WO2022126478A1 - 影像获取方法、装置、可移动平台、控制终端、系统 - Google Patents

影像获取方法、装置、可移动平台、控制终端、系统 Download PDF

Info

Publication number
WO2022126478A1
WO2022126478A1 PCT/CN2020/137174 CN2020137174W WO2022126478A1 WO 2022126478 A1 WO2022126478 A1 WO 2022126478A1 CN 2020137174 W CN2020137174 W CN 2020137174W WO 2022126478 A1 WO2022126478 A1 WO 2022126478A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
movable platform
main
flight
segment
Prior art date
Application number
PCT/CN2020/137174
Other languages
English (en)
French (fr)
Inventor
张明磊
杨志华
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/137174 priority Critical patent/WO2022126478A1/zh
Priority to CN202080081322.7A priority patent/CN114830058A/zh
Publication of WO2022126478A1 publication Critical patent/WO2022126478A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the present application in the field of photography, in particular, relates to an image acquisition method, an image acquisition device, a movable platform, a control terminal, and an image acquisition system.
  • the route shown in FIG. 1 includes a plurality of main route segments that are parallel to each other, and the movable platform moves along the main route segment one by one and switches to the next main route segment for image acquisition.
  • Embodiments of the present application provide an image acquisition method, an image acquisition device, a movable platform, a control terminal, and an image acquisition system.
  • an embodiment of the present application provides an image acquisition method, the method comprising:
  • the planned route includes a first route and a second route
  • the first route includes a plurality of parallel first main route segments and a plurality of first auxiliary route segments, and ends of two adjacent first main route segments are connected through the first auxiliary route segments;
  • the second air route includes a plurality of parallel second main air routes and a plurality of second auxiliary air routes, and ends of two adjacent second main air routes are connected by the second auxiliary air routes;
  • the first main flight segment is not parallel to the second main flight segment
  • the image captured by the movable platform along the first main flight segment and the image captured by the movable platform along the second main flight segment have an overlapping image area.
  • adjacent images have overlapping image areas
  • the multiple images collected by the movable platform along the second main flight segment There are overlapping image areas in adjacent images.
  • an image acquisition device including:
  • memory for storing processor-executable instructions
  • processor is configured to:
  • the planned route includes a first route and a second route
  • the first air route includes a plurality of mutually parallel first main air routes and a plurality of first auxiliary air routes, and ends of two adjacent first main air routes are connected by the first auxiliary air routes;
  • the second air route includes a plurality of parallel second main air routes and a plurality of second auxiliary air routes, and ends of two adjacent second main air routes are connected by the second auxiliary air routes;
  • the first main flight segment is not parallel to the second main flight segment
  • the image captured by the movable platform along the first main flight segment and the image captured by the movable platform along the second main flight segment have an overlapping image area.
  • an embodiment of the present application provides a movable platform that is communicatively connected to a control terminal, and the movable platform includes:
  • memory for storing processor-executable instructions
  • processor is configured to:
  • the planned route includes a first route and a second route
  • the first air route includes a plurality of mutually parallel first main air routes and a plurality of first auxiliary air routes, and ends of two adjacent first main air routes are connected by the first auxiliary air routes;
  • the second air route includes a plurality of parallel second main air routes and a plurality of second auxiliary air routes, and ends of two adjacent second main air routes are connected by the second auxiliary air routes;
  • the first main flight segment is not parallel to the second main flight segment
  • the image captured by the movable platform along the first main flight segment and the image captured by the movable platform along the second main flight segment have an overlapping image area.
  • an embodiment of the present application provides a control terminal that is communicatively connected to a movable platform, and the control terminal includes:
  • memory for storing processor-executable instructions
  • processor is configured to:
  • the planned route includes a first route and a second route
  • the first air route includes a plurality of mutually parallel first main air routes and a plurality of first auxiliary air routes, and ends of two adjacent first main air routes are connected by the first auxiliary air routes;
  • the second air route includes a plurality of parallel second main air routes and a plurality of second auxiliary air routes, and ends of two adjacent second main air routes are connected by the second auxiliary air routes;
  • the first main flight segment is not parallel to the second main flight segment
  • the image captured by the movable platform along the first main flight segment and the image captured by the movable platform along the second main flight segment have an overlapping image area.
  • an embodiment of the present application provides an image acquisition system, including a movable platform and a control terminal, wherein the movable platform is communicatively connected to the control terminal;
  • the control terminal is used to generate a planned route based on the survey area
  • the movable platform is used for acquiring the planned route from the control terminal;
  • the planned route includes a first route and a second route
  • the first air route includes a plurality of mutually parallel first main air routes and a plurality of first auxiliary air routes, and ends of two adjacent first main air routes are connected by the first auxiliary air routes;
  • the second air route includes a plurality of parallel second main air routes and a plurality of second auxiliary air routes, and ends of two adjacent second main air routes are connected by the second auxiliary air routes;
  • the first main flight segment is not parallel to the second main flight segment
  • the image captured by the movable platform along the first main flight segment and the image captured by the movable platform along the second main flight segment have an overlapping image area.
  • the image acquisition method provided by the present application adopts a planned route including a first route and a second route, wherein the first main route segment on the first route and the second main route segment on the second route are not parallel.
  • the imagery captured on the route segment has an overlapping image area with the imagery captured along the second main route segment.
  • the overlap rate of the captured images in the direction of the first main route segment can be adjusted by adjusting the heading overlap rate of the first route; the captured image can be adjusted by adjusting the heading overlap rate of the second route.
  • the overlap ratio of the images in the vertical direction of the first main flight segment Therefore, when the overlap rate of the collected images needs to be increased or the required overlap rate of the collected images is high, it is not necessary to reduce the distance between the main flight segments on the route, resulting in the addition of main flight segments to increase the planning.
  • the overall length of the flight route can still maintain a high image collection efficiency even when the required image overlap rate is high. And in the case of higher overlapping rate requirements, the improvement is more obvious.
  • FIG. 1 is a schematic diagram of a route shown in an exemplary embodiment of the present application
  • FIG. 2 is a schematic diagram of the overlap ratio of two adjacent images collected on the same flight segment according to an exemplary embodiment of the present application
  • Fig. 3 is a schematic diagram of the overlap ratio of the images collected by the two closest shooting points between two adjacent flight segments according to an exemplary embodiment of the present application;
  • FIG. 4 is a flowchart of an image acquisition method according to an exemplary embodiment of the present application.
  • FIG. 5 is a schematic diagram of a first flight route shown in an exemplary embodiment of the present application.
  • FIG. 6 is a schematic diagram of a second flight route according to an exemplary embodiment of the present application.
  • FIG. 7 is a schematic diagram of a planned route according to an exemplary embodiment of the present application.
  • FIG. 8 is a schematic diagram illustrating an image acquisition apparatus according to an exemplary embodiment of the present application.
  • FIG. 9 is a schematic diagram of a movable platform according to an exemplary embodiment of the present application.
  • FIG. 10 is a schematic diagram of a control terminal shown in an exemplary embodiment of the present application.
  • FIG. 11 is a schematic diagram of an image acquisition system according to an exemplary embodiment of the present application.
  • the route shown in Figure 1 can be the route set by the user for a specific area (hereinafter referred to as the survey area), and the movable platform moves along the route, and the shooting point is determined according to a certain time interval or distance interval
  • the image is collected at the shooting point in turn to collect several images, and the collected images are synthesized, so that the final image of the survey area can be obtained, which can also be referred to as the entire survey area.
  • Perspective panoramic image For example, an unmanned aerial vehicle equipped with a camera can fly along the route to collect images of a designated survey area on the ground, thereby obtaining a full-view panoramic image of the designated survey area on the ground.
  • the parameters that need to be considered in the image collection based on the flight route include the overlap rate of the images collected on the flight route, the flight height, the ratio of the collected images, etc.
  • the overlap rate of the collected images mainly includes the heading overlap of the images collected on the flight line.
  • Figure 1 includes multiple main flight segments that are parallel to each other, and the heading overlap rate refers to the overlap rate of two adjacent images collected on the same flight segment.
  • a schematic diagram of the overlap rate of two images; the side overlap rate refers to the overlap rate of the images collected from the two closest shooting points between the two adjacent main flight segments.
  • the embodiment of the present application proposes a new image acquisition method.
  • the overall length of the original flight route can still be maintained unchanged under the condition that the overlap rate is required to be increased, and the length of the collected images can be improved.
  • the efficiency of image acquisition is ensured.
  • the method can be applied to a movable platform equipped with a camera, and can be specifically implemented by a processor or a processing chip mounted in the movable platform, wherein the movable platform can be an unmanned aerial vehicle, an unmanned vehicle, an unmanned ship, a robot, etc.
  • the camera can be any device with shooting function, such as a digital camera, a PTZ camera, a camera, etc.
  • a possible image collection scene can be an unmanned aerial vehicle equipped with a camera to designate a survey area below (such as the ground) according to the planned route Carry out image collection, or it may be that the unmanned vehicle is equipped with a camera to collect images of the designated survey area above (such as the sky) according to the planned route, and it may also be that the unmanned ship is equipped with a camera to designate the upper part according to the planned route.
  • the survey area or the survey area specified below is used for image acquisition. It can be understood that with the different scenes of image acquisition, the corresponding movable devices used for image acquisition can also be adjusted according to the different scenes, which is not limited. .
  • the control terminal may be a mobile control terminal, such as a handheld remote control, a mobile phone, a tablet, etc., or a fixed control terminal, such as a desktop computer.
  • the control terminal may be a mobile control terminal, such as a handheld remote control, a mobile phone, a tablet, etc., or a fixed control terminal, such as a desktop computer.
  • an actual scenario may be that the user plans a route and sets parameters such as an image overlap rate on the handheld remote control, and sends the parameters to the movable platform through the handheld remote control to control the movable platform for image acquisition.
  • parameter information such as the relevant flight routes and the overlap rate of images may be stored directly on the movable platform in advance, and the movable platform will automatically complete the image acquisition directly after startup, or after receiving the control sent by the control terminal. After the signal starts to perform image acquisition.
  • the specific configuration can be freely selected by the technician according to the actual processing capability of the device, which is not limited.
  • FIG. 4 is a flowchart of an image acquisition method shown in an exemplary embodiment of the present application. The method includes the following steps:
  • the planned route includes a first route and a second route
  • the first air route includes a plurality of mutually parallel first main air routes and a plurality of first auxiliary air routes, and ends of two adjacent first main air routes are connected by the first auxiliary air routes;
  • the second air route includes a plurality of parallel second main air routes and a plurality of second auxiliary air routes, and ends of two adjacent second main air routes are connected by the second auxiliary air routes;
  • the first main flight segment is not parallel to the second main flight segment
  • the image captured by the movable platform along the first main flight segment and the image captured by the movable platform along the second main flight segment have an overlapping image area.
  • adjacent images have overlapping image areas
  • the multiple images collected by the movable platform along the second main flight segment There are overlapping image areas in adjacent images.
  • the survey area may be a designated plane area, for example, it may be above, below, and to the side of the movable platform (for example, front and rear, left and right, etc.), etc.
  • the planned route used for the survey area mainly includes multiple There are a first main flight segment that is parallel to each other, and a plurality of second main flight segments that are parallel to each other.
  • the first main flight segment or the second main flight segment mentioned in the embodiments of the present application is not limited to absolute It is a straight line segment. Due to the influence of actual operation or scene factors, it may be an approximate straight line or a route segment with a certain curvature.
  • the first auxiliary route segment connects the ends of two adjacent first main route segments
  • the second auxiliary route segment connects the ends of two adjacent second main route segments, so that the movable platform can complete a main route during the During the image capture of the next main flight segment, the mobile platform can switch between adjacent main flight segments by performing steering, U-turn and other actions along the auxiliary flight segment to continue image capture, and then Complete image acquisition on all main flight segments.
  • the movable platform can also capture images on the auxiliary route segment, and can also control the movable platform to keep the orientation of the fuselage unchanged when capturing images on the first and second routes. Rotation adjustment of the camera, especially when the movable platform needs to be steered on the auxiliary route.
  • the auxiliary route segment may also be an approximately straight line or a route segment with a certain curved arc.
  • the first route and the second route can be routes on the same plane or routes on different planes. At the same level, it can also be at different levels. And it can also be performed by different unmanned aerial vehicles to perform image acquisition on the first flight route and the second flight route respectively.
  • one unmanned aerial vehicle can first collect images on the first route, and then land to replenish power after completion, while another unmanned aerial vehicle can carry out the second route. The image collection on the plane is completed, and then the image collection of the entire planned route is completed.
  • the planned route is divided into the first route and the second route, it is possible to avoid interruption of acquisition due to the unmanned aerial vehicle running out of power in the middle.
  • the overlapping rate of the captured images in the direction of the first main route segment can be adjusted by adjusting the course overlap rate of the first route;
  • the sections are not parallel, in the case of needing to adjust the overlap rate of the captured images in the vertical direction of the first main route segment, you can only adjust the course overlap rate of the second route segment (that is, the adjacent The overlap ratio of the two images), to achieve the adjustment, it is not necessary to adjust the side overlap ratio of the first route, that is, the spacing between the first main route segments is not adjusted. Therefore, in the face of the need to increase the overlap rate of the collected images, it is possible to avoid increasing the overall length of the planned route, so as to maintain a high image collection efficiency, and in the case of higher overlap rate requirements, the improvement is more obvious.
  • first route and the second route do not specifically refer to a specific route, they are just names to distinguish each other.
  • any one of the two routes included in the planned route in the embodiment of the present application can be called the first route.
  • the other is called the second route.
  • the planned routes mentioned in the above embodiments of the present application are further described by taking FIGS. 5-7 as examples.
  • FIG. 5 is a schematic diagram of a first air route shown in an exemplary embodiment of the present application, which includes several mutually parallel first main air routes along a first direction, and connects adjacent main air routes The first auxiliary route segment at the end of the .
  • FIG. 6 is a schematic diagram of a second route shown in an exemplary embodiment of the present application, which includes several second main route segments parallel to each other along the second direction, and connects adjacent main route segments The second auxiliary route segment at the end of .
  • FIG. 7 is a schematic diagram of a planned route shown in an exemplary embodiment of the present application, which includes the first route shown in FIG. 5 and the second route shown in FIG. 6 , and in the first route
  • the first main route segment in the second route intersects with the second main route segment in the second route (at this time, they are on the same plane), and the movable platform can collect images along the first route and the second route respectively.
  • the first route may also be the route shown in FIG. 6
  • the second route may also be the route shown in FIG. 5 .
  • the user can further adjust the first route and the second route according to their needs, so as to realize the adjustment of the overall planned route and obtain images that meet the expectations.
  • the adjustment of the first and second routes will be described below, and you can continue to refer to FIG. 7 .
  • the main parameters affecting the overall length of the planned route are the distance between the first main route segments and the distance between the second main route segments, and the adjacent first main route segments.
  • the distance between them and the distance between adjacent second main flight segments are mainly related to the requirements for the overlap rate of the captured images, especially the overlap of the captured images in the direction of the main flight segment and the vertical direction of the main flight segment. rate requirements. Therefore, the spacing between the first main flight segments and the spacing between the second main flight segments can be planned based on preset overlap rate information.
  • the preset overlap rate information may include the side overlap rate of the first route and the side overlap rate of the second route.
  • the side overlap rate of the first route is that the movable platform is adjacent to The overlap ratio of the images collected from the two closest shooting locations on the two first main flight routes; the side overlap ratio of the second flight route is the closest position of the movable platform on the two adjacent second main flight segments The overlap ratio of the images acquired at the two shooting sites.
  • the images collected on the second main route segment can improve the image overlap rate in the vertical direction of the first main route segment, so the first route does not need to be set to compare High side overlap rate, so that the spacing between adjacent main flight segments in the first route can be set larger than the existing empirical value, for example, the side overlap rate of the first route can be set to 30% to Estimate the spacing between adjacent main flight segments.
  • the side overlap ratio is used to estimate the spacing between adjacent main flight segments.
  • the overlap rate information may further include the course overlap rate of the second route.
  • the course overlap rate of the second route is two adjacent two data collected by the movable platform on the second main route segment.
  • the overlap ratio of the images By comprehensively considering the setting of the side overlap rate of the first route and the course overlap rate of the second route, the requirements for the overlap rate of the collected images in the vertical direction of the first main route segment are met, so as to determine the side direction of the first route.
  • the overlap ratio is used to calculate the spacing between the first main flight segments in the first flight route.
  • the overlap rate information may also include the course overlap rate of the first route.
  • the course overlap rate of the first route is the overlap rate of two adjacent images collected by the movable platform on the first main route segment.
  • the included angle refers to the actual included angle when the first route and the second route are on the same plane, or it can be obtained by projection when the first route and the second route are not coplanar Angles in the same plane.
  • the photographic baseline of this route is There is a significant difference in the average length of the heading and the side direction, where the photographic baseline length can be understood as the distance between the two closest adjacent photographing points in the heading or side direction. Since the accuracy of stereo vision forward intersection has a clear correlation with the length of the photographic baseline and the intersection angle, the average length of the photographic baseline in the heading and the side direction is significantly different, which will easily lead to the final panoramic image synthesized by the collected images. directional error.
  • the length of the photographic baseline will also affect the severity of the occlusion, especially for areas with severe fluctuations (such as cities), the large difference in the length of the photographic baseline in the course and the side direction will cause the occluded area to have obvious directionality. These will affect the accuracy and visual effect of the final panoramic image.
  • the average length of the photographic baseline in the course and the side direction caused by the above parameters for image acquisition is significantly different, which is mainly reflected in the fact that the average length of the photographic baseline in the side direction is significantly greater than the average length of the photographic baseline in the course direction.
  • the course overlap rate of the first route and the course overlap rate of the second route can be further set to be equal, thereby
  • the length of the photographic baseline on the first main route segment can be made the same as the length of the photographic baseline on the second main route segment, thereby reducing the average length difference of the photographic baseline in the course and the side direction in the planned route, or setting the side length of the first route.
  • Equal to the side overlap rate of the second route can also have a certain effect.
  • the course overlap rate of the first route In order to minimize the difference in the average length of the photographic baseline in the course and sideways in the planned route, it can be considered to set the course overlap rate of the first route to be equal to the course overlap rate of the second route, and the sideways of the first route.
  • the overlap ratio is equal to the side overlap ratio of the second route.
  • the embodiment of the present application can solve the above problem when the side overlap rate is set to be significantly smaller than the course overlap rate, so as to avoid narrowing the distance between the main flight segments, which will lead to a longer overall length of the planned flight route, which will affect the quality of image acquisition. efficiency.
  • the movable platform may first complete the image capture on the first route, and then perform image capture on the second route. Of course, it can also Do it in reverse.
  • the movable platform sequentially completes the image capture on the first route and then completes the image capture on the second route.
  • the planned route may also include a transfer path connecting the end point of the first route and the start point of the second route. The route switching is performed by the movable platform through the transfer path. At the same time, in order to ensure the efficiency of collection, it may be considered to determine the shortest path between the end point of the first route and the start point of the second route as a transfer route.
  • the transfer path may be pre-planned before the movable platform starts to collect images, or may be determined according to the real-time surrounding environment after the movable platform completes the image collection on the first route, for example, considering the surrounding environment at this time. Obstacles, drivable or flyable paths or routes, etc., and at the same time, it can also adjust the original predetermined conversion path according to the real-time surrounding environment to ensure the smooth switching of routes. Continuing to refer to FIG.
  • point A as the starting point of the first route
  • point B as the end point of the first route
  • point C as the starting point of the second route
  • point D as the end point of the second route
  • the connection between points B and C is The straight segment of the line is the transfer path, and the route switching is completed through the transfer path.
  • a panoramic image may be synthesized according to the multiple images, for example, an orthophoto may be generated.
  • each image collected on the first flight route and the second flight route can be directly spliced to generate an orthophoto.
  • operations such as filtering, editing, etc. may also be performed on each image collected on the first flight route and the second flight route to obtain the expected image to be synthesized, and then synthesize the final orthophoto.
  • the stitching of each image can be completed by the movable platform, or the camera mounted on the movable platform, or the movable platform can return the collected images to the control terminal connected to it. , for the control terminal to complete. How to process and synthesize the acquired images can be selected by the technical personnel according to actual needs, which is not limited.
  • the first thing is to analyze the route parameter settings used in Figure 1 according to the empirical values.
  • the ratio is 5472*3648, and the overlap ratio of the route is set to 80% in the course and 70% in the side.
  • the photographic baseline of the two adjacent images is about 45m; the total length of the final route is 4.3km, and the estimated time to execute the route is 1h 18min.
  • the route used in this application is divided into two mutually perpendicular routes.
  • the overlap rate of the route is set to 80% for the course and 30% for the side.
  • the length of the photographic baseline is 20m; the total length of the route determined from this is 3.68km, and the estimated execution time of the route is about 1h 7min.
  • the side overlap rate needs to be set to 86.7%, and the corresponding route length and execution time are approximately
  • the original 2.25 times the length of the route is 8.28km, and the execution time of the route is about 2h 55min, which greatly reduces the efficiency of data collection, and causes a large amount of data redundancy, which greatly increases the subsequent steps of generating orthophotos. amount of calculation. It can be seen that the solution provided by the embodiments of the present application does not reduce the acquisition efficiency while ensuring the quality of the final image.
  • FIG. 8 is a schematic diagram of an image acquisition apparatus shown in an exemplary embodiment of the present application.
  • the image acquisition apparatus includes:
  • memory 802 for storing instructions executable by processor 801;
  • processor 801 is configured as:
  • the planned route includes a first route and a second route
  • the first air route includes a plurality of mutually parallel first main air routes and a plurality of first auxiliary air routes, and ends of two adjacent first main air routes are connected by the first auxiliary air routes;
  • the second air route includes a plurality of parallel second main air routes and a plurality of second auxiliary air routes, and ends of two adjacent second main air routes are connected by the second auxiliary air routes;
  • the first main flight segment is not parallel to the second main flight segment
  • the image captured by the movable platform along the first main flight segment and the image captured by the movable platform along the second main flight segment have an overlapping image area.
  • adjacent images have overlapping image areas
  • the multiple images collected by the movable platform along the second main flight segment There are overlapping image areas in adjacent images.
  • the image capturing apparatus may also include other components necessary for normal operation according to its actual type.
  • the image acquisition device in the case where the image acquisition device is a processing chip or a mainboard integrated with a processing chip, it realizes the control function by being installed on the device, for example, installed on a movable platform or a control terminal.
  • the image acquisition device may also include communication Interface, used for data interaction with other devices on the device; in the case where the image acquisition device is an electronic device, the image acquisition device may also include, for example, an input/output interface, a communication interface, a bus, etc., and the input/output interface may Used to connect input/output modules to realize information input and output.
  • the input/output/module can be configured in the electronic device as a component (not shown in the figure), or can be externally connected to the device to provide corresponding functions.
  • Input devices may include keyboards, mice, touch screens, microphones, various types of sensors, etc.
  • output devices may include displays, speakers, vibrators, indicator lights, and the like.
  • the communication interface is used to connect a communication module (not shown in the figure) to realize communication interaction between the electronic device and other devices.
  • the communication module may implement communication through wired means (eg, USB, network cable, etc.), or may implement communication through wireless means (eg, mobile network, WIFI, Bluetooth, etc.).
  • a bus includes a path that transfers information between various components of an electronic device, such as the processor, memory, input/output interfaces, and communication interfaces.
  • FIG. 9 is a schematic diagram of a movable platform shown in an exemplary embodiment of the present application.
  • the movable platform include:
  • memory 902 for storing instructions executable by processor 901;
  • processor 901 is configured as:
  • the planned route includes a first route and a second route
  • the first air route includes a plurality of mutually parallel first main air routes and a plurality of first auxiliary air routes, and ends of two adjacent first main air routes are connected by the first auxiliary air routes;
  • the second air route includes a plurality of parallel second main air routes and a plurality of second auxiliary air routes, and ends of two adjacent second main air routes are connected by the second auxiliary air routes;
  • the first main flight segment is not parallel to the second main flight segment
  • the image captured by the movable platform along the first main flight segment and the image captured by the movable platform along the second main flight segment have an overlapping image area.
  • adjacent images have overlapping image areas
  • the multiple images collected by the movable platform along the second main flight segment There are overlapping image areas in adjacent images.
  • the movable platform can be an unmanned aerial vehicle, an unmanned vehicle, a robot, an unmanned ship, or the like.
  • FIG. 10 is a schematic diagram of a control terminal shown in an exemplary embodiment of the present application. As shown in FIG. 10 , the control terminal include:
  • memory 1002 for storing instructions executable by processor 1001;
  • the processor 1001 is configured to:
  • the planned route includes a first route and a second route
  • the first air route includes a plurality of mutually parallel first main air routes and a plurality of first auxiliary air routes, and ends of two adjacent first main air routes are connected by the first auxiliary air routes;
  • the second air route includes a plurality of parallel second main air routes and a plurality of second auxiliary air routes, and ends of two adjacent second main air routes are connected by the second auxiliary air routes;
  • the first main flight segment is not parallel to the second main flight segment
  • the image captured by the movable platform along the first main flight segment and the image captured by the movable platform along the second main flight segment have an overlapping image area.
  • adjacent images have overlapping image areas
  • the multiple images collected by the movable platform along the second main flight segment There are overlapping image areas in adjacent images.
  • the control terminal may be a remote control, a mobile phone, a tablet, a notebook, a desktop computer, or the like.
  • FIG. 11 is a schematic diagram of an influence acquisition system shown in an exemplary embodiment of the present application, including a movable platform 90 and a control terminal 100.
  • a movable platform 90 and a control terminal 100 For the introduction of the movable platform 90 and the control terminal 100, reference may be made to the previous embodiments , and will not be repeated here.
  • the embodiments of the present application further provide a computer storage medium, on which a computer program is stored, and when the computer program is executed, the method described in any of the foregoing embodiments is implemented.
  • the apparatus embodiments since they basically correspond to the method embodiments, reference may be made to some descriptions of the method embodiments for related parts.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • All the embodiments given in this application may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, the procedures or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted over a computer-readable storage medium.
  • Computer instructions may be sent from one website site, computer, server, or data center to another website site, computer, via wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) , server or data center for transmission.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • Useful media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种影像获取方法,包括获取对测区的规划航线(S401),控制可移动平台按照规划航线移动,并在移动过程中通过可移动平台上搭载的相机对测区拍照,以获取测区的多张影像(S402);其中,规划航线包括第一航线和第二航线;第一航线包括多条互相平行的第一主航线段,以及连接相邻两条第一主航线段的端头的第一辅航线段;第二航线包括多条互相平行的第二主航线段,以及连接相邻两条第二主航线段的端头的第二辅航线段;且第一主航线段与第二主航线段不平行;沿第一主航线段采集的影像与沿第二主航线段采集的影像有重叠的影像区域。

Description

影像获取方法、装置、可移动平台、控制终端、系统 技术领域
本申请摄影领域,尤其涉及一种影像获取方法、影像获取装置、可移动平台、控制终端以及影像获取系统。
背景技术
为满足大范围场景的拍摄需求,比如拍摄一定范围内场景的正射影像,通常考虑通过可移动平台搭载拍摄设备来按照预先规划的航线移动进行影像采集。例如图1所示的航线,其包括多条相互平行的主航线段,可移动平台逐一沿主航线段移动并切换至下一主航线段来进行影像采集。
但沿该种航线进行影像采集所存在的问题是,为满足所采集的各个影像之间的重叠率要求,通常在航线规划时需要设置较为密集的主航线段,由此将导致航线的整体长度变长,影像采集的时间变长,降低了影像采集的效率。
发明内容
本申请实施例提供一种影像获取方法、影像获取装置、可移动平台、控制终端以及影像获取系统。
第一方面,本申请实施例提供一种影像获取方法,所述方法包括:
获取对测区的规划航线;
控制可移动平台按照所述规划航线移动,并在移动过程中通过所述可移动平台上搭载的相机对所述测区拍照,以获取所述测区的多张影像;
其中,所述规划航线包括第一航线和第二航线;
所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线 段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
所述第一主航线段与所述第二主航线段不平行;
所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台沿所述第二主航线段采集的影像有重叠的影像区域。
可选的,所述可移动平台沿所述第一主航线段采集的多张影像中相邻影像有重叠的影像区域,所述可移动平台沿所述第二主航线段采集的多张影像中相邻影像有重叠的影像区域。
第二方面,本申请实施例提供一种影像获取装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取对测区的规划航线;
控制可移动平台按照所述规划航线移动,并在移动过程中通过所述可移动平台上搭载的相机对所述测区拍照,以获取所述测区的多张影像;
其中,所述规划航线包括第一航线和第二航线;
所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
所述第一主航线段与所述第二主航线段不平行;
所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台 沿所述第二主航线段采集的影像有重叠的影像区域。
第三方面,本申请实施例提供一种可移动平台,与控制终端通信连接,所述可移动平台包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
从所述控制终端获取对测区的规划航线;
控制所述可移动平台按照所述规划航线移动,并在移动过程中通过所述可移动平台上搭载的相机对所述测区拍照,以获取所述测区的多张影像;
其中,所述规划航线包括第一航线和第二航线;
所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
所述第一主航线段与所述第二主航线段不平行;
所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台沿所述第二主航线段采集的影像有重叠的影像区域。
第四方面,本申请实施例提供一种控制终端,与可移动平台通信连接,所述控制终端包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取对测区的规划航线;
向所述可移动平台发送所述规划航线,以控制所述可移动平台按照所述规划航线移动,并在移动过程中通过所述可移动平台上搭载的相机对所述测区拍照,以获取所述测区的多张影像;
其中,所述规划航线包括第一航线和第二航线;
所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
所述第一主航线段与所述第二主航线段不平行;
所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台沿所述第二主航线段采集的影像有重叠的影像区域。
第五方面,本申请实施例提供一种影像获取的系统,包括可移动平台和控制终端,所述可移动平台与所述控制终端通信连接;
所述控制终端用于基于测区生成规划航线;
所述可移动平台用于从所述控制终端获取所述规划航线;
按照所述规划航线移动,并在移动过程中通过所搭载的相机对所述测区拍照,以获取所述测区的多张影像;
其中,所述规划航线包括第一航线和第二航线;
所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
所述第一主航线段与所述第二主航线段不平行;
,所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台沿所述第二主航线段采集的影像有重叠的影像区域。
本申请所提供的影像采集方法,采用的规划航线包括第一、第二航线,其中第一航线上的第一主航线段和第二航线上的第二主航线段不平行,沿第一主航线段采集的影像与沿第二主航线段采集的影像有重叠的影像区域。
在一种可选实施方式中,可以通过调整第一航线的航向重叠率来调整采集的影像在第一主航线段方向上的重叠率;可以通过调整第二航线的航向重叠率,来调整采集的影像在第一主航线段的垂直方向上的重叠率。从而在面临需要提高采集的影像的重叠率或者是所要求的采集的影像重叠率较高的情况下,可以不必减小航线上的主航线段之间的间距,导致增设主航线段来增长规划航线的整体长度,实现了在所要求的采集的影像重叠率较高的情况,依旧能够保持较高的影像采集效率。并且在重叠率要求越高的情况下,提升越明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一示例性实施例示出的一种航线示意图;
图2是本申请一示例性实施例示出的同一航线段上采集的相邻两张影像的重叠率的示意图;
图3是本申请一示例性实施例示出的相邻两条航线段之间位置最接 近的两个拍摄点位采集的影像的重叠率的示意图;
图4是本申请一示例性实施例示出的一种影像采集方法流程图;
图5是本申请一示例性实施例示出的一种第一航线的示意图;
图6是本申请一示例性实施例示出的一种第二航线的示意图;
图7是本申请一示例性实施例示出的一种规划航线的示意图;
图8是本申请一示例性实施例示出一种影像获取装置示意图;
图9是本申请一示例性实施例示出的一种可移动平台示意图;
图10是本申请一示例性实施例示出的一种控制终端示意图;
图11是本申请一示例性实施例示出的一种影像获取系统的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示的航线,可以是用户针对某一特定的区域范围(下称测区)所设置的航线,通过可移动平台沿该航线移动,并按照一定的时间间隔或者距离间隔确定拍摄点位,并依次在拍摄点位上进行影像的采集,以采集若干的影像,并将采集所得的各影像进行合成,从而可以得到最终该测区的影像,也可以称之为该测区的全视角全景图像。例如可以通过搭载摄像头的无人飞行器沿该航线飞行来对地面上指定的测区来进行影像的采集,由此得到地面上指定的测区的全视角全景图像。此时基于该航线的影像采集需要考虑的参数包括航线上采集的影像的重叠率、飞行高度、采集的影像的比例等,其中,采集的影像的重叠率主要包括航线上采集的影像 的航向重叠率、旁向重叠率,以图1所示的航线为例说明本申请实施例所说的航向重叠率、旁向重叠率,可以理解,后文所出现的航向重叠率、旁向重叠率在没有特殊说明的情况下,依旧可以按照本实施例的解释理解。图1中包括多条互相平行的主航线段,航向重叠率指的是同一航线段上采集的相邻两张影像的重叠率,如图2所示,为同一航线段上采集的相邻两张影像的重叠率的示意图;旁向重叠率指的是相邻两条主航线段之间位置最接近的两个拍摄点位采集的影像的重叠率,如图3所示,为相邻两条航线段之间位置最接近的两个拍摄点位采集的影像的重叠率的示意图。
用户通过对重叠率、飞行高度、影像比例等参数的调整,可以采集到满足需求的全景图像。例如,针对一些特定场景下,根据经验可以设置航向重叠率为80%、旁向重叠率为70%、飞行高度为100m、采集影像的比例为3:2(或4:3)来进行影像采集。但在一些情况下,为得到效果更好的全视角全景图像,需要设置更高的重叠率,重叠率的增大,将导致航线的整体长度的变长,具体的,依旧可以以图1为例来说明,对于同一测区进行影像采集时,如果要求提高采集的影像在航线段的垂直方向上的重叠率,则需要提高该航线的旁向重叠率,相应的图1所示的航线中各主航线段之间的间距也随之减小,由此将导致主航线段的数量增多,从而使得航线的整体长度变长,影像采集的时间也大大增长,影像采集效率变低。
针对至少以上的问题,本申请实施例提出一种新的影像获取方法,作为改进,可以实现在重叠率要求提高的情况下,依旧能够维持原本航线整体长度的不变,在提升采集的影像的效果的同时避免影像采集时间的增长,确保影像采集的效率。该方法可以应用于搭载相机的可移动平台,具体的可以由可移动平台中搭载的处理器或处理芯片来实现,其中可移动平台可以是无人飞行器、无人车、无人船、机器人等,相机可以是任意具备拍摄功能的设备,例如数码相机、云台相机、摄像头等,一个可能的影像采集的场景可以是无人飞行器搭载相机按照所规划的航线对下方(例如地 面)指定测区进行影像采集,或者还可能是无人车搭载相机按照所规划的路径对上方(例如天空)指定测区进行影像采集,再有,还可能是无人船搭载相机按照所规划的航线对上方指定测区或者是下方指定的测区进行影像采集,可以理解,随着影像采集的场景的不同,对应的用于影像采集的可移动设备也可以根据场景的不同适应性调整,对此并不限定。
另外,在一些可行的例子中,由于用户可以通过控制终端控制可移动平台的移动作业,因此可以是由用户通过操作控制终端与可移动平台之间进行信息的交互来控制可移动平台进行影像采集,其中控制终端可以是移动控制终端,例如手持遥控器、手机、平板等,也可以是固定控制终端,例如台式电脑。具体的,一个实际的场景可以是用户通过在手持遥控器上规划航线以及设置影像的重叠率等参数,并通过手持遥控器发送到可移动平台,以控制可移动平台进行影像采集。当然,也不排除可能预先直接在可移动平台上存储相关的航线以及影像的重叠率等参数信息,由可移动平台在启动后直接自动单独完成影像采集,或者是在接收到控制终端发出的控制信号后开始执行影像采集。具体如何配置,可以由技术人员依据设备的实际处理能力自由选择,对此并不限定。
下面将介绍所提供的影像采集方法,请参照图4,图4是本申请一示例性实施例示出的一种影像采集方法流程图,该方法包括以下步骤:
S401,获取对测区的规划航线;
S402,控制可移动平台按照所述规划航线移动,并在移动过程中通过所述可移动平台上搭载的相机对所述测区拍照,以获取所述测区的多张影像;
其中,所述规划航线包括第一航线和第二航线;
所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
所述第一主航线段与所述第二主航线段不平行;
所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台沿所述第二主航线段采集的影像有重叠的影像区域。
可选的,所述可移动平台沿所述第一主航线段采集的多张影像中相邻影像有重叠的影像区域,所述可移动平台沿所述第二主航线段采集的多张影像中相邻影像有重叠的影像区域。
本申请实施例中测区可以是指定的一个平面区域,例如可以是相对可移动平台的上方、下方、侧方(例如前后、左右等方位)等,对于测区所采用的规划航线主要包括多条相互平行的第一主航线段,以及多条相互平行的第二主航线段,需要说明的是,本申请实施例中所说的第一主航线段或者第二主航线段并不限定绝对为直线段,由于实际操作或者场景因素的影响,其可能是近似直线或者是存在一定弯曲弧度的航线段,例如对于无人车而言,需要考虑地面上是否存在障碍物的情况来使得拍摄路径能够避开障碍物;或者,无人船由于是在水中航行,容易受到水流的影响,因此并不需要完全保证航线段一定为直线段。
另外,第一辅航线段连接相邻两条第一主航线段的端头,第二辅航线段连接相邻两条第二主航线段的端头,可以使得可移动平台在完成一条主航线段的影像采集时,通过辅航线段切换至下一条主航线段继续进行影像采集,可移动平台通过沿辅航线段执行转向、掉头等动作,实现在相邻主航线段之间的切换,进而完成在所有主航线段上的影像采集。当然,可移动平台在辅航线段上也同样可以进行影像采集,并且还可以控制可移动平台在第一、第二航线上进行影像采集时保持机身朝向不变,由此可以减少对所搭载的相机的转动调节,尤其是可移动平台需要在辅航线段转向的 情况下。同时,与主航线段类似的,辅航线段也可以是近似直线或者是存在一定弯曲弧度的航线段。
值得注意的是,第一航线和第二航线可以是同一平面上的航线,也可以是不同平面上的航线,例如在无人飞行器进行航拍的场景中,第一航线和第二航线可以是在同一水平高度上,也可以是在不同的水平高度上。并且还可以是由不同的无人飞行器分别执行第一航线和第二航线上影像采集。例如,考虑到无人飞行器续航的问题,可以是由先由一台无人飞行器进行第一航线上的影像采集,并在完成后降落补充电量,同时由另一台无人飞行器进行第二航线上的影像采集,进而完成整个规划航线的影像采集。相比常规的规划航线下的影像采集,本申请实施例中由于规划航线分为第一、第二航线,可以避免中途由于无人飞行器电量耗尽等原因导致的中断采集。
本申请实施例中,对于第一航线,可以通过调整第一航线的航向重叠率来调整采集的影像在第一主航线段方向上的重叠率;而由于第一主航线段与第二主航线段不平行,在需要调整采集的影像在第一主航线段的垂直方向上的重叠率的情况下,可以仅通过调整第二航线的航向重叠率(即第二主航线段上采集的相邻两张影像的重叠率),来实现调整,可以不必调整第一航线的旁向重叠率,即不调整第一主航线段之间的间距。从而在面临需要提高采集的影像的重叠率的情况下,可以避免增长规划航线的整体长度,从而保持较高的影像采集效率,并且在重叠率要求越高的情况下,提升越明显。
可以理解,第一航线与第二航线并非特指特定航线,其只是为区分彼此的称呼,实际上本申请实施例中规划航线所包括两条航线中任意一条都可以称之为第一航线,而另一条称之为第二航线。为更形象说明本申请以上实施例,以图5-7为例进一步介绍本申请以上实施例所提到的规划航线。
首先参照图5,图5是本申请一示例性实施例示出的一种第一航线的示意图,其中包括沿第一方向上的若干相互平行的第一主航线段,以及连接相邻主航线段的端头的第一辅航线段。
其次参照图6,图6是本申请一示例性实施例示出的一种第二航线的示意图,其中包括沿第二方向上的若干相互平行的第二主航线段,以及连接相邻主航线段的端头的第二辅航线段。
同时还参照图7,图7是本申请一示例性实施例示出的一种规划航线的示意图,其中包括图5所示的第一航线以及图6所示的第二航线,且第一航线中的第一主航线段与第二航线中的第二主航线段相交(此时为同一平面上),可移动平台可以分别沿第一航线和第二航线进行影像采集。可以理解,第一航线也可以是如图6所述的航线,第二航线也可以是图5所示的航线。
进一步,用户还可以根据需求分别对第一航线和第二航线做进一步的调整,以实现对整体规划航线的调整,来获取到满足预期的影像。下面将介绍对于第一、第二航线的调整,可以继续参照图7。
在测区确定的情况下,影响规划航线的整体长度的主要参数为,各第一主航线段之间的间距以及各第二主航线段之间的间距,而相邻的第一主航线段之间的间距和相邻的第二主航线段之间的间距,主要与采集的影像的重叠率要求有关,尤其是采集的影像在主航线段方向上以及主航线段的垂直方向上的重叠率要求。因此可以基于预设的重叠率信息规划所述第一主航线段之间的间距以及所述第二主航线段之间的间距。
在一个实施例中,预设的重叠率信息可以包括第一航线的旁向重叠率和第二航线的旁向重叠率,需要说明,第一航线的旁向重叠率为可移动平台在相邻两条第一主航线段上位置最接近的两个拍摄位点采集的影像的重叠率;第二航线的旁向重叠率为可移动平台在相邻两条第二主航线段上 位置最接近的两个拍摄位点采集的影像的重叠率。通过旁向重叠率的确定,同时结合采集的单个影像的分辨率、像素尺寸、焦距等参数,可以推算相邻两条主航线段上位置最接近的两个拍摄点位的距离,从而推算出相邻两条主航线段的间距。其中,由于第一主航线段与第二主航线段不平行,第二主航线段上采集的影像可以提高第一主航线段的垂直方向上的影像重叠率,因此第一航线可以无需设置较高的旁向重叠率,从而对于第一航线中相邻主航线段之间的间距可以比现有的经验值设置得更大,例如可以将第一航线的旁向重叠率设置为30%来推算相邻主航线段之间的间距。在考虑尽可能缩短规划航线的整体长度的情况下,第二航线中相邻的第二主航线段的间距也可以设置较大,例如其也可以是与第一航线一致,均采用30%的旁向重叠率来推算相邻主航线段之间的间距。
由前面分析可知采集的影像在第一主航线段的垂直方向上的重叠率除了与第一航线的旁向重叠率相关,同时还与第二航线的航向重叠率相关。由此,在一个实施例中,重叠率信息还可以包括第二航线的航向重叠率,需要说明,第二航线的航向重叠率为可移动平台在第二主航线段上采集的相邻两张影像的重叠率。通过综合考虑第一航线的旁向重叠率以及第二航线的航向重叠率的设置,来满足采集的影像在第一主航线段的垂直方向上的重叠率要求,从而确定第一航线的旁向重叠率以推算出第一航线中第一主航线段之间的间距。
同时,由于采集的影像在第一主航线段方向上的重叠率除了与第一航线的航向重叠率相关,同时还与第二航线的旁向重叠率相关,由此,在一个实施例中,重叠率信息还可以包括第一航线的航向重叠率,需要说明,第一航线的航向重叠率为可移动平台在第一主航线段上采集的相邻两张影像的重叠率。通过综合考虑第二航线的旁向重叠率以及第一航线的航向重叠率的设置,来满足采集的影像在第一主航线段方向上的重叠率要求,从而确定第二航线的旁向重叠率以推算出第二航线中第二主航线段之间的间 距。
另外,第一主航线段与第二主航线段的夹角越接近90度,对于采集的影像在第一主航线段的垂直方向上的重叠率的提升越明显,因此,示例性的,可以设置第一主航线段与第二主航线段之间垂直。可以理解,所述的夹角指的是第一航线与第二航线在同一平面的情况下的实际夹角,也可以是第一航线与第二航线在不共面的情况下通过投影得到的在同一平面上的夹角。
同时,对于图1所示的航线,其根据经验设置航向重叠率为80%、旁向重叠率为70%、采集的单张影像比例为3:2进行影像采集,此时该航线的摄影基线在航向和旁向的平均长度差异显著,其中,摄影基线长度可以理解为航向上或旁向上最接近的两个相邻拍摄点位的距离。由于立体视觉前方交会的精度与摄影基线长度和交会角有明确的相关性,摄影基线在航向和旁向的平均长度差异显著,将容易导致最终由采集的各影像所合成的全景图像带有一定方向性的误差。并且摄影基线长度也会影响到遮挡的严重程度,尤其是对于高低起伏严重的区域(比如城市),摄影基线在航向和旁向的长度差异较大会导致遮挡的区域具有明显的方向性。而这些都将影响到最后得到的全景图像的精度和视觉效果。
而图1中采用以上参数进行影像采集导致的摄影基线在航向和旁向的平均长度差异显著,主要体现在摄影基线在旁向上的平均长度显著大于摄影基线在航向上的平均长度,其若想解决此问题,只能缩小各主航线段之间的间距来减小摄影基线在旁向上的平均长度,此举也将会导致航线的整体长度变长。
针对该问题,本申请实施例可以在将第一主航线段与第二主航线段设置为垂直的基础上,进一步设置第一航线的航向重叠率与第二航线的航向重叠率相等,由此可以使得第一主航线段上的摄影基线长度与第二主航线段上的摄影基线长度相同,从而减小规划航线中摄影基线在航向和旁向 的平均长度差异,或者设置第一航线的旁向重叠率与第二航线的旁向重叠率相等也能起到一定的效果。而为了使得规划航线中摄影基线在航向和旁向的平均长度差异最小甚至为0,可以考虑同时设置第一航线的航向重叠率与第二航线的航向重叠率相等,以及第一航线的旁向重叠率与第二航线的旁向重叠率相等。由此能够使最终的得到的全景图像的各方向上的精度更加均一,同时降低遮挡的严重程度在各个方向上具有较大差异的现象,最终得到精度和视觉效果更好的全景图像。值得注意的是,本申请实施例可以在设置旁向重叠率显著小于航向重叠率的情况下解决上述问题,避免缩小主航线段之间的间距导致规划航线的整体长度变长,影响影像采集的效率。
由于本申请以上实施例所提供的规划航线包括第一、第二航线,可移动平台可以是先完成第一航线上的影像采集,在转而在第二航线上进行影像采集,当然,也可以反过来执行。此处以可移动平台依次完成第一航线上的影像采集再完成第二航线上的影像采集为例,所述规划航线还可以包括连接第一航线的终点与第二航线的起点的转接路径,由可移动平台通过该转接路径进行航线的切换。同时为了确保采集的效率,可以考虑确定第一航线的终点与第二航线的起点之间的最短路径为转接路径。其中,该转接路径可以是在可移动平台开始进行影像采集之前预先规划,也可以是在可移动平台完成第一航线上的影像采集后根据实时的周边环境来确定,例如考虑此时周边的障碍物、可行驶或可飞行的路径或航线等,同时还可以根据实时的周边环境对原本预先确定的转换路径做出调整来确保航线的顺利切换。继续参照图7,在一个实施例中,其可以是以A点作为第一航线的起点,B点作为第一航线的终点,C点作为第二航线的起点,D点作为第二航线的终点,在完成第一航线的影像采集时从B点转移至C点进行第二航线的影像采集,其中在B、C点之间不存在障碍的情况下,则可以确定B、C点之间连线的直线段为转接路径,并通过该转接路径完成航线 的切换。
对于可移动平台在规划航线上采集的多张影像,可以根据该多张影像来合成全景图像,例如可以是生成正射影像。其中,对于所获取的多张影像,可以直接将在第一航线和第二航线上采集的各个影像进行拼接生成正射影像。或者,还可以对第一航线和第二航线上采集的各个影像进行筛选、编辑等操作,以得到预期的待合成影像,再对其进行合成最终的正射影像。并且对于各个影像的拼接可以是由可移动平台完成,也可以是由可移动平台上搭载的相机完成,或者还可以是由可移动平台将采集的各影像回传到与之通信连接的控制终端,以供控制终端来完成。具体如何对所获取的影像处理以及合成,技术人员可以根据实际需求选择,对此并不限定。
为更凸显本申请所带来的的有益效果,下面还提供一些具体的数据来补充说明。
以可移动平台为无人飞行器为例,首先依旧是对图1根据经验值所采用的航线参数设置进行分析,采用的飞行高度为100m,搭载的相机以像素为单位的焦距为3650,影像分辨率为5472*3648,航线的重叠率设置为航向80%,旁向70%,航线上(南北向)最邻近的两张影像的摄影基线长度约为20m,相邻航线间(东西向)最邻近的两张影像的摄影基线约为45m;最终所确定的航线总长度为4.3km,预估执行航线的时间为1h 18min。
依旧可以参照图7,本申请所采用的航线分为两个互相垂直的航线,航线的重叠率设置为航向80%,旁向30%,航线上东西向和南北向最邻近的两张影像的摄影基线长度均为20m;由此确定的航线总长度为3.68km,预估执行航线时间约为1h 7min。
而若采用图1所示的航线想要让航向在东西向最邻近的两张影像的摄影基线也大约20m则旁向重叠率需要设置为86.7%,对应的航线长度和执行航向时间大约变为原来的2.25倍即航线长度8.28km,执行航线时间 约为2h 55min,极大的降低了数据的采集效率,并且造成了较大的数据冗余,大幅度增加了之后生成正射影像的步骤的计算量。可见本申请实施例所提供的方案在确保最终影像的质量的同时采集的效率也并未降低。
本申请实施例还提供一种影像获取装置,参照图8,图8是本申请一示例性实施例示出的一种影像获取装置示意图,影像获取装置包括:
处理器801;
用于存储处理器801可执行指令的存储器802;
其中,所述处理器801被配置为:
获取对测区的规划航线;
控制可移动平台按照所述规划航线移动,并在移动过程中通过所述可移动平台上搭载的相机对所述测区拍照,以获取所述测区的多张影像;
其中,所述规划航线包括第一航线和第二航线;
所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
所述第一主航线段与所述第二主航线段不平行;
所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台沿所述第二主航线段采集的影像有重叠的影像区域。
可选的,所述可移动平台沿所述第一主航线段采集的多张影像中相邻影像有重叠的影像区域,所述可移动平台沿所述第二主航线段采集的多张影像中相邻影像有重叠的影像区域。
在上述影像获取装置所示出的处理器801、存储器802的基础上,影像获取装置根据其实际的类型还可以包括实现正常运行所必需的其他组 件。例如,在影像获取装置为处理芯片或集成有处理芯片的主板的情况下,其通过安装于设备上实现控制功能,例如安装于可移动平台或控制终端上,此时影像获取装置还可以包括通信接口,用于与设备上其他器件进行数据的交互;在影像获取装置为电子设备的情况下,此时影像获取装置还可以包括例如输入/输出接口、通信接口、总线等,输入/输出接口可以用于连接输入/输出模块,以实现信息输入及输出。输入输出/模块可以作为组件配置在电子设备中(图中未示出),也可以外接于设备以提供相应功能。输入设备可以包括键盘、鼠标、触摸屏、麦克风、各类传感器等,输出设备可以包括显示器、扬声器、振动器、指示灯等。通信接口用于连接通信模块(图中未示出),以实现电子设备与其他设备的通信交互。其中通信模块可以通过有线方式(例如USB、网线等)实现通信,也可以通过无线方式(例如移动网络、WIFI、蓝牙等)实现通信。总线包括一通路,在电子设备的各个组件(例如处理器、存储器、输入/输出接口和通信接口)之间传输信息。
本申请实施例还提供一种可移动平台,与控制终端通信连接,参照图9,图9是本申请一示例性实施例示出的一种可移动平台示意图,如图9所示,可移动平台包括:
处理器901;
用于存储处理器901可执行指令的存储器902;
输入/输出接口903;
通信接口904;
总线905;
其中,所述处理器901被配置为:
从所述控制终端获取对测区的规划航线;
控制所述可移动平台按照所述规划航线移动,并在移动过程中通过 所述可移动平台上搭载的相机对所述测区拍照,以获取所述测区的多张影像;
其中,所述规划航线包括第一航线和第二航线;
所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
所述第一主航线段与所述第二主航线段不平行;
所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台沿所述第二主航线段采集的影像有重叠的影像区域。
可选的,所述可移动平台沿所述第一主航线段采集的多张影像中相邻影像有重叠的影像区域,所述可移动平台沿所述第二主航线段采集的多张影像中相邻影像有重叠的影像区域。
其中可移动平台可以是无人飞行器、无人车、机器人、无人船等。
本申请实施例还提供一种控制终端,与可移动平台通信连接,参照图10,图10是本申请一示例性实施例示出的一种控制终端示意图,如图10所示,所述控制终端包括:
处理器1001;
用于存储处理器1001可执行指令的存储器1002;
输入/输出接口1003;
通信接口1004;
总线1005;
其中,所述处理器1001被配置为:
获取对测区的规划航线;
向所述可移动平台发送所述规划航线,以控制所述可移动平台按照所述规划航线移动,并在移动过程中通过所述可移动平台上搭载的相机对所述测区拍照,以获取所述测区的多张影像;
其中,所述规划航线包括第一航线和第二航线;
所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
所述第一主航线段与所述第二主航线段不平行;
所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台沿所述第二主航线段采集的影像有重叠的影像区域。
可选的,所述可移动平台沿所述第一主航线段采集的多张影像中相邻影像有重叠的影像区域,所述可移动平台沿所述第二主航线段采集的多张影像中相邻影像有重叠的影像区域。
其中控制终端可以是遥控器、手机、平板、笔记本、台式电脑等。
本申请实施例还提供一种影像获取的系统,包括上述实施例中图9所示的可移动平台和图10所示的控制终端。参照图11,图11是本申请一示例性实施例示出的一种影响获取系统的示意图,包括可移动平台90和控制终端100,对于可移动平台90和控制终端100的介绍可以参照前面实施例,在此不再赘述。
本申请实施例还提供一种计算机存储介质,其上存储有计算机程序,所述计算机程序被执行时实现上述任意实施例所述的方法。对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的 部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本申请所给出的所有实施例,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者通过计算机可读存储介质进行传输。计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或 者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (50)

  1. 一种影像获取方法,其特征在于,所述方法包括:
    获取对测区的规划航线;
    控制可移动平台按照所述规划航线移动,并在移动过程中通过所述可移动平台上搭载的相机对所述测区拍照,以获取所述测区的多张影像;
    其中,所述规划航线包括第一航线和第二航线;
    所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
    所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
    所述第一主航线段与所述第二主航线段不平行;
    所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台沿所述第二主航线段采集的影像有重叠的影像区域。
  2. 根据权利要求1所述的影像获取方法,其特征在于,所述获取对测区的规划航线,包括:
    基于预设的重叠率信息规划所述第一主航线段之间的间距以及所述第二主航线段之间的间距。
  3. 根据权利要求2所述的影像获取方法,其特征在于,所述重叠率信息包括所述第一航线的旁向重叠率和所述第二航线的旁向重叠率;其中,
    所述第一航线的旁向重叠率为所述可移动平台在相邻两条所述第一主航线段上位置最接近的两个拍摄位点采集的影像的重叠率;
    所述第二航线的旁向重叠率为所述可移动平台在相邻两条所述第二主航线段上位置最接近的两个拍摄位点采集的影像的重叠率。
  4. 根据权利要求3所述的影像获取方法,其特征在于,所述重叠率信息还包括所述第一航线的航向重叠率和所述第二航线的航向重叠率;其中,
    所述第一航线的航向重叠率为所述可移动平台在所述第一主航线段上采集的相邻两张影像的重叠率;
    所述第二航线的航向重叠率为所述可移动平台在所述第二主航线段上采集的相邻两张影像的重叠率。
  5. 根据权利要求4所述的影像获取方法,其特征在于,所述第一主航线段和所述第二主航线段垂直。
  6. 根据权利要求5所述的影像获取方法,其特征在于,所述第一航线的航向重叠率与所述第二航线的航向重叠率相等;和/或
    所述第一航线的旁向重叠率与所述第二航线的旁向重叠率相等。
  7. 根据权利要求1所述的影像获取方法,其特征在于,所述规划航线还包括连接所述第一航线的终点与所述第二航线的起点的转接路径。
  8. 根据权利要求7所述的影像获取方法,其特征在于,所述获取对测区的规划航线,包括:
    确定所述第一航线的终点与所述第二航线的起点之间的最短路径为所述转接路径。
  9. 根据权利要求1所述的影像获取方法,其特征在于,所述方法还包括:
    根据所获取的多张影像生成正射影像。
  10. 根据权利要求9所述的影像获取方法,其特征在于,所述根据所获取的多张影像生成正射影像,包括:
    将在所述第一航线和所述第二航线上采集的各个影像进行拼接以生成正射影像。
  11. 一种影像获取装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    获取对测区的规划航线;
    控制可移动平台按照所述规划航线移动,并在移动过程中通过所述可移动平台上搭载的相机对所述测区拍照,以获取所述测区的多张影像;
    其中,所述规划航线包括第一航线和第二航线;
    所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
    所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
    所述第一主航线段与所述第二主航线段不平行;
    所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台沿所述第二主航线段采集的影像有重叠的影像区域。
  12. 根据权利要求11所述的影像获取装置,其特征在于,所述处理器具体被配置为:
    基于预设的重叠率信息规划所述第一主航线段之间的间距以及所述第二主航线段之间的间距。
  13. 根据权利要求12所述的影像获取装置,其特征在于,所述重叠率信息包括所述第一航线的旁向重叠率和所述第二航线的旁向重叠率;其中,
    所述第一航线的旁向重叠率为所述可移动平台在相邻两条所述第一主航线段上位置最接近的两个拍摄位点采集的影像的重叠率;
    所述第二航线的旁向重叠率为所述可移动平台在相邻两条所述第二主航线段上位置最接近的两个拍摄位点采集的影像的重叠率。
  14. 根据权利要求13所述的影像获取装置,其特征在于,所述重叠率信息还包括所述第一航线的航向重叠率和所述第二航线的航向重叠率;其中,
    所述第一航线的航向重叠率为所述可移动平台在所述第一主航线段上采集的相邻两张影像的重叠率;
    所述第二航线的航向重叠率为所述可移动平台在所述第二主航线段上采集的相邻两张影像的重叠率。
  15. 根据权利要求14所述的影像获取装置,其特征在于,所述第一主航线段和所述第二主航线段垂直。
  16. 根据权利要求15所述的影像获取装置,其特征在于,所述第一航线的航向重叠率与所述第二航线的航向重叠率相等;和/或
    所述第一航线的旁向重叠率与所述第二航线的旁向重叠率相等。
  17. 根据权利要求11所述的影像获取装置,其特征在于,所述规划航线还包括连接所述第一航线的终点与所述第二航线的起点的转接路径。
  18. 根据权利要求17所述的影像获取装置,其特征在于,所述处理器具体被配置为:
    确定所述第一航线的终点与所述第二航线的起点之间的最短路径为所述转接路径。
  19. 根据权利要求11所述的影像获取装置,其特征在于,所述处理器还被配置为:
    根据所获取的多张影像生成正射影像。
  20. 根据权利要求19所述的影像获取装置,其特征在于,所述处理器具体被配置为:
    将在所述第一航线和所述第二航线上采集的各个影像进行拼接以生成正射影像。
  21. 一种可移动平台,与控制终端通信连接,其特征在于,所述可移动平台包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    从所述控制终端获取对测区的规划航线;
    控制所述可移动平台按照所述规划航线移动,并在移动过程中通过所述可移动平台上搭载的相机对所述测区拍照,以获取所述测区的多张影像;
    其中,所述规划航线包括第一航线和第二航线;
    所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
    所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
    所述第一主航线段与所述第二主航线段不平行;
    所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台沿所述第二主航线段采集的影像有重叠的影像区域。
  22. 根据权利要求21所述的可移动平台,其特征在于,
    所述第一主航线段之间的间距以及所述第二主航线段之间的间距为基于预设的重叠率信息规划所得。
  23. 根据权利要求22所述的可移动平台,其特征在于,所述重叠率信息包括所述第一航线的旁向重叠率和所述第二航线的旁向重叠率;其中,
    所述第一航线的旁向重叠率为所述可移动平台在相邻两条所述第一主航线段上位置最接近的两个拍摄位点采集的影像的重叠率;
    所述第二航线的旁向重叠率为所述可移动平台在相邻两条所述第二主航线段上位置最接近的两个拍摄位点采集的影像的重叠率。
  24. 根据权利要求23所述的可移动平台,其特征在于,所述重叠率信息还包括所述第一航线的航向重叠率和所述第二航线的航向重叠率;其中,
    所述第一航线的航向重叠率为所述可移动平台在所述第一主航线段上采集的相邻两张影像的重叠率;
    所述第二航线的航向重叠率为所述可移动平台在所述第二主航线段上采集的相邻两张影像的重叠率。
  25. 根据权利要求24所述的可移动平台,其特征在于,所述第一主航线段和所述第二主航线段垂直。
  26. 根据权利要求25所述的可移动平台,其特征在于,所述第一航线的航向重叠率与所述第二航线的航向重叠率相等;和/或
    所述第一航线的旁向重叠率与所述第二航线的旁向重叠率相等。
  27. 根据权利要求21所述的可移动平台,其特征在于,所述规划航线还包括连接所述第一航线的终点与所述第二航线的起点的转接路径。
  28. 根据权利要求27所述的可移动平台,其特征在于,
    所述转接路径为所述第一航线的终点与所述第二航线的起点之间的最短路径。
  29. 根据权利要求21所述的可移动平台,其特征在于,所述处理器还被配置为:
    根据所获取的多张影像生成正射影像;或
    将所获取的多张影像发送到所述控制终端以使所述控制终端根据所述多张影像生成正射影像。
  30. 根据权利要求29所述的可移动平台,其特征在于,
    所述正射影像基于所述第一航线和所述第二航线上采集的各个影像拼接生成。
  31. 一种控制终端,与可移动平台通信连接,其特征在于,所述控制终端包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    获取对测区的规划航线;
    向所述可移动平台发送所述规划航线,以控制所述可移动平台按照所述规划航线移动,并在移动过程中通过所述可移动平台上搭载的相机对所述测区拍照,以获取所述测区的多张影像;
    其中,所述规划航线包括第一航线和第二航线;
    所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
    所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
    所述第一主航线段与所述第二主航线段不平行;
    所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台沿 所述第二主航线段采集的影像有重叠的影像区域。
  32. 根据权利要求31所述的控制终端,其特征在于,所述处理器具体被配置为:
    基于预设的重叠率信息规划所述第一主航线段之间的间距以及所述第二主航线段之间的间距。
  33. 根据权利要求32所述的控制终端,其特征在于,所述重叠率信息包括所述第一航线的旁向重叠率和所述第二航线的旁向重叠率;其中,
    所述第一航线的旁向重叠率为所述可移动平台在相邻两条所述第一主航线段上位置最接近的两个拍摄位点采集的影像的重叠率;
    所述第二航线的旁向重叠率为所述可移动平台在相邻两条所述第二主航线段上位置最接近的两个拍摄位点采集的影像的重叠率。
  34. 根据权利要求33所述的控制终端,其特征在于,所述重叠率信息还包括所述第一航线的航向重叠率和所述第二航线的航向重叠率;其中,
    所述第一航线的航向重叠率为所述可移动平台在所述第一主航线段上采集的相邻两张影像的重叠率;
    所述第二航线的航向重叠率为所述可移动平台在所述第二主航线段上采集的相邻两张影像的重叠率。
  35. 根据权利要求34所述的控制终端,其特征在于,所述第一主航线段和所述第二主航线段垂直。
  36. 根据权利要求35所述的控制终端,其特征在于,所述第一航线的航向重叠率与所述第二航线的航向重叠率相等;和/或
    所述第一航线的旁向重叠率与所述第二航线的旁向重叠率相等。
  37. 根据权利要求31所述的控制终端,其特征在于,所述规划航线还包括连接所述第一航线的终点与所述第二航线的起点的转接路径。
  38. 根据权利要求37所述的控制终端,其特征在于,所述处理器具体被配置为:
    确定所述第一航线的终点与所述第二航线的起点之间的最短路径为所 述转接路径。
  39. 根据权利要求31所述的控制终端,其特征在于,所述处理器还被配置为:
    接收所述可移动平台根据所获取的多张影像生成的正射影像;或
    接收所述可移动平台发送的多张影像并根据所述多张影像生成正射影像。
  40. 根据权利要求39所述的控制终端,其特征在于,
    所述正射影像基于所述第一航线和所述第二航线上采集的各个影像拼接生成。
  41. 一种影像获取的系统,其特征在于,包括可移动平台和控制终端,所述可移动平台与所述控制终端通信连接;
    所述控制终端用于基于测区生成规划航线;
    所述可移动平台用于从所述控制终端获取所述规划航线;
    按照所述规划航线移动,并在移动过程中通过所搭载的相机对所述测区拍照,以获取所述测区的多张影像;
    其中,所述规划航线包括第一航线和第二航线;
    所述第一航线包括多条互相平行的第一主航线段和多条第一辅航线段,相邻两条所述第一主航线段的端头通过所述第一辅航线段连接;
    所述第二航线包括多条互相平行的第二主航线段和多条第二辅航线段,相邻两条所述第二主航线段的端头通过所述第二辅航线段连接;
    所述第一主航线段与所述第二主航线段不平行;
    所述可移动平台沿所述第一主航线段采集的影像与所述可移动平台沿所述第二主航线段采集的影像有重叠的影像区域。
  42. 根据权利要求41所述的系统,其特征在于,所述控制终端用于:
    基于预设的重叠率信息规划所述第一主航线段之间的间距以及所述第二主航线段之间的间距。
  43. 根据权利要求42所述的系统,其特征在于,所述重叠率信息包括 所述第一航线的旁向重叠率和所述第二航线的旁向重叠率;其中,
    所述第一航线的旁向重叠率为所述可移动平台在相邻两条所述第一主航线段上位置最接近的两个拍摄位点采集的影像的重叠率;
    所述第二航线的旁向重叠率为所述可移动平台在相邻两条所述第二主航线段上位置最接近的两个拍摄位点采集的影像的重叠率。
  44. 根据权利要求43所述的系统,其特征在于,所述重叠率信息还包括所述第一航线的航向重叠率和所述第二航线的航向重叠率;其中,
    所述第一航线的航向重叠率为所述可移动平台在所述第一主航线段上采集的相邻两张影像的重叠率;
    所述第二航线的航向重叠率为所述可移动平台在所述第二主航线段上采集的相邻两张影像的重叠率。
  45. 根据权利要求44所述的系统,其特征在于,所述第一主航线段和所述第二主航线段垂直。
  46. 根据权利要求45所述的系统,其特征在于,所述第一航线的航向重叠率与所述第二航线的航向重叠率相等;和/或
    所述第一航线的旁向重叠率与所述第二航线的旁向重叠率相等。
  47. 根据权利要求41所述的系统,其特征在于,所述规划航线还包括连接所述第一航线的终点与所述第二航线的起点的转接路径。
  48. 根据权利要求47所述的系统,其特征在于,
    所述转接路径为所述第一航线的终点与所述第二航线的起点之间的最短路径。
  49. 根据权利要求41所述的系统,其特征在于,所述可移动平台用于:
    根据所获取的多张影像生成正射影像;或
    将所获取的多张影像发送到所述控制终端以使所述控制终端根据所述多张影像生成正射影像。
  50. 根据权利要求49所述的系统,其特征在于,
    所述正射影像基于所述第一航线和所述第二航线上采集的各个影像拼 接生成。
PCT/CN2020/137174 2020-12-17 2020-12-17 影像获取方法、装置、可移动平台、控制终端、系统 WO2022126478A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/137174 WO2022126478A1 (zh) 2020-12-17 2020-12-17 影像获取方法、装置、可移动平台、控制终端、系统
CN202080081322.7A CN114830058A (zh) 2020-12-17 2020-12-17 影像获取方法、装置、可移动平台、控制终端、系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137174 WO2022126478A1 (zh) 2020-12-17 2020-12-17 影像获取方法、装置、可移动平台、控制终端、系统

Publications (1)

Publication Number Publication Date
WO2022126478A1 true WO2022126478A1 (zh) 2022-06-23

Family

ID=82058812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137174 WO2022126478A1 (zh) 2020-12-17 2020-12-17 影像获取方法、装置、可移动平台、控制终端、系统

Country Status (2)

Country Link
CN (1) CN114830058A (zh)
WO (1) WO2022126478A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114882379A (zh) * 2022-07-04 2022-08-09 北京数慧时空信息技术有限公司 一种遥感影像组的精确筛选方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170206648A1 (en) * 2016-01-20 2017-07-20 Ez3D, Llc System and method for structural inspection and construction estimation using an unmanned aerial vehicle
CN107272738A (zh) * 2017-07-11 2017-10-20 成都纵横自动化技术有限公司 飞行航线设置方法及装置
CN109765927A (zh) * 2018-12-29 2019-05-17 湖北无垠智探科技发展有限公司 一种基于app的无人机航摄飞行遥控系统
CN109765933A (zh) * 2019-01-04 2019-05-17 哈瓦国际航空技术(深圳)有限公司 一种无人机带状区域航线规划方法、装置和设备
TW201938991A (zh) * 2018-03-12 2019-10-01 國立高雄科技大學 利用多軸無人飛行載具進行航空拍攝的路線規劃方法
CN111473791A (zh) * 2020-04-30 2020-07-31 北京土小豆在线科技有限公司 一种无人机贴地飞行的路线规划方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170206648A1 (en) * 2016-01-20 2017-07-20 Ez3D, Llc System and method for structural inspection and construction estimation using an unmanned aerial vehicle
CN107272738A (zh) * 2017-07-11 2017-10-20 成都纵横自动化技术有限公司 飞行航线设置方法及装置
TW201938991A (zh) * 2018-03-12 2019-10-01 國立高雄科技大學 利用多軸無人飛行載具進行航空拍攝的路線規劃方法
CN109765927A (zh) * 2018-12-29 2019-05-17 湖北无垠智探科技发展有限公司 一种基于app的无人机航摄飞行遥控系统
CN109765933A (zh) * 2019-01-04 2019-05-17 哈瓦国际航空技术(深圳)有限公司 一种无人机带状区域航线规划方法、装置和设备
CN111473791A (zh) * 2020-04-30 2020-07-31 北京土小豆在线科技有限公司 一种无人机贴地飞行的路线规划方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114882379A (zh) * 2022-07-04 2022-08-09 北京数慧时空信息技术有限公司 一种遥感影像组的精确筛选方法
CN114882379B (zh) * 2022-07-04 2022-09-13 北京数慧时空信息技术有限公司 一种遥感影像组的精确筛选方法

Also Published As

Publication number Publication date
CN114830058A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US11750792B2 (en) Information processing apparatus, image generation method, control method, and storage medium
US11689706B2 (en) Method for generating virtual viewpoint image and image processing apparatus
US11012674B2 (en) Information processing apparatus, image generation method, control method, and program
US20200322584A1 (en) Control device, control method, and storage medium
WO2020083114A1 (zh) 航拍相机的图像处理方法、图像处理系统及无人机
US20200329189A1 (en) Control device, control method, and program
US10462518B2 (en) Image presentation method, terminal device, and server
WO2020103020A1 (zh) 一种测绘采样点的规划方法、装置、控制终端及存储介质
US11991477B2 (en) Output control apparatus, display terminal, remote control system, control method, and non-transitory computer-readable medium
TW201222478A (en) Tracking system and method for image object region and computer program product thereof
CN104822045A (zh) 采用预置位实现观察画面分布式联动显示的方法及装置
JP2020005146A (ja) 出力制御装置、表示端末、情報処理装置、移動体、遠隔制御システム、出力制御方法、プログラムおよび撮影制御装置
JP2019087974A (ja) 撮像装置、撮像方法、表示装置および表示方法
CN110706447A (zh) 灾情位置的确定方法、装置、存储介质及电子装置
JP2019036791A (ja) 画像処理装置、画像処理システム、制御方法、及び、プログラム
WO2022126478A1 (zh) 影像获取方法、装置、可移动平台、控制终端、系统
CN108419052B (zh) 一种多台无人机全景成像方法
JP6758828B2 (ja) 撮像システムおよびその制御方法
WO2020237478A1 (zh) 一种飞行规划方法及相关设备
JP5847591B2 (ja) 情報処理装置、情報処理装置の情報処理方法およびプログラム
WO2017169089A1 (ja) カメラ制御装置
JP6685714B2 (ja) 移動撮像装置の制御装置、移動撮像装置、および移動撮像装置の制御方法
JP2015212876A (ja) 映像再生システム
KR20200069078A (ko) 파노라마 이미지 생성 시스템 및 방법
JPWO2018180214A1 (ja) 画像処理装置、カメラ装置、および画像処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965495

Country of ref document: EP

Kind code of ref document: A1