WO2022127379A1 - 一种量子点器件、显示装置和量子点器件的制作方法 - Google Patents

一种量子点器件、显示装置和量子点器件的制作方法 Download PDF

Info

Publication number
WO2022127379A1
WO2022127379A1 PCT/CN2021/125845 CN2021125845W WO2022127379A1 WO 2022127379 A1 WO2022127379 A1 WO 2022127379A1 CN 2021125845 W CN2021125845 W CN 2021125845W WO 2022127379 A1 WO2022127379 A1 WO 2022127379A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
layer
group
film
film layer
Prior art date
Application number
PCT/CN2021/125845
Other languages
English (en)
French (fr)
Inventor
王好伟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/908,398 priority Critical patent/US20240032319A1/en
Publication of WO2022127379A1 publication Critical patent/WO2022127379A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/211Changing the shape of the active layer in the devices, e.g. patterning by selective transformation of an existing layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the invention relates to the technical field of semiconductors, and in particular, to a quantum dot device, a display device and a manufacturing method of the quantum dot device.
  • Quantum dots are important fluorescent nanomaterials.
  • the use of quantum dots as light-emitting layer materials in flat panel lighting and optoelectronic displays has attracted more and more attention from academia and industry.
  • the external quantum efficiency (EQE) of quantum dot light-emitting diodes (Quantum Dot Light Emitting Diodes, QLED) has reached more than 20%.
  • EQE external quantum efficiency
  • the patterning process of quantum dots in the light-emitting layer is a key step in determining full-color, high-resolution QLED devices.
  • the patterning process of quantum dots has been realized by transfer printing, inkjet printing, and photolithography.
  • quantum dots such as ultrasound, developing, etc.
  • the quantum dots are easy to fall off, and the pattern formed is irregular.
  • the invention provides a quantum dot device, a display device and a manufacturing method of the quantum dot device, so as to improve the problem that the quantum dots are easy to fall off during the patterning process of the quantum dots in the prior art, and the formed patterns are irregular.
  • An embodiment of the present invention provides a quantum dot device, including:
  • the first fixed layer is located on one side of the substrate assembly and has a multi-coordination terminal silane coupling body; a first connection structure is provided between the first fixed layer and the substrate assembly ;
  • a quantum dot film layer is located on the side of the first fixed layer away from the substrate assembly, and has a plurality of pattern parts, and the pattern parts have quantum dots; the pattern parts and the There is a second connection structure between the first fixed layers.
  • the first fixed layer further has a third connection structure, and the different multi-coordinate terminal silane coupling bodies are connected to each other through the third connection structure.
  • the first fixed layer contains the following structure:
  • the first connecting structure is connected with X3, the second connecting structure is connected with X1, and L3 is the third connecting structure, is the multi-coordination terminal silane coupling body, n1>1, X1 is an alkyl chain or a single bond, X2 is an alkyl chain or a single bond, X3 is an alkyl chain or a single bond, and X4 is an alkyl chain or a single bond key.
  • the first connecting structure is a single bond.
  • the first connecting structure is composed of a first coordinating end group connected to the multi-coordination end silane coupling body, and a first group connected to the substrate assembly reaction formation;
  • the first coordinating end group is methyl, ethyl or propyl; the first group is hydroxyl.
  • the second connecting structure is composed of a second coordinating end group connected to the multi-coordination end silane coupling body, and a first ligand connected to the quantum dot through a replacement;
  • the substrate assembly includes a substrate substrate, and a functional layer located on the side of the substrate substrate facing the first fixed layer, the material of the functional layer is zinc oxide, and the first group is connected to the first fixed layer. group of the functional layer.
  • the second coordinating end group is one of the following:
  • the second coordinating end group is a sulfhydryl group
  • the first ligand is oleic acid or oleylamine
  • the second connecting structure is -S-.
  • the third connecting structure is a single bond.
  • the third connecting structure is formed by the reaction of two third coordinating end groups, and the third coordinating group is methyl, ethyl, or propyl.
  • it further includes: a second fixed layer on the side of the quantum dot film layer away from the first fixed layer;
  • a fourth connection structure is provided between the second fixed layer and the quantum dot film layer.
  • the second fixed layer has a connecting body
  • the fourth connecting structure is composed of a fourth coordinating end group connected to the connecting body, and a second coordinating end group connected to the quantum dots Ligand displacement formation;
  • the second fixed layer contains the following structure:
  • the fourth connecting structure is connected with R5, and n2>1.
  • the second fixed layer contains the following structure:
  • the second fixed layer has a connecting body
  • the fourth connecting structure is composed of a fourth coordinating end group connected to the connecting body, and a fourth coordinating end group connected to the quantum dots.
  • the second fixed layer contains the following structure:
  • the fourth connecting structure is connected with X5, L5 is the fifth connecting structure, n3>1, X5 is an alkyl chain or a single bond, X6 is an alkyl chain or a single bond, X7 is a methyl group, an ethyl group, or Propyl, X8 is an alkyl chain or a single bond.
  • the fourth coordinating end group is one of the following:
  • the fourth coordinating end group is a sulfhydryl group
  • the second ligand is oleic acid or oleylamine
  • the fourth connecting structure is -S-.
  • Embodiments of the present invention further provide a display device, which includes the quantum dot device provided by the embodiments of the present invention.
  • Embodiments of the present invention also provide a method for fabricating a quantum dot device, including:
  • a substrate assembly is provided, wherein the substrate assembly contains a first group
  • a patterned photoresist layer is formed on one side of the substrate assembly, and the patterned photoresist layer exposes the target area of the substrate assembly where quantum dots are to be formed;
  • a first film layer is formed on the side of the photoresist layer away from the substrate assembly, and the first film layer includes a multi-coordination-terminated silane coupling body and a multi-coordination-terminated silane coupling body
  • the first coordinating end group and the second coordinating end group are connected, so that the first coordinating end group of the target region reacts with the first group to form a first connection structure;
  • a quantum dot film is formed on the side of the first film layer away from the photoresist layer, the quantum dot film includes quantum dots, and a first ligand connected to the quantum dots, so that the first The two-coordinate end group reacts with the first ligand to form a second connection structure, so that the quantum dot film in the target area passes through the first connection structure, the second connection structure and the The substrate assembly is connected, wherein the first membrane layer after the reaction between the second coordinating end group and the first ligand is used as a first fixed layer;
  • the photoresist layer is removed, and the quantum dot film attached to the photoresist layer is removed to form a quantum dot film layer with a plurality of pattern portions.
  • the quantum dot film layer further includes a second ligand connected to the quantum dots
  • the manufacturing method further includes:
  • a second film layer is formed on the side of the quantum dot film away from the first film layer, wherein the second film layer includes a connecting body, and a fourth coordinating end group connected to the connecting body, So that the fourth coordinating end group and the second ligand undergo a displacement reaction to form a fourth connection structure, and the fourth coordinating end group and the second ligand are subjected to a displacement reaction.
  • the second film layer serves as the second fixed layer.
  • the forming the first film layer on the side of the photoresist layer away from the substrate assembly includes:
  • a mercapto group-containing siloxane polymer is prepared, and a small amount of ammonia water is added to form a first mixed solution, wherein the structural formula of the siloxane polymer is:
  • R4 is mercapto
  • R2 is methyl, ethyl or propyl
  • R3 is methyl, ethyl or propyl
  • R1 is methyl, ethyl or propyl
  • X1 is alkyl chain or single bond
  • X2 is Alkyl chain or single bond
  • X3 is alkyl chain or single bond
  • X4 is alkyl chain or single bond
  • R4 is mercapto
  • R2 is methyl, ethyl or propyl
  • R3 is methyl, ethyl or propyl
  • R1 is methyl, ethyl or propyl
  • X1 is alkyl chain or single bond
  • X2 is Alkyl chain or single bond
  • the first mixed solution is dropped onto the photoresist layer to form a mercapto group-containing siloxane polymer film, and placed at room temperature for a first period of time;
  • the forming the second film layer on the side of the quantum dot thin film away from the first film layer includes:
  • a film of the same material as the film layer is formed on the side of the quantum dot film away from the first film layer, so that the sulfhydryl group undergoes a substitution reaction with the oleic acid or oleylamine ligand of the quantum dot to form A layer of siloxane polymer film covering the quantum dot film layer.
  • the forming the second film layer on the side of the quantum dot thin film away from the first film layer includes:
  • a sulfhydryl-containing organic polymer film is formed on the side of the quantum dot film away from the first film layer, so that the sulfhydryl group undergoes a substitution reaction with the oleic acid or oleylamine ligand of the quantum dot to form a covering A layer of polymer film of the quantum dot film layer, wherein, the structural formula of the organic polymer film is n2>1.
  • a first fixed layer is provided between the substrate assembly and the quantum dot film layer
  • a first connection structure is formed between the first fixed layer and the substrate assembly
  • the quantum dot film There is a second connection structure between the pattern part of the layer and the first fixed layer, and the first connection structure consists of a first coordination end group connected with the multi-coordination end silane coupling body, and a first connection structure connected with the substrate assembly.
  • the group is reacted to form, and the second connecting structure is formed by the second coordinating end group connected with the multi-coordination end silane coupling body, and the first ligand connected with the quantum dots through substitution, and then can pass through the first fixed layer
  • 1 is one of the schematic structural diagrams of a quantum dot device provided by an embodiment of the present invention.
  • FIG. 2 is a second schematic structural diagram of a quantum dot device provided by an embodiment of the present invention.
  • FIG. 3 is a third schematic structural diagram of a quantum dot device provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a reaction process between a first fixed layer and a substrate assembly provided by an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a reaction process between a first fixed layer and a quantum dot film layer provided by an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a reaction process between a second fixed layer and a quantum dot film layer according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a reaction process between another second fixed layer and a quantum dot film layer provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a manufacturing process of a quantum dot device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a manufacturing process of another quantum dot device provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a manufacturing process of another specific quantum dot device according to an embodiment of the present invention.
  • photolithography requires the help of photoresist. There are positive photoresist and negative photoresist. However, there are some problems in the application of photoresist process:
  • the cost of negative photoresist is low, but the developer usually uses p-xylene, and the organic solvent containing benzene is toxic, which is not conducive to environmental protection.
  • the positive photoresist has a good contrast, so the generated pattern has a good resolution; and the developer is an alkaline aqueous solution, which is conducive to environmental protection.
  • the lye will destroy the quantum dots in the light-emitting layer.
  • the "lift-off" process based on positive photoresist realizes the patterning of quantum dots.
  • the main steps are: "depositing positive photoresist-target area mask exposure-development-depositing quantum dots-full exposure-development -The technical route of introducing a patterned quantum dot layer in the target area.
  • the development of the photoresist is mainly by means of an alkaline solution (for example, an aqueous ammonia solution, or an aqueous solution of tetramethylammonium hydroxide, etc.).
  • an alkaline solution for example, an aqueous ammonia solution, or an aqueous solution of tetramethylammonium hydroxide, etc.
  • the hydroxide ions in the alkaline solution will destroy the coordination between the surface ligands and the nanocrystal dangling bonds, thereby causing The surface defect sites of the quantum dots are re-exposed, eventually destroying the light-emitting layer and reducing the device efficiency.
  • the quantum dots also have the problem that the quantum dots are easy to fall off during the patterning process (such as ultrasound, development, etc.), and the formed patterns are irregular.
  • an embodiment of the present invention provides a quantum dot device, including:
  • the first fixed layer 2, the first fixed layer 2 is located on one side of the substrate assembly 1, and has a multi-coordination terminal silane coupling body A; the first fixed layer 2 and the substrate assembly 1 have a first connection structure L1;
  • the first connecting structure L1 can be formed by the reaction of the first coordinating end group connected with the multi-coordination end silane coupling body A and the first group Z connected with the substrate assembly 1;
  • the position end group is the group connected with the multi-coordination terminal silane coupling body A before the first connection structure L1 is formed, and the first group Z is the group connected with the substrate assembly 1 before the first connection structure L1 is formed.
  • group, the first coordinating end group reacts with the first group Z to form the first connecting structure L1;
  • the quantum dot film layer 3, the quantum dot film layer 3 is located on the side of the first fixed layer 2 away from the substrate assembly 1, and has a plurality of pattern parts (Fig. , there may be a plurality of pattern parts, the present invention is not limited to this), the pattern part has quantum dots QD; the pattern part and the first fixed layer 2 have a second connection structure L2.
  • the second connecting structure L2 can be formed by substitution of the second coordinating end group connected to the multi-coordination end silane coupling body A and the first ligand connected to the quantum dot QD.
  • the second coordinating end group is the group connected to the multicoordinate end silane coupling body A before the second connecting structure L2 is formed
  • the first ligand is the group that is connected to the quantum dot QD before the second connecting structure L2 is formed.
  • the second coordinating end group reacts with the first ligand, the second connecting structure L2 is formed.
  • a first fixed layer is disposed between the substrate component and the quantum dot film layer
  • a first connection structure L1 is provided between the first fixed layer and the substrate component
  • the pattern portion of the quantum dot film layer is connected to the first fixed layer.
  • the first connection structure L1 consists of a first coordination end group R1 connected with the multi-coordination end silane coupling body A, and a first group connected with the substrate assembly 1.
  • the group Z is reacted to form, and the second connecting structure L2 is formed by the second coordinating end group R2 connected with the multi-coordinated end silane coupling body A, and the first ligand Y1 connected with the quantum dot QD.
  • the quantum dots QDs in the pattern portion are connected to the substrate assembly 1 through the first fixed layer.
  • the quantum dots When the quantum dots are patterned, it can be improved in the prior art that the quantum dots are easy to fall off during the patterning process of the quantum dots. The problem of irregular patterns.
  • the first fixed layer 2 further has a third connection structure L3 , and different multi-coordinate terminal silane coupling bodies A are connected to each other through the third connection structure L3 .
  • the third connecting structure L3 is formed by the reaction of two third coordinating end groups, and the two third coordinating end groups are respectively connected to different multi-coordinating end silane coupling bodies A. That is, before the third connecting structure L3 is formed, the multi-coordination terminal silane coupling body A is also connected with a third coordinating terminal group, and the two third coordinating terminal groups of two adjacent multi-coordinating terminal silane coupling bodies A are connected with each other. After the reaction of the terminal group, the third connecting structure L3 is formed.
  • the first fixed layer can achieve three functions: (1) connect the lower film layer; (2) connect the quantum dots; (3) itself can be cross-linked to form a dense molecular layer, making it in the It is not easy to fall off during the process.
  • the silane coupling reagent containing the multi-coordination terminal silane coupling body A can complete this step with low cost and simple operation; and at present, most of the substrate components (such as those containing ZnO or ZnMgO) inherently contain -OH linked with silane coupling reagent, so silane coupling reagent is a better choice.
  • the quantum dot device further includes: a second fixed layer 4 located on the side of the quantum dot film layer 3 away from the first fixed layer 2, the second fixed layer 4 has a connecting body B; the second fixed layer 4 is connected to the quantum There is a fourth connection structure L4 between the dot film layers 3, and the fourth connection structure L4 is formed by the substitution of the fourth coordinating end group connected with the connection body B and the second ligand connected with the quantum dot QD. That is, the fourth coordinating end group is the group that connects with the connecting body B before the fourth connecting structure L4 is formed, and the second ligand is the group that connects with the quantum dots QD before the fourth connecting structure L4 is formed. After the four-coordinate end group reacts with the second ligand, the fourth connecting structure L4 is formed.
  • the side of the quantum dot film layer 3 away from the first fixed layer 2 is further formed with a second fixed layer 4, and a fourth connection structure L4 is formed between the second fixed layer 4 and the quantum dot film layer 3,
  • a fourth connection structure L4 is formed between the second fixed layer 4 and the quantum dot film layer 3,
  • the second fixed layer 4 can avoid the damage of the surface ligands of the quantum dots by the alkaline solution during the patterning process, and avoid that the hydroxide ions in the alkaline solution will destroy the surface ligands of the quantum dots and the nanocrystal suspension. Bond coordination, thereby avoiding exposure of surface defect sites of quantum dots, avoiding damage to the light-emitting layer, and greatly reducing the impact of leakage current on device performance, thereby greatly improving the life and efficiency of quantum dot devices.
  • the second fixed layer only needs to connect and cover the quantum dots to prevent them from falling off in the subsequent process. It does not have as many functional requirements as the first fixed layer, and can choose more types of materials than the first fixed layer. .
  • the substrate assembly 1 may have a first group Z before the first functional layer 2 is formed, and the first group Z may be, for example, a hydroxyl group; specifically, the substrate assembly 1 may be a substrate substrate, or It is a composite structure including a base substrate and a functional film layer on one side of the base substrate; specifically, the substrate assembly 1 can be processed to make the substrate assembly 1 have the first group Z, or it can be obtained by treating the substrate assembly 1 with the first group Z.
  • a functional film layer with a first group Z is formed on the base substrate, so that the overall substrate assembly 1 has a first group Z. For example, by forming a functional layer made of zinc oxide on the base substrate, it can further It is achieved that the substrate assembly 1 has the first group Z.
  • the first fixed layer 2 may contain the following structures:
  • R1 is a first coordinating terminal group, which can be used to react with the first group of the substrate component 1.
  • R1 can be methyl, ethyl or propyl group, correspondingly, the first group of the substrate component 1 can be a hydroxyl group
  • R4 is a second coordinating end group, which can be used to connect with the quantum dot QD, specifically, for example, can be an amino group , polyamino, hydroxyl, polyhydroxy, mercapto, polythiol, thioether, polysulfide, phosphine or phosphine oxide
  • R2 and R3 can both be third coordinating groups, and the third coordinating group can be used to make phase
  • the group connected to the adjacent two multi-coordination end silane coupling bodies A specifically, R2 can be the first sub-coordinate end group, specifically, can be methyl, ethyl or propyl; R3 can be the second sub-coordinate end group, specifically, can be methyl, ethyl
  • a first linking group X1 may also be connected between the multi-coordination terminal silane coupling body A and the second coordinating terminal group R4, and X1 may specifically be an alkyl chain or a single bond;
  • a second linking group X2 may also be connected between the position-terminal silane coupling body A and the first sub-coordination terminal group R2, and X2 may specifically be an alkyl chain or a single bond;
  • a third connecting group X3 may also be connected between the conjoined body A and the first coordinating group R1, and X3 may specifically be an alkyl chain or a single bond;
  • a fourth linking group X4 may also be connected between the sub-coordinating end groups R3, and X4 may specifically be an alkyl chain or a single bond.
  • the first connecting group X1 is a single bond
  • the second connecting group X2 is a single bond
  • the third connecting group X3 is a single bond
  • the fourth connecting group X4 is a single bond
  • the third connecting structure L3 is a single bond
  • the first fixed layer 2 is formed on the substrate assembly 1 and the quantum dot film layer 3 is formed on the side of the first fixed layer 2 away from the substrate assembly 1
  • the first The position end group R1 can react with the first group on the surface of the substrate assembly 1 to form the first connecting structure L1
  • the second coordinating end group R4 in the first fixed layer 2 can combine with the quantum dot QD to form the first connecting structure L1.
  • the second connection structure L2 realizes the connection between the quantum dot QD and the substrate assembly 1 .
  • the first fixed layer 2 contains the following structure:
  • the first connection structure L1 is connected with X3, the second connection structure L2 is connected with X1, and L3 is the third connection structure, It is a multi-coordinate terminal silane coupling body, n1>1, X1 is an alkyl chain or a single bond, X2 is an alkyl chain or a single bond, X3 is an alkyl chain or a single bond, and X4 is an alkyl chain or a single bond.
  • the first coordinating end group is a methyl group, an ethyl group or a propyl group
  • the first group is a hydroxyl group
  • the first connecting structure L1 is a single bond.
  • the second coordinating end group is a sulfhydryl group
  • the first ligand is oleic acid or oleylamine
  • the second connecting structure L2 is -S-.
  • the third coordinating group is methyl, ethyl, or propyl
  • the third linking structure L3 is a single bond.
  • the second fixed layer 4 can be formed of the same material as the first fixed layer 2, for example, both can be silane coupling A linking reagent, wherein the fourth coordinating end group can be an amino group, a polyamino group, a hydroxyl group, a polyhydroxyl group, a thiol group, a polythiol group, a thioether, a polythioether, a phosphine or a phosphine oxide.
  • the material for forming the second pinned layer 4 may also be different from the material for forming the first pinned layer 2.
  • the second pinned layer 4 is a polymer containing quantum dot coordination terminals. , including the structural formula can be:
  • R6 is the fourth coordinating end group, such as amino, polyamino, hydroxyl, polyhydroxy, thiol, polythiol, thioether, polysulfide, phosphine or phosphine oxide, used to interact with quantum Point QD combination;
  • R5 is composed of acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, hexyl acrylate, isooctyl acrylate, lauryl acrylate, benzyl acrylate, cyclohexyl acrylate, acrylic acid Structure formed by the polymerization of fluoroalkyl ester, hydroxyethyl phosphate acrylate, isobornyl acrylate, tetrahydrofuran methyl acrylate, amino acid, ethylene or acetylene monomers.
  • the structural formula of the second fixed layer 4 is the structural formula of the second fixed layer 4
  • the material for forming the second fixed layer 4 can be the same as the material for forming the first fixed layer 2.
  • the second fixed layer 4 contains the following structure:
  • connection between the fourth connecting structure L4 and X5 is the fifth connecting structure, n3>1, X5 is an alkyl chain or a single bond, X6 is an alkyl chain or a single bond, and X7 is a methyl group, an ethyl group, or a propyl group , X8 is an alkyl chain or a single bond.
  • the second fixed layer 4 is a polymer containing quantum dot coordination terminals, after the reaction, the second fixed layer 4 has the following structure:
  • the second pinned layer 4 contains the following structure: Wherein, the fourth connection structure L4 is connected with R5, and n2>1. Specifically, after the reaction, the structure contained in the second fixed layer may be:
  • the first coordinating end group R1 is a methyl group
  • the second coordinating end group R2 is a sulfhydryl group
  • the first sub-coordinating end group R2 is a methyl group
  • the first sub-coordinating end group R2 is a methyl group
  • the two-coordinate end group R3 is methyl
  • the first linking group X1 is The second connecting group X2 is a single bond
  • the third connecting group X3 is a single bond
  • the fourth connecting group X4 is a single bond
  • the first group Z is a hydroxyl group
  • the first ligand Y1 is oleic acid.
  • the surface of the substrate assembly 1 Before the first connection L1 is formed, the surface of the substrate assembly 1 has a first group Z, and the first group Z is -OH; the first coordinating end group -CH3 of the first fixed layer 2 and the first group Z-OH undergoes the reaction as shown in Figure 3 to form a first connecting structure L1, and the third coordinating end group (R2 or R3) of two adjacent multi-coordination end silane coupling bodies A react to form a third coordinating end group (R2 or R3).
  • the material for forming the second fixed layer 4 is a silane coupling reagent
  • the fourth coordinating end group R6 is a sulfhydryl group
  • the second ligand is oleic acid.
  • the surface of the quantum dot QD also contains a second ligand (the second ligand may be the same as the first ligand, both of which are oleic acid, and the second ligand may be incompletely related to the first ligand.
  • the first ligand bound by the two-coordinate end group R4, or the second ligand and the first ligand can also be connected to different quantum dots), the fourth coordinating end group thiol and the second ligand oil
  • the acid undergoes a displacement reaction to form a fourth linking structure L4.
  • the material for forming the second pinned layer 4 is a polymer containing a quantum dot coordination terminal
  • the fourth coordinating end group R6 is a sulfhydryl group
  • the second ligand is oleic acid.
  • the surface of the quantum dot QD also contains a second ligand, and the fourth coordination end group R6 thiol undergoes displacement reaction with the second ligand oleic acid to form the fourth connection structure L4 as -S -.
  • an embodiment of the present invention further provides a display device, which includes the quantum dot device provided by the embodiment of the present invention.
  • an embodiment of the present invention also provides a method for manufacturing a quantum dot device, as shown in FIG. 8 , which includes:
  • Step S100 providing a substrate assembly, wherein the substrate assembly contains a first group
  • Step S200 forming a patterned photoresist layer on one side of the substrate assembly, and the patterned photoresist layer exposes the target area of the substrate assembly where quantum dots are to be formed;
  • Step S300 forming a first film layer on the side of the photoresist layer away from the substrate assembly, the first film layer includes a multi-coordination terminal silane coupling body, and a first coordinating terminal silane coupling body connected to the multi-coordinate terminal silane coupling body. a position end group and a second coordinating end group, so that the first coordinating end group in the target area reacts with the first group to form a first connecting structure;
  • forming the first film layer on the side of the photoresist layer away from the substrate assembly may include: preparing an ethanol solution of a mercapto group-containing siloxane polymer, and adding a small amount of ammonia water , forming a first mixed solution, wherein the structural formula of the siloxane polymer is Wherein, R4 is mercapto, R2 is methyl, ethyl or propyl, R3 is methyl, ethyl or propyl, R1 is methyl, ethyl or propyl, X1 is alkyl chain or single bond, X2 is Alkyl chain or single bond, X3 is alkyl chain or single bond, X4 is alkyl chain or single bond; it should be noted that in the silane coupling reagent, the connection between oxygen and R1, R2, R3, if R1, R2 , R3 is a methyl group, it becomes a methoxy group, R1, R2,
  • the methoxy group allows the coupling reaction of the silane coupling reagent to be carried out at room temperature, and the ethoxy group is It is more difficult (for example, heating is required), if it also contains X1 of the alkyl chain, X2 of the alkyl chain, X3 of the alkyl chain, and X4 of the alkyl chain, the silane coupling reagent will have more carbons. atoms, and the more the number of carbons, the more severe the reaction conditions, the higher the production cost, and the more difficult the production process;
  • the first mixed solution is dropped onto the photoresist layer to form a mercapto group-containing siloxane polymer film, and placed at room temperature for a first period of time;
  • Step S400 forming a quantum dot thin film on the side of the first film layer away from the photoresist layer, the quantum dot thin film includes quantum dots, and a first ligand connected to the quantum dots, so that the second coordinating end group is connected to the quantum dots.
  • the first ligand reacts to form a second connecting structure, and the quantum dot film in the target area is connected to the substrate assembly through the first connecting structure and the second connecting structure, wherein the second coordinating end group is reacted with the first ligand
  • the first film layer behind is used as the first fixed layer;
  • step S500 the photoresist layer is removed, and the quantum dot film attached to the photoresist layer is removed to form a quantum dot film layer with a plurality of pattern portions.
  • the quantum dot film layer further includes a second ligand connected to the quantum dots; after step S400 and before step S500, that is, on the first film layer away from the photoresist After forming the quantum dot film on one side of the layer and before removing the photoresist layer, the fabrication method further includes:
  • Step S600 forming a second film layer on the side of the quantum dot film away from the first film layer, wherein the second film layer includes a connecting body and a fourth coordinating end group connected to the connecting body, so that the fourth coordination end group is formed.
  • the position end group undergoes a displacement reaction with the second ligand to form a fourth connection structure, wherein the second membrane layer after the displacement reaction between the fourth coordination end group and the second ligand is used as the second fixed layer.
  • the material for forming the second film layer may be the same as the material for the first film layer.
  • forming the second film layer on the side of the quantum dot film away from the first fixed layer may include :
  • a film of the same material as the first film layer is formed on the side of the quantum dot film away from the first film layer, so as to form a layer covering the quantum dot film layer through the substitution reaction of the sulfhydryl group with the oleic acid or oleylamine ligand of the quantum dots Silicone polymer film.
  • the material for forming the second film layer may also be different from the material for the first film layer.
  • the second film layer is formed on the side of the quantum dot film away from the first fixed layer, including: :
  • a sulfhydryl-containing organic polymer film is formed on the side of the quantum dot film away from the first film layer, to form a layer of polymer covering the quantum dot film layer through the substitution reaction between the sulfhydryl group and the oleic acid or oleylamine ligand of the quantum dots film, wherein the structural formula of the organic polymer film is n2>1.
  • the material for forming the first film layer is a mercapto group-containing siloxane polymer
  • the material for forming the second film layer is for the mercapto-containing siloxane polymer
  • the conductive glass (specifically, it may include a base substrate, and a conductive film layer (indium tin oxide or fluorine-doped SnO2 conductive film (SnO2:F, FTO)) formed on the base substrate, and the conductive film layer can be used as a quantum
  • the cathode of the dot device was cleaned with water, isopropanol, ultrasonically cleaned, and treated with UV light for 5-10 min.
  • the electron transport layer can be a zinc oxide-based nanoparticle thin film or a zinc oxide thin film, and the entire substrate substrate formed with the electron transport layer and the conductive film layer can be used as the substrate assembly 1, and the surface contains hydroxyl groups.
  • the steps of forming the electron transport layer can specifically include: :
  • (a) Preparation of zinc oxide nanoparticle films For example, zinc oxide nanoparticles are spin-coated, followed by heating at 80-120°C to form a film.
  • the material of the electron transport layer can also be selected from ion-doped zinc oxide nanoparticles, such as Mg, In, Al, and Ga-doped magnesium oxide nanoparticles.
  • the speed of the glue dispenser is set to 500-2500rpm to adjust the thickness of the film layer;
  • (b) the preparation of zinc oxide film.
  • the above conductive glass is placed in a homogenizer, and 90-120 ⁇ L of the zinc precursor solution is added dropwise to the conductive glass, and spin-coated.
  • the above conductive glass is placed on a hot stage at 250-300 degrees, heated concurrently with a solvent, and a polyetherimide film layer is introduced on the above conductive glass.
  • the photoresist is spin-coated, and the red pixels are exposed and developed to expose the red pixels.
  • the specific production steps can be:
  • R4 is a mercapto group
  • R2 is a methyl group
  • R3 is a methyl group
  • R1 is a methyl group
  • X1 is a single bond
  • X2 is a single bond
  • X3 is a single bond
  • X4 is a single bond
  • ethanol solution (3-mercaptopropyl group) Trimethoxysilane 0.5mL, ethanol 4.5mL
  • a small amount of ammonia water (0.1mL) was added, 90uL of the above solution was added dropwise to the above conductive glass (substrate assembly), spin-coated to form a film, the rotating speed was 1000-4000rpm, and Place at room temperature for 1-2h.
  • the mercapto silane reagent in this step can be selected: 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane propylmethyldiethoxysilane, mercaptopropylsilane, 3-mercaptopropyltrimethylsilane, bis-[3-(triethoxysilyl)propyl]-tetrasulfide and other mercapto-containing silane reagents .
  • shell coating process add 2 mL of CdSe chloroform solution, 2 mL of ODE, 200 ⁇ L of OA into a three-necked round-bottomed flask, vacuum at 120 °C - after changing nitrogen three times, heat up to 240 °C, add 1.5 mL of The speed of /h transfers the ZnS shell precursor to the main reaction system;
  • cleaning process in order to completely remove free ligands, the cleaning process is divided into three steps: 1 add 100 mL of acetone/methanol mixed solution with a volume ratio of 7:3 into a three-neck round bottom flask containing quantum dot solution, After magnetic stirring for 10 min at 60°C, the precipitate was obtained by centrifugation; 2 In a three-necked round bottom flask, the precipitate was completely dispersed in 20 mL of toluene, and then 100 mL of acetone/methanol mixed solution with a volume ratio of 3:7 was added, and magnetic stirring was performed at 60°C. After 10 min, centrifuge to obtain a precipitate; 3.
  • spin-coating quantum dot layer the original ligand of quantum dots is oleic acid or oleylamine. Since the thiol group of the substrate after 3-mercaptopropyltrimethoxysilane is exposed at the outermost end, it can be combined with quantum dots to combine The quantum dots are immobilized on the substrate.
  • the quantum dots Due to the existence of developing, ultrasonic and other processes in the subsequent process of the multilayer quantum dots, the quantum dots are easy to fall off.
  • the modification of 3-mercaptopropyltrimethoxysilane is carried out again on the top of the quantum dots, and the thiol groups are combined with the quantum dots.
  • a film of siloxane polymer is formed to cover the quantum dots, making them immune to development and ultrasonic processes.
  • a hole transport layer is formed by spin coating or vapor deposition.
  • the hole injection layer of organic substances you can choose TFB (poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine)), or PVK (polyvinylcarbazole), or other commercial Chemical hole transport compounds, etc.
  • the film-forming conditions of TFB are: film-forming in an inert gas at 130-150°C. The thickness of the film layer can be adjusted according to the speed of the glue dispenser, and the vapor-deposited hole transport material can also be used in this step.
  • PEDOT:PSS 4083 poly3,4-ethylenedioxythiophene/polystyrene sulfonate
  • the film-forming temperature of PEDOT is 130-150°C in air. The thickness of the film layer can be adjusted according to the speed of the glue dispenser, and the vapor-deposited holes can also be injected into the material in this step.
  • the material for forming the first film layer is a mercapto group-containing siloxane polymer
  • the material for forming the second film layer is for the organic polymer film containing mercapto group
  • the conductive glass (specifically, it may include a base substrate, and a conductive film layer (indium tin oxide or fluorine-doped SnO2 conductive film (SnO2:F, FTO)) formed on the base substrate, and the conductive film layer can be used as a quantum
  • the cathode of the dot device was cleaned with water, isopropanol, ultrasonically cleaned, and treated with UV light for 5-10 min.
  • the electron transport layer can be a zinc oxide-based nanoparticle thin film or a zinc oxide thin film, and the entire substrate substrate formed with the electron transport layer and the conductive film layer can be used as the substrate assembly 1, and the surface contains hydroxyl groups.
  • the steps of forming the electron transport layer can specifically include: :
  • (a) Preparation of zinc oxide nanoparticle films For example, zinc oxide nanoparticles are spin-coated, followed by heating at 80-120°C to form a film.
  • the material of the electron transport layer can also be selected from ion-doped zinc oxide nanoparticles, such as Mg, In, Al, and Ga-doped magnesium oxide nanoparticles.
  • the speed of the glue dispenser is set to 500-2500rpm to adjust the thickness of the film layer;
  • the photoresist is spin-coated, and the red pixels are exposed and developed to expose the red pixels.
  • the mercapto silane reagent in this step can be selected: 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane propylmethyldiethoxysilane, mercaptopropylsilane, 3-mercaptopropyltrimethylsilane, bis-[3-(triethoxysilyl)propyl]-tetrasulfide and other mercapto-containing silane reagents .
  • shell coating process add 2 mL of CdSe chloroform solution, 2 mL of ODE, 200 ⁇ L of OA into a three-necked round-bottomed flask, vacuum at 120 °C - after changing nitrogen three times, heat up to 240 °C, add 1.5 mL of The speed of /h transfers the ZnS shell precursor to the main reaction system;
  • cleaning process in order to completely remove free ligands, the cleaning process is divided into three steps: 1 add 100 mL of acetone/methanol mixed solution with a volume ratio of 7:3 into a three-neck round bottom flask containing quantum dot solution, After magnetic stirring for 10 min at 60°C, the precipitate was obtained by centrifugation; 2 In a three-necked round bottom flask, the precipitate was completely dispersed in 20 mL of toluene, and then 100 mL of acetone/methanol mixed solution with a volume ratio of 3:7 was added, and magnetic stirring was performed at 60°C. After 10 min, centrifuge to obtain a precipitate; 3.
  • spin-coating quantum dot layer the original ligand of quantum dots is oleic acid or oleylamine. Since the thiol group of the substrate after 3-mercaptopropyltrimethoxysilane is exposed at the outermost end, it can be combined with quantum dots to combine The quantum dots are immobilized on the substrate.
  • the quantum dots Due to the existence of developing, ultrasonic and other processes in the subsequent process of the multilayer quantum dots, the quantum dots are easy to fall off, and the organic polymer containing thiol group is again modified on the top of the quantum dots.
  • the specific structural diagram is shown in Figure 5.
  • the thiol groups are coordinated with the quantum dots, and then a layer of polymer film is formed to cover the quantum dots, making them immune to the influence of developing and ultrasonic processes.
  • a hole transport layer is formed by spin coating or vapor deposition.
  • the hole injection layer of organic substances you can choose TFB (poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine)), or PVK (polyvinylcarbazole), or other commercial Chemical hole transport compounds, etc.
  • the film-forming conditions of TFB are: film-forming in an inert gas at 130-150°C. The thickness of the film layer can be adjusted according to the speed of the glue dispenser, and the vapor-deposited hole transport material can also be used in this step.
  • PEDOT:PSS 4083 poly3,4-ethylenedioxythiophene/polystyrene sulfonate
  • the film-forming temperature of PEDOT is 130-150°C in air. The thickness of the film layer can be adjusted according to the speed of the glue dispenser, and the vapor-deposited holes can also be injected into the material in this step.
  • a first fixed layer is provided between the substrate assembly and the quantum dot film layer
  • a first connection structure L1 is formed between the first fixed layer and the substrate assembly
  • the quantum dots There is a second connection structure L2 between the pattern part of the film layer and the first fixed layer 2
  • the first connection structure L1 is composed of a first coordination end group R1 connected with the multi-coordination end silane coupling body A, and a liner.
  • the first group Z connected to the bottom component 1 is formed by the reaction
  • the second connecting structure L2 is formed by the second coordination end group R2 connected with the multi-coordination end silane coupling body A, and the first ligand connected with the quantum dot QD.
  • the body Y1 is formed by substitution, and then the quantum dot QD in the pattern part can be connected to the substrate assembly 1 through the first fixed layer.
  • the quantum dot When the quantum dot is patterned, it can improve the existing technology in the quantum dot in the patterning process. Quantum dots are easy to fall off, and the resulting pattern is irregular.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种量子点器件、显示装置和量子点器件的制作方法,以改善现有技术在量子点在图案化过程中存在量子点较易脱落,形成的图案不规则的问题。所述量子点器件,包括:衬底组件;第一固定层,所述第一固定层位于所述衬底组件的一侧,具有多配位端硅烷偶联体;所述第一固定层与所述衬底组件之间具有第一连接结构;量子点膜层,所述量子点膜层位于所述第一固定层的背离所述衬底组件的一侧,具有多个图案部,所述图案部具有量子点;所述图案部与所述第一固定层之间具有第二连接结构。

Description

一种量子点器件、显示装置和量子点器件的制作方法
相关申请的交叉引用
本申请要求在2020年12月17日提交中国专利局、申请号为202011495172.2、申请名称为“一种量子点器件、显示装置和量子点器件的制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体技术领域,尤其涉及一种量子点器件、显示装置和量子点器件的制作方法。
背景技术
半导体量子点是一种重要的荧光纳米材料。将量子点作为发光层材料,应用于平板照明和光电显示领域,越来越受到学术界和工业界的关注。截止目前,在器件性能方面,量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)的外量子效率(EQE)已经达到了20%以上。当前,发光层量子点的图形化工艺是决定全彩、高分辨QLED器件的关键步骤。目前已有转印,喷墨打印,以及光刻等方式实现量子点的图形化工艺。
但现有技术在量子点在图案化过程中(如超声、显影等)存在量子点较易脱落,形成的图案不规则的问题。
发明内容
本发明提供一种量子点器件、显示装置和量子点器件的制作方法,以改善现有技术在量子点在图案化过程中存在量子点较易脱落,形成的图案不规则的问题。
本发明实施例提供一种量子点器件,其中,包括:
衬底组件;
第一固定层,所述第一固定层位于所述衬底组件的一侧,具有多配位端硅烷偶联体;所述第一固定层与所述衬底组件之间具有第一连接结构;
量子点膜层,所述量子点膜层位于所述第一固定层的背离所述衬底组件的一侧,具有多个图案部,所述图案部具有量子点;所述图案部与所述第一固定层之间具有第二连接结构。
在一种可能的实施方式中,所述第一固定层还具有第三连接结构,不同的所述多配位端硅烷偶联体通过所述第三连接结构相互连接。
在一种可能的实施方式中,所述第一固定层含有如下结构:
Figure PCTCN2021125845-appb-000001
其中,所述第一连接结构与X3连接,所述第二连接结构与X1连接,L3为所述第三连接结构,
Figure PCTCN2021125845-appb-000002
为所述多配位端硅烷偶联体,n1>1,X1为烷基链或单键,X2为烷基链或单键,X3为烷基链或单键,X4为烷基链或单键。
在一种可能的实施方式中,所述第一连接结构为单键。
在一种可能的实施方式中,所述第一连接结构由与所述多配位端硅烷偶联体连接的第一配位端基团,以及与所述衬底组件连接的第一基团反应形成;
所述第一配位端基团为甲基,乙基或丙基;所述第一基团为羟基。
在一种可能的实施方式中,所述第二连接结构由与所述多配位端硅烷偶联体连接的第二配位端基团,以及与所述量子点连接的第一配体经置换形成;
所述衬底组件包括衬底基板,以及位于所述衬底基板面向所述第一固定层一侧的功能层,所述功能层的材质为氧化锌,所述第一基团为连接于所述功能层的基团。
在一种可能的实施方式中,所述第二配位端基团为以下之一:
氨基;
多氨基;
羟基;
多羟基;
巯基;
多巯基;
硫醚;
多硫醚;
膦;
氧膦。
在一种可能的实施方式中,所述第二配位端基团为巯基,所述第一配体为油酸或者油胺,所述第二连接结构为-S-。
在一种可能的实施方式中,所述第三连接结构为单键。
在一种可能的实施方式中,所述第三连接结构由两个第三配位端基团反应形成,所述第三配位基团为甲基,乙基,或丙基。
在一种可能的实施方式中,还包括:位于所述量子点膜层的背离所述第一固定层一侧的第二固定层;
所述第二固定层与所述量子点膜层之间具有第四连接结构。
在一种可能的实施方式中所述第二固定层具有连接主体,所述第四连接结构由与所述连接主体连接的第四配位端基团,以及与所述量子点连接的第二配体置换形成;
所述第二固定层含有如下结构:
Figure PCTCN2021125845-appb-000003
其中,所述第四连接结构与R5连接,n2>1。
在一种可能的实施方式中,所述第二固定层含有如下结构:
Figure PCTCN2021125845-appb-000004
在一种可能的实施方式中,所述第二固定层具有连接主体,所述第四连接结构由与所述连接主体连接的第四配位端基团,以及与所述量子点连接的第二配体置换形成;
所述第二固定层含有如下结构:
Figure PCTCN2021125845-appb-000005
其中,所述第四连接结构与X5连接,L5为第五连接结构,n3>1,X5为烷基链或单键,X6为烷基链或单键,X7为甲基,乙基,或丙基,X8为烷基链或单键。
在一种可能的实施方式中,所述第四配位端基团为以下之一:
氨基;
多氨基;
羟基;
多羟基;
巯基;
多巯基;
硫醚;
多硫醚;
膦;
氧膦。
在一种可能的实施方式中,所述第四配位端基团为巯基,所述第二配体为油酸或者油胺,所述第四连接结构为-S-。
本发明实施例还提供一种显示装置,其中,包括如本发明实施例提供的所述量子点器件。
本发明实施例还提供一种量子点器件的制作方法,其中,包括:
提供一衬底组件,其中,所述衬底组件含有第一基团;
在所述衬底组件的一侧形成图案化的光刻胶层,图案化的所述光刻胶层暴露所述衬底组件待形成量子点的目标区域;
在所述光刻胶层背离所述衬底组件的一侧形成第一膜层,所述第一膜层包括多配位端硅烷偶联体,以及与所述多配位端硅烷偶联体连接的第一配位端基团,第二配位端基团,以使所述目标区域的所述第一配位端基团与所述第一基团反应,形成第一连接结构;
在所述第一膜层的背离所述光刻胶层的一侧形成量子点薄膜,所述量子点薄膜包括量子点,以及与所述量子点连接的第一配体,以使所述第二配位端基团与所述第一配体反应,形成第二连接结构,以使所述目标区域的所述量子点薄膜通过所述第一连接结构、所述第二连接结构与所述衬底组件连接,其中,将所述第二配位端基团与所述第一配体反应后的所述第一膜层作为第一固定层;
去除所述光刻胶层,以及去除附着于所述光刻胶层上的所述量子点薄膜,形成具有多个图案部的量子点膜层。
在一种可能的实施方式中,所述量子点膜层还包括与所述量子点连接的 第二配体;
在所述第一膜层的背离所述光刻胶层的一侧形成量子点薄膜之后,以及在去除所述光刻胶层之前,所述制作方法还包括:
在所述量子点薄膜背离所述第一膜层的一侧形成第二膜层,其中,所述第二膜层包括连接主体,以及与所述连接主体连接的第四配位端基团,以使所述第四配位端基团与所述第二配体发生置换反应,形成第四连接结构,将所述第四配位端基团与所述第二配体发生置换反应后的所述第二膜层作为第二固定层。
在一种可能的实施方式中,所述在所述光刻胶层背离所述衬底组件的一侧形成第一膜层,包括:
配备含巯基的硅氧烷聚合物的乙醇溶液,并加入少量氨水,形成第一混合液,其中,所述硅氧烷聚合物的结构式为
Figure PCTCN2021125845-appb-000006
其中,R4为巯基,R2为甲基,乙基或丙基,R3为甲基,乙基或丙基,R1为甲基,乙基或丙基,X1为烷基链或单键,X2为烷基链或单键,X3为烷基链或单键,X4为烷基链或单键;
取所述第一混合溶液滴加到所述光刻胶层上,形成含巯基的硅氧烷聚合物薄膜,并在室温放置第一时长;
在空气中,用超干无水乙醇冲洗至少2遍。
在一种可能的实施方式中,所述在所述量子点薄膜背离所述第一膜层的一侧形成第二膜层,包括:
在所述量子点薄膜背离所述第一膜层的一侧形成与所述膜层材料相同的薄膜,以通过所述巯基与所述量子点的油酸或者油胺配体发生置换反应,形成覆盖所述量子点膜层的一层硅氧烷聚合物薄膜。
在一种可能的实施方式中,所述在所述量子点薄膜背离所述第一膜层的一侧形成第二膜层,包括:
在所述量子点薄膜背离所述第一膜层的一侧形成含巯基的有机聚合物薄膜,以通过所述巯基与所述量子点的油酸或者油胺配体发生置换反应,形成覆盖所述量子点膜层的一层聚合物薄膜,其中,所述有机聚合物薄膜的结构式为
Figure PCTCN2021125845-appb-000007
n2>1。
本发明实施例有益效果如下:本发明实施例中,衬底组件与量子点膜层之间设置有第一固定层,第一固定层与衬底组件之间具有第一连接结构,量子点膜层的图案部与第一固定层之间具有第二连接结构,第一连接结构由与多配位端硅烷偶联体连接的第一配位端基团,以及与衬底组件连接的第一基团反应形成,第二连接结构由与多配位端硅烷偶联体连接的第二配位端基团,以及与量子点连接的第一配体经置换形成,进而可以通过第一固定层实现将图案部的量子点与衬底组件连接,在对量子点图案化时,可以改善现有技术在量子点在图案化过程中存在量子点较易脱落,形成的图案不规则的问题。
附图说明
图1为本发明实施例提供的量子点器件的结构示意图之一;
图2为本发明实施例提供的量子点器件的结构示意图之二;
图3为本发明实施例提供的量子点器件的结构示意图之三;
图4为本发明实施例提供的第一固定层与衬底组件的反应过程示意图;
图5为本发明实施例提供的第一固定层与量子点膜层的反应过程示意图;
图6为本发明实施例提供的一种第二固定层与量子点膜层的反应过程示意图;
图7为本发明实施例提供的另一种第二固定层与量子点膜层的反应过程示意图;
图8为本发明实施例提供的一种量子点器件的制作流程示意图;
图9为本发明实施例提供的另一种量子点器件的制作流程示意图;
图10为本发明实施例提供的另一种具体的量子点器件的制作流程示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
在实际工业大生产角度,通常采用光刻方式实现电子材料(量子点)的图形化。光刻需要借助于光刻胶。光刻胶有正性光刻胶和负性光刻胶。但是光刻胶工艺在应用中存在一些问题:
负性光刻胶成本较低,但是显影液通常采用对二甲苯,含苯类有机溶剂有毒,并不利于环保。正性光刻胶具有很好的对比度,所以生成的图形具有良好的分辨率;并且显影液为碱性水溶液,有利于环保。但是,碱液会破坏发光层量子点。具体的,基于正性光刻胶的“lift-off”工艺实现量子点图形化,主要步骤为:“沉积光刻正胶-目标区域掩膜版曝光-显影-沉积量子点-全曝光-显影-目标区域引入图形化量子点层”的技术路线。如果制备全彩(红、绿、蓝)QLED器件,这需要将上述步骤重复3次。这其中,光刻胶的显影主要是借助于碱性溶液(例如氨水溶液,或四甲基氢氧化铵水溶液等)。遗憾的是,碱性溶液会对量子点的表面配体状态有比较严重的破坏,具体表现在碱液中的氢氧根离子会破坏表面配体和纳米晶悬挂键的配位作用,进而使量子点的表面缺陷位点重新暴露,最终破坏发光层,降低器件效率。而且,量子点在图案化过程中(如超声、显影等)也存在量子点较易脱落,形成的图案不规则的问题。
有鉴于此,参见图1,本发明实施例提供一种量子点器件,其中,包括:
衬底组件1;
第一固定层2,第一固定层2位于衬底组件1的一侧,具有多配位端硅烷偶联体A;第一固定层2与衬底组件1之间具有第一连接结构L1;具体的,第一连接结构L1可以由与多配位端硅烷偶联体A连接的第一配位端基团以及与衬底组件1连接的第一基团Z反应形成;即,第一配位端基团为形成第一连接结构L1之前,与多配位端硅烷偶联体A连接的基团,第一基团Z为形成第一连接结构L1之前,与衬底组件1连接的基团,第一配位端基团与第一基团Z反应之后即形成第一连接结构L1;
量子点膜层3,量子点膜层3位于第一固定层2的背离衬底组件1的一侧,具有多个图案部(图1仅是以其中一个图案部进行示出,在具体实施时,可 以有多个图案部,本发明不以此为限),图案部具有量子点QD;图案部与第一固定层2之间具有第二连接结构L2。具体的,第二连接结构L2可以由与多配位端硅烷偶联体A连接的第二配位端基团,以及与量子点QD连接的第一配体经置换形成。即,第二配位端基团为形成第二连接结构L2之前,与多配位端硅烷偶联体A连接的基团,第一配体为形成第二连接结构L2之前,与量子点QD连接的基团,第二配位端基团与第一配体反应之后即形成第二连接结构L2。
本发明实施例中,衬底组件与量子点膜层之间设置有第一固定层,第一固定层与衬底组件之间具有第一连接结构L1,量子点膜层的图案部与第一固定层2之间具有第二连接结构L2,第一连接结构L1由与多配位端硅烷偶联体A连接的第一配位端基团R1,以及与衬底组件1连接的第一基团Z反应形成,第二连接结构L2由与多配位端硅烷偶联体A连接的第二配位端基团R2,以及与量子点QD连接的第一配体Y1经置换形成,进而可以通过第一固定层实现将图案部的量子点QD与衬底组件1连接,在对量子点图案化时,可以改善现有技术在量子点在图案化过程中存在量子点较易脱落,形成的图案不规则的问题。
在具体实施时,参见图2所示,第一固定层2还具有第三连接结构L3,不同的多配位端硅烷偶联体A通过第三连接结构L3相互连接。具体的,第三连接结构L3由两个第三配位端基团反应形成,两个第三配位端基团分别连接于不同的多配位端硅烷偶联体A。即,在形成第三连接结构L3之前,多配位端硅烷偶联体A还连接有第三配位端基团,相邻两个多配位端硅烷偶联体A的两个第三配位端基团反应后,即形成第三连接结构L3。
需要说明的是,第一固定层可以实现三种功能:(1)连接下膜层;(2)连接量子点;(3)自己本身可以交联以形成一张致密的分子层,使其在工艺中不易脱落。而含有多配位端硅烷偶联体A的硅烷偶联试剂可低成本且操作简单的完成此步骤;且目前衬底组件(例如含有ZnO或者ZnMgO的衬底组件)较多的本身就含有可与硅烷偶联试剂链接的-OH,所以硅烷偶联试剂为较 佳的选择。
在具体实施时,量子点器件还包括:位于量子点膜层3的背离第一固定层2一侧的第二固定层4,第二固定层4具有连接主体B;第二固定层4与量子点膜层3之间具有第四连接结构L4,第四连接结构L4由与连接主体B连接的第四配位端基团,以及与量子点QD连接的第二配体置换形成。即,第四配位端基团为形成第四连接结构L4之前,与连接主体B连接的基团,第二配体为形成第四连接结构L4之前,与量子点QD连接的基团,第四配位端基团与第二配体反应之后即形成第四连接结构L4。
本公开实施例中,量子点膜层3的背离第一固定层2的一侧还形成有第二固定层4,第二固定层4与量子点膜层3之间具有第四连接结构L4,如此,在图像化的量子点上下层均有固定层进行保护,可以大大降低量子点脱落的风险,有利于形成致密的量子点薄膜,而且,量子点膜层3背离第一固定层2一侧的第二固定层4,可以避免在图案化过程中,碱性溶液对量子点的表面配体状态的破坏,避免在碱液中的氢氧根离子会破坏量子点表面配体和纳米晶悬挂键的配位作用,进而避免使量子点的表面缺陷位点暴露,避免破坏发光层,大大降低了漏电流对器件性能的影响,从而可以大大提升量子点器件的寿命和效率。第二固定层只需要将量子点连接并覆盖住,防止其在后续工艺中脱落即可,在功能上没有第一固定层的要求多,可以选择的材料种类较第一固定层可以更多一些。
在具体实施时,衬底组件1在形成第一功能层2之前可以具有第一基团Z,第一基团Z例如可以为羟基;具体的,衬底组件1可以为衬底基板,也可以为包括衬底基板以及位于衬底基板一侧功能膜层的复合结构;具体的,可以通过对衬底组件1进行处理,以使衬底组件1具有第一基团Z,也可以是通过对衬底基板形成具有第一基团Z的功能膜层,以使整体的衬底组件1具有第一基团Z,例如,通过在衬底基板之上形成材料为氧化锌的功能层,进而可以实现使衬底组件1具有第一基团Z。
在具体实施时,第一固定层2在与衬底组件1形成第一连接结构L1之前, 第一固定层2的可以含有如下结构:
Figure PCTCN2021125845-appb-000008
其中,
Figure PCTCN2021125845-appb-000009
为多配位端硅烷偶联体A,R1为第一配位端基团,可以用于与衬底组件1的第一基团进行反应,具体的,例如,R1可以为甲基,乙基或丙基,相应的,衬底组件1的第一基团可以为羟基;R4为第二配位端基团,可以用于与量子点QD连接的基团,具体的,例如,可以为氨基,多氨基,羟基,多羟基,巯基,多巯基,硫醚,多硫醚,膦或氧膦;R2、R3可以均为第三配位基团,第三配位基团可以用于使相邻两个多配位端硅烷偶联体A连接的基团,具体的,R2可以为第一子配位端基团,具体可以为甲基,乙基或丙基;R3可以为第二子配位端基团,具体可以为甲基,乙基或丙基。具体的,多配位端硅烷偶联体A与第二配位端基团R4之间还可以连接有第一连接基团X1,X1具体可以为烷基链或单键;具体的,多配位端硅烷偶联体A与第一子配位端基团R2之间还可以连接有第二连接基团X2,X2具体可以为烷基链或单键;具体的,多配位端硅烷偶联体A与第一配位基团R1之间还可以连接有第三连接基团X3,X3具体可以为烷基链或单键;具体的,多配位端硅烷偶联体A与第二子配位端基团R3之间还可以连接有第四连接基团X4,X4具体可以为烷基链或单键。
具体的,第一连接基团X1为单键,第二连接基团X2为单键,第三连接基团X3为单键,第四连接基团X4为单键,第三连接结构L3为单键,第一固定层2在与衬底组件1形成第一连接结构L1之后,第一固定层2的可以含 有如下结构:
Figure PCTCN2021125845-appb-000010
在将第一固定层2形成于衬底组件1之上,以及在第一固定层2的背离衬底组件1的一侧形成量子点膜层3时,第一固定层2中的第一配位端基团R1可以和衬底组件1表面的第一基团反应,形成第一连接结构L1,第一固定层2中的第二配位端基团R4就可以和量子点QD结合形成第二连接结构L2,实现将量子点QD与衬底组件1连接。
相应的,在反应之后,第一固定层2含有如下结构:
Figure PCTCN2021125845-appb-000011
其中,第一连接结构L1与X3连接,第二连接结构L2与X1连接,L3为第三连接结构,
Figure PCTCN2021125845-appb-000012
为多配位端硅烷偶联体,n1>1,X1为烷基链或单键,X2为烷基链或单键,X3为烷基链或单键,X4为烷基链或单键。具体的,第一配位端基团为甲基,乙基或丙基,第一基团为羟基时,第一连接结构L1为单键。具体的,第二配位端 基团为巯基,第一配体为油酸或者油胺时,第二连接结构L2为-S-。具体的,第三配位基团为甲基,乙基,或丙基时,第三连接结构L3为单键。
具体的,第二固定层4在与量子点膜层2之间形成第四连接结构之前,形成第二固定层4的可以与形成第一固定层2的材料相同,例如,均可以为硅烷偶联试剂,其中,第四配位端基团可以为氨基、多氨基、羟基、多羟基、巯基、多巯基、硫醚、多硫醚、膦或氧膦。具体的,形成第二固定层4的材料也可以与形成第一固定层2的材料不同,例如,在与量子点膜层2反应之前,第二固定层4为含有量子点配位端的聚合物,包括的结构式可以为:
Figure PCTCN2021125845-appb-000013
其中,n2>1,R6为第四配位端基团,例如可以为氨基、多氨基、羟基、多羟基、巯基、多巯基、硫醚、多硫醚、膦或氧膦,用于与量子点QD结合;R5为由丙烯酸、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸异丁酯、丙烯酸己酯、丙烯酸异辛酯、丙烯酸月桂酯、丙烯酸苄酯、丙烯酸环己酯、丙烯酸全氟烷基酯、丙烯酸羟乙基磷酸酯、丙烯酸异冰片酯、丙烯酸四氢呋喃甲酯、氨基酸、乙烯或乙炔单体聚合形成的结构。具体的,在与量子点膜层2反应之前,第二固定层4的结构式可以为:
Figure PCTCN2021125845-appb-000014
相应的,形成第二固定层4的可以与形成第一固定层2的材料相同,在反应后,第二固定层4含有如下结构:
Figure PCTCN2021125845-appb-000015
其中,第四连接结构L4与X5连接L5为第五连接结构,n3>1,X5为烷基链或单键,X6为烷基链或单键,X7为甲基,乙基,或丙基,X8为烷基链或单键。若第二固定层4为含有量子点配位端的聚合物,在反应后,第二固定层4含有如下结构:
在反应之后,第二固定层4含有如下结构:
Figure PCTCN2021125845-appb-000016
其中,第四连接结构L4与R5连接,n2>1。具体的,在反应之后,第二固定层含有的结构可以为:
Figure PCTCN2021125845-appb-000017
具体的,以下结合图4和图5所示,以第一配位端具体R1为甲基,第二配位端基团R2为巯基,第一子配位端基团R2为甲基,第二子配位端基团R3为甲基,第一连接基团X1为
Figure PCTCN2021125845-appb-000018
第二连接基团X2为单键,第三连接基团X3为单键,第四连接基团X4为单键,第一基团Z为羟基,第一配体Y1为油酸为例,对本发明实施例提供的第一连接结构L1,第二连接结构L2,以及第三连接结构L3的形成过程进行进一步说明如下:
在形成第一连接L1之前,衬底组件1的表面具有第一基团Z,第一基团 Z为—OH;第一固定层2的第一配位端基团-CH3与第一基团Z-OH进行如图3的反应,形成第一连接结构L1,并且,相邻两个多配位端硅烷偶联体A的第三配位端基团(R2或R3)反应,形成第三连接结构L3;形成量子点膜层后,第一固定层2的第二配位端基团-SH与第一配体Y1进行如图5所示的置换反应,形成第二连接结构L2。
具体的,以下结合图6所示,以形成第二固定层4的材料为硅烷偶联试剂,第四配位端基团R6为巯基,第二配体为油酸,对本发明实施例提供的第四连接结构L4的形成过程进行进一步说明如下:
在形成第四连接结构L4之前,量子点QD的表面还含有第二配体(第二配体具体可以与第一配体相同,均为油酸,第二配体具体可以为未完全与第二配位端基团R4结合的第一配体,或者,第二配体与第一配体也可以是连接于不同的量子点),第四配位端基团巯基与第二配体油酸进行置换反应,形成第四连接结构L4。
具体的,以下结合图7所示,以形成第二固定层4的材料为含有量子点配位端的聚合物
Figure PCTCN2021125845-appb-000019
第四配位端基团R6为巯基,第二配体为油酸,对本发明实施例提供的第四连接结构L4的形成过程进行进一步说明如下:
在形成第四连接结构L4之前,量子点QD的表面还含有第二配体,第四配位端基团R6巯基与第二配体油酸进行置换反应,形成第四连接结构L4为-S-。
基于同一发明构思,本发明实施例还提供一种显示装置,其中,包括如本发明实施例提供的量子点器件。
基于同一发明构思,本发明实施例还提供一种量子点器件的制作方法,如图8所示,其中,包括:
步骤S100、提供一衬底组件,其中,衬底组件含有第一基团;
步骤S200、在衬底组件的一侧形成图案化的光刻胶层,图案化的光刻胶层暴露衬底组件待形成量子点的目标区域;
步骤S300、在光刻胶层背离衬底组件的一侧形成第一膜层,第一膜层包括多配位端硅烷偶联体,以及与多配位端硅烷偶联体连接的第一配位端基团,第二配位端基团,以使目标区域的第一配位端基团与第一基团反应,形成第一连接结构;
具体的,在一种可能的实施方式中,在光刻胶层背离衬底组件的一侧形成第一膜层,可以包括:配备含巯基的硅氧烷聚合物的乙醇溶液,并加入少量氨水,形成第一混合液,其中,硅氧烷聚合物的结构式为
Figure PCTCN2021125845-appb-000020
其中,R4为巯基,R2为甲基,乙基或丙基,R3为甲基,乙基或丙基,R1为甲基,乙基或丙基,X1为烷基链或单键,X2为烷基链或单键,X3为烷基链或单键,X4为烷基链或单键;需要说明的是,硅烷偶联试剂中,氧与R1,R2,R3的连接,若R1,R2,R3为甲基则成为甲氧基,R1,R2,R3为乙基则成为乙氧基,甲氧基让硅烷偶联试剂的偶联的反应可在常温下就可以进行,乙氧基就要更难一些(比如说需要加温),若还含有烷基链的X1、烷基链的X2、烷基链的X3、烷基链X4,则会使硅烷偶联试剂具有较多的碳原子,而碳的数量越多,反应条件更为苛刻,制作成 本更高,制作工艺更难;
取第一混合溶液滴加到光刻胶层上,形成含巯基的硅氧烷聚合物薄膜,并在室温放置第一时长;
在空气中,用超干无水乙醇冲洗至少2遍;
步骤S400、在第一膜层的背离光刻胶层的一侧形成量子点薄膜,量子点薄膜包括量子点,以及与量子点连接的第一配体,以使第二配位端基团与第一配体反应,形成第二连接结构,目标区域的量子点薄膜通过第一连接结构、第二连接结构与衬底组件连接,其中,将第二配位端基团与第一配体反应后的第一膜层作为第一固定层;
步骤S500、去除光刻胶层,以及去除附着于光刻胶层上的量子点薄膜,形成具有多个图案部的量子点膜层。
在具体实施时,参见图9所示,量子点膜层还包括与量子点连接的第二配体;在步骤S400之后,以及在步骤S500之前,即,在第一膜层的背离光刻胶层的一侧形成量子点薄膜之后,以及在去除光刻胶层之前,制作方法还包括:
步骤S600、在量子点薄膜背离第一膜层的一侧形成第二膜层,其中,第二膜层包括连接主体,以及与连接主体连接的第四配位端基团,以使第四配位端基团与第二配体发生置换反应,形成第四连接结构,其中,将第四配位端基团与第二配体发生置换反应后的第二膜层作为第二固定层。
在具体实施时,形成第二膜层的材料可以与第一膜层的材料相同,相应的,步骤S600中的,在量子点薄膜背离第一固定层的一侧形成第二膜层,可以包括:
在量子点薄膜背离第一膜层的一侧形成与第一膜层材料相同的薄膜,以通过巯基与量子点的油酸或者油胺配体发生置换反应,形成覆盖量子点膜层的一层硅氧烷聚合物薄膜。
在具体实施时,形成第二膜层的材料也可以与第一膜层的材料不同,相应的,步骤S600中的,在量子点薄膜背离第一固定层的一侧形成第二膜层, 包括:
在量子点薄膜背离第一膜层的一侧形成含巯基的有机聚合物薄膜,以通过巯基与量子点的油酸或者油胺配体发生置换反应,形成覆盖量子点膜层的一层聚合物薄膜,其中,有机聚合物薄膜的结构式为
Figure PCTCN2021125845-appb-000021
n2>1。
为了更清楚地理解本发明实施例提供的量子点器件的制作方法,以下进行进一步举例说明如下:
例如,结合图4、图5、图6以及图10所示,一种可能的实施例中,形成第一膜层的材料为含巯基的硅氧烷聚合物,形成第二膜层的材料为含巯基的硅氧烷聚合物,具体的制作步骤可以为:
(1)、清洗。将导电玻璃(具体可以包括衬底基板,以及形成于衬底基板之上的导电膜层(氧化铟锡或掺杂氟的SnO2导电薄膜(SnO2:F,FTO)),导电膜层可以作为量子点器件的阴极)分别采用水,异丙醇,超声清洗,并紫外UV处理5-10min。
(2):引入电子传输层。电子传输层可以是氧化锌基纳米粒子薄膜或氧化锌薄膜,形成有电子传输层以及导电膜层的衬底基板整体可以作为衬底组件1,表面含有羟基,形成电子传输层的步骤具体可以包括:
(a)、制备氧化锌纳米粒子薄膜。例如,旋涂氧化锌纳米粒子,之后并在80-120℃加热成膜。电子传输层材料还可以选择离子掺杂型氧化锌纳米粒子,如Mg,In,Al,Ga掺杂氧化镁纳米粒子等。匀胶机转速设置为500-2500rpm,以调整膜层的厚度;
(b)、制备氧化锌薄膜。将1g醋酸锌(或者硝酸锌等)溶于5mL乙醇 胺和正丁醇的混合溶液中。将上述导电玻璃置于匀胶机,将90-120μL锌的前驱体溶液滴加到导电玻璃上,旋涂。将上述导电玻璃置于250-300度的热台上,加热并发溶剂,在上述导电玻璃上引入聚醚酰亚胺膜层。
(3)、光刻胶涂布、曝光及显影。旋涂光刻胶,对红色像素点进行曝光并显影,使红色像素点裸露出来。
(4)、引入含巯基的硅氧烷聚合物薄膜(下固定层,也即第一固定层2),具体的制作步骤可以为:
配备3-巯丙基三甲氧基硅烷(
Figure PCTCN2021125845-appb-000022
其中,R4为巯基,R2为甲基,R3为甲基,R1为甲基,X1为单键,X2为单键,X3为单键,X4为单键)的乙醇溶液(3-巯丙基三甲氧基硅烷0.5mL,乙醇4.5mL),并加入少量氨水(0.1mL),取90uL的上述溶液滴加到上述导电玻璃(衬底组件)上,旋涂成膜,转速1000-4000rpm,并室温放置1-2h。之后用超干无水乙醇冲洗上述导电玻璃,冲洗2-3遍。通此步在空气中完成,可以摆脱对成本昂贵的手套箱的依赖,通过控制硅烷溶液的浓度和旋涂转速,让其在上膜层上形成一层致密的硅烷偶联的氧化硅薄膜。此外,此步中的巯基的硅烷试剂可以选择:3-巯丙基三甲氧基硅烷,3-巯丙基三乙氧基硅烷,3-巯丙基甲基二甲氧基硅烷,3-巯丙基甲基二乙氧基硅烷,巯基丙基硅烷,3-巯丙基三甲基硅烷,双-[3-(三乙氧基硅)丙基]-四硫化物等含有巯基的硅烷试剂。
(5)、旋涂红色量子点层,具体的制作步骤可以为:
(a)、CdSe核的制备:将0.4mmol的CdO,3.2mmol的油酸(OA),和10mL的1-十八烯(ODE)加入50mL三颈圆底烧瓶,120℃加热,抽真空1h,通氮气,升温至240℃,三口瓶内溶液呈澄清透明状态。加入1g的 三正辛基膦(TOP)和3g十六胺,降温至150℃,抽真空30min,通氮气,升温至280℃。快速注入TOP-Se澄清溶液(2mmol的Se,2mL的TOP和2.5mL的ODE在手套箱中搅拌至黄色透明液体),保温3min,迅速降至室温,用体积比为3:1的甲醇/氯仿溶液多次萃取,量子点分散于氯仿中待用;
(b)、ZnS壳层前驱体的制备:在三颈圆底烧瓶中加入0.3mmoL的Zn(Ac) 2,1mmol的月桂酸(DDT),6mL的1-十八烯(ODE),4mL的油胺(OLA),在90℃下搅拌加热抽真空-通氮气三次后,备用;
(c)、壳层包覆过程:在三颈圆底烧瓶中加入2mL的CdSe氯仿溶液,2mL的ODE,200μL的OA,120℃抽真空-换氮气三次后,升温至240℃,以1.5mL/h的速度将ZnS壳层前驱体转移至主反应体系;
(d)、清洗过程:为了彻底清除游离配体,清洗过程分为三步:①将100mL体积比为7:3的丙酮/甲醇混合溶液加入装有量子点溶液的三颈圆底烧瓶中,60℃下磁力搅拌10min后,离心得到沉淀;②在三颈圆底烧瓶中,将沉淀完全分散于20mL甲苯,再加入100mL体积比为3:7的丙酮/甲醇混合溶液,60℃下磁力搅拌10min后,离心得到沉淀;③将沉淀完全分散于20mL甲苯,加入三颈圆底烧瓶中,再加入20mL冰醋酸和70mL甲醇,70℃下搅拌10min后,离心得到沉淀,将沉淀放入真空干燥箱中60℃烘干,配制成15mg/ml的正辛烷溶液备用;
(e)、旋涂量子点层:量子点的原始配体为油酸或者油胺,由于经过3-巯丙基三甲氧基硅烷的基板巯基裸露在最外端,可与量子点结合,将量子点固定在基板上。
(6)、再次引入含巯基的硅氧烷聚合物薄膜(上固定层,也即第二固定层4),具体的制作步骤可以为:
由于多层量子点在后续工艺中会有显影、超声等工艺的存在,量子点很容易脱落,在量子点的上方再次进行3-巯丙基三甲氧基硅烷的修饰,通过巯基与量子点配位,然后形成一层硅氧烷聚合物薄膜覆盖住量子点,使其免受显影、超声工艺的影响。
(7)、光刻胶的剥离。剥离光刻胶,形成图案化的红色量子点。
(8)、引入空穴传输层。在上述导电玻璃上,通过旋涂或蒸镀等方式空穴传输层。有机物质做空穴注入层可以选择TFB(聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)),或PVK(聚乙烯咔唑),或者其它商业化的空穴传输化合物等。其中,TFB的成膜条件为:130-150℃惰性气体中成膜。膜层厚度可以根据匀胶机转速调控,此步骤中也可以使蒸镀的空穴传输材料。
(9)、引入空穴注入层。在上述导电玻璃上,旋通过旋涂或蒸镀等方式空穴注入层。有机物质做空穴注入层可以选择PEDOT:PSS 4083(聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐)或者其它商业化适用于空穴注入层的化合物等。其中,PEDOT的成膜温度为空气130-150℃等。膜层厚度可以根据匀胶机转速调控,此步骤中也可以使蒸镀的空穴注入材料。
(10)、引入阳极。最后引入阳极材料,例如蒸镀铝膜,银膜或溅射铟锌氧化物(IZO)膜制备QLED器件。
(11)、封装。加盖封装盖板,采用紫外固化胶对器件进行封装,制备量子点发光二极管。
(12)全彩QLED的制备。重复以上步骤,形成图案化的绿色和蓝色像素点,进而形成全彩QLED,另外,也可以根据需要,调整红色量子点、绿色量子点和蓝色量子点的图案化顺序。
又例如,一种可能的实施例中,结合图4、图5、图7以及图10所示,形成第一膜层的材料为含巯基的硅氧烷聚合物,形成第二膜层的材料为含巯基的有机聚合物薄膜,具体的制作步骤可以为:
(1)、清洗。将导电玻璃(具体可以包括衬底基板,以及形成于衬底基板之上的导电膜层(氧化铟锡或掺杂氟的SnO2导电薄膜(SnO2:F,FTO)),导电膜层可以作为量子点器件的阴极)分别采用水,异丙醇,超声清洗,并紫外UV处理5-10min。
(2)、引入电子传输层。电子传输层可以是氧化锌基纳米粒子薄膜或氧 化锌薄膜,形成有电子传输层以及导电膜层的衬底基板整体可以作为衬底组件1,表面含有羟基,形成电子传输层的步骤具体可以包括:
(a)、制备氧化锌纳米粒子薄膜。例如,旋涂氧化锌纳米粒子,之后并在80-120℃加热成膜。电子传输层材料还可以选择离子掺杂型氧化锌纳米粒子,如Mg,In,Al,Ga掺杂氧化镁纳米粒子等。匀胶机转速设置为500-2500rpm,以调整膜层的厚度;
(b)、制备氧化锌薄膜。将1g醋酸锌(或者硝酸锌等)溶于5mL乙醇胺和正丁醇的混合溶液中。将上述导电玻璃置于匀胶机,将90-120μL锌的前驱体溶液滴加到导电玻璃上,旋涂。将上述导电玻璃置于250-300度的热台上,加热并发溶剂,在上述导电玻璃上引入聚醚酰亚胺膜层。
(3)、光刻胶涂布、曝光及显影。旋涂光刻胶,对红色像素点进行曝光并显影,使红色像素点裸露出来。
(4)、引入含巯基的硅氧烷聚合物薄膜(下固定层,也即第一固定层2)。
配备3-巯丙基三甲氧基硅烷
Figure PCTCN2021125845-appb-000023
的乙醇溶液(3-巯丙基三甲氧基硅烷0.5mL,乙醇4.5mL),并加入少量氨水(0.1mL),去90uL的上述溶液滴加到上述导电玻璃上,旋涂成膜,转速1000-4000rpm,并室温放置1-2h。之后用超干无水乙醇冲洗上述导电玻璃,冲洗2-3遍。通此步在空气中完成,可以摆脱对成本昂贵的手套箱的依赖,通过控制硅烷溶液的浓度和旋涂转速,让其在上膜层上形成一层致密的硅烷偶联的氧化硅薄膜。此外,此步中的巯基的硅烷试剂可以选择:3-巯丙基三甲氧基硅烷,3-巯丙基三乙氧基硅烷,3-巯丙基甲基二甲氧基硅烷,3-巯丙基甲基二乙氧基硅烷,巯基丙基硅烷,3-巯丙基三甲基硅烷,双-[3-(三乙氧基硅)丙基]-四硫化物等含有巯 基的硅烷试剂。
(5)、旋涂红色量子点层,具体的制作步骤可以为:
(a)、CdSe核的制备:将0.4mmol的CdO,3.2mmol的OA,和10mL的ODE加入50mL三颈圆底烧瓶,120℃加热,抽真空1h,通氮气,升温至240℃,三口瓶内溶液呈澄清透明状态。加入1g的TOP和3g十六胺,降温至150℃,抽真空30min,通氮气,升温至280℃。快速注入TOP-Se澄清溶液(2mmol的Se,2mL的TOP和2.5mL的ODE在手套箱中搅拌至黄色透明液体),保温3min,迅速降至室温,用体积比为3:1的甲醇/氯仿溶液多次萃取,量子点分散于氯仿中待用;
(b)、ZnS壳层前驱体的制备:在三颈圆底烧瓶中加入0.3mmoL的Zn(Ac)2,1mmol的DDT,6mL的ODE,4mL的OLA,在90℃下搅拌加热抽真空-通氮气三次后,备用;
(c)、壳层包覆过程:在三颈圆底烧瓶中加入2mL的CdSe氯仿溶液,2mL的ODE,200μL的OA,120℃抽真空-换氮气三次后,升温至240℃,以1.5mL/h的速度将ZnS壳层前驱体转移至主反应体系;
(d)、清洗过程:为了彻底清除游离配体,清洗过程分为三步:①将100mL体积比为7:3的丙酮/甲醇混合溶液加入装有量子点溶液的三颈圆底烧瓶中,60℃下磁力搅拌10min后,离心得到沉淀;②在三颈圆底烧瓶中,将沉淀完全分散于20mL甲苯,再加入100mL体积比为3:7的丙酮/甲醇混合溶液,60℃下磁力搅拌10min后,离心得到沉淀;③将沉淀完全分散于20mL甲苯,加入三颈圆底烧瓶中,再加入20mL冰醋酸和70mL甲醇,70℃下搅拌10min后,离心得到沉淀,将沉淀放入真空干燥箱中60℃烘干,配制成15mg/ml的正辛烷溶液备用;
(e)、旋涂量子点层:量子点的原始配体为油酸或者油胺,由于经过3-巯丙基三甲氧基硅烷的基板巯基裸露在最外端,可与量子点结合,将量子点固定在基板上。
(6)、引入含巯基的有机聚合物薄膜(上固定层,也即第二固定层4), 具体的制作步骤可以为:
由于多层量子点在后续工艺中会有显影、超声等工艺的存在,量子点很容易脱落,在量子点的上方再次进行含巯基的有机聚合物进行修饰,具体结构示意图如图五所示,通过巯基与量子点配位,然后形成一层聚合物薄膜覆盖住量子点,使其免受显影、超声工艺的影响。
(7)、光刻胶的剥离。剥离光刻胶,形成图案化的红色量子点。
(8)、引入空穴传输层。在上述导电玻璃上,通过旋涂或蒸镀等方式空穴传输层。有机物质做空穴注入层可以选择TFB(聚(9,9-二辛基芴-co-N-(4-丁基苯基)二苯胺)),或PVK(聚乙烯咔唑),或者其它商业化的空穴传输化合物等。其中,TFB的成膜条件为:130-150℃惰性气体中成膜。膜层厚度可以根据匀胶机转速调控,此步骤中也可以使蒸镀的空穴传输材料。
(9)、引入空穴注入层。在上述导电玻璃上,旋通过旋涂或蒸镀等方式空穴注入层。有机物质做空穴注入层可以选择PEDOT:PSS 4083(聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸盐)或者其它商业化适用于空穴注入层的化合物等。其中,PEDOT的成膜温度为空气130-150℃等。膜层厚度可以根据匀胶机转速调控,此步骤中也可以使蒸镀的空穴注入材料。
(10)、引入阳极。最后引入阳极材料,例如蒸镀铝膜,银膜或溅射铟锌氧化物(IZO)膜制备QLED器件。
(11)、封装。加盖封装盖板,采用紫外固化胶对器件进行封装,制备量子点发光二极管。
(12)、全彩QLED的制备。重复以上步骤,形成图案化的绿色和蓝色像素点,进而形成全彩QLED,另外,也可以根据需要,调整红色量子点、绿色量子点和蓝色量子点的图案化顺序。
本发明实施例有益效果如下:本发明实施例中,衬底组件与量子点膜层之间设置有第一固定层,第一固定层与衬底组件之间具有第一连接结构L1,量子点膜层的图案部与第一固定层2之间具有第二连接结构L2,第一连接结 构L1由与多配位端硅烷偶联体A连接的第一配位端基团R1,以及与衬底组件1连接的第一基团Z反应形成,第二连接结构L2由与多配位端硅烷偶联体A连接的第二配位端基团R2,以及与量子点QD连接的第一配体Y1经置换形成,进而可以通过第一固定层实现将图案部的量子点QD与衬底组件1连接,在对量子点图案化时,可以改善现有技术在量子点在图案化过程中存在量子点较易脱落,形成的图案不规则的问题。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (22)

  1. 一种量子点器件,其中,包括:
    衬底组件;
    第一固定层,所述第一固定层位于所述衬底组件的一侧,具有多配位端硅烷偶联体;所述第一固定层与所述衬底组件之间具有第一连接结构;
    量子点膜层,所述量子点膜层位于所述第一固定层的背离所述衬底组件的一侧,具有多个图案部,所述图案部具有量子点;所述图案部与所述第一固定层之间具有第二连接结构。
  2. 如权利要求1所述的量子点器件,其中,所述第一固定层还具有第三连接结构,不同的所述多配位端硅烷偶联体通过所述第三连接结构相互连接。
  3. 如权利要求2所述的量子点器件,其中,所述第一固定层含有如下结构:
    Figure PCTCN2021125845-appb-100001
    其中,所述第一连接结构与X3连接,所述第二连接结构与X1连接,L3为所述第三连接结构,
    Figure PCTCN2021125845-appb-100002
    为所述多配位端硅烷偶联体,n1>1,X1为烷基链或单键,X2为烷基链或单键,X3为烷基链或单键,X4为烷基链或单键。
  4. 如权利要求3所述的量子点器件,其中,所述第一连接结构为单键。
  5. 如权利要求4所述的量子点器件,其中,所述第一连接结构由与所述多配位端硅烷偶联体连接的第一配位端基团,以及与所述衬底组件连接的第一基团反应形成;
    所述第一配位端基团为甲基,乙基或丙基;所述第一基团为羟基。
  6. 如权利要求4所述的量子点器件,其中,所述衬底组件包括衬底基板,以及位于所述衬底基板面向所述第一固定层一侧的功能层,所述功能层的材质为氧化锌,所述第一基团为连接于所述功能层的基团。
  7. 如权利要求3所述的量子点器件,其中,所述第二连接结构由与所述多配位端硅烷偶联体连接的第二配位端基团,以及与所述量子点连接的第一配体经置换形成;
    所述第二配位端基团为以下之一:
    氨基;
    多氨基;
    羟基;
    多羟基;
    巯基;
    多巯基;
    硫醚;
    多硫醚;
    膦;
    氧膦。
  8. 如权利要求7所述的量子点器件,其中,所述第二配位端基团为巯基,所述第一配体为油酸或者油胺,所述第二连接结构为-S-。
  9. 如权利要求3所述的量子点器件,其中,所述第三连接结构为单键。
  10. 如权利要求9所述的量子点器件,其中,所述第三连接结构由两个第三配位端基团反应形成,所述第三配位基团为甲基,乙基,或丙基。
  11. 如权利要求1-9任一项所述的量子点器件,其中,还包括:位于所述量子点膜层的背离所述第一固定层一侧的第二固定层;
    所述第二固定层与所述量子点膜层之间具有第四连接结构。
  12. 如权利要求11所述的量子点器件,其中,所述第二固定层具有连接主体,所述第四连接结构由与所述连接主体连接的第四配位端基团,以及与所述量子点连接的第二配体置换形成;
    所述第二固定层含有如下结构:
    Figure PCTCN2021125845-appb-100003
    其中,所述第四连接结构与R5连接,n2>1。
  13. 如权利要求12所述的量子点器件,其中,所述第二固定层含有如下结构:
    Figure PCTCN2021125845-appb-100004
  14. 如权利要求11所述的量子点器件,其中,所述第二固定层具有连接主体,所述第四连接结构由与所述连接主体连接的第四配位端基团,以及与所述量子点连接的第二配体置换形成;
    所述第二固定层含有如下结构:
    Figure PCTCN2021125845-appb-100005
    其中,所述第四连接结构与X5连 接,L5为第五连接结构,n3>1,X5为烷基链或单键,X6为烷基链或单键,X7为甲基,乙基,或丙基,X8为烷基链或单键。
  15. 如权利要求12或14所述的量子点器件,其中,所述第四配位端基团为以下之一:
    氨基;
    多氨基;
    羟基;
    多羟基;
    巯基;
    多巯基;
    硫醚;
    多硫醚;
    膦;
    氧膦。
  16. 如权利要求15所述的量子点器件,其中,所述第四配位端基团为巯基,所述第二配体为油酸或者油胺,所述第四连接结构为-S-。
  17. 一种显示装置,其中,包括如权利要求1-16任一项所述的量子点器件。
  18. 一种量子点器件的制作方法,其中,包括:
    提供一衬底组件,其中,所述衬底组件含有第一基团;
    在所述衬底组件的一侧形成图案化的光刻胶层,图案化的所述光刻胶层暴露所述衬底组件待形成量子点的目标区域;
    在所述光刻胶层背离所述衬底组件的一侧形成第一膜层,所述第一膜层包括多配位端硅烷偶联体,以及与所述多配位端硅烷偶联体连接的第一配位端基团,第二配位端基团,以使所述目标区域的所述第一配位端基团与所述第一基团反应,形成第一连接结构;
    在所述第一膜层的背离所述光刻胶层的一侧形成量子点薄膜,所述量子 点薄膜包括量子点,以及与所述量子点连接的第一配体,以使所述第二配位端基团与所述第一配体反应,形成第二连接结构,以使所述目标区域的所述量子点薄膜通过所述第一连接结构、所述第二连接结构与所述衬底组件连接,其中,将所述第二配位端基团与所述第一配体反应后的所述第一膜层作为第一固定层;
    去除所述光刻胶层,以及去除附着于所述光刻胶层上的所述量子点薄膜,形成具有多个图案部的量子点膜层。
  19. 如权利要求18所述的制作方法,其中,所述量子点膜层还包括与所述量子点连接的第二配体;
    在所述第一膜层的背离所述光刻胶层的一侧形成量子点薄膜之后,以及在去除所述光刻胶层之前,所述制作方法还包括:
    在所述量子点薄膜背离所述第一膜层的一侧形成第二膜层,其中,所述第二膜层包括连接主体,以及与所述连接主体连接的第四配位端基团,以使所述第四配位端基团与所述第二配体发生置换反应,形成第四连接结构,将所述第四配位端基团与所述第二配体发生置换反应后的所述第二膜层作为第二固定层。
  20. 如权利要求19所述的制作方法,其中,所述在所述光刻胶层背离所述衬底组件的一侧形成第一膜层,包括:
    配备含巯基的硅氧烷聚合物的乙醇溶液,并加入少量氨水,形成第一混合液,其中,所述硅氧烷聚合物的结构式为
    Figure PCTCN2021125845-appb-100006
    其中,R4为巯基,R2为甲基,乙基或丙基,R3为甲基,乙基或丙基,R1为甲基,乙基或丙基,X1为烷基链或单键,X2为烷基链或单键,X3为烷基链或单键,X4为烷基链或单键;
    取所述第一混合溶液滴加到所述光刻胶层上,形成含巯基的硅氧烷聚合物薄膜,并在室温放置第一时长;
    在空气中,用超干无水乙醇冲洗至少2遍。
  21. 如权利要求19所述的制作方法,其中,所述在所述量子点薄膜背离所述第一膜层的一侧形成第二膜层,包括:
    在所述量子点薄膜背离所述第一膜层的一侧形成与所述膜层材料相同的薄膜,以通过所述巯基与所述量子点的油酸或者油胺配体发生置换反应,形成覆盖所述量子点膜层的一层硅氧烷聚合物薄膜。
  22. 如权利要求19所述的制作方法,其中,所述在所述量子点薄膜背离所述第一膜层的一侧形成第二膜层,包括:
    在所述量子点薄膜背离所述第一膜层的一侧形成含巯基的有机聚合物薄膜,以通过所述巯基与所述量子点的油酸或者油胺配体发生置换反应,形成覆盖所述量子点膜层的一层聚合物薄膜,其中,所述有机聚合物薄膜的结构式为
    Figure PCTCN2021125845-appb-100007
    n2>1。
PCT/CN2021/125845 2020-12-17 2021-10-22 一种量子点器件、显示装置和量子点器件的制作方法 WO2022127379A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/908,398 US20240032319A1 (en) 2020-12-17 2021-10-22 Quantum dot device, display apparatus, and manufacturing method for quantum dot device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011495172.2 2020-12-17
CN202011495172.2A CN114649484A (zh) 2020-12-17 2020-12-17 一种量子点器件、显示装置和量子点器件的制作方法

Publications (1)

Publication Number Publication Date
WO2022127379A1 true WO2022127379A1 (zh) 2022-06-23

Family

ID=81989713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125845 WO2022127379A1 (zh) 2020-12-17 2021-10-22 一种量子点器件、显示装置和量子点器件的制作方法

Country Status (3)

Country Link
US (1) US20240032319A1 (zh)
CN (1) CN114649484A (zh)
WO (1) WO2022127379A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076880A (zh) * 2004-06-08 2007-11-21 奈米系统股份有限公司 形成单层纳米结构的方法和器件以及包含这种单层的器件
CN101512754A (zh) * 2006-07-28 2009-08-19 奈米系统股份有限公司 用来形成纳米结构单层的方法和器件,以及包括该单层的器件
CN111769200A (zh) * 2020-07-09 2020-10-13 京东方科技集团股份有限公司 量子点发光器件、量子点层图案化的方法及显示装置
CN112071998A (zh) * 2020-09-18 2020-12-11 京东方科技集团股份有限公司 一种发光器件、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076880A (zh) * 2004-06-08 2007-11-21 奈米系统股份有限公司 形成单层纳米结构的方法和器件以及包含这种单层的器件
CN101512754A (zh) * 2006-07-28 2009-08-19 奈米系统股份有限公司 用来形成纳米结构单层的方法和器件,以及包括该单层的器件
CN111769200A (zh) * 2020-07-09 2020-10-13 京东方科技集团股份有限公司 量子点发光器件、量子点层图案化的方法及显示装置
CN112071998A (zh) * 2020-09-18 2020-12-11 京东方科技集团股份有限公司 一种发光器件、显示装置

Also Published As

Publication number Publication date
US20240032319A1 (en) 2024-01-25
CN114649484A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
US11866628B2 (en) Ligand modified quantum dot material and patterning thereof, and quantum dot material for light emitting and display devices
Ko et al. Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands
CN112186118B (zh) 量子点发光器件、其制作方法及显示装置
US11903230B2 (en) Quantum dot light-emitting device, manufacturing method and display device
WO2022127379A1 (zh) 一种量子点器件、显示装置和量子点器件的制作方法
WO2022134039A1 (zh) 量子点材料、发光器件及其制作方法、显示装置
Bae et al. Acid–Base Reaction-Assisted Quantum Dot Patterning via Ligand Engineering and Photolithography
WO2019037455A1 (zh) 半导体混合材料及其制备方法、薄膜晶体管以及电子装置
CN216671683U (zh) 一种量子点器件和显示装置
WO2021254057A1 (zh) 发光基板及其制备方法和发光装置
WO2022126444A1 (zh) 图案化量子点膜层、量子点发光器件和制作方法
WO2022160142A1 (zh) 量子点发光器件及其制作方法
US20240224560A1 (en) Light-emitting device and preparation method thereof, display panel, and display device
WO2023087276A1 (zh) 量子点膜和量子点膜图案化的方法以及它们的应用
WO2024026658A1 (zh) 阵列基板及其制造方法、显示装置
WO2022087926A1 (zh) 空穴传输材料、量子点发光器件及其制作方法、显示装置
WO2021258885A1 (zh) 量子点发光面板、显示装置和制作方法
US20240040813A1 (en) Light-emitting device and preparation method thereof, display substrate and display device
WO2022036652A1 (zh) 发光二极管器件、显示面板、显示装置和制作方法
WO2023206485A1 (zh) 发光基板及制备方法、含有发光材料的溶液、发光装置
WO2023065984A1 (zh) 发光器件及其制备方法
WO2023065153A1 (zh) 量子点材料、量子点膜层的图案化方法及量子点显示器件
US20240209255A1 (en) Quantum dot material, quantum dot light-emitting device and preparation method thereof
US20230403923A1 (en) Method for patterning quantum dot layer
WO2022134810A1 (zh) 光电器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17908398

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 26/09/23)

122 Ep: pct application non-entry in european phase

Ref document number: 21905308

Country of ref document: EP

Kind code of ref document: A1