WO2022127128A1 - 一种亚硫酸铵氧化的强化微界面反应系统及方法 - Google Patents

一种亚硫酸铵氧化的强化微界面反应系统及方法 Download PDF

Info

Publication number
WO2022127128A1
WO2022127128A1 PCT/CN2021/109744 CN2021109744W WO2022127128A1 WO 2022127128 A1 WO2022127128 A1 WO 2022127128A1 CN 2021109744 W CN2021109744 W CN 2021109744W WO 2022127128 A1 WO2022127128 A1 WO 2022127128A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
oxygen
oxidation reactor
interface
interface generator
Prior art date
Application number
PCT/CN2021/109744
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
李磊
张锋
孟为民
王宝荣
杨高东
罗华勋
田洪舟
杨国强
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2022127128A1 publication Critical patent/WO2022127128A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/73After-treatment of removed components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/29Mixing systems, i.e. flow charts or diagrams
    • B01F23/291Mixing systems, i.e. flow charts or diagrams for obtaining foams or aerosols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/24Sulfates of ammonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/102Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the present invention relates to the field of sulfite oxidation, in particular to an enhanced micro-interface reaction system and method for ammonium sulfite oxidation.
  • Ammonia desulfurization process is a green process, which uses ammonia as an absorbent to remove SO2 in flue gas and generates ammonium sulfite.
  • Ammonium sulfite can also be directly applied as a chemical fertilizer, but the product has poor stability and is difficult to be accepted by farmers; As the production raw material of small paper mills, waste water will be produced, causing secondary pollution.
  • Ammonium sulfate products have stable performance and contain two nutrients, nitrogen and sulfur, which are beneficial to plant growth. They can be used as individual fertilizers or as raw materials for the production of compound fertilizers. Therefore, the oxidation problem of ammonium sulfite is more and more popular. of attention. How to efficiently and economically convert ammonium sulfite into ammonium sulfate or other efficient fertilizers is the key to the industrialization of ammonia desulfurization process.
  • the first object of the present invention is to provide an enhanced micro-interface reaction system for ammonium sulfite oxidation.
  • the reaction system is provided with a first oxygen micro-interface generator inside the first oxidation reactor, so that the oxygen is broken and dispersed in advance before the reaction.
  • Oxygen microbubbles are formed, which increases the phase boundary mass transfer area between oxygen and ammonium sulfite solution, thereby solving the problem that the phase boundary mass transfer area between oxygen and ammonium sulfite solution in the prior art is small, the reaction rate is slow, and the generation of
  • the reaction system is also equipped with a hydraulic micro-interface generator inside the first oxidation reactor, and the oxygen accumulated at the top of the first oxidation reactor is entrained through the liquid phase as the power to ensure sufficient gas supply.
  • the reaction system is provided with a micro-interface unit outside the first oxidation reactor, which pre-breaks and disperses the oxygen into micro-bubbles and mixes with the ammonium sulfite solution to increase the gas content and the reaction efficiency.
  • the reaction system is provided with a liquid injector at the top of the second oxidation reactor, and the oxygen gathered at the top of the second oxidation reactor is scattered and returned to the middle of the second oxidation reactor, which ensures the full utilization of the gas and improves the Reaction efficiency;
  • the reaction system is provided with a second oxygen micro-interface generator in the middle and bottom of the second oxidation reactor to pre-break the sheep's trotters and disperse them into oxygen micro-bubbles and increase the phase boundary between oxygen and ammonium sulfite solution
  • the mass transfer area increases the gas holdup and improves the reaction efficiency.
  • the second object of the present invention is to provide a method using the above reaction system, which is easy to operate, has a fast reaction rate, and obtains a high-quality product, which is worthy of widespread application.
  • the invention provides an enhanced micro-interface reaction system for ammonium sulfite oxidation, comprising: an ammonium sulfite storage tank, an oxygen inlet pipe, an external micro-interface generator and a first oxidation reactor;
  • the first oxidation reactor is provided with a hydraulic micro-interface generator and a first oxygen micro-interface generator, and the oxygen inlet pipeline is connected with the first oxygen micro-interface generator and the hydraulic micro-interface generator. device;
  • the side of the first oxidation reactor is provided with a micro-interface unit, the micro-interface unit is composed of several external micro-interface generators, and the micro-interface unit is connected with the ammonium sulfite storage tank and the
  • the oxygen inlet pipeline is used to enter the oxygen and the ammonium sulfite solution into the micro-interface unit to break and disperse, and the broken and dispersed oxygen microbubbles enter the first oxidation reactor with the ammonium sulfite solution;
  • the first oxidation reactor and the second oxidation reactor are connected in parallel, the second oxygen micro-interface generator and the liquid injector are arranged inside the second oxidation reactor, and the oxygen inlet pipe is connected with the second oxygen micro-interface generator.
  • the dioxygen gas micro-interface generator, the ammonium sulfite storage tank is connected with the liquid injector.
  • the present invention provides a novel reaction system.
  • the first oxygen micro-interface generator is arranged in the first oxidation reactor to break and disperse oxygen into oxygen micro-bubbles in advance in the reaction system, so as to increase the amount of oxygen and oxygen.
  • the mass transfer area of the phase boundary between the ammonium sulfite solutions increases the gas content and improves the reaction efficiency;
  • the reaction system gathers the top of the first oxidation reactor by setting a hydrodynamic micro-interface generator in the first oxidation reactor
  • the oxygen is entrained through the liquid phase as the power to ensure the full utilization of the gas and improve the reaction efficiency;
  • the reaction system is provided with a micro-interface unit on the side of the first oxidation reactor to pre-break the oxygen entering the first oxidation reactor After dispersion, it is mixed with ammonium sulfite solution, which increases the mass transfer area of the phase boundary between oxygen and ammonium sulfite solution, and improves the gas content and reaction efficiency.
  • the reaction system is also provided with a second oxidation reactor in parallel with the first oxidation reactor.
  • a second oxygen micro-interface generator is arranged inside the second oxidation reactor to break up and disperse oxygen into oxygen micro-bubbles in advance, increase the mass transfer area of the phase boundary between the oxygen and the ammonium sulfite solution, and improve the gas flow rate. content and reaction efficiency;
  • the reaction system is provided with a liquid injector inside the second oxidation reactor, and the oxygen accumulated at the top of the second oxidation reactor is flushed and returned to the middle of the second oxygen reactor, ensuring sufficient gas supply. Use, improve the reaction efficiency.
  • the parallel connection of the first oxidation reactor and the second reaction oxidizer can double the output under the same conditions and can ensure that the conversion rate of the product is consistent.
  • the hydraulic micro-interface generator is arranged at the top of the first oxidation reactor, the first oxygen micro-interface generator is arranged at the bottom of the first oxidation reactor, and the hydraulic micro-interface generator is arranged at the bottom of the first oxidation reactor.
  • the generator is arranged opposite to the first oxygen micro-interface generator. The reason why the first oxygen micro-interface generator is set at the bottom of the first oxidation reactor is because oxygen is a gas, and the gas in the solution is bottom-up.
  • the first oxygen micro-interface generator is set at the first oxidation reactor.
  • the bottom of the reactor can increase the reaction time between the oxygen and the ammonium sulfite solution; the reason why the hydrodynamic micro-interface generator is placed on the top of the first oxidation reactor is because the oxygen will accumulate at the top of the first oxidation reactor
  • the liquid-dynamic micro-interface generator entrains the solution at the top of the first oxidation reactor into the liquid-dynamic micro-interface generator through the external circulating pump, and then transports it down to the bottom of the first oxidation reactor, ensuring the full utilization of oxygen.
  • the hydraulic micro-interface generator and the first oxygen micro-interface generator are arranged opposite to each other, because the solution from the liquid-dynamic micro-interface generator downwards can generate with the oxygen micro-bubbles from the first oxygen micro-interface generator. Hedging, increasing the phase boundary mass transfer area between oxygen and ammonium sulfite solution, and improving the gas content and reaction efficiency.
  • the hydraulic micro-interface generator and the first oxygen micro-interface generator are arranged on the central axis of the first oxidation reactor.
  • the reason why the first oxygen micro-interface generator and the hydraulic micro-interface generator are arranged on the central axis of the first oxidation reactor is because the oxygen micro-bubbles will stick to the side wall inside the first oxidation reactor, and the A certain distance is reserved between the central axis of the first oxidation reactor and the side wall, so that the oxygen microbubbles are not easily adhered to the side wall of the first oxidation reactor.
  • the number of the external micro-interface generators is three, and a connection channel is provided between adjacent external micro-interface generators.
  • the external micro-interface generators are arranged sequentially from top to bottom along the vertical direction.
  • the ammonium sulfite storage tank is connected with the external micro-interface generator at the top of the micro-interface unit, and the oxygen inlet pipeline is connected with the external micro-interface generator at the bottom of the micro-interface unit device.
  • the reason why the present invention sets the number of external micro-interface generators to three and is arranged in sequence from top to bottom along the vertical direction, and the oxygen inlet pipeline is connected with the external micro-interface generator at the bottom of the micro-interface unit, is because the oxygen
  • the gas enters three external micro-interface generators sequentially from bottom to top, which is equivalent to forming a micro-interface system in each micro-interface generator, so as to realize the micro-interface generator on the premise that the gas phase is in the liquid phase as the medium.
  • the interior is sufficiently broken and dispersed.
  • the ammonium sulfite alcohol storage tank is connected to the external micro-interface generator on the top of the micro-interface unit because the ammonium sulfite solution is a liquid, and under the influence of gravity, it will flow from the top of the micro-interface unit to the bottom of the micro-interface unit, thus driving the oxygen Loops in the Micro Interface Unit.
  • a connection channel is arranged between the external micro-interface generators, so that the ammonium sulfite solution and oxygen between the three external micro-interface generators can communicate with each other.
  • An extraction pump is also arranged outside the micro-interface unit for transporting the ammonium sulfite solution and oxygen microbubbles in the micro-interface unit to the first oxidation reactor.
  • the advantage of setting up the micro-interface unit is that the oxygen is broken and dispersed before the reaction and mixed with the ammonium sulfite solution, which increases the mass transfer area between the oxygen and the ammonium sulfite solution, and improves the gas content and reaction efficiency. .
  • the number of the second oxygen micro-interface generators is two, one is arranged in the middle of the second oxidation reactor, and the other is arranged at the bottom of the second oxidation reactor.
  • the reason why the number of oxygen micro-interface generators is set to two, one is set in the middle of the second oxidation reactor, and the other is set at the bottom of the second oxidation reactor is because this can increase the relationship between oxygen and ammonium sulfite.
  • the mass transfer area of the phase boundary between the two, most of the oxygen microbubbles from the middle of the second oxidation reactor react with the ammonium sulfite above the middle, and most of the oxygen microbubbles from the bottom of the second oxidation reactor react with the sulfite below the middle.
  • the ammonium reacts, which improves the utilization rate of ammonium sulfite, and improves the gas content and reaction efficiency.
  • the liquid injector is arranged horizontally at the top of the second oxidation reactor, and the spray head of the liquid injector faces the top of the second oxidation reactor.
  • the reason why the liquid injector is arranged horizontally at the top of the second oxidation reactor and the spray head faces the top of the second oxidation reactor is to disperse the oxygen accumulated at the top of the second oxidation reactor and return it to the second oxidation reactor.
  • the middle part of the oxygen reactor ensures the full utilization of the gas and improves the reaction efficiency.
  • a liquid supply pump is provided between the ammonium sulfite storage tank and the first oxidation reactor and the second oxidation reactor to adjust the flow rate to the first oxidation reactor and the second oxidation reactor.
  • the oxidation reactor provides the amount of ammonium sulfite solution
  • a gas supply valve is provided between the oxygen gas inlet pipeline and the first oxygen micro-interface generator and the second oxygen micro-interface generator to adjust the flow to all the oxygen gas.
  • the first oxidation reactor and the second oxidation reactor provide the amount of oxygen.
  • the liquid supply pump and the gas supply valve can adjust the amount of ammonium sulfite solution and oxygen delivered to the first oxidation reactor and the second oxidation reactor to control the reaction rate.
  • micro-interface generator used in the present invention has been embodied in the inventor's prior patents, such as application numbers CN201610641119.6, CN201610641251.7, CN201710766435.0, CN106187660, CN105903425A, Patents of CN109437390A, CN205833127U and CN207581700U.
  • application numbers CN201610641119.6, CN201610641251.7, CN201710766435.0, CN106187660, CN105903425A, Patents of CN109437390A, CN205833127U and CN207581700U In the previous patent CN201610641119.6, the specific product structure and working principle of the micro-bubble generator (that is, the micro-interface generator) were introduced in detail.
  • the body is provided with an inlet communicating with the cavity, the opposite first and second ends of the cavity are open, wherein the cross-sectional area of the cavity is from the middle of the cavity to the first and second ends of the cavity.
  • the second end is reduced; the secondary crushing piece is arranged at at least one of the first end and the second end of the cavity, a part of the secondary crushing piece is arranged in the cavity, and both ends of the secondary crushing piece and the cavity are open
  • An annular channel is formed between the through holes of the micro-bubble generator.
  • the micro-bubble generator also includes an air inlet pipe and a liquid inlet pipe.” From the specific structure disclosed in the application document, we can know that its specific working principle is: the liquid enters the micron tangentially through the liquid inlet pipe. In the bubble generator, ultra-high-speed rotation and cutting of the gas make the gas bubbles break into micro-bubbles at the micron level, thereby increasing the mass transfer area between the liquid phase and the gas phase, and the micro-bubble generator in this patent belongs to the pneumatic micro-interface generation. device.
  • the previous patent 201610641251.7 records that the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, and the secondary bubble breaker communicates the feed port with the gas-liquid mixture outlet, indicating that the bubble breaker is both It needs to be mixed with gas and liquid.
  • the primary bubble breaker mainly uses circulating liquid as power, so in fact, the primary bubble breaker belongs to the hydraulic micro-interface generator, and the secondary bubble breaker is a gas-liquid breaker. The mixture is simultaneously fed into the elliptical rotating ball for rotation, so that the bubbles are broken during the rotation, so the secondary bubble breaker is actually a gas-liquid linkage type micro-interface generator.
  • both hydraulic micro-interface generators and gas-liquid linkage micro-interface generators belong to a specific form of micro-interface generators.
  • the micro-interface generators used in the present invention are not limited to the above-mentioned forms.
  • the specific structure of the bubble breaker described in the prior patent is only one of the forms that the micro-interface generator of the present invention can take.
  • the liquid phase entering from the top provides the entrainment power, so as to achieve the effect of crushing into ultra-fine bubbles, which can also be seen in the accompanying drawings.
  • the bubble breaker has a conical structure, and the diameter of the upper part is larger than that of the lower part, so that the liquid phase can provide better entrainment power.
  • micro-interface generator Since the micro-interface generator was just developed in the early stage of the previous patent application, it was named as micro-bubble generator (CN201610641119.6), bubble breaker (201710766435.0), etc., and later changed its name to micro-interface generator with continuous technological improvement.
  • the micro-interface generator in the present invention is equivalent to the previous micro-bubble generator, bubble breaker, etc., but the names are different. To sum up, the micro-interface generator of the present invention belongs to the prior art.
  • the present invention also provides a reaction method of a micro-interface reaction system for ammonium sulfite oxidation, comprising the following steps:
  • the mixed micro-interface of ammonium sulfite and oxygen is dispersed and broken, and then oxidized, and then evaporated, filtered and dried to obtain solid ammonium sulfate for collection.
  • a first oxygen micro-interface generator is arranged inside the first oxidation reactor to pre-break and disperse oxygen into oxygen micro-bubbles, thereby increasing the phase boundary mass transfer area between oxygen and ammonium sulfite solution , improving the gas holdup and reaction efficiency;
  • the preparation method is to set up a hydrodynamic micro-interface generator in the first oxidation reactor, and entrain the oxygen gathered at the top of the first oxidation reactor through the liquid phase as the power to ensure the gas
  • a micro-interface unit is arranged outside the first oxidation reactor, and the oxygen is broken and dispersed in advance and mixed with the ammonium sulfite solution, thereby increasing the phase between the oxygen and the ammonium sulfite solution.
  • the mass transfer area increases the reaction efficiency.
  • two oxygen micro-interface generators are arranged inside the second oxidation reactor to break and disperse the oxygen into oxygen micro-bubbles in advance, so as to increase the phase boundary mass transfer area between the oxygen and the ammonium sulfite solution, and improve the gas content.
  • a liquid injector is arranged inside the second oxidation reactor, and the oxygen accumulated at the top of the second oxidation reactor is scattered and returned to the middle of the second oxygen reactor, so as to ensure the full utilization of the gas. , improving the reaction efficiency.
  • the first oxidation reactor and the second reaction oxidizer are connected in parallel, which increases the output and can ensure that the conversion rate of the products is consistent.
  • the ammonium sulfate product obtained by the reaction method of the invention has good quality and high efficiency.
  • the preparation method does not require catalysts such as cobalt sulfate, and simultaneously improves the reaction efficiency and yield.
  • the reaction system of ammonium sulfite oxidation of the present invention is used to pre-break and disperse oxygen into oxygen micro-bubbles by setting the first oxygen micro-interface generator in the first oxidation reactor to increase the gap between oxygen and ammonium sulfite solution.
  • the mass transfer area of the phase boundary increases, and the reaction efficiency is improved; the reaction system adopts a liquid-dynamic micro-interface generator in the first oxidation reactor to entrain the oxygen accumulated at the top of the first oxidation reactor through the liquid phase as the power, To ensure the full utilization of the gas and improve the reaction efficiency, the reaction system is equipped with a micro-interface unit outside the first oxidation reactor, and the oxygen is broken and dispersed in advance and mixed with the ammonium sulfite solution, which increases the gap between the oxygen and the ammonium sulfite solution.
  • the mass transfer area of the phase boundary increases the reaction efficiency; the reaction system increases the mass transfer area of the phase boundary between the oxygen and the ammonium sulfite solution by setting a second oxygen micro-interface generator in the second oxidation reactor.
  • the gas hold-up rate and reaction efficiency are improved; the reaction system is provided with a liquid injector in the second oxidation reactor, and the oxygen accumulated at the top of the second oxidation reactor is scattered and returned to the middle of the second oxygen reactor to ensure the gas
  • the full utilization improves the reaction efficiency; the first oxidation reactor and the second oxidation reactor are connected in parallel in the reaction system, thereby increasing the output and ensuring consistent product conversion rates.
  • the reaction method of the present invention is easy to operate, has a fast reaction rate, and obtains a high-quality product, which is worthy of wide popularization and application.
  • Fig. 1 is the structural representation of the enhanced micro-interface reaction system of ammonium sulfite oxidation provided in the embodiment of the present invention
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the enhanced micro-interface reaction system for ammonium sulfite oxidation mainly includes a first oxidation reactor 20, a micro-interface unit 13, an ammonium sulfite storage tank 11, and an oxygen gas inlet pipeline. 12.
  • the ammonium sulfite storage tank 11 is connected with the external micro-interface generator 131 at the top of the micro-interface unit 13, and the oxygen inlet pipe 12 is connected with the external micro-interface generator 131 at the bottom of the micro-interface unit 13.
  • the ammonium sulfite The storage tank 11 is connected to the external micro-interface generator 131 above because the ammonium sulfite solution will flow from top to bottom due to gravity, forming a cycle.
  • the oxygen inlet pipe 12 is connected to the external micro-interface generator at the bottom.
  • 131 is connected because oxygen moves from top to bottom in the ammonium sulfite solution, and placing it below increases the reaction time between the oxygen and the solution.
  • the micro-interface unit 13 is composed of three external micro-interface generators 131.
  • the three external micro-interface generators 131 are arranged in order from top to bottom along the vertical direction, and are also arranged between adjacent external micro-interface generators 131.
  • connection channel 132 to allow oxygen and ammonium sulfite solution to circulate in the three external micro-interface generators 131.
  • a circulating pump is also provided outside the micro-interface unit 13, and the bottom of the external micro-interface generator 131 is installed. The solution is extracted, a part is returned to the uppermost external micro-interface generator 131 , and a part is sent to the first oxidation reactor 20 .
  • the oxygen inlet pipe 12 is also connected with the first oxygen micro-interface generator 22 and the hydraulic micro-interface generator 21 in the first oxidation reactor 20, and the first oxygen micro-interface generator 22 and the hydraulic micro-interface generator 21 will The oxygen is broken and dispersed into oxygen microbubbles, which increases the mass transfer area between the oxygen and the ammonium sulfite solution and improves the reaction efficiency.
  • the hydraulic micro-interface generator 21 is arranged at the top of the first oxidation reactor 20, the first oxygen micro-interface generator 22 is arranged at the bottom of the first oxidation reactor 20, and the hydraulic micro-interface generator 21 is connected to the first oxygen micro-interface.
  • the generators 22 are arranged oppositely. The reason why the hydraulic micro-interface generator 21 is at the top is because the hydraulic micro-interface generator 21 can entrain and return the oxygen accumulated at the top of the first oxidation reactor 20 together with the ammonium sulfite solution to the first oxidation reactor 20 through an externally arranged circulating pump.
  • the reason why the first oxygen micro-interface generator 22 is at the bottom of the monoxide reactor 20 is to increase the distance that the oxygen rises, thereby increasing the reaction time between the oxygen and the ammonium sulfite solution.
  • the hydraulic micro-interface generator 21 is arranged opposite to the first oxygen micro-interface generator 22, because the solution entrained by the hydraulic micro-interface generator 21 can collide with the oxygen micro-bubbles from the oxygen micro-interface generator, increasing the The phase boundary mass transfer area between oxygen and ammonium sulfite improves gas holdup and reaction efficiency.
  • the hydraulic micro-interface generator 21 and the first oxygen micro-interface generator 22 are arranged on the central axis of the first oxidation reactor 20 to prevent the oxygen micro-bubbles from sticking to the inner side wall of the first oxidation reactor 20 and affecting the reaction efficiency.
  • the second oxidation reactor 201 and the first oxidation reactor 20 are connected in parallel with each other, and the second oxidation reactor 201 is provided with a second oxidation reactor 201 and a liquid injector 23 inside.
  • the oxygen inlet pipeline 12 is connected with the second oxygen micro-interface generator 24 inside the second oxidation reactor 201 , and the ammonium sulfite storage tank 11 is connected with the liquid injector 23 in the second oxidation reactor 201 .
  • the number of the second oxygen micro-interface generators 24 is two, one is arranged in the middle of the second oxidation reactor 201, the other is arranged at the bottom of the second oxidation reactor 201, and the second oxygen micro-interface arranged in the middle generates
  • the oxygen micro-bubbles from the generator 24 react with the ammonium sulfite solution in the upper part of the second oxidation reactor 201, and the oxygen micro-bubbles from the second oxygen micro-interface generator 24 arranged at the bottom are more reactive with the second oxidation reactor 201.
  • the reaction of the ammonium sulfite solution in the middle and lower parts improves the utilization rate of the ammonium sulfite solution and improves the reaction efficiency.
  • the top of the second oxidation reactor 201 is provided with a liquid injector 23 to disperse the oxygen microbubbles accumulated at the top of the second oxidation reactor 201 and return to the middle of the second oxidation reactor 201 to ensure gas utilization and improve reaction efficiency.
  • a liquid supply pump 71 is also provided between the ammonium sulfite storage tank 11 and the first oxidation reactor 20 and the second oxidation reactor 201.
  • the liquid supply pump 71 can be manually adjusted to control the flow to the first oxidation reactor 20 and the second oxidation reactor.
  • the amount of ammonium sulfite solution provided by the oxidation reactor 201 is provided.
  • a gas supply valve 72 is provided between the oxygen inlet pipe 12 and the first oxygen micro-interface generator 22 and the second oxygen micro-interface generator 24. The gas supply valve 72 can be The amount of oxygen supplied to the first oxidation reactor 20 and the second oxidation reactor 201 is controlled by manual adjustment.
  • the ammonium sulfite solution in the first oxidation reactor 20 and the second oxidation reactor 201 is oxidized by oxygen to generate an ammonium sulfate solution, and the ammonium sulfate solution generated in the first oxidation reactor 20 and the second oxidation reactor 201 is connected in parallel and then enters together.
  • the evaporative crystallizer 30 further evaporates the water in the ammonium sulfate solution, and then sends the ammonium sulfate containing a small amount of water into the filter centrifuge 40, and the filter centrifuge 40 removes a small amount of ammonium sulfate in the ammonium sulfate solution.
  • the crystals are separated and sent to the dryer 50 for drying. In the dryer 50, the moisture will be completely removed, leaving only solid ammonium sulfate.
  • the solid ammonium sulfate is sent to the ammonium sulfate storage tank 60 for packaging and preservation.
  • the micro-interface unit 13 is not arranged outside the first oxidation reactor 20
  • the hydraulic micro-interface generator 21 and the oxygen micro-interface generator 22 are not arranged in the first oxidation reactor 20
  • the second oxidation The liquid injector 23 and the second oxygen micro-interface generator 24 are not provided in the reactor 201, and the ammonium sulfite storage tank 11 and the oxygen gas inlet pipeline 12 are directly connected to the first oxidation reactor 20 and the second oxidation reactor 201.
  • air feed rate NL/h
  • the micro-interface reaction system for ammonium sulfite oxidation of the present invention is provided with a micro-interface unit 13 outside the first oxidation reactor 20 and a first oxygen micro-interface generator 22 in the first oxidation reactor 20. and the hydraulic micro-interface generator 21, by setting the second oxygen micro-interface generator 24 and the liquid injector 23 inside the second oxidation reactor 201, the phase boundary mass transfer area between the oxygen and the ammonium sulfite solution is increased, The gas holdup and reaction efficiency are improved.

Abstract

一种亚硫酸铵氧化的强化微界面反应系统,包括:亚硫酸铵存储罐(11)、氧气进气管道(12)、外置式微界面发生器(131)和第一氧化反应器(20);第一氧化反应器(20)内设置有液动式微界面发生器(21)和第一氧气微界面发生器(22);第一氧化反应器(20)的侧面设置有微界面机组(13),微界面机组(13)由若干个外置式微界面发生器(131)构成,微界面机组(13)连接有亚硫酸铵存储罐(11)和氧气进气管道(12);第一氧化反应器(20)和第二氧化反应器(201)并联,第二氧化反应器(201)内部设置有第二氧气微界面发生器(24)和液体喷射器(23),氧气进气管道(12)连接有第二氧气微界面发生器(24),亚硫酸铵存储罐(11)连接有液体喷射器(23)。

Description

一种亚硫酸铵氧化的强化微界面反应系统及方法 技术领域
本发明涉及亚硫酸氧化的领域,具体而言,涉及一种亚硫酸铵氧化的强化微界面反应系统及方法。
背景技术
氨法脱硫工艺是一种绿色工艺,采用氨作为吸收剂除去烟气中的SO2并生成亚硫酸铵,亚硫酸铵也可作为化肥直接施用,但产品的稳定性较差,难被农民接受;作为小造纸厂的生产原料,将产生废水,造成二次污染。而硫酸铵产品性能稳定,其中含有氮和硫两种营养元素,对植物生长有利,既能作为单独的肥料,也能作为生产复合肥料的原料,故亚硫酸铵的氧化问题越来越受到人们的重视。如何高效经济地将亚硫酸铵转化为硫酸铵或其他高效化肥,是氨法脱硫工艺实现工业化的关键。
现有技术中亚硫酸铵氧化的过程中氧气与亚硫酸铵溶液的相界传质面积较小,从而导致反应速率慢,生成硫酸铵的效率低;同时现有技术中气泡容易在反应器的顶部产生聚并,降低反应效率。因此,亟需改进亚硫酸铵氧化的反应系统,加快亚硫酸铵氧化为硫酸铵的反应速率,提高硫酸铵的生产效率。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种亚硫酸铵氧化的强化微界面反应系统,本反应系统通过在第一氧化反应器内部设置有第一氧气微界面发生器,使得氧气在反应前预先破碎分散成氧气微气泡,增大了氧气和亚硫酸铵溶液之间的相界传质面积,从而解决了现有技术中氧气与亚硫酸铵溶液的相界传质面积较小,反应速率慢,生成硫酸铵效率低的问题,本反应系统在第一氧化反应器内部还设置有液动式微界面发生器,将第一氧化反应器顶部聚集的氧气通过液相 为动力进行卷吸,保证气体的充分利用,提高反应效率;本反应系统在第一氧化反应器外部设置有微界面机组,将氧气预先破碎分散为微气泡并与亚硫酸铵溶液进行混合,,提高了气含率,提高了反应效率;本反应系统在第二氧化反应器内的顶部设置液体喷射器,将聚集在第二氧化反应器顶部的氧气冲散回流至第二氧化反应器的中部,保证了气体的充分利用,提高了反应效率;本反应系统在第二氧化反应器内的中部和底部设置有第二氧气微界面发生器用以将羊蹄预先破碎分散为氧气微气泡,增大氧气与亚硫酸铵溶液之间的相界传质面积,提高了气含率,提高了反应效率。
本发明的第二目的在于提供一种采用上述反应系统的方法,该方法操作简便,反应速率快,得到的产品品质高,值得广泛推广进行应用。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供了一种亚硫酸铵氧化的强化微界面反应系统,包括:亚硫酸铵存储罐、氧气进气管道、外置式微界面发生器和第一氧化反应器;
所述第一氧化反应器内设置有液动式微界面发生器和第一氧气微界面发生器,所述氧气进气管道连接有所述第一氧气微界面发生器和所述液动式微界面发生器;
所述第一氧化反应器的侧面设置有微界面机组,所述微界面机组由若干个所述外置微界面发生器构成,所述微界面机组连接有所述亚硫酸铵存储罐和所述氧气进气管道用以将氧气和亚硫酸铵溶液进入到所述微界面机组内部破碎分散,破碎分散后的氧气微气泡伴随着亚硫酸铵溶液进入到所述第一氧化反应器;
所述第一氧化反应器和第二氧化反应器并联,所述第二氧化反应器内部设置有所述第二氧气微界面发生器和液体喷射器,所述氧气进气管道连接有所述第二氧气微界面发生器,所述亚硫酸铵存储罐连接有所述液体喷射器。
现有技术亚硫酸铵氧化的过程中氧气与亚硫酸铵溶液的相界传质面积较 小,从而导致反应速率慢,生成硫酸铵的效率低;同时现有技术中气泡容易在反应器的顶部产生聚并,降低反应效率。本发明为了解决上述技术问题提供了一种新型的反应系统,该反应系统通过在第一氧化反应器内设置第一氧气微界面发生器用以将氧气预先破碎分散为氧气微气泡,增大氧气与亚硫酸铵溶液之间的相界传质面积,提高了气含量,提高了反应效率;该反应系统通过在第一氧化反应器内设置液动式微界面发生器,将第一氧化反应器顶部聚集的氧气通过液相为动力进行卷吸,保证气体的充分利用,提高了反应效率;该反应系统通过在第一氧化反应器侧面设置有微界面机组,将进入第一氧化反应器的氧气预先破碎分散后和亚硫酸铵溶液混合,增大了氧气与亚硫酸铵溶液的相界传质面积,提高了气含量和反应效率,该反应系统还设置了与第一氧化反应器并联的第二氧化反应器,第二氧化反应器的内部设置有第二氧气微界面发生器用以将氧气预先破碎分散为氧气微气泡,增大氧气与亚硫酸铵溶液之间的相界传质面积,提高了气含量和反应效率;该反应系统在第二氧化反应器的内部设置有液体喷射器,将聚集在第二氧化反应器顶部的氧气冲散返回至第二氧气反应器的中部,保证了气体的充分利用,提高了反应效率。第一氧化反应器和第二反应氧化器并联可以在同等情况下成倍增加产量并能保证产品的转化率一致。
优选的,所述液动式微界面发生器设置在所述第一氧化反应器的顶部,所述第一氧气微界面发生器设置在所述第一氧化反应器的底部,所述液动式微界面发生器与所述第一氧气微界面发生器相对设置。之所以将第一氧气微界面发生器设置在第一氧化反应器的底部,是因为氧气是气体,气体在溶液中是自下而上的,将第一氧气微界面发生器设置在第一氧化反应器的底部可以增加氧气与亚硫酸铵溶液之间的反应时间;之所以将液动式微界面发生器设置在第一氧化反应器的顶部,是因为氧气会聚集在第一氧化反应器的顶部,液动式微界面发生器通过外部设置的循环泵将第一氧化反应器顶部的溶液卷吸进入液动式微界面发生器之后向下输送到第一氧化反应器的底部,保证了氧气的充分利用,提高反应效率;液动式微界面发生器与第一氧气微界面发生器相对设置, 是因为液动式微界面发生器向下出来的溶液可以与第一氧气微界面发生器出来的氧气微气泡发生对冲,增大氧气与亚硫酸铵溶液之间的相界传质面积,提高了含气率和反应效率。
优选的,所述液动式微界面发生器和所述第一氧气微界面发生器设置在所述第一氧化反应器的中轴线上。之所以将第一氧气微界面发生器和液动式微界面发生器设置在第一氧化反应器的中轴线上,是因为氧气微气泡会粘黏在第一氧化反应器内部的侧壁上,设置在第一氧化反应器的中轴线上和侧壁之间保留了一定的距离,使得氧气微气泡不容易沾黏在第一氧化反应器的侧壁上。
优选的,所述外置式微界面发生器的个数为3个,相邻所述外置式微界面发生器之间设置有连接通道。
优选的,所述外置式微界面发生器沿垂直方向由上至下依次设置。
优选的,所述亚硫酸铵存储罐连接有所述微界面机组顶部的所述外置式微界面发生器,所述氧气进气管道连接有所述微界面机组底部的所述外置式微界面发生器。
本发明之所以将外置式微界面发生器的个数为三个且沿垂直方向由上至下依次设置,且氧气进气管道连接有微界面机组底部的外置式微界面发生器,是因为氧气是气体自下而上,依次进入三个外置式微界面发生器,相当于在每个微界面发生器均形成一次微界面体系,以实现气相在液相为介质的前提下在微界面发生器内部得到充分的破碎分散。亚硫酸铵醇储罐连接有微界面机组顶部的外置式微界面发生器是因为亚硫酸铵溶液是液体,受到重力的影响会从微界面机组的顶部流向微界面机组的底部,从而带动了氧气在微界面机组里的循环。外置式微界面发生器之间设置有连接通道,可以使得三个外置式微界面发生器之间的亚硫酸铵溶液和氧气互通。微界面机组外还设置有抽取泵用于将微界面机组里的亚硫酸铵溶液和氧气微气泡输送至第一氧化反应器。设置微界面机组的优点在于将氧气在反应前预先进行了破碎分散并与亚硫酸铵溶液混合,增大了氧气与亚硫酸铵溶液之间的相界传质面积,提高了气含量和反应效率。
优选的,所述第二氧气微界面发生器的个数为两个,一个设置在所述第二氧化反应器的中部,另一个设置在所述第二氧化反应器的底部。之所以将氧气微界面发生器的个数设置为两个,一个设置在第二氧化反应器的中部,另一个设置在第二氧化反应器的底部是因为这样可以增大氧气与亚硫酸铵之间的相界传质面积,从第二氧化反应器中部出来的氧气微气泡大多与中部以上的亚硫酸铵发生反应,从第二氧化反应器底部出来的氧气微气泡大多与中部以下的亚硫酸铵发生反应,提高了亚硫酸铵的利用率,提高了气含量和反应效率。
优选的,所述液体喷射器水平设置在所述第二氧化反应器的顶部,所述液体喷射器的喷射头朝向所述第二氧化反应器的顶部。之所以液体喷射器水平设置在所述第二氧化反应器的顶部且喷射头朝向所述第二氧化反应器的顶部,是要将聚集在第二氧化反应器顶部的氧气冲散返回至第二氧气反应器的中部,保证气体的充分利用,提高了反应效率。
优选的,所述亚硫酸铵存储罐与所述第一氧化反应器和所述第二氧化反应器之间设置有供液泵以用于调节向所述第一氧化反应器和所述第二氧化反应器提供亚硫酸铵溶液的量,所述氧气进气管道与所述第一氧气微界面发生器和所述第二氧气微界面发生器之间设置有供气阀以用于调节向所述第一氧化反应器和所述第二氧化反应器提供氧气的量。所述供液泵和所述供气阀可以调节向第一氧化反应器和第二氧化反应器中输送亚硫酸铵溶液和氧气的量,控制反应速率。
本领域所属技术人员可以理解的是,本发明所采用的微界面发生器在本发明人在先专利中已有体现,如申请号CN201610641119.6、CN201610641251.7、CN201710766435.0、CN106187660、CN105903425A、CN109437390A、CN205833127U及CN207581700U的专利。在先专利CN201610641119.6中详细介绍了微米气泡发生器(即微界面发生器)的具体产品结构和工作原理,该申请文件中记载了“微米气泡发生器包括本体和二次破碎件、本体内具有空腔,本体上设有与空腔连通的进口,空腔的相对的第一 端和第二端均敞开,其中空腔的横截面积从空腔的中部向空腔的第一端和第二端减小;二次破碎件设在空腔的第一端和第二端中的至少一个处,二次破碎件的一部分设在空腔内,二次破碎件与空腔两端敞开的通孔之间形成一个环形通道。微米气泡发生器还包括进气管和进液管。”从该申请文件中公开的具体结构可以知晓其具体工作原理为:液体通过进液管切向进入微米气泡发生器内,超高速旋转并切割气体,使气体气泡破碎成微米级别的微气泡,从而提高液相与气相之间的传质面积,而且该专利中的微米气泡发生器属于气动式微界面发生器。
另外,在先专利201610641251.7中有记载一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,二次气泡破碎器则是将进料口与气液混合物出口连通,说明气泡破碎器都是需要气液混合进入,另外从后面的附图中可知,一次气泡破碎器主要是利用循环液作为动力,所以其实一次气泡破碎器属于液动式微界面发生器,二次气泡破碎器是将气液混合物同时通入到椭圆形的旋转球中进行旋转,从而在旋转的过程中实现气泡破碎,所以二次气泡破碎器实际上是属于气液联动式微界面发生器。其实,无论是液动式微界面发生器,还是气液联动式微界面发生器,都属于微界面发生器的一种具体形式,然而本发明所采用的微界面发生器并不局限于上述几种形式,在先专利中所记载的气泡破碎器的具体结构只是本发明微界面发生器可采用的其中一种形式而已。
此外,在先专利201710766435.0中记载到“气泡破碎器的原理就是高速射流以达到气体相互碰撞”,并且也阐述了其可以用于微界面强化反应器,验证本身气泡破碎器与微界面发生器之间的关联性;而且在先专利CN106187660中对于气泡破碎器的具体结构也有相关的记载,具体见说明书中第[0031]-[0041]段,以及附图部分,其对气泡破碎器S-2的具体工作原理有详细的阐述,气泡破碎器顶部是液相进口,侧面是气相进口,通过从顶部进来的液相提供卷吸动力,从而达到粉碎成超细气泡的效果,附图中也可见气泡破碎器呈锥形的结构,上部的直径比下部的直径要大,也是为了液相能够更好的提供卷吸动力。
由于在先专利申请的初期,微界面发生器才刚研发出来,所以早期命名为微米气泡发生器(CN201610641119.6)、气泡破碎器(201710766435.0)等,随着不断技术改进,后期更名为微界面发生器,现在本发明中的微界面发生器相当于之前的微米气泡发生器、气泡破碎器等,只是名称不一样。综上所述,本发明的微界面发生器属于现有技术。
另外,本发明还提供了一种亚硫酸铵氧化的微界面反应系统的反应方法,包括如下步骤:
将亚硫酸铵与氧气混合微界面分散破碎后进行氧化反应,再经过蒸发、过滤、干燥得到固体硫酸铵进行收集。
具体的,该制备方法通过在第一氧化反应器内部设置有第一氧气微界面发生器用以将氧气预先破碎分散为氧气微气泡,增大氧气与亚硫酸铵溶液之间的相界传质面积,提高了气含率和反应效率;该制备方法通过在第一氧化反应器内设置液动式微界面发生器,将第一氧化反应器顶部聚集的氧气通过液相为动力进行卷吸,保证气体的充分利用,提高反应效率,该制备方法通过在第一氧化反应器外设置微界面机组,预先将氧气破碎分散后和亚硫酸铵溶液混合,增大了氧气与亚硫酸铵溶液之间的相界传质面积,提高了反应效率。该制备方法通过在第二氧化反应器内部设置两个氧气微界面发生器预先将氧气破碎分散为氧气微气泡,增大氧气与亚硫酸铵溶液之间的相界传质面积,提高了气含率和反应效率;该制备方法通过在第二氧化反应器内部设置液体喷射器,将聚集在第二氧化反应器顶部的氧气冲散返回至第二氧气反应器的中部,保证了气体的充分利用,提高了反应效率。该制备方法还将第一氧化反应器和第二反应氧化器并联,增加了产量并能保证产品的转化率一致。
采用本发明反应方法得到的硫酸铵产品品质好,效率高。且该制备方法不需要硫酸钴等催化剂同时提高了反应效率和产量。
与现有技术相比,本发明的有益效果在于:
(1)本发明的亚硫酸铵氧化的反应系统通过在第一氧化反应器内设置第一氧气微界面发生器用以将氧气预先破碎分散为氧气微气泡,增大氧气与亚硫酸铵溶液之间的相界传质面积,提高了反应效率;该反应系统通过在第一氧化反应器内设置液动式微界面发生器,将第一氧化反应器顶部聚集的氧气通过液相为动力进行卷吸,保证气体的充分利用,提高反应效率,该反应系统通过在第一氧化反应器外设置微界面机组,预先将氧气破碎分散后和亚硫酸铵溶液混合,增大了氧气与亚硫酸铵溶液之间的相界传质面积,提高了反应效率;该反应系统通过在第二氧化反应器内设置第二氧气微界面发生器,增大氧气与亚硫酸铵溶液之间的相界传质面积,提高了气含率和反应效率;该反应系统通过在第二氧化反应器内设置液体喷射器,将聚集在第二氧化反应器顶部的氧气冲散返回至第二氧气反应器的中部,保证气体的充分利用,提高了反应效率;该反应系统还通过第一氧化反应器和第二氧化反应器并联,增加了产量并能保证产品的转化率一致。
(2)本发明的反应方法操作简便,反应速率快,得到的产品品质高,值得广泛推广进行应用。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于展示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的亚硫酸铵氧化的强化微界面反应系统的结构示意图;
其中:
11亚硫酸铵存储罐;        12氧气进气管道;
20第一氧化反应器;        13微界面机组;
131外置式微界面发生器;   132连接通道;
21液动式微界面发生器;    22第一氧气微界面发生器;
201第二氧化反应器;       23液体喷射器;
24第二氧气微界面发生器;  30蒸发结晶器;
40过滤离心机;            50干燥器;
60硫酸铵存储罐;          71供液泵;
72供气阀。
具体实施方式
下面将结合附图和具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语 “安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为了更加清晰的对本发明中的技术方案进行阐述,下面以具体实施例的形式进行说明。
实施例
参阅图1所示,为本发明实施例提供的亚硫酸铵氧化的强化微界面反应系统,其主要包括第一氧化反应器20、微界面机组13、亚硫酸铵存储罐11、氧气进气管道12、第二氧化反应器201、蒸发结晶器30、过滤离心机40、干燥器50和硫酸铵存储罐60。亚硫酸铵存储罐11与微界面机组13中最上方的外置式微界面发生器131相连,氧气进气管道12与微界面机组13中最下方的外置式微界面发生器131相连,亚硫酸铵存储罐11与上方的外置式微界面发生器131相连是因为亚硫酸铵溶液会因为重力的原因从上往下流动,形成一个循环,氧气进气管道12与最下方的外置式微界面发生器131相连是因为氧气在亚硫酸铵溶液中自上而下运动,将其设置在下方可以增加氧气与溶液之间的反应时间。微界面机组13由三个外置式微界面发生器131组成,这三个外置式微界面发生器131沿垂直方向由上至下依次设置,相邻的外置式微界面发生器131之间还设置有连接通道132用以让氧气与亚硫酸铵溶液可以在三个外置式微界面发生器131里循环,微界面机组13外还设置有循环泵,将最下方的外置式微界面发生器131里的溶液进行抽取,一部分返回至最上方的外置式微界面发生器131,一部分送入到第一氧化反应器20。
氧气进气管道12还与第一氧化反应器20中的第一氧气微界面发生器22和液动式微界面发生器21相连,第一氧气微界面发生器22和液动式微界面发生器21将氧气破碎分散为氧气微气泡,增大了氧气与亚硫酸铵溶液之间的相 界传质面积,提高了反应的效率。
液动式微界面发生器21设置在第一氧化反应器20的顶部,第一氧气微界面发生器22设置在第一氧化反应器20的底部,液动式微界面发生器21与第一氧气微界面发生器22相对设置。液动式微界面发生器21之所以在顶部,是因为液动式微界面发生器21可以通过外部设置的循环泵将第一氧化反应器20顶部聚集的氧气连同亚硫酸铵溶液卷吸并返回至第一氧化反应器20的底部,第一氧气微界面发生器22之所以在底部是因为增加氧气上升的距离,从而增加了氧气与亚硫酸铵溶液的反应时间。液动式微界面发生器21与第一氧气微界面发生器22相对设置,是因为液动式微界面发生器21卷吸下来的溶液可以与氧气微界面发生器出来的氧气微气泡相对冲,增大氧气与亚硫酸铵之间的相界传质面积,提高了气含率和反应效率。
液动式微界面发生器21和第一氧气微界面发生器22设置在第一氧化反应器20的中轴线上目的是防止氧气微气泡沾黏在第一氧化反应器20的内侧壁上,影响反应效率。
第二氧化反应器201和第一氧化反应器20相互并联,第二氧化反应器201内部设置有第二氧化反应器201和液体喷射器23。氧气进气管道12连接有第二氧化反应器201内部的第二氧气微界面发生器24,亚硫酸铵存储罐11连接有第二氧化反应器201内的液体喷射器23。
第二氧气微界面发生器24的个数为两个,一个设置在第二氧化反应器201的中部,另一个设置在第二氧化反应器201的底部,设置在中部的第二氧气微界面发生器24出来的氧气微气泡与第二氧化反应器201中上部的亚硫酸铵溶液反应,设置在底部的第二氧气微界面发生器24出来的氧气微气泡更多的与第二氧化反应器201中下部的亚硫酸铵溶液反应,提高了亚硫酸铵溶液的利用率,提高了反应效率。第二氧化反应器201顶部设置液体喷射器23用以将第二氧化反应器201顶部聚集的氧气微气泡冲散返回至第二氧化反应器201的中部,保证气体的利用率,提高反应效率。
亚硫酸铵存储罐11与第一氧化反应器20和第二氧化反应器201之间还设置有供液泵71,供液泵71可以通过人工调节的方式控制向第一氧化反应器20和第二氧化反应器201提供亚硫酸铵溶液的量,氧气进气管道12与第一氧气微界面发生器22和第二氧气微界面发生器24之间设置有供气阀72,供气阀72可以通过人工调节的方式控制向第一氧化反应器20和第二氧化反应器201提供氧气的量。
第一氧化反应器20和第二氧化反应器201中的亚硫酸铵溶液被氧气氧化后生成硫酸铵溶液,第一氧化反应器20和第二氧化反应器201生成的硫酸铵溶液并联后一同进入到蒸发结晶器30中,蒸发结晶器30进一步的将硫酸铵溶液里的水分蒸发,之后将含有少量水分的硫酸铵送进过滤离心机40,过滤离心机40将少量硫酸铵溶液中的硫酸铵晶体分离出来,并将其送到干燥器50进行干燥,在干燥器50中水分将彻底被去除,只剩下固体硫酸铵,将固体硫酸铵送至硫酸铵存储罐60用以封装保存。
对比例
其他步骤与实施例一致,区别在于第一氧化反应器20外侧不设置微界面机组13,第一氧化反应器20里不设置液动式微界面发生器21和氧气微界面发生器22,第二氧化反应器201里不设置液体喷射器23和第二氧气微界面发生器24,亚硫酸铵存储罐11和氧气进气管道12直接连接第一氧化反应器20和第二氧化反应器201,在不同空气进料量(NL/h)情况下,实施例和对比例内部的气含率和反应速率如下表1和表2所示:
表1.使用不同空气进料量时的气含率
Figure PCTCN2021109744-appb-000001
表2.使用不同空气进料量时的反应速率mol/(L·min)
Figure PCTCN2021109744-appb-000002
使用不同浓度的亚硫酸铵溶液(mol/L)的情况下实施例和对比例内部的气含率和反应速率如下表3和表4所示:
表3.使用不同浓度的亚硫酸铵溶液时的气含率
Figure PCTCN2021109744-appb-000003
表4.使用不同浓度的亚硫酸铵溶液时的反应速率mol/(L·min)
Figure PCTCN2021109744-appb-000004
通过上述表1和表2的对比,可以看出没有设置微界面发生器的对比例在不同空气进料量时的气含率和反应速率远不如设置了微界面发生器的实施例,因此可以得出结论不同空气进料量情况下,使用微界面强化反应技术能够显著提高气含率和气液相界面积,进而大幅提高反应速率;
通过上述表3和表4的对比,可以看出没有设置微界面发生器的对比例在不同浓度的亚硫酸铵溶液时气含量和反应速率远不如设置了微界面发生器的实施例,因此可以得出结论使用不同浓度的亚硫酸铵溶液时,使用微界面强化反应技术能够显著提高气含率和气液相界面积,进而大幅提高反应速率。
因此可以得出结论,本发明的亚硫酸铵氧化的微界面反应系统通过在第 一氧化反应器20外设置微界面机组13,在第一氧化反应器20内设置第一氧气微界面发生器22和液动式微界面发生器21,通过在第二氧化反应器201内部设置第二氧气微界面发生器24和液体喷射器23,增大氧气与亚硫酸铵溶液之间的相界传质面积,提高了气含率和反应效率。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种亚硫酸铵氧化的强化微界面反应系统,其特征在于,包括:亚硫酸铵存储罐、氧气进气管道、外置式微界面发生器和第一氧化反应器;
    所述第一氧化反应器内设置有液动式微界面发生器和第一氧气微界面发生器,所述氧气进气管道连接有所述第一氧气微界面发生器和所述液动式微界面发生器;
    所述第一氧化反应器的侧面设置有微界面机组,所述微界面机组由若干个所述外置微界面发生器构成,所述微界面机组连接有所述亚硫酸铵存储罐和所述氧气进气管道用以将氧气和亚硫酸铵溶液进入到所述微界面机组内部破碎分散,破碎分散后的氧气微气泡伴随着亚硫酸铵溶液进入到所述第一氧化反应器;
    所述第一氧化反应器和第二氧化反应器并联,所述第二氧化反应器内部设置有所述第二氧气微界面发生器和液体喷射器,所述氧气进气管道连接有所述第二氧气微界面发生器,所述亚硫酸铵存储罐连接有所述液体喷射器。
  2. 根据权利要求1所述的反应系统,其特征在于,所述液动式微界面发生器设置在所述第一氧化反应器的顶部,所述第一氧气微界面发生器设置在所述第一氧化反应器的底部,所述液动式微界面发生器与所述第一氧气微界面发生器相对设置。
  3. 根据权利要求1所述的反应系统,其特征在于,所述液动式微界面发生器和所述第一氧气微界面发生器设置在所述第一氧化反应器的中轴线上。
  4. 根据权利要求1所述的反应系统,其特征在于,所述外置式微界面发生器的个数为3个,相邻所述外置式微界面发生器之间设置有连接通道。
  5. 根据权利要求1所述的反应系统,其特征在于,所述外置式微界面发生器沿垂直方向由上至下依次设置。
  6. 根据权利要求5所述的反应系统,其特征在于,所述亚硫酸铵存储罐连接有所述微界面机组顶部的所述外置式微界面发生器,所述氧气进气管道连 接有所述微界面机组底部的所述外置式微界面发生器。
  7. 根据权利要求1所述的反应系统,其特征在于,所述第二氧气微界面发生器的个数为两个,一个设置在所述第二氧化反应器的中部,另一个设置在所述第二氧化反应器的底部。
  8. 根据权利要求1所述的反应系统,其特征在于,所述液体喷射器水平设置在所述第二氧化反应器的顶部,所述液体喷射器的喷射头朝向所述第二氧化反应器的顶部。
  9. 根据权利要求1-8所述的反应系统,其特征在于,所述亚硫酸铵存储罐与所述第一氧化反应器和所述第二氧化反应器之间设置有供液泵以用于调节向所述第一氧化反应器和所述第二氧化反应器提供亚硫酸铵溶液的量,所述氧气进气管道与所述第一氧气微界面发生器和所述第二氧气微界面发生器之间设置有供气阀以用于调节向所述第一氧化反应器和所述第二氧化反应器提供氧气的量。
  10. 采用权利要求1-9任一项所述的亚硫酸铵氧化的反应系统的反应方法,其特征在于,包括如下步骤:
    将亚硫酸铵与氧气混合微界面分散破碎后进行氧化反应,再经过蒸发、过滤、干燥得到固体硫酸铵进行收集。
PCT/CN2021/109744 2020-12-17 2021-07-30 一种亚硫酸铵氧化的强化微界面反应系统及方法 WO2022127128A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011498925.5A CN112755768A (zh) 2020-12-17 2020-12-17 一种亚硫酸铵氧化的强化微界面反应系统及方法
CN202011498925.5 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022127128A1 true WO2022127128A1 (zh) 2022-06-23

Family

ID=75694078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109744 WO2022127128A1 (zh) 2020-12-17 2021-07-30 一种亚硫酸铵氧化的强化微界面反应系统及方法

Country Status (2)

Country Link
CN (1) CN112755768A (zh)
WO (1) WO2022127128A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112755768A (zh) * 2020-12-17 2021-05-07 南京延长反应技术研究院有限公司 一种亚硫酸铵氧化的强化微界面反应系统及方法
CN113387332A (zh) * 2021-07-16 2021-09-14 南京延长反应技术研究院有限公司 一种制备双氧水的微界面氧化系统以及氧化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211733964U (zh) * 2019-12-23 2020-10-23 南京延长反应技术研究院有限公司 一种丙烯酸及其酯废水的处理系统
CN112062656A (zh) * 2020-09-17 2020-12-11 南京延长反应技术研究院有限公司 一种对甲基苯酚的微界面制备系统及方法
CN212127668U (zh) * 2019-12-23 2020-12-11 南京延长反应技术研究院有限公司 一种头孢类废水的处理系统
CN112755768A (zh) * 2020-12-17 2021-05-07 南京延长反应技术研究院有限公司 一种亚硫酸铵氧化的强化微界面反应系统及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2370247A1 (en) * 1999-05-03 2000-11-09 Asa T. Weber Oxidative reactor for oxidation of salts
CN106865570B (zh) * 2017-02-28 2019-02-26 贵州诺威施生物工程有限公司 亚硫酸铵溶液的氧化装置及工艺
CN211712859U (zh) * 2019-12-26 2020-10-20 南京延长反应技术研究院有限公司 一种乙烯脱硫废水的智能处理系统
CN111573964B (zh) * 2020-03-24 2021-07-09 南京延长反应技术研究院有限公司 一种内置微界面造纸废水处理系统及处理方法
CN111892671A (zh) * 2020-06-17 2020-11-06 南京延长反应技术研究院有限公司 一种制备聚丙烯的微界面强化反应系统及方法
CN111892673A (zh) * 2020-06-17 2020-11-06 南京延长反应技术研究院有限公司 一种制备聚丙烯的微界面强化反应系统及方法
CN112010746A (zh) * 2020-08-18 2020-12-01 南京延长反应技术研究院有限公司 一种甲醇羰基化制备乙酸的外置微界面强化系统及方法
CN112044390A (zh) * 2020-08-25 2020-12-08 南京延长反应技术研究院有限公司 一种环状碳酸酯的制备系统及方法
CN111961026A (zh) * 2020-08-25 2020-11-20 南京延长反应技术研究院有限公司 一种环状碳酸酯的强化微界面制备系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211733964U (zh) * 2019-12-23 2020-10-23 南京延长反应技术研究院有限公司 一种丙烯酸及其酯废水的处理系统
CN212127668U (zh) * 2019-12-23 2020-12-11 南京延长反应技术研究院有限公司 一种头孢类废水的处理系统
CN112062656A (zh) * 2020-09-17 2020-12-11 南京延长反应技术研究院有限公司 一种对甲基苯酚的微界面制备系统及方法
CN112755768A (zh) * 2020-12-17 2021-05-07 南京延长反应技术研究院有限公司 一种亚硫酸铵氧化的强化微界面反应系统及方法

Also Published As

Publication number Publication date
CN112755768A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2022127128A1 (zh) 一种亚硫酸铵氧化的强化微界面反应系统及方法
CN112755767A (zh) 一种亚硫酸铵氧化的微界面反应系统及方法
CN102923749B (zh) 一种制备纳米碳酸钙的碳化方法
CN107213769A (zh) 一种分室加氨的氨法脱硫方法及装置
CN102847422B (zh) 一种氨法烟气脱硫装置
CN112551549A (zh) 一种亚硫酸铵氧化的反应系统及方法
CN104891545B (zh) 纳米碳酸钙生产的碳化反应装置及方法
WO2023284031A1 (zh) 一种内置式即时脱水微界面强化dmc制备系统及方法
CN202953832U (zh) 文丘里管反应器
CN105731500A (zh) 一种碳酸化塔、碳酸化系统和方法
CN112473613A (zh) 一种喷雾式气液两相反应装置
CN105036171A (zh) 一种轻质碳酸钙连续生产的新工艺
CN1962035A (zh) 喷射旋流床式气液固三相反应器
CN205379887U (zh) 一种碳酸化塔和碳酸化系统
CN102910663A (zh) 一种连续制备纳米碳酸钙装置
CN112774583A (zh) 一种亚硫酸铵氧化的智能微界面反应系统及方法
CN102963918B (zh) 一种纳米碳酸钙的碳酸化反应方法
CN213995905U (zh) 喷雾式气液两相反应装置
CN215540715U (zh) 一种内置式即时脱水微界面强化dmc制备系统
CN103754919B (zh) 一种用于纳米碳酸钙生产的中空纤维膜反应器及设备
CN205676168U (zh) 一种喷射反应器及纳米碳酸钙的碳化反应系统
CN108101091A (zh) 一种动态碳化法生产碳酸钙的方法和装置
CN202953833U (zh) 一种连续制备纳米碳酸钙装置
CN87106400A (zh) 双级自吸喷射再生槽
CN113788501A (zh) 一种制备羟基氧化钴的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905061

Country of ref document: EP

Kind code of ref document: A1