WO2022127414A1 - 金属氧化物半导体材料、靶材及其制备方法、薄膜晶体管及其制备方法 - Google Patents

金属氧化物半导体材料、靶材及其制备方法、薄膜晶体管及其制备方法 Download PDF

Info

Publication number
WO2022127414A1
WO2022127414A1 PCT/CN2021/128260 CN2021128260W WO2022127414A1 WO 2022127414 A1 WO2022127414 A1 WO 2022127414A1 CN 2021128260 W CN2021128260 W CN 2021128260W WO 2022127414 A1 WO2022127414 A1 WO 2022127414A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
general formula
rare earth
oxide semiconductor
thin film
Prior art date
Application number
PCT/CN2021/128260
Other languages
English (en)
French (fr)
Inventor
袁广才
兰林锋
刘凤娟
宁策
胡合合
王飞
彭俊彪
Original Assignee
京东方科技集团股份有限公司
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 华南理工大学 filed Critical 京东方科技集团股份有限公司
Priority to US17/922,034 priority Critical patent/US20230268444A1/en
Priority to EP21905343.6A priority patent/EP4167291A4/en
Publication of WO2022127414A1 publication Critical patent/WO2022127414A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides

Definitions

  • the present disclosure relates to the technical field of semiconductors, and in particular, to a metal oxide semiconductor material, a target material and a preparation method thereof, a thin film transistor and a preparation method thereof.
  • TFT Thin Film Transistor
  • a metal oxide semiconductor material comprising: a semiconductor matrix material; and at least one rare earth compound doped in the semiconductor matrix material, each rare earth compound having a general formula represented as (M FD ) a A b ;
  • M FD is selected from rare earth elements, one of the elements capable of fd transition and/or charge transfer transition, and A is selected from the group that can make corresponding M FD produce fd
  • the absorption spectrum of transition and/or charge transfer transition is red-shifted to the element in the visible light band
  • a is the atomic number of element M FD in the general formula (M FD ) a A b
  • b is the atomic number of element A .
  • M FD is selected from one of the lanthanide metals other than lanthanum.
  • M FD is selected from one of cerium, praseodymium, neodymium, promethium, samarium, terbium, and dysprosium.
  • M FD is selected from one of praseodymium and terbium.
  • A is selected from one of elements less electronegative than oxygen.
  • A is selected from one of sulfur, selenium, tellurium, bromine, iodine, arsenic, and boron.
  • the minimum energy required for the fd transition and/or charge transfer transition of the M FD element is less than 2.64 eV.
  • the minimum energy required for the fd transition and/or charge transfer transition of the M FD element is greater than 2.48 eV.
  • the semiconductor matrix material includes at least one first metal oxide and/or at least one second metal oxide, the general formula of each first metal oxide and each second metal oxide are expressed as M c O d ; in each first metal oxide, M in the general formula M c O d is selected from one of indium, zinc, gallium, tin and cadmium elements; in each second metal In the oxide, M in the general formula Mc O d is selected from any combination of two or more elements in indium, zinc, gallium, tin and cadmium; c is the number of M in the general formula Mc O d , and d is the general The number of atoms of the element oxygen in the formula.
  • M further includes one or a combination of any two or more of lanthanide metals, scandium and yttrium.
  • the elemental composition of the semiconductor matrix material and the at least one rare earth compound is represented by ((M FD ) a A b ) X (M c O d ) 1-X ; where x is greater than or equal to 0.001 and less than or equal to 0.15.
  • M FD in the general formula (M FD ) a A b , where M FD is selected from one of praseodymium and terbium, x is greater than or equal to 0.01 and less than or equal to 0.1.
  • M FD in the general formula (M FD ) a A b , where M FD is selected from cerium, x is greater than or equal to 0.001 and less than or equal to 0.02.
  • a target material comprising the metal oxide semiconductor material as described above.
  • A is selected from one of sulfur, selenium, tellurium, arsenic and boron.
  • a thin film transistor comprising: an active layer, and the material of the active layer includes the above-mentioned metal oxide semiconductor material.
  • a preparation method of a target material comprising:
  • the semiconductor matrix material is doped with at least one rare earth compound in proportion and mixed uniformly; the general formula of each rare earth compound is represented as (M FD ) a A b , and in the general formula (M FD ) a A b , M FD Selected from rare earth elements, one of the elements capable of fd transition and/or charge transfer transition, A is selected from the band of the absorption spectrum that can make the corresponding M FD undergo fd transition and/or charge transfer transition red-shift to visible light Elements in the band range, a is the atomic number of element M FD in the general formula (M FD ) a A b , b is the atomic number of element A.
  • the target material is obtained by ball milling, hot pressing or slurry casting, and sintering the uniformly mixed semiconductor matrix material doped with the at least one rare earth compound.
  • A is selected from one of sulfur, selenium, tellurium, arsenic, and boron.
  • a method for preparing a thin film transistor comprising:
  • a semiconductor thin film is formed on a base substrate, and the material of the semiconductor thin film includes a semiconductor matrix material and at least one rare earth compound doped in the semiconductor matrix material, and the general formula of each rare earth compound is represented as (M FD ) a A b , in the general formula (M FD ) a A b , M FD is selected from rare earth elements, one of the elements capable of fd transition and/or charge transfer transition, and A is selected from the group of elements capable of making the corresponding M FD
  • the band of the absorption spectrum of the fd transition and/or charge transfer transition is red-shifted to the visible light band range, a is the number of atoms of the element M FD in the general formula (M FD ) a A b , b is the atom of the element A number; patterning the semiconductor thin film to obtain the active layer of the thin film transistor.
  • the forming a semiconductor thin film on the base substrate in the case where A is selected from one or more of sulfur, selenium, tellurium, arsenic and boron, the forming a semiconductor thin film on the base substrate ,include:
  • a target containing the metal oxide semiconductor material is provided; the semiconductor thin film is formed on the base substrate by a sputtering process.
  • a target material comprising the at least one rare earth compound and the semiconductor matrix material, respectively, is provided; the semiconductor thin film is formed on the base substrate by a double target sputtering process.
  • the forming a semiconductor thin film on the base substrate comprises: by a solution method The semiconductor thin film is formed on the base substrate.
  • the solution method includes one of spin coating, ink jet printing, screen printing, blade coating, and embossing.
  • FIG. 1 is a cross-sectional structural diagram of a thin film transistor according to some embodiments.
  • FIG. 2 is a pixel circuit diagram of an AMOLED according to some embodiments.
  • FIG. 3 is a diagram of energy band structures under PBIS and NBIS based on photogenerated hole-electron pair theory, according to some embodiments;
  • FIG. 4 is a flow chart of a method for making a target according to some embodiments.
  • FIG. 5 is a flowchart of a method of fabricating a thin film transistor according to some embodiments.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features.
  • a feature defined as “first”, “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes of the drawings due to, for example, manufacturing techniques and/or tolerances, are contemplated.
  • example embodiments should not be construed as limited to the shapes of the regions shown herein, but to include deviations in shapes due, for example, to manufacturing. For example, an etched area shown as a rectangle will typically have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • Some embodiments of the present disclosure provide a display device, including a display panel, and a driving circuit, such as a pixel driving circuit, a gate driving circuit, and the like, disposed on the display panel.
  • a driving circuit such as a pixel driving circuit, a gate driving circuit, and the like, disposed on the display panel.
  • Thin Film Transistor is an important component that constitutes a pixel drive circuit, a gate drive circuit, etc. During the power-on process, by controlling the opening and closing of the thin film transistor, the pixel drive circuit and gate drive circuit can be controlled. Drive the display panel to display.
  • the above-mentioned display device can be LCD (Liquid Crystal Display, liquid crystal display), OLED (Organic Light-Emitting Diode, organic light-emitting diode), QLED (Quantum Dot Light Emitting Diodes, quantum dot light-emitting diode), MicroLED (Micro LED One of Light Emitting Diodes, micro light-emitting diodes), miniLED (mini Light Emitting Diodes, mini light-emitting diodes) display devices, etc.
  • LCD Liquid Crystal Display, liquid crystal display
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • QLED Quantantum Dot Light Emitting Diodes, quantum dot light-emitting diode
  • MicroLED MicroLED
  • Micro LED Micro LED One of Light Emitting Diodes, micro light-emitting diodes
  • miniLED mini Light Emitting Diodes, mini light-emitting diodes
  • the display device may specifically be a mobile phone, a tablet computer, a notebook, a personal digital assistant (PDA), a vehicle-mounted computer, a laptop computer, a digital camera, and the like.
  • PDA personal digital assistant
  • thin film transistor TFT mainly includes amorphous silicon (such as hydrogenated amorphous silicon: a-Si: H) TFT, low temperature polysilicon (Low Temperature Poly-silicon, LTPS) TFT, metal oxide TFT and organic TFT etc.
  • amorphous silicon such as hydrogenated amorphous silicon: a-Si: H
  • low temperature polysilicon Low Temperature Poly-silicon, LTPS
  • metal oxide TFT and organic TFT etc.
  • metal oxide semiconductor TFTs have attracted more attention due to the advantages of metal oxides such as large band gap, high carrier mobility, low process temperature, and good device uniformity.
  • metal oxide semiconductor TFTs also have some problems to be solved.
  • metal oxide semiconductors are usually n-type conductive, and it is difficult to obtain p-type conductivity characteristics, so the application in complementary circuits is limited.
  • the stability of negative gate compressive stress of metal oxide semiconductors under illumination is still insufficient.
  • the thin film transistor 1 which is a component of a display panel, is inevitably irradiated with light in the application in the display field. For example, as shown in FIG.
  • the channel 121 of the thin film transistor 1 in the liquid crystal display, the channel 121 of the thin film transistor 1 is illuminated by the backlight, and in the OLED display, the channel 121 of the thin film transistor 1 is affected by the self-luminescence of the OLED. Whether it is a backlight source or self-illumination, its light emission is in the visible light range, and the blue light emission with the greatest photon energy is.
  • metal oxide semiconductor materials such as IZO (Indium Zinc Oxide, indium zinc oxide), IGZO (Indium Gallium Zinc Oxide, indium gallium zinc oxide), etc.
  • IZO Indium Zinc Oxide, indium zinc oxide
  • IGZO Indium Gallium Zinc Oxide, indium gallium zinc oxide
  • the AMOLED Active-matrix organic light emitting diode, active matrix organic light emitting diode
  • the address selection transistor TFT1 and the drive transistor TFT2 are included, which are called the address selection transistor TFT1 and the drive transistor TFT2 respectively.
  • the access transistor TFT1 is only turned on once in each scan period, and is in an off state for the rest of the time.
  • the stability of the access transistor TFT1 under Negative Bias Stress is extremely important.
  • the source electrode of the drive transistor TFT2 is directly connected to the OLED. As long as the OLED emits light, a certain amount of current must flow through the source and drain electrodes of the drive transistor TFT2. Therefore, the drive transistor TFT2 is basically in an on state, and it is under the positive gate voltage stress ( The stability under Positive Bias Stress (PBS) is more important, and the metal oxide semiconductor TFT will exhibit a threshold voltage (V th ) drift phenomenon under gate voltage stress.
  • PBS Positive Bias Stress
  • NBIS Negative gate bias illumination stress, negative gate bias illumination stress
  • the active layer 12 of the thin film transistor 1 is usually shielded from light by adding a black matrix, so as to improve the light stability.
  • this method cannot solve the problem that light enters the oxide semiconductor layer through diffraction, and the stability improvement under long-term illumination conditions is limited.
  • the complexity of the preparation will be increased, resulting in an increase in the manufacturing cost.
  • the metal oxide semiconductor material includes a semiconductor matrix material, and at least one rare earth compound doped in the semiconductor matrix material, each rare earth compound having the general formula (M FD ) a A b .
  • M FD is selected from rare earth elements, one of the elements capable of fd transition and/or charge transfer transition, wherein FD is only for the purpose of being compatible with the later-mentioned M
  • the subscripts used for the distinction are not limitations on the number of atoms of M, and have different meanings from a and b in the general formula.
  • M FD refers to FD as a subscript of M, and M as a whole, is used to represent a rare earth element that can undergo fd transition.
  • FD is an fd transition in the embodiments of this application.
  • A is selected from the elements that can make the corresponding M FD undergo fd transition and/or charge transfer transition of the absorption spectrum band red-shifted to the visible light band range, a is the atom of the element M FD in the general formula (M FD ) a A b number, b is the atomic number of element A.
  • the semiconductor matrix material may be a p-type metal oxide semiconductor material or an n-type metal oxide semiconductor material, which is not specifically limited herein.
  • the p-type metal oxide semiconductor material may include copper oxide CuO, tin oxide SnO, and the like.
  • examples of the n-type metal oxide semiconductor material may include ITO (Indium Tin Oxide, indium tin oxide), IGZO (Indium Gallium Zinc Oxide, indium gallium zinc oxide) )Wait.
  • the semiconductor matrix material may include at least one first metal oxide and/or at least one second metal oxide.
  • the general formula of each first metal oxide and each second metal oxide is represented as McOd .
  • M in the general formula is selected from one of indium, zinc, gallium, tin and cadmium elements
  • M in each second metal oxide M in the general formula is selected from indium , zinc, gallium, tin and cadmium in any combination of two or more elements
  • c is the number of M in the general formula
  • d is the atomic number of element oxygen in the general formula.
  • M is selected from one of indium, zinc, gallium, tin and cadmium elements
  • M is selected from indium, zinc, gallium, tin
  • the first metal oxide is a binary oxide
  • the second metal oxide can be a ternary oxide, a quaternary oxide, or the like.
  • the first metal oxide may be represented as In 2 O 3 , ZnO, Ga 2 O 3 , SnO, SnO 2 , respectively and CdO.
  • c and d above are integers.
  • c is equal to 2 and d is equal to 3 for In 2 O 3 .
  • ZnO c is equal to 1 and d is equal to 1.
  • Ga 2 O 3 c is equal to 2 and d is equal to 3.
  • SnO c is equal to 1 and d is equal to 1.
  • SnO2 c is equal to 1 and d is equal to 2.
  • CdO c equals 1 and d equals 1.
  • c and d can be decimals.
  • the ratio of the number of In atoms to the number of O atoms may slightly deviate from 2:3.
  • PrB 6 the ratio of the number of atoms of Pr to the number of atoms of B can be slightly deviated from 1:6.
  • the oxides containing only tin in the semiconductor matrix material according to the tin oxides including SnO and SnO 2 , it can be known that in the semiconductor matrix material, the ratio of the number of Sn atoms to the number of O atoms can be It is less than 1, for example, it can be 0.95. At this time, the oxide of tin is SnO.
  • the second metal oxide can be ITO (Indium Tin Oxide, indium tin oxide), IZO (Indium Zinc Oxide, indium zinc oxide) or (Indium Gallium Zinc Oxide, indium gallium zinc oxide), ITZO (Indium Tin Zinc Oxide, indium tin zinc oxide), among them, ITO (Indium Tin Oxide, indium tin oxide), IZO (Indium Zinc Oxide, indium zinc oxide) are ternary oxides, (Indium Gallium Zinc Oxide, indium gallium oxide) Zinc), ITZO (Indium Tin Zinc Oxide, indium tin zinc oxide) are quaternary oxides. For these oxides, c can be equal to 1 and d can be equal to 1. Similar to the above, since there are defects such as vacancies and gaps in the metal oxide semiconductor thin film, at this time, c and d can also be decimals.
  • the rest of the metal oxides can be n-type metal oxide semiconductor materials, and the oxide SnO can achieve p-type conductivity only under strict single crystal conditions. Therefore, in some embodiments , in the general formula, where M is selected from tin, c may be equal to 1 and d may be equal to 2. That is, when the oxide of tin is SnO 2 , in this case, the metal oxide semiconductor material is an n-type metal oxide semiconductor material and has high electron mobility in an amorphous state.
  • c and d can also be decimals.
  • M further includes one or a combination of any two or more of lanthanide metals, scandium and yttrium.
  • M c O d when M is selected from one of indium, zinc, gallium, tin and cadmium elements, M also includes one of lanthanide metals, scandium and yttrium or Any combination of two or more, it can be known that M can be selected from the combination of any two or more of indium, zinc, gallium, tin, cadmium, lanthanide metals, scandium and yttrium, that is, M c O d is a multi-element oxide.
  • M in this case, in the case where M does not include one or a combination of any two or more of lanthanide metals, scandium and yttrium, M may be selected from indium, in this case, c may be equal to 2, and d may be Equal to 3, that is, the case where Mc O d is In 2 O 3 .
  • M in the case where M includes one or a combination of any two or more of lanthanide metals, scandium and yttrium, M may be selected from a combination of indium and scandium, in this case, c may be equal to 1, and d may be equal to 1, in this case , McO d can be expressed as ScInO.
  • M c O d when M is selected from the combination of any two or more of indium, zinc, gallium, tin and cadmium elements, M also includes one of lanthanide metals, scandium and yttrium One or any combination of two or more, it can be known that M can be selected from any combination of three or more in indium, zinc, gallium, tin, cadmium, lanthanide metals, scandium and yttrium, at this time, M c O d is also a multi-element oxide.
  • M in the case where M does not include one or a combination of any two or more of lanthanide metals, scandium and yttrium, M may be selected from indium and cadmium, and in this case, c and d may both be Equal to 1, that is, the case where McO d is InCdO.
  • M includes one or a combination of any two or more of lanthanide metals, scandium and yttrium, M can be selected from the combination of indium, cadmium and scandium, and in this case, both c and d can also be equal to 1, which , McO d can be expressed as ScCdInO.
  • M FD is selected from rare earth elements capable of fd transition and/or charge transfer transition
  • A is selected from the elements that can make the corresponding M FD undergo fd transition and/or charge transfer transition of the absorption spectrum band red-shifted to the visible light band range
  • a is the general formula (M FD ) a A b
  • the number of atoms in the element MFD, b is the number of atoms in the element A.
  • M FD can be selected from one of the other elements except lanthanum in the lanthanoid metals.
  • the wavelength range of visible light in the electromagnetic spectrum it is about 880nm to 380nm, and in the visible light band, the highest photon energy is blue light emission, semiconductor host materials (such as IZO (Indium Zinc Oxide, indium zinc oxide), IGZO ( Indium Gallium Zinc Oxide, Indium Gallium Zinc Oxide, etc.) are most sensitive to blue light, so although theoretically, ions containing f electrons and less than full d level orbitals (elements from cerium to platinum in the periodic table) , that is, all elements from No.
  • IZO Indium Zinc Oxide, indium zinc oxide
  • IGZO Indium Gallium Zinc Oxide, Indium Gallium Zinc Oxide, etc.
  • E fd energy required for the fd transition of free ions
  • the absorption is in the deep ultraviolet region, which cannot absorb blue light, especially Elements such as hafnium, tantalum and tungsten other than the lanthanide series have a very large E fd due to the full f electrons.
  • the absorption of fd transition cannot be red-shifted to the blue light region.
  • Lanthanum itself has no f electrons, so it cannot be used. fd transition occurs.
  • the charge transfer transition occurs, that is, electrons from the ligand (here, the anion of A) electron orbital
  • the transition to the electron orbital of the metal ion produces a charge transfer absorption spectrum, which can also absorb blue light.
  • the charge transfer absorption spectrum may be the absorption spectrum of trivalent ions being oxidized to tetravalent ions.
  • the spectrum absorbed by the f-d transition and the charge transfer transition of ions of the rare earth element may overlap.
  • M FD is selected from one of cerium, praseodymium, neodymium, promethium, samarium, terbium, and dysprosium. Ions of these elements have relatively low E fd , and blue light absorption by M FD can be more easily achieved by choosing the anionic environment. Since the d electrons in the ions of these elements have a short lifespan and a strong temperature quenching effect, the absorbed blue light can be converted into a non-radiative form, thereby avoiding the ionization of oxygen vacancies caused by the blue light in the backlight or self-luminescence. The conductance increases, which makes the threshold voltage negatively drift.
  • cerium, praseodymium and terbium can undergo charge transfer transition, and in the case of selecting the anion environment, by changing the electron affinity of the anion, that is, changing the reducing ability of the anion, the rare earth element can be changed to
  • the energy required for the charge transfer transition of cerium, praseodymium and terbium can also be adjusted, and the blue light absorption by M FD can also be realized.
  • these rare earth compounds are similar to the above M also includes one or any combination of two or more of lanthanide metals, scandium and yttrium.
  • TiO can also inhibit oxygen vacancies, reduce the concentration of oxygen vacancies in the channel and at the interface, and improve the light stability of the metal oxide semiconductor TFT.
  • the metal oxide semiconductor material can be formed in the channel region of the active layer 12, or can be formed as a light-shielding material in the region of the active layer 12 that needs to be shielded from light, such as in a liquid crystal display.
  • a light shielding layer including the metal oxide semiconductor material can be formed only on the surface of the active layer 12 close to the base substrate 11, and the light shielding layer in the active layer 12 can be formed.
  • the material for the remaining positions can be selected from a metal oxide semiconductor material that is not doped with (M FD ) a A b .
  • the materials of all positions in the active layer 12 can be selected from metal oxide semiconductor materials doped with (M FD ) a A b .
  • metals with different doping types can be selected.
  • the applied position and applied doping ratio are not specifically limited.
  • M FD is selected from one of praseodymium and terbium.
  • the E fd of the ions of these two elements is higher than the E fd of the ions of neodymium, promethium, samarium and dysprosium, and it is easier to realize the absorption of blue light by setting an anion environment.
  • cerium has the lowest E fd , but cerium is very active, it is easy to form electron traps and affect electron transport. Therefore, in the case where M FD is selected from cerium, the doping of (M FD ) a A b is not conducive to the improvement of carrier mobility.
  • A is selected from one of elements less electronegative than oxygen.
  • the ionicity of the oxide of M FD is strong, and the interaction between M FD and oxygen is weak. Therefore, the d-orbital energy level of the oxide of M FD is affected by the crystal field. The splitting is small, so that the E fd of the ions of the M FD is still large, and the light absorption is in the ultraviolet region.
  • the degree of covalency between M FD and A can be increased, so that the d-orbital energy level of the ions of M FD will be due to the larger electron cloud expansion effect A large split occurs, thereby greatly reducing the energy level difference between the f configuration and the d configuration, thereby greatly reducing E fd , red-shifting the absorption of the fd transition of the ion, and realizing the absorption of blue light.
  • A can be selected from one of chlorine, nitrogen, bromine, iodine, sulfur, selenium, tellurium, phosphorus, arsenic and boron.
  • A in the general formula (M FD ) a A b , A may be selected from one of sulfur, selenium, tellurium, bromine, iodine, phosphorus, arsenic, and boron.
  • the electronegativity of these elements is smaller than that of oxygen by more than 0.5, which can produce a larger electron cloud expansion effect.
  • boron has the lowest electronegativity, the hexaborides of rare earth compounds are very stable, and there are many M FD ions.
  • the existence of valence is beneficial to reduce the E fd of the M FD ion. Therefore, optionally, in the general formula (M FD ) a A b , A can be selected from boron.
  • the doping amount of the at least one rare earth compound mentioned above is not specifically limited.
  • the fd transition of the M FD ion in the above rare earth compound it belongs to the transition allowed by the transition, and its transition intensity is higher than the ff transition intensity. It is more than 10 6 large, so only a small amount of rare earth compound can be doped to achieve a large amount of blue light absorption, and at the same time a small amount of doping will not cause a large number of defects in the metal oxide semiconductor material, so the impact on the electron mobility is relatively small. Small.
  • M FD ions can be selected with different doping amounts.
  • the semiconductor matrix material of the present disclosure does not need to widen the band gap, so In 2 O 3 or SnO 2 with a relatively narrow band gap can be selected as the semiconductor matrix material, due to the adjacent 5s orbital of In and the adjacent The 5s orbital of Sn can overlap to form an electron channel, so it can ensure the high electron mobility of the metal oxide semiconductor material.
  • the elemental composition of the semiconductor matrix material and the at least one rare earth compound in a metal oxide semiconductor material, can be represented as ((M FD ) a A b )x(M c O d )1-x, where , x is greater than or equal to 0.001 and less than or equal to 0.15. That is, the molar proportion of (M FD ) a A b in the semiconductor matrix material and the at least one rare earth compound is greater than or equal to 0.1% and less than or equal to 15%.
  • x is greater than or equal to 0.005 and less than or equal to 0.1. That is, the molar proportion of (M FD ) a A b in the semiconductor matrix material and the at least one rare earth compound is greater than or equal to 0.5% and less than or equal to 10%.
  • x is greater than or equal to 0.01 and less than or equal to 0.1. That is, the molar proportion of (M FD ) a A b in the semiconductor matrix material and the at least one rare earth compound is greater than or equal to 1% and less than or equal to 10%. At this molar ratio, most of the blue light can be absorbed.
  • M FD in at least one rare earth compound is selected from terbium.
  • M FD is selected from cerium with a smaller value of x than M FD is selected from x of elements other than cerium. Since the electron cloud expansion effect of cerium ions is very significant, the influence of too much cerium doping on the mobility can also be avoided by controlling the doping amount of cerium to be small.
  • x is greater than or equal to 0.001 and less than or equal to 0.02. That is, the molar proportion of (M FD ) a A b in the semiconductor matrix material and the at least one rare earth compound is greater than or equal to 0.1% and less than or equal to 2%. At this molar ratio, on the one hand, the stability of the NBIS can be effectively improved, and on the other hand, the influence of doping on the mobility can be minimized.
  • the metal oxide semiconductor material further includes a compound of rhenium. This is because the rhenium ion has a larger radius, and the rhenium compound itself has a higher electron mobility, which can adjust the electron mobility of the metal oxide semiconductor material.
  • the anion in the rhenium compound can be one of oxygen or A, in the case where the anion in the rhenium compound is oxygen, it is a rhenium oxide, and when the anion in the rhenium compound is A, the rhenium compound It can be expressed as Re e A f , where e is the number of atoms of Re element in the compound Re e A f , and f is the number of atoms of A in the compound Re e A f .
  • the molar ratio of the rhenium compound in the rhenium compound and the semiconductor matrix material is greater than or equal to 0.02 and less than or equal to 0.15.
  • the elemental composition of the rhenium compound and the semiconductor matrix material can be expressed as: (Re e A f ) y (M c O d ) 1-y , at this time, y Greater than or equal to 0.02 and less than or equal to 0.15.
  • M FD a A b
  • a may be equal to 1 and b may be equal to 3, or a may be equal to 1 and b may be equal to 2.95.
  • the minimum energy required for the fd transition and/or charge transfer transition of the M FD element is less than 2.64 eV.
  • the minimum energy required for the fd transition and/or charge transfer transition of the M FD element of each rare earth compound contained in the metal oxide semiconductor material to be in the range of less than 2.64 eV, corresponding to the wavelength Light greater than 470nm can absorb most of the blue light in the backlight and self-emission.
  • M FD ions and A ions of suitable E fd can be selected according to the above minimum energy range, exemplarily, A is selected from sulfur, selenium, tellurium, phosphorus, arsenic Or in the case of boron, except for praseodymium, terbium and cerium with lower E fd , the minimum energy required for fd transition and/or charge transfer transition can be limited to less than 2.64 eV.
  • the M FD element is required for fd transition and/or charge transfer transition to occur
  • the minimum energy is greater than 2.48eV.
  • the stability of NBIS can be greatly improved by only absorbing light less than 500 nm.
  • M FD is selected from praseodymium or terbium
  • A is selected from sulfur, selenium, tellurium, phosphorus, arsenic or boron
  • the minimum energy required for fd transition of M FD ions can be greater than 2.48 eV.
  • the metal oxide semiconductor material includes a semiconductor matrix material, and at least one rare earth compound doped in the semiconductor matrix material, each rare earth compound having the general formula (M FD ) a A b .
  • M FD is selected from rare earth elements, one of the elements capable of fd transition and/or charge transfer transition, and A is selected from the element capable of fd transition of corresponding M FD
  • the band of the absorption spectrum is red-shifted to the element in the visible light band
  • a is the atomic number of the element M FD in the general formula (M FD ) a A b
  • b is the atomic number of the element A.
  • the semiconductor device may include integrated circuits, photodetectors, semiconductor light emitting diodes, semiconductor lasers, photovoltaic cells, and the like.
  • Some embodiments of the present disclosure provide a target material comprising a metal oxide semiconductor material, the metal oxide semiconductor material comprising a semiconductor matrix material, and at least one rare earth compound doped in the semiconductor matrix material, each rare earth compound having a
  • the general formula is expressed as (M FD ) a A b .
  • M FD is selected from rare earth elements, one of the elements capable of fd transition and/or charge transfer transition, A is selected from the group that can make corresponding M FD undergo fd transition and / or the band of the absorption spectrum of the charge transfer transition is red-shifted to the element in the visible light band, a is the atomic number of the element M FD in the general formula (M FD ) a A b , and b is the atomic number of the element A.
  • A is selected from sulfur, One of selenium, tellurium, arsenic, and boron. That is, in the case where A is selected from one of sulfur, selenium, tellurium, arsenic and boron, better stability of the target can be ensured during fabrication.
  • Some embodiments of the present disclosure provide a method for preparing a target, as shown in FIG. 4 , including:
  • each rare earth compound is represented as (M FD ) a A b , where M FD is selected from among rare earth elements, elements capable of fd transitions and/or charge transfer transitions, in the general formula (M FD ) a A b One, A is selected from the elements that can make the corresponding M FD undergo fd transition and/or charge transfer transition of the absorption spectrum band red-shifted to the visible light band range, a is the element in the general formula (M FD ) a A b M is the atomic number of FD , and b is the atomic number of element A.
  • A is selected from one of sulfur, selenium, tellurium, arsenic, and boron. According to the above sintering temperature above 1000°C, it can be known that selecting one of sulfur, selenium, tellurium, arsenic and boron as anion can enhance the stability of (M FD ) a A b during the above high temperature sintering process sex.
  • Some embodiments of the present disclosure provide a method for fabricating a thin film transistor, as shown in FIG. 5 , including:
  • the material of the semiconductor thin film 100 includes a semiconductor matrix material, and at least one rare earth compound doped in the semiconductor matrix material, the general formula of each rare earth compound is expressed as (M FD ) a A b , in the general formula (M FD ) a A b , M FD is selected from rare earth elements, one of the elements capable of fd transition, and A is selected from the absorption that can make the corresponding M FD undergo fd transition
  • M FD is selected from rare earth elements, one of the elements capable of fd transition
  • A is selected from the absorption that can make the corresponding M FD undergo fd transition
  • the band of the spectrum is red-shifted to the element in the visible light band
  • a is the atomic number of the element M FD in the general formula (M FD ) a A b
  • b is the atomic number of the element A.
  • the thin film transistor 1 before forming the semiconductor thin film 100 on the base substrate 11 , it may further include forming a gate electrode 13 and a gate insulating layer 14 on the base substrate 11 .
  • the gate 13 can be obtained by sputtering, depositing a metal film, and patterning the metal film
  • the gate insulating layer 14 can be obtained by spin coating, drop coating, printing, anodizing, thermal oxidation, physical vapor deposition or chemical vapor deposition , and obtained by patterning.
  • the thickness of the gate electrode 13 may be 100 nm ⁇ 500 nm
  • the thickness of the gate insulating layer 14 may be 100 nm ⁇ 1000 nm.
  • the specific introduction of the semiconductor matrix material and the rare earth compound (M FD ) a A b can also refer to the description of the semiconductor matrix material and the rare earth compound ( M FD ) a A b in the above metal oxide semiconductor materials, and will not be repeated here. .
  • the above semiconductor thin film 100 can be prepared by deposition or solution method, which is not specifically limited herein.
  • the deposition includes, but is not limited to, sputtering, pulsed laser deposition, atomic layer deposition, and the like.
  • Solution methods include, but are not limited to, spin coating, ink jet printing, screen printing, blade coating, and embossing, among others.
  • the semiconductor thin film 100 is formed on the base substrate 11, including :
  • a target comprising a metal oxide semiconductor material is provided.
  • the target material can be prepared by the above-mentioned preparation method of the target material.
  • the semiconductor thin film 100 is formed on the base substrate 11 by a sputtering process.
  • targets comprising the at least one rare earth compound and a semiconductor matrix material, respectively.
  • the semiconductor thin film 100 is formed on the base substrate 11 by a double target sputtering process.
  • M FD may be selected from one of cerium, praseodymium, neodymium, promethium, samarium, terbium and dysprosium
  • A may be selected from sulfur, selenium, tellurium, arsenic and one of boron, in this case, the rare earth compound may be Pr 2 S 3 , by way of example.
  • M FD can be selected from one or more of cerium, praseodymium, neodymium, promethium, samarium, terbium and dysprosium, and A can be selected from sulfur, selenium, tellurium, arsenic and boron
  • the at least one rare earth compound may include Pr 2 S 3 and Tb 2 S 3
  • M FD is selected from cerium, praseodymium, neodymium, promethium, samarium, terbium and dysprosium multiple
  • A is selected from one of sulfur, selenium, tellurium, arsenic and boron.
  • the at least one rare earth compound may include Pr 2 S 3 and Tb 2 Te 3 , where M FD is selected from cerium, praseodymium, neodymium, promethium, samarium, terbium and dysprosium, and A is selected from sulfur, The case of multiple of selenium, tellurium, arsenic, and boron.
  • forming the semiconductor thin film 100 on the base substrate 11 includes:
  • the semiconductor thin film 100 is formed on the base substrate 11 by a solution method.
  • the solution preparation method used in the solution method may be a dispersion method.
  • the nano-powder of the rare earth compound and the nano-powder of the semiconductor matrix material may be dispersed in a solvent to form a suspension.
  • a layer of suspension liquid film is formed on the base substrate 11 by spin coating, ink jet printing, screen printing, blade coating or imprinting, and then the solvent is removed to obtain the semiconductor thin film 100 .
  • the semiconductor thin film 100 after forming the semiconductor thin film 100 on the base substrate 11, it may further include: annealing the semiconductor thin film 100, and the annealing temperature may be 200-500°C. After annealing, the thickness of the semiconductor thin film 100 may be 5 nm ⁇ 80 nm.
  • the semiconductor matrix material can be a precursor of the semiconductor matrix material during preparation.
  • the rare earth compound can be directly selected from (M FD ) a A b during preparation.
  • A is selected from one or more of bromine and iodine, that is, the solubility of the rare earth compound in the solvent can be improved , and by directly using (M FD ) a A b , it is possible to avoid the generation of rare earth oxides due to decomposition in the subsequent annealing process.
  • the rare earth compound is selected from PrBr 3 and the semiconductor matrix material is selected from In 2 O 3
  • the precursor In(NO) 3 of PrBr 3 and In 2 O 3 can be dissolved in deionized water, and PrBr 3 can be adjusted The molar ratio of In(NO) 3 and In(NO) 3, and then the semiconductor thin film is formed by spin coating, annealing and other processes.
  • In(NO) 3 is decomposed to obtain In 2 O 3
  • PrBr 3 does not decompose, so that it can be obtained Semiconductor thin films doped with PrBr3 .
  • TbI 3 and SnO 2 can be dispersed in a solvent to obtain a suspension, and the molar ratio of TbI 3 and SnO 2 can be adjusted, and then the molar ratio of TbI 3 and SnO 2 can be adjusted.
  • the semiconductor thin film is formed by processes such as coating and annealing. During the annealing process, TbI 3 does not decompose, so that the semiconductor thin film 100 doped with TbI 3 can be obtained.
  • M FD can be selected from one of cerium, praseodymium, neodymium, promethium, samarium, terbium and dysprosium, and A can be selected from one of bromine and iodine species, such as the rare earth compound may be PrBr 3 .
  • M FD can be selected from one or more of cerium, praseodymium, neodymium, promethium, samarium, terbium and dysprosium, and A can be selected from one or more of bromine and iodine , such as the at least one rare earth compound may include PrBr 3 and TbI 3 .
  • the semiconductor thin film 100 may be patterned by coating the photoresist 200 on the semiconductor thin film 100 and then performing exposure, development and etching processes.
  • S203 may also be included to form the source electrode 15 and the drain electrode 16 on the base substrate 11 on which the active layer 12 is formed.
  • a conductive thin film can be formed by evaporation or deposition, and the source electrode 15 and the drain electrode 16 can be formed by processes such as photoresist coating, exposure, development, and etching.
  • the thickness of the source electrode 15 and the drain electrode 16 may be 100 nm ⁇ 1000 nm.
  • Application example 1 provides a thin film transistor, and the preparation method of the thin film transistor is as follows:
  • Step 1) forming a layer of Al:Nd (aluminum neodymium alloy) film with a thickness of 300 nm on the base substrate 11 by sputtering, and forming the gate 13 by applying photoresist, exposing, developing and other processes.
  • Al:Nd aluminum neodymium alloy
  • the base substrate 11 may be glass including a buffer layer.
  • Step 2 preparing an insulating layer by anodizing to form a gate oxide layer (Al 2 O 3 : Nd, neodymium alumina) 14 with a thickness of 200 nm.
  • a gate oxide layer Al 2 O 3 : Nd, neodymium alumina
  • Step 3 the TbB 6 material and the In 2 O 3 material are prepared into two targets respectively, and then the two targets are installed on different target positions, and the lining formed with the gate insulating layer 14 is prepared by sputtering at the same time.
  • a (TbB 6 ) x (In 2 O 3 ) 1-x thin film is formed on the base substrate 11 .
  • the active layer 12 is formed by applying photoresist, exposing, developing and other steps.
  • the elemental composition of the active layer 12 is expressed as (TbB 6 ) x (In 2 O 3 ) 1-x , where 0.001 ⁇ x ⁇ 0.15, and parallel experiments were performed with x equal to 0.001, 0.01, 0.05, 0.1, and 0.15, respectively.
  • Step 4 using the method of sputtering to form a layer of indium tin oxide (ITO, Indium Tin Oxides) metal oxide film with a thickness of 240 nm on the base substrate 11 formed with the active layer 12, and form a source through a patterning process pole 15 and drain 16.
  • ITO indium tin oxide
  • ITO Indium Tin Oxides
  • Step 5 annealing the prepared thin film transistor 1 at 300° C. for 1 hour in an atmospheric environment. TFTs with x equal to 0.001, 0.01, 0.05, 0.1 and 0.15, respectively, were obtained.
  • the test conditions are NBIS conditions, using LED (Light-Emitting Diode, light-emitting diode) white light irradiation, gate bias voltage is -30V.
  • the calculation results of the threshold voltage shift ( ⁇ V th ) and the electron mobility are shown in Table 3 below.
  • ⁇ V th represents the threshold voltage shift amount per hour. It can be seen from Table 3 that when x is equal to 0.001, ⁇ V th under NBIS can be greatly reduced; when x is increased to 0.01, ⁇ V th can be controlled within 3V, which basically meets the application requirements; when x is equal to At 0.05, ⁇ V th is the smallest at 0.8V.
  • TbB 6 when testing the electrical properties of the device under NBIS conditions, it is found that when x is equal to 0, the carrier concentration in the active layer 12 is very large, and the threshold voltage of the thin film transistor 1 is relatively negative, making it difficult to turn off. After doping TbB 6 , the carrier concentration in the active layer 12 decreases, and the threshold voltage of the thin film transistor 1 can be regulated in a forward direction. This shows that: after doping TbB 6 , TbB 6 also has the effect of suppressing oxygen vacancies and reducing the carrier concentration, which can further improve the light stability of the metal oxide semiconductor TFT.
  • Application example 2 provides a thin film transistor, and the steps 1), 2) and 4) of the preparation method of the thin film transistor are basically the same as the steps 1), 2) and 4) in the above application example 1, here No longer.
  • step 3 the target material containing Pr 2 S 3 , In 2 O 3 and ZnO is fixed on the target position, and a single target sputtering method is used to form the gate insulating layer on the substrate substrate.
  • step 5 After the source electrode 15 and the drain electrode 16 are prepared, step 5) is also included, preparing a layer of Al 2 O 3 as a passivation layer.
  • a It can include: uniformly blending the nanomaterials of Pr 2 S 3 , In 2 O 3 and ZnO according to corresponding proportions, and preparing a target comprising Pr 2 S 3 , In 2 O 3 and ZnO through ball milling, slurry casting and sintering, etc. material.
  • the preparation method of the comparative example is basically the same as the preparation method of the TFT in the application example 2, the difference is that in the comparative example, the active layer 12 is doped with Pr 2 O 3 , that is, the elements of the active layer 12
  • the composition is represented as (Pr 2 O 3 ) x (In 5.2 Zn 1.0 O y ) 1-x , where x and y are the same as in Application Example 2.
  • the transfer characteristic curves of the TFTs obtained in the above application example 2 and the comparative example are tested.
  • the test conditions are NBIS conditions, LED white light is used to illuminate, the gate bias voltage is -30V, and the test time corresponds to the application time of the gate bias voltage of 0s, Times of 100s, 600s, 1200s and 3600s.
  • the test results are shown in Figure 6 and Figure 7.
  • the threshold voltage shift ( ⁇ V th ) of the Pr 2 O 3 doped TFT under NBIS is 9.2 V/hour, and the mobility is calculated to be 22.1 cm 2 /Vs.
  • the threshold voltage shift ( ⁇ V th ) of the Pr 2 S 3 doped TFT under NBIS is 1.4 V/hour, and the mobility is as high as 34.2 cm 2 /Vs.
  • Pr 2 S 3 doped TFTs have higher mobility than Pr 2 O 3 doped TFTs, and at the same time have more obvious and better NBIS stability.
  • Application example 3 provides a thin film transistor, and steps 1) and 2) of the method for preparing the thin film transistor are basically the same as steps 1) and 2) in the above application example 1, and are not repeated here.
  • step 3 the active layer 12 is prepared by a solution method. And after the active layer 12 is prepared, an aluminum thin film is prepared by vapor deposition, and then the source electrode 15 and the drain electrode 16 are formed through a patterning process.
  • three different rare earth compounds such as NdBr 3 , PrBr 3 and PrCl 3
  • three groups of TFTs doped with different rare earth compounds such as NdBr 3 , PrBr 3 and PrCl 3
  • the molar proportions of rare earth compounds in rare earth compounds and In 2 O 3 are all the same as x.
  • the method for preparing the active layer 12 by a solution method includes the following steps:
  • the spin-coating process is divided into two stages, the first stage is low-speed spinning Coating, the speed of spin coating can be 500rpm), the time can be 3s, the second stage is high-speed spin coating, the speed of spin coating can be 5000rpm, and the time can be 40s.
  • the transfer characteristic curve of the TFT obtained in the above application example 3 was tested, and the test conditions were NBIS conditions, using LED white light irradiation, and the gate bias voltage was -30V.
  • the electron mobility of the TFT is also related to the preparation method, the electron mobility of the TFT prepared by the solution method (preparation of the active layer) is generally lower than that of the TFT prepared by the deposition (preparation of the active layer).
  • the value of the electron mobility of the TFT will not be described here. In practical applications, those skilled in the art can select an appropriate preparation method as required.
  • the threshold voltage shift under negative gate bias light stress can be greatly reduced, and the TFT performance under NBIS can be improved.
  • Light stability and high electron mobility can be maintained, which solves the problem that the electron mobility and NBIS stability of metal oxide semiconductor materials in the related art mutually restrict each other.
  • the threshold voltage drift of thin-film transistors under illumination and gate voltage stress of -30V can be controlled to be less than 3V per hour, even most thin-film transistors are exposed to light.
  • the threshold voltage drift under the gate voltage stress of -30V can reach less than 2V per hour, which has a good application effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种金属氧化物半导体材料,包括:半导体基质材料;以及掺杂在所述半导体基质材料中的至少一种稀土化合物,每种稀土化合物的通式表示为(M FD) aA b;在通式(M FD) aA b中,M FD选自稀土元素中,能够发生f-d跃迁的元素中的一种,A选自能够使相应的M FD发生f-d跃迁的吸收光谱的波段红移至可见光波段范围内的元素,a为通式(M FD) aA b中元素M FD的原子个数,b为元素A的原子个数。

Description

金属氧化物半导体材料、靶材及其制备方法、薄膜晶体管及其制备方法
本申请要求于2020年12月18日提交的、申请号为202011511468.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及半导体技术领域,尤其涉及一种金属氧化物半导体材料、靶材及其制备方法、薄膜晶体管及其制备方法。
背景技术
薄膜晶体管(Thin Film Transistor,TFT)是一种常应用于平板显示的半导体器件,它作为平板显示中的像素控制和驱动的器件,影响着平板显示的发展。
发明内容
一方面,提供一种金属氧化物半导体材料,包括:半导体基质材料;以及掺杂在所述半导体基质材料中的至少一种稀土化合物,每种稀土化合物的通式表示为(M FD) aA b;在通式(M FD) aA b中,M FD选自稀土元素中,能够发生f-d跃迁和/或电荷转移跃迁的元素中的一种,A选自能够使相应的M FD发生f-d跃迁和/或电荷转移跃迁的吸收光谱的波段红移至可见光波段范围内的元素,a为通式(M FD) aA b中元素M FD的原子个数,b为元素A的原子个数。
在一些实施例中,在通式(M FD) aA b中,M FD选自镧系金属中除镧元素以外的其余元素中的一种。
在一些实施例中,在通式(M FD) aA b中,M FD选自铈、镨、钕、钷、钐、铽和镝中的一种。
在一些实施例中,在通式(M FD) aA b中,M FD选自镨和铽中的一种。
在一些实施例中,在通式(M FD) aA b中,A选自电负性小于氧的元素中的其中一种。
在一些实施例中,在通式(M FD) aA b中,A选自硫、硒、碲、溴、碘、砷和硼中的一种。
在一些实施例中,在所述金属氧化物半导体材料所包含的每种稀土化合物中,M FD元素发生f-d跃迁和/或电荷转移跃迁所需的最小能量小于2.64eV。
在一些实施例中,在所述金属氧化物半导体材料所包含的每种稀土化合物中,M FD元素发生f-d跃迁和/或电荷转移跃迁所需的最小能量大于2.48eV。
在一些实施例中,所述半导体基质材料包括至少一种第一金属氧化物和/或至少一种第二金属氧化物,每种第一金属氧化物和每种第二金属氧化物的 通式均表示为M cO d;在每种第一金属氧化物中,通式M cO d中的M选自铟、锌、镓、锡和镉元素中的一种;在每种第二金属氧化物中,通式M cO d中的M选自铟、锌、镓、锡和镉元素中任意两种以上的组合;c为通式M cO d中M的个数,d为通式中元素氧的原子个数。
在一些实施例中,在通式M cO d中,M还包括镧系金属、钪和钇中的一种或任意两种以上的组合。
在一些实施例中,在所述金属氧化物半导体材料中,所述半导体基质材料和所述至少一种稀土化合物的元素组成表示为((M FD) aA b) X(M cO d) 1-X;其中,x大于或等于0.001小于或等于0.15。
在一些实施例中,在通式(M FD) aA b中,在M FD选自镨和铽中的一种的情况下,x大于或等于0.01小于或等于0.1。
在一些实施例中,在通式(M FD) aA b中,在M FD选自铈的情况下,x大于或等于0.001小于或等于0.02。
另一方面,提供一种靶材,包括如上所述的金属氧化物半导体材料。
在一些实施例中,所述金属氧化物半导体材料中的通式(M FD) aA b中,A选自硫、硒、碲、砷和硼中的一种。
另一方面,提供一种薄膜晶体管,包括:有源层,所述有源层的材料包括如上所述金属氧化物半导体材料。
另一方面,提供一种靶材的制备方法,包括:
在半导体基质材料中按比例掺杂入至少一种稀土化合物,混合均匀;每种稀土化合物的通式表示为(M FD) aA b,在通式(M FD) aA b中,M FD选自稀土元素中,能够发生f-d跃迁和/或电荷转移跃迁的元素中的一种,A选自能够使相应的M FD发生f-d跃迁和/或电荷转移跃迁的吸收光谱的波段红移至可见光波段范围内的元素,a为通式(M FD) aA b中元素M FD的原子个数,b为元素A的原子个数。
将混合均匀后的掺杂有所述至少一种稀土化合物的半导体基质材料通过球磨、热压或铸浆,以及烧结,得到所述靶材。
在一些实施例中,在通式(M FD) aA b中,A选自硫、硒、碲、砷和硼中的一种。
又一方面,提供一种薄膜晶体管的制备方法,包括:
在衬底基板上形成半导体薄膜,所述半导体薄膜的材料包括半导体基质材料,以及掺杂在所述半导体基质材料中的至少一种稀土化合物,每种稀土化合物的通式表示为(M FD) aA b,在通式(M FD) aA b中,M FD选自稀土元素中,能 够发生f-d跃迁和/或电荷转移跃迁的元素中的一种,A选自能够使相应的M FD发生f-d跃迁和/或电荷转移跃迁的吸收光谱的波段红移至可见光波段范围内的元素,a为通式(M FD) aA b中元素M FD的原子个数,b为元素A的原子个数;对所述半导体薄膜进行图案化处理,得到所述薄膜晶体管的有源层。
在一些实施例中,在所述至少一种稀土化合物中,在A选自硫、硒、碲、砷和硼中的一种或多种的情况下,所述在衬底基板上形成半导体薄膜,包括:
提供一包含有所述金属氧化物半导体材料的靶材;通过溅射工艺在所述衬底基板上形成所述半导体薄膜。
或者,提供分别包含所述至少一种稀土化合物和所述半导体基质材料的靶材;通过双靶溅射工艺在所述衬底基板上形成所述半导体薄膜。
在一些实施例中,在所述至少一种稀土化合物中,在A选自溴和碘中的一种或多种的情况下,所述在衬底基板上形成半导体薄膜,包括:通过溶液法在所述衬底基板上形成所述半导体薄膜。
在一些实施例中,所述溶液法包括旋涂、喷墨打印、丝网印刷、刮涂和压印中的一种。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的薄膜晶体管的剖视结构图;
图2为根据一些实施例的AMOLED的像素电路图;
图3为根据一些实施例的基于光生空穴-电子对理论的PBIS和NBIS下的能带结构图;
图4为根据一些实施例的靶材的制备方法的流程图;
图5为根据一些实施例的薄膜晶体管的制备方法的流程图;
图6为根据一些实施例的Pr 2S 3掺杂的薄膜晶体管在NBIS条件下的转移特性曲线图;
图7为根据一些实施例的Pr 2O 3掺杂的薄膜晶体管在NBIS条件下的转移特性曲线图;
图8为根据一些实施例的Pr 2O 3和Pr 2S 3掺杂的半导体薄膜的吸收光谱图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附 图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
本公开的一些实施例提供一种显示装置,包括显示面板,以及设置于显示面板上的驱动电路,如像素驱动电路、栅极驱动电路等。
薄膜晶体管(Thin Film Transistor,TFT)是构成像素驱动电路、栅极驱动电路等的重要元器件,在通电过程中,通过控制薄膜晶体管的开启和关闭,即可控制像素驱动电路和栅极驱动电路驱动显示面板进行显示。
其中,以上所述的显示装置可以为LCD(Liquid Crystal Display,液晶显示器)、OLED(Organic Light-Emitting Diode,有机发光二极管)和QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)、MicroLED(Micro Light Emitting Diodes,微发光二极管)、miniLED(mini Light Emitting Diodes,迷你发光二极管)显示装置等中的一种。
该显示装置具体可以为手机、平板电脑、笔记本、个人数字助理(personal digital assistant,PDA)、车载电脑、膝上型计算机,数码相机等。
根据有源层的材料不同,薄膜晶体管TFT主要包括非晶硅(如氢化非晶硅:a-Si:H)TFT、低温多晶硅(Low Temperature Poly-silicon,LTPS)TFT、金属氧化物TFT和有机TFT等。
其中,金属氧化物半导体TFT由于金属氧化物的禁带宽度大、载流子迁移率高、工艺温度低,以及器件的均匀性好等优点得到更多的关注。与此同时,金属氧化物半导体TFT也有一些难题有待解决,例如金属氧化物半导体通常是n型导电的,难以获得p型导电特性,因此在互补电路中的应用受到限制。以及,金属氧化物半导体在光照下的负栅压应力稳定性依然不足。尤其是对于作为显示面板部件的薄膜晶体管1而言,在显示领域的应用中,不可避免地会受到光的照射。例如,如图1所示,在液晶显示中,薄膜晶体管1的沟道121会受到背光的照射,在OLED显示中,薄膜晶体管1的沟道121会受到OLED自发光的影响。无论是背光源还是自发光,其发光都在可见光范围内,光子能量最大的是蓝光发光。而金属氧化物半导体材料(如IZO(Indium Zinc Oxide,氧化铟锌)、IGZO(Indium Gallium Zinc Oxide,氧化铟镓锌)等)对蓝光特别敏感,因为蓝光会使金属氧化物半导体材料中的氧空位电离,并释放电子进入导带参与导电,进而使阈值电压负漂,引起显示画面的劣化。
这里,如图2所示,以在AMOLED(Active-matrix organic light emitting diode,有源矩阵有机发光二极管)显示像素驱动中,至少包括两个TFT,分 别称为选址管TFT1和驱动管TFT2为例,由于金属氧化物半导体TFT大多只显示n沟道特征,所以其在正栅压时呈开启状态,负栅压时呈关闭状态(当金属氧化物半导体载流子浓度较大时,会出现常开的状态,即需要一个负栅压才能将其完全关断)。在每个扫描周期内选址管TFT1只打开一次,其余时间都处于关闭状态,因此选址管TFT1在负栅偏应力(Negative Bias Stress,NBS)下的稳定性就显得极为重要了。驱动管TFT2的源极是与OLED直接相连的,只要OLED发光,就要一定大小的电流流经驱动管TFT2的源漏电极,因此,驱动管TFT2基本处于开启状态,其在正栅压应力(Positive Bias Stress,PBS)下的稳定性则显得较为重要,金属氧化物半导体TFT在栅压应力下将表现出阈值电压(V th)漂移现象。
以下,将对引起阈值电压漂移的情况进行详细介绍,如图3所示,以光生空穴的俘获模型为出发点,在光照作用下,会在金属氧化物半导体层(也即有源层12)中产生光生电子-空穴对,这时,如图3中的(a)所示,如果栅极13同时加PBS,会在有源层12和栅绝缘层14界面处产生大量电子而屏蔽了电场,从而减弱了有源层12上的感生电场,这样光生电子-空穴对就不会移动。当应力撤销后电子会马上复合,因此TFT在PBIS(Positive gate bias illumination stress,负栅偏压光照应力)条件下的阈值电压漂移现象不明显。如图3中的(b)所示,如果栅极13同时加NBS,由于金属氧化物半导体是n型导电,所以在栅极13加负栅压时,有源层12处于耗尽状态,这时有源层12的上下表面之间会产生压降,造成空穴往有源层12和栅绝缘层14界面移动,而电子往相反方向移动,空穴移动到有源层12和栅绝缘层14界面处会被俘获或者会进入栅绝缘层14内,这样当应力撤销后电子无法和空穴复合,从而造成阈值电压负漂。
因此,改善金属氧化物半导体TFT在NBIS(Negative gate bias illumination stress,负栅偏压光照应力)下的阈值电压稳定性显得尤为重要。
为了解决以上问题,相关技术中通常通过增加黑矩阵,对薄膜晶体管1的有源层12进行遮光处理,以改善光稳定性。但是该方式无法解决光通过衍射进入氧化物半导体层的问题,对于长时间光照条件下的稳定性改善有限。并且,通过增加遮光工艺,会增加制备的复杂程度,造成制造成本的提高。
基于此,在一些实施例中,金属氧化物半导体材料包括半导体基质材料,以及掺杂在半导体基质材料中的至少一种稀土化合物,每种稀土化合物的通式表示为(M FD) aA b。在通式(M FD) aA b中,M FD选自稀土元素中,能够发生f-d跃迁和/或电荷转移跃迁的元素中的一种,其中,FD仅是为了与后面所提及的 M进行区别所采用的下标,并不是对M的原子个数进行的限定,与通式中a和b的含义并不相同。在以下的理解中,M FD是将FD作为M的下标,与M作为一个整体,用来表示一种能够发生f-d跃迁的稀土元素,换句话说,本申请实施例中FD是f-d跃迁的简称。A选自能够使相应的M FD发生f-d跃迁和/或电荷转移跃迁的吸收光谱的波段红移至可见光波段范围内的元素,a为通式(M FD) aA b中元素M FD的原子个数,b为元素A的原子个数。
其中,半导体基质材料可以为p型金属氧化物半导体材料或者n型金属氧化物半导体材料,在此不做具体限定。在半导体基质材料为p型金属氧化物半导体材料的情况下,该p型金属氧化物半导体材料可以包括氧化铜CuO、氧化锡SnO等。在半导体基质材料为n型金属氧化物半导体材料的情况下,该n型金属氧化物半导体材料示例的可以包括ITO(Indium Tin Oxide,氧化铟锡)、IGZO(Indium Gallium Zinc Oxide,氧化铟镓锌)等。
在一些实施例中,半导体基质材料可以包括至少一种第一金属氧化物和/或至少一种第二金属氧化物。每种第一金属氧化物和每种第二金属氧化物的通式均表示为M cO d。在每种第一金属氧化物中,通式中的M选自铟、锌、镓、锡和镉元素中的一种,在每种第二金属氧化物中,通式中的M选自铟、锌、镓、锡和镉元素中任意两种以上的组合,c为通式中M的个数,d为通式中元素氧的原子个数。
其中,根据以上每种第一金属氧化物中,M选自铟、锌、镓、锡和镉元素中的一种,每种第二金属氧化物中,M选自铟、锌、镓、锡和镉元素中任意两种以上的组合,可以得知,第一金属氧化物均为二元氧化物,第二金属氧化物可以为三元氧化物、四元氧化物等。
其中,示例的,对于M选自铟、锌、镓、锡和镉元素中的每一种,第一金属氧化物可以分别表示为In 2O 3、ZnO、Ga 2O 3、SnO、SnO 2和CdO。以上c和d均为整数。其中,对于In 2O 3而言,c等于2,d等于3。对于ZnO而言,c等于1,d等于1。对于Ga 2O 3而言,c等于2,d等于3。对于SnO而言,c等于1,d等于1。对于SnO 2而言,c等于1,d等于2。对于CdO而言,c等于1,d等于1。
然而,需要说明的是,在实际应用中,考虑到薄膜中存在空位、间隙等缺陷,这时,c和d可以为小数。示例的,以In 2O 3为例,In的原子个数和O的原子个数之比可以略偏离2:3。以PrB 6为例,Pr的原子个数和B的原子个数之比可以略偏离1:6。而对于半导体基质材料仅包含锡的氧化物而言,根据锡的氧化物可以包括SnO和SnO 2,可以得知,在半导体基质材料中,Sn 的原子个数和O的原子个数之比可以小于1,如可以为0.95,此时,锡的氧化物为SnO。
针对M选自不同的组合,第二金属氧化物可以为ITO(Indium Tin Oxide,氧化铟锡)、IZO(Indium Zinc Oxide,氧化铟锌)或(Indium Gallium Zinc Oxide,氧化铟镓锌)、ITZO(Indium Tin Zinc Oxide,氧化铟锡锌),其中,ITO(Indium Tin Oxide,氧化铟锡)、IZO(Indium Zinc Oxide,氧化铟锌)属于三元氧化物,(Indium Gallium Zinc Oxide,氧化铟镓锌)、ITZO(Indium Tin Zinc Oxide,氧化铟锡锌)属于四元氧化物。对于这些氧化物而言,c可以等于1,d可以等于1。而与以上相类似的,由于金属氧化物半导体薄膜中存在空位、间隙等缺陷,因此,此时,c和d也可以为小数。
根据以上金属氧化物中除SnO以外,其余金属氧化物可以均为n型金属氧化物半导体材料,且氧化物SnO只有在严格的单晶条件下才能实现p型导电,因此,在一些实施例中,在通式中,在M选自锡的情况下,c可以等于1,d可以等于2。也即,锡的氧化物为SnO 2的情形,在此情形下,该金属氧化物半导体材料为n型金属氧化物半导体材料,且在非晶状态下即就具有很高的电子迁移率。这里,与以上金属氧化物半导体薄膜中存在空位、间隙等缺陷类似的,c和d同样也可以为小数。
基于以上半导体基质材料,在对金属氧化物半导体TFT的光照稳定性的研究中发现,氧空位的离子化是持续光导的原因,光生空穴载流子被局限在氧空位处,氧空位在光照条件下变成了单电离的Vo +或双电离的Vo 2+,这反过来贡献了与持续光导性有关的自由电子,因此,通过减少沟道内以及界面处的氧空位浓度有望提高金属氧化物半导体TFT的光照稳定性。因此,为了抑制氧空位,在一些实施例中,在通式M cO d中,M还包括镧系金属、钪和钇中的一种或任意两种以上的组合。
此时,根据以上在通式M cO d中,M选自铟、锌、镓、锡和镉元素中的一种的情况下,M还包括镧系金属、钪和钇中的一种或任意两种以上的组合,可以得知,M可以选自铟、锌、镓、锡、镉、镧系金属、钪和钇元素中的任意两种以上的组合,也即M cO d为多元氧化物。
示例的,在此情况下,在M不包括镧系金属、钪和钇中的一种或任意两种以上的组合的情况下,M可以选自铟,此时,c可以等于2,d可以等于3,也即M cO d为In 2O 3的情况。在M包括镧系金属、钪和钇中的一种或任意两种以上的组合的情况下,M可以选自铟和钪的组合,此时,c可以等于1,d可以等于1,这时,M cO d可以表示为ScInO。
而根据以上在通式M cO d中,M选自铟、锌、镓、锡和镉元素中的任意两种以上的组合的情况下,M还包括镧系金属、钪和钇中的一种或任意两种以上的组合,可以得知,M可以选自铟、锌、镓、锡、镉、镧系金属、钪和钇元素中的任意三种以上的组合,此时,M cO d同样为多元氧化物。
示例的,在此情况下,在M不包括镧系金属、钪和钇中的一种或任意两种以上的组合的情况下,M可以选自铟和镉,此时,c和d可以均等于1,也即M cO d为InCdO的情况。在M包括镧系金属、钪和钇中的一种或任意两种以上的组合的情况下,M可以选自铟、镉和钪的组合,此时,c和d也可以均等于1,这时,M cO d可以表示为ScCdInO。
根据以上每种稀土化合物的通式表示为(M FD) aA b,在通式(M FD) aA b中,M FD选自稀土元素中,能够发生f-d跃迁和/或电荷转移跃迁的元素中的一种,A选自能够使相应的M FD发生f-d跃迁和/或电荷转移跃迁的吸收光谱的波段红移至可见光波段范围内的元素,a为通式(M FD) aA b中元素MFD的原子个数,b为元素A的原子个数。可以得知,在通式(M FD) aA b,M FD可以选自镧系金属中除镧元素以外的其余元素中的一种。而根据可见光在电磁波谱中的波长范围大约在880nm~380nm的范围内,而在可见光波段,光子能量最大的是蓝光发光,半导体基质材料(如IZO(Indium Zinc Oxide,氧化铟锌)、IGZO(Indium Gallium Zinc Oxide,氧化铟镓锌)等)对蓝光最为敏感,因此,虽然从理论上来讲,含有f电子且d能级轨道未满的离子(元素周期表中从铈到铂之间的元素,也即58号到78号的所有元素)都能发生f-d跃迁,但是,通常自由离子的f-d跃迁所需的能量(E fd)均大于6eV,吸光在深紫外区域,无法吸收蓝光,特别是镧系以外的铪、钽和钨等元素,由于f电子已满,其E fd极大,无论用什么方法均无法使f-d跃迁吸收红移至蓝光区域,而镧元素本身没有f电子,因此不能发生f-d跃迁。而对于稀土元素中的铈、镨和铽而言,与大多数有机物相类似地,在电磁波的照射下,会发生电荷转移跃迁,即电子从配位体(这里是A的阴离子)的电子轨道跃迁至金属离子的电子轨道,产生电荷转移吸收光谱,同样能够吸收蓝光。如该电荷转移吸收光谱可以为三价离子被氧化为四价离子所吸收的光谱。
这里,需要说明的是,对于稀土元素选自铈、镨和铽中的一种而言,稀土元素的离子发生f-d跃迁和电荷转移跃迁所吸收的光谱之间可以具有交叠。
如下表1所示,为镧系元素中部分元素的三价离子的E fd的值。
表1
Figure PCTCN2021128260-appb-000001
在一些实施例中,在通式(M FD) aA b中,M FD选自铈、镨、钕、钷、钐、铽和镝中的一种。这些元素的离子具有相对较低的E fd,通过对阴离子环境进行选择,可以更容易实现M FD对蓝光进行吸收。而由于这些元素的离子中d电子寿命短,并具有强烈的温度淬灭效应,因此能够将吸收的蓝光转换成无辐射的形式,从而避免了背光源或者自发光中的蓝光电离氧空位而造成电导增大,从而使得阈值电压负漂的问题。同时,根据以上稀土元素中的铈、镨和铽可发生电荷转移跃迁,而在对阴离子环境进行选择的情况下,通过改变阴离子的电子亲和力,即改变阴离子的还原能力,即可对稀土元素中的铈、镨和铽发生电荷转移跃迁所需要的能量进行调节,同样能够实现M FD对蓝光进行吸收。另外,通过对金属氧化物半导体TFT的光照稳定性进行研究发现,这些稀土化合物与以上M还包括镧系金属、钪和钇中的一种或任意两种以上的组合相类似的,这些稀土元素的加入还能够抑制氧空位,减少沟道内以及界面处的氧空位浓度,提高金属氧化物半导体TFT的光照稳定性。
其中,根据以上薄膜晶体管1的结构特征,该金属氧化物半导体材料可以形成在有源层12的沟道区,也可以作为遮光材料形成在有源层12的需要遮光的区域,如在液晶显示面板中,为了防止背光源发出的光对有源层12造成影响,可以仅在有源层12靠近衬底基板11的表面形成包括该金属氧化物半导体材料的遮光层,有源层12中的其余位置的材料可以选择未掺杂有(M FD) aA b的金属氧化物半导体材料。
当然,该有源层12中的所有位置的材料可以均选自掺杂有(M FD) aA b的金属氧化物半导体材料,这时,根据不同的位置,可以选择不同掺杂种类的金属氧化物半导体材料,或者相同掺杂种类,不同掺杂量的金属氧化物半导体材料,在此,对以上掺杂有(M FD) aA b的金属氧化物半导体材料在有源层12中 的应用位置以及应用的掺杂比例均不做具体限定。
在一些实施例中,在通式(M FD) aA b中,M FD选自镨和铽中的一种。这两种元素的离子的E fd比钕、钷、钐和镝的离子的E fd均高,更容易通过设置阴离子环境,实现对蓝光的吸收。而虽然铈具有最低的E fd,但是铈非常活泼,容易形成电子陷阱,影响电子输运。因此,在M FD选自铈的情况下,(M FD) aA b的掺杂不利于载流子迁移率的提高。
在一些实施例中,在通式(M FD) aA b中,A选自电负性小于氧的元素中的其中一种。
根据氧的电负性较大(大约为3.44),M FD的氧化物的离子性强,M FD和氧之间的相互影响弱,因此,M FD的氧化物的d轨道能级受晶体场的劈裂小,使得M FD的离子的E fd依然较大,光吸收在紫外区域。在这些实施例中,通过选用电负性小于氧的元素,能够使M FD和A之间的共价程度增加,这样,M FD的离子的d轨道能级会由于较大的电子云扩大效应而产生较大劈裂,从而大幅降低f组态和d组态之间的能级差,进而大幅降低E fd,使离子的f-d跃迁的吸收红移,实现对蓝光的吸收。
其中,在相同的测试条件下,氧、氟、氯、氮、溴、碘、硫、硒、碲、磷、砷和硼的电负性如下表2所示。
表2
Figure PCTCN2021128260-appb-000002
由表2可知,在通式(M FD) aA b中,A可以选自氯、氮、溴、碘、硫、硒、碲、磷、砷和硼中的一种。
在一些实施例中,在通式(M FD) aA b中,A可以选自硫、硒、碲、溴、碘、磷、砷和硼中的一种。这些元素的电负性均比氧的电负性小0.5以上,可以产生较大的电子云扩大效应。
其中,需要说明的是,在硫、硒、碲、溴、碘、磷、砷和硼这几种元素中,硼的电负性最低,稀土化合物的六硼化物非常稳定,且M FD离子多价存 在,有利于降低M FD离子的E fd,因此,可选的,在通式(M FD) aA b中,A可以选自硼。
其中,对以上所述的至少一种稀土化合物的掺杂量不做具体限定,在实际应用中,根据以上稀土化合物中M FD离子的f-d跃迁属于跃迁允许的跃迁,其跃迁强度比f-f跃迁强度大10 6以上,所以只需掺杂少量的稀土化合物就能够实现对蓝光的大量吸收,而同时少量的掺杂也不会对金属氧化物半导体材料造成大量缺陷,因此对电子迁移率的影响较小。
此外,根据稀土化合物中M FD离子的f-d跃迁所需要的能量,以及M FD离子对电子迁移率的影响,不同的M FD离子,可以选择不同的掺杂量。
另外,基于以上掺杂,本公开的半导体基质材料无需展宽带隙,所以可以选择带隙相对较窄的In 2O 3或SnO 2作为半导体基质材料,由于相邻的In的5s轨道和相邻的Sn的5s轨道能够交叠,形成电子通道,所以可以保证该金属氧化物半导体材料较高的电子迁移率。
在一些实施例中,在金属氧化物半导体材料中,半导体基质材料和至少一种稀土化合物的元素组成可以表示为((M FD) aA b)x(M cO d)1-x,其中,x大于或等于0.001小于或等于0.15。也即,(M FD) aA b在半导体基质材料和至少一种稀土化合物中的摩尔占比大于或等于0.1%小于或等于15%。
在另一些实施例中,x大于或等于0.005小于或等于0.1。也即(M FD) aA b在半导体基质材料和至少一种稀土化合物中的摩尔占比大于或等于0.5%小于或等于10%。
在一些实施例中,在通式(M FD) aA b中,在M FD选自镨和铽中的一种的情况下,x大于或等于0.01小于或等于0.1。也即,(M FD) aA b在半导体基质材料和至少一种稀土化合物中的摩尔占比大于或等于1%小于或等于10%。在此摩尔占比下,即可实现对大部分蓝光的吸收。
这里,需要说明的是,由于铽的E fd比镨的低,所以,在一些实施例中,至少有一种稀土化合物中的M FD选自铽。
在一些实施例中,在通式(M FD) aA b中,M FD选自铈的x的取值小于M FD选自除铈以外的其余元素的x的取值。由于铈离子的电子云扩大效应非常显著,因此通过控制铈的掺杂量较小,还能够避免铈掺杂过多对迁移率造成影响。
在一些实施例中,在通式(M FD) aA b中,在M FD选自铈的情况下,x大于或等于0.001小于或等于0.02。也即,(M FD) aA b在半导体基质材料和至少一种稀土化合物中的摩尔占比大于或等于0.1%小于或等于2%。在此摩尔占比下, 一方面能够有效地改善NBIS稳定性,另一方面能够最大程度上减小掺杂对迁移率的影响。
在一些实施例中,该金属氧化物半导体材料还包括铼的化合物。这是因为铼离子具有较大的半径,铼的化合物本身具有较高的电子迁移率,能够对该金属氧化物半导体材料的电子迁移率进行调节。
其中,铼的化合物中阴离子可以为氧或者A中的一种,在铼的化合物中阴离子为氧的情况下,为铼的氧化物,在铼的化合物中阴离子为A的情况下,铼的化合物可以表示为Re eA f,其中e为化合物Re eA f中Re元素的原子个数,f为化合物Re eA f中A的原子个数。
在一些实施例中,在金属氧化物半导体材料中,铼的化合物在铼的化合物与半导体基质材料中的摩尔占比大于或等于0.02小于或等于0.15。
示例的,以铼的化合物为Re eA f为例,铼的化合物和半导体基质材料的元素组成可以表示为:(Re eA f) y(M cO d) 1-y,此时,y大于或等于0.02小于或等于0.15。
这里,需要说明的是,与以上c和d相类似的,a和b,以及e和f同样也可以为整数或小数。具体原因可参照以上对c和d的描述。
这里,以在通式(M FD) aA b中,在M FD选自镨,A选自溴为例,a可以等于1,b可以等于3,亦或者,a可以等于1,b可以等于2.95。
在一些实施例中,在金属氧化物半导体材料所包含的每种稀土化合物中,M FD元素发生f-d跃迁和/或电荷转移跃迁所需的最小能量小于2.64eV。
在这些实施例中,通过将金属氧化物半导体材料所包含的每种稀土化合物的M FD元素发生f-d跃迁和/或电荷转移跃迁所需的最小能量限定在小于2.64eV的范围内,对应于波长大于470nm的光,可以吸收背光源和自发光中的大部分蓝光。
这里,根据表1中各个M FD离子的E fd不同,可以根据以上最小能量范围选择合适的E fd的M FD离子和A离子,示例的,在A选自硫、硒、碲、磷、砷或硼的情况下,除E fd较低的镨、铽和铈以外的其余元素,其发生f-d跃迁和/或电荷转移跃迁所需的最小能量均可以限定在小于2.64eV的范围内。
根据背光源和自发光中还含有470nnm~500nm的蓝光,因此,可选的,在金属氧化物半导体材料所包含的每种稀土化合物中,M FD元素发生f-d跃迁和/或电荷转移跃迁所需的最小能量大于2.48eV。
通过将M FD元素发生f-d跃迁和/或电荷转移跃迁所需的最小能量限定在大于2.48eV的范围内,对应于波长小于500nm的光,由于金属氧化物半导体 材料对大于500nm的光不敏感,因此只需将小于500nm的光吸收即可大幅提高NBIS的稳定性。
这里,在M FD选自镨或铽的情况下,A选自硫、硒、碲、磷、砷或硼,即可使M FD离子的f-d跃迁所需的最小能量可以大于2.48eV。
本公开的一些实施例提供一种金属氧化物半导体材料在半导体器件中的应用。金属氧化物半导体材料包括半导体基质材料,以及掺杂在半导体基质材料中的至少一种稀土化合物,每种稀土化合物的通式表示为(M FD) aA b。在通式(M FD) aA b中,M FD选自稀土元素中,能够发生f-d跃迁和/或电荷转移跃迁的元素中的一种,A选自能够使相应的M FD发生f-d跃迁的吸收光谱的波段红移至可见光波段范围内的元素,a为通式(M FD) aA b中元素M FD的原子个数,b为元素A的原子个数。
这里,关于该金属氧化物半导体材料中的半导体基质材料和稀土化合物(M FD) aA b的描述可以参照以上关于半导体基质材料和稀土化合物(M FD) aA b的介绍,在此不再赘述。
在一些实施例中,该半导体器件可以包括集成电路、光电探测器、半导体发光二极管、半导体激光器和光电池等。
本公开的一些实施例提供一种靶材,包括金属氧化物半导体材料,该金属氧化物半导体材料包括半导体基质材料,以及掺杂在半导体基质材料中的至少一种稀土化合物,每种稀土化合物的通式表示为(M FD) aA b。在通式(M FD) aA b中,M FD选自稀土元素中,能够发生f-d跃迁和/或电荷转移跃迁的元素中的一种,A选自能够使相应的M FD发生f-d跃迁和/或电荷转移跃迁的吸收光谱的波段红移至可见光波段范围内的元素,a为通式(M FD) aA b中元素M FD的原子个数,b为元素A的原子个数。
其中,这里关于该金属氧化物半导体材料中的半导体基质材料和稀土化合物(M FD) aA b的描述可以参照以上关于半导体基质材料和稀土化合物(M FD) aA b的介绍,在此不再赘述。
其中,根据以上靶材在烧结时需要1000℃以上的高温,可以得知,在一些实施例中,在金属氧化物半导体材料中的通式(M FD) aA b中,A选自硫、硒、碲、砷和硼中的一种。也即,在A选自硫、硒、碲、砷和硼中的一种的情况下,可以保证该靶材在制作时较好的稳定性。
本公开的一些实施例提供一种靶材的制备方法,如图4所示,包括:
S101、在半导体基质材料中按比例掺杂入至少一种稀土化合物,混合均匀。每种稀土化合物的通式表示为(M FD) aA b,在通式(M FD) aA b中,M FD选自稀 土元素中,能够发生f-d跃迁和/或电荷转移跃迁的元素中的一种,A选自能够使相应的M FD发生f-d跃迁和/或电荷转移跃迁的吸收光谱的波段红移至可见光波段范围内的元素,a为通式(M FD) aA b中元素M FD的原子个数,b为元素A的原子个数。
这里,半导体基质材料和稀土化合物(M FD) aA b的具体介绍可以参照以上金属氧化物半导体材料中对半导体基质材料和稀土化合物(M FD) aA b的描述,在此不再赘述。
S102、将混合均匀后的掺杂有所述至少一种稀土化合物的半导体基质材料通过球磨、热压或铸浆,以及烧结,得到靶材。
在一些实施例中,在通式(M FD) aA b中,A选自硫、硒、碲、砷和硼中的一种。根据以上烧结在1000℃以上的温度下进行,可以得知,选用硫、硒、碲、砷和硼中的一种作为阴离子,可以增强(M FD) aA b在以上高温烧结过程中的稳定性。
本公开的一些实施例提供一种薄膜晶体管的制备方法,如图5所示,包括:
S201、在衬底基板11上形成半导体薄膜100,半导体薄膜100的材料包括半导体基质材料,以及掺杂在半导体基质材料中的至少一种稀土化合物,每种稀土化合物的通式表示为(M FD) aA b,在通式(M FD) aA b中,M FD选自稀土元素中,能够发生f-d跃迁的元素中的一种,A选自能够使相应的M FD发生f-d跃迁的吸收光谱的波段红移至可见光波段范围内的元素,a为通式(M FD) aA b中元素M FD的原子个数,b为元素A的原子个数。
在此,以该薄膜晶体管1为底栅型薄膜晶体管为例,在衬底基板11上形成半导体薄膜100之前,还可以包括,在衬底基板11上形成栅极13、栅绝缘层14。其中,栅极13可以通过溅射、沉积金属薄膜,并对金属薄膜进行图案化获得,栅绝缘层14可以通过旋涂、滴涂、打印、阳极氧化、热氧化、物理气相沉积或化学气相沉积,并通过图案化制备获得。栅极13的厚度可以为100nm~500nm,栅绝缘层14的厚度可以为100nm~1000nm。
这里,半导体基质材料和稀土化合物(M FD) aA b的具体介绍也可以参照以上金属氧化物半导体材料中对半导体基质材料和稀土化合物(M FD) aA b的描述,在此不再赘述。
其中,以上半导体薄膜100可以通过沉积或溶液法制备获得,在此不做具体限定。其中,沉积包括但不限于溅射、脉冲激光沉积和原子层沉积等。溶液法包括但不限于旋涂、喷墨打印、丝网印刷、刮涂和压印等。
在一些实施例中,在至少一种稀土化合物中,在A选自硫、硒、碲、砷和硼中的一种或多种的情况下,在衬底基板11上形成半导体薄膜100,包括:
提供一包含有金属氧化物半导体材料的靶材。
其中,该靶材可以通过以上所述的靶材的制备方法制备得到。
通过溅射工艺在衬底基板11上形成半导体薄膜100。
或者,提供分别包含该至少一种稀土化合物和半导体基质材料的靶材。
通过双靶溅射工艺在衬底基板11上形成半导体薄膜100。
在这些实施例中,在稀土化合物为一种的情况下,M FD可以选自铈、镨、钕、钷、钐、铽和镝中的一种,A可以选自硫、硒、碲、砷和硼中的一种,此时,示例的,该稀土化合物可以为Pr 2S 3。在稀土化合物为多种的情况下,M FD可以选自铈、镨、钕、钷、钐、铽和镝中的一种或多种,A可以选自硫、硒、碲、砷和硼中的一种或多种,此时,示例的,该至少一种稀土化合物可以包括Pr 2S 3和Tb 2S 3,为M FD选自铈、镨、钕、钷、钐、铽和镝中的多种,A选自硫、硒、碲、砷和硼中的一种的情形。再示例的,该至少一种稀土化合物可以包括Pr 2S 3和Tb 2Te 3,为M FD选自铈、镨、钕、钷、钐、铽和镝中的多种,A选自硫、硒、碲、砷和硼中的多种的情形。
在一些实施例中,在至少一种稀土化合物中,在A选自溴和碘中的一种或多种的情况下,在衬底基板11上形成半导体薄膜100,包括:
通过溶液法在衬底基板11上形成半导体薄膜100。
其中,溶液法所采用的溶液配制方法可以为分散法,在分散法中,可以将稀土化合物的纳米粉末和半导体基质材料的纳米粉末分散于溶剂中形成悬浮液。然后通过旋涂、喷墨打印、丝网印刷、刮涂或压印在衬底基板11上形成一层悬浮液的液膜,而后去除溶剂即可得到该半导体薄膜100。
其中,在衬底基板11上形成半导体薄膜100之后,还可以包括:对半导体薄膜100进行退火,退火的温度可以为200~500℃。退火后该半导体薄膜100的厚度可以为5nm~80nm。
这里,需要说明的是,由于在形成半导体薄膜100之后经过退火步骤,而为了提高半导体基质材料的分散效果,可选的,在制备时,半导体基质材料可以选用半导体基质材料的前驱体。
与半导体基质材料不同,为了避免在退火后生成稀土的氧化物,在制备时,稀土化合物可以直接选自(M FD) aA b
在这些实施例中,为了提高稀土化合物的分散均匀性,在(M FD) aA b中,A选自溴和碘中的一种或多种,也即可以提高稀土化合物在溶剂中的溶解度, 并通过直接采用(M FD) aA b,能够避免在后续退火过程中发生分解而生成稀土的氧化物。
示例的,在该稀土化合物选自PrBr 3,半导体基质材料选自In 2O 3情况下,可以将PrBr 3和In 2O 3的前驱体In(NO) 3溶解于去离子水中,并调节PrBr3和In(NO) 3的摩尔比例,而后通过旋涂、退火等工艺形成半导体薄膜,在退火过程中,In(NO) 3分解得到In 2O 3,而PrBr 3不发生分解,这样就能够得到掺杂有PrBr 3的半导体薄膜。
而在该稀土化合物选自TbI 3,半导体基质材料选自SnO 2的情况下,可以将TbI 3和SnO 2分散于溶剂中得到悬浮液,并调节TbI 3和SnO 2的摩尔比例,而后通过旋涂、退火等工艺形成半导体薄膜,在退火过程中,TbI 3不发生分解,这样就能够得到掺杂有TbI 3的半导体薄膜100。
这里,需要说明的是,在稀土化合物为一种的情况下,M FD可以选自铈、镨、钕、钷、钐、铽和镝中的一种,A可以选自溴和碘中的一种,如该稀土化合物可以为PrBr 3。在稀土化合物为多种的情况下,M FD可以选自铈、镨、钕、钷、钐、铽和镝中的一种或多种,A可以选自溴和碘中的一种或多种,如该至少一种稀土化合物可以包括PrBr 3和TbI 3
S202、对半导体薄膜100进行图案化处理,得到薄膜晶体管1的有源层12。
可以通过在半导体薄膜100涂覆光刻胶200,然后通过曝光、显影和刻蚀工艺对半导体薄膜100进行图案化处理。
在制备好有源层12之后,还可以包括S203、在形成有源层12的衬底基板11上形成源极15和漏极16。例如可以通过蒸镀或沉积形成导电薄膜,并通过涂覆光刻胶、曝光、显影、刻蚀等工艺形成源极15和漏极16。源极15和漏极16的厚度可以为100nm~1000nm。
基于以上具体实施方式,为了对本公开提供的技术方案的技术效果进行客观评价,以下,将通过应用例、对比例和实验例对本公开提供的技术方案进行详细地示例性地描述。
应用例1
应用例1提供一种薄膜晶体管,该薄膜晶体管的制备方法如下:
步骤1)、在衬底基板11上通过溅射形成一层厚度为300nm的Al:Nd(铝钕合金)膜,通过涂覆光刻胶、曝光、显影等工艺形成栅极13。
其中,该衬底基板11可以为包含有缓冲层的玻璃。
步骤2)、用阳极氧化的方法制备绝缘层,形成一层厚度为200nm的栅极氧化层(Al 2O 3:Nd,氧化铝钕)14。
步骤3)、将TbB 6材料和In 2O 3材料分别制备成两个靶材,再把这两个靶材安装在不同的靶位上,同时溅射制备在形成有栅绝缘层14的衬底基板11上形成(TbB 6) x(In 2O 3) 1-x薄膜。采用涂覆光刻胶、曝光、显影等步骤形成有源层12。
有源层12的元素组成表示为(TbB 6) x(In 2O 3) 1-x,其中0.001≤x≤0.15,并分别做x等于0.001、0.01、0.05、0.1和0.15的平行试验。
步骤4)、采用溅射的方法在形成有有源层12的衬底基板11上形成一层厚度为240nm的氧化铟锡(ITO,Indium Tin Oxides)金属氧化物薄膜,并通过构图工艺形成源极15和漏极16。
步骤5)、将制备的薄膜晶体管1在大气环境下在300℃退火1小时。得到x分别等于0.001、0.01、0.05、0.1和0.15的TFT。
实验例1
对以上应用例1中的TFT和x等于0时在同等条件下制作的TFT的转移特性曲线进行测试,测试条件为NBIS条件,采用LED(Light-Emitting Diode,发光二极管)白光照射,栅偏压为-30V。
在测试完成后,计算应用例1中的TFT和x等于0时在同等条件下制作的TFT在NBIS条件下的单位时间内的阈值电压漂移量(ΔV th),并根据转移特性饱和区的公式,代入相应区域的电流值和阈值电压即可计算获得电子迁移率。其中,阈值电压偏移量(ΔV th)和电子迁移率的计算结果如下表3所示。
表3
Figure PCTCN2021128260-appb-000003
在表3中,ΔV th表示每小时的阈值电压漂移量。由表3可知,在x等于0.001的情况下,NBIS下的ΔV th就可以大幅减小;在x提高到0.01的情况下,ΔV th就可以控制在3V以内,基本满足应用需求;在x等于0.05时,ΔV th最小,为0.8V。可见,随着TbB 6的掺杂量提高,在NBIS下的ΔV th总体呈减小趋势,但是在x大于0.05的情况下,在NBIS下的ΔV th略有上升,这说明 仅需要掺杂少量的TbB 6,即可大幅降低阈值电压漂移量,而随着掺杂量继续增大,阈值电压偏移量的减小量不明显,甚至有反弹趋势。而随着x值逐渐增大,电子迁移率呈逐渐降低趋势,可以得知,在x值等于0.05的情况下,既能够保持较高的电子迁移率,又能够提高TFT的NBIS下的稳定性。解决了相关技术中金属氧化物半导体材料的电子迁移率和NBIS稳定性相互制约的问题。
另外,在NBIS条件下对器件的电学性能进行测试时发现,在x等于0的情况下,有源层12中的载流子浓度很大,薄膜晶体管1的阈值电压较负,难以关断。而在掺杂TbB 6后,有源层12中的载流子浓度下降,可以对薄膜晶体管1的阈值电压往正向进行调控。这说明:在掺杂TbB 6后,TbB 6还具有抑制氧空位,降低载流子浓度的作用,可进一步提高金属氧化物半导体TFT的光照稳定性。
应用例2
应用例2提供一种薄膜晶体管,该薄膜晶体管的制备方法的步骤1)、步骤2)和步骤4)与以上应用例1中的步骤1)、步骤2)和步骤4)基本相同,在此不再赘述。
不同的是,在步骤3)中,将包含有Pr 2S 3、In 2O 3和ZnO的靶材固定在靶位上,采用单靶溅射的方法在形成有栅绝缘层的衬底基板上形成厚度为20nm的(Pr 2S 3) x(In 5.2Zn 1.0O y) 1-x薄膜。并在溅射完成之后在250℃退火1h。之后采用涂覆光刻胶、曝光、显影等步骤形成有源层12。其中,x等于0.09,y可以为8.8或9。
在制备好源极15和漏极16之后,还包括步骤5)、制备一层Al 2O 3作为钝化层。
其中,以上采用单靶溅射的方法在形成有栅绝缘层14的衬底基板11上形成厚度为20nm的(Pr 2S 3) x(In 5.2Zn 1.0O y) 1-x薄膜之前,还可以包括:将Pr 2S 3、In 2O 3和ZnO的纳米材料按照相应比例均匀共混,经球磨、铸浆和烧结等工艺制备成包含Pr 2S 3、In 2O 3和ZnO的靶材。
对比例
对比例的制备方法与应用例2中TFT的制备方法基本完全相同,不同的是,在对比例中,采用Pr 2O 3对有源层12进行掺杂,也即,有源层12的元素组成表示为(Pr 2O 3) x(In 5.2Zn 1.0O y) 1-x,其中,x和y与应用例2中相同。
实验例2
对以上应用例2和对比例所获得的TFT的转移特性曲线进行测试,测试 条件为NBIS条件,采用LED白光照射,栅偏压为-30V,测试时间分别对应距离栅偏压的施加时间0s、100s、600s、1200s和3600s的时间。测试结果如图6和图7所示。
由图6和图7比较可知,Pr 2O 3掺杂的TFT在NBIS下的阈值电压漂移量(ΔV th)为9.2V/小时,并通过计算得到迁移率为22.1cm 2/Vs。Pr 2S 3掺杂的TFT在NBIS下的阈值电压漂移量(ΔV th)为1.4V/小时,迁移率高达34.2cm 2/Vs。
由此可以得出,Pr 2S 3掺杂的TFT具有比Pr 2O 3掺杂的TFT更高的迁移率,同时具有更加明显以及更好的的NBIS稳定性。
实验例3
对以上应用例2制备的Pr 2S 3掺杂的半导体薄膜和对比例制备的Pr 2O 3掺杂的半导体薄膜进行吸收光谱测试,如图8所示,为Pr 2S 3掺杂的半导体薄膜和Pr 2O 3掺杂的半导体薄膜的吸收光谱的对比图。
由图8可知,Pr 2O 3掺杂的半导体薄膜的吸收光谱的吸收边在430nm左右,而Pr 2S 3掺杂的半导体薄膜的吸收光谱的吸收边大幅红移至500-600nm之间,说明S阴离子与Pr结合具有电子云扩大效应,能有效使f-d跃迁的吸收光谱红移至蓝光甚至绿光区域,从而大幅改善NBIS稳定性。
这里,需要说明的是,由于Pr和Tb的三价离子的E fd相近,因此,在相同的阴离子环境下,x的取值与所对应的NBIS下的阈值电压偏移量和电子迁移率具有相同的变化趋势。
应用例3
应用例3提供一种薄膜晶体管,该薄膜晶体管的制备方法的步骤1)和步骤2)与以上应用例1中的步骤1)和步骤2)基本相同,在此不再赘述。
不同的是,在步骤3)中,采用溶液法制备有源层12。并在制备好有源层12之后,采用蒸镀制备铝薄膜,再通过构图工艺形成源极15和漏极16。
其中,分别采用三种不同的稀土化合物(如NdBr 3、PrBr 3和PrCl 3)对半导体基质材料进行掺杂,制作三组不同稀土化合物(如NdBr 3、PrBr 3和PrCl 3)掺杂的TFT进行对比,在这三组TFT中,稀土化合物在稀土化合物与In 2O 3中的摩尔占比为x均相同。
这里,以稀土化合物为NdBr 3为例,采用溶液法制备有源层12的方法包括如下步骤:
(1)配制NdBr 3和In(NO 3) 3的溶液。
以溶液的总摩尔浓度为0.2mol/L,然后按照NdBr 3在NdBr 3与In 2O 3中的 摩尔占比为x计算出NdBr 3以及In(NO 3) 3的质量,并称重,采用去离子水作为溶剂,搅拌12h,得到NdBr 3和In(NO 3) 3的溶液。
(2)将NdBr 3和In(NO 3) 3的溶液旋涂在形成有栅极13和栅绝缘层14的衬底基板11上,旋涂过程分为两个阶段,第一阶段为低速旋涂,旋涂的转速可以为500rpm),时间可以为3s,第二阶段为高速旋涂,旋涂的转速可以为5000rpm,时间可以为40s。
(3)先进行前烘,在40℃烘20min;然后升温到90℃烘10min去除溶剂,再放入掩模板中进行紫外(UV)照射30min,然后用溶剂刻蚀,实现图案化,最后再进行高温退火(250℃烘1h)形成有源层12。
实验例4
对以上应用例3获得的TFT的转移特性曲线进行测试,测试条件为NBIS条件,采用LED白光照射,栅偏压为-30V。
在测试完成后,计算应用例3中的TFT在NBIS条件下的单位时间内的阈值电压漂移量(ΔV th)。计算结果如下表4所示。
表4
Figure PCTCN2021128260-appb-000004
由表4可知,在相同阴离子环境下以Pr作为阳离子的薄膜晶体管1要比以Nd作为阳离子的NBIS稳定性更好;而在相同的阳离子环境下,以Br作为阴离子的薄膜晶体管1要比以Cl作为阴离子的NBIS稳定性更好。这与前面的阳离子的E fd和阴离子电负性分析一致。
这里,需要说明的是,由于TFT的电子迁移率还与制备方法有关,因此,通过溶液法(制备有源层)制备的TFT的电子迁移率均普遍小于通过沉积(制备有源层)制备的TFT的电子迁移率,在此不对TFT的电子迁移率的取值进行阐述,在实际应用中,本领域技术人员可以根据需要选择合适的制备方法。
综上所述,通过在半导体基质材料中掺杂少量的稀土化合物,并对稀土化合物的阴离子进行选择,可以大幅降低负栅偏压光照应力下的阈值电压偏移量,提高TFT在NBIS下的光照稳定性,并能够保持较高的电子迁移率,解决了相关技术中金属氧化物半导体材料的电子迁移率和NBIS稳定性相互制约的问题。并通过实验发现,通过对稀土化合物的掺杂比例进行调节,可 以将薄膜晶体管在光照和-30V的栅压应力下的阈值电压漂移量控制在小于每小时3V,甚至大多数的薄膜晶体管在光照和-30V栅压应力下的阈值电压漂移量能达到小于每小时2V,具有良好的应用效果。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种金属氧化物半导体材料,包括:
    半导体基质材料;以及
    掺杂在所述半导体基质材料中的至少一种稀土化合物,每种稀土化合物的通式表示为(M FD) aA b
    在通式(M FD) aA b中,M FD选自稀土元素中,能够发生f-d跃迁和/或电荷转移跃迁的元素中的一种,A选自能够使相应的M FD发生f-d跃迁和/或电荷转移跃迁的吸收光谱的波段红移至可见光波段范围内的元素,a为通式(M FD) aA b中元素M FD的原子个数,b为元素A的原子个数。
  2. 根据权利要求1所述的金属氧化物半导体材料,其中,
    在通式(M FD) aA b中,M FD选自镧系金属中除镧元素以外的其余元素中的一种。
  3. 根据权利要求2所述的金属氧化物半导体材料,其中,
    在通式(M FD) aA b中,M FD选自铈、镨、钕、钷、钐、铽和镝中的一种。
  4. 根据权利要求2所述的金属氧化物半导体材料,其中,
    在通式(M FD) aA b中,M FD选自镨和铽中的一种。
  5. 根据权利要求1~4任一项所述的金属氧化物半导体材料,其中,
    在通式(M FD) aA b中,A选自电负性小于氧的元素中的其中一种。
  6. 根据权利要求5所述的金属氧化物半导体材料,其中,
    在通式(M FD) aA b中,A选自硫、硒、碲、溴、碘、砷和硼中的一种。
  7. 根据权利要求1~6任一项所述的金属氧化物半导体材料,其中,
    在所述金属氧化物半导体材料所包含的每种稀土化合物中,M FD元素发生f-d跃迁所需的最小能量小于2.64eV。
  8. 根据权利要求7所述的金属氧化物半导体材料,其中,
    在所述金属氧化物半导体材料所包含的每种稀土化合物中,M FD元素发生f-d跃迁所需的最小能量大于2.48eV。
  9. 根据权利要求1~8任一项所述的金属氧化物半导体材料,其中,
    所述半导体基质材料包括至少一种第一金属氧化物和/或至少一种第二金属氧化物,每种第一金属氧化物和每种第二金属氧化物的通式均表示为M cO d
    在每种第一金属氧化物中,通式M cO d中的M选自铟、锌、镓、锡和镉元素中的一种;
    在每种第二金属氧化物中,通式M cO d中的M选自铟、锌、镓、锡和镉元素中两种以上的组合;
    c为通式M cO d中M的个数,d为通式中元素氧的原子个数。
  10. 根据权利要求9所述的金属氧化物半导体材料,其中,
    在通式M cO d中,M还包括镧系金属、钪和钇中的一种或任意两种以上的组合。
  11. 根据权利要求1~10任一项所述的金属氧化物半导体材料,其中,
    在所述金属氧化物半导体材料中,所述半导体基质材料和所述至少一种稀土化合物的元素组成表示为((M FD) aA b) X(M cO d) 1-X;其中,x大于或等于0.001小于或等于0.15。
  12. 根据权利要求11所述的金属氧化物半导体材料,其中,
    在通式(M FD) aA b中,在M FD选自镨和铽中的一种的情况下,x大于或等于0.01小于或等于0.1。
  13. 根据权利要求11所述的金属氧化物半导体材料,其中,
    在通式(M FD) aA b中,在M FD选自铈的情况下,x大于或等于0.001小于或等于0.02。
  14. 一种靶材,包括如权利要求1~13任一项所述的金属氧化物半导体材料。
  15. 根据权利要求14所述的靶材,其中,
    所述金属氧化物半导体材料中的通式(M FD) aA b中,A选自硫、硒、碲、砷和硼中的一种。
  16. 一种薄膜晶体管,包括:
    有源层,所述有源层的材料包括如权利要求1~13任一项所述金属氧化物半导体材料。
  17. 一种靶材的制备方法,包括:
    在半导体基质材料中按比例掺杂入至少一种稀土化合物,混合均匀;每种稀土化合物的通式表示为(M FD) aA b,在通式(M FD) aA b中,M FD选自稀土元素中,能够发生f-d跃迁和/或电荷转移跃迁的元素中的一种,A选自能够使相应的MFD发生f-d跃迁的吸收光谱的波段红移至可见光波段范围内的元素,a为通式(M FD) aA b中元素M FD的原子个数,b为元素A的原子个数;
    将混合均匀后的掺杂有所述至少一种稀土化合物的半导体基质材料通过球磨、热压或铸浆,以及烧结,得到所述靶材。
  18. 根据权利要求17所述的靶材的制备方法,其中,
    在通式(M FD) aA b中,A选自硫、硒、碲、砷和硼中的一种。
  19. 一种薄膜晶体管的制备方法,包括:
    在衬底基板上形成半导体薄膜,所述半导体薄膜的材料包括半导体基质 材料,以及掺杂在所述半导体基质材料中的至少一种稀土化合物,每种稀土化合物的通式表示为(M FD) aA b,在通式(M FD) aA b中,M FD选自稀土元素中,能够发生f-d跃迁和/或电荷转移跃迁的元素中的一种,A选自能够使相应的M FD发生f-d跃迁和/或电荷转移跃迁的吸收光谱的波段红移至可见光波段范围内的元素,a为通式(M FD) aA b中元素M FD的原子个数,b为元素A的原子个数;
    对所述半导体薄膜进行图案化处理,得到所述薄膜晶体管的有源层。
  20. 根据权利要求19所述的薄膜晶体管的制备方法,其中,
    在所述至少一种稀土化合物中,在A选自硫、硒、碲、砷和硼中的一种或多种的情况下,所述在衬底基板上形成半导体薄膜,包括:
    提供一包含有所述金属氧化物半导体材料的靶材;
    通过溅射工艺在所述衬底基板上形成所述半导体薄膜;
    或者,
    提供分别包含所述至少一种稀土化合物和所述半导体基质材料的靶材;
    通过双靶溅射工艺在所述衬底基板上形成所述半导体薄膜。
  21. 根据权利要求19所述的薄膜晶体管的制备方法,其中,
    在所述至少一种稀土化合物中,在A选自溴和碘中的一种或多种的情况下,所述在衬底基板上形成半导体薄膜,包括:
    通过溶液法在所述衬底基板上形成所述半导体薄膜。
  22. 根据权利要求21所述的薄膜晶体管的制备方法,其中,
    所述溶液法包括旋涂、喷墨打印、丝网印刷、刮涂和压印中的一种。
PCT/CN2021/128260 2020-12-18 2021-11-02 金属氧化物半导体材料、靶材及其制备方法、薄膜晶体管及其制备方法 WO2022127414A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/922,034 US20230268444A1 (en) 2020-12-18 2021-11-02 Metal oxide semiconductor material, target material and fabrication method therefor, thin film transistor and fabrication method therefor
EP21905343.6A EP4167291A4 (en) 2020-12-18 2021-11-02 METAL OXIDE SEMICONDUCTOR MATERIAL, TARGET MATERIAL AND PRODUCTION PROCESS THEREOF, THIN FILM TRANSISTOR AND PRODUCTION PROCESS THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011511468.9 2020-12-18
CN202011511468.9A CN114649408A (zh) 2020-12-18 2020-12-18 金属氧化物半导体材料、靶材及其制备方法、薄膜晶体管及其制备方法

Publications (1)

Publication Number Publication Date
WO2022127414A1 true WO2022127414A1 (zh) 2022-06-23

Family

ID=81991643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128260 WO2022127414A1 (zh) 2020-12-18 2021-11-02 金属氧化物半导体材料、靶材及其制备方法、薄膜晶体管及其制备方法

Country Status (4)

Country Link
US (1) US20230268444A1 (zh)
EP (1) EP4167291A4 (zh)
CN (1) CN114649408A (zh)
WO (1) WO2022127414A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925410A (zh) * 2023-01-31 2023-04-07 郑州大学 镨掺杂氧化铟锌溅射靶材及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325842A (zh) * 2013-07-04 2013-09-25 华南理工大学 氧化物半导体薄膜及一种薄膜晶体管
CN105118854A (zh) * 2015-07-01 2015-12-02 京东方科技集团股份有限公司 金属氧化物半导体薄膜、薄膜晶体管、制备方法及装置
CN107146816A (zh) * 2017-04-10 2017-09-08 华南理工大学 一种氧化物半导体薄膜及由其制备的薄膜晶体管
CN108735821A (zh) * 2018-05-29 2018-11-02 华南理工大学 一种镨铟锌氧化物薄膜晶体管及其制备方法
CN110767745A (zh) * 2019-09-18 2020-02-07 华南理工大学 复合金属氧化物半导体及薄膜晶体管与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106927689A (zh) * 2017-04-17 2017-07-07 华南理工大学 一种氧化物半导体薄膜及其制备工艺
CN108178624A (zh) * 2018-01-03 2018-06-19 京东方科技集团股份有限公司 一种氧化物靶材及其制备方法、薄膜晶体管、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325842A (zh) * 2013-07-04 2013-09-25 华南理工大学 氧化物半导体薄膜及一种薄膜晶体管
CN105118854A (zh) * 2015-07-01 2015-12-02 京东方科技集团股份有限公司 金属氧化物半导体薄膜、薄膜晶体管、制备方法及装置
CN107146816A (zh) * 2017-04-10 2017-09-08 华南理工大学 一种氧化物半导体薄膜及由其制备的薄膜晶体管
CN108735821A (zh) * 2018-05-29 2018-11-02 华南理工大学 一种镨铟锌氧化物薄膜晶体管及其制备方法
CN110767745A (zh) * 2019-09-18 2020-02-07 华南理工大学 复合金属氧化物半导体及薄膜晶体管与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4167291A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925410A (zh) * 2023-01-31 2023-04-07 郑州大学 镨掺杂氧化铟锌溅射靶材及其制备方法
CN115925410B (zh) * 2023-01-31 2023-07-18 郑州大学 镨掺杂氧化铟锌溅射靶材及其制备方法

Also Published As

Publication number Publication date
EP4167291A4 (en) 2024-02-28
EP4167291A1 (en) 2023-04-19
US20230268444A1 (en) 2023-08-24
CN114649408A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
JP6567150B2 (ja) 半導体装置
TWI589002B (zh) 半導體裝置及半導體裝置的製造方法
US9564534B2 (en) Transistor and display device using the same
TWI578535B (zh) 半導體裝置及半導體裝置的製造方法
CN106057735B (zh) Tft背板的制作方法及tft背板
TWI570925B (zh) 半導體裝置以及半導體裝置的製造方法
JP2010080936A (ja) アモルファス酸化物半導体及び該アモルファス酸化物半導体を用いた薄膜トランジスタ
US20150129870A1 (en) Tft driving backplane and method of manufacturing the same
TW201737359A (zh) 半導體裝置及半導體裝置的製造方法
Park et al. Reliability of crystalline indium–gallium–zinc-oxide thin-film transistors under bias stress with light illumination
TW201324778A (zh) 半導體裝置
JP2008252097A (ja) 酸化チタニウムを活性層として有する薄膜トランジスタの製造方法およびその構造
CN103325842B (zh) 氧化物半导体薄膜及一种薄膜晶体管
WO2022127414A1 (zh) 金属氧化物半导体材料、靶材及其制备方法、薄膜晶体管及其制备方法
Kim et al. Suppressed instability of a-IGZO thin-film transistors under negative bias illumination stress using the distributed Bragg reflectors
Kim et al. Photo-stable transparent nonvolatile memory thin-film transistors using In–Ga–Zn–O channel and ZnO charge-trap layers
CN114481054B (zh) 氧化物半导体靶材、薄膜、薄膜晶体管及提高其稳定性的方法
Zhao et al. Improvement in instability of transparent ALD ZnO TFTs under negative bias illumination stress with SiO/AlO bilayer dielectric
Xu et al. Graphene quantum dots modulated solution-derived InGaO thin-film transistors and stress stability exploration
Chen et al. Al reaction-induced conductive a-InGaZnO as pixel electrode for active-matrix quantum-dot LED displays
KR20090127112A (ko) 산화티타늄을 활성층으로 갖는 박막 트랜지스터의 제조 방법 및 그 구조
KR100930057B1 (ko) 산화티타늄을 활성층으로 갖는 박막 트랜지스터의 제조방법 및 그 구조
Jang et al. Low-resistive high-work-function gate electrode for transparent a-IGZO TFTs
CN108987471B (zh) 工况nbts稳定性良好的氧化物半导体薄膜及其晶体管
Hosono Transparent Amorphous Oxide Semiconductors for Display Applications: Materials, Features, Progress, and Prospects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021905343

Country of ref document: EP

Effective date: 20230113

NENP Non-entry into the national phase

Ref country code: DE