WO2022126332A1 - 确定传输块大小的方法和装置 - Google Patents

确定传输块大小的方法和装置 Download PDF

Info

Publication number
WO2022126332A1
WO2022126332A1 PCT/CN2020/136213 CN2020136213W WO2022126332A1 WO 2022126332 A1 WO2022126332 A1 WO 2022126332A1 CN 2020136213 W CN2020136213 W CN 2020136213W WO 2022126332 A1 WO2022126332 A1 WO 2022126332A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
domain symbol
transport block
data channel
size
Prior art date
Application number
PCT/CN2020/136213
Other languages
English (en)
French (fr)
Inventor
左志松
崔胜江
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080106210.2A priority Critical patent/CN116508379A/zh
Priority to PCT/CN2020/136213 priority patent/WO2022126332A1/zh
Publication of WO2022126332A1 publication Critical patent/WO2022126332A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a method and apparatus for determining the size of a transport block.
  • a transmission mechanism in which a block is repeatedly transmitted in multiple consecutive time slots the network device indicates the physical downlink shared channel (PDSCH) or the physical uplink shared channel (physical uplink shared channel) in a time slot for carrying transport blocks through downlink control information (DCI). , the position of the time-frequency resource of the PUSCH), so that the size of the time-frequency resource can be determined.
  • PDSCH physical downlink shared channel
  • DCI downlink control information
  • Both the network device and the terminal device can determine the size of the transport block according to the size of the time-frequency resource.
  • a transport block of the size is repeatedly transmitted at the time-frequency resource position of each time slot in the plurality of time slots.
  • the location of the time-frequency resource indicated by the DCI includes a resource occupied by a signal with a higher priority in one of the multiple time slots (for example, including resources with different uplink and downlink directions, etc.), cancel the The transport block is transmitted in the slot. This will result in an inability to achieve the expected transmission reliability.
  • the embodiments of the present application provide a method and apparatus for determining the size of a transport block, which can improve the transmission reliability of the transport block.
  • an embodiment of the present application may provide a communication method, and the method may be executed by a communication device or a module (such as a chip) configured in (or used for) the communication device, and the method includes:
  • each time-domain symbol group in the J time-domain symbol groups includes L time-domain symbols, where J and L are positive integers;
  • the size of the first transport block is determined according to the number of resources including a first data channel in each of the J time-domain symbol groups, and the first data channel is used to carry the The first transport block.
  • an embodiment of the present application may provide a communication device, the communication device is configured in a communication device or the communication device is a communication device, including:
  • transceiver unit configured to receive or send downlink control information, where the downlink control information is used to schedule a first data channel, where the first data channel carries a first transport block;
  • a processing unit configured to determine that the first transmission block is repeatedly transmitted in J time-domain symbol groups, where each time-domain symbol group in the J time-domain symbol groups includes L time-domain symbols, where J, L is a positive integer;
  • the processing unit is further configured to determine the size of the first transport block according to the number of resources of the first data channel included in each of the J time-domain symbol groups.
  • the embodiments of the present application may further provide a communication device, including:
  • processors memories, interfaces for communicating with network devices
  • the memory stores computer-executable instructions
  • the processor executes computer-implemented instructions stored in the memory, causing the processor to perform the communication method as provided in any one of the first aspects.
  • embodiments of the present application provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement the method described in the first aspect.
  • an embodiment of the present application further provides a program, which, when the program is executed by a processor, is used to execute the communication method according to any one of the above first aspects.
  • the above-mentioned processor may be a chip.
  • an embodiment of the present application provides a computer program product, including program instructions, where the program instructions are used to implement the communication method according to any one of the first aspects.
  • an embodiment of the present application provides a chip, including: a processing module and a communication interface, where the processing module can execute the communication method according to any one of the first aspects.
  • the chip also includes a storage module (eg, memory), the storage module is used for storing instructions, the processing module is used for executing the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the first step.
  • a storage module eg, memory
  • the storage module is used for storing instructions
  • the processing module is used for executing the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the first step.
  • FIG. 1 is a schematic diagram of a communication system architecture suitable for the application
  • FIG. 2 is a schematic flowchart of a method for determining a transport block size provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of repeated transmission of a transmission block provided by an embodiment of the present application on J time-domain symbol groups;
  • FIG. 4 is another schematic diagram of repeated transmission of a transmission block provided by an embodiment of the present application on J time-domain symbol groups;
  • 5 is another schematic diagram of repeated transmission of a transmission block provided by an embodiment of the present application on J time-domain symbol groups;
  • FIG. 6 is a schematic block diagram of an example of a communication device of the present application.
  • FIG. 7 is a schematic configuration diagram of an example of a communication device of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division Multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex, FDD
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 is a schematic diagram of a communication system 100 suitable for an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 in FIG. 1 ; the communication system 100 may also include at least one terminal device, such as the terminal devices 102 to 107 in FIG. 1 .
  • the terminal devices 102 to 107 may be mobile or stationary.
  • Each of the network device 101 and one or more of the end devices 102 to 107 may communicate over a wireless link.
  • the method for determining the size of the transport block provided by the embodiment of the present application may be used between the network device and the terminal device to determine the size of the received or sent transport block.
  • direct communication between terminal devices is possible.
  • D2D technology can be used to realize direct communication between terminal devices.
  • D2D, V2X and other technologies may be used for direct communication between terminal devices 105 and 106 and between terminal devices 105 and 107 .
  • Terminal device 106 and terminal device 107 may communicate with terminal device 105 individually or simultaneously.
  • the method for determining the size of the transport block provided by the embodiment of the present application may be used to determine the size of the received or sent transport block.
  • the terminal device in this embodiment of the present application may be a user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal device, A wireless communication device, user agent or user equipment.
  • UE user equipment
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless communication
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in an Internet of Things (IoT) system.
  • IoT Internet of Things
  • Connect with the network so as to realize the intelligent network of human-machine interconnection and the interconnection of things.
  • the network device in this embodiment of the present application may be a device used to communicate with a terminal device, and the network device may be a base station (base transceiver station, BTS) in a GSM or CDMA system, or a base station (nodeB, BTS) in a WCDMA system NB), it can also be an evolved base station (evolutional nodeB, eNB or eNodeB) in the LTE system, it can also be a wireless controller in the cloud radio access network (cloud radio access network, CRAN) scenario, or the network device can It is a relay station, an access point, a vehicle-mounted device, and a network device in a 5G network or a network device in a future evolved PLMN network, etc., which are not limited in the embodiments of the present application.
  • BTS base transceiver station
  • nodeB, BTS base station
  • eNodeB evolved base station
  • CRAN cloud radio access network
  • the network device can It is a relay station, an access
  • the transport block size is calculated according to the resource size of the data channel (eg, PDSCH or PUSCH) in one time slot, and the size of the transmission block is repeatedly transmitted at the resource positions of the data channel in multiple time slots. transport block. If the resources of the data channel in one or more of the plurality of time slots include other high-priority usage resources, the repeated transmission in the one or more time slots will be cancelled. This calculation of the transport block size, and the manner in which the transmission is canceled, will result in an inability to achieve the expected transmission reliability.
  • the resource size of the data channel eg, PDSCH or PUSCH
  • the present application proposes that when a transmission block is repeatedly transmitted in multiple time-domain symbol groups, since both parties in communication can generally reach a consensus on the priority of communication resources in advance, it can be determined that the multiple time-domain symbol groups can actually be used for The resource size of the data channel that transmits this transport block.
  • the size of the transport block is calculated according to the resource size of the data channel that can actually transmit the transport block.
  • a time-domain symbol group contains high-priority resources
  • the data of the transport block can be transmitted except for the high-priority
  • the transport block is transmitted on the channel resources (ie, the data channel resources as the actual transport transport block).
  • the method for determining the size of a transport block may be executed by a terminal device or a network device. It may be that when the network device communicates with the terminal device, the network device and the terminal device use this method to determine the size of the transmission block, or when two terminal devices communicate, the method determines the size of the transmission block.
  • the following description takes the terminal device determining the size of the transport block as an example, but the present application is not limited to this.
  • FIG. 2 is a schematic flowchart of a method for determining the size of a transport block provided by an embodiment of the present application.
  • the terminal device determines that the first transmission block is repeatedly transmitted in J time-domain symbol groups, and each time-domain symbol group in the J time-domain symbol groups includes L time-domain symbols.
  • the network device may configure the terminal device with the number of repetitions J of the first transmission block, and after the configured number of repetitions J takes effect, the network device notifies the terminal device through the indication information to schedule or authorize the transmission of the first transmission block.
  • the terminal device may determine that the first transmission block is repeatedly transmitted J times according to the configured or indicated repetition times J.
  • the network device may configure, for the terminal device, the number of repetitions of the first data channel when scheduling the first data channel through a radio resource control (radio resource control, RRC) message.
  • the first data channel may be an uplink data channel (eg, PUSCH) or a downlink data channel (eg, PUSCH).
  • the first data channel is PUSCH
  • the RRC message includes a PUSCH aggregation factor information element
  • the PUSCH aggregation factor information element is used to configure the number of repetitions J of the PUSCH that the network device authorizes the terminal device to use for sending the first transport block.
  • the PUSCH aggregation factor information element may be written as PUSCH-AggregationFactor, but the present application is not limited thereto.
  • the terminal equipment receives the PUSCH-AggregationFactor information element in the RRC message and the information element takes effect, the terminal equipment receives the uplink grant (UL-grant) DCI from the network equipment.
  • the time-frequency resource of the PUSCH for the terminal device to transmit the uplink transport block ie, an example of the first transport block.
  • the terminal device can determine that the uplink transmission block is repeatedly transmitted J times according to the RRC message, and can determine the time-frequency resource of each PUSCH used to carry the uplink data block that is repeatedly transmitted according to the time-frequency resource of the PUSCH indicated by the DCI.
  • the uplink grant DCI indicates the time-frequency resource of the PUSCH in a time unit
  • the uplink grant DCI indicates the first time unit for transmitting the transport block. Repeat transmission on the time-frequency resources of the PUSCH in consecutive J time units starting from the first time unit. That is to say, the J time-domain symbol groups are the time-domain symbol groups in the J time units (that is, the number of time-domain symbols included in the time-frequency resource of the PUSCH indicated by the DCI), and the J time-domain symbol groups A time-domain symbol group in is a time-domain symbol group in a time unit.
  • each time unit includes 14 symbols
  • the network device may configure the number of repetitions J to be 3 through the RRC message.
  • the terminal device receives the DCI from the network device, and the DCI indicates that the time-frequency resource of the authorized PUSCH in the time domain is a total of 6 symbols from symbol 3 to symbol 8 in one time unit (that is, L is 6), there are multiple resource blocks in the frequency domain, and the DCI further indicates that the starting time unit for transmitting the first transport block is the time unit n.
  • the terminal device can determine the symbol in each time unit in three consecutive time units (ie, time unit n, time unit n+1, and time unit n+2).
  • the first transport block is transmitted in symbols 3 to 8. That is to say, the terminal device determines that the first transmission block is repeatedly transmitted 3 times in 3 time-domain symbol groups, and the 3 time-domain symbol groups are respectively time unit n, time unit n+1, and time unit n+2. Symbols 3 to 8, that is, each time-domain symbol group in the 3 time-domain symbol groups includes 6 time-domain symbols. However, the present application is not limited to this.
  • the time unit may be a slot, subframe or frame.
  • the uplink grant DCI indicates an authorized time-frequency resource of one PUSCH
  • the time-frequency resource of one PUSCH includes L consecutive time-domain symbols.
  • the terminal device determines to repeat the transmission of the first transport block in consecutive groups of J time-domain symbols.
  • the network device may configure the number of repetitions J to be 4 through the RRC message.
  • the terminal device receives the DCI from the network device, where the DCI indicates that the time-frequency resource of the first authorized PUSCH is three consecutive symbols starting from symbol 3 in the time domain.
  • the terminal device may determine that the first transmission block is repeatedly transmitted in consecutive 4 time-domain symbol groups, each time-domain symbol group includes 3 time-domain symbols, and the first time-domain symbol of the consecutive 4 time-domain symbol groups is The domain symbol group (ie, symbol group 0) is a group of 3 consecutive symbols starting from symbol 3.
  • the terminal device can determine that the time domain symbols included in symbol group 1, symbol group 2 and symbol group 3 in the consecutive 4 symbol groups are symbol 6 to symbol 8, symbol 9 to symbol 11 and symbol 12 to symbol 14 respectively. , but this application is not limited to this.
  • the network device can configure the number of repeated transmissions of the downlink data channel (such as PDSCH) for the terminal device through an RRC message.
  • the RRC message can include the PDSCH aggregation factor information element, which is used to configure the scheduling of the network device and is used to carry the network device to The number of repetitions J of the PDSCH of the downlink transport block (ie, another example of the first transport block) sent by the terminal device.
  • the PDSCH aggregation factor information element may be written as PDSCH-AggregationFactor, but the present application is not limited to this.
  • the terminal device After the terminal device receives the RRC signaling, it is determined according to the PDSCH-AggregationFactor information element that the downlink transport block sent by the network device to the terminal device will be repeatedly sent J times. After the PDSCH-AggregationFactor information element takes effect, the terminal device receives the DCI from the network device that is scheduled to carry the PDSCH carrying the downlink transport block, and the DCI indicates that the time-frequency resources of the scheduled PDSCH include L time domain symbols, and the terminal device J time-domain symbol groups can be determined for the network device to repeatedly send the downlink transmission block, each time-domain symbol group includes L time-domain symbols, the J time-domain symbol groups are received, the size of the downlink transmission block is determined, and the solution is The downlink transport block is obtained by modulating and decoding the J time-domain symbol groups, but the present application is not limited to this. The specific way of determining the J time-domain symbol groups is similar to the above-mentioned way of repeating the transmission of the uplink transmission
  • the network device may further indicate the number of repetitions of the PDSCH or PUSCH, or the number of repeated transmissions of the transport block through the DCI.
  • the network device may indicate the number of repetitions of the PUSCH in the DCI that authorizes the PUSCH, or indicate the number of repetitions of the PDSCH in the DCI that schedules the PDSCH, etc., but the present application is not limited thereto.
  • the terminal device determines in S210 that the first transmission block is repeatedly transmitted in the J time-domain symbol groups, because the J time-domain symbol groups may include resources for transmitting signals of higher priority, or include the transmission direction and the The resources in different transmission directions of the first data channel make the resources actually transmitting the first transport block in the J time-domain symbol groups may be smaller than the resources included in the J time-domain symbol groups.
  • the terminal device determines, in S210, 3 time-domain symbol groups for repeatedly transmitting the first transport block. Since network equipment and terminal equipment can generally reach a consensus on the priority of communication resources, such as the uplink and downlink configuration of resources, if the first transmission block is an uplink transmission block, and the second one of the three time-domain symbol groups
  • the time domain symbol group (that is, time unit n+1) includes 2 downlink symbols, for example, symbol 7 and symbol 8 are downlink symbols, then the 2 downlink symbols cannot be used for the network device to transmit the uplink transmission block, that is, the Two downlink symbols cannot be used as resources of the first data channel (ie, the uplink data channel). Therefore, the resources that the terminal device can actually transmit the first transport block will be smaller than the resources included in the J time-domain symbol groups.
  • the terminal device determines, in 210, 4 time-domain symbol groups for repeatedly transmitting the first transport block.
  • the first transport block is an uplink transport block. If symbols 7 and 8 in time domain symbol group 1 and symbol 9 in symbol group 2 are downlink symbols, the symbols 7, 8, and 9 cannot be used to transmit uplink transport blocks. , so the resources that the terminal device can actually transmit the first transport block will be smaller than the resources included in the J time-domain symbol groups.
  • the terminal device may determine the size of the first transport block according to the number of resources of the first data channel actually included in the J time-domain symbol groups in S220.
  • the terminal device includes the number of resources of the first data channel in each time-domain symbol group in the J time-domain symbol groups Determine the size of the first transport block.
  • the terminal device is based on the average value of the number of time-domain symbols of the first data channel in each time-domain symbol group of the J time-domain symbol groups. Determine the size of the first transport block.
  • the network device sends a first DCI to the terminal device, where the first DCI is used to indicate the time-frequency resource of the PDSCH in one time unit.
  • the first DCI includes first indication information
  • the first DCI further indicates that the starting time unit of the PDSCH is time unit n.
  • the terminal device may determine that the number of repetitions of the PDSCH is 3 times according to the RRC message, for example, send the th A transport block. For example, as shown in FIG. 5 , according to the indication of the DCI and the number of repetitions, it can be determined that the three time-domain symbol groups are the six symbols from time unit n, time unit n+1, and symbol 3 to symbol 8 in time unit n+2, respectively. Domain notation.
  • symbols 6 to 14 are uplink time domain symbols, wherein symbols 6, 7, and 8 cannot be used to transmit the downlink transport block, that is, symbols 6, 7, and 8 cannot be used as Time domain resources of PDSCH. Therefore, the terminal device determines that the number of time domain symbols including the PDSCH in the time unit n+1 is 3 symbols in total from symbol 3 to symbol 5. That is to say, the second time-domain symbol group (time-domain symbol group 1 ) in the three time-domain symbol groups includes three time-domain symbols of the PDSCH.
  • the first time-domain symbol group (time-domain symbol group 0) and the third time-domain symbol group (time-domain symbol group 2) in the three time-domain symbol groups both contain 6 time-domain symbols for PDSCH . Therefore, the average of the number of time-domain symbols including PDSCH in each of the three time-domain symbol groups is
  • the present application is not limited to this.
  • the terminal device determines The size of the first transport block is determined according to the number N RE of resource elements (resource elements, REs ) of the first data channel in the time domain symbols.
  • resource elements resource elements, REs
  • one subcarrier in the frequency domain of each time-domain symbol in the J time-domain symbol groups is a resource element.
  • the process of determining the size of the first transport block by the terminal device according to the N RE may include but is not limited to the following steps:
  • the terminal device can determine The number N RE/RB of resource elements of the first data channel in each resource block (resource block, RB) in the time-domain symbols.
  • Each resource block in the time-domain symbols may include REs that carry a demodulation reference signal (demodulation reference signal, DMRS) used to demodulate the first data channel, and may also include RE overhead configured by the network device.
  • the terminal device can determine the The number of REs carrying DMRS in each resource block divided by the number of time-domain symbols and the number of RE overheads in each resource block configured by the network device
  • the other REs are REs of the first data channel.
  • the terminal device determines the number N RB of resource blocks of the first data channel and the number N RE/RB of resource elements contained in each resource block.
  • N RE N RE/RB ⁇ N RB .
  • the first DCI may include second indication information, where the second indication information is used to indicate the number N RB of resource blocks included in the first data channel.
  • the terminal device determines the intermediate quantity N info of the first transport block according to the N RE , the code rate R, the modulation end Q and the number of transmission layers v, where the N info satisfies:
  • N info N RE ⁇ R ⁇ Q ⁇ v.
  • the code rate R, the modulation end Q, and the number of transmission layers v used by the first transport block may be indicated by the first DCI.
  • the terminal device determines the size of the first transport block according to the intermediate quantity N info .
  • the terminal device may obtain the size of the first transport block after quantizing and/or rounding the intermediate quantity N info .
  • the terminal device looks up a table to obtain the size of the first transport block according to N info .
  • the protocol specifies a table containing a table of N transport block sizes (TBS).
  • TBS transport block sizes
  • the terminal device and the network device store the table.
  • the terminal device and the network device determine N info according to the above steps, query the table to determine the TBS value closest to the N info in the table, which is the size of the first transmission block.
  • the table may be as shown in Table 1, which includes the size of 93 transport blocks, from which a TBS value closest to N info may be determined, but the present application is not limited to this.
  • the terminal device determines the size of the first transport block according to the N info and the fitting formula.
  • the fitting formula is used to quantize and round the N info , and the obtained quantized and rounded value of the N info is the size of the first transport block.
  • the fitting formula may be as follows, and the size TBS of the first transport block is obtained by calculating according to the N info .
  • the present application is not limited to this.
  • a ⁇ B and A ⁇ B both mean that A and B are multiplied.
  • round(A) means rounding A to the nearest whole number.
  • the terminal device may use the average value of the number of REs including the first data channel in each of the J time-domain symbol groups Determine the size of the first transport block.
  • the process of determining the size of the first transport block may include, but is not limited to, the following steps:
  • the terminal equipment can determine that the number of time-domain symbols including the first data channel in the three time-domain symbol groups are respectively:
  • the present application is not limited to this.
  • Terminal equipment The number of REs of the first data channel included in one resource block in the symbols is calculated by calculating the number of resource elements of the first data channel included in one resource block in each time-domain symbol group.
  • each resource block in the time domain symbol containing the first data channel may include REs that carry a demodulation reference signal (demodulation reference signal, DMRS) used to demodulate the first data channel, and may also include REs configured by the network device overhead.
  • DMRS demodulation reference signal
  • the terminal device can determine the One resource block in symbols contains the number of REs of the first data channel Should Satisfy:
  • Terminal equipment determine the intermediate quantity N info of the first transport block, where the N info satisfies:
  • N info N RE ⁇ R ⁇ Q ⁇ v.
  • the terminal device determines the size of the first transport block according to the intermediate quantity N info .
  • the terminal device may obtain the size of the first transport block after quantizing and/or rounding the intermediate quantity N info .
  • This step is the same as that of determining the size of the first transport block according to the intermediate quantity N info in the previous embodiment. Reference may be made to the introduction in the previous embodiment, which is not repeated here for brevity.
  • the terminal device After the terminal device determines the size of the first transmission block, if the first transmission block is a downlink transmission block, and the first data channel is a downlink data channel, the terminal device will use the resources that actually include the first data channel in the J time-domain symbol groups. After the first data channel is demodulated and decoded, the first transport block is obtained. Or, if the first transmission block is an uplink transmission block and the first data channel is an uplink data channel, the terminal device determines that the J time-domain symbol groups actually contain the resources of the first data channel, and encodes the first transmission block, After processing such as modulation, the resource is sent to the network device on the resource bearing the first data channel in the J time-domain symbol groups.
  • the terminal device determines that the resources that actually include the first data channel in the three time-domain symbol groups are time unit n, symbols 3 to 8 in time unit n+2, and time unit n+1. Symbol 3 to Symbol 5. That is, the first transport block is transmitted once on the resources of the first data channel from symbols 3 to 8 in time unit n, and the first of symbols 3 to 5 in time unit n+1 The resources of the data channel are transmitted once, and the resources of the first data channel in the symbol 3 to the symbol 8 in the time unit n+2 are transmitted once, and are transmitted three times in total. After the terminal device receives the resource including the first data channel, it performs demodulation, decoding and other processing to obtain the first transport block, but the application is not limited to this.
  • the size of the transport block is calculated according to the resource size of the data channel that can actually transmit the transport block in the resources allocated by the network device.
  • the transport block is transmitted on a data channel resource other than the level capable of transmitting the transport block (ie, the data channel resource as the actual transport transport block).
  • This keeps the ratio of the size of the transport block to the size of the data channel resource at a certain value, which can avoid the situation of reliability degradation caused by canceling one or more transmissions in the repeated transmission in the prior art. It can achieve the expected effect of repeated transmission, increase the coverage, and improve the reliability of transmission block transmission.
  • the average value of the symbol resources actually used to transmit the transmission block contained in each symbol group in the multiple symbol groups can be based on the average value of the symbol resources actually used to transmit the transmission block contained in each symbol group in the multiple symbol groups, or, the actual value of the symbol resources contained in each resource block in each symbol group that is actually used to transmit the transmission.
  • the average value of the resource elements of the block is used to calculate the data channel resources of the actual transmission transport block, which can reduce the complexity of the transport block size and improve the work efficiency.
  • FIG. 6 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 600 may include a processing unit 610 and a transceiver unit 620 .
  • the communication apparatus 600 may correspond to the terminal device in the above method embodiment, that is, the UE, or a chip configured (or used in) the terminal device.
  • the communication apparatus 600 may correspond to the terminal device in the method 200 according to the embodiment of the present application, and the communication apparatus 600 may include a unit for executing the method performed by the terminal device in the method 200 in FIG. 2 .
  • each unit in the communication device 600 and the above-mentioned other operations and/or functions are respectively for realizing the corresponding flow of the method 200 in FIG. 2 .
  • the transceiver unit 620 in the communication apparatus 600 may be an input/output interface or circuit of the chip, and the processing in the communication apparatus 600 Unit 610 may be a processor in a chip.
  • the communication apparatus 600 may further include a processing unit 610, and the processing unit 610 may be configured to process instructions or data to implement corresponding operations.
  • the communication device 600 may further include a storage unit 630, the storage unit 630 may be used to store instructions or data, and the processing unit 610 may execute the instructions or data stored in the storage unit, so as to enable the communication device to implement corresponding operations , the transceiver unit 620 in the communication apparatus 600 in the communication apparatus 600 may correspond to the transceiver 710 in the communication apparatus 700 shown in FIG. 7 , and the storage unit 630 may correspond to the communication apparatus 700 shown in FIG. 7 . in the memory.
  • the transceiver unit 620 in the communication apparatus 600 may be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it may correspond to the communication shown in FIG. 7 .
  • the transceiver 710 in the device 700, the processing unit 610 in the communication device 600 may be implemented by at least one processor, for example, may correspond to the processor 720 in the communication device 700 shown in FIG.
  • the processing unit 610 may be implemented by at least one logic circuit.
  • the communication apparatus 600 may correspond to the network equipment in the above method embodiments, for example, or a chip configured (or used in) the network equipment.
  • the communication apparatus 600 may correspond to the network device in the method 200 according to the embodiment of the present application, and the communication apparatus 600 may include a unit for executing the method performed by the network device in the method 200 in FIG. 2 .
  • each unit in the communication device 600 and the above-mentioned other operations and/or functions are respectively for realizing the corresponding flow of the method 200 in FIG. 2 .
  • the transceiver unit in the communication device 600 is an input/output interface or circuit in the chip
  • the processing unit in the communication device 600 610 may be a processor in a chip.
  • the communication apparatus 600 may further include a processing unit 610, and the processing unit 610 may be configured to process instructions or data to implement corresponding operations.
  • the communication apparatus 600 may further include a storage unit 630, which may be used to store instructions or data, and the processing unit may execute the instructions or data stored in the storage unit 630 to enable the communication apparatus to implement corresponding operations.
  • the storage unit 630 in the communication apparatus 600 may correspond to the memory in the communication device 700 shown in FIG. 7 .
  • the transceiver unit 620 in the communication apparatus 600 may be implemented through a communication interface (such as a transceiver or an input/output interface), for example, may correspond to the communication shown in FIG. 7 .
  • the transceiver 710 in the device 700, the processing unit 610 in the communication device 600 may be implemented by at least one processor, for example, may correspond to the processor 720 in the communication device 700 shown in FIG.
  • the processing unit 610 may be implemented by at least one logic circuit.
  • FIG. 7 is a schematic structural diagram of a communication device 700 provided by an embodiment of the present application.
  • the communication device 700 can be applied to the system shown in FIG. 1 , and can implement the functions of the terminal device in the foregoing method embodiments. Alternatively, the functions of the network device in the foregoing method embodiments may be implemented.
  • the communication device 700 includes a processor 720 and a transceiver 710 .
  • the communication device 700 further includes a memory.
  • the processor 720, the transceiver 710 and the memory can communicate with each other through an internal connection path to transmit control and/or data signals, the memory is used to store computer programs, and the processor 720 is used to execute the computer in the memory. program to control the transceiver 710 to send and receive signals.
  • the above-mentioned processor 720 and the memory can be combined into a processing device, and the processor 720 is configured to execute the program codes stored in the memory to realize the above-mentioned functions.
  • the memory may also be integrated in the processor 720 or be independent of the processor 720 .
  • the processor 720 may correspond to the processing unit in FIG. 6 .
  • the above transceiver 710 may correspond to the transceiver unit in FIG. 6 .
  • the transceiver 710 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used for receiving signals, and the transmitter is used for transmitting signals.
  • the communication device 700 shown in FIG. 7 can implement each process involving the terminal device in the embodiment of the method 200 in FIG. 2 .
  • the operations and/or functions of each module in the communication device 700 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 720 may be used to perform the actions described in the foregoing method embodiments that are implemented inside the terminal device, and the transceiver 710 may be used to perform the above-mentioned method embodiments described in the foregoing method embodiments.
  • the terminal equipment sends or receives from the network device. action. For details, please refer to the descriptions in the foregoing method embodiments, which will not be repeated here.
  • the above communication device 700 may further include a power supply for providing power to various devices or circuits in the terminal device.
  • the communication device 700 may also include one or more of an input unit, a display unit, an audio circuit, a camera, a sensor, etc., and the audio circuit may also include a speaker, a microphone, and the like. Wait.
  • the communication device 700 shown in FIG. 7 can implement each process involving the network device in the embodiment of the method 200 in FIG. 2 .
  • the operations and/or functions of each module in the communication device 700 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the above-mentioned processor 720 may be used to perform the actions described in the foregoing method embodiments that are implemented inside the network device, and the transceiver 710 may be used to execute the network equipment described in the foregoing method embodiments. Send to or receive from the terminal device. action.
  • the transceiver 710 may be used to execute the network equipment described in the foregoing method embodiments. Send to or receive from the terminal device. action.
  • the communication device 700 shown in FIG. 7 is only a possible architecture of a network device, and should not constitute any limitation to the present application.
  • the methods provided in this application may be applicable to network devices of other architectures.
  • network equipment including CU, DU, and AAU, etc. This application does not limit the specific architecture of the network device.
  • An embodiment of the present application further provides a processing apparatus, including a processor and an interface, where the processor is configured to execute the method in any of the foregoing method embodiments.
  • the above-mentioned processing device may be one or more chips.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a It is a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (micro controller unit). , MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • MCU microcontroller
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is executed by one or more processors, makes the device including the processor The method in the above embodiment is performed.
  • the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores program codes, and when the program codes are executed by one or more processors, the processing includes the processing
  • the device of the controller executes the method in the above-mentioned embodiment.
  • the present application further provides a system, which includes the aforementioned one or more network devices.
  • the system may further include one or more of the aforementioned terminal devices.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules may be combined or integrated into Another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of modules may be in electrical, mechanical or other forms.
  • the processor may be a central processing unit (English: Central Processing Unit, referred to as: CPU), or other general-purpose processors, digital signal processors (English: Digital Signal Processor, referred to as: DSP), application specific integrated circuit (English: Application Specific Integrated Circuit, referred to as: ASIC) and so on.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the aforementioned program can be stored in a readable memory.
  • the steps including the above method embodiments are executed; and the aforementioned memory (storage medium) includes: read-only memory (English: read-only memory, abbreviated as: ROM), RAM, flash memory, hard disk, Solid state drive, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Communication Control (AREA)

Abstract

本申请实施例提供一种确定传输块大小的方法和装置,该方法包括:通信设备确定第一传输块在J个时域符号组中重复传输,该J个时域符号组中的每个时域符号组包括L个时域符号,其中,J、L为正整数;通信设备根据该J个时域符号组中的每个时域符号组中包含第一数据信道的资源的个数,确定该第一传输块的大小,该第一数据信道用于承载该第一传输块。能够提高传输块的传输可靠性。

Description

确定传输块大小的方法和装置 技术领域
本申请实施例涉及通信技术,尤其涉及一种确定传输块大小的方法和装置。
背景技术
在第五代(5 th generation,5G)移动通信系统新无线(new radio,NR)通信技术中,为了增加覆盖范围、提高传输块的传输可靠性,可以采用对单次调度或授权的数据传输块在连续的多个时隙中进行重复传输的传输机制。在该传输机制中,网络设备通过下行控制信息(downlink control information,DCI)指示一个时隙中用于承载传输块的下行共享信道(physical downlink shared channel,PDSCH)或上行共享信道(physical uplink shared channel,PUSCH)的时频资源的位置,以此可以确定该时频资源的大小。网络设备和终端设备均可以根据该时频资源大小确定传输块的大小。该多个时隙中在每个时隙的该时频资源位置重复传输该大小的传输块。
当该DCI指示的该时频资源的位置在多个时隙中的一个时隙中包含更高优先级的信号占用的资源(例如,包含上、下行方向不同的资源等)时,则取消在该时隙中传输该传输块。这将导致无法达到预期的传输可靠性。
发明内容
本申请实施例提供了一种确定传输块大小的方法和装置,能够提高传输块的传输可靠性。
第一方面,本申请实施例可提供一种通信方法,该方法可以由通信设备或配置于(或用于)通信设备的模块(如芯片)执行,该方法包括:
确定第一传输块在J个时域符号组中重复传输,所述J个时域符号组中的每个时域符号组包括L个时域符号,其中,J、L为正整数;
根据所述J个时域符号组中的每个时域符号组中包含第一数据信道的资源的个数,确定所述第一传输块的大小,所述第一数据信道用于承载所述第一传输块。
第二方面,本申请实施例可提供一种通信装置,该通信装置配置于通信设备或该通信装置为通信设备,包括:
收发单元,用于接收或发送下行控制信息,所述下行控制信息用于调度第一数据信道,所述第一数据信道承载第一传输块;
处理单元,用于确定所述第一传输块在J个时域符号组中重复传输,所述J个时域符号组中的每个时域符号组包括L个时域符号,其中,J、L为正整数;
所述处理单元还用于根据所述J个时域符号组中的每个时域符号组中包含所述第一数据信道的资源的个数,确定所述第一传输块的大小。
第三方面,本申请实施例还可提供一种通信设备,包括:
处理器、存储器、与网络设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第一方面中的任一项提供的通信方法。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第一方面中的任一项所述的通信方法。
第五方面,本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行如上第一方面中的任一项所述的通信方法。
可选地,上述处理器可以为芯片。
第六方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现如第一方面中的任一项所述的通信方法。
第七方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行如第一方面中的任一项所述的通信方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行如第一方面中的任一项所述的通信方法。
附图说明
图1是适用于本申请的通信系统架构的示意图;
图2是本申请实施例提供的确定传输块大小的方法的一个示意性流程图;
图3是本申请实施例提供的传输块在J个时域符号组上重复传输的一个示意图;
图4是本申请实施例提供的传输块在J个时域符号组上重复传输的另一个示意图;
图5是本申请实施例提供的传输块在J个时域符号组上重复传输的另一个示意图;
图6是本申请的通信装置的一例的示意性框图;
图7是本申请的通信设备的一例的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信系统(global system for mobile communications,GSM)、码分多址接入(code division multiple access,CDMA)系统、宽带码分多址接入(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunications system,UMTS)、全球微波接入互操作性(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)等。
图1为适用于本申请实施例的通信系统100的示意图。
如图1所示,该通信系统100可以包括至少一个网络设备,如图1中的网络设备101;该通信系统100还可以包括至少一个终端设备,如图1中的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101和终端设备102至107中的一个或多个均可以通过无线链路通信。网络设备和终端设备之间可以采用本申请实施例提供的传输块大小的确定方法确定接收到的或发送的传输块的大小。可选地,终端设备之间可以直接通信。例如可以利用D2D技术等实现终端设备之间的直接通信。如图中所示,终端设备105与106之间、终端设备105与107之间,可以利用D2D、V2X等技术直接通信。终端设备106和终端设备107可以单独或同时与终端设备105通信。终端设备与终端设备进行通信时可以采用本申请实施例提供的传输块大小的确定方法进行确定接收到的或发送的传输块的大小。
本申请实施例中的终端设备可以是用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端设备、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电 话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动移动网(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
需要说明的是,本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在目前的多时隙传输机制中,根据一个时隙中的数据信道(例如,PDSCH或PUSCH)的资源大小计算传输块大小,并在多个时隙中的数据信道的资源位置重复传输该大小的传输块。若在该多个时隙中的一个或多个时隙中的该数据信道的资源包含其他高优先级用途的资源时,该一个或多个时隙中的重复传输将被取消。这样计算传输块大小、以及取消传输的方式,将导致无法达到预期的传输可靠性。
本申请提出当传输块在多个时域符号组中重复传输时,由于通信双方一般对通信资源的优先级能够预先达成共识,因此,可以确定在该多个时域符号组中实际可以用于传输该传输块的数据信道的资源大小。根据实际能够传输该传输块的数据信道的资源大小计算传输块的大小,在一个时域符号组中包含高优先级的资源的情况下,在除高优先级以外的能够传输该传输块的数据信道资源(即作为实际传输传输块的数据信道资源)上传输该传输块。这使得传输块大小与数据信道资源大小的比例保持在一定 值,能够避免现有技术中因取消重复传输中的某一次或多次传输而造成的可靠性下降的情况。能够达到重复传输的预期效果,增加覆盖范围、提高传输块传输的可靠性。
下面结合附图详细说明本申请实施例提供的传输块大小的确定方法。
需要说明的是,本申请提供的传输块大小的确定方法可以由终端设备执行也可以由网络设备执行。可以是网络设备与终端设备进行通信时,网络设备和终端设备通过该方法确定传输块的大小,也可以是两个终端设备进行通信时,通过该方法确定传输块的大小。下面以终端设备确定传输块的大小为例进行说明,但本申请不限于此。
图2是本申请实施例提供的传输块大小的确定方法的一个示意性流程图。
S210,终端设备确定第一传输块在J个时域符号组中重复传输,该J个时域符号组中的每个时域符号组包括L个时域符号。
一种实施方式中,网络设备可以为终端设备配置第一传输块的重复次数J,在该配置重复次数J生效后,网络设备通过指示信息通知终端设备调度或授权的用于传输第一传输块的第一数据信道,终端设备可以根据该配置的或指示的重复次数J确定该第一传输块重复传输J次。
例如,网络设备可以通过无线资源控制(radio resource control,RRC)消息为终端设备配置调度第一数据信道时该第一数据信道的重复次数。该第一数据信道可以是上行数据信道(例如,PUSCH)或下行数据信道(例如PUSCH)。例如,该第一数据信道为PUSCH,该RRC消息中包括PUSCH聚合因子信元,该PUSCH聚合因子信元用于配置网络设备授权终端设备用于发送第一传输块的PUSCH的重复次数J。该PUSCH聚合因子信元可以写作PUSCH-AggregationFactor,但本申请不限于此。当终端设备接收到该RRC消息中的PUSCH-AggregationFactor信元且该信元生效后,终端设备接收到来自网络设备的上行授权(UL-grant)DCI,该DCI用于指示网络设备授权的、用于终端设备发送上行传输块(即第一传输块的一个示例)的PUSCH的时频资源。终端设备可以根据RRC消息确定该上行传输块重复传输J次,以及可以根据该DCI指示的PUSCH的时频资源,确定每个用于承载重复传输的该上行数据块的PUSCH的时频资源。
一个示例中,该上行授权DCI指示一个时间单元中的PUSCH的时频资源,以及该上行授权DCI指示传输该传输块的第一个时间单元,终端设备根据重复次数J,确定该上行传输块在以该第一个时间单元为起始的连续的J个时间单元中的该PUSCH的时频资源上重复传输。也就是说,该J个时域符号组为该J个时间单元中的时域符号组(即DCI指示的PUSCH的时频资源包含的时域符号的个数),该J个时域符号组中的一个时域符号组为一个时间单元中的时域符号组。
例如,每个时间单元包括14个符号,网络设备可以通过RRC消息配置重复次数J为3。在该RRC消息生效后,终端设备接收到来自网络设备的DCI,该DCI指示授权的PUSCH的时频资源在时域上为一个时间单元中的符号3至符号8共6个符号(即L为6),频域上为多个资源块,且该DCI还指示传输该第一传输块的起始时间单元为时间单元n。如图3所示,终端设备接收到该DCI后,可以确定在连续的3个时间单元(即时间单元n、时间单元n+1和时间单元n+2)中的每个时间单元中的符号3至符号8中传输第一传输块。也就是说,终端设备确定第一传输块在3个时域符号组中重复传输3次,该3个时域符号组分别为时间单元n、时间单元n+1和时间单元n+2中的符号3至符号8,即该3个时域符号组中的每个时域符号组包括6个时域符号。但本申请不限于此。
可选地,该时间单元可以是时隙、子帧或帧。
另一个示例中,该上行授权DCI指示授权的一个PUSCH的时频资源,一个PUSCH的时频资源包括时域连续的L个时域符号。终端设备确定在连续的J个时域符号组中 重复传输该第一传输块。
例如,网络设备可以通过RRC消息配置重复次数J为4。在该RRC消息生效后,终端设备接收到来自网络设备的DCI,该DCI指示授权的第一个PUSCH的时频资源在时域上符号3开始的连续3个符号。终端设备可以确定在连续的4个时域符号组中重复传输该第一传输块,每个时域符号组包括3个时域符号,且该连续的4个时域符号组的第一个时域符号组(即符号组0)为符号3开始的连续3个符号组。则终端设备可以确定该连续的4个符号组中的符号组1、符号组2和符号组3中包含的时域符号分别为符号6至符号8、符号9至符号11和符号12至符号14,但本申请不限于此。
以上以上行传输块重复传输为例进行了说明,该第一传输块还可以是下行传输块。例如网络设备可以通过RRC消息为终端设备配置下行数据信道(例如PDSCH)的重复传输次数,如该RRC消息中可以包括PDSCH聚合因子信元,用于配置网络设备调度的、用于承载网络设备向终端设备发送的下行传输块(即第一传输块的另一个示例)的PDSCH的重复次数J。该PDSCH聚合因子信元可以写作PDSCH-AggregationFactor,但本申请不限于此。终端设备接收到该RRC信令后,根据PDSCH-AggregationFactor信元确定网络设备向该终端设备发送的下行传输块将被重复发送J次。在该PDSCH-AggregationFactor信元生效后,终端设备接收到来自网络设备的、调度用于承载下行传输块的PDSCH的DCI,该DCI指示调度的PDSCH的时频资源包括L个时域符号,终端设备可以确定J个时域符号组用于网络设备重复发送该下行传输块,每个时域符号组包括L个时域符号,接收该J个时域符号组,确定该下行传输块的大小,解调解码该J个时域符号组得到该下行传输块,但本申请不限于此。具体确定该J个时域符号组的方式与上述对上行传输块重复传输的方式类似,具体实施中可以参考上述描述,为了简要,在此不再赘述。
可选地,网络设备还可以通过DCI指示PDSCH或PUSCH的重复次数,或者传输块的重复传输次数。
例如,网络设备可以在授权PUSCH的DCI中指示该PUSCH的重复次数,或者在调度PDSCH的DCI中指示该PDSCH的重复次数等,但本申请不限于此。
终端设备在S210中确定第一传输块在J个时域符号组中重复传输后,由于该J个时域符号组中可能包括用于传输更高优先级信号的资源,或者包括传输方向与该第一数据信道的传输方向不同的资源,使得该J个时域符号组中实际传输第一传输块的资源可能小于该J个时域符号组包含的资源。
例如图3示例中,终端设备在S210中确定用于重复传输第一传输块的3个时域符号组。由于网络设备和终端设备一般对通信资源的优先级能够预先达成共识,例如资源的上行和下行配置等,若第一传输块为上行传输块,而该3个时域符号组中的第2个时域符号组(即时间单元n+1)中包括2个下行符号,例如符号7、符号8为下行符号,那么该2个下行符号不能用于网络设备传输上行传输块,也就是说,该2个下行符号不能作为第一数据信道(即上行数据信道)的资源。因此,终端设备实际能够传输该第一传输块的资源将小于该J个时域符号组包含的资源。
再例如图4示例中,终端设备在210中确定用于重复传输第一传输块的4个时域符号组。第一传输块为上行传输块,若时域符号组1中的符号7、符号8,以及符号组2中的符号9为下行符号,则该符号7、8、9不能用于传输上行传输块,因此终端设备实际能够传输第一传输块的资源将小于J个时域符号组包含的资源。
为了保证传输块重复传输的可靠性,终端设备可以在S220中根据该J个时域符号组中实际包含第一数据信道的资源的个数,确定第一传输块的大小。
S220,终端设备根据J个时域符号组中的每个时域符号组中包含第一数据信道的 资源的个数
Figure PCTCN2020136213-appb-000001
确定第一传输块的大小。
一种实施方式中,终端设备根据J个时域符号组中的每个时域符号组中包含第一数据信道的时域符号的个数的均值
Figure PCTCN2020136213-appb-000002
确定该第一传输块的大小。
可选地,该
Figure PCTCN2020136213-appb-000003
满足:
Figure PCTCN2020136213-appb-000004
其中,
Figure PCTCN2020136213-appb-000005
为所述J个时域符号组中的时域符号组i包含的所述第一数据信道的时域符号的个数,
Figure PCTCN2020136213-appb-000006
例如,网络设备通过RRC消息预先配置网络设备向终端设备发送的用于承载下行传输块的PDSCH的重复次数为3次(即J=3)。即第一传输块为下行传输块,第一数据信道为PDSCH。其中,可以规定在配置重复次数J的情况下,J个时域符号组为连续的J个时间单元中的时域符号组。在该RRC消息生效后,网络设备向终端设备发送一个第一DCI,该第一DCI用于指示一个时间单元中的PDSCH的时频资源。例如,该第一DCI包括第一指示信息,该第一指示信息用于指示该PDSCH的时频资源在时域上包括起始符号为符号3的连续6个时域符号,即L=6。以及,该第一DCI还指示该PDSCH的起始时间单元为时间单元n。终端设备可以根据RRC消息确定该PDSCH的重复次数为3次,例如在以时间单元n为起始时间单元的连续的3个时间单元的符号3至符号8的6个时域符号上发送该第一传输块。例如图5所示,根据DCI的指示以及重复次数可以确定该3个时域符号组分别为时间单元n、时间单元n+1和时间单元n+2中的符号3至符号8的6个时域符号。
然而,在时间单元n+1中符号6至符号14为上行时域符号,其中,符号6、7、8不能用于传输该下行传输块,也就是说,该符号6、7、8不能作为PDSCH的时域资源。因此,终端设备确定在该时间单元n+1中包含PDSCH的时域符号的个数为符号3至符号5共3个符号。也就是说,该3个时域符号组中的第二个时域符号组(即时域符号组1)包含PDSCH的时域符号个数为3个。该3个时域符号组中的第一个时域符号组(即时域符号组0)和第三个时域符号组(即时域符号组2)包含PDSCH的时域符号个数均为6个。因此,该3个时域符号组中每个时域符号组中包含PDSCH的时域符号的个数的均值为
Figure PCTCN2020136213-appb-000007
但本申请不限于此。
可选地,终端设备确定
Figure PCTCN2020136213-appb-000008
个时域符号中第一数据信道的资源元素(resource element,RE)的个数N RE,根据该N RE,确定第一传输块的大小。其中,J个时域符号组中的每个时域符号在频域中的一个子载波为一个资源元素。
终端设备根据该N RE,确定第一传输块的大小的过程可以包括但不限于以下步骤:
1、终端设备可以确定
Figure PCTCN2020136213-appb-000009
个时域符号中每个资源块(resource block,RB)中第一数据信道的资源元素的个数N RE/RB
例如,该
Figure PCTCN2020136213-appb-000010
个时域符号中每个资源块可以包括承载用于解调第一数据信道的解调参考信号(demodulation reference signal,DMRS)的RE,还可以包括网络设备配置的RE开销。终端设备可以确定该
Figure PCTCN2020136213-appb-000011
个时域符号中每个资源块中除承载DMRS的RE的个数
Figure PCTCN2020136213-appb-000012
和网络设备配置的每个资源块中RE开销的个数
Figure PCTCN2020136213-appb-000013
以外的RE为第一数据信道的RE。其中,N RE/RB满足:
Figure PCTCN2020136213-appb-000014
其中,
Figure PCTCN2020136213-appb-000015
表示
Figure PCTCN2020136213-appb-000016
Figure PCTCN2020136213-appb-000017
相乘,
Figure PCTCN2020136213-appb-000018
为一个资源块包含的子载波的个数,即一个时域符号在一个资源块的频域范围内包含的RE的个数。
2、终端设备根据第一数据信道的资源块的个数N RB和每个资源块包含的资源元素的个数N RE/RB,确定该
Figure PCTCN2020136213-appb-000019
个时域符号中第一数据信道的资源元素的个数N RE,该N RE满足:
N RE=N RE/RB·N RB
可选地,该第一DCI可以包括第二指示信息,该第二指示信息用于指示该第一数据信道包含的资源块的个数N RB
3、终端设备根据该N RE、码率R、调制结束Q和传输层数v,确定所述第一传输块的中间量N info,其中,该N info满足:
N info=N RE·R·Q·v。
可选地,该第一传输块采用的码率R、调制结束Q和传输层数v可以由该第一DCI指示。
4、终端设备根据该中间量N info,确定第一传输块的大小。
终端设备可以对该中间量N info进行量化和/或取整后,得到该第一传输块的大小。
一个示例中,终端设备根据N info,查表得到第一传输块的大小。
例如,协议规定一个表格,该表格中包含N个传输块的大小(transport block size,TBS)的表格。终端设备和网络设备存储有该表格,终端设备和网络设备可以根据上述步骤确定N info后,查询表格确定表格中与该N info最近接近的TBS值,即为第一传输块的大小。例如,该表格可以如表1所示,表1中包含93个传输块的大小,可以从中确定一个与N info最接近的TBS值,但本申请不限于此。
表1
标识 TBS 标识 TBS 标识 TBS 标识 TBS
1 24 31 336 61 1288 91 3624
2 32 32 352 62 1320 92 3752
3 40 33 368 63 1352 93 3824
4 48 34 384 64 1416    
5 56 35 408 65 1480    
6 64 36 432 66 1544    
7 72 37 456 67 1608    
8 80 38 480 68 1672    
9 88 39 504 69 1736    
10 96 40 528 70 1800    
11 104 41 552 71 1864    
12 112 42 576 72 1928    
13 120 43 608 73 2024    
14 128 44 640 74 2088    
15 136 45 672 75 2152    
16 144 46 704 76 2216    
17 152 47 736 77 2280    
18 160 48 768 78 2408    
19 168 49 808 79 2472    
20 176 50 848 80 2536    
21 184 51 888 81 2600    
22 192 52 928 82 2664    
23 208 53 984 83 2728    
24 224 54 1032 84 2792    
25 240 55 1064 85 2856    
26 256 56 1128 86 2976    
27 272 57 1160 87 3104    
28 288 58 1192 88 3240    
29 304 59 1224 89 3368    
30 320 60 1256 90 3496    
另一个示例中,终端设备根据该N info和拟合公式,确定第一传输块的大小。
可选地,该拟合公式用于对该N info进行量化和取整,得到的该N info的量化、取整值为该第一传输块的大小。
例如,该拟合公式可以如下,根据该N info计算得到第一传输块的大小TBS。但本申请不限于此。
Figure PCTCN2020136213-appb-000020
或者,
Figure PCTCN2020136213-appb-000021
其中,
Figure PCTCN2020136213-appb-000022
在本申请中,A·B、A×B均表示A与B相乘。以及round(A)表示对A进行四舍五入取整。
另一种实施方式中,终端设备根据J个时域符号组中的每个时域符号组中包含第一数据信道的RE的个数的均值
Figure PCTCN2020136213-appb-000023
确定该第一传输块的大小。
终端设备根据该
Figure PCTCN2020136213-appb-000024
确定该第一传输块的大小的过程可以包括但不限于以下步骤:
1、终端设备首先确定该J个时域符号组中的每个时域符号组中包含该第一数据信道的时域符号的个数
Figure PCTCN2020136213-appb-000025
i=1,…,J。
例如图5示例中,终端设备可以的确定3个时域符号组中包含第一数据信道的时域符号个数分别为
Figure PCTCN2020136213-appb-000026
但本申请不限于此。
2、终端设备根据每个时域符号组中的
Figure PCTCN2020136213-appb-000027
个符号中一个资源块包含的第一数据信道的RE的个数计算每个时域符号组中的一个资源块包含的该第一数据信道的资源元素的个数。
例如,包含第一数据信道的时域符号中每个资源块可以包括承载用于解调第一数据信道的解调参考信号(demodulation reference signal,DMRS)的RE,还可以包括网络设备配置的RE开销。终端设备可以确定每个时域符号组中的
Figure PCTCN2020136213-appb-000028
个符号中一个 资源块包含第一数据信道的RE个数
Figure PCTCN2020136213-appb-000029
Figure PCTCN2020136213-appb-000030
满足:
Figure PCTCN2020136213-appb-000031
其中,
Figure PCTCN2020136213-appb-000032
为时域符号组i中频域上一个资源块宽度包含的DMRS占用的RE的个数,
Figure PCTCN2020136213-appb-000033
为时域符号组i中频域上一个资源块宽度包含的网络设备配置的RE开销的个数。
3、终端设备根据该
Figure PCTCN2020136213-appb-000034
确定J个时域符号组中每个时域符号组中的一个资源块包含的该第一数据信道的资源元素的个数的均值
Figure PCTCN2020136213-appb-000035
满足:
Figure PCTCN2020136213-appb-000036
4、终端设备根据
Figure PCTCN2020136213-appb-000037
确定J个时域符号组中的每个时域符号组中包含第一数据信道的RE的个数的均值
Figure PCTCN2020136213-appb-000038
Figure PCTCN2020136213-appb-000039
满足:
Figure PCTCN2020136213-appb-000040
5、终端设备根据该
Figure PCTCN2020136213-appb-000041
码率R、调制结束Q和传输层数v,确定所述第一传输块的中间量N info,其中,该N info满足:
N info=N RE·R·Q·v。
4、终端设备根据该中间量N info,确定第一传输块的大小。
终端设备可以对该中间量N info进行量化和/或取整后,得到该第一传输块的大小。
该步骤与前一实施方式中根据该中间量N info,确定第一传输块的大小的实施方式相同,可以参考前一实施方式中的介绍,为了简要,在此不再赘述。
终端设备确定第一传输块的大小后,若第一传输块为下行传输块,第一数据信道为下行数据信道,终端设备对该J个时域符号组中实际包含第一数据信道的资源上的第一数据信道进行解调、解码等处理后,得到第一传输块。或者,若第一传输块为上行传输块,第一数据信道为上行数据信道,终端设备确定该J个时域符号组中实际包含第一数据信道的资源,并对第一传输块进行编码、调制等处理后,承载该J个时域符号组中中第一数据信道的资源上发送给网络设备。
例如图5示例中,终端设备确定3个时域符号组中实际包含第一数据信道的资源为时间单元n、时间单元n+2中的符号3至符号8,以及时间单元n+1中的符号3至符号5。也就是说,第一传输块在时间单元n中的符号3至符号8中的第一数据信道的资源上传输了一次,以及在时间单元n+1中的符号3至符号5中的第一数据信道的资源上传输了一次、时间单元n+2中的符号3至符号8中的第一数据信道的资源上传输了一次,共传输了3次。终端设备接收到的包含第一数据信道的资源后,进行解调、解码等处理后得到第一传输块,但申请不限于此。
根据上述方案,根据网络设备分配的资源中实际能够传输该传输块的数据信道的资源大小计算传输块的大小,在一个时域符号组中包含高优先级的资源的情况下,在除高优先级以外的能够传输该传输块的数据信道资源(即作为实际传输传输块的数据信道资源)上传输该传输块。这使得传输块大小与数据信道资源大小的比例保持在一定值,能够避免现有技术中因取消重复传输中的某一次或多次传输而造成的可靠性下降的情况。能够达到重复传输的预期效果,增加覆盖范围、提高传输块传输的可靠性。可选地,可以根据多个符号组中每个符号组包含的实际用于传输该传输块的符号资源的均值,或者,每个符号组中每个资源块中包含的实际用于传输该传输块的资源元素 的均值,计算实际传输传输块的数据信道资源,能够减小传输块大小的复杂度,提高工作效率。
以上,结合图2至图5详细说明了本申请实施例提供的方法。以下介绍本申请实施例提供的装置。
图6是本申请实施例提供的通信装置的示意性框图。如图6所示,该通信装置600可以包括处理单元610和收发单元620。
在一种可能的设计中,该通信装置600可对应于上文方法实施例中的终端设备,即UE,或者配置于(或用于)终端设备中的芯片。
应理解,该通信装置600可对应于根据本申请实施例的方法200中的终端设备,该通信装置600可以包括用于执行图2中的方法200中终端设备执行的方法的单元。并且,该通信装置600中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
还应理解,该通信装置600为配置于(或用于)终端设备中的芯片时,该通信装置600中的收发单元620可以为芯片的输入/输出接口或电路,该通信装置600中的处理单元610可以为芯片中的处理器。
可选地,通信装置600还可以包括处理单元610,该处理单元610可以用于处理指令或者数据,以实现相应的操作。
可选地,通信装置600还可以包括存储单元630,该存储单元630可以用于存储指令或者数据,处理单元610可以执行该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作,该通信装置600中的该通信装置600中的收发单元620为可对应于图7中示出的通信设备700中的收发器710,存储单元630可对应于图7中示出的通信设备700中的存储器。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置600为终端设备时,该通信装置600中的收发单元620为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图7中示出的通信设备700中的收发器710,该通信装置600中的处理单元610可通过至少一个处理器实现,例如可对应于图7中示出的通信设备700中的处理器720,该通信装置600中的处理单元610可通过至少一个逻辑电路实现。
在另一种可能的设计中,该通信装置600可对应于上文方法实施例中的网络设备,例如,或者配置于(或用于)网络设备中的芯片。
应理解,该通信装置600可对应于根据本申请实施例的方法200中的网络设备,该通信装置600可以包括用于执行图2中的方法200中网络设备执行的方法的单元。并且,该通信装置600中的各单元和上述其他操作和/或功能分别为了实现图2中的方法200的相应流程。
还应理解,该通信装置600为配置于(或用于)网络设备中的芯片时,该通信装置600中的收发单元为芯片中的输入/输出接口或电路,该通信装置600中的处理单元610可为芯片中的处理器。
可选地,通信装置600还可以包括处理单元610,该处理单元610可以用于处理指令或者数据,以实现相应的操作。
可选地,通信装置600还可以包括存储单元630,该存储单元可以用于存储指令或者数据,处理单元可以执行该存储单元630中存储的指令或者数据,以使该通信装置实现相应的操作。该通信装置600中的存储单元630为可对应于图7中示出的通信设备700中的存储器。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为 了简洁,在此不再赘述。
还应理解,该通信装置600为网络设备时,该通信装置600中的收发单元620为可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图7中示出的通信设备700中的收发器710,该通信装置600中的处理单元610可通过至少一个处理器实现,例如可对应于图7中示出的通信设备700中的处理器720,该通信装置600中的处理单元610可通过至少一个逻辑电路实现。
图7是本申请实施例提供的通信设备700的结构示意图。该通信设备700可应用于如图1所示的系统中,可以实现上述方法实施例中终端设备的功能。或者,可以实现上述方法实施例中网络设备的功能。如图所示,该通信设备700包括处理器720和收发器710。可选地,该通信设备700还包括存储器。其中,处理器720、收发器710和存储器之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器用于存储计算机程序,该处理器720用于执行该存储器中的该计算机程序,以控制该收发器710收发信号。
上述处理器720可以和存储器可以合成一个处理装置,处理器720用于执行存储器中存储的程序代码来实现上述功能。具体实现时,该存储器也可以集成在处理器720中,或者独立于处理器720。该处理器720可以与图6中的处理单元对应。
上述收发器710可以与图6中的收发单元对应。收发器710可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图7所示的通信设备700能够实现图2中的方法200实施例中涉及终端设备的各个过程。通信设备700中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,此处不再赘述。
上述处理器720可以用于执行上述方法实施例中描述的由终端设备内部实现的动作,而收发器710可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述通信设备700还可以包括电源,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该通信设备700还可以包括输入单元、显示单元、音频电路、摄像头和传感器等中的一个或多个,该音频电路还可以包括扬声器、麦克风等。
应理解,图7所示的通信设备700能够实现图2中的方法200实施例中涉及网络设备的各个过程。通信设备700中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,此处不再赘述。
上述处理器720可以用于执行上述方法实施例中描述的由网络设备内部实现的动作,而收发器710可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,图7所示出的通信设备700仅为网络设备的一种可能的架构,而不应对本申请构成任何限定。本申请所提供的方法可适用于其他架构的网络设备。例如,包含CU、DU和AAU的网络设备等。本申请对于网络设备的具体架构不作限定。
本申请实施例还提供了一种处理装置,包括处理器和接口;该处理器用于执行上述任一方法实施例中的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro  controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码由一个或多个处理器执行时,使得包括该处理器的装置执行上述实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码由一个或多个处理器运行时,使得包括该处理器的装置执行上述实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个网络设备。还系统还可以进一步包括前述的一个或多个终端设备。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,该模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述终端设备和网络设备的具体实现中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,简称:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种传输块大小的确定方法,其特征在于,包括:
    确定第一传输块在J个时域符号组中重复传输,所述J个时域符号组中的每个时域符号组包括L个时域符号,其中,J、L为正整数;
    根据所述J个时域符号组中的每个时域符号组中包含第一数据信道的资源的个数,确定所述第一传输块的大小,所述第一数据信道用于承载所述第一传输块。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述J个时域符号组中的每个时域符号组中包含第一数据信道的资源的个数,确定所述第一传输块的大小,包括:
    根据所述J个时域符号组中的每个时域符号组中包含所述第一数据信道的时域符号的个数的均值
    Figure PCTCN2020136213-appb-100001
    确定所述第一传输块的大小。
  3. 根据权利要求2所述的方法,其特征在于,所述
    Figure PCTCN2020136213-appb-100002
    满足:
    Figure PCTCN2020136213-appb-100003
    其中,
    Figure PCTCN2020136213-appb-100004
    为所述J个时域符号组中的时域符号组i包含的所述第一数据信道的时域符号的个数,
    Figure PCTCN2020136213-appb-100005
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据J个时域符号组中的每个时域符号组中包含第一数据信道的资源的个数的均值
    Figure PCTCN2020136213-appb-100006
    确定所述第一传输块的大小,包括:
    确定所述
    Figure PCTCN2020136213-appb-100007
    个时域符号中所述第一数据信道的资源元素的个数N RE
    根据所述N RE,确定所述第一传输块的大小,
    其中,所述J个时域符号组中的每个时域符号在频域中的一个子载波为一个资源元素。
  5. 根据权利要求4所述的方法,其特征在于,所述确定所述
    Figure PCTCN2020136213-appb-100008
    个时域符号中所述第一数据信道的资源元素的个数N RE,包括:
    确定所述
    Figure PCTCN2020136213-appb-100009
    个时域符号中一个资源块中所述第一数据信道的资源元素的个数N RE/RB
    根据所述第一数据信道的资源块的个数N RB和所述N RE/RB,确定所述N RE,其中,N RE=N RE/RB·N RB
  6. 根据权利要求3或4所述的方法,其特征在于,所述根据所述N RE,确定所述第一传输块的大小,包括:
    根据所述N RE、码率R、调制阶数Q和传输层数v,确定所述第一传输块的中间量N info,其中,所述N info满足N info=N RE·R·Q·v;
    根据所述N info,确定所述第一传输块的大小。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述J个时域符号组中的每个时域符号组中包含第一数据信道的资源的个数,确定所述第一传输块的大小,包括:
    根据所述J个时域符号组中的每个时域符号组中包含所述第一数据信道的资源元素的个数的均值
    Figure PCTCN2020136213-appb-100010
    确定所述第一传输块的大小,
    其中,所述J个时域符号组中的每个时域符号在频域中的一个子载波为一个资源元素。
  8. 根据权利要求7所述的方法,其特征在于,所述根据J个时域符号组中的每个时域符号组中包含第一数据信道的资源的个数的均值
    Figure PCTCN2020136213-appb-100011
    确定所述第一传输块的大小,包括:
    确定所述J个时域符号组中每个时域符号组中的一个资源块包含的所述第一数据信道的资源元素的个数的均值
    Figure PCTCN2020136213-appb-100012
    根据所述第一数据信道包含的资源块的个数N RB,确定所述
    Figure PCTCN2020136213-appb-100013
    其中,
    Figure PCTCN2020136213-appb-100014
    根据所述
    Figure PCTCN2020136213-appb-100015
    确定所述第一传输块的大小。
  9. 根据权利要求8所述的方法,其特征在于,所述
    Figure PCTCN2020136213-appb-100016
    满足:
    Figure PCTCN2020136213-appb-100017
    其中,
    Figure PCTCN2020136213-appb-100018
    为所述J个时域符号组中时域符号组i中的一个资源块包含的所述第一数据信道的资源元素的个数。
  10. 根据权利要求8或9所述的方法,其特征在于,根据所述
    Figure PCTCN2020136213-appb-100019
    确定所述第一传输块的大小,包括:
    根据所述
    Figure PCTCN2020136213-appb-100020
    码率R、调制阶数Q和传输层数v,确定所述第一传输块的中间量N info,其中,所述N info满足
    Figure PCTCN2020136213-appb-100021
    根据所述N info,确定所述第一传输块的大小。
  11. 根据权利要求6或10所述的方法,其特征在于,所述根据所述N info,确定所述第一传输块的大小,包括:
    根据所述N info,查表得到所述第一传输块的大小;或者,
    根据所述N info和拟合公式,计算得到所述第一传输块的大小。
  12. 根据权利要求6、10或11所述的方法,其特征在于,所述第一传输块的大小为所述N info经过量化和/或取整得到的值。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述J个时域符号组为J个时间单元中的时域符号组,所述J个时域符号组中的一个时域符号组为J个时间单元中的一个时间单元内的一个时域符号组。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述方法还包括:
    接收或发送第一下行控制信息,所述第一下行控制信息用于调度所述第一数据信道,所述第一下行控制信息包括:
    第一指示信息,用于指示所述J个时域符号组中的一个时域符号组包含的时域符号的个数L;和/或,
    第二指示信息,用于指示所述第一数据信道包含的资源块的个数N RB
  15. 一种确定传输块大小的装置,其特征在于,包括:
    收发单元,用于接收或发送第一下行控制信息,所述第一下行控制信息用于调度第一数据信道,所述第一数据信道用于承载第一传输块;
    处理单元,用于确定所述第一传输块在J个时域符号组中重复传输,所述J个时域符号组中的每个时域符号组包括L个时域符号,其中,J、L为正整数;
    所述处理单元还用于根据所述J个时域符号组中的每个时域符号组中包含所述第一数据信道的资源的个数,确定所述第一传输块的大小。
  16. 根据权利要求15所述的装置,其特征在于,
    所述处理单元具体用于根据所述J个时域符号组中的每个时域符号组中包含所述第一数据信道的时域符号的个数的均值
    Figure PCTCN2020136213-appb-100022
    确定所述第一传输块的大小。
  17. 根据权利要求16所述的装置,其特征在于,所述
    Figure PCTCN2020136213-appb-100023
    满足:
    Figure PCTCN2020136213-appb-100024
    其中,
    Figure PCTCN2020136213-appb-100025
    为所述J个时域符号组中的时域符号组i包含的所述第一数据信道的时域符号的个数,
    Figure PCTCN2020136213-appb-100026
  18. 根据权利要求16或17所述的装置,其特征在于,
    所述处理单元具体用于确定所述
    Figure PCTCN2020136213-appb-100027
    个时域符号中所述第一数据信道的资源元素的个数N RE
    所述处理单元具体用于根据所述N RE,确定所述第一传输块的大小,
    其中,所述J个时域符号组中的每个时域符号在频域中的一个子载波为一个资源元素。
  19. 根据权利要求18所述的装置,其特征在于,
    所述处理单元具体用于确定所述
    Figure PCTCN2020136213-appb-100028
    个时域符号中一个资源块中所述第一数据信道的资源元素的个数N RE/RB
    所述处理单元具体用于根据所述第一数据信道的资源块的个数N RB和所述N RE/RB,确定所述N RE,其中,N RE=N RE/RB·N RB
  20. 根据权利要求18或19所述的装置,其特征在于,
    所述处理单元具体用于根据所述N RE、码率R、调制阶数Q和传输层数v,确定所述第一传输块的中间量N info,其中,所述N info满足N info=N RE·R·Q·v;
    根据所述N info,确定所述第一传输块的大小。
  21. 根据权利要求15所述的装置,其特征在于,
    所述处理单元具体用于根据所述J个时域符号组中的每个时域符号组中包含所述第一数据信道的资源元素的个数的均值
    Figure PCTCN2020136213-appb-100029
    确定所述第一传输块的大小,
    其中,所述J个时域符号组中的每个时域符号在频域中的一个子载波为一个资源元素。
  22. 根据权利要求21所述的装置,其特征在于,
    所述处理单元具体用于确定所述J个时域符号组中每个时域符号组中的一个资源块包含的所述第一数据信道的资源元素的个数的均值
    Figure PCTCN2020136213-appb-100030
    所述处理单元具体用于根据所述第一数据信道包含的资源块的个数N RB,确定所述
    Figure PCTCN2020136213-appb-100031
    其中,
    Figure PCTCN2020136213-appb-100032
    所述处理单元具体用于根据所述
    Figure PCTCN2020136213-appb-100033
    确定所述第一传输块的大小。
  23. 根据权利要求22所述的装置,其特征在于,所述
    Figure PCTCN2020136213-appb-100034
    满足:
    Figure PCTCN2020136213-appb-100035
    其中,
    Figure PCTCN2020136213-appb-100036
    为所述J个时域符号组中时域符号组i中的一个资源块包含的所述第一信道的资源元素的个数。
  24. 根据权利要求22或23所述的装置,其特征在于,
    所述处理单元具体用于根据所述
    Figure PCTCN2020136213-appb-100037
    码率R、调制阶数Q和传输层数v,确定所述第一传输块的中间量N info,其中,所述N info满足
    Figure PCTCN2020136213-appb-100038
    所述处理单元具体用于根据所述N info,确定所述第一传输块的大小。
  25. 根据权利要求20或24所述的装置,其特征在于,所述根据所述N info,确定所述第一传输块的大小,包括:
    根据所述N info,查表得到所述第一传输块的大小;或者,
    根据所述N info和拟合公式,计算得到所述第一传输块的大小。
  26. 根据权利要求20、24或25所述的装置,其特征在于,所述第一传输块的大小为所述N info经过量化和/或取整得到的值。
  27. 根据权利要求15至26中任一项所述的装置,其特征在于,所述J个时域符号组为J个时间单元中的时域符号组,所述J个时域符号组中的一个时域符号组为J个时间单元中的一个时间单元内的一个时域符号组。
  28. 根据权利要求15至27中任一项所述的装置,其特征在于,所述第一下行控制信息包括:
    第一指示信息,用于指示所述J个时域符号组中的一个时域符号组包含的时域符号的个数L;和/或,
    第二指示信息,用于指示所述第一数据信道包含的资源块的个数N RB
  29. 一种通信设备,其特征在于,包括:
    处理器、存储器、与终端设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至14中任一项所述的通信方法。
  30. 一种计算机可读存储介质,其特征在于,包括计算机程序,当其由一个或多个处理器执行时,使得包括所述处理器的装置执行如权利要求1至14中任一项所述的方法。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至14中任一项所述的方法。
  32. 一种芯片,其特征在于,包括至少一个处理器和通信接口,
    所述通信接口用于接收输入所述芯片的信号或从所述芯片输出的信号,所述处理器与所述通信接口通信且通过逻辑电路或执行代码指令用于实现如权利要求1至14中任一项所述的方法。
PCT/CN2020/136213 2020-12-14 2020-12-14 确定传输块大小的方法和装置 WO2022126332A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080106210.2A CN116508379A (zh) 2020-12-14 2020-12-14 确定传输块大小的方法和装置
PCT/CN2020/136213 WO2022126332A1 (zh) 2020-12-14 2020-12-14 确定传输块大小的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/136213 WO2022126332A1 (zh) 2020-12-14 2020-12-14 确定传输块大小的方法和装置

Publications (1)

Publication Number Publication Date
WO2022126332A1 true WO2022126332A1 (zh) 2022-06-23

Family

ID=82058758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136213 WO2022126332A1 (zh) 2020-12-14 2020-12-14 确定传输块大小的方法和装置

Country Status (2)

Country Link
CN (1) CN116508379A (zh)
WO (1) WO2022126332A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152052A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 确定传输块大小的方法及装置
CN110830161A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种确定传输块大小的方法及装置
CN111277361A (zh) * 2019-03-28 2020-06-12 维沃移动通信有限公司 传输块大小确定方法和通信设备
CN111436144A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种确定传输块大小的方法及装置
CN111525979A (zh) * 2019-02-01 2020-08-11 中兴通讯股份有限公司 传输块大小确定方法、装置、通信设备及存储介质
US20200313793A1 (en) * 2019-03-25 2020-10-01 Lenovo (Singapore) Pte. Ltd. Method and apparatus for determining a duration of a repetition of a transport block

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152052A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 确定传输块大小的方法及装置
CN110830161A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种确定传输块大小的方法及装置
CN111436144A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种确定传输块大小的方法及装置
CN111525979A (zh) * 2019-02-01 2020-08-11 中兴通讯股份有限公司 传输块大小确定方法、装置、通信设备及存储介质
US20200313793A1 (en) * 2019-03-25 2020-10-01 Lenovo (Singapore) Pte. Ltd. Method and apparatus for determining a duration of a repetition of a transport block
CN111277361A (zh) * 2019-03-28 2020-06-12 维沃移动通信有限公司 传输块大小确定方法和通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on resource allocation and TBS determination", 3GPP DRAFT; R1-1715885 DISCUSSION ON RESOURCE ALLOCATION AND TBS DETERMINATION_VF, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 17 September 2017 (2017-09-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051339345 *

Also Published As

Publication number Publication date
CN116508379A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
US10932251B2 (en) Data receiving method and apparatus thereof, and data sending method and apparatus thereof
WO2020143732A1 (zh) 发送和接收反馈信道的方法以及装置
TWI775790B (zh) 傳輸數據的方法、終端設備和網絡設備
WO2019192501A1 (zh) 资源指示值的获取方法及装置
WO2019191912A1 (zh) 数据传输的方法、终端设备和网络设备
WO2019096282A1 (zh) 检测窗指示方法及装置
WO2020216130A1 (zh) 一种通信方法及装置
TW201904318A (zh) 配置帶寬的方法和設備
WO2022028464A1 (zh) 资源调度方法、装置及设备
WO2014110759A1 (en) Flexible usage of special subframe for long term evolution time division duplex downlink-uplink
JP2020509686A (ja) 通信方法、ネットワークデバイス、および端末デバイス
WO2019028773A1 (zh) 无线通信的方法、网络设备和终端设备
WO2019014923A1 (zh) 传输数据的方法、终端设备和网络设备
CN112311511A (zh) 数据传输方法和装置
WO2018072062A1 (zh) 信息传输方法和装置
WO2020063546A1 (zh) 一种指示方法、装置及系统
TWI791003B (zh) 無線通信方法、網絡設備和終端設備
WO2022126332A1 (zh) 确定传输块大小的方法和装置
WO2022141299A1 (zh) 参考信号资源的传输方法、设备及存储介质
WO2022165671A1 (zh) 一种通信方法和装置
WO2021031026A1 (zh) 一种下行控制信息dci的传输方法及装置
CN111543113B (zh) 数据传输的方法和设备
WO2022151119A1 (zh) 数据传输方法、设备及存储介质
WO2018145532A1 (zh) 传输下行控制信息的方法和装置
WO2016015339A1 (zh) 数据传输的方法和用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080106210.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965350

Country of ref document: EP

Kind code of ref document: A1