltd | Tunable radio frequency (rf) equalizer |
CN112491762A (zh) * | 2020-12-15 | 2021-03-12 | 盛科网络(苏州)有限公司 | 一种基于pcs和mii分离的信号质量优化方法、装置及系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100532779B1 (ko) * | 2002-12-27 | 2005-12-02 | 엘지전자 주식회사 | 이더넷 정합 장비에서의 링크 이중화 장치 및 방법 |
CN101399811B (zh) * | 2007-09-27 | 2011-09-14 | 华为技术有限公司 | 多通道数据接收以及传输控制方法和相应的装置 |
CN111431824B (zh) * | 2020-04-01 | 2022-08-12 | 苏州盛科通信股份有限公司 | 一种pmd子层链路训练的方法及系统 |
CN112035385A (zh) * | 2020-08-04 | 2020-12-04 | 广东安朴电力技术有限公司 | Srio通信系统重建链路的方法、存储介质及srio通信系统 |
-
2020
- 2020-12-15 CN CN202011476971.5A patent/CN112491762B/zh active Active
-
2021
- 2021-12-10 WO PCT/CN2021/137229 patent/WO2022127715A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6154464A (en) * | 1997-05-09 | 2000-11-28 | Level One Communications, Inc. | Physical layer device having a media independent interface for connecting to either media access control entitices or other physical layer devices |
CN1665225A (zh) * | 2005-03-22 | 2005-09-07 | 复旦大学 | 用于以太网物理层的判决反馈均衡器 |
CN103685104A (zh) * | 2013-12-03 | 2014-03-26 | 苏州仙林力齐电子科技有限公司 | 一种两步自适应均衡器及其逻辑控制方法 |
US20170288843A1 (en) * | 2015-05-29 | 2017-10-05 | Corning Optical Communications Wireless Ltd | Tunable radio frequency (rf) equalizer |
CN112491762A (zh) * | 2020-12-15 | 2021-03-12 | 盛科网络(苏州)有限公司 | 一种基于pcs和mii分离的信号质量优化方法、装置及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112491762A (zh) | 2021-03-12 |
CN112491762B (zh) | 2022-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9614776B1 (en) | Systems and methods for transmitting data according to an auto-negotiated data rate | |
US8665895B2 (en) | Advanced and dynamic physical layer device capabilities utilizing a link interruption signal | |
KR101860234B1 (ko) | 듀얼 포트 스위치의 링크 속도 설정 방법 | |
US7920597B2 (en) | Method and system for low power idle signal transmission in ethernet networks | |
US20140056315A1 (en) | Method and system for speed negotiation for twisted pair links in fibre channel systems | |
US7593431B1 (en) | Method and system for monitoring a MAC extra IPG count and adjusting the PHY transmit IPG | |
US11038607B2 (en) | Method and system for bi-directional communication | |
US20090245120A1 (en) | Ethernet Physical Layer Transceiver with Auto-Ranging Function | |
WO2022127715A1 (zh) | 一种基于pcs和mii分离的信号质量优化方法、装置及系统 | |
US8638895B2 (en) | Extension of Ethernet PHY to channels with bridged tap wires | |
WO2008116399A1 (fr) | Procédé et dispositif d'ajustement dynamique d'état de liaison et d'état de liaison groupée | |
WO2007107066A1 (fr) | Procédé et dispositif de communication permettant d'effectuer une détection de bouclage fondée sur l'ethernet | |
JP6436926B2 (ja) | 通信装置、通信システム、プログラム、及び通信方法 | |
WO2014044190A1 (zh) | 以太网数据传输速率的调整方法及装置 | |
EP1484874A2 (en) | System for interfacing media access control module to small form factor pluggable module | |
EP2161879B1 (en) | Method comprising determining when to refresh an outdated parameter in an ethernet link, corresponding system and corresponding machine-readable storage | |
JP5576421B2 (ja) | 通信装置、通信方法、及び、プログラム | |
US9634874B2 (en) | Bonded OFDM communication system | |
US11388080B2 (en) | Detecting false linkup states in Ethernet communication links | |
US9577787B2 (en) | Robust low rate data channel in LPI mode for energy-efficient ethernet applications | |
JP5882886B2 (ja) | ユーザ側光回線終端装置およびユーザ側光回線終端装置の消費電力制御方法 | |
US20240080123A1 (en) | Out-of-band based independent link training of in-band links between host devices and optical modules | |
JP4577670B2 (ja) | 通信装置およびデータ送信制御方法 | |
KR101690287B1 (ko) | 데이터 중계 장치 및 이를 이용한 데이터 중계 방법 | |
JP2016140011A (ja) | 子局装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21905644 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/11/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21905644 Country of ref document: EP Kind code of ref document: A1 |