WO2022126339A1 - 土木结构变形监测方法及相关设备 - Google Patents

土木结构变形监测方法及相关设备 Download PDF

Info

Publication number
WO2022126339A1
WO2022126339A1 PCT/CN2020/136242 CN2020136242W WO2022126339A1 WO 2022126339 A1 WO2022126339 A1 WO 2022126339A1 CN 2020136242 W CN2020136242 W CN 2020136242W WO 2022126339 A1 WO2022126339 A1 WO 2022126339A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
measured
camera
time point
image
Prior art date
Application number
PCT/CN2020/136242
Other languages
English (en)
French (fr)
Inventor
刘肖琳
丁晓华
于起峰
张跃强
尹义贺
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2020/136242 priority Critical patent/WO2022126339A1/zh
Publication of WO2022126339A1 publication Critical patent/WO2022126339A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Definitions

  • the present application relates to the technical field of monitoring, and in particular, to a method and related equipment for monitoring deformation of civil structures.
  • structural deformation measurement is to use special measuring instruments and methods to observe the position or shape changes of the structure to be measured to obtain the deformation characteristics of the structure to be measured over time.
  • the first is contact measurement methods, such as displacement meters, accelerometers, etc.
  • the second is to use GPS for deformation monitoring, which has the advantage of being able to achieve all-weather, unattended, real-time or quasi-real-time operations.
  • the third is to use traditional optical measurement technology, such as level, optical theodolite, electronic total station and other instruments, which have the advantages of non-contact measurement and high precision.
  • the fourth is to install an automatic motor on an ordinary total station to form a fully automatic total station (measuring robot), which can automate the measurement process and greatly reduce the observation period.
  • the GPS-based measurement method has the following disadvantages: First, because each observation point needs to be equipped with a receiver antenna, the measurement cost of a large number of points is high; It can be used in the open air, but it is difficult to achieve indoor or underground operations; third, the measurement accuracy in the vertical direction often cannot meet the needs of the project.
  • the traditional optical measurement technology also has its own limitations, such as the difficulty of realizing the automation of the measurement process, the long observation period, and the observation being limited by the external environmental conditions.
  • the commonly used automatic total station measurement methods have the following shortcomings: first, the measurement period is long, and motion alignment is required, and the fastest measurement time is tens of minutes or hours, which cannot meet the needs of high-frequency dynamic measurement; second It is impossible to correct the influence of the instability of the measurement platform itself in real time, and it is impossible to achieve long-term effective and stable measurement.
  • the embodiments of the present application provide a method and related equipment for monitoring deformation of civil structures, which can not only monitor the dynamic, static and quasi-static deformation of civil structures, but also reduce monitoring costs; and can effectively improve the accuracy of deformation monitoring measurement results .
  • the embodiments of the present application provide a method for monitoring deformation of civil structures, which is applied to a system for monitoring deformation of civil structures.
  • the monitoring system includes a marker point, and a The camera unit that captures the marked point at two time points to obtain a captured image, the marked point includes at least three reference points and at least one point to be measured of the civil structure to be measured; the method includes:
  • the displacement of the to-be-measured point in at least one direction in the camera platform coordinate system is determined according to the six-degree-of-freedom variation and the image point coordinates of the to-be-measured point at the first time point and the second time point.
  • the monitoring system further includes a ranging module arranged on the camera platform for measuring the distance between the camera unit and the point to be measured, the ranging module and the camera
  • the units are arranged side by side, and the ranging direction of the ranging module is the same as the shooting direction of the camera unit;
  • determining the position of the to-be-measured point in at least one direction in the camera platform coordinate system according to the six-degree-of-freedom variation and the image point coordinates of the to-be-measured point at the first time point and the second time point. displacement including:
  • the deformation motion of the two or more target to-be-measured points is modeled as a local translational motion
  • the target to-be-measured point is determined according to the six-degree-of-freedom variation, the image point coordinates of the target to-be-measured point at the first time point and the second time point, and the imaging geometric constraint relationship corresponding to the local translational motion The displacement amount in the first direction, the second direction, and the third direction in the camera platform coordinate system.
  • determining the position of the to-be-measured point in at least one direction in the camera platform coordinate system according to the six-degree-of-freedom variation and the image point coordinates of the to-be-measured point at the first time point and the second time point. displacement including:
  • the deformation motion of the three or more target to-be-measured points is modeled as local rigid body motion
  • obtaining the image point coordinates of the at least three reference points and the to-be-measured point at the first time point and the second time point according to the captured image includes:
  • the method before performing image point location processing on the captured image, the method further includes:
  • Filtering is performed on the captured image to filter out interfering pixels in the captured image.
  • an embodiment of the present application provides a system for monitoring deformation of civil structures, including a marker point, a processing device, and a camera unit disposed on the same camera platform for acquiring the coordinates of the image point of the marker point. Including at least three datum points, at least one point to be measured of the tested civil structure;
  • the camera unit configured to obtain a photographed image obtained by photographing the marker point at the first time point and the second time point;
  • the processing device includes:
  • an acquisition unit configured to acquire, according to the captured image, the coordinates of the image points of the at least three reference points and the point to be measured at the first time point and the second time point;
  • a first determining unit configured to determine the six-degree-of-freedom variation of the camera platform according to the image point coordinates of the at least three reference points at the first time point and the second time point;
  • a second determining unit configured to determine at least one direction of the point to be measured in the camera platform coordinate system according to the amount of change of the six degrees of freedom and the coordinates of the image points of the point to be measured at the first time point and the second time point displacement.
  • the camera unit includes at least one camera.
  • embodiments of the present application provide a device for monitoring deformation of civil structures, including: a processor and a memory;
  • the processor is connected to a memory, wherein the memory is used to store program codes, and the processor is used to call the program codes to execute the method for monitoring deformation of a civil structure according to the first aspect.
  • an embodiment of the present application provides a computer storage medium, where the computer storage medium stores a computer program, and the computer program includes program instructions, and when executed by a processor, the program instructions are executed as in the first aspect The described civil structure deformation monitoring method.
  • the civil structure deformation monitoring system includes a marker point, and a camera unit disposed on the same camera platform for capturing the marker point at a first time point and a second time point to obtain a captured image
  • the marker point includes at least Three reference points and at least one point to be measured of the tested civil structure
  • the coordinates of the at least three reference points and the point to be measured at the first time point and the second time point are first obtained according to the captured image; Then determine the six-degree-of-freedom variation of the camera platform according to the image point coordinates of at least three reference points at the first time point and the second time point;
  • the image point coordinates at the two time points determine the displacement of the point to be measured in at least one direction in the camera platform coordinate system.
  • the deformation monitoring based on the images captured by the camera unit can not only monitor the dynamic deformation of civil structures, but also reduce the monitoring cost; while the six-degree-of-freedom variation of the camera platform is used to determine the position of the point to be measured in the camera.
  • the displacement in at least one direction in the platform coordinate system can effectively improve the accuracy of deformation monitoring measurement results.
  • Fig. 1 is the concrete schematic flow chart of a kind of civil structure deformation monitoring method provided in the embodiment of the present application;
  • FIG. 2 is a schematic flowchart of a method for monitoring deformation of a civil structure provided by an embodiment of the present application
  • 3a and 3b are schematic diagrams illustrating the influence of atmospheric jitter on deformation monitoring provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a civil structure deformation monitoring system provided by an embodiment of the present application.
  • 5a and 5b are schematic diagrams of observation errors of a single calibration camera and a dual calibration camera provided by an embodiment of the present application;
  • 6a, 6b, 6c, and 6d are schematic structural diagrams of a civil structure deformation monitoring system provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the basic principle of a single-camera camera measurement provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a processing device of a civil structure deformation monitoring system provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a civil structure deformation monitoring device provided by an embodiment of the present application.
  • a civil structure deformation monitoring method is applied to a civil structure deformation monitoring system.
  • the civil structure includes bridges and culverts, roadbeds, tunnels, dams, high-rise buildings, and the like.
  • the civil structure deformation monitoring system includes a marker point, and a camera unit arranged on the same camera platform for capturing the marker point at the first time point and the second time point to obtain a captured image, wherein the marker point includes at least three reference points, a Measure at least one point to be measured of the civil structure.
  • the number and setting positions of the specific reference points and the points to be measured can be set according to actual needs.
  • the reference point is a marker point whose position is fixed or whose motion is known
  • the point to be measured is a point on the civil structure to be measured that needs to be measured.
  • a camera platform is installed within the monitoring scope of the tested civil structure to set up the camera unit.
  • the camera platform is also the camera observation station, the observation station is a site for observation, and the camera platform is a platform, or a pier, or a tripod, etc., on which the camera can be placed.
  • the camera unit includes at least one camera, and the focal length and number of cameras can be flexibly adjusted according to measurement accuracy requirements and actual working conditions.
  • FIG. 1 is a schematic flowchart of a specific flow of a civil structure deformation monitoring method provided by an embodiment of the present application; after the deformation monitoring unit is initialized, the camera unit tracks synchronously at the first time point and the second time point Collect images of the reference point and the point to be measured; the specific moments of the first time point and the second time point can be set according to actual needs to fully meet the monitoring requirements of the user, for example, the first time point is earlier than the second time point , the first time point may be the initial time or any time designated by the user, and the second time point may also be any time later than the first time designated by the user.
  • FIG. 2 is a schematic flowchart of a method for monitoring deformation of a civil structure provided by an embodiment of the present application; the method for monitoring deformation includes:
  • Step 201 obtain at least three reference points and the image point coordinates of the point to be measured at the first time point and the second time point according to the captured image;
  • capturing an image further includes simultaneously capturing an image including the reference point and/or the point to be measured at the second time point.
  • the above captured images are processed to obtain the image point coordinates of the reference point and the to-be-measured point in the monitoring system at the first time point and the second time point respectively, and the image point coordinates are the position of the image point in the image coordinate system.
  • Step 202 determining the six-degree-of-freedom variation of the camera platform according to the image point coordinates of the at least three reference points at the first time point and the second time point;
  • the reference point is used to obtain the variation of the six-degree-of-freedom motion of the camera platform, that is, the six-degree-of-freedom variation.
  • the image point coordinates of the at least three reference points at the first time point and the second time point are used to solve and determine.
  • Step 203 Determine the displacement of the point to be measured in at least one direction in the camera platform coordinate system according to the variation of the six degrees of freedom and the coordinates of the image points of the point to be measured at the first time point and the second time point.
  • the six-degree-of-freedom variation obtained in step 202 can be used to correct the displacement of the point to be measured in at least one direction in the camera platform coordinate system, wherein the direction in the camera platform coordinate system can include the direction in the image plane imaged by the camera. Both directions and the camera depth direction.
  • the direction in the camera platform coordinate system can include the direction in the image plane imaged by the camera. Both directions and the camera depth direction.
  • the deformation monitoring method of the embodiment of the present application since the measurement speed of the camera in the camera unit is determined by the frame rate (image acquisition rate) of the camera, and the frame rate of the camera can be set according to actual needs, the measurement in the monitoring method The speed is not only controllable, but also the measurement speed is fast. Therefore, the deformation monitoring method based on the images captured by the camera unit can not only monitor the dynamic deformation of civil structures, but also reduce the monitoring cost.
  • the six-degree-of-freedom variation of the camera platform is then used to help determine the displacement of the point to be measured in at least one direction in the camera platform coordinate system, which can effectively improve the accuracy of the deformation monitoring measurement results.
  • step 201 includes:
  • Step 2011, acquiring a captured image including the reference point and/or the point to be measured, captured at the first time point and/or the second time point;
  • the captured image obtained from the camera unit may be an image including only the reference point, an image including only the point to be measured, and both the reference point and the Image of the point to be measured.
  • Step 2012 Perform image point positioning processing on the captured image to obtain the image point coordinates of the reference point and/or the point to be measured at the first time point and/or the second time point.
  • image image point positioning processing is performed on the captured image to determine the reference point in the image or the image point coordinates of the point to be measured in the image.
  • the image image point positioning processing can use DIC (Digital Image Correlation, digital image correlation method) technology or least squares matching technology, and DIC technology may include adaptive template correlation filtering method, adaptive threshold barycenter method, grayscale image fitting method, etc.
  • step 201 before performing image image point positioning processing on the captured image, the method further includes:
  • Step 2013 Perform filtering processing on the captured image to filter out interfering pixels in the captured image.
  • the embodiments of the present application also adopt data analysis methods such as data filtering to suppress the influence of atmospheric shaking, filter the images collected by the camera, filter out the disturbing pixel changes caused by atmospheric shaking in the images of the marker points, and retain the images of the marker points.
  • data filtering to suppress the influence of atmospheric shaking
  • filter the images collected by the camera filter out the disturbing pixel changes caused by atmospheric shaking in the images of the marker points
  • retain the images of the marker points In order to ensure the measurement accuracy, the pixel changes caused by the real spatial displacement occur. The effect comparison is shown in Figures 3a and 3b.
  • Figures 3a and 3b are schematic diagrams of the influence of atmospheric jitter on deformation monitoring provided by the embodiment of the present application.
  • 3b shows the displacement situation to eliminate the influence of atmospheric jitter.
  • the effect comparison results show that in the environment with the most significant atmospheric jitter at noon, after eliminating the influence of atmospheric jitter, the measurement accuracy can reach within 0.6mm, and the sub-millimeter measurement accuracy can be guaranteed.
  • the influence of atmospheric jitter is not eliminated, the obtained measurement results will fluctuate greatly, and the relative displacement change can even reach 23mm, resulting in unusable monitoring results.
  • the six-degree-of-freedom variation of the camera platform is calculated according to the image point coordinates of the at least three reference points at the first time point and the second time point; For example, earlier than the second time point, extract the pixel coordinates of the reference point in the image in real time when the reference point is at the second time point, and calculate the pixel coordinates of the reference point in the image coordinate system at this time relative to the first time point.
  • the horizontal and vertical pixel changes are calculated in real time through the imaging geometric constraints, and the three-dimensional attitude change (ie six-degree-of-freedom displacement) of the camera platform at the second time point relative to the first time point is calculated in real time, including: the camera platform is in the camera Translation in three directions and rotation in three directions in the platform coordinate system.
  • the six-degree-of-freedom variation of the camera platform at the second time point relative to the first time point can be calculated according to the principle of camera measurement. If multiple cameras are used to obtain more than three fiducial points, the equations can be optimized simultaneously.
  • the imaging relationship between the reference point and the camera can be expressed as:
  • the imaging relationship from the reference point to the camera can be expressed as:
  • the rigid body motion of the camera platform coordinate system from time t 0 to time t 1 can be expressed as:
  • the camera's field of view needs to include more than three fiducial points, according to equation (1), equation (2), equation (5), equation The first row of (6) can solve the six-degree-of-freedom variation.
  • the displacement of the point to be measured is corrected according to the real-time calculation result of the six-degree-of-freedom variation of the camera platform, and the measurement error caused by the shaking of the camera platform is eliminated, that is, the accurate coordinates of the point to be measured relative to the camera platform are obtained.
  • the amount of displacement in at least one direction of the system If there is only one point to be measured in the same field of view of the camera, only the measurement by the camera can only obtain the displacement changes in two directions in the image plane imaged by the camera. At this time, the information of the depth direction of the camera needs to be introduced.
  • the direction information, the six-degree-of-freedom variation, and the image point coordinates of the point to be measured at the first time point and the second time point can obtain the displacement of the point to be measured in the camera platform coordinate system in three directions.
  • the information of the depth direction of the camera can be provided by a distance measuring module such as a laser rangefinder, that is, the displacement change of the point to be measured along the depth direction of the camera can be measured, that is, the measurement of the point to be measured to the camera unit (specifically refers to shooting the point to be measured) camera) distance.
  • the motion of more than two points to be measured can be modeled as a local For translational motion, the ranging module can be omitted, and the displacement of the local area to be measured in the three directions in the measurement reference coordinate system can be directly obtained.
  • the motion of the three or more points to be measured can be modeled as local rigid body motion , the ranging module can be omitted, and the overall six-degree-of-freedom motion of the local area to be measured in the measurement reference coordinate system can be directly obtained.
  • the monitoring system further includes a ranging module arranged on the camera platform and used to measure the distance between the camera unit and the point to be measured, the ranging module is arranged side by side with the camera unit, and the ranging module
  • the ranging direction of the camera unit is the same as the shooting direction of the camera unit; specifically, the ranging module measures the distance from the camera that shoots the point to be measured to the point to be measured.
  • Step 203 includes:
  • Step 2031 when there is only one target point to be measured in the same camera field of view of the camera unit, according to the six-degree-of-freedom variation, the image point coordinates of the target point to be measured at the first time point and the second time point, and the imaging geometry Constraint relationship, determine the displacement of the target point to be measured in the first direction and the second direction in the camera platform coordinate system;
  • Step 2032 Obtain the distance between the target point to be measured and the camera unit corresponding to the first time point and the second time point, and determine the No. 1 position of the target point to be measured in the camera platform coordinate system according to the distance and the 6-DOF variation. displacement in three directions.
  • the six-degree-of-freedom variation is used to eliminate the influence of the shaking of the camera platform, to compensate the measurement results obtained based on the camera unit, and to improve the measurement accuracy.
  • a point to be measured in a camera of the camera unit there are:
  • ⁇ P [ ⁇ x, ⁇ y, ⁇ z,0] is the actual displacement of the point to be measured in the measurement reference coordinate system.
  • equation (8) For each measurement point, two constraints on the actual displacement in the measurement reference coordinate system can be provided according to equation (8). Therefore, equations (5) (6) and (8) can be combined, and the camera can be assisted by the ranging module.
  • the information in the depth direction can linearly solve the actual motion ⁇ P of the point to be measured, that is, the displacement in three directions in the camera platform coordinate system.
  • step 203 includes:
  • Step 2033 when there are more than two target to-be-measured points in the same camera field of view of the camera unit, modeling the deformation motion of the two or more target to-be-measured points as a local translational motion;
  • Step 2034 according to the six-degree-of-freedom variation, the image point coordinates of the target point to be measured at the first time point and the second time point, and the imaging geometric constraint relation corresponding to the local translational motion, determine that the target point to be measured is in the camera platform coordinate system The displacement amount in the first direction, the second direction, and the third direction.
  • the modulus is a local translational motion, that is:
  • step 203 includes:
  • Step 2035 when there are more than three target to-be-measured points in the same camera field of view of the camera unit, modeling the deformation motion of the three or more target to-be-measured points as local rigid body motion;
  • Step 2036 according to the six-degree-of-freedom variation, the image point coordinates of the target point to be measured at the first time point and the second time point, and the imaging geometric constraint relation corresponding to the local rigid body motion, determine that the target point to be measured is in the camera platform coordinate system The displacement amount in the first direction, the second direction, and the third direction.
  • the motion of the three or more points to be measured can be modeled as a local Rigid body motion. According to formula (9), using more than three points to be measured, the six-degree-of-freedom motion of the local area to be measured in the measurement reference coordinate system can be obtained
  • the correction methods for one direction and two directions in the camera platform coordinate system are the same as the above three correction directions, and the above formulas are used.
  • the step numbers of the above steps 2031 to 2036 are only for distinguishing different steps, and do not limit the execution order of the steps.
  • the above method corresponding to the two embodiments of steps 2034 to 2036 can obtain the displacement of the point to be measured in at least three directions in the camera platform coordinate system, but in the direction of the camera depth (ie the camera optical axis direction)
  • a distance measuring module such as a laser rangefinder can be installed on the camera platform in a fixed connection with the camera unit to improve the deformation of the point to be measured along the optical axis of the measurement camera. measurement accuracy.
  • the information of the camera depth can also be used to improve the accuracy in the corresponding direction.
  • the camera unit includes at least one camera for acquiring an image including the reference point and/or the point to be measured.
  • the camera in the camera unit can be a camera that is used to shoot the reference point and the point to be measured at the same time, or it can be divided according to different objects, such as a calibration camera that shoots the reference point, and a measurement camera that shoots the point to be measured.
  • the number of cameras in the camera unit needs to be at least two, at least one of which is a measurement camera and at least one of which is a calibration camera. In the actual monitoring process, referring to FIG. 4, FIG.
  • each calibration camera 404 and measurement camera 403 are strictly connected to the same camera platform 402 and triggered synchronously Shooting, the camera frame rate can be selected according to user needs, which can meet the needs of high-precision monitoring of static, quasi-static and dynamic deformation of large structures.
  • the field of view of the calibration camera or measurement camera fixedly installed on the camera platform needs to be able to cover the reference points and/or the points to be measured at different azimuths.
  • the field of view of the measurement camera 403 covers the point to be measured 401, while the calibration camera The field of view 404 covers the fiducial point 405 .
  • the position of the reference point captured by the calibration camera is not limited and can be selected according to the measurement site environment.
  • the camera needs to be calibrated first, and after the calibration, the relative installation relationship does not change during the monitoring process.
  • calibrating the camera a sufficient number of marker points is required, so both the reference point and the point to be measured belong to the marker point, but the marker points used for calibration not only include the reference point and the point to be measured.
  • the number of reference points and points to be measured is not enough, it is necessary to add some temporary marking points. These marking points are only used for camera calibration. After the calibration, you can evacuate.
  • the spatial coordinates of the marker points used for calibration need to be obtained, which can be measured by means such as a total station. Including GPS, or theodolite with photoelectric rangefinder, or three-dimensional laser scanner and other means to obtain the spatial coordinates of the marker point.
  • calibrating camera parameters take a total station as an example to describe the calibration of a certain camera: use the total station to measure the marker points in the camera's field of view in turn, and obtain the three-dimensional space coordinates of each marker point; at the same time, The camera performs synchronous image acquisition on the marker points, and extracts the image point coordinates of each marker point.
  • the optimization solution to complete the calibration of the camera.
  • the camera can also be calibrated using other computer vision calibration methods, which is not specifically limited in this application.
  • the marking points in this application can be either natural features on the tested civil structure, or fixedly installed cooperation markings.
  • the cooperation markings can be circular or diagonal, or Crosshairs or other easily identifiable shapes. Signs can be actively illuminated, or they can rely on reflected sunlight or other light sources for imaging.
  • the sign is preferably an infrared luminescent sign to meet the measurement requirements throughout the day.
  • the number of measurement cameras is determined by the number and distribution of points to be measured. For example: if there is only one point to be measured, only one measuring camera can capture this point. If there are two points to be measured, and the two points are relatively close and can be photographed with one camera, then only one measuring camera can be used, but if the two points are far away, they cannot be photographed with one camera at the same time. , then use two measuring cameras. And so on.
  • the number of calibration cameras is determined according to the accuracy requirements for monitoring the points to be measured and the direction requirements for monitoring the points to be measured. For example, if you only care about the displacement of the point to be measured in one direction. Then at least one calibration camera can be satisfied, and the accuracy can also be satisfied. For example, if the measurement requirements only focus on the vertical settlement of the target to be measured, each measurement system can be configured with only one calibration camera.
  • the two-dimensional displacement of the point to be measured is concerned (displacement in two directions within the camera plane is measured)
  • at least one calibration camera is required. If the measurement accuracy is high, two or more calibration cameras are required.
  • High-precision calculation of the six-degree-of-freedom variation of the camera platform is the key to measuring the self-calibration of the camera to obtain the displacement variation of the point to be measured in three directions with high precision.
  • the numerical simulation process is as follows: first, set the camera parameters, image resolution size, shooting distance, and randomly give the camera attitude angle to generate an ideal image of the landmark. Add the extraction error to the ideal image point to simulate the actual mark positioning error, solve the camera pose through the image mark positioning point with the error, calculate the attitude angle calculation error, and analyze the mean, standard deviation and root mean square value of the error.
  • Figure 5a shows the error of the observation platform attitude calculated by a single correction camera
  • Figure 5b shows the error of the observation platform attitude calculated by the dual correction camera.
  • the simulation results show that a single calibration camera can solve the six degrees of freedom displacement of the camera platform (but the displacement and rotation along the depth direction of the camera are one to two orders of magnitude lower than the displacement and rotation in the other two directions), while the two A calibration camera placed at a certain angle can supplement the solution results in the depth direction of a single camera, and can calculate the six-degree-of-freedom variation of the camera platform with high precision.
  • the calculation accuracy of a single correction camera for the roll angle is poor, and the calculation error is one to two orders of magnitude higher than the rotation angle of the other two directions.
  • the reason is that the image change caused by the roll amount of a single camera is not sensitive; and
  • the roll angle of one camera can be solved by the pitch angle compensation of the other camera, which can greatly improve the solution accuracy of the roll angle of the observation platform. Therefore, in practical engineering applications, the number of calibration cameras can be adjusted according to measurement requirements to achieve the best configuration.
  • FIG. 6a Figure 6a, Figure 6b, Figure 6c, Figure 6d
  • FIG. 6a it is a schematic structural diagram of a civil structure deformation monitoring system provided by the embodiment of the present application; wherein, the first possibility, referring to Figure 6a, In the monitoring system, on the camera platform 602, the calibration camera 606 is used in conjunction with the pan/tilt 605 to observe the reference points 601 at different positions through the motion of the pan/tilt; while the measurement camera 604 is aligned with the control point 603 during fixed installation and does not need to be used. Cloud platform.
  • the second case referring to FIG.
  • the measurement camera 604 is used in conjunction with the pan/tilt 605 to observe the points to be measured 603 at different positions through the motion of the pan/tilt; on the contrary, the calibration camera 606 is aligned with the reference point 601 during fixed installation. No gimbal required.
  • the calibration camera 606 and the measurement camera 604 are respectively set with a pan/tilt for use. Through the motion of the pan/tilt, the reference point and the point to be measured at different positions can be observed.
  • only one camera 607 is used in conjunction with the pan/tilt 605, and through the motion of the pan/tilt, only one camera observes the reference points and the points to be measured at different positions.
  • the camera can be used as a measurement camera or a calibration camera, so as to appropriately reduce the number of cameras in the camera observation station .
  • the sub-millimeter measurement accuracy can be guaranteed.
  • Image object surface resolution is the most important factor in determining the accuracy of camera measurement. If the resolution of the image object surface reaches the order of millimeters, that is, a pixel represents several square millimeters of the object surface, and with the sub-pixel positioning and extraction algorithm, the measurement accuracy may reach the order of sub-millimeters. Or, if the resolution of the image object surface reaches the sub-millimeter level, the measurement accuracy may reach the sub-millimeter level with the whole pixel extraction algorithm; if the sub-pixel extraction algorithm is used, the measurement accuracy can be higher. And so on.
  • FIG. 7 is a schematic diagram of the basic principle of a single-camera camera measurement provided by an embodiment of the present application; if the size of the shooting field of view is W ⁇ H, and the resolution of the camera is M ⁇ N, then the image object plane resolution
  • the formula for calculating the rate is:
  • the field of view is a quantity related to the object distance. The farther the object distance is, the larger the field of view, as shown in the figure. Therefore, the image object plane resolution is related to the object distance, also known as the magnification factor of the scene to the image plane. Assuming that the size of the photosensitive pixel is dx ⁇ dy, the focal length is f, and the object distance is D, then according to the similarity relationship:
  • the high-precision solution of the six-degree-of-freedom attitude change of the camera platform itself is realized by installing several calibration cameras, and the simultaneous high-precision measurement of large-scale range deformation is realized by installing several measurement cameras, which effectively expands the camera measurement.
  • the application range of the technology and the ability to solve practical engineering problems can be used for deformation monitoring of bridges and culverts, roadbeds, tunnels, dams, high-rise buildings and other structures, and has important theoretical research significance and broad application prospects.
  • the static and dynamic sub-millimeter deformation self-calibration camera monitoring method based on the principle of camera measurement can monitor various structural deformations.
  • the camera measurement method has mature theory, high measurement accuracy, high measurement frequency, low equipment cost, convenient operation, can monitor any multiple points, no prism or annual inspection, and the system has a high degree of digitization, which can meet the needs of large-scale structures in the military and civilian fields.
  • the demand for long-term, multi-point, dynamic, non-contact, real-time, sub-millimeter precision measurement of deformation has greatly improved the deformation measurement level of large structures.
  • the embodiment of the present application further discloses a civil structure deformation monitoring system.
  • the civil structure deformation monitoring system includes a marking point, a processing device, and a camera platform set on the same camera platform for acquiring the marking point.
  • the camera unit with the coordinates of the image point, the mark point includes at least three reference points and at least one point to be measured of the measured civil structure;
  • a camera unit configured to obtain a captured image at the first time point and the second time point by capturing the mark point
  • FIG. 8 is a schematic structural diagram of a processing device of a civil structure deformation monitoring system provided by an embodiment of the present application; the processing device includes:
  • an acquisition unit 801, configured to acquire at least three reference points and the image point coordinates of the point to be measured at the first time point and the second time point according to the captured image;
  • a first determining unit 802 configured to determine the six-degree-of-freedom variation of the camera platform according to the image point coordinates of the at least three reference points at the first time point and the second time point;
  • the second determining unit 803 is configured to determine the displacement of the point to be measured in at least one direction in the camera platform coordinate system according to the six-degree-of-freedom variation and the image point coordinates of the point to be measured at the first time point and the second time point.
  • the camera unit includes at least one camera.
  • the obtaining unit 801 includes:
  • a first module used for acquiring a captured image including a reference point and/or a point to be measured, captured at a first time point and/or a second time point;
  • the second module is used to perform image point positioning processing on the captured image to obtain the image point coordinates of the reference point and/or the point to be measured at the first time point and/or the second time point.
  • the obtaining unit 801 further includes:
  • the third module is configured to perform filtering processing on the captured image before performing image image point positioning processing on the captured image to filter out interfering pixels in the captured image.
  • the monitoring system further includes a ranging module arranged on the camera platform and used to measure the distance between the camera unit and the point to be measured, the ranging module is arranged side by side with the camera unit, and the ranging module The ranging direction is the same as the shooting direction of the camera unit.
  • the second determining unit 803 includes:
  • the fourth module is used for when there is only one target point to be measured in the same camera field of view of the camera unit, according to the change of six degrees of freedom, the image point coordinates of the target point to be measured at the first time point and the second time point, And the imaging geometric constraint relationship, determine the displacement of the target point to be measured in the first direction and the second direction in the camera platform coordinate system; obtain the target point to be measured and the camera unit corresponding to the first time point and the second time point The distance between them, and the displacement of the target point to be measured in the third direction in the camera platform coordinate system is determined according to the distance and the six-degree-of-freedom variation.
  • the second determining unit 803 includes:
  • the fifth module is used for modeling the deformation motion of the two or more target to-be-measured points as local translation motion when there are more than two target to-be-measured points in the same camera field of view of the camera unit; , the image point coordinates of the target point to be measured at the first time point and the second time point, and the imaging geometric constraint relationship corresponding to the local translation motion, to determine the first direction and the second direction of the target point to be measured in the camera platform coordinate system , the displacement in the third direction.
  • the second determining unit 803 includes:
  • the sixth module is used for modeling the deformation motion of the three or more target to-be-measured points as local rigid body motion when there are more than three target to-be-measured points in the same camera field of view of the camera unit;
  • each unit or module in the civil structure deformation monitoring system can be separately or all combined into one or several other units or modules, or some of the units or modules can be further divided into smaller functionally. It is composed of multiple units or modules, which can realize the same operation without affecting the realization of the technical effects of the embodiments of the present application.
  • the above units or modules are divided based on logical functions. In practical applications, the function of one unit (or module) can also be implemented by multiple units (or modules), or the functions of multiple units (or modules) are implemented by one unit. (or module) implementation.
  • the embodiments of the present application further provide a civil structure deformation monitoring device.
  • FIG. 9 is a schematic structural diagram of a civil structure deformation monitoring device provided by an embodiment of the present application.
  • the above-mentioned civil structure deformation monitoring system can be applied to the civil structure deformation monitoring device 900 , and the civil structure deformation monitoring device 900 may include: a processor 901 , a network interface 904 and a memory 905 .
  • the civil structure deformation monitoring device 900 may further include: a user interface 903 and at least one communication bus 902 . Among them, the communication bus 902 is used to realize the connection and communication between these components.
  • the user interface 903 may include a display screen (Display) and a keyboard (Keyboard), and the optional user interface 903 may also include a standard wired interface and a wireless interface.
  • the network interface 904 may include a standard wired interface and a wireless interface (eg, a WI-FI interface).
  • the memory 905 may be high-speed RAM memory or non-volatile memory, such as at least one disk memory.
  • the memory 905 can optionally also be at least one storage device located away from the aforementioned processor 901 .
  • the memory 905 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a device control application program.
  • the network interface 904 can provide a network communication function; the user interface 903 is mainly used to provide an input interface for the user; The device controls the application program to realize the steps of the above-mentioned civil structure deformation monitoring method.
  • the civil structure deformation monitoring device 900 described in the embodiments of the present application can perform the above-mentioned civil structure deformation monitoring method, and can also perform the above-mentioned description of the civil structure deformation monitoring system, which will not be repeated here. In addition, the description of the beneficial effects of using the same method will not be repeated.
  • an embodiment of the present application further provides a computer storage medium, and the computer storage medium stores a computer program executed by the aforementioned civil structure deformation monitoring system, and the computer program It includes program instructions.
  • the processor executes the program instructions, it can execute the description of the method for monitoring the deformation of the civil structure. Therefore, it will not be repeated here.
  • the description of the beneficial effects of using the same method will not be repeated.
  • the program can be stored in a computer-readable storage medium, and when the program is executed , which may include the processes of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM) or the like.

Abstract

一种土木结构变形监测方法及相关设备,土木结构变形监测系统包括标志点,以及设置在同一相机平台(402)的相机单元,标志点包括至少三个基准点(405)、被测土木结构的至少一个待测点(401);先根据拍摄图像获取至少三个基准点(405)和待测点(401)在第一时间点和第二时间点的像点坐标(201);再根据至少三个基准点(405)在第一时间点和第二时间点的像点坐标确定相机平台(402)的六自由度变化量(202);最后,根据六自由度变化量、待测点(401)在第一时间点和第二时间点的像点坐标确定待测点(401)在相机平台坐标系中至少一个方向的位移量(203)。利用变形监测方法,不仅可以做到对土木结构的动态变形监测,也可以减少监测成本;而且可以有效提高变形监测测量结果的精度。

Description

土木结构变形监测方法及相关设备 技术领域
本申请涉及监测技术领域,尤其涉及一种土木结构变形监测方法及相关设备。
背景技术
土木结构在长期使用过程中,往往会发生由列车高速行驶、船舶撞击、地震等动荷载作用而引起的高频动态变形;和温度荷载、邻近结构施工的扰动而引起的缓慢准静态变形。因此,对土木结构的动、静态变形进行高精度监测是土木结构健康监测的重要内容之一,也是对土木结构性能进行准确评估和安全预警的必要前提。
现有技术中,结构变形测量是利用专用测量仪器和方法对待测结构的位置或形状变化进行观测,获得待测结构随时间的变形特征,主要有以下几种测量方法。第一种是接触式测量方法,例如位移计、加速度计等。第二种是利用GPS进行变形监测,其优点是可以实现全天候、无人值守,实时或准实时作业。第三种是利用传统的光学测量技术,例如水准仪、光学经纬仪、电子全站仪等仪器,具有非接触测量、精度高等优点。第四种是在普通全站仪上安装自动马达,形成全自动全站仪(测量机器人),可以实现测量过程的自动化,观测周期也可大幅缩减。
然而,接触式测量方法会对测量对象本身造成干扰,而且测量系统布置繁琐、测量点有限,无法满足对大型结构形貌和变形进行全场、高精度测量以及动态监测的需求。而基于GPS的测量方法存在如下缺点:一是由于每个观测点都需要布设接收机天线,对大量点的测量成本较高;二是测量的前提条件是必须能够接收到GPS信号,所以一般只能应用在露天情况,而难以实现室内或地下作业;三是在铅垂方向上测量精度往往不能满足工程的需要。另外,传统的光学测量技术也有自身的局限性,如难以实现测量过程的自动化,观测周期长,观测受外界环境条件限制多等。最后,常用的全自动全站仪测量手段存在以下缺点:一是测量周期长,需要运动对准,测量一次最快也是按数十分钟 或小时计,无法满足高频次的动态测量需求;二是无法实时修正测量平台自身不稳定的影响,无法实现长期有效稳定测量。
发明内容
本申请实施例提供一种土木结构变形监测方法及相关设备,不仅可以做到对土木结构的动态、静态及准静态等变形监测,也可以减少监测成本;而且可以有效提高变形监测测量结果的精度。
第一方面,本申请实施例提供了一种土木结构变形监测方法,应用于土木结构变形监测系统,所述监测系统包括标志点,以及设置在同一相机平台的用于在第一时间点和第二时间点拍摄所述标志点得到拍摄图像的相机单元,所述标志点包括至少三个基准点、被测土木结构的至少一个待测点;所述方法包括:
根据所述拍摄图像获取所述至少三个基准点和所述待测点在第一时间点和第二时间点的像点坐标;
根据所述至少三个基准点在第一时间点和第二时间点的像点坐标确定所述相机平台的六自由度变化量;
根据所述六自由度变化量、所述待测点在第一时间点和第二时间点的像点坐标确定所述待测点在相机平台坐标系中至少一个方向的位移量。
可选地,所述监测系统还包括设置在所述相机平台上的、用于测量所述相机单元和所述待测点之间的距离的测距模块,所述测距模块与所述相机单元并排设置,且所述测距模块的测距方向和所述相机单元的拍摄方向相同;
所述根据所述六自由度变化量、所述待测点在第一时间点和第二时间点的像点坐标确定所述待测点在相机平台坐标系中至少一个方向的位移量,包括:
所述相机单元的同一相机视场中有且只有一个目标待测点时,根据所述六自由度变化量、所述目标待测点在第一时间点和第二时间点的像点坐标、以及成像几何约束关系,确定所述目标待测点在相机平台坐标系中的第一方向和第二方向上的位移量;
获取对应第一时间点和第二时间点的,所述目标待测点和所述相机单元之间的距离,并根据所述距离和所述六自由度变化量确定所述目标待测点在相机 平台坐标系中的第三方向的位移量。
可选地,所述根据所述六自由度变化量、所述待测点在第一时间点和第二时间点的像点坐标确定所述待测点在相机平台坐标系中至少一个方向的位移量,包括:
所述相机单元的同一相机视场中有两个以上的目标待测点时,将所述两个以上的目标待测点的变形运动建模为局部平移运动;
根据所述六自由度变化量、所述目标待测点在第一时间点和第二时间点的像点坐标、以及所述局部平移运动对应的成像几何约束关系,确定所述目标待测点在相机平台坐标系中的第一方向、第二方向、第三方向上的位移量。
可选地,所述根据所述六自由度变化量、所述待测点在第一时间点和第二时间点的像点坐标确定所述待测点在相机平台坐标系中至少一个方向的位移量,包括:
所述相机单元的同一相机视场中有三个以上的目标待测点时,将所述三个以上的目标待测点的变形运动建模为局部刚体运动;
根据所述六自由度变化量、所述目标待测点在第一时间点和第二时间点的像点坐标、以及所述局部刚体运动对应的成像几何约束关系,确定所述目标待测点在相机平台坐标系中的第一方向、第二方向、第三方向上的位移量。
可选地,所述根据所述拍摄图像获取所述至少三个基准点和所述待测点在第一时间点和第二时间点的像点坐标,包括:
获取在所述第一时间点和/或所述第二时间点拍摄的包含所述基准点和/或所述待测点的拍摄图像;
对所述拍摄图像进行图像像点定位处理,得到所述基准点和/或所述待测点在所述第一时间点和/或所述第二时间点的像点坐标。
可选地,在对所述拍摄图像进行图像像点定位处理之前,所述方法还包括:
对所述拍摄图像进行滤波处理,以滤除所述拍摄图像中的干扰像素。
第二方面,本申请实施例提供了一种土木结构变形监测系统,包括标志点、处理装置以及设置在同一相机平台的用于获取所述标志点的像点坐标的相机单元,所述标志点包括至少三个基准点、被测土木结构的至少一个待测点;
所述相机单元,用于获取在第一时间点和第二时间点拍摄所述标志点得到拍摄图像;
所述处理装置包括:
获取单元,用于根据所述拍摄图像获取所述至少三个基准点和所述待测点在第一时间点和第二时间点的像点坐标;
第一确定单元,用于根据所述至少三个基准点在第一时间点和第二时间点的像点坐标确定所述相机平台的六自由度变化量;
第二确定单元,用于根据所述六自由度变化量、所述待测点在第一时间点和第二时间点的像点坐标确定所述待测点在相机平台坐标系中至少一个方向的位移量。
可选地,所述相机单元包括至少一个相机。
第三方面,本申请实施例提供了一种土木结构变形监测设备,包括:处理器和存储器;
所述处理器和存储器相连,其中,所述存储器用于存储程序代码,所述处理器用于调用所述程序代码,以执行如第一方面所述的土木结构变形监测方法。
第四方面,本申请实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时,执行如第一方面所述的土木结构变形监测方法。
本申请实施例中,土木结构变形监测系统包括标志点,以及设置在同一相机平台的用于在第一时间点和第二时间点拍摄标志点得到拍摄图像的相机单元,其中,标志点包括至少三个基准点、被测土木结构的至少一个待测点;变形监测方法中,先根据拍摄图像获取至少三个基准点和待测点在第一时间点和第二时间点的像点坐标;再根据至少三个基准点在第一时间点和第二时间点的像点坐标确定相机平台的六自由度变化量;最后,根据六自由度变化量、待测点在第一时间点和第二时间点的像点坐标确定待测点在相机平台坐标系中至少一个方向的位移量。利用上述变形监测方法,基于相机单元的拍摄图像进行变形监测,不仅可以做到对土木结构的动态变形监测,也可以减少监测成本;而利用相机平台的六自由度变化量确定待测点在相机平台坐标系中至少一个 方向的位移量,可以有效提高变形监测测量结果的精度。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所涉及到的附图作简单地介绍。
图1是本申请实施例提供的一种土木结构变形监测方法的具体流程示意图;
图2是本申请实施例提供的一种土木结构变形监测方法的流程示意图;
图3a、图3b是本申请实施例提供的一种大气抖动对变形监测的影响示意图;
图4是本申请实施例提供的一种土木结构变形监测系统的结构示意图;
图5a、图5b是本申请实施例提供的一种单校正相机和双校正相机的观测误差示意图;
图6a、图6b、图6c、图6d是本申请实施例提供的一种土木结构变形监测系统的结构示意图;
图7是本申请实施例提供的一种单相机摄像测量基本原理示意图;
图8是本申请实施例提供的一种土木结构变形监测系统的处理装置的结构示意图;
图9是本申请实施例提供的一种土木结构变形监测设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
应当理解,本申请的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、 方法、产品或设备固有的其它步骤或单元。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
一种土木结构变形监测方法,应用于土木结构变形监测系统,本申请中,土木结构包括桥涵、路基、隧道、大坝、高层建筑等。土木结构变形监测系统包括标志点,以及设置在同一相机平台的用于在第一时间点和第二时间点拍摄标志点得到拍摄图像的相机单元,其中,标志点包括至少三个基准点、被测土木结构的至少一个待测点。具体的基准点和待测点的个数和设置位置可以根据实际需要进行设置。
具体地,基准点为位置固定或者运动已知的标志点,而待测点为被测土木结构上需要测量的点位。实际监测时,在被测土木结构的监测作业范围内安装相机平台,以设置相机单元。相机平台也即相机观测站,观测站就是一个用来观测的站点,相机平台就是一个可以放相机的台子,或者墩子,或者一个三脚架等等。而相机单元包括至少一个相机,相机的焦距和数量可根据测量精度要求和实际工况进行灵活调配。调整相机朝向方位和镜头焦距,使得周围的基准点和被测土木结构上的待测点可清晰地出现在相应的相机视场中。另外,参考图1,图1是本申请实施例提供的一种土木结构变形监测方法的具体流程示意图;在对变形监测单元进行初始化之后,相机单元在第一时间点和第二时间点同步跟踪采集基准点和待测点的图像;第一时间点和第二时间点的具体时刻可以根据实际需要进行设定,以充分满足用户的监测要求,例如,第一时间点早于第二时间点,则第一时间点可以为初始时刻或者用户指定的任意时刻,第二时间点也可以为用户指定的晚于第一时间点的任意时刻。
请参见图2,是本申请实施例提供的一种土木结构变形监测方法的流程示意图;变形监测方法包括:
步骤201,根据拍摄图像获取至少三个基准点和待测点在第一时间点和第 二时间点的像点坐标;
具体地,利用相机单元在第一时间点和第二时间点同步采集的基准点和待测点的拍摄图像,即在第一时间点同步采集的包括基准点和/或待测点的图像,这些图像是在第一时间点同时采集的,可以为仅包括基准点的图像、仅包括待测点的图像、包括基准点和待测点的图像。同样地,拍摄图像还包括在第二时间点同步采集包括基准点和/或待测点的图像。处理上述拍摄图像以得到监测系统中的基准点和待测点分别在第一时间点和第二时间点时的像点坐标,像点坐标为像点在图像坐标系中的位置。
步骤202,根据至少三个基准点在第一时间点和第二时间点的像点坐标确定相机平台的六自由度变化量;
具体地,本申请中,利用基准点来获得相机平台的六自由度运动的变化量,即六自由度变化量。具体是利用至少三个基准点在第一时间点和第二时间点时的像点坐标来解算确定。
步骤203,根据六自由度变化量、待测点在第一时间点和第二时间点的像点坐标确定待测点在相机平台坐标系中至少一个方向的位移量。
具体地,步骤202得到的六自由度变化量可以用来修正待测点在相机平台坐标系中至少一个方向的位移量,其中,相机平台坐标系中的方向可以包括相机成像的像平面内的两个方向和相机深度方向。而在修正时,需要利用待测点在第一时间点和第二时间点的像点坐标、以及六自由度变化量来确定待测点在相机平台坐标系中至少一个方向上的位移量。
本申请实施例的变形监测方法中,由于相机单元中相机的测量速度是由相机的帧率(采图速率)决定,而且相机的帧率可以根据实际需要进行设定,所以监测方法中的测量速度是不仅可控,而且测量速度快。因此,变形监测方法基于相机单元的拍摄图像进行变形监测,不仅可以做到对土木结构的动态变形监测,也可以减少监测成本;而基于基准点确定了精确的相机平台的六自由度变化量,再利用相机平台的六自由度变化量帮助确定待测点在相机平台坐标系中至少一个方向的位移量,可以有效提高变形监测测量结果的精度。
在一个可能的实施例中,步骤201包括:
步骤2011,获取在第一时间点和/或第二时间点拍摄的包含基准点和/或待测点的拍摄图像;
具体地,以在第一时间点获得的拍摄图像为例进行说明,从相机单元中获得的拍摄图像中,可以是仅包括基准点的图像、仅包括待测点的图像、同时包括基准点和待测点的图像。
步骤2012,对拍摄图像进行图像像点定位处理,得到基准点和/或待测点在第一时间点和/或第二时间点的像点坐标。
具体地,对拍摄图像进行图像像点定位处理,以确定图像中的基准点或待测点在图像中的像点坐标,图像像点定位处理可以采用DIC(Digital Image Correlation,数字图像相关法)技术或最小二乘匹配技术等技术,而DIC技术可以包括自适应模板相关滤波法、自适应阈值重心法、灰度图拟合法等。
在一个可能的实施例中,步骤201中,在对拍摄图像进行图像像点定位处理之前,还包括:
步骤2013,对拍摄图像进行滤波处理,以滤除拍摄图像中的干扰像素。
具体地,由于大气湍流的干扰,当一光束在大气中传过一段距离后,在垂直其传播方向的平面内光束其中心位置将作随机变化。这种发起抖动的现象将对图像中标志点的中心的跟踪提取引入较大误差。因此,本申请实施例还采用数据滤波等数据分析方法抑制大气抖动的影响,对相机采集得到的图像进行滤波,滤除标志点的图像中由于大气抖动造成的干扰像素变化,保留标志点的图像中由于发生真实空间位移产生的像素变化,以保障测量精度。效果对比如图3a和图3b所示,图3a、图3b是本申请实施例提供的一种大气抖动对变形监测的影响示意图,其中,图3a示意了未消除大气抖动影响的位移情况,图3b示意了消除大气抖动影响的位移情况,效果对比结果显示:在中午大气抖动最为显著的环境下,通过消除大气抖动的影响之后,测量精度可达到0.6mm以内,亚毫米级测量精度可以保证。但如果不消除大气抖动的影响,得到的测量结果波动大,相对位移变化量甚至可以达到23mm,导致监测结果不可用。
在一个可能的实施例中,步骤202中,根据至少三个基准点在第一时间点和第二时间点的像点坐标解算相机平台的六自由度变化量;其中,以第一时间 点早于第二时间点为例,实时提取基准点在第二时间点时其在图像中的像点坐标,计算此时的基准点在图像坐标系中相对于第一时间点时的像点坐标的水平和竖向像素变化量,再通过成像几何约束关系实时解算出相机平台在第二时间点相对于第一时间点的三维姿态变化(即六自由度位移),包括了:相机平台在相机平台坐标系中三个方向的平移和三个方向的旋转。
具体地,如果有三个以上的基准点,则根据摄像测量原理可以解算出相机平台在第二时间点相对于第一时间点的六自由度变化量。如果有多个相机用来获得三个以上的基准点时,则可以联立方程进行优化求解。
下面以有两个相机为例,第一时间点t 0时,基准点到相机的成像关系可以表示为:
Figure PCTCN2020136242-appb-000001
其中
Figure PCTCN2020136242-appb-000002
分别为世界坐标系W到t 0时刻相机坐标系
Figure PCTCN2020136242-appb-000003
的投影矩阵,
Figure PCTCN2020136242-appb-000004
为相机内参数矩阵,
Figure PCTCN2020136242-appb-000005
为刚体变换矩阵,R,T分别为旋转矩阵和平移向量,P为齐次坐标,λ=(MP) z为深度因子,如果标定相机相差系数,则p为去畸变后的理想像点。
第二时间点t 1时,基准点到相机的成像关系可以表示为:
Figure PCTCN2020136242-appb-000006
引入世界坐标系W到相机平台坐标系B(即测量基准坐标系)变换关系:
P B=G W,BP W   (3)
相机平台坐标系从t 0时刻到t 1时刻的刚体运动可以表示为:
Figure PCTCN2020136242-appb-000007
将式(3)带入式(1)有:
Figure PCTCN2020136242-appb-000008
将式(3)、(4)带入式(2)有:
Figure PCTCN2020136242-appb-000009
如果相机视场内有三个以上的基准点,则可以联立(5)(6)求解出
Figure PCTCN2020136242-appb-000010
Figure PCTCN2020136242-appb-000011
从而可以分解得到相机平台的六自由度变化量
Figure PCTCN2020136242-appb-000012
特别说明的是,当有两个以上的相机来获得三个以上的基准点的图像时,只要两个以上的相机获得的图像中包括的基准点的总数大于或等于三个即可,每个相机的视场中并不需要包括三个以上的基准点。而当只有一个相机来获得三个以上的基准点的图像时,在该相机的视场中需要包括有三个以上的基准点,根据方程(1)、方程(2)、方程(5)、方程(6)的第一排即可解算出六自由度变化量。
接着,参考图1,根据相机平台的六自由度变化量的实时解算结果对待测点的位移量进行修正,消除相机平台晃动造成的测量误差,即得到准确的待测点相对于相机平台坐标系的至少一个方向上的位移量。如果在同一个相机视场内只有一个待测点,仅靠相机进行测量只能得到相机成像的像平面内两个方向的位移变化量,此时还需要引入相机深度方向的信息,根据相机深度方向的信息、六自由度变化量、待测点在第一时间点和第二时间点处的像点坐标,才可以获得待测点在相机平台坐标系中三个方向的位移量。其中,可以通过激光测距机等测距模块来提供相机深度方向的信息,即测量待测点沿相机深度方向的位移变化,也即测量待测点到相机单元(具体是指拍摄待测点的相机)的距离。如果在同一个相机视场内有两个以上的待测点,考虑到相机的测量范围相对于被测土木结构的尺寸而言较小,可以将两个以上待测点的运动建模为局部平移运动,则可省去测距模块,直接得到待测局部区域在测量基准坐标系下的三个方向的位移量。如果在同一个相机视场内有三个以上待测点,考虑到相机的测量范围相对于被测土木结构的尺寸而言较小,可以将三个以上待测点的运动建模为局部刚体运动,则可省去测距模块,直接得到待测局部区域在测量基准坐标系下的整体六自由度运动。
在一个可能的实施例中,监测系统还包括设置在相机平台上的、用于测量 相机单元和待测点之间的距离的测距模块,测距模块与相机单元并排设置,且测距模块的测距方向和相机单元的拍摄方向相同;具体地,测距模块测量的是拍摄待测点的相机到待测点之间的距离。
步骤203包括:
步骤2031,相机单元的同一相机视场中有且只有一个目标待测点时,根据六自由度变化量、目标待测点在第一时间点和第二时间点的像点坐标、以及成像几何约束关系,确定目标待测点在相机平台坐标系中的第一方向和第二方向上的位移量;
步骤2032,获取对应第一时间点和第二时间点的,目标待测点和相机单元之间的距离,并根据距离和六自由度变化量确定目标待测点在相机平台坐标系中的第三方向的位移量。
具体地,利用六自由度变化量消除相机平台晃动的影响,补偿基于相机单元得到测量结果,提高测量精度。以相机单元的一个相机中的一个待测点为例,有:
Figure PCTCN2020136242-appb-000013
其中
Figure PCTCN2020136242-appb-000014
对于相机视场内的一个待测点,除了会有相机平台运动带来的待测点运动之外,还会有待测点的实际运动(在测量基准坐标系),因而有:
Figure PCTCN2020136242-appb-000015
其中ΔP=[Δx,Δy,Δz,0]为待测点在测量基准坐标系下的实际位移量。
对于每个测量点根据式(8)可以提供关于测量基准坐标系下实际位移量的两个约束,因而,联立方程(5)(6)(8),并可以通过测距模块辅助提供相机深度方向的信息,则可以线性求解出待测点的实际运动ΔP,即在相机平台坐标系中的三个方向的位移量。
在另一个可能的实施例中,步骤203包括:
步骤2033,相机单元的同一相机视场中有两个以上的目标待测点时,将两个以上的目标待测点的变形运动建模为局部平移运动;
步骤2034,根据六自由度变化量、目标待测点在第一时间点和第二时间点的像点坐标、以及局部平移运动对应的成像几何约束关系,确定目标待测点在相机平台坐标系中的第一方向、第二方向、第三方向上的位移量。
具体地,如果在同一个相机视场内有两个以上的待测点,考虑到测量相机的测量范围相对于被测土木结构的尺寸较小,则可以将两个以上待测点的运动建模为局部平移运动,即:
Figure PCTCN2020136242-appb-000016
根据式(9),利用两个或者两个以上待测点,忽略
Figure PCTCN2020136242-appb-000017
中三个方向的转角,可以求得
Figure PCTCN2020136242-appb-000018
中三个方向位移分量,也即待测局部区域在测量基准坐标系下的三个方向的位移量。
在又一个可能的实施例中,步骤203包括:
步骤2035,相机单元的同一相机视场中有三个以上的目标待测点时,将三个以上的目标待测点的变形运动建模为局部刚体运动;
步骤2036,根据六自由度变化量、目标待测点在第一时间点和第二时间点的像点坐标、以及局部刚体运动对应的成像几何约束关系,确定目标待测点在相机平台坐标系中的第一方向、第二方向、第三方向上的位移量。
具体地,如果在同一个相机视场内有三个以上待测点,考虑到测量相机测量范围相对于被测土木结构的尺寸较小,则可以将三个以上待测点的运动建模为局部刚体运动。根据式(9)利用三个以上待测点,可以求得待测局部区域在测量基准坐标系下的六自由度运动
Figure PCTCN2020136242-appb-000019
特别指出的是,对于相机平台坐标系中一个方向、两个方向的修正方法与上述修正三个方向是一样的,都是利用上面的公式。上述步骤2031-步骤2036的步骤编号仅为区分不同步骤,不对步骤的执行顺序造成限定。上述对应步骤2034-步骤2036的两个实施例的方法,虽然可以获得待测点在相机平台坐标系中至少三个方向的位移量,但是,在相机深度(即相机光轴方向)这一方向上 的精度较低,为了提高这一方向上的位移测量精度,可以选配激光测距机等测距模块同相机单元固联安装在相机平台上,以提高待测点沿测量相机光轴方向的变形测量精度。同样地,对于相机平台的六自由度变化量的精度,也可以利用相机深度的信息来提升对应方向上的精度。
在一个可能的实施例中,相机单元至少包括一个相机,用于获得包括基准点和/或待测点的图像。相机单元中的相机可以是同时用于拍摄基准点和待测点的相机,也可以是按照拍摄对象的不同进行划分,如划分为拍摄基准点的校正相机,以及拍摄待测点的测量相机,此时的相机单元的相机数目需要至少两个,其中,至少一个为测量相机,至少一个为校正相机。在实际监测过程中,参考图4,图4是本申请实施例提供的一种土木结构变形监测系统的结构示意图;各校正相机404和测量相机403严格固连在同一个相机平台402并同步触发拍摄,相机帧率可根据用户需求选取,可满足对大型结构的静态、准静态、动态变形进行高精度的监测需求。相机平台上固连安装的校正相机或测量相机的视场需要能覆盖到位于不同方位的基准点和/或待测点,例如,测量相机403的视场覆盖到了待测点401,而校正相机404的视场覆盖到了基准点405。
其中,监测系统中,若干校正相机观测不同位置处的若干个稳定基准点或运动已知的基准点(校正相机的数量配置可根据测量需求进行调整),可实现对观测相机平台的六自由度姿态变化的高精度实时解算,从而消除相机观测站自身不稳定的影响,可满足对土木结构变形进行高精度(亚毫米级)且长期稳定动态监测的需求。另外,校正相机拍摄的基准点,其位置不限,可以根据测量现场环境选定。
特别地,在相机固连安装完成后,需要先对相机进行标定,且标定后,在监测工作过程中相对安装关系不发生变化。在相机标定的时候,需要足够的标志点数量,所以基准点和待测点都属于标志点,但是用于标定的标志点不仅仅包含基准点和待测点。当基准点和待测点数量不够的时候,还需要再加一些临时的标志点,这些标志点仅用来做相机标定,标定完了就可以撤离。
以结合标志点的空间坐标和像点坐标对相机进行标定的方法为例,在标定之前,需要获取用于标定的标志点的空间坐标,可以通过全站仪等手段测得, 测得手段还包括GPS,或者,经纬仪配合光电测距仪,或者,三维激光扫描仪等可获取标志点空间坐标的手段。相机参数标定时,以全站仪为例,对标定某一个相机进行说明:利用全站仪依次对该相机视场中的标志点进行测量,获得各标志点的三维空间坐标;与此同时,该相机对标志点进行同步图像采集,提取得到各标志点的像点坐标;根据标志点在全站仪坐标系中的空间坐标和对应像点的图像坐标,利用光束法平差进行相机内外参数的优化求解,完成对相机的标定。
还可以利用其他计算机视觉标定方法对相机进行标定,本申请不做特别限定。
在一个可能的实施例中,本申请中的标志点既可以是被测土木结构上的自然特征,也可以为固定安装的合作标志,合作标志可以是圆形,也可以是对顶角,或十字丝或其他易于识别的形状。标志可以主动发光,也可以依靠反射日光或其他光源进行成像。标志优选为红外发光标志,以满足全天时测量需求。
在一个可能的实施例中,测量相机的个数由待测点的个数和分布来确定。例如:若待测点只有一个,那么只要一个测量相机即可拍到这个点。如果有两个待测点,并且这两个点距离比较近,可以用一个相机拍到,那么只用一个测量相机即可,但如果这两个点距离比较远,用一个相机不能同时拍到,那么就用两个测量相机。依次类推。
而校正相机的个数,是根据待测点监测的精度需求和待测点监测的方向需求确定的。例如,如果只关注待测点的一个方向的位移。那么至少只要一个校正相机即可满足,且精度也可满足。例如,如果测量需求只关注待测目标的竖向沉降,则每套测量系统可仅配置一个校正相机。
如果关注待测点的二维位移(测量相机面内两个方向位移),则需要至少一个校正相机。若测量精度要求高,需要两个或两个以上的校正相机。
如果关注待测点的三个方向的位移,那么只要一个校正相机也可以,但是精度不够,如果对精度要求高,此时需要用两个或两个以上的校正相机。
高精度解算相机平台的六自由度变化量是测量相机自校准高精度获得待测点三个方向位移变化量的关键。通过数值仿真,对比分析了单校正相机和双 校正相机解算观测平台六自由度晃动量的精度。两种模型中除校正相机个数不同外,其余条件均相同。数值仿真流程如下:首先设定相机参数、图像分辨率大小、拍摄距离,并随机给定相机姿态角,生成标志物理想图像。在理想图像点上加入提取误差来模拟实际标志定位误差,通过带有误差的图像标志定位点求解相机位姿,计算姿态角解算误差,分析误差的均值、标准差、均方根值等。
表1 均方根误差对比表格
  单校正相机 双校正相机
相机坐标系x轴方向位移ΔX(mm) 1.444 0.411
相机坐标系y轴方向位移ΔY(mm) 1.524 0.296
相机光轴z方向位移ΔZ(mm) 61.866 0.396
绕相机坐标系x轴旋转Δα(角秒) 2.516 0.544
绕相机坐标系y轴旋转Δβ(角秒) 2.407 0.684
绕相机坐标系z轴旋转Δγ(角秒) 46.218 0.536
数值仿真结果如图5a、图5b和表1所示,其中,图5a示意了单校正相机解算观测平台姿态的误差情况,图5b示意了双校正相机解算观测平台姿态的误差。仿真结果表明:单个校正相机能解算出相机平台的六个自由度位移量(但沿相机深度方向的位移和转角相对于其他两个方向的位移和转角精度低一到两个数量级),而两个呈一定夹角放置的校正相机,可补充单个相机深度方向的解算结果,可高精度解算出相机平台的六自由度变化量。并且单个校正相机对滚转角的解算精度较差,解算误差较其他两个方向的旋转角高了一到两个数量级,其原因在于单个相机滚转量引起的图像变化量不敏感;而对于两个呈一定夹角的校正相机,其中一个相机的滚转角,可由另一相机的俯仰角补偿求解,从而可大大提高对观测平台滚转角的求解精度。因此,在实际工程应用中可根据测量需求调整校正相机的个数,以达到最佳配置。
在一个可能的实施例中,参考图6a、图6b、图6c、图6d,是本申请实施例提供的一种土木结构变形监测系统的结构示意图;其中,第一种可能,参考图6a,监测系统中,相机平台602上,校正相机606配合云台605进行使用,通过云台的运动观测不同位置的基准点601;而测量相机604通过在固定安装 时对准控制点603而不需要用云台。第二种情况,参考图6b,测量相机604配合云台605进行使用,通过云台的运动观测不同位置的待测点603;而相反,校正相机606通过在固定安装时对准基准点601而不需要用云台。第三种情况,参考图6c,校正相机606和测量相机604分别设置一个云台进行使用,通过云台的运动,可以观测不同位置的基准点和待测点。第四种情况,相机单元中,仅由一个相机607配合云台605进行使用,通过云台的运动,仅由一个相机观测不同位置的基准点和待测点。
另外,如果某测量相机或校正相机视场内既有若干待测点也有若干不动基准点,则该相机即可作为测量相机也可作为校正相机,从而适当减少相机观测站中的相机个数。
在一个可能的实施例中,通过合理设置测量目标的图像物面分辨率,以及合理选择标志定位提取算法,可以保障亚毫米级的测量精度。图像物面分辨率是决定摄像测量精度的最重要因素。如果图像物面分辨率达到了毫米量级,即一个像素代表物面的几个平方毫米,配合亚像素的定位提取算法,则其测量精度就可能达到亚毫米量级。或者,如果图像物面分辨率达到了亚毫米量级,则配合整像素的提取算法,其测量精度就可能达到亚毫米量级;如果配合亚像素的提取算法,则测量精度可更高,以此类推。因此,设计一个具体测量任务,首先要根据测量精度的需求,对图像物面分辨率和合作标志定位提取算法进行综合考虑,选取合适的合作标志定位提取算法,并设定相应的图像物面分辨率,进而确定要达到此物面分辨率所需要的相机分辨率、镜头焦距和视场大小等。
具体地,参考图7,图7是本申请实施例提供的一种单相机摄像测量基本原理示意图;设拍摄视场大小为W×H,设相机分辨率为M×N,则图像物面分辨率的计算公式为:
R x=W/M,R y=H/N
视场是与物距相关的量,物距越远视场越大,如图,因此图像物面分辨率与物距有关,又称为景物对像面的放大系数。设感光像元尺寸为dx×dy,焦距为f,物距为D,则根据相似关系得:
Figure PCTCN2020136242-appb-000020
本申请实施例中,通过安装若干个校正相机实现相机平台自身的六自由度姿态变化的高精度解算,同时通过安装若干个测量相机实现大尺度范围变形同步高精度测量,有效拓展了摄像测量技术的应用范围和解决实际工程问题的能力,可用于桥涵、路基、隧道、大坝、高层建筑等结构的变形监测,具有重要的理论研究意义和广泛的应用前景。基于摄像测量原理的静动态亚毫米级变形自校准摄像监测方法,可监测各类结构变形。摄像测量方法理论成熟、测量精度高、测量频率高、设备成本低、操作方便、可对任意多点进行监测、无需棱镜也无需年检,系统数字化程度高,可满足军用和民用领域中对大型结构变形进行长时间、多点、动态、非接触、实时、亚毫米级精度测量的需求,极大提高了大型结构变形测量水平。
基于上述土木结构变形监测方法实施例的描述,本申请实施例还公开了一种土木结构变形监测系统,土木结构变形监测系统包括标志点、处理装置以及设置在同一相机平台的用于获取标志点的像点坐标的相机单元,标志点包括至少三个基准点、被测土木结构的至少一个待测点;
相机单元,用于获取在第一时间点和第二时间点拍摄标志点得到拍摄图像;
参考图8,图8是本申请实施例提供的一种土木结构变形监测系统的处理装置的结构示意图;处理装置包括:
获取单元801,用于根据拍摄图像获取至少三个基准点和待测点在第一时间点和第二时间点的像点坐标;
第一确定单元802,用于根据至少三个基准点在第一时间点和第二时间点的像点坐标确定相机平台的六自由度变化量;
第二确定单元803,用于根据六自由度变化量、待测点在第一时间点和第二时间点的像点坐标确定待测点在相机平台坐标系中至少一个方向的位移量。
在一个可能的实施例中,相机单元包括至少一个相机。
在一个可能的实施例中,获取单元801包括:
第一模块,用于获取在第一时间点和/或第二时间点拍摄的包含基准点和/或待测点的拍摄图像;
第二模块,用于对拍摄图像进行图像像点定位处理,得到基准点和/或待测点在第一时间点和/或第二时间点的像点坐标。
在一个可能的实施例中,获取单元801还包括:
第三模块,用于在对拍摄图像进行图像像点定位处理之前,对拍摄图像进行滤波处理,以滤除拍摄图像中的干扰像素。
在一个可能的实施例中,监测系统还包括设置在相机平台上的、用于测量相机单元和待测点之间的距离的测距模块,测距模块与相机单元并排设置,且测距模块的测距方向和相机单元的拍摄方向相同。另外,第二确定单元803包括:
第四模块,用于相机单元的同一相机视场中有且只有一个目标待测点时,根据六自由度变化量、目标待测点在第一时间点和第二时间点的像点坐标、以及成像几何约束关系,确定目标待测点在相机平台坐标系中的第一方向和第二方向上的位移量;获取对应第一时间点和第二时间点的,目标待测点和相机单元之间的距离,并根据距离和六自由度变化量确定目标待测点在相机平台坐标系中的第三方向的位移量。
在另一个可能的实施例中,第二确定单元803包括:
第五模块,用于相机单元的同一相机视场中有两个以上的目标待测点时,将两个以上的目标待测点的变形运动建模为局部平移运动;根据六自由度变化量、目标待测点在第一时间点和第二时间点的像点坐标、以及局部平移运动对应的成像几何约束关系,确定目标待测点在相机平台坐标系中的第一方向、第二方向、第三方向上的位移量。
在又一个可能的实施例中,第二确定单元803包括:
第六模块,用于相机单元的同一相机视场中有三个以上的目标待测点时,将三个以上的目标待测点的变形运动建模为局部刚体运动;根据六自由度变化量、目标待测点在第一时间点和第二时间点的像点坐标、以及局部刚体运动对应的成像几何约束关系,确定目标待测点在相机平台坐标系中的第一方向、第二方向、第三方向上的位移量。
值得指出的是,其中,土木结构变形监测系统的具体功能实现方式可以参 见上述土木结构变形监测方法的描述,这里不再进行赘述。土木结构变形监测系统中的各个单元或模块可以分别或全部合并为一个或若干个另外的单元或模块来构成,或者其中的某个(些)单元或模块还可以再拆分为功能上更小的多个单元或模块来构成,这可以实现同样的操作,而不影响本申请的实施例的技术效果的实现。上述单元或模块是基于逻辑功能划分的,在实际应用中,一个单元(或模块)的功能也可以由多个单元(或模块)来实现,或者多个单元(或模块)的功能由一个单元(或模块)实现。
基于上述方法实施例以及装置实施例的描述,本申请实施例还提供一种土木结构变形监测设备。
请参见图9,是本申请实施例提供的一种土木结构变形监测设备的结构示意图。如图9所示,上述的土木结构变形监测系统可以应用于所述土木结构变形监测设备900,所述土木结构变形监测设备900可以包括:处理器901,网络接口904和存储器905,此外,所述土木结构变形监测设备900还可以包括:用户接口903,和至少一个通信总线902。其中,通信总线902用于实现这些组件之间的连接通信。其中,用户接口903可以包括显示屏(Display)、键盘(Keyboard),可选用户接口903还可以包括标准的有线接口、无线接口。网络接口904可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器905可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器905可选的还可以是至少一个位于远离前述处理器901的存储装置。如图9所示,作为一种计算机存储介质的存储器905中可以包括操作系统、网络通信模块、用户接口模块以及设备控制应用程序。
在图9所示的土木结构变形监测设备900中,网络接口904可提供网络通讯功能;而用户接口903主要用于为用户提供输入的接口;而处理器901可以用于调用存储器905中存储的设备控制应用程序,以实现上述土木结构变形监测方法的步骤。
应当理解,本申请实施例中所描述的土木结构变形监测设备900可执行前 文所述土木结构变形监测方法,也可执行前文所述土木结构变形监测系统的描述,在此不再赘述。另外,对采用相同方法的有益效果描述,也不再进行赘述。
此外,这里需要指出的是:本申请实施例还提供了一种计算机存储介质,且所述计算机存储介质中存储有前文提及的土木结构变形监测系统所执行的计算机程序,且所述计算机程序包括程序指令,当处理器执行所述程序指令时,能够执行前文所述土木结构变形监测方法的描述,因此,这里将不再进行赘述。另外,对采用相同方法的有益效果描述,也不再进行赘述。对于本申请所涉及的计算机存储介质实施例中未披露的技术细节,请参照本申请方法实施例的描述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (10)

  1. 一种土木结构变形监测方法,其特征在于,应用于土木结构变形监测系统,所述监测系统包括标志点,以及设置在同一相机平台的用于在第一时间点和第二时间点拍摄所述标志点得到拍摄图像的相机单元,所述标志点包括至少三个基准点、被测土木结构的至少一个待测点;所述方法包括:
    根据所述拍摄图像获取所述至少三个基准点和所述待测点在第一时间点和第二时间点的像点坐标;
    根据所述至少三个基准点在第一时间点和第二时间点的像点坐标确定所述相机平台的六自由度变化量;
    根据所述六自由度变化量、所述待测点在第一时间点和第二时间点的像点坐标确定所述待测点在相机平台坐标系中至少一个方向的位移量。
  2. 根据权利要求1所述的方法,其特征在于,所述监测系统还包括设置在所述相机平台上的、用于测量所述相机单元和所述待测点之间的距离的测距模块,所述测距模块与所述相机单元并排设置,且所述测距模块的测距方向和所述相机单元的拍摄方向相同;
    所述根据所述六自由度变化量、所述待测点在第一时间点和第二时间点的像点坐标确定所述待测点在相机平台坐标系中至少一个方向的位移量,包括:
    所述相机单元的同一相机视场中有且只有一个目标待测点时,根据所述六自由度变化量、所述目标待测点在第一时间点和第二时间点的像点坐标、以及成像几何约束关系,确定所述目标待测点在相机平台坐标系中的第一方向和第二方向上的位移量;
    获取对应第一时间点和第二时间点的,所述目标待测点和所述相机单元之间的距离,并根据所述距离和所述六自由度变化量确定所述目标待测点在相机平台坐标系中的第三方向的位移量。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述六自由度变化量、所述待测点在第一时间点和第二时间点的像点坐标确定所述待测点在相机平台坐标系中至少一个方向的位移量,包括:
    所述相机单元的同一相机视场中有两个以上的目标待测点时,将所述两个 以上的目标待测点的变形运动建模为局部平移运动;
    根据所述六自由度变化量、所述目标待测点在第一时间点和第二时间点的像点坐标、以及所述局部平移运动对应的成像几何约束关系,确定所述目标待测点在相机平台坐标系中的第一方向、第二方向、第三方向上的位移量。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述六自由度变化量、所述待测点在第一时间点和第二时间点的像点坐标确定所述待测点在相机平台坐标系中至少一个方向的位移量,包括:
    所述相机单元的同一相机视场中有三个以上的目标待测点时,将所述三个以上的目标待测点的变形运动建模为局部刚体运动;
    根据所述六自由度变化量、所述目标待测点在第一时间点和第二时间点的像点坐标、以及所述局部刚体运动对应的成像几何约束关系,确定所述目标待测点在相机平台坐标系中的第一方向、第二方向、第三方向上的位移量。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述根据所述拍摄图像获取所述至少三个基准点和所述待测点在第一时间点和第二时间点的像点坐标,包括:
    获取在所述第一时间点和/或所述第二时间点拍摄的包含所述基准点和/或所述待测点的拍摄图像;
    对所述拍摄图像进行图像像点定位处理,得到所述基准点和/或所述待测点在所述第一时间点和/或所述第二时间点的像点坐标。
  6. 根据权利要求5所述的方法,其特征在于,在对所述拍摄图像进行图像像点定位处理之前,所述方法还包括:
    对所述拍摄图像进行滤波处理,以滤除所述拍摄图像中的干扰像素。
  7. 一种土木结构变形监测系统,其特征在于,包括标志点、处理装置以及设置在同一相机平台的用于获取所述标志点的像点坐标的相机单元,所述标志点包括至少三个基准点、被测土木结构的至少一个待测点;
    所述相机单元,用于获取在第一时间点和第二时间点拍摄所述标志点得到拍摄图像;
    所述处理装置包括:
    获取单元,用于根据所述拍摄图像获取所述至少三个基准点和所述待测点在第一时间点和第二时间点的像点坐标;
    第一确定单元,用于根据所述至少三个基准点在第一时间点和第二时间点的像点坐标确定所述相机平台的六自由度变化量;
    第二确定单元,用于根据所述六自由度变化量、所述待测点在第一时间点和第二时间点的像点坐标确定所述待测点在相机平台坐标系中至少一个方向的位移量。
  8. 根据权利要求7所述的系统,其特征在于,所述相机单元包括至少一个相机。
  9. 一种土木结构变形监测设备,其特征在于,包括:处理器和存储器;
    所述处理器和存储器相连,其中,所述存储器用于存储程序代码,所述处理器用于调用所述程序代码,以执行如权利要求1-6任一项所述的土木结构变形监测方法。
  10. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时,执行如权利要求1-6任一项所述的土木结构变形监测方法。
PCT/CN2020/136242 2020-12-14 2020-12-14 土木结构变形监测方法及相关设备 WO2022126339A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/136242 WO2022126339A1 (zh) 2020-12-14 2020-12-14 土木结构变形监测方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/136242 WO2022126339A1 (zh) 2020-12-14 2020-12-14 土木结构变形监测方法及相关设备

Publications (1)

Publication Number Publication Date
WO2022126339A1 true WO2022126339A1 (zh) 2022-06-23

Family

ID=82058791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136242 WO2022126339A1 (zh) 2020-12-14 2020-12-14 土木结构变形监测方法及相关设备

Country Status (1)

Country Link
WO (1) WO2022126339A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116778094A (zh) * 2023-08-15 2023-09-19 深圳眸瞳科技有限公司 一种基于优选视角拍摄的建筑物变形监测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940364A (zh) * 2014-05-04 2014-07-23 赵鸣 地铁隧道相对变形的摄影测量方法
CN107044844A (zh) * 2015-11-16 2017-08-15 通用电气公司 用于监测构件的方法
KR20170136130A (ko) * 2016-05-31 2017-12-11 (주)카이센 교량 처짐 계측 시스템
EP3343168A1 (en) * 2014-12-31 2018-07-04 Rememdia LC Position sensor and corresponding sensing method
CN111043983A (zh) * 2020-01-09 2020-04-21 深圳大学 隧道断面变形监测方法及相关装置
CN111189403A (zh) * 2020-01-09 2020-05-22 深圳大学 一种隧道变形的监测方法、装置及计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940364A (zh) * 2014-05-04 2014-07-23 赵鸣 地铁隧道相对变形的摄影测量方法
EP3343168A1 (en) * 2014-12-31 2018-07-04 Rememdia LC Position sensor and corresponding sensing method
CN107044844A (zh) * 2015-11-16 2017-08-15 通用电气公司 用于监测构件的方法
KR20170136130A (ko) * 2016-05-31 2017-12-11 (주)카이센 교량 처짐 계측 시스템
CN111043983A (zh) * 2020-01-09 2020-04-21 深圳大学 隧道断面变形监测方法及相关装置
CN111189403A (zh) * 2020-01-09 2020-05-22 深圳大学 一种隧道变形的监测方法、装置及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIA, JIA ET AL.: "Processing and Analysis of Subway Tunnel Deformation Data Based on Posterior Variance Method", GEOSPATIAL INFORMATION, vol. 16, no. 10, 31 October 2018 (2018-10-31), pages 104 - 106,12, XP055944225, ISSN: 1672-4623 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116778094A (zh) * 2023-08-15 2023-09-19 深圳眸瞳科技有限公司 一种基于优选视角拍摄的建筑物变形监测方法及装置
CN116778094B (zh) * 2023-08-15 2023-11-24 深圳眸瞳科技有限公司 一种基于优选视角拍摄的建筑物变形监测方法及装置

Similar Documents

Publication Publication Date Title
CN112629431B (zh) 土木结构变形监测方法及相关设备
CN110057295B (zh) 一种免像控的单目视觉平面距离测量方法
Dai et al. Photogrammetric error sources and impacts on modeling and surveying in construction engineering applications
CN111076880B (zh) 一种考虑相机姿态变化的大跨桥梁多点挠度测量方法
CN108828555B (zh) 基于坐标变换的精确测量方法、系统及装置
CN101539397B (zh) 物体三维姿态的精密光学测量方法
CN109900205B (zh) 一种高精度的单线激光器和光学相机的快速标定方法
CN106705962B (zh) 一种获取导航数据的方法及系统
CN111006646B (zh) 基于无人机倾斜摄影测量技术实现施工进度监测的方法
CN109269525B (zh) 一种空间探测器起飞或着陆过程光学测量系统及方法
CN110736447B (zh) 一种集成式图像采集设备竖直方向水平位置检校方法
CN113409285A (zh) 一种沉管隧道接头三维变形的监测方法、系统
CN106403900A (zh) 飞行物追踪定位系统及方法
CN113763479B (zh) 一种折反射全景相机与imu传感器的标定方法
CN105783754B (zh) 基于三维激光扫描的GBInSAR三维位移场提取方法
CN108154535B (zh) 基于平行光管的摄像机标定方法
CN103389072B (zh) 一种基于直线拟合的像点定位精度评估方法
WO2022126339A1 (zh) 土木结构变形监测方法及相关设备
CN111561867A (zh) 一种飞机表面形貌数字化测量方法
Wu et al. Passive ranging based on planar homography in a monocular vision system
US11544857B1 (en) Method and device for calculating river surface flow velocity based on variational principle
Zheng et al. A novel measurement method based on silhouette for chimney quasi-static deformation monitoring
CN114663486A (zh) 一种基于双目视觉的建筑物测高方法及系统
CN109798875B (zh) 一种在矿区视频系统中实时标注采矿范围线的方法
CN114018167A (zh) 一种基于单目三维视觉的桥梁挠度测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20965357

Country of ref document: EP

Kind code of ref document: A1