WO2022126408A1 - 面向电磁矢量互质面阵的合成张量波束成形方法 - Google Patents

面向电磁矢量互质面阵的合成张量波束成形方法 Download PDF

Info

Publication number
WO2022126408A1
WO2022126408A1 PCT/CN2020/136694 CN2020136694W WO2022126408A1 WO 2022126408 A1 WO2022126408 A1 WO 2022126408A1 CN 2020136694 W CN2020136694 W CN 2020136694W WO 2022126408 A1 WO2022126408 A1 WO 2022126408A1
Authority
WO
WIPO (PCT)
Prior art keywords
tensor
coprime
array
vector
electromagnetic
Prior art date
Application number
PCT/CN2020/136694
Other languages
English (en)
French (fr)
Inventor
陈积明
史治国
郑航
周成伟
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US17/439,813 priority Critical patent/US11841448B2/en
Priority to PCT/CN2020/136694 priority patent/WO2022126408A1/zh
Publication of WO2022126408A1 publication Critical patent/WO2022126408A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/143Systems for determining direction or deviation from predetermined direction by vectorial combination of signals derived from differently oriented antennae
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received

Definitions

  • the invention belongs to the field of array signal processing, and relates to a spatial filtering technology for multi-dimensional sparse array received signals, in particular to a synthetic tensor beamforming method oriented to electromagnetic vector coprime area arrays.
  • sparse arrays have larger array apertures and higher spatial resolution than traditional uniform arrays, and can form more precise beam directivity; among them, coprime arrays are used as A typical systematic sparse array architecture is currently a frontier research hotspot in academia.
  • electromagnetic vector sensors can sense the direction of arrival and polarization state information of desired signals at the same time, so that the corresponding The spatial filtering is achieved simultaneously on the direction of arrival and the polarization state of the desired signal.
  • tensors As a multi-dimensional data type, tensors have been widely used in array signal processing, image processing, machine learning and other fields in recent years to model and analyze multi-dimensional signals, thereby effectively preserving the original structure of multi-dimensional signals. information, and excavate its multi-dimensional spatial features.
  • the traditional beamforming method based on vectorized signal processing is generalized in tensor space, which is expected to realize efficient spatial filtering of multi-dimensional received signals.
  • the design of tensor beamforming methods for electromagnetic vector coprime area arrays faces the following difficulties: on the one hand, since the multi-dimensional received signals of electromagnetic vector coprime area arrays cover both direction of arrival and polarization state information, it is necessary to match their Complex spatial information structure, design suitable high-dimensional tensor beamforming weights; The output performance of beamforming causes serious losses, so it is necessary to effectively suppress virtual peaks to improve the output performance of beamforming. Therefore, how to simultaneously match the multi-dimensional received signal structure of the electromagnetic vector coprime array and the sparse array layout characteristics to achieve tensor beamforming with the ability to suppress virtual peaks is still a hot and difficult problem to be solved.
  • a synthetic tensor beamforming method for electromagnetic vector coprime area arrays including:
  • Step 2 The tensor modeling of the received signal of the electromagnetic vector coprime area array
  • Step 4 form a tensor beam power pattern of a coprime sparse uniform sub-area array
  • step 1 specifically includes:
  • the three-dimensional spatial information of the signal received at time t that is, the direction of arrival information in the x-axis direction, the y-axis direction, and the spatial electromagnetic response information, is represented by a three-dimensional tensor, and the three-dimensional data of the collected T sampling snapshots are The signal tensors are superimposed in the fourth dimension as the time dimension, forming a sparse uniform sub-area matrix corresponding to The received signal tensor of Expressed as:
  • the output signal at time t can be expressed as:
  • ⁇ r represents the inner product of the tensor and the matrix along the rth dimension
  • the weight tensor of The weighted equivalent is expressed as the above three beamforming weight vectors right
  • the multi-dimensional weighting of , the corresponding optimization problem is expressed as:
  • the output signal in the rth dimension is obtained by using the beamforming weight vector pair of the remaining two dimensions except the rth dimension After weighting, it is obtained as:
  • step 4 specifically includes:
  • the power value of the tensor beam is the largest, which is regarded as the main lobe; on the two-dimensional direction of arrival plane, the sparse uniform sub-area array and The tensor beam power pattern of and There are virtual peaks in all and their corresponding virtual peak positions and do not overlap each other, i.e.
  • step 5 specifically includes:
  • Coprime synthesis processing is performed on the output signals of the two sparse uniform sub-surface arrays whose virtual peak positions do not overlap each other, so as to realize electromagnetic vector coprime surface array tensor beamforming with virtual peak suppression; wherein, the coprime synthesis
  • the processing includes: co-prime synthesis processing based on the multiplicative criterion and co-prime synthesis processing based on the minimization power criterion.
  • the processing principle of the coprime synthesis based on the multiplicative criterion is: in the two-dimensional direction of arrival superior, The tensor beam power pattern of Corresponding to the virtual peak, The tensor beam power pattern of does not correspond to the virtual peak, so in location will be and Multiplying the tensor beam power of , the virtual peak will be suppressed; similarly, in the two-dimensional direction of arrival superior, The tensor beam power pattern of Corresponding to the virtual peak, The tensor beam power pattern of does not correspond to the virtual peak, then the and By multiplying the tensor beam power of , the virtual peak corresponding to this position can also be suppressed. and The output signal at time t and Multiply to get, expressed as:
  • the processing principle of the coprime synthesis based on the minimization power criterion is: in the two-dimensional direction of arrival superior, The virtual peak response value of more than the The non-imaginary peak position of the corresponding response value By selecting the minimum value among them, the suppression of virtual peaks is realized; similarly, in superior, The virtual peak response value of more than the The non-virtual peak position response value of By selecting the minimum value among them, the suppression of virtual peaks is also achieved;
  • the output signal y min (t) of the electromagnetic vector coprime area array based on the minimization power criterion is the sparse uniform sub-area array and The output signal at time t and The power of the minimization process is obtained:
  • the present invention has the following advantages:
  • the present invention matches the multi-dimensional received signal structure of the electromagnetic vector coprime area array, and at the same time retains its original structural information by constructing the tensorized signal, the spatial filtering principle of the received signal tensor of the coprime sparse uniform sub-area array is formed, It lays a foundation for realizing electromagnetic vector coprime array tensor beamforming with virtual peak suppression capability;
  • the present invention matches the co-prime layout characteristics of two sparse uniform sub-arrays, and obtains the mutual non-overlapping characteristics of the virtual peaks of the two sparse uniform sub-arrays, and based on this, constructs a sparse uniform sub-array based on
  • the two coprime synthesis processing methods proposed under this framework can effectively achieve virtual peak suppression;
  • the present invention fully combines the multi-dimensional received signal structure of the electromagnetic vector coprime area array and the sparse arrangement of the array, and establishes the relationship between the multidimensional received signal structure of the electromagnetic vector coprime area array and the tensor space filtering principle, as well as the sparse homogenizer
  • the correlation between the co-prime layout characteristics of the area array and the distribution of virtual peaks forms the technical route of electromagnetic vector co-prime area array tensor beamforming based on the co-prime synthesis of sparse uniform sub-area arrays.
  • Fig. 1 is the overall flow chart of the present invention
  • Fig. 2 is the structural representation of the electromagnetic vector coprime array in the present invention
  • FIG. 4 is a block diagram of a coprime synthesis process based on the minimization power criterion proposed by the present invention
  • Fig. 6a is the performance comparison diagram of the output SINR of the present invention with the signal-to-noise ratio SNR change;
  • the present invention adopts the spatial filtering of the received signal tensor by the coprime sparse uniform sub-array, and the co-prime synthesis of the output signal of the sub-area array matching the characteristic that the virtual peaks corresponding to the co-prime sparse uniform sub-array do not overlap each other.
  • processing to realize electromagnetic vector coprime surface array tensor beamforming with virtual peak suppression capability and improved output performance include:
  • Step 1 Construct the electromagnetic vector coprime area array
  • Each antenna element uses three mutually orthogonal electric dipoles and three mutually orthogonal magnetic dipoles to realize the perception of the electromagnetic field, with six outputs ;
  • a pair of sparse uniform sub-area arrays are constructed on the plane coordinate system xoy and and respectively contain and antenna elements, as well as respectively a pair of coprime integers; sparse uniform subarea array
  • the spacing of the antenna elements in the x-axis and y-axis directions are respectively and B The positions of the antenna elements in the x-axis and y-axis directions are and in, but B The positions of the antenna elements in the x-axis and y-axis directions are and in, Will and According to the array element at the origin of the coordinate system Combine subarrays in an overlapping manner to obtain the actual containing The electromagnetic vector coprime array of antenna elements;
  • Step 2 The tensor modeling of the received signal of the electromagnetic vector coprime area array
  • each array element in the electromagnetic vector coprime array also contain the direction of arrival information and polarization state information where ⁇ [0,2 ⁇ ] and ⁇ [- ⁇ , ⁇ ] represent the polarization auxiliary angle and polarization phase difference, respectively, and the direction of arrival matrix
  • the polarization state vector g( ⁇ , ⁇ ) can be specifically defined as:
  • each array element in the electromagnetic vector coprime array can use a space electromagnetic response vector Expressed as:
  • the three-dimensional spatial information of the signal received at time t that is, the direction of arrival information in the x-axis direction, the y-axis direction, and the spatial electromagnetic response information, is represented by a three-dimensional tensor, and the three-dimensional data of the collected T sampling snapshots are The signal tensors are superimposed in the fourth dimension as the time dimension, forming a sparse uniform sub-area matrix corresponding to The received signal tensor of Expressed as:
  • ⁇ > represents the tensor inner product
  • ( ⁇ ) * represents the conjugate operation, in order to obtain the tensor beamformer corresponding to the two sparse uniform sub-area arrays Minimize the average output power of the tensor beamformer, and ensure that the direction of arrival of the desired signal and its corresponding polarization state response are free of distortion, and perform optimization processing, the expression is:
  • ( ⁇ ) H represents the conjugate transpose operation, and the corresponding sparse uniform sub-area matrix is solved sequentially by the Lagrange multiplier method. and Three beamforming weight vectors each The six sub-optimization problems of , whose closed-form solutions are:
  • Step 4 form a tensor beam power pattern of a coprime sparse uniform sub-area array
  • the output signals of the co-prime sparse uniform sub-array are synthesized and processed to realize electromagnetic vector co-prime array tensor beamforming with virtual peak suppression.
  • the co-prime synthesis processing of the output signal of the sparse uniform sub-area array includes: co-prime synthesis processing based on the multiplicative criterion and co-prime synthesis processing based on the minimization power criterion;
  • the processing principle of the coprime synthesis based on the multiplicative criterion is: because in the two-dimensional direction of arrival, the superior, The tensor beam power pattern of corresponds to the virtual peak, while The tensor beam power pattern of does not correspond to the virtual peak, so in location will be and Multiplying the tensor beam power of , the virtual peak will be suppressed; similarly, in the two-dimensional direction of arrival superior, The tensor beam power pattern of corresponds to the virtual peak, while The tensor beam power pattern of does not correspond to the virtual peak, then the and By multiplying the tensor beam power of , the virtual peak corresponding to this position can also be suppressed.
  • the output signal y mul (t) of the electromagnetic vector coprime area array based on the multiplicative criterion is obtained by dividing the sparse uniform sub-area array into and The output signal at time t and Multiply to get, expressed as:
  • its tensor beam power pattern is the arithmetic square root of the product of two sparse uniform sub-area tensor beam power patterns:
  • the processing principle of the coprime synthesis based on the minimization power criterion is: in the two-dimensional direction of arrival on, because The virtual peak response value of more than the The non-imaginary peak position of the corresponding response value By selecting the minimum value among them, the suppression of virtual peaks is realized; similarly, in on, because The virtual peak response value of more than the The non-virtual peak position response value of By selecting the minimum value among them, the suppression of virtual peaks will also be achieved; as shown in Figure 4, the output signal under this criterion is a sparse uniform sub-area array and The output signal at time t and The power of the minimization process is obtained:
  • min( ) represents the operation of taking the minimum value; correspondingly, its tensor beam power pattern is formed by selecting the minimum value for the tensor beam power comparison of two sparse uniform sub-arrays in each two-dimensional direction of arrival:
  • the minimization power criterion constrains the response of the virtual peak to the greatest extent on the tensor beam power pattern, the corresponding electromagnetic coprime array tensor beamforming is better than the electromagnetic vector based on the multiplicative criterion in performance.
  • Coprime Array Tensor Beamforming since the minimization power criterion constrains the response of the virtual peak to the greatest extent on the tensor beam power pattern, the corresponding electromagnetic coprime array tensor beamforming is better than the electromagnetic vector based on the multiplicative criterion in performance.

Abstract

本发明属于阵列信号处理领域,一种面向电磁矢量互质面阵的合成张量波束成形方法,包括:构建电磁矢量互质面阵;电磁矢量互质面阵接收信号的张量建模;对应互质稀疏均匀子面阵的三维权重张量设计;形成互质稀疏均匀子面阵的张量波束功率图样;基于稀疏均匀子面阵互质合成处理的电磁矢量互质面阵张量波束成形。本发明从构成电磁矢量互质面阵两个稀疏均匀子面阵的接收信号张量空域滤波原理出发,形成基于稀疏均匀子面阵输出信号的互质合成处理方法,在有效抑制虚峰的条件下,实现电磁矢量互质面阵张量波束成形输出性能的提升,可用于目标定位跟踪与成像。

Description

面向电磁矢量互质面阵的合成张量波束成形方法 技术领域
本发明属于阵列信号处理领域,涉及多维稀疏阵列接收信号的空域滤波技术,具体为一种面向电磁矢量互质面阵的合成张量波束成形方法。
背景技术
波束成形作为阵列信号处理的关键技术之一,被广泛应用于雷达、射电天文、医学成像和5G通信等领域。在软硬件资源受限的情况下,稀疏阵列相比于传统的均匀阵列,拥有更大的阵列孔径和更高的空间分辨率,能够形成更加精尖的波束指向性;其中,互质阵列作为一种典型的系统化稀疏阵列架构,是当前学术界的前沿研究热点。另一方面,为了满足复杂信号探测场景对空间信号极化信息的需求,电磁矢量传感器与传统的标量传感器阵列相比,可以同时感知期望信号的波达方向和极化状态信息,从而能够在对应期望信号的波达方向和极化状态上同时实现空域滤波。为此,在融合电磁矢量传感器与互质面阵的新形态阵列架构上探索有效的波束成形手段,有望实现相关应用领域的性能突破。然而,当前面向电磁矢量互质面阵的波束成形方法研究仍处于起步阶段,由于电磁矢量互质面阵的接收信号涵盖多维度的空间信息,传统矢量化接收信号进行处理分析的手段将破坏其原始的结构化信息。
张量作为一种多维的数据类型,近年来被广泛应用于阵列信号处理、图像处理、机器学习等多个领域,用于进行多维信号的建模和分析,从而有效保留多维信号的原始结构化信息,并挖掘其多维度空间特征。在阵列信号处理领域,将传统基于矢量化信号处理的波束成形方法在张量空间中进行推广,有望实现多维接收信号的高效空域滤波。然而,面向电磁矢量互质面阵的张量波束成形方法设计面临着以下困难:一方面,由于电磁矢量互质面阵的多维接收信号同时涵盖了波达方向和极化状态信息,需要匹配其复杂空间信息结构,设计相适应的高维张量波束成形权重;另一方面,由于电磁矢量互质面阵中阵元的稀疏布设不满足奈奎斯特采样速率,所引入的虚峰将对波束成形的输出性能造成严重损失,因此需要对虚峰进行有效抑制,以提升波束成形的输出性能。因此,如何同时匹配电磁矢量互质面阵的多维接收信号结构和阵列稀疏布设特点,实现具有虚峰抑制能力的张量波束成形,仍然是一个亟待解决的热点和难点问题。
发明内容
为了解决现有技术中存在的多维信号结构化信息损失和虚峰干扰技术问题,本发明提出一种面向电磁矢量互质面阵的合成张量波束成形方法,其具体技术方案如下。
面向电磁矢量互质面阵的合成张量波束成形方法,包括:
步骤1:构建电磁矢量互质面阵;
步骤2:电磁矢量互质面阵接收信号的张量建模;
步骤3:对应互质稀疏均匀子面阵的三维权重张量设计;
步骤4:形成互质稀疏均匀子面阵的张量波束功率图样;
步骤5:基于稀疏均匀子面阵互质合成处理的电磁矢量互质面阵张量波束成形。
进一步的,所述步骤1具体包括:
在接收端的平面坐标系xoy上构造一对稀疏均匀子面阵
Figure PCTCN2020136694-appb-000001
Figure PCTCN2020136694-appb-000002
Figure PCTCN2020136694-appb-000003
分别包含
Figure PCTCN2020136694-appb-000004
Figure PCTCN2020136694-appb-000005
个天线阵元,
Figure PCTCN2020136694-appb-000006
以及
Figure PCTCN2020136694-appb-000007
分别为一对互质整数;稀疏均匀子面阵
Figure PCTCN2020136694-appb-000008
的天线阵元在x轴和y轴方向上的间隔分别为
Figure PCTCN2020136694-appb-000009
Figure PCTCN2020136694-appb-000010
单位间隔d=λ/2,λ表示信号波长;
同理,稀疏均匀子面阵
Figure PCTCN2020136694-appb-000011
的天线阵元在x轴和y轴方向上的间隔分别为
Figure PCTCN2020136694-appb-000012
Figure PCTCN2020136694-appb-000013
中第
Figure PCTCN2020136694-appb-000014
个天线阵元在x轴和y轴方向上的位置分别为
Figure PCTCN2020136694-appb-000015
Figure PCTCN2020136694-appb-000016
其中,
Figure PCTCN2020136694-appb-000017
Figure PCTCN2020136694-appb-000018
中第
Figure PCTCN2020136694-appb-000019
个天线阵元在x轴和y轴方向上的位置分别为
Figure PCTCN2020136694-appb-000020
Figure PCTCN2020136694-appb-000021
Figure PCTCN2020136694-appb-000022
其中,
Figure PCTCN2020136694-appb-000023
Figure PCTCN2020136694-appb-000024
Figure PCTCN2020136694-appb-000025
按照坐标系原点位置处阵元
Figure PCTCN2020136694-appb-000026
重叠的方式进行子阵列组合,获得实际包含
Figure PCTCN2020136694-appb-000027
个天线阵元的电磁矢量互质面阵,每个天线阵元利用三个相互正交的电偶极子和三个相互正交的磁偶极子来实现电磁场的感知,具备六路输出。
进一步的,所述步骤2具体包括:
设置一个远场窄带期望信号从
Figure PCTCN2020136694-appb-000028
方向入射至所述电磁矢量互质面阵,其中θ和
Figure PCTCN2020136694-appb-000029
分别表示所述期望信号的方位角和俯仰角,且θ∈[-π/2,π/2],
Figure PCTCN2020136694-appb-000030
电磁矢量互质面阵中各阵元的六路输出同时包含了波达方向信息
Figure PCTCN2020136694-appb-000031
和极化状态信息
Figure PCTCN2020136694-appb-000032
其中γ∈[0,2π]和η∈[-π,π]分别表示极化辅助角和极化相位差,波达方向矩阵
Figure PCTCN2020136694-appb-000033
和极化状态矢量g(γ,η)具体定义为:
Figure PCTCN2020136694-appb-000034
Figure PCTCN2020136694-appb-000035
其中:
Figure PCTCN2020136694-appb-000036
相应地,电磁矢量互质面阵中各阵元的输出用一个空间电磁响应矢量
Figure PCTCN2020136694-appb-000037
表示为:
Figure PCTCN2020136694-appb-000038
当空间中同时存在G个非相关干扰信号时,其波达方向矩阵、极化状态矢量和空间电磁响应矢量分别用
Figure PCTCN2020136694-appb-000039
Figure PCTCN2020136694-appb-000040
表示,其中g=1,2,…,G;
保留稀疏均匀子面阵
Figure PCTCN2020136694-appb-000041
在t时刻接收信号的三维空间信息,即x轴方向、y轴方向的波达方向信息以及空间电磁响应信息,采用一个三维张量对其进行表示,并将所采集T个采样快拍的三维信号张量在第四维度为时间维度上进行叠加,构成对应于稀疏均匀子面阵
Figure PCTCN2020136694-appb-000042
的接收信号张量
Figure PCTCN2020136694-appb-000043
表示为:
Figure PCTCN2020136694-appb-000044
其中:
Figure PCTCN2020136694-appb-000045
Figure PCTCN2020136694-appb-000046
分别表示电磁矢量互质面阵在x轴和y轴方向上的期望信号导引矢量,且
Figure PCTCN2020136694-appb-000047
Figure PCTCN2020136694-appb-000048
为期望信号的信号波形,ο表示矢量外积,(·) T表示转置操作,
Figure PCTCN2020136694-appb-000049
为独立同分布的加性高斯白噪声张量;则
Figure PCTCN2020136694-appb-000050
Figure PCTCN2020136694-appb-000051
分别表示电磁矢量互质面阵在x轴和y轴方向上的导引矢量,对应于第g个干扰信号,
Figure PCTCN2020136694-appb-000052
表示第g个干扰信号的信号波形。
进一步的,所述步骤3具体包括:
面向构成电磁矢量互质面阵两个稀疏均匀子面阵在t时刻的接收信号张量
Figure PCTCN2020136694-appb-000053
Figure PCTCN2020136694-appb-000054
设置匹配其多维结构化信息的三维权重张量
Figure PCTCN2020136694-appb-000055
通过
Figure PCTCN2020136694-appb-000056
Figure PCTCN2020136694-appb-000057
进行空域滤波,在对应期望信号的波达方向上形成波束指向性,得到的输出信号
Figure PCTCN2020136694-appb-000058
表示为:
Figure PCTCN2020136694-appb-000059
其中:<·>表示张量内积,(·) *表示共轭操作,然后最小化张量波束成形器的平均输出功率,并进行优化处理,使得期望信号的波达方向及其对应极化状态响应无失真,获得两个稀疏均匀子面阵所对应的张量波束成形器
Figure PCTCN2020136694-appb-000060
所述优化处理表达式为:
Figure PCTCN2020136694-appb-000061
Figure PCTCN2020136694-appb-000062
其中:
Figure PCTCN2020136694-appb-000063
表示稀疏均匀子面阵
Figure PCTCN2020136694-appb-000064
对应于期望信号波达方向
Figure PCTCN2020136694-appb-000065
和极化状态(γ,η)的三维空间流形张量,|·|表示复数的求模操作,E[·]表示取期望操作;求解得到分别对应稀疏均匀子面阵
Figure PCTCN2020136694-appb-000066
Figure PCTCN2020136694-appb-000067
的三维权重张量
Figure PCTCN2020136694-appb-000068
Figure PCTCN2020136694-appb-000069
并生成输出信号
Figure PCTCN2020136694-appb-000070
Figure PCTCN2020136694-appb-000071
所述的三维权重张量
Figure PCTCN2020136694-appb-000072
Figure PCTCN2020136694-appb-000073
的各空间维度信息一一对应,将
Figure PCTCN2020136694-appb-000074
用CANDECOMP/PARAFAC分解的方式表示为对应于x轴波达方向信息
Figure PCTCN2020136694-appb-000075
y轴波达方向信息
Figure PCTCN2020136694-appb-000076
和空间电磁响应信息
Figure PCTCN2020136694-appb-000077
波束成形权重矢量的外积:
Figure PCTCN2020136694-appb-000078
则稀疏均匀子面阵
Figure PCTCN2020136694-appb-000079
在t时刻的输出信号
Figure PCTCN2020136694-appb-000080
可表示为:
Figure PCTCN2020136694-appb-000081
其中,× r表示张量和矩阵沿着第r维度的内积;
将对应接收信号张量
Figure PCTCN2020136694-appb-000082
的权重张量
Figure PCTCN2020136694-appb-000083
加权等价表示为上述三个波束成形权重矢量
Figure PCTCN2020136694-appb-000084
Figure PCTCN2020136694-appb-000085
的多维加权,对应的优化问题表示为:
Figure PCTCN2020136694-appb-000086
Figure PCTCN2020136694-appb-000087
Figure PCTCN2020136694-appb-000088
Figure PCTCN2020136694-appb-000089
其中:
Figure PCTCN2020136694-appb-000090
表示稀疏均匀子面阵
Figure PCTCN2020136694-appb-000091
在第r维度的输出信号,通过利用除第r维度以外其余两个维度的波束成形权重矢量对
Figure PCTCN2020136694-appb-000092
进行加权后得到,表示为:
Figure PCTCN2020136694-appb-000093
Figure PCTCN2020136694-appb-000094
Figure PCTCN2020136694-appb-000095
(·) H表示共轭转置操作,利用拉格朗日乘子法依次求解对应稀疏均匀子面阵
Figure PCTCN2020136694-appb-000096
Figure PCTCN2020136694-appb-000097
各自三个 波束成形权重矢量
Figure PCTCN2020136694-appb-000098
的六个子优化问题,其闭式解为:
Figure PCTCN2020136694-appb-000099
Figure PCTCN2020136694-appb-000100
Figure PCTCN2020136694-appb-000101
进一步的,所述步骤4具体包括:
稀疏均匀子面阵张量波束成形器
Figure PCTCN2020136694-appb-000102
的张量波束功率图样
Figure PCTCN2020136694-appb-000103
通过代入
Figure PCTCN2020136694-appb-000104
的CANDECOMP/PARAFAC分解形式等价表示为:
Figure PCTCN2020136694-appb-000105
其中:
Figure PCTCN2020136694-appb-000106
当波达方向在期望信号方向上,即
Figure PCTCN2020136694-appb-000107
时,
Figure PCTCN2020136694-appb-000108
的张量波束功率值最大,视为主瓣;在二维波达方向平面上,稀疏均匀子面阵
Figure PCTCN2020136694-appb-000109
Figure PCTCN2020136694-appb-000110
的张量波束功率图样
Figure PCTCN2020136694-appb-000111
Figure PCTCN2020136694-appb-000112
中均存在虚峰且分别对应的虚峰位置
Figure PCTCN2020136694-appb-000113
Figure PCTCN2020136694-appb-000114
互不重叠,即
Figure PCTCN2020136694-appb-000115
进一步的,所述步骤5具体包括:
对所述的虚峰位置互不重叠的两个稀疏均匀子面阵的输出信号进行互质合成处理,实现虚峰抑制的电磁矢量互质面阵张量波束成形;其中,所述互质合成处理包括:基于乘性准则的互质合成处理和基于最小化功率准则的互质合成处理。
进一步的,所述基于乘性准则的互质合成处理原理为:在二维波达方向上
Figure PCTCN2020136694-appb-000116
上,
Figure PCTCN2020136694-appb-000117
的张量波束功率图样
Figure PCTCN2020136694-appb-000118
对应虚峰,
Figure PCTCN2020136694-appb-000119
的张量波束功率图样
Figure PCTCN2020136694-appb-000120
并不对应虚峰,因此在
Figure PCTCN2020136694-appb-000121
的位置将
Figure PCTCN2020136694-appb-000122
Figure PCTCN2020136694-appb-000123
的张量波束功率相乘,虚峰将被抑制;同理,在二维波达方向
Figure PCTCN2020136694-appb-000124
上,
Figure PCTCN2020136694-appb-000125
的张量波束功率图样
Figure PCTCN2020136694-appb-000126
对应虚峰,
Figure PCTCN2020136694-appb-000127
的张量波束功率图样
Figure PCTCN2020136694-appb-000128
并不对应虚峰,则通过将
Figure PCTCN2020136694-appb-000129
Figure PCTCN2020136694-appb-000130
的张量波束功率相乘,该位置所对应的虚峰也可被抑制;将基于乘性准则的电磁矢量互质面阵输出信号y mul(t)通过 将稀疏均匀子面阵
Figure PCTCN2020136694-appb-000131
Figure PCTCN2020136694-appb-000132
在t时刻的输出信号
Figure PCTCN2020136694-appb-000133
Figure PCTCN2020136694-appb-000134
相乘得到,表示为:
Figure PCTCN2020136694-appb-000135
相应地,该电磁矢量互质面阵的张量波束功率图样为两个稀疏均匀子面阵张量波束功率图样乘积的算术平方根:
Figure PCTCN2020136694-appb-000136
进一步的,所述基于最小化功率准则的互质合成处理原理为:在二维波达方向
Figure PCTCN2020136694-appb-000137
上,
Figure PCTCN2020136694-appb-000138
的虚峰响应值
Figure PCTCN2020136694-appb-000139
大于
Figure PCTCN2020136694-appb-000140
的非虚峰位置对应响应值
Figure PCTCN2020136694-appb-000141
通过选取它们中的最小值,实现虚峰的抑制;同理,在
Figure PCTCN2020136694-appb-000142
上,
Figure PCTCN2020136694-appb-000143
的虚峰响应值
Figure PCTCN2020136694-appb-000144
大于
Figure PCTCN2020136694-appb-000145
的非虚峰位置响应值
Figure PCTCN2020136694-appb-000146
通过选取它们中的最小值,也实现虚峰的抑制;将基于最小化功率准则的电磁矢量互质面阵的输出信号y min(t)是对稀疏均匀子面阵
Figure PCTCN2020136694-appb-000147
Figure PCTCN2020136694-appb-000148
在t时刻的输出信号
Figure PCTCN2020136694-appb-000149
Figure PCTCN2020136694-appb-000150
的功率取最小化处理得到:
Figure PCTCN2020136694-appb-000151
其中,min(·)表示取最小值操作;相应地,该电磁矢量互质面阵的张量波束功率图样是对各二维波达方向上两个稀疏均匀子面阵的张量波束功率对比选取最小值构成的:
Figure PCTCN2020136694-appb-000152
本发明与现有技术相比具有以下优点:
(1)本发明匹配电磁矢量互质面阵的多维接收信号结构,在通过构造张量化信号保留其原始结构化信息的同时,形成互质稀疏均匀子面阵接收信号张量的空域滤波原理,为实现具有虚峰抑制能力的电磁矢量互质面阵张量波束成形奠定了基础;
(2)本发明匹配两个稀疏均匀子面阵的互质布设特点,得出这两个稀疏均匀子面阵虚峰的互不重叠特点,并以此为基础,构建基于稀疏均匀子面阵的互质合成处理技术框架,在该框架下提出的两种互质合成处理手段均有效地实现了虚峰抑制;
(3)本发明充分结合了电磁矢量互质面阵的多维接收信号结构和阵列稀疏布设特点,建立起电磁矢量互质面阵多维接收信号结构与张量空域滤波原理之间、以及稀疏均匀子面阵互质布设特点与虚峰分布之间的关联性,形成了基于稀疏均匀子面阵互质合成处理的电磁矢量互质面阵张量波束成形技术路线。
附图说明
图1是本发明的总体流程框图;
图2是本发明中电磁矢量互质面阵的结构示意图;
图3是本发明所提基于乘性准则的互质合成处理流程框图;
图4是本发明所提基于最小化功率准则的互质合成处理流程框图;
图5a是本发明的基于乘性规准则的张量波束功率图样效果示意图;
图5b是本发明的基于最小化功率准则的张量波束功率图样效果示意图;
图6a是本发明的输出SINR随信噪比SNR变化的性能对比图;
图6b是本发明的输出SINR随采样快拍数T变化的性能对比图。
具体实施方式
为了使本发明的目的、技术方案和技术效果更加清楚明白,以下结合说明书附图和实施例,对本发明作进一步详细说明。
如图1所示,本发明通过互质稀疏均匀子面阵接收信号张量的空域滤波,以及匹配互质稀疏均匀子面阵所对应虚峰互不重叠特点的子面阵输出信号互质合成处理,实现具有虚峰抑制能力且输出性能提升的电磁矢量互质面阵张量波束成形,具体实现步骤包括:
步骤1:构建电磁矢量互质面阵;
接收端使用
Figure PCTCN2020136694-appb-000153
个电磁矢量天线阵元构建电磁矢量互质面阵,每个天线阵元利用三个相互正交的电偶极子和三个相互正交的磁偶极子来实现电磁场的感知,具备六路输出;
如图2所示,在平面坐标系xoy上构造一对稀疏均匀子面阵
Figure PCTCN2020136694-appb-000154
Figure PCTCN2020136694-appb-000155
Figure PCTCN2020136694-appb-000156
分别包含
Figure PCTCN2020136694-appb-000157
Figure PCTCN2020136694-appb-000158
个天线阵元,
Figure PCTCN2020136694-appb-000159
以及
Figure PCTCN2020136694-appb-000160
分别为一对互质整数;稀疏均匀子面阵
Figure PCTCN2020136694-appb-000161
的天线阵元在x轴和y轴方向上的间隔分别为
Figure PCTCN2020136694-appb-000162
Figure PCTCN2020136694-appb-000163
单位间隔d=λ/2,λ表示信号波长;同理,稀疏均匀子面阵
Figure PCTCN2020136694-appb-000164
的天线阵元在x轴和y轴方向上的间隔分别为
Figure PCTCN2020136694-appb-000165
Figure PCTCN2020136694-appb-000166
中第
Figure PCTCN2020136694-appb-000167
个天线阵元在x轴和y轴方向上的位置分别为
Figure PCTCN2020136694-appb-000168
Figure PCTCN2020136694-appb-000169
其中,
Figure PCTCN2020136694-appb-000170
Figure PCTCN2020136694-appb-000171
中第
Figure PCTCN2020136694-appb-000172
个天线阵元在x轴和y轴方向上的位置分别为
Figure PCTCN2020136694-appb-000173
Figure PCTCN2020136694-appb-000174
Figure PCTCN2020136694-appb-000175
其中,
Figure PCTCN2020136694-appb-000176
Figure PCTCN2020136694-appb-000177
Figure PCTCN2020136694-appb-000178
按照坐标系原点位置处阵元
Figure PCTCN2020136694-appb-000179
重叠的方式进行子阵列组合,获得实际包含
Figure PCTCN2020136694-appb-000180
个天线阵元的电磁矢量互质面阵;
步骤2:电磁矢量互质面阵接收信号的张量建模;
设置一个远场窄带期望信号从
Figure PCTCN2020136694-appb-000181
方向入射至电磁矢量互质面阵,其中θ和
Figure PCTCN2020136694-appb-000182
分别表示所述期望信号的方位角和俯仰角,且θ∈[-π/2,π/2],
Figure PCTCN2020136694-appb-000183
电磁矢量互质面阵中各阵元的六路输出同时包含了波达方向信息
Figure PCTCN2020136694-appb-000184
和极化状态信息
Figure PCTCN2020136694-appb-000185
其中γ∈[0,2π]和η∈[-π,π]分别表示极化辅助角和极化相位差,波达方向矩阵
Figure PCTCN2020136694-appb-000186
和极化状态矢量g(γ,η)可具体定义为:
Figure PCTCN2020136694-appb-000187
Figure PCTCN2020136694-appb-000188
其中,
Figure PCTCN2020136694-appb-000189
相应地,电磁矢量互质面阵中各阵元的输出可用一个空间电磁响应矢量
Figure PCTCN2020136694-appb-000190
表示为:
Figure PCTCN2020136694-appb-000191
当空间中同时存在G个非相关干扰信号时,其波达方向矩阵、极化状态矢量和空间电磁响应矢量分别用
Figure PCTCN2020136694-appb-000192
Figure PCTCN2020136694-appb-000193
表示,其中g=1,2,…,G。
保留稀疏均匀子面阵
Figure PCTCN2020136694-appb-000194
在t时刻接收信号的三维空间信息,即x轴方向、y轴方向的波达方向信息以及空间电磁响应信息,采用一个三维张量对其进行表示,并将所采集T个采样快拍的三维信号张量在第四维度为时间维度上进行叠加,构成对应于稀疏均匀子面阵
Figure PCTCN2020136694-appb-000195
的接收信号张量
Figure PCTCN2020136694-appb-000196
表示为:
Figure PCTCN2020136694-appb-000197
其中,
Figure PCTCN2020136694-appb-000198
Figure PCTCN2020136694-appb-000199
分别表示电磁矢量互质面阵在x轴和y轴方向上的期望信号导引矢量,且
Figure PCTCN2020136694-appb-000200
为期望信号的信号波形,ο表示矢量外积,(·) T表示转置操作,
Figure PCTCN2020136694-appb-000201
为独立同分布的加性高斯白噪声张量;则
Figure PCTCN2020136694-appb-000202
分别表示电磁矢量互质面阵在x轴和y轴 方向上的导引矢量,对应于第g个干扰信号,
Figure PCTCN2020136694-appb-000203
表示第g个干扰信号的信号波形;
步骤3:对应互质稀疏均匀子面阵的三维权重张量设计;
面向构成电磁矢量互质面阵两个稀疏均匀子面阵在t时刻的接收信号张量
Figure PCTCN2020136694-appb-000204
Figure PCTCN2020136694-appb-000205
设置匹配其多维结构化信息的三维权重张量
Figure PCTCN2020136694-appb-000206
通过
Figure PCTCN2020136694-appb-000207
Figure PCTCN2020136694-appb-000208
进行空域滤波,在对应期望信号的波达方向上形成波束指向性,得到的输出信号
Figure PCTCN2020136694-appb-000209
表示为:
Figure PCTCN2020136694-appb-000210
其中,<·>表示张量内积,(·) *表示共轭操作,为了获得两个稀疏均匀子面阵所对应的张量波束成形器
Figure PCTCN2020136694-appb-000211
最小化张量波束成形器的平均输出功率,并保证期望信号的波达方向及其对应极化状态响应无失真,进行优化处理,表达式为:
Figure PCTCN2020136694-appb-000212
Figure PCTCN2020136694-appb-000213
其中,
Figure PCTCN2020136694-appb-000214
表示稀疏均匀子面阵
Figure PCTCN2020136694-appb-000215
对应于期望信号波达方向
Figure PCTCN2020136694-appb-000216
和极化状态(γ,η)的三维空间流形张量,|·|表示复数的求模操作,E[·]表示取期望操作;求解得到分别对应稀疏均匀子面阵
Figure PCTCN2020136694-appb-000217
Figure PCTCN2020136694-appb-000218
的三维权重张量
Figure PCTCN2020136694-appb-000219
Figure PCTCN2020136694-appb-000220
并生成输出信号
Figure PCTCN2020136694-appb-000221
Figure PCTCN2020136694-appb-000222
所述的三维权重张量
Figure PCTCN2020136694-appb-000223
Figure PCTCN2020136694-appb-000224
的各空间维度信息一一对应,因此将
Figure PCTCN2020136694-appb-000225
用CANDECOMP/PARAFAC分解的方式表示为对应于x轴波达方向信息
Figure PCTCN2020136694-appb-000226
y轴波达方向信息
Figure PCTCN2020136694-appb-000227
和空间电磁响应信息
Figure PCTCN2020136694-appb-000228
波束成形权重矢量的外积:
Figure PCTCN2020136694-appb-000229
则稀疏均匀子面阵
Figure PCTCN2020136694-appb-000230
在t时刻的输出信号
Figure PCTCN2020136694-appb-000231
可表示为:
Figure PCTCN2020136694-appb-000232
其中,× r表示张量和矩阵沿着第r维度的内积。因此,对应接收信号张量
Figure PCTCN2020136694-appb-000233
的权重张量
Figure PCTCN2020136694-appb-000234
加权可等价表示为上述三个波束成形权重矢量
Figure PCTCN2020136694-appb-000235
Figure PCTCN2020136694-appb-000236
的多维加权,对应的优化问题表示为:
Figure PCTCN2020136694-appb-000237
Figure PCTCN2020136694-appb-000238
Figure PCTCN2020136694-appb-000239
Figure PCTCN2020136694-appb-000240
其中,
Figure PCTCN2020136694-appb-000241
表示稀疏均匀子面阵
Figure PCTCN2020136694-appb-000242
在第r维度的输出信号,可通过利用除第r维度以外其余两个维度的波束成形权重矢量对
Figure PCTCN2020136694-appb-000243
进行加权后得到,表示为:
Figure PCTCN2020136694-appb-000244
Figure PCTCN2020136694-appb-000245
Figure PCTCN2020136694-appb-000246
(·) H表示共轭转置操作,利用拉格朗日乘子法依次求解对应稀疏均匀子面阵
Figure PCTCN2020136694-appb-000247
Figure PCTCN2020136694-appb-000248
各自三个波束成形权重矢量
Figure PCTCN2020136694-appb-000249
的六个子优化问题,其闭式解为:
Figure PCTCN2020136694-appb-000250
Figure PCTCN2020136694-appb-000251
Figure PCTCN2020136694-appb-000252
步骤4:形成互质稀疏均匀子面阵的张量波束功率图样;
稀疏均匀子面阵张量波束成形器
Figure PCTCN2020136694-appb-000253
的张量波束功率图样
Figure PCTCN2020136694-appb-000254
通过代入
Figure PCTCN2020136694-appb-000255
的CANDECOMP/PARAFAC分解形式等价表示为:
Figure PCTCN2020136694-appb-000256
其中,
Figure PCTCN2020136694-appb-000257
当波达方向在期望信号方向上,即
Figure PCTCN2020136694-appb-000258
时,
Figure PCTCN2020136694-appb-000259
的张量波束功率值最大,视为主瓣。然而,由于稀疏均匀子面阵中的阵元间距大于半波长,不满足奈奎斯特采样速率,导致当
Figure PCTCN2020136694-appb-000260
时,
Figure PCTCN2020136694-appb-000261
存在虚峰,而当
Figure PCTCN2020136694-appb-000262
时,
Figure PCTCN2020136694-appb-000263
存在虚峰;由于稀疏均匀子面阵
Figure PCTCN2020136694-appb-000264
Figure PCTCN2020136694-appb-000265
沿着x轴方向和y轴方向的阵元排布都满足互质特性,因此在二维波达方向平面上, 稀疏均匀子面阵
Figure PCTCN2020136694-appb-000266
Figure PCTCN2020136694-appb-000267
分别对应的虚峰位置
Figure PCTCN2020136694-appb-000268
Figure PCTCN2020136694-appb-000269
互不重叠,即
Figure PCTCN2020136694-appb-000270
步骤5:基于稀疏均匀子面阵互质合成处理的电磁矢量互质面阵张量波束成形;
利用所述两个稀疏均匀子面阵虚峰位置互不重叠的特点,对互质稀疏均匀子面阵的输出信号进行合成处理,实现虚峰抑制的电磁矢量互质面阵张量波束成形。
所述稀疏均匀子面阵输出信号的互质合成处理包括:基于乘性准则的互质合成处理和基于最小化功率准则的互质合成处理;
所述基于乘性准则的互质合成处理原理为:由于在二维波达方向上
Figure PCTCN2020136694-appb-000271
上,
Figure PCTCN2020136694-appb-000272
的张量波束功率图样
Figure PCTCN2020136694-appb-000273
对应虚峰,而
Figure PCTCN2020136694-appb-000274
的张量波束功率图样
Figure PCTCN2020136694-appb-000275
并不对应虚峰,因此在
Figure PCTCN2020136694-appb-000276
的位置将
Figure PCTCN2020136694-appb-000277
Figure PCTCN2020136694-appb-000278
的张量波束功率相乘,虚峰将被抑制;同理,在二维波达方向
Figure PCTCN2020136694-appb-000279
上,
Figure PCTCN2020136694-appb-000280
的张量波束功率图样
Figure PCTCN2020136694-appb-000281
对应虚峰,而
Figure PCTCN2020136694-appb-000282
的张量波束功率图样
Figure PCTCN2020136694-appb-000283
并不对应虚峰,则通过将
Figure PCTCN2020136694-appb-000284
Figure PCTCN2020136694-appb-000285
的张量波束功率相乘,该位置所对应的虚峰也可被抑制。如图3所示,基于乘性准则的电磁矢量互质面阵输出信号y mul(t)通过将稀疏均匀子面阵
Figure PCTCN2020136694-appb-000286
Figure PCTCN2020136694-appb-000287
在t时刻的输出信号
Figure PCTCN2020136694-appb-000288
Figure PCTCN2020136694-appb-000289
相乘得到,表示为:
Figure PCTCN2020136694-appb-000290
相应地,其张量波束功率图样为两个稀疏均匀子面阵张量波束功率图样乘积的算术平方根:
Figure PCTCN2020136694-appb-000291
所述基于最小化功率准则的互质合成处理原理为:在二维波达方向
Figure PCTCN2020136694-appb-000292
上,由于
Figure PCTCN2020136694-appb-000293
的虚峰响应值
Figure PCTCN2020136694-appb-000294
大于
Figure PCTCN2020136694-appb-000295
的非虚峰位置对应响应值
Figure PCTCN2020136694-appb-000296
通过选取它们中的最小值,实现虚峰的抑制;同理,在
Figure PCTCN2020136694-appb-000297
上,由于
Figure PCTCN2020136694-appb-000298
的虚峰响应值
Figure PCTCN2020136694-appb-000299
大于
Figure PCTCN2020136694-appb-000300
的非虚峰位置响应值
Figure PCTCN2020136694-appb-000301
通过选取它们中的最小值,也将实现虚峰的抑制;如图4所示,该准则下的输出信号是对稀疏均匀子面阵
Figure PCTCN2020136694-appb-000302
Figure PCTCN2020136694-appb-000303
在t时刻的输出信号
Figure PCTCN2020136694-appb-000304
Figure PCTCN2020136694-appb-000305
的功率取最小化处理得到:
Figure PCTCN2020136694-appb-000306
其中,min(·)表示取最小值操作;相应地,其张量波束功率图样是对各二维波达方向上两个稀疏均匀子面阵的张量波束功率对比选取最小值构成的:
Figure PCTCN2020136694-appb-000307
下面结合实施例对本发明的效果做进一步的描述。
实施例1:采用电磁矢量互质面阵接收入射信号,其参数选取为
Figure PCTCN2020136694-appb-000308
Figure PCTCN2020136694-appb-000309
即架构的电磁矢量互质面阵共包含
Figure PCTCN2020136694-appb-000310
个天线阵元。假定期望信号位于
Figure PCTCN2020136694-appb-000311
并带有极化辅助角γ=15°和相位差分角η=-20°;干扰信号位于
Figure PCTCN2020136694-appb-000312
Figure PCTCN2020136694-appb-000313
在期望信号的信噪比(Signal-to-Noise Ratio,SNR)为0dB,采样快拍数T=300的条件下,绘制基于乘性准则和基于最小化功率准则的电磁矢量互质面阵张量波束功率图样
Figure PCTCN2020136694-appb-000314
Figure PCTCN2020136694-appb-000315
如图图5a和图5b所示,电磁矢量互质面阵的张量波束功率图样在期望信号波达方向的位置对应一个主瓣,而其他的位置不存在虚峰,由此可见,所提电磁矢量互质面阵合成张量波束成形方法有效地抑制了虚峰。
实施例2:进一步地,对比所提电磁矢量互质面阵合成张量波束成形方法与基于电磁矢量均匀面阵的张量信号处理方法的输出信干噪比(Signal-to-Interference-plus-Noise Ratio,SINR)性能;为了保证仿真对比的公平性,电磁矢量均匀面阵按照5行8列的结构排布40个阵元;在采样快拍数T=300条件下,绘制输出SINR随信噪比SNR变化的性能对比曲线,如图6a所示;在SNR=0dB条件下,绘制输出SINR随采样快拍数T变化的性能对比曲线,如图6b所示。从图6a和6b的对比结果可以看出,无论是在不同的期望信号信噪比SNR场景,还是在不同的采样快拍数T场景下,所提基于乘性准则和最小化功率准则的电磁矢量互质面阵合成张量波束成形方法的输出SINR性能均优于基于电磁矢量均匀面阵的张量信号处理方法。得益于电磁矢量互质面阵的阵元稀疏排布带来的大孔径优势以及所提方法对虚峰的有效抑制作用,电磁矢量互质面阵相较于均匀面阵具有更高的输出SINR。与此同时,由于最小化功率准则在张量波束功率图样上最大程度地约束虚峰的响应,其所对应的电磁互质面阵张量波束成形在性能上优于基于乘性准则的电磁矢量互质面阵张量波束成形。
综上所述,本发明匹配电磁矢量互质面阵多维接收信号中涵盖的结构化空间信息,形成了面向互质稀疏均匀子面阵接收信号张量的空域滤波原理;再者,匹配两个稀疏均匀子面阵的互质布设特点,利用二者张量波束功率图样中虚峰互不重叠的特点,对稀疏均匀子面阵的 输出信号进行互质合成处理,从而实现具有虚峰抑制能力且输出性能提升的电磁矢量互质面阵张量波束成形。
以上所述仅是本发明的优选实施方式,虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何的简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (8)

  1. 面向电磁矢量互质面阵的合成张量波束成形方法,其特征在于,包括:
    步骤1:构建电磁矢量互质面阵;
    步骤2:电磁矢量互质面阵接收信号的张量建模;
    步骤3:对应互质稀疏均匀子面阵的三维权重张量设计;
    步骤4:形成互质稀疏均匀子面阵的张量波束功率图样;
    步骤5:基于稀疏均匀子面阵互质合成处理的电磁矢量互质面阵张量波束成形。
  2. 如权利要求1所述的面向电磁矢量互质面阵的合成张量波束成形方法,其特征在于,所述步骤1具体包括:
    在接收端的平面坐标系xoy上构造一对稀疏均匀子面阵
    Figure PCTCN2020136694-appb-100001
    Figure PCTCN2020136694-appb-100002
    Figure PCTCN2020136694-appb-100003
    分别包含
    Figure PCTCN2020136694-appb-100004
    个天线阵元,
    Figure PCTCN2020136694-appb-100005
    以及
    Figure PCTCN2020136694-appb-100006
    分别为一对互质整数;稀疏均匀子面阵
    Figure PCTCN2020136694-appb-100007
    的天线阵元在x轴和y轴方向上的间隔分别为
    Figure PCTCN2020136694-appb-100008
    Figure PCTCN2020136694-appb-100009
    单位间隔d=λ/2,λ表示信号波长;
    同理,稀疏均匀子面阵
    Figure PCTCN2020136694-appb-100010
    的天线阵元在x轴和y轴方向上的间隔分别为
    Figure PCTCN2020136694-appb-100011
    Figure PCTCN2020136694-appb-100012
    中第
    Figure PCTCN2020136694-appb-100013
    个天线阵元在x轴和y轴方向上的位置分别为
    Figure PCTCN2020136694-appb-100014
    Figure PCTCN2020136694-appb-100015
    其中,
    Figure PCTCN2020136694-appb-100016
    Figure PCTCN2020136694-appb-100017
    中第
    Figure PCTCN2020136694-appb-100018
    个天线阵元在x轴和y轴方向上的位置分别为
    Figure PCTCN2020136694-appb-100019
    Figure PCTCN2020136694-appb-100020
    Figure PCTCN2020136694-appb-100021
    其中,
    Figure PCTCN2020136694-appb-100022
    Figure PCTCN2020136694-appb-100023
    Figure PCTCN2020136694-appb-100024
    按照坐标系原点位置处阵元
    Figure PCTCN2020136694-appb-100025
    重叠的方式进行子阵列组合,获得实际包含
    Figure PCTCN2020136694-appb-100026
    个天线阵元的电磁矢量互质面阵,每个天线阵元利用三个相互正交的电偶极子和三个相互正交的磁偶极子来实现电磁场的感知,具备六路输出。
  3. 如权利要求2所述的面向电磁矢量互质面阵的合成张量波束成形方法,其特征在于,所述步骤2具体包括:
    设置一个远场窄带期望信号从
    Figure PCTCN2020136694-appb-100027
    方向入射至所述电磁矢量互质面阵,其中θ和
    Figure PCTCN2020136694-appb-100028
    分别表示所述期望信号的方位角和俯仰角,且θ∈[-π/2,π/2],
    Figure PCTCN2020136694-appb-100029
    电磁矢量互质面阵中各阵元的六路输出同时包含了波达方向信息
    Figure PCTCN2020136694-appb-100030
    和极化状态信息
    Figure PCTCN2020136694-appb-100031
    其中γ∈[0,2π]和η∈[-π,π]分别表示极化辅助角和极化相位差,波达方向矩阵
    Figure PCTCN2020136694-appb-100032
    和极化状态矢量g(γ,η)具体定义为:
    Figure PCTCN2020136694-appb-100033
    Figure PCTCN2020136694-appb-100034
    其中,
    Figure PCTCN2020136694-appb-100035
    相应地,电磁矢量互质面阵中各阵元的输出用一个空间电磁响应矢量
    Figure PCTCN2020136694-appb-100036
    表示为:
    Figure PCTCN2020136694-appb-100037
    当空间中同时存在G个非相关干扰信号时,其波达方向矩阵、极化状态矢量和空间电磁响应矢量分别用
    Figure PCTCN2020136694-appb-100038
    Figure PCTCN2020136694-appb-100039
    表示,其中g=1,2,…,G;
    保留稀疏均匀子面阵
    Figure PCTCN2020136694-appb-100040
    在t时刻接收信号的三维空间信息,即x轴方向、y轴方向的波达方向信息以及空间电磁响应信息,采用一个三维张量对其进行表示,并将所采集T个采样快拍的三维信号张量在第四维度为时间维度上进行叠加,构成对应于稀疏均匀子面阵
    Figure PCTCN2020136694-appb-100041
    的接收信号张量
    Figure PCTCN2020136694-appb-100042
    表示为:
    Figure PCTCN2020136694-appb-100043
    其中:
    Figure PCTCN2020136694-appb-100044
    Figure PCTCN2020136694-appb-100045
    Figure PCTCN2020136694-appb-100046
    分别表示电磁矢量互质面阵在x轴和y轴方向上的期望信号导引矢量,且
    Figure PCTCN2020136694-appb-100047
    Figure PCTCN2020136694-appb-100048
    为期望信号的信号波形,о表示矢量外积,(·) T表示转置操作,
    Figure PCTCN2020136694-appb-100049
    为独立同分布的加性高斯白噪声张量;则
    Figure PCTCN2020136694-appb-100050
    Figure PCTCN2020136694-appb-100051
    分别表示电磁矢量互质面阵在x轴和y轴方向上的导引矢量,对应于第g个干扰信号,
    Figure PCTCN2020136694-appb-100052
    表示第g个干扰信号的信号波形。
  4. 如权利要求3所述的面向电磁矢量互质面阵的合成张量波束成形方法,其特征在于,所述步骤3具体包括:
    面向构成电磁矢量互质面阵两个稀疏均匀子面阵在t时刻的接收信号张量
    Figure PCTCN2020136694-appb-100053
    Figure PCTCN2020136694-appb-100054
    设置匹配其多维结构化信息的三维权重张量
    Figure PCTCN2020136694-appb-100055
    通过
    Figure PCTCN2020136694-appb-100056
    Figure PCTCN2020136694-appb-100057
    进行空域滤波,在对应期望信号的波达方向上形成波束指向性,得到的输出信号
    Figure PCTCN2020136694-appb-100058
    表示为:
    Figure PCTCN2020136694-appb-100059
    其中:<·>表示张量内积,(·) *表示共轭操作,然后最小化张量波束成形器的平均输出功率,并进行优化处理,使得期望信号的波达方向及其对应极化状态响应无失真,获得两个稀疏均匀子面阵所对应的张量波束成形器
    Figure PCTCN2020136694-appb-100060
    所述优化处理表达式为:
    Figure PCTCN2020136694-appb-100061
    Figure PCTCN2020136694-appb-100062
    其中:
    Figure PCTCN2020136694-appb-100063
    表示稀疏均匀子面阵
    Figure PCTCN2020136694-appb-100064
    对应于期望信号波达方向
    Figure PCTCN2020136694-appb-100065
    和极化状态(γ,η)的三维空间流形张量,|·|表示复数的求模操作,E[·]表示取期望操作;求解得到分别对应稀疏均匀子面阵
    Figure PCTCN2020136694-appb-100066
    Figure PCTCN2020136694-appb-100067
    的三维权重张量
    Figure PCTCN2020136694-appb-100068
    Figure PCTCN2020136694-appb-100069
    并生成输出信号
    Figure PCTCN2020136694-appb-100070
    Figure PCTCN2020136694-appb-100071
    所述的三维权重张量
    Figure PCTCN2020136694-appb-100072
    Figure PCTCN2020136694-appb-100073
    的各空间维度信息一一对应,将w i用CANDECOMP/PARAFAC分解的方式表示为对应于x轴波达方向信息
    Figure PCTCN2020136694-appb-100074
    y轴波达方向信息
    Figure PCTCN2020136694-appb-100075
    和空间电磁响应信息
    Figure PCTCN2020136694-appb-100076
    波束成形权重矢量的外积:
    Figure PCTCN2020136694-appb-100077
    则稀疏均匀子面阵
    Figure PCTCN2020136694-appb-100078
    在t时刻的输出信号
    Figure PCTCN2020136694-appb-100079
    可表示为:
    Figure PCTCN2020136694-appb-100080
    其中:× r表示张量和矩阵沿着第r维度的内积;
    将对应接收信号张量
    Figure PCTCN2020136694-appb-100081
    的权重张量
    Figure PCTCN2020136694-appb-100082
    加权等价表示为上述三个波束成形权重矢量
    Figure PCTCN2020136694-appb-100083
    Figure PCTCN2020136694-appb-100084
    的多维加权,对应的优化问题表示为:
    Figure PCTCN2020136694-appb-100085
    Figure PCTCN2020136694-appb-100086
    Figure PCTCN2020136694-appb-100087
    Figure PCTCN2020136694-appb-100088
    其中,
    Figure PCTCN2020136694-appb-100089
    表示稀疏均匀子面阵
    Figure PCTCN2020136694-appb-100090
    在第r维度的输出信号, 通过除第r维度以外其余两个维度的波束成形权重矢量对
    Figure PCTCN2020136694-appb-100091
    进行加权后得到,表示为:
    Figure PCTCN2020136694-appb-100092
    Figure PCTCN2020136694-appb-100093
    Figure PCTCN2020136694-appb-100094
    (·) H表示共轭转置操作,利用拉格朗日乘子法依次求解对应稀疏均匀子面阵
    Figure PCTCN2020136694-appb-100095
    Figure PCTCN2020136694-appb-100096
    各自三个波束成形权重矢量
    Figure PCTCN2020136694-appb-100097
    的六个子优化问题,其闭式解为:
    Figure PCTCN2020136694-appb-100098
    Figure PCTCN2020136694-appb-100099
    Figure PCTCN2020136694-appb-100100
  5. 如权利要求4所述的面向电磁矢量互质面阵的合成张量波束成形方法,其特征在于,所述步骤4具体包括:
    稀疏均匀子面阵张量波束成形器
    Figure PCTCN2020136694-appb-100101
    的张量波束功率图样
    Figure PCTCN2020136694-appb-100102
    通过代入
    Figure PCTCN2020136694-appb-100103
    的CANDECOMP/PARAFAC分解形式等价表示为:
    Figure PCTCN2020136694-appb-100104
    其中:
    Figure PCTCN2020136694-appb-100105
    当波达方向在期望信号方向上,即
    Figure PCTCN2020136694-appb-100106
    时,
    Figure PCTCN2020136694-appb-100107
    的张量波束功率值最大,视为主瓣;在二维波达方向平面上,稀疏均匀子面阵
    Figure PCTCN2020136694-appb-100108
    Figure PCTCN2020136694-appb-100109
    的张量波束功率图样
    Figure PCTCN2020136694-appb-100110
    Figure PCTCN2020136694-appb-100111
    中均存在虚峰且分别对应的虚峰位置
    Figure PCTCN2020136694-appb-100112
    Figure PCTCN2020136694-appb-100113
    互不重叠,即
    Figure PCTCN2020136694-appb-100114
  6. 如权利要求5所述的面向电磁矢量互质面阵的合成张量波束成形方法,其特征在于,所述步骤5具体包括:
    对所述的虚峰位置互不重叠的两个稀疏均匀子面阵的输出信号进行互质合成处理,实现虚峰抑制的电磁矢量互质面阵张量波束成形;其中,所述互质合成处理包括:基于乘性准则的互质合成处理和基于最小化功率准则的互质合成处理。
  7. 如权利要求6所述的面向电磁矢量互质面阵的合成张量波束成形方法,其特征在于,所述基于乘性准则的互质合成处理原理为:在二维波达方向上
    Figure PCTCN2020136694-appb-100115
    上,
    Figure PCTCN2020136694-appb-100116
    的张量波束功率图样
    Figure PCTCN2020136694-appb-100117
    对应虚峰,
    Figure PCTCN2020136694-appb-100118
    的张量波束功率图样
    Figure PCTCN2020136694-appb-100119
    并不对应虚峰,因此在
    Figure PCTCN2020136694-appb-100120
    的位置将
    Figure PCTCN2020136694-appb-100121
    Figure PCTCN2020136694-appb-100122
    的张量波束功率相乘,虚峰将被抑制;同理,在二维波达方向
    Figure PCTCN2020136694-appb-100123
    上,
    Figure PCTCN2020136694-appb-100124
    的张量波束功率图样
    Figure PCTCN2020136694-appb-100125
    对应虚峰,
    Figure PCTCN2020136694-appb-100126
    的张量波束功率图样
    Figure PCTCN2020136694-appb-100127
    并不对应虚峰,则通过将
    Figure PCTCN2020136694-appb-100128
    Figure PCTCN2020136694-appb-100129
    的张量波束功率相乘,该位置所对应的虚峰也可被抑制;将基于乘性准则的电磁矢量互质面阵输出信号y mul(t)通过将稀疏均匀子面阵
    Figure PCTCN2020136694-appb-100130
    Figure PCTCN2020136694-appb-100131
    在t时刻的输出信号
    Figure PCTCN2020136694-appb-100132
    Figure PCTCN2020136694-appb-100133
    相乘得到,表示为:
    Figure PCTCN2020136694-appb-100134
    相应地,该电磁矢量互质面阵的张量波束功率图样为两个稀疏均匀子面阵张量波束功率图样乘积的算术平方根:
    Figure PCTCN2020136694-appb-100135
  8. 如权利要求6所述的面向电磁矢量互质面阵的合成张量波束成形方法,其特征在于,所述基于最小化功率准则的互质合成处理原理为:在二维波达方向
    Figure PCTCN2020136694-appb-100136
    上,
    Figure PCTCN2020136694-appb-100137
    的虚峰响应值
    Figure PCTCN2020136694-appb-100138
    大于
    Figure PCTCN2020136694-appb-100139
    的非虚峰位置对应响应值
    Figure PCTCN2020136694-appb-100140
    通过选取它们中的最小值,实现虚峰的抑制;同理,在
    Figure PCTCN2020136694-appb-100141
    上,
    Figure PCTCN2020136694-appb-100142
    的虚峰响应值
    Figure PCTCN2020136694-appb-100143
    大于
    Figure PCTCN2020136694-appb-100144
    的非虚峰位置响应值
    Figure PCTCN2020136694-appb-100145
    通过选取它们中的最小值,也实现虚峰的抑制;将基于最小化功率准则的电磁矢量互质面阵的输出信号y min(t)是对稀疏均匀子面阵
    Figure PCTCN2020136694-appb-100146
    Figure PCTCN2020136694-appb-100147
    在t时刻的输出信号
    Figure PCTCN2020136694-appb-100148
    Figure PCTCN2020136694-appb-100149
    的功率取最小化处理得到:
    Figure PCTCN2020136694-appb-100150
    其中:min(·)表示取最小值操作;相应地,该电磁矢量互质面阵的张量波束功率图样是对各二维波达方向上两个稀疏均匀子面阵的张量波束功率对比选取最小值构成的:
    Figure PCTCN2020136694-appb-100151
PCT/CN2020/136694 2020-12-16 2020-12-16 面向电磁矢量互质面阵的合成张量波束成形方法 WO2022126408A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/439,813 US11841448B2 (en) 2020-12-16 2020-12-16 Composite tensor beamforming method for electromagnetic vector coprime planar array
PCT/CN2020/136694 WO2022126408A1 (zh) 2020-12-16 2020-12-16 面向电磁矢量互质面阵的合成张量波束成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/136694 WO2022126408A1 (zh) 2020-12-16 2020-12-16 面向电磁矢量互质面阵的合成张量波束成形方法

Publications (1)

Publication Number Publication Date
WO2022126408A1 true WO2022126408A1 (zh) 2022-06-23

Family

ID=82059905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136694 WO2022126408A1 (zh) 2020-12-16 2020-12-16 面向电磁矢量互质面阵的合成张量波束成形方法

Country Status (2)

Country Link
US (1) US11841448B2 (zh)
WO (1) WO2022126408A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105785347A (zh) * 2016-03-31 2016-07-20 北京理工大学 一种矢量天线阵鲁棒自适应波束形成方法
CN107302391A (zh) * 2017-05-05 2017-10-27 浙江大学 基于互质阵列的自适应波束成形方法
CN108344967A (zh) * 2018-01-20 2018-07-31 中国人民解放军战略支援部队信息工程大学 基于互质面阵的二维波达方向快速估计方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653973B2 (en) * 2001-09-07 2003-11-25 Lockheed Martin Corporation Adaptive digital beamforming radar method and system for maintaining multiple source angle super-resolution capability in jamming
CN107045131B (zh) * 2017-05-24 2019-04-19 西北工业大学 张量分解卫星导航抗干扰方法
US20190260124A1 (en) * 2018-02-20 2019-08-22 California Institute Of Technology Perimeter Control Architecture for Phased Array Antennas and Metasurfaces
CN109557502B (zh) * 2018-12-19 2022-09-30 成都理工大学 基于互质双频的稀疏嵌套mimo阵列doa估计方法
CN111665468B (zh) * 2020-06-08 2022-12-02 浙江大学 基于单比特量化信号虚拟域统计量重建的互质阵列波达方向估计方法
CN112710983B (zh) * 2020-12-16 2023-09-26 浙江大学 基于乘性张量波束扫描的电磁矢量互质面阵多维参数估计方法
CN112711000B (zh) * 2020-12-16 2023-08-11 浙江大学 基于最小化准则的电磁矢量互质面阵张量功率谱估计方法
CN112904272B (zh) * 2021-01-18 2022-02-18 浙江大学 基于互相关张量的三维互质立方阵列波达方向估计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105785347A (zh) * 2016-03-31 2016-07-20 北京理工大学 一种矢量天线阵鲁棒自适应波束形成方法
CN107302391A (zh) * 2017-05-05 2017-10-27 浙江大学 基于互质阵列的自适应波束成形方法
CN108344967A (zh) * 2018-01-20 2018-07-31 中国人民解放军战略支援部队信息工程大学 基于互质面阵的二维波达方向快速估计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUI YUFENG, RAO WEI: "Two-dimensional coprime vector-sensor array signal processing based on tensor decompositions", JOURNAL OF NANCHANG INSTITUTE OF TECHNOLOGY, vol. 38, no. 4, 1 August 2019 (2019-08-01), pages 83 - 91, XP055800302 *
LIU YANG; BUCK JOHN R.: "Spatial spectral estimation using a coprime sensor array with the min processor", 2016 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), IEEE, 10 July 2016 (2016-07-10), pages 1 - 5, XP032962596, DOI: 10.1109/SAM.2016.7569626 *

Also Published As

Publication number Publication date
US11841448B2 (en) 2023-12-12
US20230048116A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
Chen et al. Joint DOA, range, and polarization estimation for rectilinear sources with a COLD array
Nehorai et al. Minimum-noise-variance beamformer with an electromagnetic vector sensor
CN108120967B (zh) 一种平面阵列doa估计方法及设备
Xu et al. A multi-direction virtual array transformation algorithm for 2D DOA estimation
CN107104720B (zh) 基于协方差矩阵虚拟域离散化重建的互质阵列自适应波束成形方法
Porozantzidou et al. Azimuth and elevation angles estimation using 2-D MUSIC algorithm with an L-shape antenna
Wang et al. EMVS-MIMO radar with sparse Rx geometry: Tensor modeling and 2D direction finding
CN108872930B (zh) 扩展孔径二维联合对角化doa估计方法
JP2022508505A (ja) 構造化仮想ドメインのテンソル信号の処理に基づく互いに素なエリアアレイの二次元到来方向の推定方法
Wu et al. Passive localization of near-field sources with a polarization sensitive array
CN112731278A (zh) 一种部分极化信号的角度与极化参数欠定联合估计方法
Lin et al. Tensor-based multi-dimensional wideband channel estimation for mmWave hybrid cylindrical arrays
CN112711000B (zh) 基于最小化准则的电磁矢量互质面阵张量功率谱估计方法
Fu et al. Two-dimensional direction-of-arrival estimation for cylindrical nested conformal arrays
CN106980105B (zh) 电磁矢量传感器阵列空间旋转解相干测向方法
Zhang et al. A 2-D DOA estimation method with reduced complexity in unfolded coprime L-shaped array
CN115685093A (zh) 基于级联稀疏多极化线阵的鲁棒自适应波束成形方法
CN109270483B (zh) 三维阵虚拟扩展相干源二维波达方向估计方法
Qu et al. Augmented tensor MUSIC for DOA estimation using nested acoustic vector-sensor array
WO2022126408A1 (zh) 面向电磁矢量互质面阵的合成张量波束成形方法
Huan et al. SASA: Super-resolution and ambiguity-free sparse array geometry optimization with aperture size constraints for MIMO radar
Chevalier et al. Higher order direction finding from arrays with diversely polarized antennas: The PD-2q-MUSIC algorithms
CN112710983B (zh) 基于乘性张量波束扫描的电磁矢量互质面阵多维参数估计方法
Yang et al. A propagator method for bistatic coprime EMVS-MIMO radar
WO2023137813A1 (zh) 基于最优结构化虚拟域张量填充的超分辨互质面阵空间谱估计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965426

Country of ref document: EP

Kind code of ref document: A1