WO2022126547A1 - 电池单体及其制造方法和制造系统、电池以及用电装置 - Google Patents

电池单体及其制造方法和制造系统、电池以及用电装置 Download PDF

Info

Publication number
WO2022126547A1
WO2022126547A1 PCT/CN2020/137356 CN2020137356W WO2022126547A1 WO 2022126547 A1 WO2022126547 A1 WO 2022126547A1 CN 2020137356 W CN2020137356 W CN 2020137356W WO 2022126547 A1 WO2022126547 A1 WO 2022126547A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
side plate
battery cell
pole piece
support member
Prior art date
Application number
PCT/CN2020/137356
Other languages
English (en)
French (fr)
Inventor
陈文伟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202080102020.3A priority Critical patent/CN115699413A/zh
Priority to PCT/CN2020/137356 priority patent/WO2022126547A1/zh
Priority to EP20965563.8A priority patent/EP4089800A4/en
Priority to KR1020227036010A priority patent/KR20220154225A/ko
Priority to JP2022563181A priority patent/JP2023522680A/ja
Publication of WO2022126547A1 publication Critical patent/WO2022126547A1/zh
Priority to US17/948,688 priority patent/US20230021075A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/477Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and more particularly, to a battery cell, a manufacturing method and a manufacturing system thereof, a battery, and an electrical device.
  • a rechargeable battery which can be called a secondary battery, refers to a battery that can continue to be used by activating the active material by charging after the battery is discharged.
  • Rechargeable batteries are widely used in electronic devices such as cell phones, laptops, battery cars, electric cars, electric planes, electric boats, electric toy cars, electric toy boats, electric toy planes, and power tools, among others.
  • Rechargeable batteries may include nickel-cadmium batteries, nickel-hydrogen batteries, lithium-ion batteries, secondary alkaline zinc-manganese batteries, and the like.
  • lithium-ion batteries are generally used in automobiles.
  • As a rechargeable battery lithium-ion batteries have the advantages of small size, high energy density, high power density, many cycles and long storage time.
  • the rechargeable battery includes an electrode assembly and an electrolyte solution.
  • the electrode assembly includes a positive electrode sheet, a negative electrode sheet, and a separator between the positive electrode sheet and the negative electrode sheet.
  • the positive pole piece can also be called a cathode pole piece. Both surfaces of the positive pole piece have positive active material layers.
  • the positive active material of the positive active material layer can be lithium manganate, lithium cobaltate, lithium iron phosphate or nickel. Lithium cobalt manganate; the negative pole piece can also be called an anode pole piece, and both surfaces of the negative pole piece have a negative electrode active material layer, for example, the negative electrode active material of the negative electrode active material layer can be graphite or silicon.
  • Lithium precipitation is a common abnormal phenomenon of lithium batteries, which will affect the charging efficiency and energy density of lithium ions.
  • lithium precipitation is serious, lithium crystals can also be formed, and lithium crystals can pierce the isolation film and cause thermal runaway of internal short circuit, which is a serious hazard. battery safety.
  • the present application provides a battery cell, a manufacturing method and a manufacturing system thereof, a battery and an electrical device, which can reduce the risk of lithium precipitation and enhance the safety of the battery.
  • an embodiment of the present application provides a battery cell, including: an electrode assembly, including at least one first pole piece and at least one second pole piece, and at least part of the first pole piece and the second pole piece are stacked and arranged a casing having an opening and an accommodating cavity for accommodating the electrode assembly, the casing comprising a first side plate; a cover plate for closing the opening and perpendicular to the first side plate; a support member, at least partially disposed on the first side plate Between the electrode assembly and the electrode assembly, the support member is used to support the electrode assembly, so that the distance between the end of the first pole piece facing the first side plate and the first side plate in the first direction is greater than a predetermined value, and the first direction is perpendicular to the Orientation of the first side panel.
  • the support member can support the electrode assembly, reduce the shaking amplitude of the electrode assembly when the battery cell vibrates, reduce the force exerted by the first side plate on the electrode assembly, and reduce the tearing of the tabs risks of.
  • the distance between the end of the first pole piece facing the first side plate and the first side plate in the first direction is greater than a predetermined value, thereby reducing the effect of transmission to the end of the first pole piece It can reduce the risk of the active material of the first pole piece falling off and reduce the lithium precipitation.
  • the housing further includes a second side plate perpendicular to the first side plate and the cover plate, a transition plate is provided between the first side plate and the second side plate, and an inner surface of the transition plate is an arc surface.
  • the predetermined value is defined as H
  • the radius of the inner surface of the transition plate is defined as R
  • the predetermined value H and the radius R satisfy: H ⁇ 0.8R.
  • the predetermined value H and the radius R satisfy: R ⁇ H ⁇ 2R.
  • the value of the radius R is 0.5mm-2mm.
  • the area of the second side panel is greater than the area of the first side panel.
  • the battery cell further includes a first insulating member disposed on a side of the cover plate facing the electrode assembly, and the first insulating member separates the cover plate and the electrode assembly.
  • the support member and the first insulating member are spaced apart along a second direction, and the second direction is a direction perpendicular to the cover plate. This can prevent the first insulating member from interfering with the supporting member.
  • the case further includes a bottom plate disposed on a side of the electrode assembly away from the cover plate, and the bottom plate is perpendicular to the first side plate.
  • the support member and the bottom plate are spaced apart along a second direction, and the second direction is a direction perpendicular to the cover plate. This can prevent the bottom plate from interfering with the support member.
  • first side plates there are two first side plates and they are respectively located on both sides of the electrode assembly along the first direction, and a support member is provided between the electrode assembly and each of the first side plates.
  • Each support member can reduce the force exerted by the corresponding first side plate on the electrode assembly when the battery cell vibrates, thereby reducing the risk of the active material falling off.
  • the electrode assembly includes a first surface facing the first side plate, and the support member is located between the first surface and the first side plate.
  • the two edges of the first surface along the second direction respectively extend beyond the two edges of the support member along the second direction, and the two edges of the first surface along the third direction respectively exceed the two edges of the support member along the third direction
  • the second direction is the direction perpendicular to the cover plate
  • the third direction is perpendicular to the first direction and the second direction.
  • the battery cell further includes a second insulating member for separating the electrode assembly and the case, the second insulating member includes a first insulating portion, and the first insulating portion is disposed on the first side plate and the first insulating portion. between the surfaces.
  • the first insulating part can not only insulate and separate the first side plate and the electrode assembly, but also can cooperate with the supporting member to support the electrode assembly.
  • the second insulating member further includes a second insulating portion and two third insulating portions, the second insulating portion is located on a side of the electrode assembly away from the cover plate along the second direction and is connected to the third insulating portion, and the two insulating portions are connected to the third insulating portion.
  • the third insulating portions are respectively disposed on both sides of the electrode assembly along the third direction. Both sides of the electrode assembly along the first direction are provided with a first insulating portion connected to the third insulating portion, and at least one first insulating portion is connected to two third insulating portions.
  • One side of the electrode assembly along the first direction is provided with two first insulating parts, and the two first insulating parts are respectively connected to the two third insulating parts and at least partially overlap in the first direction.
  • the support member is disposed between the first insulating portion and the first surface.
  • the first insulating portion can protect the support member and guide the support member into the case, so as to prevent the support member from being scratched by the case.
  • the battery cell further includes an adhesive member for connecting the support member to the electrode assembly.
  • the adhesive member fixes the support member to the electrode assembly, which can reduce or avoid the relative movement of the support member and the electrode assembly when the battery cell vibrates, and reduce the risk of the support member deviating from the set position in the case.
  • the electrode assembly includes a first surface facing the first side plate and a second surface connected to the first surface, the second surface being perpendicular to the first side plate and the cover plate.
  • the bonding member includes a first bonding portion and a second bonding portion, the first bonding portion is bonded to a surface of the support member away from the first surface, and the second bonding portion is connected to the first bonding portion and bonded to second surface.
  • the bonding member can cover at least part of the connection between the first surface and the second surface from the outside, and space the connection from the transition plate, thereby reducing the force on the pole piece and reducing the risk of the active material falling off.
  • the plurality of bonding members can improve the connection strength between the support member and the electrode assembly.
  • an embodiment of the present application further provides a battery, which includes a case body and at least one battery cell according to the first aspect, and the battery cell is accommodated in the case body.
  • the first side plate is located on the lower side of the electrode assembly in the vertical direction.
  • an embodiment of the present application further provides an electrical device, where the electrical device is configured to receive electrical energy provided from the battery of the second aspect.
  • an embodiment of the present application also provides a method for manufacturing a battery cell, which includes: providing an electrode assembly, the electrode assembly includes at least one first pole piece and at least one second pole piece, and at least one of the first pole piece The part and the second pole piece are stacked and arranged; an end cap assembly is provided, the end cap assembly includes a cover plate and an electrode terminal arranged on the cover plate, and the electrode assembly and the electrode terminal are connected; a supporting member is provided, and the supporting member is connected to the electrode assembly; providing a casing, the casing has an opening and an accommodating cavity for accommodating the electrode assembly, the casing includes a first side plate; the electrode assembly and the supporting member connected to the electrode assembly are placed in the accommodating cavity, and then the cover plate and the casing are connected, so that the cover plate closes the opening and is perpendicular to the first side plate, and the support member is at least partially arranged between the first side plate and the electrode assembly, and the support member is used to support the electrode assembly so that the first pole piece faces the first side
  • an end cap assembly
  • an embodiment of the present application further provides a battery cell manufacturing system, which includes: a first providing device for providing an electrode assembly, the electrode assembly including at least one first pole piece and at least one second pole piece , at least part of the first pole piece and the second pole piece are stacked and arranged; the second providing device is used to provide an end cap assembly, and the end cap assembly includes a cover plate and an electrode terminal arranged on the cover plate; the first assembling device is used for Connecting the electrode assembly and the electrode terminal; a third providing means for providing a supporting member; a second assembling means for connecting the supporting member to the electrode assembly; and a fourth providing means for providing a case having an opening and a
  • the casing includes a first side plate; a third assembling device is used for placing the electrode assembly and the supporting member connected to the electrode assembly into the accommodating cavity, and then connecting the cover plate and the casing to make the The cover plate closes the opening and is perpendicular to the first side plate, wherein the support member
  • FIG. 1 is a schematic structural diagram of a vehicle according to an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a battery according to an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a battery module according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • FIG. 5 is a schematic side view of the battery cell shown in FIG. 4;
  • FIG. 6 is a schematic cross-sectional view of the battery cell shown in FIG. 5 taken along line A-A;
  • FIG. 7 is a schematic cross-sectional view of an electrode assembly according to an embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional view of an electrode assembly according to another embodiment of the present application.
  • FIG. 9 is a schematic partial structure diagram of an electrode assembly according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a battery cell according to an embodiment of the application.
  • FIG. 11 is a schematic cross-sectional view of the battery cell shown in FIG. 10 taken along line B-B;
  • FIG. 12 is an enlarged view of the battery cell shown in FIG. 11 at the circle frame C;
  • FIG. 13 is an enlarged schematic view of the battery cell shown in FIG. 6 at the circle frame D;
  • FIG. 14 is an enlarged schematic view of the battery cell shown in FIG. 6 at the circle frame E;
  • FIG. 15 is an exploded schematic diagram of a battery cell according to an embodiment of the application.
  • 16 is a schematic structural diagram of a second insulating member of a battery cell according to an embodiment of the application.
  • FIG. 17 is a schematic diagram of a second insulating member of a battery cell according to an embodiment of the present application in an unfolded state
  • FIG. 18 is a schematic flowchart of a method for manufacturing a battery cell according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of a battery cell manufacturing system according to an embodiment of the present application.
  • the terms “installed”, “connected”, “connected” and “attached” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • multiple refers to two or more (including two), and similarly, “multiple groups” refers to two or more groups (including two groups), and “multiple sheets” refers to two or more sheets (includes two pieces).
  • parallel includes not only the case of absolute parallelism, but also the case of being approximately parallel in the conventional knowledge in engineering; meanwhile, the term “perpendicular” also includes not only the case of absolute perpendicularity, but also the case of being approximately parallel in the conventional knowledge in engineering. vertical case.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, etc., which are not limited in the embodiments of the present application.
  • the battery cell may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs, and the like.
  • Batteries typically include a case for enclosing one or more battery cells. The box can prevent liquids or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive pole piece and the negative pole piece to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, The current collector not coated with the positive electrode active material layer was used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganate.
  • the negative pole piece includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the current collector without the negative electrode active material layer is protruded from the current collector that has been coated with the negative electrode active material layer, The current collector not coated with the negative electrode active material layer was used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the separator has a large number of through-holes, which can ensure the free passage of electrolyte ions and have good permeability to lithium ions.
  • the material of the separator can be PP or PE, etc.
  • the electrode assembly may be a wound structure or a laminated structure, and the embodiment of the present application is not limited thereto.
  • lithium ions are de-intercalated from the positive electrode and embedded in the negative electrode, but some abnormal conditions may occur, such as insufficient space for lithium insertion in the negative electrode, too much resistance of lithium ions in the negative electrode, or too fast lithium ions.
  • the de-intercalated lithium ions cannot be embedded in the negative electrode active material layer of the negative electrode pole piece in an equal amount, and the lithium ions that cannot be embedded in the negative electrode pole piece can only obtain electrons on the surface of the negative electrode, thereby forming silver-white metallic lithium element, which It is the phenomenon of lithium precipitation.
  • Lithium precipitation not only reduces the performance of lithium-ion batteries and greatly shortens the cycle life, but also limits the fast charge capacity of lithium-ion batteries.
  • the precipitated lithium metal is very active, and can react with the electrolyte at a lower temperature, resulting in a decrease in the starting temperature (Tonset) of the battery's self-generated heat and self-generated heat. The heat rate increases, which seriously endangers the safety of the battery.
  • Tonset starting temperature
  • the deintercalated lithium ions can form lithium crystals on the surface of the negative electrode, and the lithium crystals easily pierce the separator, resulting in the risk of short circuit between the adjacent positive and negative electrodes.
  • the inventor found that when the electrode assembly is vibrated or squeezed, the active material of the positive pole piece or the active material of the negative pole piece will fall off, which is called the phenomenon of powder falling. Due to the shedding of the active material, especially the shedding of the active material on the negative pole piece, the lithium insertion site of the negative electrode active material layer of the negative pole piece may be less than the lithium ion that can be provided by the positive active material layer of the adjacent positive pole piece. Therefore, when the lithium battery is charged, the phenomenon of lithium precipitation is prone to occur.
  • the embodiments of the present application provide a technical solution in which a support member is arranged in a battery cell to reduce the falling off of the active material, reduce the risk of lithium precipitation, and improve the safety of the battery.
  • the technical solutions described in the embodiments of this application are all applicable to various devices using batteries, such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships, and spacecraft.
  • the spacecraft includes Planes, rockets, space shuttles and spaceships, etc.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a battery 10 , a controller 20 and a motor 30 may be provided inside the vehicle 1 , and the controller 20 is used to control the battery 10 to supply power to the motor 30 .
  • the battery 10 may be provided at the bottom of the vehicle 1 or at the front or rear of the vehicle.
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as the operating power source of the vehicle 1 , for the circuit system of the vehicle 1 , for example, for the starting, navigation and operation power requirements of the vehicle 1 .
  • the battery 10 can not only be used as the operating power source of the vehicle 1 , but also can be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
  • the battery 10 may include a plurality of battery cells, wherein the plurality of battery cells may be connected in series or in parallel or in a mixed connection, and a mixed connection refers to a mixture of series and parallel connection.
  • the battery 10 may also be referred to as a battery pack.
  • a plurality of battery cells can be connected in series or in parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series or in parallel or mixed to form the battery 10 . That is to say, a plurality of battery cells can directly form the battery 10 , or a battery module can be formed first, and then the battery module can form the battery 10 .
  • the battery 10 may include a plurality of battery cells 40 .
  • the battery 10 may further include a box body (or a cover body), the inside of the box body is a hollow structure, and the plurality of battery cells 40 are accommodated in the box body.
  • the box body may include two parts, which are referred to as the first part 111 and the second part 112 respectively, and the first part 111 and the second part 112 are fastened together.
  • the shapes of the first part 111 and the second part 112 may be determined according to the combined shape of the plurality of battery cells 40 , and each of the first part 111 and the second part 112 may have an opening.
  • both the first part 111 and the second part 112 can be a hollow cuboid and each has only one surface that is an open surface, the opening of the first part 111 and the opening of the second part 112 are arranged opposite to each other, and the first part 111 and the second part 112 are interlocked with each other Combined to form a box with a closed chamber.
  • the plurality of battery cells 40 are connected in parallel or in series or in a mixed connection, and then placed in the box formed after the first part 111 and the second part 112 are fastened together.
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may further include a bussing component for realizing electrical connection between a plurality of battery cells 40 , such as parallel or series or hybrid.
  • the bus member may realize electrical connection between the battery cells 40 by connecting the electrode terminals of the battery cells 40 .
  • the bus members may be fixed to the electrode terminals of the battery cells 40 by welding. The electrical energy of the plurality of battery cells 40 can be further drawn out through the case through the conductive mechanism.
  • the conducting means may also belong to the bussing member.
  • the number of battery cells 40 can be set to any value.
  • a plurality of battery cells 40 can be connected in series, in parallel or in a mixed connection to achieve larger capacity or power. Since the number of battery cells 40 included in each battery 10 may be large, in order to facilitate installation, the battery cells 40 may be arranged in groups, and each group of battery cells 40 constitutes a battery module.
  • the number of battery cells 40 included in the battery module is not limited, and can be set according to requirements.
  • FIG. 3 is an example of a battery module.
  • the battery 10 may include a plurality of battery modules, and the battery modules may be connected in series, parallel, or mixed.
  • FIG. 4 is a schematic structural diagram of a battery cell 40 according to an embodiment of the application
  • FIG. 5 is a schematic side view of the battery cell 40 shown in FIG. 4
  • FIG. 6 is a schematic diagram of the battery cell 40 shown in FIG. 5 along the line A-A Cutaway schematic diagram.
  • the battery cell 40 of the embodiment of the present application includes an electrode assembly 410 , a casing 420 and an end cap assembly 430 .
  • the casing 420 has a accommodating cavity and an opening, and the electrode assembly 410 is accommodated in the accommodating cavity.
  • one of the planes of the casing 420 is an open surface, that is, the plane does not have a wall so that the casing 420 communicates with the inside and the outside.
  • the end cap assembly 430 includes a cover plate 431, which covers the opening and is connected to the casing 420, thereby closing the opening of the casing 420, so that the electrode assembly 410 is placed in the closed cavity.
  • the casing 420 is filled with an electrolyte, such as an electrolytic solution.
  • the end cap assembly 430 may further include two electrode terminals 432 , and the two electrode terminals 432 may be disposed on the cover plate 431 .
  • the cover plate 431 is generally in the shape of a flat plate, and two electrode terminals 432 are fixed on the flat surface of the cover plate 431, and the two electrode terminals 432 are the positive electrode terminal and the negative electrode terminal 432 respectively.
  • Each electrode terminal 432 is correspondingly provided with a connecting member 440 , or also called a current collecting member, which is located between the cover plate 431 and the electrode assembly 410 for electrically connecting the electrode assembly 410 and the electrode terminal 432 .
  • Each electrode assembly 410 has a first tab 410a and a second tab 410b.
  • the polarities of the first tab 410a and the second tab 410b are opposite.
  • the first tab 410a is a positive tab
  • the second tab 410b is a negative tab.
  • the first tabs 410a of one or more electrode assemblies 410 are connected to one electrode terminal 432 through one connecting member 440
  • the second tabs 410b of one or more electrode assemblies 410 are connected to another electrode terminal 432 through another connecting member 440 .
  • connect For example, the positive electrode terminal is connected to the positive electrode tab through one connection member 440
  • the negative electrode terminal is connected to the negative electrode tab through the other connection member 440 .
  • the electrode assembly 410 can be set in a single or multiple according to actual use requirements.
  • an electrode assembly 410 is disposed within the battery cell 40 .
  • the end cap assembly 430 may further include a first insulating member 433, the first insulating member 433 is disposed on the side of the cap plate 431 facing the electrode assembly 410, and the first insulating member 433 can connect the cap plate 431 to the electrode assembly 410.
  • the connecting member 440 separates the cap plate 431 from the electrode assembly 410 to reduce the risk of short circuit.
  • the material of the first insulating member 433 can be plastic, for example, the material of the first insulating member 433 is polypropylene.
  • the housing 420 is generally a hollow cuboid.
  • the housing 420 includes two first side plates 421 facing each other and two second side plates 422 facing each other, the first side plates 421 are connected to the second side plates 422 and are used to define a receiving cavity and an opening .
  • the first side plate 421 and the second side plate 422 are flat plates and are perpendicular to each other.
  • the two first side plates 421 are arranged parallel to each other, and the two second side plates 422 are arranged parallel to each other.
  • the cover plate 431 is connected to the first side plate 421 and the second side plate 422 to close the opening of the casing 420 .
  • the cover plate 431 may be welded to the first side plate 421 and the second side plate 422 .
  • the cover plate 431 is perpendicular to the first side plate 421 and the second side plate 422 .
  • the two first side plates 421 are respectively located on both sides of the electrode assembly 410 along the first direction X, where the first direction X is a direction perpendicular to the first side plates 421 .
  • the first direction X is parallel to the thickness direction of the first side plate 421 .
  • the first side plate 421 is generally a rectangular flat plate.
  • the cover plate 431 is located on one side of the electrode assembly 410 along the second direction Y, wherein the second direction Y is a direction perpendicular to the cover plate 431 .
  • the second direction Y is parallel to the thickness direction of the cover plate 431 .
  • the cover plate 431 is generally a rectangular plate.
  • the two second side plates 422 are respectively located on both sides of the electrode assembly 410 along the third direction Z, wherein the third direction Z is a direction perpendicular to the second side plates 422 .
  • the third direction Z is parallel to the thickness direction of the second side plate 422 .
  • the second side plate 422 is generally a rectangular flat plate.
  • the thickness of the first side panel 421 is equal to the thickness of the second side panel 422 .
  • the case 420 further includes a bottom plate 423 disposed on a side of the electrode assembly 410 away from the cover plate 431 , that is, the bottom plate 423 and the cover plate 431 are located on two sides of the electrode assembly 410 along the second direction Y, respectively.
  • the bottom plate 423 is perpendicular to the first side plate 421 and the second side plate 422 .
  • the bottom plate 423 is generally a rectangular flat plate.
  • the bottom plate 423 , the first side plate 421 and the second side plate 422 are integrally formed; in other examples, the bottom plate 423 can also be connected to the first side plate 421 and the second side plate 422 by welding or the like.
  • the size of the battery cells 40 along the second direction Y is larger than the size of the battery cells 40 along the first direction X and the size of the battery cells 40 along the third direction Z.
  • the space reserved for the battery 10 in the vertical direction of the vehicle 1 is limited. Therefore, in order to reduce the height of the battery 10 in the vertical direction, the second direction Y can be made parallel to the horizontal direction, which can reduce the vertical Maximum size in straight direction.
  • the dimension of the battery cells 40 along the first direction X is greater than the dimension of the battery cells 40 along the third direction Z.
  • the battery cells 40 may be placed sideways. When the battery cells 40 are placed sideways, the first direction X is parallel to the vertical direction.
  • FIG. 7 is a schematic cross-sectional view of an electrode assembly 410 according to an embodiment of the application
  • FIG. 8 is a schematic cross-sectional view of an electrode assembly 410 according to another embodiment of the application
  • a schematic diagram of a partial structure of the electrode assembly 410
  • the electrode assembly 410 in the embodiment of the present application includes at least one first pole piece 411 and at least one second pole piece 412 , and the polarity of the first pole piece 411 is opposite to that of the second pole piece 412 .
  • the first pole piece 411 is a negative pole piece
  • the second pole piece 412 is a positive pole piece
  • the first pole piece 411 is a positive pole piece
  • the second pole piece 412 is a negative pole piece.
  • the electrode assembly 410 further includes a separator 413 that separates the first pole piece 411 and the second pole piece 412 .
  • the electrode assembly 410 of the embodiment of the present application is a laminated structure, which includes a plurality of second pole pieces 412 arranged in layers.
  • the second pole pieces 412 are generally flat and separated from each other. At least a part of the first pole pieces 411 is disposed between adjacent second pole pieces 412 .
  • the electrode assembly 410 includes a plurality of first pole pieces 411 and a plurality of second pole pieces 412 , and the plurality of first pole pieces 411 and the plurality of second pole pieces 412 are alternately stacked.
  • the stacking direction of the first pole piece 411 and the second pole piece 412 is parallel to the thickness direction of the first pole piece 411 and the thickness direction of the second pole piece 412 .
  • the first pole piece 411 and the second pole piece 412 are both rectangular flat plates and are arranged parallel to each other.
  • the first pole piece 411 and the second pole piece 412 are perpendicular to the cover plate 431 .
  • the stacking direction of the first pole piece 411 and the second pole piece 412 is parallel to the third direction Z, that is, the first pole piece 411 and the second pole piece 412 are parallel to the first direction X and the second direction Y.
  • the electrode assembly 410 includes two first surfaces 414 along which face each other and two second surfaces 415 along which face each other.
  • the first surface 414 and the second surface 415 are exposed surfaces of the electrode assembly 410 .
  • Two ends of each first surface 414 along the third direction Z are respectively connected to the two second surfaces 415 .
  • the two first surfaces 414 face each other along the first direction X
  • the two second surfaces 415 face each other along the third direction Z.
  • the outermost side of the electrode assembly 410 is the isolation membrane 413 , so the first surface 414 and the second surface 415 are exposed surfaces of the isolation membrane 413 .
  • there are two isolation films 413 and each isolation film 413 is reciprocally bent into multiple layers and includes multiple isolation layers and multiple bending layers, and each bending layer connects two adjacent isolation layers. Each isolation layer separates the adjacent first pole pieces 411 and second pole pieces 412 .
  • the two ends of the electrode assembly 410 along the third direction Z are two isolation layers, and the outer surfaces of the two isolation layers are the two second surfaces 415 .
  • the first surface 414 includes the exposed surfaces of the plurality of folded layers.
  • the outer surface of the bending layer is an arc surface, the radius of the bending layer is relatively small, and the first surface 414 can be approximately a plane. That is, the electrode assembly 410 is approximately a rectangular parallelepiped.
  • the isolation film 413 in the electrode assembly 410 may also be omitted, and an insulating layer may be formed on the surface of the first pole piece 411 or the surface of the second pole piece 412 in order to achieve insulation.
  • both ends of the electrode assembly 410 along the third direction Z are the first pole pieces 411 , and the exposed surface of the first pole piece 411 is the second surface 415 .
  • An end of the first pole piece 411 along the first direction X extends beyond the second pole piece 412, and the ends of a plurality of first pole pieces 411 are stacked together and approximately form a first surface 414.
  • the electrode assembly 410 includes at least one first pole piece 411 and a plurality of second pole pieces 412 .
  • the first pole piece 411 includes a plurality of stacked first stacked segments 411a and a plurality of bent segments 411b, and each bent segment 411b connects two adjacent first stacked segments 411a.
  • Each second pole piece 412 is disposed between two adjacent first stacked segments 411a.
  • the first lamination section 411a is flat and substantially parallel to the second pole piece 412, and the bending section 411b is at least partially bent.
  • first laminated segment 411a and the second pole piece 412 are alternately laminated along the third direction Z, and the bent segment 411b is located on one side of the second pole piece 412 along the first direction X.
  • the electrode assembly 410 is approximately a rectangular parallelepiped.
  • the electrode assembly 410 further includes two third surfaces 416 , each of which is connected to the first surface 414 and the second surface 415 .
  • the two third surfaces 416 face each other along the second direction Y, that is, in the battery cell 40 , one third surface 416 faces the cover plate 431 and the other third surface 416 faces the bottom plate 423 .
  • the two ends of the isolation film 413 exceed the first pole piece 411 and the second pole piece 412, so the two ends of the isolation film 413 approximately form two surfaces, namely two third surfaces 416.
  • the first tab 410a and the second tab 410b extend from a third surface 416 .
  • FIG. 10 is a schematic structural diagram of a battery cell 40 according to an embodiment of the application;
  • FIG. 11 is a schematic cross-sectional view of the battery cell 40 shown in FIG. 10 taken along the line B-B;
  • FIG. 12 is the battery cell shown in FIG. 11 . 40 Enlarged view at circle C.
  • the inventors further found that when the electrode assembly is vibrated during use, the electrode assembly will shake in the casing, so there is a risk that the electrode assembly squeezes the casing. When the electrode assembly squeezes the casing, the active material on the electrode piece will fall off, thereby causing the risk of lithium precipitation. At the same time, when the electrode assembly is shaken, it is easy to cause the risk of tab tearing.
  • the battery cell 40 provided by the present application further includes a support member 450 , at least partially disposed between the first side plate 421 and the electrode assembly 410 , and the support member 450 is used to support the electrode Assembly 410, so that the distance between the end of the first pole piece 411 facing the first side plate 421 and the first side plate 421 in the first direction X is greater than a predetermined value, and the first direction X is perpendicular to the first side plate 421. direction.
  • the support member 450 spaces the electrode assembly 410 and the first side plate 421 apart in the first direction X. In some examples, in the first direction X, the support member 450 is entirely located between the electrode assembly 410 and the first side plate 421 .
  • the support member 450 may directly contact the electrode assembly 410 and support the electrode assembly 410, or may indirectly support the electrode assembly 410 through other members.
  • the distance between the end of the first pole piece 411 facing the first side plate 421 and the first side plate 421 in the first direction X is the minimum distance between the first pole piece 411 and the first side plate 421 in the first direction X .
  • the predetermined value varies according to design requirements. The predetermined value may need to comprehensively consider the shape and size of the casing 420 and the shape and size of the electrode assembly 410 .
  • the support member 450 can support the electrode assembly 410 , reduce the shaking amplitude of the electrode assembly 410 when the battery cell 40 vibrates, and reduce the effect of the first side plate 421 on the electrode assembly 410 force and reduce the risk of tab tear.
  • the distance between the end of the first pole piece 411 facing the first side plate 421 and the first side plate 421 in the first direction X is greater than a predetermined value, thereby reducing the transmission to the first pole piece.
  • the force at the end of 411 reduces the risk of the active material of the first pole piece 411 falling off, and reduces lithium precipitation.
  • the support member 450 can also make the distance between the end of the second pole piece 412 facing the first side plate 421 and the first side plate 421 in the first direction X be greater than a predetermined value, so that the battery cell 40 vibrates At the same time, the force transmitted to the end of the second pole piece 412 is reduced, the risk of the active material falling off of the second pole piece 412 is reduced, and the lithium precipitation is reduced.
  • the inner surface of the transition plate 424 is an arc surface.
  • the transition plate 424 is a rounded corner formed by the shell 420 during the molding process. By arranging the transition plate 424, the sharp corners of the casing 420 can be removed, stress concentration can be reduced, and the strength of the casing 420 can be improved.
  • the inner surface of the first side plate 421 facing the electrode assembly 410 is flat and tangent to the inner surface of the transition plate 424 , and the inner surface of the second side plate 422 facing the electrode assembly 410 is flat and is in contact with the inner surface of the transition plate 424 . cut.
  • the transition plate 424 is connected to the end of the first side plate 421 along the third direction Z. There are four transition plates 424 , and each transition plate 424 is connected to a first side plate 421 and a second side plate 422 .
  • the inventors further found that when the battery cells are placed sideways, one of the first side plates is located on the lower side of the electrode assembly along the vertical direction.
  • the electrode assembly may squeeze the inner surface of the transition plate under the action of gravity, and because the inner surface of the transition plate is an arc surface, under the condition of vibration and impact, the inner surface of the transition plate is easy to squeeze the pole piece, thus Causes the active material of the pole piece to fall off.
  • the predetermined value is defined as H
  • the radius of the inner surface of the transition plate 424 is defined as R
  • the predetermined value H and the radius R satisfy: H ⁇ 0.8R.
  • the predetermined value H and the radius R satisfy: R ⁇ H ⁇ 2R.
  • the value of the radius R is 0.5mm-2mm.
  • the area of the second side plate 422 is larger than that of the first side plate 421 .
  • the first side plate 421 and the second side plate 422 are parallel to the second direction Y, and their dimensions in the second direction Y are equal.
  • the dimension of the first side plate 421 along the third direction Z is smaller than the dimension of the second side plate 422 along the first direction X.
  • the second pole piece 412 is substantially parallel to the second side plate 422 , that is, the stacking direction of the plurality of second pole pieces 412 is perpendicular to the second side plate 422 .
  • the electrode assembly 410 may expand. Specifically, the expansion of the first pole piece 411 and the second pole piece 412 is the largest in the direction of their own thickness, which results in the largest expansion amount of the electrode assembly 410 in the third direction Z.
  • the expanded electrode assembly 410 will press the second side plate 422 tightly, so in the third direction Z, the electrode assembly 410 is not easy to shake;
  • the force-bearing area of the electrode assembly 410 is relatively large, and the reaction force received is relatively uniform, so when receiving the force from the second side plate 422 , the active material of the pole piece is not easily dropped.
  • a support member 450 is provided between the electrode assembly 410 and each of the first side plates 421 .
  • there are two supporting members 450 one supporting member 450 is located between the electrode assembly 410 and the one first side plate 421
  • the other supporting member 450 is located between the electrode assembly 410 and the other first side plate 421 between.
  • Each support member 450 can reduce the force exerted by the corresponding first side plate 421 on the electrode assembly 410 when the battery cell 40 is vibrated, thereby reducing the risk of the active material falling off.
  • both the first side plates 421 of the battery cells 40 may be placed downward, and no matter which of the first side plates 421 of the battery cells 40 is placed downward, the support The members 450 are all capable of supporting the electrode assembly 410 from the lower side.
  • FIG. 13 is an enlarged schematic view of the battery cell 40 shown in FIG. 6 at the circle frame D.
  • the surface of the first insulating member 433 facing the electrode assembly 410 is attached to the third surface 416 of the electrode assembly 410 to limit the shaking of the electrode assembly 410 in the second direction Y.
  • the support member 450 is spaced apart from the first insulating member 433 along the second direction Y. In the second direction Y, the support member 450 is spaced apart from the first insulating member 433 by a set distance to avoid interference with each other. When the battery cells 40 are placed sideways, the support member 450 may move downward under the action of the electrode assembly 410 , and the first insulating member 433 will not interfere with the support member 450 during the movement.
  • FIG. 14 is an enlarged schematic view of the battery cell 40 shown in FIG. 6 at the circle frame E.
  • the support member 450 and the bottom plate 423 are spaced apart along the second direction Y. In the second direction Y, the support member 450 is spaced apart from the bottom plate 423 by a set distance to avoid interference with each other.
  • FIG. 15 is an exploded schematic view of a battery cell 40 according to an embodiment of the present application.
  • the support member 450 is located between the first surface 414 and the first side plate 421 .
  • the support member 450 is flat and parallel to the first side plate 421 .
  • the plate-shaped support member 450 can make the force between the electrode assembly 410 and the support member 450 more uniform.
  • the two edges of the first surface 414 along the second direction Y protrude beyond the two edges of the support member 450 along the second direction Y, respectively.
  • the dimension of the first surface 414 along the second direction Y is larger than the dimension of the support member 450 along the second direction Y. In this way, in the second direction Y, the edge of the support member 450 close to the first insulating member 433 is spaced from the first insulating member 433 by a certain distance, and the edge of the support member 450 close to the bottom plate 423 is spaced from the bottom plate 423 by a certain distance.
  • the dimension of the first surface 414 along the third direction Z is generally larger than the dimension of the first side plate 421 along the third direction Z.
  • the dimension of the support member 450 along the third direction Z is generally smaller than or equal to the dimension of the first side plate 421 along the third direction Z. That is, the dimension of the first surface 414 along the third direction Z is greater than the dimension of the support member 450 along the third direction Z.
  • the two edges of the first surface 414 along the third direction Z extend beyond the two edges of the support member 450 along the third direction Z, respectively.
  • the battery cell 40 further includes a second insulating member 460 for separating the electrode assembly 410 and the case 420 .
  • the second insulating member 460 can reduce the risk of conduction between the electrode assembly 410 and the case 420 .
  • the material of the second insulating member 460 may be polypropylene.
  • the second insulating member 460 includes a first insulating portion 461 disposed between the first side plate 421 and the first surface 414 .
  • the first insulating part 461 can not only insulate and separate the first side plate 421 from the electrode assembly 410 , but also cooperate with the supporting member 450 to support the electrode assembly 410 .
  • the position of the first insulating part 461 can be set according to requirements.
  • the first insulating part 461 can be located between the first surface 414 and the support member 450 , and in other examples, the first insulating part 461 can also be located between the support member 450 and the first side plate 421 .
  • the second insulating member 460 covers the electrode assembly 410 from the outside, which may also include other parts. The specific structure of the second insulating member 460 will be described in detail later.
  • the battery cell 40 further includes an adhesive member 470 for connecting the support member 450 to the electrode assembly 410 .
  • the adhesive member 470 fixes the support member 450 to the electrode assembly 410 , so as to reduce or avoid the relative movement of the support member 450 and the electrode assembly 410 when the battery cells 40 vibrate, and reduce the deviation of the support member 450 from the setting in the case 420 location risk.
  • the support member 450 can enter the case 420 along with the electrode assembly 410 , thereby simplifying the assembly process of the battery cells 40 .
  • the adhesive member 470 is tape.
  • the surface of the support member 450 can also be coated with glue, and then the support member 450 is bonded to the first surface 414 , and the glue is cured to form the bonding member 470 .
  • the second surface 415 is connected to the first surface 414 and is perpendicular to the first side plate 421 and the cover plate 431 .
  • the bonding member 470 includes a first bonding portion 471 and a second bonding portion 472.
  • the first bonding portion 471 is bonded to a surface of the support member 450 away from the first surface 414, and the second bonding portion 472 is connected to the first bonding portion 472.
  • the bonding portion 471 is bonded to the second surface 415 .
  • the first adhesive portion 471 can also play a role of supporting the electrode assembly 410 .
  • connection between the first surface 414 and the second surface 415 is most likely to be subjected to the force of the transition plate 424, so the pole pieces close to the connection are more likely to fall off the active material.
  • the bonding member 470 can cover at least part of the connection from the outside and space the connection from the transition plate 424, thereby reducing the force on the pole piece and reducing the risk of the active material falling off.
  • the two second bonding portions 472 are respectively bonded to the two second surfaces 415 .
  • the adhesive member 470 is bent in a U shape.
  • the adhesive members 470 are discontinuous, and the plurality of adhesive members 470 are arranged at intervals along the second direction Y.
  • the support member 450 has a larger size in the second direction Y, and the plurality of bonding members 470 may improve the connection strength between the support member 450 and the electrode assembly 410 .
  • the gaps between the bonding members 470 may be used to accommodate the electrolyte.
  • the support member 450 is disposed between the first insulating portion 461 and the first surface 414 .
  • the support member 450 may be fixed to the electrode assembly 410 through the adhesive member 470 first, and then the second insulating member 460 may be coated on the outside of the electrode assembly 410 and the support member 450 .
  • the second insulating member 460 can protect the support member 450 and guide the support member 450 into the case, so as to prevent the support member 450 from being scratched by the case 420 .
  • FIG. 16 is a schematic structural diagram of a second insulating member 460 of a battery cell 40 according to an embodiment of the application
  • FIG. 17 is a unfolded state of the second insulating member 460 of a battery cell 40 according to an embodiment of the application. schematic diagram.
  • the second insulating member 460 further includes a second insulating portion 462 and two third insulating portions 463 , the second insulating portions 462 are located in the electrode assembly 410 along the second direction Y The side facing away from the cover plate 431 is connected to the third insulating portion 463 , and the two third insulating portions 463 are respectively disposed on both sides of the electrode assembly 410 along the third direction Z.
  • the second insulating part 462 is located between the electrode assembly 410 and the bottom plate 423 to separate the electrode assembly 410 and the bottom plate 423 .
  • One third insulating portion 463 is located between one second surface 415 and one second side plate 422, and another third insulating portion 463 is located between the other second surface 415 and the other second side plate 422;
  • the three insulating parts 463 separate the two second side plates 422 from the electrode assembly 410 .
  • the third insulating portion 463 is flat and parallel to the second side plate 422 .
  • the second insulating portion 462 extends from the end of the third insulating portion 463 along the second direction Y and is bent relative to the third insulating portion 463 .
  • Both sides of the electrode assembly 410 along the first direction X are provided with a first insulating portion 461 connected to the third insulating portion 463 .
  • a first insulating portion 461 is disposed between one first side plate 421 and one first surface 414
  • at least one first insulating portion 461 is disposed between the other first side plate 421 and the other first surface 414 Section 461.
  • at least one first insulating portion 461 connects two third insulating portions 463 .
  • the two second insulating portions 462 connected to two third insulating portions 463 respectively, and the two second insulating portions 462 at least partially overlap in the second direction Y.
  • the bottom plate 423 is welded to the first side plate 421 and the second side plate 422 to form a solder print, and the two second insulating parts 462 are stacked to separate the electrode assembly 410 from the solder print, thereby reducing the solder print spur Risk of breaking the isolation membrane 413.
  • the two second insulating portions 462 are welded together.
  • two first insulating parts 461 are disposed on one side of the electrode assembly 410 along the first direction X, and the two first insulating parts 461 are respectively connected to the two third insulating parts 463 and are arranged in the first direction X at least partially overlap.
  • the two first insulating parts 461 are located between one first surface 414 and one first side plate 421 and can support the electrode assembly 410 in the first direction X. As shown in FIG. In some examples, the two first insulating portions 461 are welded together.
  • the second insulating member 460 can be formed by bending a flat insulating sheet.
  • the insulating sheet is provided with a through hole at the connection between the first insulating portion 461 and the third insulating portion 463 , and has a through hole at the connection between the second insulating portion 462 and the third insulating portion 463 .
  • the insulating sheet can be guided to bend.
  • the electrolyte can also pass through to improve the wettability of the electrode assembly 410 .
  • the first insulating portion 461 and the third insulating portion 463 surround the outer side of the first insulating member 433 and are fixed to the first insulating member 433 by welding.
  • FIG. 18 is a schematic flowchart of a method for manufacturing a battery cell according to an embodiment of the present application. As shown in Figure 18, the manufacturing method includes:
  • the electrode assembly includes at least one first pole piece and at least one second pole piece, and at least part of the first pole piece and the second pole piece are stacked and arranged;
  • S540 providing a casing, the casing has an opening and an accommodating cavity for accommodating the electrode assembly, and the casing includes a first side plate;
  • the support member is used to support the electrode assembly, so that the distance between the end of the first pole piece facing the first side plate and the first side plate in the first direction is greater than a predetermined value, and the first direction is the direction perpendicular to the first side plate.
  • FIG. 19 is a schematic block diagram of a system for manufacturing a battery cell according to an embodiment of the present application.
  • the manufacturing system 600 includes a first providing device 610, a second providing device 620, a first assembling device 630, a third providing device 640, a second assembling device 650, a fourth providing device 660 and a third assembling device device 670.
  • the first providing device 610 is used to provide an electrode assembly, the electrode assembly includes at least one first pole piece and at least one second pole piece, and at least part of the first pole piece and the second pole piece are stacked.
  • the second providing device 620 is used for providing an end cap assembly, the end cap assembly includes a cap plate and electrode terminals disposed on the cap plate.
  • the first assembly device 630 is used to connect the electrode assembly and the electrode terminal.
  • the third providing means 640 is used to provide the support member.
  • the second assembly device 650 is used to connect the support member to the electrode assembly.
  • the fourth providing device 660 is used for providing a case, the case has an opening and an accommodating cavity for accommodating the electrode assembly, and the case includes a first side plate.
  • the third assembling device 670 is used to place the electrode assembly and the supporting member connected to the electrode assembly into the accommodating cavity, and then connect the cover plate and the case, so that the cover plate closes the opening and is perpendicular to the first side plate, wherein the supporting member It is at least partially arranged between the first side plate and the electrode assembly, and the support member is used to support the electrode assembly, so that the distance between the end of the first pole piece facing the first side plate and the first side plate in the first direction is greater than a predetermined distance value, the first direction is the direction perpendicular to the first side plate.

Abstract

一种电池单体(40)及其制造方法和制造系统、电池(10)以及用电装置,该电池单体(40)包括:电极组件(410),包括至少一个第一极片(411)和至少一个第二极片(412),第一极片(411)的至少部分和第二极片(412)层叠设置;壳体(420),具有开口和用于容纳电极组件(410)的容纳腔,壳体(420)包括第一侧板(421);盖板(431),用于封闭开口并垂直于第一侧板(421);支撑构件(450),至少部分设置于第一侧板(421)和电极组件(410)之间,支撑构件(450)用于支撑电极组件(410),以使第一极片(411)面向第一侧板(421)的端部与第一侧板(421)在第一方向上的间距大于预定值,第一方向为垂直于第一侧板(421)的方向。支撑构件(450)能够支撑电极组件(410),在电池单体(40)震动时降低电极组件(410)的晃动幅度,减小第一侧板(421)对电极组件(410)施加的作用力,降低活性物质脱落的风险,减少析锂。

Description

电池单体及其制造方法和制造系统、电池以及用电装置 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种电池单体及其制造方法和制造系统、电池以及用电装置。
背景技术
可再充电电池,可以称为二次电池,是指在电池放电后可通过充电的方式使活性物质激活而继续使用的电池。可再充电电池广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。
可再充电电池可以包括镉镍电池、氢镍电池、锂离子电池和二次碱性锌锰电池等。
目前,汽车使用较多的电池一般是锂离子电池,锂离子电池作为一种可再充电电池,具有体积小、能量密度高、功率密度高、循环使用次数多和存储时间长等优点。
可再充电电池包括电极组件和电解质溶液,电极组件包括正极极片、负极极片和位于正极极片和负极极片之间的隔离膜。正极极片也可以称为阴极极片,正极极片的两个表面均具有正极活性物质层,例如,正极活性物质层的正极活性物质可为锰酸锂、钴酸锂、磷酸铁锂或者镍钴锰酸锂;负极极片也可以称为阳极极片,负极极片的两个表面均具有负极活性物质层,例如,负极活性物质层的负极活性物质可以是石墨或硅。
析锂是锂电池一种常见的异常现象,会影响锂离子的充电效率以及能量密度,析锂严重时还可以形成锂结晶,而锂结晶可以刺穿隔离膜从而导致内短路热失控,严重危害电池的安全。
因此,如何降低或避免析锂,提高电池安全,成为业内的一个难题。
发明内容
本申请提供了一种电池单体及其制造方法和制造系统、电池以及用电装置,能够降低析锂风险,增强电池的安全性。
第一方面,本申请实施例提供了一种电池单体,包括:电极组件,包括至少一个第一极片和至少一个第二极片,第一极片的至少部分和第二极片层叠设置;壳体,具有开口和用于容纳电极组件的容纳腔,壳体包括第一侧板;盖板,用于封闭开口并垂直于第一侧板;支撑构件,至少部分设置于第一侧板和电极组件之间,支撑构件用于支撑电极组件,以使第一极片面向第一侧板的端部与第一侧板在第一方向上的间距 大于预定值,第一方向为垂直于第一侧板的方向。
在本申请实施例的电池单体中,支撑构件能够支撑电极组件,在电池单体震动时降低电极组件的晃动幅度,减小第一侧板对电极组件施加的作用力,降低极耳撕裂的风险。另外,通过设置支撑构件,使第一极片面向第一侧板的端部与第一侧板在第一方向上的间距大于预定值,进而减小传递到第一极片的端部的作用力,降低第一极片的活性物质脱落的风险,减少析锂。
在一些实施例中,壳体还包括垂直于第一侧板和盖板的第二侧板,第一侧板和第二侧板之间具有过渡板,过渡板的内表面为圆弧面。预定值定义为H,过渡板的内表面的半径定义为R,预定值H和半径R满足:H≥0.8R。此时,本申请能减小过渡板的可能挤压第一极片的区域的面积,降低过渡板对第一极片施加的作用力,减小活性物质脱落的风险。
在一些实施例中,预定值H和半径R满足:R≤H≤2R。
在一些实施例中,半径R的值为0.5mm-2mm。
在一些实施例中,第二侧板的面积大于第一侧板的面积。在电极组件挤压第二侧板时,电极组件的受力面积较大,且受到的反作用力比较均匀,所以在受到来自第二侧板的作用力时,极片的活性物质不易掉落。
在一些实施例中,电池单体还包括设置于盖板的面向电极组件的一侧的第一绝缘构件,第一绝缘构件将盖板和电极组件隔开。支撑构件与第一绝缘构件沿第二方向间隔设置,第二方向为垂直于盖板的方向。这样能够避免第一绝缘构件干涉支撑构件。
在一些实施例中,壳体还包括设置于电极组件的背离盖板的一侧的底板,底板垂直于第一侧板。支撑构件与底板沿第二方向间隔设置,第二方向为垂直于盖板的方向。这样能够避免底板干涉支撑构件。
在一些实施例中,第一侧板为两个且分别位于电极组件沿第一方向的两侧,电极组件和各第一侧板之间均设置有支撑构件。各支撑构件能够在电池单体震动时减小对应第一侧板对电极组件施加的作用力,降低活性物质脱落的风险。
在一些实施例中,电极组件包括面向第一侧板的第一表面,支撑构件位于第一表面和第一侧板之间。
在一些实施例中,第一表面沿第二方向的两个边缘分别超出支撑构件沿第二方向的两个边缘,第一表面沿第三方向的两个边缘分别超出支撑构件沿第三方向的两个边缘,第二方向为垂直于盖板的方向,第三方向垂直于第一方向和第二方向。
在一些实施例中,电池单体还包括用于将电极组件和壳体隔开的第二绝缘构件,第二绝缘构件包括第一绝缘部,第一绝缘部设置于第一侧板和第一表面之间。第一绝缘部既能将第一侧板和电极组件绝缘隔开,还能够与支撑构件配合以支撑电极组件。
在一些实施例中,第二绝缘构件还包括第二绝缘部和两个第三绝缘部,第二绝缘部位于电极组件沿第二方向背离盖板的一侧并连接于第三绝缘部,两个第三绝缘部分别设置于电极组件沿第三方向的两侧。电极组件沿第一方向的两侧均设置有连接于第三绝缘部的第一绝缘部,至少一个第一绝缘部连接两个第三绝缘部。
在一些实施例中,第二绝缘部为两个且分别连接于两个第三绝缘部,且两个第 二绝缘部在第二方向上至少部分重叠。电极组件沿第一方向的一侧设置有两个第一绝缘部,两个第一绝缘部分别连接于两个第三绝缘部并且在第一方向上至少部分重叠。
在一些实施例中,支撑构件设置于第一绝缘部和第一表面之间。在将电极组件放入壳体的工艺中,第一绝缘部能够保护支撑构件并引导支撑构件入壳,避免支撑构件被壳体划伤。
在一些实施例中,电池单体还包括粘接构件,粘接构件用于将支撑构件连接于电极组件。粘接构件将支撑构件固定到电极组件,这样能够在电池单体震动时,减少或避免支撑构件和电极组件的相对移动,降低支撑构件在壳体内偏离设定位置的风险。
在一些实施例中,电极组件包括面向第一侧板的第一表面以及连接于第一表面的第二表面,第二表面垂直于第一侧板和盖板。粘接构件包括第一粘接部和第二粘接部,第一粘接部粘接于支撑构件的远离第一表面的表面,第二粘接部连接于第一粘接部并粘接于第二表面。粘接构件能够从外侧包覆第一表面和第二表面的连接处的至少部分,并将该连接处与过渡板间隔开,进而减小极片受到的作用力,降低活性物质脱落的风险。
在一些实施例中,粘接构件为非连续的多个,多个粘接构件沿第二方向间隔设置,第二方向为垂直于盖板的方向。多个粘接构件可以提高支撑构件和电极组件之间的连接强度。
第二方面,本申请实施例还提供了一种电池,其包括箱体和至少一个第一方面的电池单体,电池单体收容于箱体内。
在一些实施例中,在电池单体中,第一侧板位于电极组件沿竖直方向的下侧。
第三方面,本申请实施例还提供了一种用电装置,用电装置用于接收从第二方面的电池提供的电能。
第四方面,本申请实施例还提供了一种电池单体的制造方法,其包括:提供电极组件,电极组件包括至少一个第一极片和至少一个第二极片,第一极片的至少部分和第二极片层叠设置;提供端盖组件,端盖组件包括盖板和设置于盖板的电极端子,连接电极组件和电极端子;提供支撑构件,并将支撑构件连接到电极组件;提供壳体,壳体具有开口和用于容纳电极组件的容纳腔,壳体包括第一侧板;将电极组件以及连接于电极组件的支撑构件放置到容纳腔内,然后连接盖板和壳体,以使盖板封闭开口并垂直于第一侧板,并且,支撑构件至少部分设置于第一侧板和电极组件之间,支撑构件用于支撑电极组件,以使第一极片面向第一侧板的端部与第一侧板在第一方向上的间距大于预定值,第一方向为垂直于第一侧板的方向。
第五方面,本申请实施例还提供了一种电池单体的制造系统,其包括:第一提供装置,用于提供电极组件,电极组件包括至少一个第一极片和至少一个第二极片,第一极片的至少部分和第二极片层叠设置;第二提供装置,用于提供端盖组件,端盖组件包括盖板和设置于盖板的电极端子;第一组装装置,用于连接电极组件和电极端子;第三提供装置,用于提供支撑构件;第二组装装置,用于将支撑构件连接到电极组件;第四提供装置,用于提供壳体,壳体具有开口和用于容纳电极组件的容纳腔,壳体包括第一侧板;第三组装装置,用于将电极组件以及连接于电极组件的支撑构件 放置到容纳腔内,然后连接盖板和壳体,以使盖板封闭开口并垂直于第一侧板,其中,支撑构件至少部分设置于第一侧板和电极组件之间,支撑构件用于支撑电极组件,以使第一极片面向第一侧板的端部与第一侧板在第一方向上的间距大于预定值,第一方向为垂直于第一侧板的方向。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一个实施例的车辆的结构示意图;
图2为本申请一个实施例的电池的结构示意图;
图3为本申请一个实施例的电池模块的结构示意图;
图4为本申请一个实施例的电池单体的结构示意图;
图5为图4所示的电池单体的侧视示意图;
图6为图5所示的电池单体沿线A-A作出的剖视示意图;
图7为本申请一个实施例的电极组件的剖视示意图;
图8为本申请另一个实施例的电极组件的剖视示意图;
图9为本申请一个实施例的电极组件的局部结构示意图;
图10为本申请一个实施例的电池单体的结构示意图;
图11为图10所示的电池单体沿线B-B作出的剖视示意图;
图12为图11所示的电池单体在圆框C处的放大图;
图13为图6所示的电池单体在圆框D处的放大示意图;
图14为图6所示的电池单体在圆框E处的放大示意图;
图15为本申请一个实施例的电池单体的分解示意图;
图16为本申请一个实施例的电池单体的第二绝缘构件的结构示意图;
图17为本申请一个实施例的电池单体的第二绝缘构件在展开状态下的示意图;
图18为本申请一个实施例的电池单体的制造方法的示意性流程图;
图19为本申请一个实施例的电池单体的制造系统的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请中术语“平行”不仅包括绝对平行的情况,也包括了工程上常规认知的大致平行的情况;同时,“垂直”也不仅包括绝对垂直的情况,还包括工程上常规认知的大致垂直的情况。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作 为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜具有大量贯通的微孔,能够保证电解质离子自由通过,对锂离子有很好的穿透性。隔离膜的材质可以为PP或PE等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
锂离子电池在充电时,锂离子从正极极片脱嵌并嵌入负极极片,但是可能会发生一些异常情况,例如,负极嵌锂空间不足、锂离子嵌入负极阻力太大或锂离子过快的从正极脱嵌,脱嵌的锂离子无法等量的嵌入负极极片的负极活性物质层,无法嵌入负极极片的锂离子只能在负极表面得电子,从而形成银白色的金属锂单质,这就是析锂现象。析锂不仅使锂离子电池性能下降,循环寿命大幅缩短,还限制了锂离子电池的快充容量。除此之外,锂离子电池发生析锂时,析出来的锂金属非常活泼,在较低的温度下便可以与电解液发生反应,造成电池自产热起始温度(Tonset)降低和自产热速率增大,严重危害电池的安全。再者,析锂严重时,脱嵌的锂离子可以在负极极片表面形成锂结晶,而锂结晶容易刺破隔离膜,造成相邻的正极极片和负极极片具有短路的风险。
发明人在研发过程中发现,电极组件受到震动或挤压时,会导致正极极片的活性物质或负极极片的活性物质脱落,称之为掉粉现象。由于活性物质的脱落,尤其是负极极片上活性物质的脱落,可能导致该负极极片的负极活性物质层的嵌锂位少于其相邻的正极极片的正极活性物质层能够提供的锂离子数量,因此,锂电池在充电时,容易发生析锂现象。
鉴于此,本申请的实施例提供了一种技术方案,在电池单体中设置支撑构件,以减少活性物质的脱落,降低析锂风险,提高电池的安全性。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置电池10、控制器20以及马达30,控制器20用来控制电池10为马达30的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池10也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池10。也就是说,多个电池单体可以直接组成电池10,也可以先组成电池模块,电池模块再组成电池10。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体40。电池10还可以包括箱体(或称罩体),箱体内部为中空结构,多个电池单体40容纳于箱体内。如图2所示,箱体可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据多个电池单体40组合的形状而定,第一部分111和第二部分112可以均具有一个开口。例如,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体。多个电池单体40相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体40之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体40的电极端子实现电池单体40之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体40的电极端子。多个电池单体40的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体40的数量可以设置为任意数值。多个电池单体40可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体40的数量可能较多,为了便于安装,可以将电池单体40分组设置,每组电池单体40组成电池模块。电池模块中包括的电池单体40的数量不限,可以根据需求设置。例如,图3为电池模块的一个示例。电池10可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。
图4为本申请一个实施例的一种电池单体40的结构示意图;图5为图4所示的电池单体40的侧视示意图;图6为图5所示的电池单体40沿线A-A作出的剖视示意图。
如图4至图6所示,本申请实施例的电池单体40包括电极组件410、壳体420和端盖组件430,壳体420具有容纳腔和开口,电极组件410容纳于容纳腔中。在一些示例中,当壳体420为中空的长方体或正方体时,壳体420的其中一个平面为开口面,即该平面不具有壁体而使得壳体420内外相通。端盖组件430包括盖板431,盖板431覆盖开口并且与壳体420连接,进而封闭壳体420的开口,使电极组件410放置在封闭的腔体内。壳体420内填充有电解质,例如电解液。
该端盖组件430还可以包括两个电极端子432,两个电极端子432可以设置在盖板431上。盖板431通常是平板形状,两个电极端子432固定在盖板431的平板面 上,两个电极端子432分别为正电极端子和负电极端子432。每个电极端子432各对应设置一个连接构件440,或者也可以称为集流构件,其位于盖板431与电极组件410之间,用于将电极组件410和电极端子432实现电连接。
每个电极组件410具有第一极耳410a和第二极耳410b。第一极耳410a和第二极耳410b的极性相反。例如,当第一极耳410a为正极极耳时,第二极耳410b为负极极耳。一个或多个电极组件410的第一极耳410a通过一个连接构件440与一个电极端子432连接,一个或多个电极组件410的第二极耳410b通过另一个连接构件440与另一个电极端子432连接。例如,正电极端子通过一个连接构件440与正极极耳连接,负电极端子通过另一个连接构件440与负极极耳连接。
在该电池单体40中,根据实际使用需求,电极组件410可设置为单个,或多个。例如,在图示的实施例中,电池单体40内设置有一个电极组件410。
在一些实施例中,该端盖组件430还可以包括第一绝缘构件433,第一绝缘构件433设置于盖板431的面向电极组件410的一侧,第一绝缘构件433能够将盖板431与连接构件440隔开、将盖板431与电极组件410隔开,以降低短路风险。第一绝缘构件433的材质可为塑胶,例如,第一绝缘构件433的材质为聚丙烯。
在一些实施例中,壳体420大体为中空的长方体。具体地,壳体420包括彼此面对的两个第一侧板421和彼此面对的两个第二侧板422,第一侧板421连接于第二侧板422并用于限定容纳腔和开口。第一侧板421和第二侧板422为平板状且彼此垂直。两个第一侧板421彼此平行设置,两个第二侧板422彼此平行设置。
盖板431连接于第一侧板421和第二侧板422,以封闭壳体420的开口。例如,盖板431可焊接于第一侧板421和第二侧板422。在电池单体40中,盖板431垂直于第一侧板421和第二侧板422。
两个第一侧板421分别位于电极组件410沿第一方向X的两侧,其中,第一方向X为垂直于第一侧板421的方向。第一方向X平行于第一侧板421的厚度方向。可选地,第一侧板421大体为矩形平板。盖板431位于电极组件410沿第二方向Y的一侧,其中,第二方向Y为垂直于盖板431的方向。第二方向Y平行于盖板431的厚度方向。可选地,盖板431大体为矩形板。两个第二侧板422分别位于电极组件410沿第三方向Z的两侧,其中,第三方向Z为垂直于第二侧板422的方向。第三方向Z平行于第二侧板422的厚度方向。可选地,第二侧板422大体为矩形平板。在一些示例中,第一侧板421的厚度等于第二侧板422的厚度。
在一些实施例中,壳体420还包括设置于电极组件410的背离盖板431的一侧的底板423,即底板423和盖板431分别位于电极组件410沿第二方向Y的两侧。底板423垂直于第一侧板421和第二侧板422。底板423大体为矩形平板。在一些示例中,底板423、第一侧板421以及第二侧板422一体成型;在另一些示例中,底板423也可通过焊接等方式连接于第一侧板421和第二侧板422。
在一些实施例中,电池单体40沿第二方向Y的尺寸大于电池单体40沿第一方向X的尺寸和电池单体40沿第三方向Z的尺寸。车辆1为电池10在竖直方向上预留的空间有限,因此,为了减小电池10在竖直方向上的高度,可以使第二方向Y平行于水 平方向,这样能够减小电池10在竖直方向上最大尺寸。
在一些实施例中,电池单体40沿第一方向X的尺寸大于电池单体40沿第三方向Z的尺寸。可选地,在电池10中,可以使电池单体40侧向放置。电池单体40侧向放置时,第一方向X平行于竖直方向。
图7为本申请一个实施例的一种电极组件410的剖视示意图;图8为本申请另一个实施例的一种电极组件410的剖视示意图;图9为本申请一个实施例的一种电极组件410的局部结构示意图。
本申请实施例的电极组件410包括至少一个第一极片411和至少一个第二极片412,第一极片411的极性和第二极片412的极性相反。例如,当第一极片411为负极极片时,第二极片412为正极极片;当第一极片411为正极极片时,第二极片412为负极极片。电极组件410还包括隔离膜413,隔离膜413将第一极片411和第二极片412隔开。
第一极片411的至少部分和第二极片412层叠设置,层叠的方向平行于第二极片412的厚度方向。本申请实施例的电极组件410为叠片式结构,其包括多个层叠设置的第二极片412。各第二极片412大体为平板状且彼此分离。相邻的第二极片412之间,至少设置有第一极片411的一部分。
在一些实施例中,如图7所示,电极组件410包括多个第一极片411和多个第二极片412,多个第一极片411和多个第二极片412交替层叠。第一极片411和第二极片412的层叠方向平行于第一极片411的厚度方向和第二极片412的厚度方向。在一些示例中,第一极片411和第二极片412均为矩形的平板且彼此平行设置。
在电池单体40中,第一极片411和第二极片412垂直于盖板431。在一些示例中,第一极片411和第二极片412的层叠方向平行于第三方向Z,即第一极片411和第二极片412平行于第一方向X和第二方向Y。
电极组件410包括沿彼此面对的两个第一表面414和沿彼此面对的两个第二表面415。第一表面414和第二表面415为电极组件410外露的表面。各第一表面414沿第三方向Z的两端分别连接于两个第二表面415。在一些示例中,两个第一表面414沿第一方向X彼此面对,两个第二表面415沿第三方向Z彼此面对。
在一些示例中,电极组件410的最外侧为隔离膜413,所以第一表面414和第二表面415为隔离膜413的外露的表面。具体地,隔离膜413为两个,各隔离膜413往复折弯为多层且包括多个隔离层和多个折弯层,各折弯层连接相邻的两个隔离层。各隔离层将相邻的第一极片411和第二极片412隔开。电极组件410沿第三方向Z的两端为两个隔离层,这两个隔离层的外表面即为两个第二表面415。第一表面414包括多个折弯层的外露的表面。虽然折弯层的外表面为圆弧面,但是,折弯层的半径较小,第一表面414可近似为平面。也就是说,电极组件410近似为长方体。
在另一些示例中,电极组件410中的隔离膜413也可以省略,而为了实现绝缘,可以在第一极片411的表面或第二极片412的表面形成绝缘层。可选地,电极组件410沿第三方向Z的两端为第一极片411,第一极片411的外露的表面即为第二表面415。第一极片411沿第一方向X的端部超出第二极片412,多个第一极片411的端部层叠在 一起并近似形成第一表面414。
在另一些实施例中,如图8所示,电极组件410包括至少一个第一极片411和多个第二极片412。第一极片411包括多个层叠设置的第一层叠段411a和多个折弯段411b,各折弯段411b连接相邻的两个第一层叠段411a。各第二极片412设置于相邻的两个第一层叠段411a之间。第一层叠段411a为平板状且大体平行于第二极片412,折弯段411b至少部分折弯。在一些示例中,第一层叠段411a和第二极片412沿第三方向Z交替层叠,折弯段411b位于第二极片412沿第一方向X的一侧。电极组件410近似为长方体。
如图9所示,电极组件410还包括两个第三表面416,各第三表面416连接于第一表面414和第二表面415。在一些示例中,两个第三表面416沿第二方向Y彼此面对,即在电池单体40中,一个第三表面416面向盖板431,另一个第三表面416面向底板423。在第二方向Y上,隔离膜413的两个端部超过第一极片411和第二极片412,所以隔离膜413的两个端部近似形成两个面,即为两个第三表面416。可选地,第一极耳410a和第二极耳410b从一个第三表面416延伸出。
图10为本申请一个实施例的一种电池单体40的结构示意图;图11为图10所示的电池单体40沿线B-B作出的剖视示意图;图12为图11所示的电池单体40在圆框C处的放大图。
发明人进一步发现,当在使用的过程中震动时,电极组件会在壳体内晃动,所以会引发电极组件挤压壳体的风险。当电极组件挤压壳体时,会导致极片上的活性物质脱落,进而引发析锂的风险。同时,电极组件晃动时,还容易引发极耳撕裂的风险。
有鉴于此,如图10至图12所示,本申请提供的电池单体40还包括支撑构件450,至少部分设置于第一侧板421和电极组件410之间,支撑构件450用于支撑电极组件410,以使第一极片411面向第一侧板421的端部与第一侧板421在第一方向X上的间距大于预定值,第一方向X为垂直于第一侧板421的方向。
支撑构件450在第一方向X上将电极组件410和第一侧板421间隔开。在一些示例中,在第一方向X上,支撑构件450整体位于电极组件410和第一侧板421之间。支撑构件450可以直接与电极组件410接触并支撑电极组件410,也可以通过其它构件间接地支撑电极组件410。第一极片411面向第一侧板421的端部与第一侧板421在第一方向X上的间距即为第一极片411和第一侧板421在第一方向X上的最小间距。预定值根据设计需求的不同而不同。该预定值可能需要综合考虑壳体420的形状尺寸和电极组件410的形状尺寸。
在本申请实施例的电池单体40中,支撑构件450能够支撑电极组件410,在电池单体40震动时降低电极组件410的晃动幅度,减小第一侧板421对电极组件410施加的作用力,降低极耳撕裂的风险。另外,通过设置支撑构件450,使第一极片411面向第一侧板421的端部与第一侧板421在第一方向X上的间距大于预定值,进而减小传递到第一极片411的端部的作用力,降低第一极片411的活性物质脱落的风险,减少析锂。
在一些实施例中,支撑构件450还能够使第二极片412面向第一侧板421的端 部与第一侧板421在第一方向X上的间距大于预定值,进而电池单体40震动时减小传递到第二极片412的端部的作用力,降低第二极片412的活性物质脱落的风险,减少析锂。
在一些实施例中,第一侧板421和第二侧板422之间具有过渡板424,过渡板424的内表面为圆弧面。过渡板424为壳体420在成型过程中形成的圆角。通过设置过渡板424,可以去除壳体420的尖角,减小应力集中,提高壳体420的强度。第一侧板421的面向电极组件410的内表面为平面且与过渡板424的内表面相切,第二侧板422的面向电极组件410的内表面为平面且与过渡板424的内表面相切。过渡板424连接于第一侧板421沿第三方向Z的端部。过渡板424为四个,各过渡板424连接一个第一侧板421和一个第二侧板422。
发明人进一步发现,当电池单体侧向放置时,一个第一侧板位于电极组件沿竖直方向的下侧。电极组件在重力的作用下可能会挤压过渡板的内表面,而由于过渡板的内表面为圆弧面,所以在震动冲击的工况下,过渡板的内表面容易挤压极片,从而导致极片的活性物质脱落。
有鉴于此,在一些实施例中,预定值定义为H,过渡板424的内表面的半径定义为R,预定值H和半径R满足:H≥0.8R。此时,本申请能减小过渡板424的可能挤压第一极片411的区域的面积,降低过渡板424对第一极片411施加的作用力,减小活性物质脱落的风险。
H的值越大,第一极片411的端部受到过渡板424的挤压力越小,同时电极组件410的尺寸也会越小。综合考虑第一极片411受到的挤压力和电池单体40的容量,在一些实施例中,预定值H和半径R满足:R≤H≤2R。
R的值越小,过渡板424越容易出现应力集中,壳体420的强度越低;R的值越大,H的值也越大,电极组件410的尺寸越小,电池单体40的容量越低。综合考虑壳体420的强度和电池单体40的容量,在一些实施例中,半径R的值为0.5mm-2mm。
第二侧板422的面积大于第一侧板421的面积。第一侧板421和第二侧板422平行于第二方向Y,且两者在第二方向Y上的尺寸相等。第一侧板421沿第三方向Z的尺寸小于第二侧板422沿第一方向X的尺寸。第二极片412大体平行于第二侧板422,即多个第二极片412的层叠方向垂直于第二侧板422。
在充放电的过程中,电极组件410会出现膨胀。具体地,第一极片411和第二极片412在自身厚度方向上的膨胀最大,这样导致电极组件410在第三方向Z上膨胀量最大。膨胀后的电极组件410会紧压第二侧板422,所以在第三方向Z上,电极组件410不易出现晃动;另外,电极组件410的第二表面415大体为平面,在电极组件410挤压第二侧板422时,电极组件410的受力面积较大,且受到的反作用力比较均匀,所以在受到来自第二侧板422的作用力时,极片的活性物质不易掉落。
电极组件410和各第一侧板421之间均设置有支撑构件450。具体地,在一些示例中,支撑构件450为两个,一个支撑构件450位于电极组件410和一个第一侧板421之间,另一个支撑构件450位于电极组件410和另一个第一侧板421之间。各支撑构件450能够在电池单体40震动时减小对应第一侧板421对电极组件410施加的作用 力,降低活性物质脱落的风险。
在电池单体40侧向放置的电池10中,电池单体40的两个第一侧板421均可能朝下放置,而无论电池单体40的哪一个第一侧板421朝下放置,支撑构件450都能够从下侧支撑电极组件410。
图13为图6所示的电池单体40在圆框D处的放大示意图。如图13所示,在一些实施例中,第一绝缘构件433的面向电极组件410的表面贴合于电极组件410的第三表面416,以在第二方向Y上限制电极组件410的晃动。
在一些实施例中,支撑构件450与第一绝缘构件433沿第二方向Y间隔设置。在第二方向Y上,支撑构件450与第一绝缘构件433间隔设定距离,以避免两者彼此干涉。在将电池单体40侧向放置时,支撑构件450可能在电极组件410的作用下向下移动,在移动地过程中,第一绝缘构件433不会干涉支撑构件450。
图14为图6所示的电池单体40在圆框E处的放大示意图。如图14所示,在一些实施例中,支撑构件450与底板423沿第二方向Y间隔设置。在第二方向Y上,支撑构件450与底板423间隔设定距离,以避免两者彼此干涉。
图15为本申请一个实施例的一种电池单体40的分解示意图。如图15所示,在一些实施例中,支撑构件450位于第一表面414和第一侧板421之间。可选地,支撑构件450为平板状且平行于第一侧板421。平板状的支撑构件450能够使电极组件410和支撑构件450之间的作用力更为均匀。
在一些实施例中,第一表面414沿第二方向Y的两个边缘分别超出支撑构件450沿第二方向Y的两个边缘。第一表面414沿第二方向Y的尺寸大于支撑构件450沿第二方向Y的尺寸。这样,在第二方向Y上,支撑构件450的靠近第一绝缘构件433的边缘与第一绝缘构件433间隔一定距离,支撑构件450的靠近底板423的边缘与底板423间隔一定距离。
为了充分利用壳体420的内部空间,保证电极组件410的容量,第一表面414沿第三方向Z的尺寸通常大于第一侧板421沿第三方向Z的尺寸。而为了避免过渡板424干涉支撑构件450,支撑构件450沿第三方向Z的尺寸通常小于或等于第一侧板421沿第三方向Z的尺寸。也就是说,第一表面414沿第三方向Z的尺寸大于支撑构件450沿第三方向Z的尺寸。在一些实施例中,第一表面414沿第三方向Z的两个边缘分别超出支撑构件450沿第三方向Z的两个边缘。
在一些实施例中,电池单体40还包括用于将电极组件410和壳体420隔开的第二绝缘构件460。第二绝缘构件460能够降低电极组件410与壳体420导通的风险。第二绝缘构件460的材质可为聚丙烯。
具体地,在一些示例中,第二绝缘构件460包括第一绝缘部461,第一绝缘部461设置于第一侧板421和第一表面414之间。第一绝缘部461既能将第一侧板421和电极组件410绝缘隔开,还能够与支撑构件450配合以支撑电极组件410。第一绝缘部461的位置可以根据需求设定,在一些示例中,第一绝缘部461可以位于第一表面414和支撑构件450之间,在另一些示例中,第一绝缘部461也可以位于支撑构件450和第一侧板421之间。第二绝缘构件460从外侧包覆电极组件410,其还可以包括其它部分。 第二绝缘构件460的具体结构在后面详细描述。
在一些实施例中,电池单体40还包括粘接构件470,粘接构件470用于将支撑构件450连接于电极组件410。粘接构件470将支撑构件450固定到电极组件410,这样能够在电池单体40震动时,减少或避免支撑构件450和电极组件410的相对移动,降低支撑构件450在壳体420内偏离设定位置的风险。另外,在将电极组件410放置到壳体420内的工序中,支撑构件450能够随着电极组件410进入壳体420内,从而简化电池单体40的装配工艺。在一些示例中,粘接构件470为胶带。在另一些示例中,也可以在支撑构件450的表面涂覆胶体,然后将支撑构件450粘接到第一表面414上,胶体固化后形成粘接构件470。
在一些实施例中,第二表面415连接于第一表面414且垂直于第一侧板421和盖板431。粘接构件470包括第一粘接部471和第二粘接部472,第一粘接部471粘接于支撑构件450的远离第一表面414的表面,第二粘接部472连接于第一粘接部471并粘接于第二表面415。第一粘接部471还能够起到支撑电极组件410的作用。
第一表面414和第二表面415的连接处最容易受到过渡板424的作用力,所以靠近该连接处的极片更容易产生活性物质脱落。粘接构件470能够从外侧包覆该连接处的至少部分,并将该连接处与过渡板424间隔开,进而减小极片受到的作用力,降低活性物质脱落的风险。
在一些实施例中,粘接构件470的第二粘接部472为两个且分别连接于第一粘接部471沿第三方向Z的两端。两个第二粘接部472分别粘接于两个第二表面415。粘接构件470弯折为U形。
在一些实施例中,粘接构件470为非连续的多个,多个粘接构件470沿第二方向Y间隔设置。支撑构件450在第二方向Y上具有较大的尺寸,多个粘接构件470可以提高支撑构件450和电极组件410之间的连接强度。粘接构件470之间的间隙可以用于容纳电解液。
在一些实施例中,支撑构件450设置于第一绝缘部461和第一表面414之间。在装配电池单体40时,可先通过粘接构件470将支撑构件450固定到电极组件410上,然后再在电极组件410和支撑构件450的外侧包覆第二绝缘构件460。在将电极组件410放入壳体420的工艺中,第二绝缘构件460能够保护支撑构件450并引导支撑构件450入壳,避免支撑构件450被壳体420划伤。
图16为本申请一个实施例的一种电池单体40的第二绝缘构件460的结构示意图;图17为本申请一个实施例的一种电池单体40的第二绝缘构件460在展开状态下的示意图。
如图16和图17所示,在一些实施例中,第二绝缘构件460还包括第二绝缘部462和两个第三绝缘部463,第二绝缘部462位于电极组件410沿第二方向Y背离盖板431的一侧并连接于第三绝缘部463,两个第三绝缘部463分别设置于电极组件410沿第三方向Z的两侧。第二绝缘部462位于电极组件410和底板423之间,以将电极组件410和底板423隔开。一个第三绝缘部463位于一个第二表面415和一个第二侧板422之间,另一个第三绝缘部463位于另一个第二表面415和另一个第二侧板422之间;两 个第三绝缘部463将两个第二侧板422和电极组件410隔开。第三绝缘部463为平板状且平行于第二侧板422,第二绝缘部462从第三绝缘部463沿第二方向Y的端部延伸并相对于第三绝缘部463折弯。
电极组件410沿第一方向X的两侧均设置有连接于第三绝缘部463的第一绝缘部461。具体地,一个第一侧板421和一个第一表面414之间至少设置有一个第一绝缘部461,另一个第一侧板421和另一个第一表面414之间至少设置有一个第一绝缘部461。在一些实施例中,至少一个第一绝缘部461连接两个第三绝缘部463。
在一些实施例中,第二绝缘部462为两个且分别连接于两个第三绝缘部463,且两个第二绝缘部462在第二方向Y上至少部分重叠。在一些示例中,底板423焊接于第一侧板421和第二侧板422并形成焊印,层叠设置的两个第二绝缘部462可以将电极组件410和焊印隔开,降低焊印刺破隔离膜413的风险。在一些示例中,两个第二绝缘部462熔接在一起。
在一些实施例中,电极组件410沿第一方向X的一侧设置有两个第一绝缘部461,两个第一绝缘部461分别连接于两个第三绝缘部463并且在第一方向X上至少部分重叠。这两个第一绝缘部461位于一个第一表面414和一个第一侧板421之间,且能够在第一方向X上支撑电极组件410。在一些示例中,这两个第一绝缘部461熔接在一起。
第二绝缘构件460可由一个平板状的绝缘片弯折而成。绝缘片在第一绝缘部461和第三绝缘部463的连接处设有通孔、在第二绝缘部462和第三绝缘部463的连接处设有通孔。通过设置通孔,可以引导绝缘片折弯。另外,电解液还可以穿过通过,提高电极组件410的浸润性。弯折成型后,第一绝缘部461和第三绝缘部463环绕在第一绝缘构件433的外侧,并通过熔接固定到第一绝缘构件433。
图18为本申请一个实施例的一种电池单体的制造方法的示意性流程图。如图18所示,该制造方法包括:
S510,提供电极组件,电极组件包括至少一个第一极片和至少一个第二极片,第一极片的至少部分和第二极片层叠设置;
S520,提供端盖组件,端盖组件包括盖板和设置于盖板的电极端子,连接电极组件和电极端子;
S530,提供支撑构件,并将支撑构件连接到电极组件;
S540,提供壳体,壳体具有开口和用于容纳电极组件的容纳腔,壳体包括第一侧板;
S550,将电极组件以及连接于电极组件的支撑构件放置到容纳腔内,然后连接盖板和壳体,以使盖板封闭开口并垂直于第一侧板,并且,支撑构件至少部分设置于第一侧板和电极组件之间,支撑构件用于支撑电极组件,以使第一极片面向第一侧板的端部与第一侧板在第一方向上的间距大于预定值,第一方向为垂直于第一侧板的方向。
通过本实施例制造方法制造出的电池单体的相关结构,可以参考前述图1-17对应的实施例描述的电池单体的相关内容,在此不再赘述。
图19为本申请一个实施例的一种电池单体的制造系统的示意性框图。如图19所示,该制造系统600包括第一提供装置610、第二提供装置620、第一组装装置630、第三提供装置640、第二组装装置650、第四提供装置660和第三组装装置670。第一提供装置610用于提供电极组件,电极组件包括至少一个第一极片和至少一个第二极片,第一极片的至少部分和第二极片层叠设置。第二提供装置620用于提供端盖组件,端盖组件包括盖板和设置于盖板的电极端子。第一组装装置630用于连接电极组件和电极端子。第三提供装置640用于提供支撑构件。第二组装装置650用于将支撑构件连接到电极组件。第四提供装置660用于提供壳体,壳体具有开口和用于容纳电极组件的容纳腔,壳体包括第一侧板。第三组装装置670用于将电极组件以及连接于电极组件的支撑构件放置到容纳腔内,然后连接盖板和壳体,以使盖板封闭开口并垂直于第一侧板,其中,支撑构件至少部分设置于第一侧板和电极组件之间,支撑构件用于支撑电极组件,以使第一极片面向第一侧板的端部与第一侧板在第一方向上的间距大于预定值,第一方向为垂直于第一侧板的方向。
通过本实施例制造系统制造出的电池单体的相关结构,可以参考前述图1-17对应的实施例描述的电池单体的相关内容,在此不再赘述。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (22)

  1. 一种电池单体,包括:
    电极组件,包括至少一个第一极片和至少一个第二极片,所述第一极片的至少部分和所述第二极片层叠设置;
    壳体,具有开口和用于容纳所述电极组件的容纳腔,所述壳体包括第一侧板;
    盖板,用于封闭所述开口并垂直于所述第一侧板;
    支撑构件,至少部分设置于所述第一侧板和所述电极组件之间,所述支撑构件用于支撑所述电极组件,以使所述第一极片面向所述第一侧板的端部与所述第一侧板在第一方向上的间距大于预定值,所述第一方向为垂直于所述第一侧板的方向。
  2. 根据权利要求1所述的电池单体,其中,所述壳体还包括垂直于所述第一侧板和所述盖板的第二侧板,所述第一侧板和所述第二侧板之间具有过渡板,所述过渡板的内表面为圆弧面;
    所述预定值定义为H,所述过渡板的内表面的半径定义为R,所述预定值H和所述半径R满足:H≥0.8R。
  3. 根据权利要求2所述的电池单体,其中,所述预定值H和所述半径R满足:R≤H≤2R。
  4. 根据权利要求2或3所述的电池单体,其中,所述半径R的值为0.5mm-2mm。
  5. 根据权利要求2-4中任一项所述的电池单体,其中,所述第二侧板的面积大于所述第一侧板的面积。
  6. 根据权利要求1-5中任一项所述的电池单体,其中,所述电池单体还包括设置于所述盖板的面向所述电极组件的一侧的第一绝缘构件,所述第一绝缘构件将所述盖板和所述电极组件隔开;
    所述支撑构件与所述第一绝缘构件沿第二方向间隔设置,所述第二方向为垂直于所述盖板的方向。
  7. 根据权利要求1-6中任一项所述的电池单体,其中,所述壳体还包括设置于所述电极组件的背离所述盖板的一侧的底板,所述底板垂直于所述第一侧板;
    所述支撑构件与所述底板沿第二方向间隔设置,所述第二方向为垂直于所述盖板的方向。
  8. 根据权利要求1-7中任一项所述的电池单体,其中,所述第一侧板为两个且分别位于所述电极组件沿所述第一方向的两侧,所述电极组件和各所述第一侧板之间均设置有所述支撑构件。
  9. 根据权利要求1-8中任一项所述的电池单体,其中,所述电极组件包括面向所述第一侧板的第一表面,所述支撑构件位于所述第一表面和所述第一侧板之间。
  10. 根据权利要求9所述的电池单体,其中,所述第一表面沿第二方向的两个边缘分别超出所述支撑构件沿所述第二方向的两个边缘,所述第一表面沿第三方向的两个边缘分别超出所述支撑构件沿所述第三方向的两个边缘,所述第二方向为垂直于所述盖板的方向,所述第三方向垂直于所述第一方向和所述第二方向。
  11. 根据权利要求9或10所述的电池单体,其中,所述电池单体还包括用于将所述电极组件和所述壳体隔开的第二绝缘构件,所述第二绝缘构件包括第一绝缘部,所述第一绝缘部设置于所述第一侧板和所述第一表面之间。
  12. 根据权利要求11所述的电池单体,其中,所述第二绝缘构件还包括第二绝缘部和两个第三绝缘部,所述第二绝缘部位于所述电极组件沿第二方向背离所述盖板的一侧并连接于所述第三绝缘部,两个所述第三绝缘部分别设置于所述电极组件沿所述第三方向的两侧;
    所述电极组件沿所述第一方向的两侧均设置有连接于所述第三绝缘部的所述第一绝缘部,至少一个所述第一绝缘部连接两个所述第三绝缘部。
  13. 根据权利要求12所述的电池单体,其中,所述第二绝缘部为两个且分别连接于两个所述第三绝缘部,且两个所述第二绝缘部在所述第二方向上至少部分重叠;
    所述电极组件沿所述第一方向的一侧设置有两个所述第一绝缘部,两个所述第一绝缘部分别连接于两个所述第三绝缘部并且在所述第一方向上至少部分重叠。
  14. 根据权利要求11-13中任一项所述的电池单体,其中,所述支撑构件设置于所述第一绝缘部和所述第一表面之间。
  15. 根据权利要求1-14中任一项所述的电池单体,其中,所述电池单体还包括粘接构件,所述粘接构件用于将所述支撑构件连接于所述电极组件。
  16. 根据权利要求15所述的电池单体,其中,所述电极组件包括面向所述第一侧板的第一表面以及连接于所述第一表面的第二表面,所述第二表面垂直于所述第一侧板和所述盖板;
    所述粘接构件包括第一粘接部和第二粘接部,所述第一粘接部粘接于所述支撑构件的远离所述第一表面的表面,所述第二粘接部连接于所述第一粘接部并粘接于所述第二表面。
  17. 根据权利要求15或16所述的电池单体,其中,所述粘接构件为非连续的多个,多个所述粘接构件沿第二方向间隔设置,所述第二方向为垂直于所述盖板的方向。
  18. 一种电池,包括箱体和至少一个如权利要求1-17中任一项所述的电池单体,所述电池单体收容于所述箱体内。
  19. 根据权利要求18所述的电池,其中,在所述电池单体中,所述第一侧板位于所述电极组件沿竖直方向的下侧。
  20. 一种用电装置,所述用电装置用于接收从权利要求18或19所述的电池提供的电能。
  21. 一种电池单体的制造方法,包括:
    提供电极组件,所述电极组件包括至少一个第一极片和至少一个第二极片,所述第一极片的至少部分和所述第二极片层叠设置;
    提供端盖组件,所述端盖组件包括盖板和设置于所述盖板的电极端子,连接所述电极组件和所述电极端子;
    提供支撑构件,并将所述支撑构件连接到所述电极组件;
    提供壳体,所述壳体具有开口和用于容纳所述电极组件的容纳腔,所述壳体包括 第一侧板;
    将所述电极组件以及连接于所述电极组件的支撑构件放置到所述容纳腔内,然后连接所述盖板和所述壳体,以使盖板封闭所述开口并垂直于所述第一侧板,并且,所述支撑构件至少部分设置于所述第一侧板和所述电极组件之间,所述支撑构件用于支撑所述电极组件,以使所述第一极片面向所述第一侧板的端部与所述第一侧板在第一方向上的间距大于预定值,所述第一方向为垂直于所述第一侧板的方向。
  22. 一种电池单体的制造系统,包括:
    第一提供装置,用于提供电极组件,所述电极组件包括至少一个第一极片和至少一个第二极片,所述第一极片的至少部分和所述第二极片层叠设置;
    第二提供装置,用于提供端盖组件,所述端盖组件包括盖板和设置于所述盖板的电极端子;
    第一组装装置,用于连接所述电极组件和所述电极端子;
    第三提供装置,用于提供支撑构件;
    第二组装装置,用于将所述支撑构件连接到所述电极组件;
    第四提供装置,用于提供壳体,所述壳体具有开口和用于容纳所述电极组件的容纳腔,所述壳体包括第一侧板;
    第三组装装置,用于将所述电极组件以及连接于所述电极组件的支撑构件放置到所述容纳腔内,然后连接所述盖板和所述壳体,以使盖板封闭所述开口并垂直于所述第一侧板,其中,所述支撑构件至少部分设置于所述第一侧板和所述电极组件之间,所述支撑构件用于支撑所述电极组件,以使所述第一极片面向所述第一侧板的端部与所述第一侧板在第一方向上的间距大于预定值,所述第一方向为垂直于所述第一侧板的方向。
PCT/CN2020/137356 2020-12-17 2020-12-17 电池单体及其制造方法和制造系统、电池以及用电装置 WO2022126547A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080102020.3A CN115699413A (zh) 2020-12-17 2020-12-17 电池单体及其制造方法和制造系统、电池以及用电装置
PCT/CN2020/137356 WO2022126547A1 (zh) 2020-12-17 2020-12-17 电池单体及其制造方法和制造系统、电池以及用电装置
EP20965563.8A EP4089800A4 (en) 2020-12-17 2020-12-17 BATTERY CELL, AND ASSOCIATED MANUFACTURING METHOD AND SYSTEM, BATTERY AND ELECTRICAL DEVICE
KR1020227036010A KR20220154225A (ko) 2020-12-17 2020-12-17 전지 셀 및 그 제조 방법 및 제조 시스템, 전지 및 전력 소비 장치
JP2022563181A JP2023522680A (ja) 2020-12-17 2020-12-17 電池セル及びその製造方法並びに製造システム、電池及び電力消費装置
US17/948,688 US20230021075A1 (en) 2020-12-17 2022-09-20 Battery cell, method and system for manufacturing same, battery, and electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137356 WO2022126547A1 (zh) 2020-12-17 2020-12-17 电池单体及其制造方法和制造系统、电池以及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/948,688 Continuation US20230021075A1 (en) 2020-12-17 2022-09-20 Battery cell, method and system for manufacturing same, battery, and electrical device

Publications (1)

Publication Number Publication Date
WO2022126547A1 true WO2022126547A1 (zh) 2022-06-23

Family

ID=82059914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137356 WO2022126547A1 (zh) 2020-12-17 2020-12-17 电池单体及其制造方法和制造系统、电池以及用电装置

Country Status (6)

Country Link
US (1) US20230021075A1 (zh)
EP (1) EP4089800A4 (zh)
JP (1) JP2023522680A (zh)
KR (1) KR20220154225A (zh)
CN (1) CN115699413A (zh)
WO (1) WO2022126547A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217134509U (zh) * 2022-06-09 2022-08-05 宁德时代新能源科技股份有限公司 电池单体的组装装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765931A (zh) * 2007-08-23 2010-06-30 丰田自动车株式会社 电池及其制造方法
CN102035017A (zh) * 2009-10-07 2011-04-27 Sb锂摩托有限公司 可再充电电池
CN102800824A (zh) * 2011-05-27 2012-11-28 株式会社杰士汤浅国际 蓄电元件以及绝缘袋
US20140295232A1 (en) * 2013-04-02 2014-10-02 Samsung Sdi Co., Ltd. Rechargeable battery and method of manufacturing the same
US20160293995A1 (en) * 2015-04-03 2016-10-06 Apple Inc. Battery can

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268478B2 (en) * 2009-08-17 2012-09-18 Sb Limotive Co., Ltd. Rechargeable battery having anti-vibration member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765931A (zh) * 2007-08-23 2010-06-30 丰田自动车株式会社 电池及其制造方法
CN102035017A (zh) * 2009-10-07 2011-04-27 Sb锂摩托有限公司 可再充电电池
CN102800824A (zh) * 2011-05-27 2012-11-28 株式会社杰士汤浅国际 蓄电元件以及绝缘袋
US20140295232A1 (en) * 2013-04-02 2014-10-02 Samsung Sdi Co., Ltd. Rechargeable battery and method of manufacturing the same
US20160293995A1 (en) * 2015-04-03 2016-10-06 Apple Inc. Battery can

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4089800A4 *

Also Published As

Publication number Publication date
EP4089800A1 (en) 2022-11-16
EP4089800A4 (en) 2023-10-11
JP2023522680A (ja) 2023-05-31
US20230021075A1 (en) 2023-01-19
CN115699413A (zh) 2023-02-03
KR20220154225A (ko) 2022-11-21

Similar Documents

Publication Publication Date Title
CN214254488U (zh) 电池单体、电池以及用电装置
WO2022088824A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2022105010A1 (zh) 电池单体、电池及用电装置
WO2022156478A1 (zh) 电池单体、电池以及用电装置
WO2023065923A1 (zh) 电池单体、电池和用电设备
CN215989064U (zh) 电池单体、电池以及用电装置
WO2022247292A1 (zh) 电池单体、电池以及用电装置
WO2022199152A1 (zh) 电极组件、电池单体、电池以及用电设备
WO2022126547A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2021196169A1 (zh) 电池模块、电池包以及使用电池作为电源的装置
CN115588822B (zh) 电池和电池组
WO2023155555A1 (zh) 电池单体、电池和用电设备
WO2023160034A1 (zh) 电池箱体上盖、电池箱体、电池及用电设备
WO2023155133A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023159486A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004822A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
WO2023000234A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023130238A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023060656A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023155211A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2022126634A1 (zh) 电极组件及其制造方法和制造系统、电池单体、电池及用电装置
WO2023159487A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023133737A1 (zh) 电池、用电设备、制备电池的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020965563

Country of ref document: EP

Effective date: 20220809

ENP Entry into the national phase

Ref document number: 20227036010

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022563181

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE