WO2022126887A1 - 一种超高频弹簧探针测试组件的装配方法 - Google Patents

一种超高频弹簧探针测试组件的装配方法 Download PDF

Info

Publication number
WO2022126887A1
WO2022126887A1 PCT/CN2021/082051 CN2021082051W WO2022126887A1 WO 2022126887 A1 WO2022126887 A1 WO 2022126887A1 CN 2021082051 W CN2021082051 W CN 2021082051W WO 2022126887 A1 WO2022126887 A1 WO 2022126887A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
probe
signal
core
power supply
Prior art date
Application number
PCT/CN2021/082051
Other languages
English (en)
French (fr)
Inventor
钱晓晨
蔡泓羿
Original Assignee
苏州和林微纳科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州和林微纳科技股份有限公司 filed Critical 苏州和林微纳科技股份有限公司
Priority to US17/481,251 priority Critical patent/US11835567B2/en
Publication of WO2022126887A1 publication Critical patent/WO2022126887A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips

Definitions

  • the invention relates to the technical field of semiconductor components, in particular to an assembly method of an ultra-high frequency spring probe test assembly.
  • the existing spring test probes are often used in conjunction with plastic material bases, and are non-coaxial structures, without considering the impedance matching of the input and output of the chip itself, so the high-frequency performance is limited to the transmission bandwidth of the probe itself. And the power loss is serious, which leads to a great reduction in the test effect.
  • Most of the existing UHF probe test assemblies have a three-layer base structure, the assembly of the test assemblies is complicated, the assembly speed is slow, and the coaxiality of the signal probe is poor.
  • most of the power probe cavity on the existing test base is directly plated with an insulating layer after drilling, which is easy to cause other parts on the base to be electroplated, and the electroplating process is complicated, the assembly cost is high, and the power supply cavity cannot be guaranteed.
  • the effective insulation of the wall makes it difficult to test ultra-high frequency signals above 55GHz.
  • the purpose of the present invention is to provide an assembly method of an ultra-high frequency spring probe test assembly to solve the problems raised in the above-mentioned background art.
  • an assembly method of an ultra-high frequency spring probe test assembly comprising the following steps.
  • Step 1 prepare a base material, including an upper base, a lower base, an upper bushing, a lower bushing, an upper core, a lower core, a signal probe, a power probe and a ground probe.
  • Step 2 Drill a plurality of upper signal cavities, lower signal cavities, upper power supply cavities, lower power supply cavities, upper grounding cavities and lower groundings arranged side by side and corresponding to each other on the upper base and the lower base respectively.
  • a cavity wherein the upper signal cavity and the lower signal cavity form a signal cavity, the upper power cavity and the lower power cavity form a power cavity, and the upper ground cavity and the lower ground cavity form a ground cavity.
  • Step 3 insert the upper core into the upper power supply cavity, and insert the lower core into the lower power supply cavity.
  • Step 4 pour glue into the gaps between the upper core and the upper power supply cavity, and the lower core and the lower power supply cavity, and wait for curing.
  • Step 5 Drill holes on the cured upper core and the lower core.
  • Step 6 insert the lower sleeve into the lower signal cavity, insert the signal probe into the lower sleeve, and then insert the upper sleeve into the upper signal cavity.
  • Step 7 insert the power probe into the cavity of the lower core.
  • Step 8 insert the grounding probe into the lower grounding cavity.
  • Step 9 Align the upper signal cavity on the upper base, the hole cavity of the upper core, and the upper ground cavity with the signal probe, power probe and ground probe, respectively, and insert the lower surface of the upper base and the ground probe.
  • the upper surface of the lower base is fitted and fixed.
  • both the upper base and the lower base are made of metal material.
  • the upper sleeve, the lower sleeve, the upper core and the lower core are all made of non-metallic insulating materials.
  • the outer diameter of the upper core is smaller than the inner diameter of the upper power supply cavity, and the outer diameter of the lower core is smaller than the inner diameter of the lower power supply cavity.
  • the upper core and the upper power supply cavity have the same height dimension
  • the lower core and the lower power supply cavity have the same height dimension
  • the upper shaft sleeve and the upper signal cavity, and the lower shaft sleeve and the lower signal cavity are all formed by crimping with interference fit.
  • the signal probe, the power probe and the ground probe all include an upper plunger, a lower plunger, a sleeve and a spring, and an insulating ring is sleeved on the sleeve of the signal probe, and the insulating ring Interference fit with the upper signal cavity.
  • the inner diameter of the signal cavity is larger than the outer diameter of the signal probe.
  • the bottom of the cavity of the upper sleeve and the upper core, and the upper part of the cavity of the lower sleeve and the lower core are provided with a guide cone angle.
  • the outer diameter of the grounding probe has an interference fit with the upper grounding cavity and the lower grounding cavity.
  • the signal probe realizes the coaxial structure with the signal cavity by installing the insulating ring, and the signal loss is small; the power cavity is inserted into the insulating core after drilling, and glue is applied to the power cavity. Bonding to form a double-layer insulation structure between the power probe and the base, which has good insulation and low power loss; the ground probe is in direct contact with the metal base, and its conduction performance is good; at the same time, the spring made by this assembly method
  • the probe test component avoids the excessive insertion loss and return loss of the existing probes, improves the application range of chip frequency testing, improves the chip testing effect, and can better meet the requirements of high-speed chip testing in the 5G and AI era. Higher requirements, and the assembly is simple and fast, easy to assemble, and the installation sequence is clear.
  • FIG. 1 is a schematic diagram of the assembly of a signal cavity, an upper bushing and a lower bushing according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the assembly of a power supply cavity, an upper core and a lower core according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating that the signal probe disclosed in the embodiment of the present invention is assembled in the base.
  • FIG. 4 is a schematic diagram of the power probe disclosed in the embodiment of the present invention being assembled in the base.
  • FIG. 5 is a schematic diagram of the grounding probe being assembled in the base according to the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the overall structure of the UHF spring probe test assembly disclosed in the embodiment of the present invention.
  • the UHF probe test assembly is composed of an upper base 1, a lower base 2, a signal probe 13, a power probe 14 and a ground probe 15, wherein the upper base
  • the base 1 and the lower base 2 form the base of the test assembly.
  • the upper base 1 is provided with an upper signal cavity 3 , an upper power supply cavity 5 and an upper ground cavity 11
  • the lower base 2 is provided with an upper signal cavity 3 , an upper power supply cavity 5 and an upper ground cavity 11 .
  • the upper signal cavity 3 and the lower signal cavity 4 form a signal cavity
  • the upper power cavity 5 and the lower power cavity 6 A power supply cavity is formed
  • the upper ground cavity 11 and the lower ground cavity 12 form a ground cavity.
  • the signal probe 13 is installed in the signal cavity
  • the power probe 14 is installed in the power cavity
  • the ground probe 15 is installed in the power cavity.
  • the method for assembling an ultra-high frequency spring probe test assembly of the present application includes the following steps.
  • Step 1 prepare the base material, including the upper base 1, the lower base 2, the upper sleeve 7, the lower sleeve 8, the upper core 9, the lower core 10, the signal probe 13, the power probe 14 and the ground probe Pin 15.
  • Step 2 Drill the upper signal cavity 3, the lower signal cavity 4, the upper power supply cavity 5, the lower power supply cavity 6, the upper ground cavity 11 and the lower ground cavity on the upper base 1 and the lower base 2 respectively.
  • the upper signal cavity 3 , the upper power supply cavity 5 and the upper ground cavity 11 have the aperture size of the upper small and the lower large, and the lower signal cavity 4 ,
  • the aperture size of the lower power supply cavity 6 and the lower ground cavity 12 is large at the top and small at the bottom.
  • Step 3 insert the upper core 9 into the upper power supply cavity 5 , and insert the lower core 10 into the lower power supply cavity 6 .
  • step 4 glue is poured into the gaps between the upper core 9 and the upper power supply cavity 5, the lower core 10 and the lower power supply cavity 6, and after curing, the sides of the cured upper core 9 and the upper power supply cavity are filled with glue.
  • the inner wall of 5 is bonded, and the side surface of the cured lower core 10 is bonded to the inner wall of the lower power supply cavity 6 .
  • step 5 the cured upper core 9 and the lower core 10 are drilled, and the cavity penetrates the upper core 9 and the lower core 10 up and down, and both are circular hole structures of large and small diameters.
  • Step 6 put the lower sleeve 8 into the lower signal cavity 4 so that it is located at the lower end of the lower signal cavity 4, insert the signal probe 13 into the lower sleeve 8, and then put the upper sleeve 7 into the upper signal inside the cavity 3 so that it is located at the upper end of the upper signal cavity 3 .
  • Step 7 insert the power probe 14 into the cavity of the lower core 10 .
  • Step 8 insert the grounding probe 15 into the lower grounding cavity 12 .
  • Step 9 Align the signal probe 13, the power probe 14 and the ground probe 15 with the upper signal cavity 3 on the upper base 1, the hole cavity of the upper core 9 and the upper ground cavity 11, respectively, and insert the The lower surface of the upper base 1 and the upper surface of the lower base 2 are attached and fixed to complete the assembly of the probe test assembly.
  • the assembly method of the spring probe test assembly of the present application changes the existing method of using electroplating insulation, simplifies the assembly process, makes the assembly of the spring probe test assembly simpler and faster, and avoids other parts of the base caused by electroplating. Electroplating results in poor ground probe continuity while reducing assembly costs.
  • the upper base 1 and the lower base 2 are made of metal material, which ensures stable fixation of the signal probe 13 , the power probe 14 and the ground probe 15 , is easy to process, and has a long service life.
  • the upper sleeve 7 , the lower sleeve 8 , the upper core 9 and the lower core 10 are all made of non-metallic insulating materials to ensure the insulation between the signal probe 13 and the power probe 14 and the base, Prevent signal short circuit and electrical loss due to contact with metal base.
  • the outer diameter of the upper core 9 is smaller than the inner diameter of the upper power supply cavity 5, and the outer diameter of the lower core 10 is smaller than the inner diameter of the lower power cavity 6, so as to ensure that the upper core 9 and the upper There is a gap between the power supply cavity 5, the lower core 10 and the lower power supply cavity 6 to ensure that the glue can be injected into the gap to connect the upper core 9 and the upper power supply cavity 5, and the lower core 10 and the lower power supply cavity. Bonding of body 6.
  • the upper core 9 and the upper power supply cavity 5 have the same height and dimension
  • the lower core 10 and the lower power cavity 6 have the same height and dimension, so as to ensure that the power probe 14 is completely insulated from the power supply cavity, preventing The power probe 14 is connected to the base, which affects the test and increases the insulation effect of the upper core 9 and the lower core 10 at the same time.
  • the upper shaft sleeve 7 and the upper signal cavity 3 and the lower shaft sleeve 8 and the lower signal cavity 4 are all formed by interference fit and crimping, so as to ensure that the upper shaft sleeve 7 and the lower shaft sleeve 8 are firmly fixed.
  • the signal probe 13 , the power probe 14 and the ground probe 15 include an upper plunger 17 , a lower plunger 18 , a sleeve 16 and a spring, and the sleeve 16 of the signal probe 13 is sleeved on the sleeve 16
  • the signal cavity is centered, so that the signal probe 13 and the signal cavity form a coaxial structure.
  • the spring is not shown in the figure. It is installed in the sleeve 16, and the upper and lower ends are respectively connected with the lower end of the upper plunger 17 and the lower plunger 18. The top ends are abutted.
  • the upper signal cavity 3 and the lower signal cavity 4 form a signal cavity, the inner diameter of which is larger than the outer diameter of the signal probe 13, so that there is a large gap between the signal probe 13 and the signal cavity , the air in the gap acts as an insulating medium.
  • the bottom of the cavity of the upper sleeve 7 and the upper core 9 and the upper part of the cavity of the lower sleeve 8 and the lower core 10 are provided with a guide taper angle, which is convenient for the signal probe 13 and the power probe 14. Insert assembly.
  • the outer diameter of the grounding probe 15 is in an interference fit with the upper grounding cavity 11 and the lower grounding cavity 12 to ensure good conduction between the grounding probe 15 and the grounding cavity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

一种超高频弹簧探针测试组件的装配方法,包括信号腔体(3,4)、电源腔体(5,6)和接地腔体(11,12),装配上型芯(9)、下型芯(10)并固化,安装下轴套(8)和上轴套(7),装入信号探针(13)、电源探针(14)和接地探针(15),安装上基座(1),完成探针测试组件的装配。信号探针(13)通过安装绝缘环(19)实现与信号腔体(3,4)的同轴结构,信号损耗小;电源腔体(5,6)在钻孔后插入绝缘的型芯(9,10)并用胶水粘合,使电源探针(14)与基座(1,2)间形成双层绝缘结构,其绝缘性好,功率损耗低;接地探针(15)与金属基座(1,2)直接接触,其导通性能好;同时该装配方法制成的弹簧探针测试组件,避免了现有探针插损与回损过大的情况,提高了芯片频率测试的应用范围及测试效果,能够更好的满足5G及AI时代对高速芯片测试的更高要求。

Description

一种超高频弹簧探针测试组件的装配方法 技术领域
本发明涉及半导体元器件技术领域,具体为一种超高频弹簧探针测试组件的装配方法。
背景技术
目前国内测试芯片的弹簧探针及基座技术还都集中在中低档领域,技术水平和附加值偏低,高频及射频芯片测试还处于起步阶段,其中高可靠芯片在生产制造中的测试环节,需要大量微型、高性能的弹簧测试探针。因此,研发适用超高频芯片测试的新型弹簧探针和基座的测试组件将能填补国内超高频芯片测试的空白,该技术将促进国内芯片研发以及测试行业的发展,对促进地区芯片制造业乃至我国整体芯片生产及测试技术向国际先进水平的迈进都具有重要的示范和促进作用。
技术问题
现有的弹簧测试探针常常与塑胶材料基座相配合使用,且为非同轴结构,并未考虑芯片本身输入及输出的阻抗匹配,因此高频性能局限于探针本身的传输带宽,信号和功率损耗严重,从而导致测试效果大打折扣。现有的超高频探针测试组件,多是三层基座结构,测试组件装配复杂,装配速度慢,信号探针同轴性差。同时,现有的测试基座上的电源探针腔体多采用钻孔后直接电镀绝缘层,容易造成基座上其他部位也被电镀,且电镀工序复杂,装配成本高,无法保证电源腔体内壁的有效绝缘,难以实现55GHz频率以上的超高频信号测试。
技术解决方案
本发明的目的在于提供一种超高频弹簧探针测试组件的装配方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种超高频弹簧探针测试组件的装配方法,包括以下步骤。
步骤1,准备基材,包含上基座、下基座、上轴套、下轴套、上型芯、下型芯、信号探针、电源探针和接地探针。
步骤2,在上基座和下基座上分别钻出多个并排排列且相互对应的上信号腔体、下信号腔体、上电源腔体、下电源腔体、上接地腔体和下接地腔体,其中,所述上信号腔体和下信号腔体组成信号腔体,所述上电源腔体和下电源腔体组成电源腔体,所述上接地腔体和下接地腔体组成接地腔体。
步骤3,将上型芯插入到上电源腔体内,将下型芯插入到下电源腔体内。
步骤4,在上型芯和上电源腔体、下型芯和下电源腔体的间隙内均灌入胶水,待固化。
步骤5,对固化后的上型芯和下型芯进行钻孔。
步骤6,将下轴套装入下信号腔体内,将信号探针插入下轴套内,然后将上轴套装入上信号腔体内。
步骤7,将电源探针插入下型芯的孔腔内。
步骤8,将接地探针插入到下接地腔体内。
步骤9,将上基座上的上信号腔体、上型芯的孔腔和上接地腔体分别对准信号探针、电源探针和接地探针套入,将上基座的下表面和下基座的上表面贴合固定。
进一步优选,所述上基座和下基座均采用金属材质制成。
进一步优选,所述上轴套、下轴套、上型芯和下型芯均采用非金属绝缘材质制成。
进一步优选,所述上型芯的外径尺寸小于上电源腔体的内径尺寸,所述下型芯的外径尺寸小于下电源腔体的内径尺寸。
进一步优选,所述上型芯与上电源腔体的高度尺寸相同,所述下型芯与下电源腔体的高度尺寸相同。
进一步优选,所述上轴套与上信号腔体、下轴套与下信号腔体均采用过盈配合压接而成。
进一步优选,所述信号探针、电源探针和接地探针均包含上柱塞、下柱塞、套筒和弹簧,所述信号探针的套筒上套设有绝缘环,所述绝缘环与上信号腔体过盈配合。
进一步优选,所述信号腔体的内径尺寸大于信号探针的外径尺寸。
进一步优选,所述上轴套和上型芯的孔腔底部、下轴套和下型芯的孔腔上部均设有导向锥角。
进一步优选,所述接地探针的外径尺寸与上接地腔体、下接地腔体均过盈配合。
有益效果
本发明的超高频弹簧探针测试组件的装配方法,信号探针通过安装绝缘环实现与信号腔体的同轴结构,信号损耗小;电源腔体在钻孔后插入绝缘的型芯并用胶水粘合,使电源探针与基座间形成双层绝缘结构,其绝缘性好,功率损耗低;接地探针与金属基座直接接触,其导通性能好;同时该装配方法制成的弹簧探针测试组件,避免了现有探针插损与回损过大的情况,提高了芯片频率测试的应用范围,提高了芯片测试效果,能够更好的满足5G及AI时代对高速芯片测试的更高要求,且装配简单、快捷,易于组装,安装顺序清晰。
附图说明
图1为本发明实施例所公开的信号腔体与上轴套、下轴套的装配示意图。
图2为本发明实施例所公开的电源腔体与上型芯、下型芯的装配示意图。
图3为本发明实施例所公开的信号探针装配于基座内的示意图。
图4为本发明实施例所公开的电源探针装配于基座内的示意图。
图5为本发明实施例所公开的接地探针装配于基座内的示意图。
图6为本发明实施例所公开的超高频弹簧探针测试组件的整体结构示意图。
附图标记。
1-上基座,2-下基座,3-上信号腔体,4-下信号腔体,5-上电源腔体,6-下电源腔体,7-上轴套,8-下轴套,9-上型芯,10-下型芯,11-上接地腔体,12-下接地腔体,13-信号探针,14-电源探针,15-接地探针,16-套筒,17-上柱塞,18-下柱塞,19-绝缘环。
本发明的实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
如图1-6所示,所述超高频探针测试组件由上基座1、下基座2、信号探针13、电源探针14和接地探针15组成,其中,所述上基座1和下基座2组成该测试组件的基座,所述上基座1上开设有上信号腔体3、上电源腔体5和上接地腔体11,所述下基座2上开设有下信号腔体4、下电源腔体6和下接地腔体12,所述上信号腔体3和下信号腔体4组成信号腔体,所述上电源腔体5和下电源腔体6组成电源腔体,所述上接地腔体11和下接地腔体12组成接地腔体。其中,所述信号探针13安装于信号腔体内,所述电源探针14安装于电源腔体内,所述接地探针15安装于电源腔体内。
本申请的超高频弹簧探针测试组件的装配方法,包括以下步骤。
步骤1,准备基材,包含上基座1、下基座2、上轴套7、下轴套8、上型芯9、下型芯10、信号探针13、电源探针14和接地探针15。
步骤2,在上基座1和下基座2上分别钻出上信号腔体3、下信号腔体4,上电源腔体5、下电源腔体6、上接地腔体11和下接地腔体12,且均为大小径的圆孔结构,其中,所述上信号腔体3、上电源腔体5和上接地腔体11的孔径尺寸为上小下大,所述下信号腔体4、下电源腔体6和下接地腔体12的孔径尺寸为上大下小。
步骤3,将上型芯9插入到上电源腔体5内,将下型芯10插入到下电源腔体6内。
步骤4,在上型芯9和上电源腔体5、下型芯10和下电源腔体6的间隙内均灌入胶水,待固化,固化后的上型芯9的侧面与上电源腔体5的内壁粘合,固化后的下型芯10的侧面与下电源腔体6的内壁粘合。
步骤5,对固化后的上型芯9和下型芯10进行钻孔,该孔腔上下贯穿上型芯9和下型芯10,且均为大小径的圆孔结构。
步骤6,将下轴套8装入下信号腔体4内,使其位于下信号腔体4的下端,将信号探针13插入下轴套8内,然后将上轴套7装入上信号腔体3内,使其位于上信号腔体3的上端。
步骤7,将电源探针14插入下型芯10的孔腔内。
步骤8,将接地探针15插入到下接地腔体12内。
步骤9,将上基座1上的上信号腔体3、上型芯9的孔腔和上接地腔体11分别对准信号探针13、电源探针14和接地探针15套入,将上基座1的下表面和下基座2的上表面贴合固定,完成该探针测试组件的装配。
本申请的弹簧探针测试组件的装配方法,改变现有采用电镀绝缘的方法,简化了装配工艺,使弹簧探针测试组件的装配更加简单、快捷,避免因电镀致使的基座其他部位也被电镀导致接地探针的导通不良,同时简约了装配成本。
优选的,所述上基座1和下基座2均采用金属材质制成,保证信号探针13、电源探针14和接地探针15的固定稳定,且易于加工,使用寿命长。
优选的,所述上轴套7、下轴套8、上型芯9和下型芯10均采用非金属绝缘材质制成,保证信号探针13和电源探针14与基座间的绝缘,防止因与金属材质的基座接触导致信号短路和电性流失。
优选的,所述上型芯9的外径尺寸小于上电源腔体5的内径尺寸,所述下型芯10的外径尺寸小于下电源腔体6的内径尺寸,确保上型芯9与上电源腔体5、下型芯10与下电源腔体6件留有间隙,确保胶水能够注入该间隙内,用以将上型芯9和上电源腔体5、下型芯10与下电源腔体6的粘合固定。
优选的,所述上型芯9与上电源腔体5的高度尺寸相同,所述下型芯10与下电源腔体6的高度尺寸相同,保证电源探针14与电源腔体完全绝缘,防止电源探针14与基座导通,影响测试,同时增加上型芯9和下型芯10的绝缘效果。
优选的,所述上轴套7与上信号腔体3、下轴套8与下信号腔体4均采用过盈配合压接而成,保证上轴套7和下轴套8的固定牢固。
优选的,所述信号探针13、电源探针14和接地探针15均包含上柱塞17、下柱塞18、套筒16和弹簧,所述信号探针13的套筒16上套设有绝缘环19,所述绝缘环19与上信号腔体3过盈配合,所述绝缘环19用于固定信号探针13,配合上轴套7和下轴套8,保证信号探针13在信号腔体内居中,使信号探针13与信号腔体形成同轴结构,图中弹簧未示出,其安装于套筒16内,且上下两端分别与上柱塞17下端和下柱塞18上端相抵接。
优选的,所述上信号腔体3与下信号腔体4组成信号腔体,其内径尺寸大于信号探针13的外径尺寸,使信号探针13和信号腔体之间留有较大间隙,间隙中的空气作为绝缘介质。
优选的,所述上轴套7和上型芯9的孔腔底部、下轴套8和下型芯10的孔腔上部均设有导向锥角,便于信号探针13和电源探针14的插入装配。
优选的,所述接地探针15的外径尺寸与上接地腔体11、下接地腔体12均过盈配合,保证接地探针15与接地腔体形成良好的导通。
工业实用性
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明性的保护范围之内的发明内容。

Claims (10)

  1. 一种超高频弹簧探针测试组件的装配方法,其特征在于,包括以下步骤:
    步骤1,准备基材,包含上基座、下基座、上轴套、下轴套、上型芯、下型芯、信号探针、电源探针和接地探针;
    步骤2,在上基座和下基座上分别钻出多个并排排列且相互对应的上信号腔体、下信号腔体、上电源腔体、下电源腔体、上接地腔体和下接地腔体,其中,所述上信号腔体和下信号腔体组成信号腔体,所述上电源腔体和下电源腔体组成电源腔体,所述上接地腔体和下接地腔体组成接地腔体;
    步骤3,将上型芯插入到上电源腔体内,将下型芯插入到下电源腔体内;
    步骤4,在上型芯和上电源腔体、下型芯和下电源腔体的间隙内均灌入胶水,待固化;
    步骤5,对固化后的上型芯和下型芯进行钻孔;
    步骤6,将下轴套装入下信号腔体内,将信号探针插入下轴套内,然后将上轴套装入上信号腔体内;
    步骤7,将电源探针插入下型芯的孔腔内;
    步骤8,将接地探针插入到下接地腔体内;
    步骤9,将上基座上的上信号腔体、上型芯的孔腔和上接地腔体分别对准信号探针、电源探针和接地探针套入,将上基座的下表面和下基座的上表面贴合固定。
  2. 根据权利要求1所述的一种超高频弹簧探针测试组件的装配方法,其特征在于:所述上基座和下基座均采用金属材质制成。
  3. 根据权利要求1所述的一种超高频弹簧探针测试组件的装配方法,其特征在于:所述上轴套、下轴套、上型芯和下型芯均采用非金属绝缘材质制成。
  4. 根据权利要求1所述的一种超高频弹簧探针测试组件的装配方法,其特征在于:所述上型芯的外径尺寸小于上电源腔体的内径尺寸,所述下型芯的外径尺寸小于下电源腔体的内径尺寸。
  5. 根据权利要求1所述的一种超高频弹簧探针测试组件的装配方法,其特征在于:所述上型芯与上电源腔体的高度尺寸相同,所述下型芯与下电源腔体的高度尺寸相同。
  6. 根据权利要求1所述的一种超高频弹簧探针测试组件的装配方法,其特征在于:所述上轴套与上信号腔体、下轴套与下信号腔体均采用过盈配合压接而成。
  7. 根据权利要求1所述的一种超高频弹簧探针测试组件的装配方法,其特征在于:所述信号探针、电源探针和接地探针均包含上柱塞、下柱塞、套筒和弹簧,所述信号探针的套筒上套设有绝缘环,所述绝缘环与上信号腔体过盈配合。
  8. 根据权利要求1所述的一种超高频弹簧探针测试组件的装配方法,其特征在于:所述信号腔体的内径尺寸大于信号探针的外径尺寸。
  9. 根据权利要求1所述的一种超高频弹簧探针测试组件的装配方法,其特征在于:所述上轴套和上型芯的孔腔底部、下轴套和下型芯的孔腔上部均设有导向锥角。
  10. 根据权利要求1所述的一种超高频弹簧探针测试组件的装配方法,其特征在于:所述接地探针的外径尺寸与上接地腔体、下接地腔体均过盈配合。
PCT/CN2021/082051 2020-12-18 2021-03-22 一种超高频弹簧探针测试组件的装配方法 WO2022126887A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/481,251 US11835567B2 (en) 2020-12-18 2021-09-21 Method for assembling ultrahigh-frequency spring probe test assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011500446.2A CN112240947B (zh) 2020-12-18 2020-12-18 一种超高频弹簧探针测试组件的装配方法
CN202011500446.2 2020-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/481,251 Continuation US11835567B2 (en) 2020-12-18 2021-09-21 Method for assembling ultrahigh-frequency spring probe test assembly

Publications (1)

Publication Number Publication Date
WO2022126887A1 true WO2022126887A1 (zh) 2022-06-23

Family

ID=74175314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082051 WO2022126887A1 (zh) 2020-12-18 2021-03-22 一种超高频弹簧探针测试组件的装配方法

Country Status (2)

Country Link
CN (1) CN112240947B (zh)
WO (1) WO2022126887A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112240947B (zh) * 2020-12-18 2021-04-30 苏州和林微纳科技股份有限公司 一种超高频弹簧探针测试组件的装配方法
US11835567B2 (en) * 2020-12-18 2023-12-05 Suzhou Uigreen Micro&Nano Technology Co. Ltd. Method for assembling ultrahigh-frequency spring probe test assembly
CN113671224B (zh) * 2021-08-20 2024-09-27 苏州新威浩机电科技有限公司 双电源开环霍尔组件产线工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070145990A1 (en) * 2005-12-27 2007-06-28 Yokowo Co., Ltd. Inspection unit
CN204925272U (zh) * 2015-08-13 2015-12-30 颖崴科技股份有限公司 电子组件的测试装置
CN106483448A (zh) * 2015-09-02 2017-03-08 甲骨文国际公司 同轴集成电路测试插座
CN109148412A (zh) * 2018-08-20 2019-01-04 深圳可瑞高新材料股份有限公司 具有绝缘通孔的基板、制造方法及led照明模组
US10566256B2 (en) * 2018-01-04 2020-02-18 Winway Technology Co., Ltd. Testing method for testing wafer level chip scale packages
CN111094998A (zh) * 2017-05-26 2020-05-01 史密斯互连美洲公司 阻抗受控的测试插座
CN111247438A (zh) * 2017-11-07 2020-06-05 李诺工业股份有限公司 测试探针模块与测试插座
CN112240947A (zh) * 2020-12-18 2021-01-19 苏州和林微纳科技股份有限公司 一种超高频弹簧探针测试组件的装配方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7740508B2 (en) * 2008-09-08 2010-06-22 3M Innovative Properties Company Probe block assembly
JP2012042252A (ja) * 2010-08-16 2012-03-01 Molex Inc 同軸プローブ
CN104198772B (zh) * 2014-08-28 2017-11-21 安拓锐高新测试技术(苏州)有限公司 嵌入式芯片测试插座及其加工方法
CN204302321U (zh) * 2014-12-02 2015-04-29 上海韬盛电子科技有限公司 适用于高频测试的芯片测试插座
CN208999534U (zh) * 2018-10-22 2019-06-18 上海捷策创电子科技有限公司 一种芯片测试装置
CN110247218A (zh) * 2019-07-03 2019-09-17 法特迪精密科技(苏州)有限公司 一种适用于集成电路的超高频测试用插座
CN211603289U (zh) * 2019-12-12 2020-09-29 苏州和林微纳科技股份有限公司 一种高稳定性的弹簧探针

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070145990A1 (en) * 2005-12-27 2007-06-28 Yokowo Co., Ltd. Inspection unit
CN204925272U (zh) * 2015-08-13 2015-12-30 颖崴科技股份有限公司 电子组件的测试装置
CN106483448A (zh) * 2015-09-02 2017-03-08 甲骨文国际公司 同轴集成电路测试插座
CN111094998A (zh) * 2017-05-26 2020-05-01 史密斯互连美洲公司 阻抗受控的测试插座
CN111247438A (zh) * 2017-11-07 2020-06-05 李诺工业股份有限公司 测试探针模块与测试插座
US10566256B2 (en) * 2018-01-04 2020-02-18 Winway Technology Co., Ltd. Testing method for testing wafer level chip scale packages
CN109148412A (zh) * 2018-08-20 2019-01-04 深圳可瑞高新材料股份有限公司 具有绝缘通孔的基板、制造方法及led照明模组
CN112240947A (zh) * 2020-12-18 2021-01-19 苏州和林微纳科技股份有限公司 一种超高频弹簧探针测试组件的装配方法

Also Published As

Publication number Publication date
CN112240947B (zh) 2021-04-30
CN112240947A (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
WO2022126887A1 (zh) 一种超高频弹簧探针测试组件的装配方法
CN102110920A (zh) 高速连接器封装和封装方法
US20040023556A1 (en) Electrically shielded connector
CN202217585U (zh) 结构电容、连接器及使用该连接器的通信设备
CN103153001B (zh) 一种pcb板加工方法
CN103367849A (zh) 一种表贴式微波铁氧体环行器引脚结构
CN214845411U (zh) 一种电源探针测试单元
CN204925176U (zh) 一种具有复合同轴结构的半导体芯片测试针架
CN207896372U (zh) 一种盲插射频同轴连接器
CN204536433U (zh) 一种三维微波组件测试装置
CN101571564B (zh) 射频同轴连接器检测工装
CN206211211U (zh) 一种高可靠无浮动bma‑k型连接器
CN220797049U (zh) 一种中心导体
CN219086316U (zh) 一种具有密封结构的射频同轴连接器
CN206640078U (zh) 一种射频同轴连接器用大转矩灌封结构
CN106442059A (zh) 电化学试样封装装置及方法
CN103207291A (zh) 一种v波段平面电路测试夹具
CN101471474B (zh) 新型毫米波微带密封过渡装置
WO2012167586A1 (zh) 一种同轴转接器
CN202888364U (zh) 一种腔体滤波器及功放模块
CN208000988U (zh) 一种同轴环行器
CN211720812U (zh) 一种微带电路针卡
CN203850580U (zh) 一种超小型推入式射频同轴连接器
CN207662945U (zh) 一种用于传输5g高频信号的测试针
CN201635726U (zh) 一种68芯高温高压接插件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21904827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21904827

Country of ref document: EP

Kind code of ref document: A1