WO2018145532A1 - 传输下行控制信息的方法和装置 - Google Patents

传输下行控制信息的方法和装置 Download PDF

Info

Publication number
WO2018145532A1
WO2018145532A1 PCT/CN2017/119812 CN2017119812W WO2018145532A1 WO 2018145532 A1 WO2018145532 A1 WO 2018145532A1 CN 2017119812 W CN2017119812 W CN 2017119812W WO 2018145532 A1 WO2018145532 A1 WO 2018145532A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
control channel
units
control information
unit
Prior art date
Application number
PCT/CN2017/119812
Other languages
English (en)
French (fr)
Inventor
冯淑兰
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019543815A priority Critical patent/JP6961707B2/ja
Priority to EP17896278.3A priority patent/EP3579630B1/en
Priority to EP22167065.6A priority patent/EP4099787B1/en
Priority to ES17896278T priority patent/ES2913766T3/es
Priority to CN201780086197.7A priority patent/CN110268771B/zh
Priority to BR112019016592-4A priority patent/BR112019016592A2/pt
Priority to KR1020197025876A priority patent/KR102293231B1/ko
Publication of WO2018145532A1 publication Critical patent/WO2018145532A1/zh
Priority to US16/537,207 priority patent/US11115969B2/en
Priority to US17/387,175 priority patent/US11671985B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for transmitting downlink control information.
  • the network device needs to send Downlink Control Information (DCI) to the terminal device.
  • DCI Downlink Control Information
  • the time-frequency resources carrying the downlink control information are continuously distributed in the frequency domain, that is, the sub-carriers carrying the downlink control information are consecutive.
  • the network device sends the downlink control information to the terminal device on the time-frequency resource that is continuously distributed in the frequency domain, the frequency diversity gain cannot be guaranteed because the sub-carriers carrying the downlink control information are consecutive.
  • the present application provides a method and apparatus for transmitting downlink control information, which can support increasing the frequency diversity gain of transmitting downlink control information.
  • a method for transmitting downlink control information comprising: dividing a target resource into M resource subsets, wherein at least two resource subsets in the M resource subsets at least partially do not overlap in a frequency domain And each resource subset includes at least one control channel bearer resource unit, M is an integer, and M ⁇ 2; determining, according to the M resource subsets, a first resource set, where the first resource set includes N control channel bearers a resource unit, wherein at least two control channel bearer resource units of the N control channel bearer resource units belong to different resource subsets, and at least two control channel bearer resource units of the N control channel bearer resource units are in a frequency domain The upper discontinuity, N ⁇ 2; sending the first downlink control information to the terminal device on the first resource set.
  • any two resource subsets in the M resource subsets do not overlap at least partially in the frequency domain.
  • any two resource units in the N control channel bearer resource units belong to different resource subsets.
  • the M resource subsets do not overlap at least partially in the frequency domain, and select one control channel bearer resource unit from each resource subset of the M resource subsets, and finally obtain
  • the N control channels carry resource units, and the N control channel bearer resource units are spaced far enough apart in the frequency domain (ie, discontinuous), so that when the N control channel bearer resource units send the first downlink to the terminal device When the information is controlled, the frequency diversity gain can be guaranteed.
  • the method further includes: determining a mapping relationship, where the mapping relationship is used to indicate at least one downlink control information including the first downlink control information, and including Corresponding relationship between the at least one resource set of the first resource set; determining the first resource set in the M resource subsets, comprising: corresponding to the first downlink control information according to the mapping relationship The resource set is determined to be the first resource set.
  • Determining the mapping relationship and determining, according to the mapping relationship, the resource set corresponding to the first downlink control information as the first resource set carrying the first downlink control information, so that the network device can determine the network device more quickly.
  • the target resource is divided into multiple frequency domain units in a frequency domain, and one control channel bearer resource unit includes at least two consecutive Frequency domain unit.
  • the terminal device that controls the information demodulates the downlink control information by using its own reference signal, and does not need to share a reference signal with other terminal devices in the same cell, thereby improving the spectrum efficiency of the system.
  • the target resource is divided into at least one time domain unit in a time domain, and the one control channel bearer resource unit includes the at least one time domain. Some or all of the time domain units in the unit.
  • the M resource subset occupies a frequency domain bandwidth that is less than or equal to a bandwidth of the target resource.
  • the frequency domain bandwidth occupied by the M resource subsets is less than or equal to the bandwidth of the target resource, so that the terminal device can receive downlink control information by using a narrow frequency domain width, thereby reducing power consumption of the terminal device.
  • a second aspect provides a method for transmitting downlink control information, where the method includes: determining, according to the M resource subsets, a first resource set, where the first resource set includes N control channel bearer resource units, where M is an integer. And M ⁇ 2, the resource subsets of the at least two control channel bearer resource units of the N control channel bearer resource units are different, and at least two control channel bearer resource units of the N control channel bearer resource units are The frequency domain is discontinuous, N ⁇ 2; and the first downlink control information sent by the network device is received on the first resource set.
  • any two resource subsets in the M resource subsets do not overlap at least partially in the frequency domain.
  • any two resource units in the N control channel bearer resource units belong to different resource subsets.
  • the M resource subsets do not overlap at least partially in the frequency domain, and select one control channel bearer resource unit from each resource subset of the M resource subsets, and finally obtain
  • the N control channels carry resource units, and the N control channel bearer resource units are spaced far enough apart in the frequency domain (ie, discontinuous), so that when the N control channel bearer resource units send the first downlink to the terminal device When the information is controlled, the frequency diversity gain can be guaranteed.
  • the method further includes: determining a mapping relationship, where the mapping relationship is used to indicate at least one downlink control information including the first downlink control information, and including Corresponding relationship between the at least one resource set of the first resource set; determining the first resource set in the M resource subsets, comprising: corresponding to the first downlink control information according to the mapping relationship The resource set is determined to be the first resource set.
  • Determining the mapping relationship and determining, according to the mapping relationship, the resource set corresponding to the first downlink control information as the first resource set carrying the first downlink control information, so that the terminal device device can be more quickly
  • the resource that receives the downlink control information is determined, thereby improving the accuracy of receiving the downlink control information by the terminal device.
  • the target resource is divided into multiple frequency domain units in a frequency domain, and one control channel bearer resource unit includes at least two consecutive Frequency domain unit.
  • the terminal device that controls the information demodulates the downlink control information by using its own reference signal, and does not need to share a reference signal with other terminal devices in the same cell, thereby improving the spectrum efficiency of the system.
  • the target resource is divided into at least one time domain unit in the time domain, and the one control channel bearer resource unit includes the at least one time domain. Some or all of the time domain units in the unit.
  • the M resource subset occupies a frequency domain bandwidth that is less than or equal to a bandwidth of the target resource.
  • the frequency domain bandwidth occupied by the M resource subsets is less than or equal to the bandwidth of the target resource, so that the terminal device can receive downlink control information by using a narrow frequency domain width, thereby reducing power consumption of the terminal device.
  • an apparatus for transmitting downlink control information comprising means for performing the steps of the method for transmitting downlink control information in the first aspect and the implementations of the first aspect.
  • an apparatus for transmitting downlink control information comprising means for performing the steps of the method for transmitting downlink control information in the implementations of the second aspect and the second aspect.
  • a fifth aspect provides an apparatus for transmitting downlink control information, including a memory and a processor, the memory for storing a computer program, the processor for calling and running the computer program from a memory, so that the terminal device performs the first A method of transmitting downlink control information in any of the aspects and various implementations thereof.
  • a sixth aspect provides an apparatus for transmitting downlink control information, including a memory and a processor, the memory being configured to store a computer program, the processor for calling and running the computer program from a memory, such that the network device performs the second A method of transmitting downlink control information in any of the aspects and various implementations thereof.
  • a computer program product comprising: computer program code, when the computer program code is run by a processing unit, a sending unit or a processor of a network device, or a transmitter, causing the terminal device A method of transmitting downlink control information by performing any of the above first aspects and various implementations thereof.
  • a computer program product comprising: computer program code, when the computer program code is run by a receiving unit, a processing unit or a receiver of the terminal device, or a processor, causing the network device A method of transmitting downlink control information in any of the above second aspects and various implementations thereof.
  • a computer readable storage medium storing a program, the program causing the terminal device to perform any of the first aspect and various implementations thereof to transmit downlink control The method of information.
  • a computer readable storage medium storing a program, the program causing a network device to perform any one of the second aspect and various implementations thereof to transmit downlink control The method of information.
  • FIG. 1 is a schematic architectural diagram of a communication system in accordance with the present application.
  • FIG. 2 is a schematic interaction diagram of a method of transmitting downlink control information in accordance with the present application.
  • FIG. 3 is a schematic structural diagram of resource composition of a control channel bearer resource unit according to the present application.
  • FIG. 4 is a diagram showing an example of a distribution state of a resource subset according to the present application.
  • FIG. 5 is a schematic diagram of another example of a distribution state of a resource subset according to the present application.
  • FIG. 6 is a schematic diagram showing still another example of the distribution state of the resource subset according to the present application.
  • FIG. 7 is a schematic diagram showing an example of a distribution state of a control channel bearer resource unit carrying downlink control information according to the present application.
  • FIG. 8 is a schematic diagram of another example of a distribution state of a control channel bearer resource unit carrying downlink control information according to the present application.
  • FIG. 9 is a schematic diagram of still another example of a distribution state of a control channel bearer resource unit carrying downlink control information according to the present application.
  • FIG. 10 is a schematic diagram of a distribution state of a resource subset in a time domain resource of a target resource according to the present application.
  • 11 is a schematic block diagram of an apparatus for transmitting downlink control information according to the present application.
  • FIG. 12 is a schematic block diagram of an apparatus for transmitting downlink control information according to the present application.
  • FIG. 13 is a schematic structural diagram of an apparatus for transmitting downlink control information according to the present application.
  • FIG. 14 is a schematic structural diagram of an apparatus for transmitting downlink control information according to the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal device in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with the terminal device, and the network device may be a Global System of Mobile communication (GSM) system or Code Division Multiple Access (CDMA).
  • Base Transceiver Station which may also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an evolved base station in an LTE system (Evolutional The NodeB, eNB or eNodeB) may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future.
  • the network device in the 5G network or the network device in the PLMN network in the future is not limited in this embodiment.
  • the communication system 100 includes a network device 102 that can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , encoder, demultiplexer or antenna, etc.).
  • a network device 102 can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114.
  • network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , encoder, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • Terminal devices 116 and 122 can be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other for communicating over wireless communication system 100. Suitable for equipment.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link. 126 different frequency bands used.
  • FDD Frequency Division Duplex
  • the forward link 118 and the reverse link 120 can use a common frequency band, a forward link 124, and a reverse link.
  • Link 126 can use a common frequency band.
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits can be included in a transport block (or multiple transport blocks) of data that can be segmented to produce multiple code blocks.
  • the communication system 100 can be a PLMN network or a D2D network or an M2M network or other network.
  • FIG. 1 is only a simplified schematic diagram of an example, and other network devices may also be included in the network, which are not shown in FIG.
  • the sending device may enable the foregoing network device 102 to be a terminal device (for example, the terminal device 116 or the terminal device 122).
  • the receiving device may enable the terminal device (for example, The terminal device 116 or the terminal device 122) may also be the network device 102, which is not specifically limited herein.
  • FIG. 2 shows a schematic flow chart of a method of transmitting downlink control information according to the present application.
  • the terminal device in FIG. 2 may be the terminal device in the terminal devices 116, 122 in FIG. 1; the network device may be the network device 102 in FIG.
  • the number of the network device and the terminal device may not be limited to the examples in this embodiment or other embodiments, and details are not described herein again.
  • the method may include:
  • the target resource is divided into M resource subsets, at least two resource subsets in the M resource subsets are not at least partially overlapped in the frequency domain, and each resource subset includes at least one control channel bearer resource unit, M Is an integer and M ⁇ 2;
  • S220 Determine, according to the M resource subsets, a first resource set, where the first resource set includes N control channel bearer resource units, where at least two control channel bearer resource units of the N control channel bearer resource units belong to Different resource subsets, at least two control channel bearer resource units of the N control channel bearer resource units are discontinuous in the frequency domain, N ⁇ 2.
  • the target resource is divided into multiple frequency domain units in a frequency domain, and one control channel bearer resource unit includes consecutive at least two frequency domain units.
  • the network device divides a segment of the target resource into M resource subsets, where the target resource may be a contiguous resource in the frequency domain, and each resource subset in the M resource subset includes at least one control channel bearer.
  • Resource unit Each control channel bearer resource unit includes n frequency domain units, and each frequency domain unit may be a resource element (Resource Element, RE) in the frequency domain; or may be a resource element group in the frequency domain (Resource Element Group) , REG), one resource unit group includes multiple resource units RE; may also be several control channel elements (CCEs) consecutive in the frequency domain, and one control channel unit includes multiple resource unit groups REG. This application does not limit this.
  • RE resource element
  • REG resource element group in the frequency domain
  • CCEs control channel elements
  • Figure 3 shows a control channel bearer resource unit comprising 5 consecutive resource unit groups in the frequency domain, each resource unit group comprising 4 or 6 resource units. It can be seen from FIG. 3 that among the resource groups including 6 resource units, two resource units are used to carry the reference signal.
  • the network device determines a control channel bearer resource unit from the M resource subsets, and finally forms a resource set, where the resource set carrying the first downlink control information is the first resource set.
  • the first resource set includes N control channel bearer resource units, and N ⁇ 2, that is, the first resource set includes at least two control channel bearer resource units. At least two resource units of the N control channel bearer resource units belong to different resource subsets, that is, one resource subset of the M resource subsets includes one of the N control channel bearer resource units
  • the resource unit, the final network device sends the first downlink control information to the terminal device by using the N control channel bearer resource units.
  • the network device divides the target resource into eight resource subsets.
  • the network device may determine one control channel bearer resource unit from each of the eight resource subsets, that is, The network device finally carries the downlink control information sent to the terminal device through the 8 control channel bearer resource units.
  • the network device may determine a control channel bearer resource unit from the 6 resource subsets of the 8 resource subsets, that is, the network device finally carries the downlink control information sent to the terminal device by using the 6 control channel bearer resource unit bearers.
  • the network device divides the target resource into two resource subsets.
  • the network device may determine, from each of the two resource subsets, four control channel bearer resource units. That is, the network device finally carries downlink control information that is sent to the terminal device through the eight control channel bearer resource units.
  • the network device may determine a control channel bearer resource unit from each resource subset of the M resource subsets, or may determine a number of control channel bearers less than M from a subset of the resource subsets of the M resource subsets.
  • the resource unit may also determine a control channel bearer resource unit whose quantity is greater than M from a partial resource subset of the M resource subsets, which is not limited in this application.
  • At least two resource subsets in the M resource subsets do not at least partially overlap in the frequency domain.
  • the distribution of the M resource subsets in the frequency domain is described by taking two resource subsets as an example. It can be seen that there is a certain interval between the resource subset 1 and the resource subset 2, that is, the resource subset 1 and the resource subset 2 are discontinuous in the frequency domain.
  • resource subset 1 and resource subset 2 may be continuous, but there is no overlapping area between them; for example, as shown in FIG. 6, between resource subset 1 and resource subset 2 There may be partial overlap regions, but resource subset 1 and resource subset 2 cannot overlap completely.
  • At least two resources of the N control channel bearer resource units for carrying the downlink control information are discontinuous in the frequency domain, that is, when the N control channel bearer resource units carrying the downlink control information are determined in the M resource subsets To ensure that at least two of the N control channel bearer resource units are discontinuous in the frequency domain.
  • resource subset 1 and resource subset 2 are discontinuous in the frequency domain, that is, at least one of the resource subset 1 and the resource subset 2 is in the frequency domain. If the upper ones are not consecutive, at least one of the control channel bearer resource units and the resource subset 2 in the resource subset 1 may be determined as the resource subset 1 and the resource subset 2, respectively.
  • the resource carrying the downlink control information ensures that the control channel bearer resource unit carrying the downlink control information is discontinuous in the frequency domain.
  • the target resource is divided into at least one frequency domain unit in the frequency domain, and each control channel bearer resource unit includes consecutive at least two frequency domain units, so that the terminal device receiving the downlink control information can demodulate by using its own reference signal.
  • the downlink control information does not need to share a reference signal with other terminal devices in the same cell, thereby improving the spectrum efficiency of the system.
  • Each frequency domain unit may be a resource element (Resource Element, RE) in the frequency domain; or may be a Resource Element Group (REG) in the frequency domain; or may be consecutive in the frequency domain.
  • RE resource element
  • REG Resource Element Group
  • CCE Control Channel Element
  • the resource subset 1 and the resource subset 2 are consecutive in the frequency domain, but there is no overlapping region, that is, the resource subset 1 and the resource subset 2 have a frequency in the connected portion.
  • the continuous control channel on the domain carries resource units.
  • the network device may select any one of the control channel bearer resource units in the resource subset 1, and then select one control channel bearer resource unit in the resource subset 2, wherein the control channel bearer resource unit selected in the resource subset 2
  • the control channel bearer resource unit selected in resource subset 1 is discontinuous in the frequency domain.
  • the control channel bearer resource unit selected in the resource subset 2 and the control channel bearer resource unit in the resource subset 1 are determined as resources carrying the downlink control information, thereby ensuring that the control channel bearer resource unit carrying the downlink control information is It is not continuous in the frequency domain.
  • the resource subset 1 and the resource subset 2 have overlapping regions in the frequency domain, but do not completely overlap, that is, the resource subset 1 and the resource subset 2 exist in the overlapping region.
  • the continuous control channel in the frequency domain carries resource units.
  • the network device may carry at least one control channel carrying resource unit and non-overlapping region in the resource subset 2 of the non-overlapping region in the resource subset 1 in the non-overlapping region in the resource subset 1 and the resource subset 2.
  • the at least one control channel bearer resource unit is determined to be a resource carrying the downlink control information, so that the control channel bearer resource unit carrying the downlink control information is discontinuous in the frequency domain.
  • the present application only describes the type of the frequency domain unit by using one frequency domain unit as the above-mentioned resources, but the application is not limited thereto, and the frequency domain unit may also be other types of resources.
  • mapping relationship determines a mapping relationship, where the mapping relationship is used to indicate a correspondence between at least one downlink control information including the first downlink control information and at least one resource set including the first resource set;
  • the mapping relationship determines a resource set corresponding to the first downlink control information as a first resource set that carries the first downlink control information.
  • the network device may determine the mapping relationship, and the mapping relationship may be determined based on the protocol, or may be pre-configured to the network device by the system.
  • the mapping relationship is used to indicate a correspondence between at least one downlink control information including the first downlink control information and at least one resource set including the first resource set.
  • the resource set corresponding to the first downlink control information in the mapping relationship may be determined as the first downlink control information, according to the mapping relationship.
  • a collection of resources may be used to indicate a correspondence between at least one downlink control information including the first downlink control information and at least one resource set including the first resource set.
  • the mapping relationship may be a mapping relationship table, and the network device may determine, by means of a table lookup, a first resource set corresponding to the first downlink and control information.
  • the mapping relationship may also be a mapping formula, and the network device may perform calculation by using a mapping formula to determine a first resource set corresponding to the first downlink and control information.
  • the network device after determining the N control channel bearer resource units that carry the first downlink control information, the network device sends the downlink control information to the terminal device by using the N control channel bearer resource units, that is, by using the first resource.
  • the set sends downlink control information to the terminal device.
  • each of the N control channel bearer resource units carries only part of the downlink control information to be sent, and the network device finally sends the downlink control information to the N control channel bearer resource unit to the downlink control information.
  • Terminal Equipment Terminal Equipment.
  • the target resource is divided into at least one time domain unit in the time domain, and one control channel bearer resource unit includes some or all of the time domain units in the at least one time domain unit.
  • the network device divides the target resource into at least one time domain unit, and one control channel bearer resource unit may include all time domain units of the target resource, or may only include part of the time domain unit of the target resource.
  • resource subset 1 and resource subset 2 include only a partial time domain unit of the target resource.
  • resource subset 1 includes only the first one of the target resources.
  • the domain unit, resource subset 2 includes only the second time domain unit of the target resource.
  • the M resource subset occupies a frequency domain bandwidth that is less than or equal to a bandwidth of the target resource.
  • the network device divides the target resource into M resource subsets, and the M resource subset occupies a frequency domain bandwidth that is less than or equal to a bandwidth of the target resource.
  • the power consumption of the terminal device can be reduced.
  • S240 Receive first downlink control information sent by the network device on the first resource set.
  • determining a mapping relationship where the mapping relationship is used to indicate a correspondence between at least one downlink control information including the first downlink control information and at least one resource set including the first resource set;
  • the determining the first resource set in the M resource subsets includes determining, according to the mapping relationship, a resource set corresponding to the first downlink control information as the first resource set.
  • the terminal device first determines a first resource set that carries the first downlink control information.
  • the terminal device may determine the mapping relationship, and the mapping relationship may be determined according to the protocol, or may be pre-configured to the terminal device by the system, or may be sent by the network device to the terminal device, which is not limited in this application.
  • the mapping relationship is used to indicate a correspondence between at least one downlink control information including the first downlink control information and at least one resource set including the first resource set.
  • the terminal device may determine, according to the mapping relationship, the resource set corresponding to the first downlink control information in the mapping relationship to be the bearer of the first downlink control.
  • the first resource set of the information, and the first downlink control information sent by the network device is received by the first resource set.
  • the mapping relationship may be a mapping relationship table, and the network device may determine, by means of a table lookup, a first resource set corresponding to the first downlink and control information.
  • the mapping relationship may also be a mapping formula, and the network device may perform calculation by using a mapping formula to determine a first resource set corresponding to the first downlink and control information.
  • the method for transmitting uplink control information of the present application by dividing the target resource into M resource subsets, and determining the N control channel bearer resource units that are discontinuous in the frequency domain by using the M resource subsets,
  • the downlink control information is transmitted on the discontinuous N control channel bearer resource units, thereby ensuring the frequency diversity gain.
  • FIG. 11 is a schematic block diagram of an apparatus 300 for transmitting downlink control information in accordance with the present application. As shown in FIG. 11, the apparatus 300 includes a processing unit 310 and a transmitting unit 320.
  • the processing unit 310 is configured to divide the target resource into M resource subsets, where at least two resource subsets in the M resource subsets do not overlap at least partially in the frequency domain, and each resource subset includes at least one control channel.
  • Carrying resource unit, M is an integer, and M ⁇ 2;
  • the processing unit 310 is further configured to determine, according to the M resource subsets, a first resource set, where the first resource set includes N control channel bearer resource units, and the N control channels carry at least two control channels in the resource unit.
  • the resource sub-group to which the bearer resource unit belongs is different, and at least two control channel bearer resource units of the N control channel bearer resource units are discontinuous in the frequency domain, N ⁇ 2;
  • the sending unit 320 is configured to send, by using the first resource set, the first downlink control information to the terminal device.
  • processing unit 310 is further configured to:
  • mapping relationship Determining a mapping relationship, where the mapping relationship is used to indicate a correspondence between at least one downlink control information including the first downlink control information and at least one resource set including the first resource set;
  • the processing unit 310 is further configured to:
  • the target resource is divided into multiple frequency domain units in a frequency domain, and one control channel bearer resource unit includes consecutive at least two frequency domain units.
  • the target resource is divided into at least one time domain unit in the time domain, and one control channel bearer resource unit includes some or all of the time domain units in the at least one time domain unit.
  • the M resource subset occupies a frequency domain bandwidth that is less than or equal to a bandwidth of the target resource.
  • the apparatus 300 for transmitting downlink control information may correspond to a network device in the method of the present application, and each unit and module in the apparatus 300 for transmitting downlink control information and the foregoing other operations and/or functions respectively In order to implement the corresponding processes performed by the network device in the method 200, for brevity, details are not described herein again.
  • the apparatus for transmitting uplink control information of the present application divides a target resource into M resource subsets, and determines, by using the M resource subsets, N control channel bearer resource units that are discontinuous in the frequency domain, thereby The downlink control information is transmitted on the discontinuous N control channel bearer resource units, thereby ensuring the frequency diversity gain.
  • FIG. 12 is a schematic block diagram of an apparatus 400 for transmitting downlink control information in accordance with the present application. As shown in FIG. 12, the apparatus 400 includes a processing unit 410 and a receiving unit 420.
  • the processing unit 410 is configured to determine, according to the M resource subsets, a first resource set, where the first resource set includes N control channel bearer resource units, where M is an integer, and M ⁇ 2, the N control channel bearers At least two control channel bearer resource units of the resource unit belong to different resource subsets, and at least two control channel bearer resource units of the N control channel bearer resource units are discontinuous in the frequency domain, N ⁇ 2;
  • the receiving unit 420 is configured to receive, by using the first resource set, first downlink control information that is sent by the network device.
  • processing unit 410 is further configured to:
  • mapping relationship Determining a mapping relationship, where the mapping relationship is used to indicate a correspondence between at least one downlink control information including the first downlink control information and at least one resource set including the first resource set;
  • the processing unit 410 is further configured to determine, according to the mapping relationship, a resource set corresponding to the first downlink control information as the first resource set.
  • the target resource is divided into multiple frequency domain units in a frequency domain, and one control channel bearer resource unit includes consecutive at least two frequency domain units.
  • the target resource is divided into at least one time domain unit in the time domain, and one control channel bearer resource unit includes some or all of the time domain units in the at least one time domain unit.
  • the M resource subset occupies a frequency domain bandwidth that is less than or equal to a bandwidth of the target resource.
  • the apparatus 400 for transmitting downlink control information may correspond to the terminal device in the method of the present application, and the units and modules in the apparatus 400 for transmitting the downlink control information and the other operations and/or functions described above respectively In order to implement the corresponding processes performed by the terminal device in the method 200, for brevity, details are not described herein again.
  • the apparatus for transmitting uplink control information of the present application divides a target resource into M resource subsets, and determines, by using the M resource subsets, N control channel bearer resource units that are discontinuous in the frequency domain, thereby The downlink control information is transmitted on the discontinuous N control channel bearer resource units, thereby ensuring the frequency diversity gain.
  • FIG. 13 is a schematic structural diagram of an apparatus 500 for transmitting downlink control information according to the present application.
  • the apparatus 500 includes:
  • the processor 520 The processor 520;
  • the memory 530 is configured to store instructions, and the processor 520 is configured to execute instructions stored in the memory 530 to control the transmitter 510 to send signals.
  • the processor 520 is configured to divide the target resource into M resource subsets, where at least two resource subsets in the M resource subsets do not overlap at least partially in the frequency domain, and each resource subset includes at least one control.
  • the channel carries resource units, M is an integer, and M ⁇ 2;
  • the processor 520 is further configured to determine, according to the M resource subsets, a first resource set, where the first resource set includes N control channel bearer resource units, and the N control channels carry at least two control channels in the resource unit.
  • the resource sub-group to which the bearer resource unit belongs is different, and at least two control channel bearer resource units of the N control channel bearer resource units are discontinuous in the frequency domain, N ⁇ 2;
  • the transmitter 510 is configured to send, by using the first resource set, first downlink control information to the terminal device.
  • processor 520 is further configured to:
  • mapping relationship Determining a mapping relationship, where the mapping relationship is used to indicate a correspondence between at least one downlink control information including the first downlink control information and at least one resource set including the first resource set;
  • the processor 520 is also configured to:
  • the target resource is divided into multiple frequency domain units in a frequency domain, and one control channel bearer resource unit includes consecutive at least two frequency domain units.
  • the target resource is divided into at least one time domain unit in the time domain, and one control channel bearer resource unit includes some or all of the time domain units in the at least one time domain unit.
  • the M resource subset occupies a frequency domain bandwidth that is less than or equal to a bandwidth of the target resource.
  • the processor 520 may be a central processing unit (CPU), and the processor 520 may also be other general purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). ), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 530 can include read only memory and random access memory and provides instructions and data to the processor 520.
  • a portion of the memory 530 may also include a non-volatile random access memory.
  • the memory 530 can also store information of the device type.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 520 or an instruction in a form of software.
  • the steps of the method disclosed in connection with the present application may be directly embodied by hardware processor execution or by a combination of hardware and software modules in a processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 530, and the processor 520 reads the information in the memory 530 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the apparatus 500 for transmitting downlink control information may correspond to a network device in the method of the present application, and each unit and module in the apparatus 500 for transmitting downlink control information and the foregoing other operations and/or functions respectively In order to implement the corresponding processes performed by the network device in the method 200, for brevity, details are not described herein again.
  • the apparatus for transmitting uplink control information of the present application divides a target resource into M resource subsets, and determines, by using the M resource subsets, N control channel bearer resource units that are discontinuous in the frequency domain, thereby The downlink control information is transmitted on the discontinuous N control channel bearer resource units, thereby ensuring the frequency diversity gain.
  • FIG. 14 is a schematic structural diagram of an apparatus 600 for transmitting downlink control information according to the present application.
  • the device 600 includes:
  • the processor 620 The processor 620;
  • the memory 630 is configured to store instructions, and the processor 620 is configured to execute instructions stored in the memory 630 to control the receiver 610 to receive signals.
  • the processor 620 is configured to determine, according to the M resource subsets, a first resource set, where the first resource set includes N control channel bearer resource units, where M is an integer, and M ⁇ 2, the N control channels.
  • the at least two control channel bearer resource units in the bearer resource unit belong to different resource subsets, and at least two control channel bearer resource units in the N control channel bearer resource units are discontinuous in the frequency domain, N ⁇ 2;
  • the receiver 610 is configured to receive, by using the first resource set, first downlink control information that is sent by the network device.
  • the processor 620 is further configured to determine a mapping relationship, where the mapping relationship is used to indicate at least one downlink control information, including the first downlink control information, and at least one resource set including the first resource set. Correspondence between
  • the processor 620 is further configured to determine, according to the mapping relationship, a resource set corresponding to the first downlink control information as the first resource set.
  • the target resource is divided into multiple frequency domain units in a frequency domain, and one control channel bearer resource unit includes consecutive at least two frequency domain units.
  • the target resource is divided into at least one time domain unit in the time domain, and one control channel bearer resource unit includes some or all of the time domain units in the at least one time domain unit.
  • the M resource subset occupies a frequency domain bandwidth that is less than or equal to a bandwidth of the target resource.
  • the processor 620 may be a central processing unit (CPU), and the processor 620 may also be other general purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). ), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 630 can include read only memory and random access memory and provides instructions and data to the processor 620. A portion of the memory 630 may also include a non-volatile random access memory. For example, the memory 630 can also store information of the device type.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 620 or an instruction in a form of software.
  • the steps of the method disclosed in connection with the present application may be directly embodied by hardware processor execution or by a combination of hardware and software modules in a processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 630, and the processor 620 reads the information in the memory 630 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the apparatus 600 for transmitting downlink control information may correspond to the terminal equipment in the method of the present application, and the units and modules in the apparatus 600 for transmitting the downlink control information and the other operations and/or functions described above respectively In order to implement the corresponding processes performed by the terminal device in the method 200, for brevity, details are not described herein again.
  • the apparatus for transmitting uplink control information of the present application divides a target resource into M resource subsets, and determines, by using the M resource subsets, N control channel bearer resource units that are discontinuous in the frequency domain, thereby The downlink control information is transmitted on the discontinuous N control channel bearer resource units, thereby ensuring the frequency diversity gain.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输下行控制信息的方法和装置,该方法包括:将目标资源划分为M个资源子集,该M个资源子集中至少两个资源子集在频域上至少部分不重叠,且每个资源子集包括至少一个控制信道承载资源单位,M为整数,且M≥2;根据该M个资源子集,确定第一资源集合,该第一资源集合包括N个控制信道承载资源单位,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位所属于的资源子集不同,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位在频域上不连续,N≥2;在该第一资源集合上向终端设备发送第一下行控制信息。通过在频域上不连续的N个控制信道承载资源单位上发送下行控制信息,从而保证频率分集增益。

Description

传输下行控制信息的方法和装置
本申请要求于2017年02月10日提交中国专利局、申请号为201710073164.0、申请名称为“传输下行控制信息的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及传输下行控制信息的方法和装置。
背景技术
在无线通信中,网络设备需要向终端设备发送下行控制信息(Downlink Control Information,DCI)。
在现有技术中,网络设备在向终端设备发送下行控制信息时,承载下行控制信息的时频资源在频域上是连续分布的,即承载下行控制信息的子载波之间是连续的。
因此,当网络设备在频域上连续分布的时频资源上向终端设备发送下行控制信息时,由于承载下行控制信息的子载波之间是连续的,导致频率分集增益无法保证。
发明内容
本申请提供一种传输下行控制信息的方法和装置,能够支持提高传输下行控制信息的频率分集增益。
第一方面,提供了一种传输下行控制信息的方法,该方法包括:将目标资源划分为M个资源子集,该M个资源子集中至少两个资源子集在频域上至少部分不重叠,且每个资源子集包括至少一个控制信道承载资源单位,M为整数,且M≥2;根据该M个资源子集,确定第一资源集合,该第一资源集合包括N个控制信道承载资源单位,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位所属于的资源子集不同,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位在频域上不连续,N≥2;在该第一资源集合上向终端设备发送第一下行控制信息。
可选地,该M个资源子集中的任意两个资源子集在频域上至少部分不重叠。
可选地,该N个控制信道承载资源单位中的任意两个资源单位所属于的资源子集不同。
通过将目标资源划分为M个资源子集,该M个资源子集在频域上至少部分不重叠,从M个资源子集的每个资源子集中选出一个控制信道承载资源单位,最终获得N个控制信道承载资源单位,并且该N个控制信道承载资源单位在频域上间隔足够远(即不连续),从而,当通过该N个控制信道承载资源单位向终端设备发送第一下行控制信息时,能够保证频率分集增益。
结合第一方面,在第一方面的第一种实现方式中,该方法还包括:确定映射关系, 该映射关系用于指示包括该第一下行控制信息在内的至少一个下行控制信息与包括该第一资源集合在内的至少一个资源集合之间的对应关系;该在该M个资源子集中确定第一资源集合,包括:根据该映射关系,将与该第一下行控制信息对应的资源集合确定为该第一资源集合。
通过确定该映射关系,并且根据该映射关系,将与该第一下行控制信息对应的资源集合确定为承载该第一下行控制信息的第一资源集合,从而使得网络设备能够更加快速地确定承载下行控制信息的资源。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,该目标资源在频域上被划分为多个频域单元,一个控制信道承载资源单位包括连续的至少两个频域单元。
通过将目标资源在频域上被划分为至少一个频域单元,且使N个控制信道承载资源单位中的至少一个控制信道承载资源单位包括连续的至少两个频域单元,能够使得接收该下行控制信息的终端设备采用自身的参考信号解调该下行控制信息,而不需要与同一小区内的其他终端设备共享一个参考信号,从而提高系统的频谱效率。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,该目标资源在时域上被划分为至少一个时域单元,一个控制信道承载资源单位包括该至少一个时域单元中的部分或全部时域单元。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,该M个资源子集占用的频域带宽小于或等于该目标资源的带宽。
通过使M个资源子集占用的频域带宽小于或等于目标资源的带宽,可以实现终端设备采用较窄的频域宽度接收下行控制信息,从而能够降低终端设备的功耗使用。
第二方面,提供了一种传输下行控制信息的方法,该方法包括:根据M个资源子集,确定第一资源集合,该第一资源集合包括N个控制信道承载资源单位,M为整数,且M≥2,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位所属于的资源子集不同,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位在频域上不连续,N≥2;在该第一资源集合上接收网络设备发送的第一下行控制信息。
可选地,该M个资源子集中的任意两个资源子集在频域上至少部分不重叠。
可选地,该N个控制信道承载资源单位中的任意两个资源单位所属于的资源子集不同。
通过将目标资源划分为M个资源子集,该M个资源子集在频域上至少部分不重叠,从M个资源子集的每个资源子集中选出一个控制信道承载资源单位,最终获得N个控制信道承载资源单位,并且该N个控制信道承载资源单位在频域上间隔足够远(即不连续),从而,当通过该N个控制信道承载资源单位向终端设备发送第一下行控制信息时,能够保证频率分集增益。
结合第二方面,在第二方面的第一种实现方式中,该方法还包括:确定映射关系,该映射关系用于指示包括该第一下行控制信息在内的至少一个下行控制信息与包括该第一资源集合在内的至少一个资源集合之间的对应关系;该在该M个资源子集中确定第一资源集合,包括:根据该映射关系,将与该第一下行控制信息对应的资源集合确定为该第一资源集合。
通过确定该映射关系,并且根据该映射关系,将与该第一下行控制信息对应的资源集合确定为承载该第一下行控制信息的第一资源集合,从而使得终端设备设备能够更加快速地确定接收下行控制信息的资源,进而提高终端设备接收下行控制信息的准确性。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,该目标资源在频域上被划分为多个频域单元,一个控制信道承载资源单位包括连续的至少两个频域单元。
通过将目标资源在频域上被划分为至少一个频域单元,且使N个控制信道承载资源单位中的至少一个控制信道承载资源单位包括连续的至少两个频域单元,能够使得接收该下行控制信息的终端设备采用自身的参考信号解调该下行控制信息,而不需要与同一小区内的其他终端设备共享一个参考信号,从而提高系统的频谱效率。
结合第二方面及其上述实现方式,在第二方面的第三种实现方式中,该目标资源在时域上被划分为至少一个时域单元,一个控制信道承载资源单位包括该至少一个时域单元中的部分或全部时域单元。
结合第二方面及其上述实现方式,在第二方面的第四种实现方式中,该M个资源子集占用的频域带宽小于或等于该目标资源的带宽。
通过使M个资源子集占用的频域带宽小于或等于目标资源的带宽,可以实现终端设备采用较窄的频域宽度接收下行控制信息,从而能够降低终端设备的功耗使用。
第三方面,提供了一种传输下行控制信息的装置,包括用于执行上述第一方面以及第一方面的各实现方式中的传输下行控制信息的方法的各步骤的单元。
第四方面,提供了一种传输下行控制信息的装置,包括用于执行上述第二方面以及第二方面的各实现方式中的传输下行控制信息的方法的各步骤的单元。
第五方面,提供了一种传输下行控制信息的设备,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得终端设备执行上述第一方面及其各种实现方式中的任一种传输下行控制信息的方法。
第六方面,提供了一种传输下行控制信息的设备,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得网络设备执行上述第二方面及其各种实现方式中的任一种传输下行控制信息的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被网络设备的处理单元、发送单元或处理器、发送器运行时,使得终端设备的执行上述第一方面及其各种实现方式中的任一种传输下行控制信息的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被终端设备的接收单元、处理单元或接收器、处理器运行时,使得网络设备执行上述第二方面及其各种实现方式中的任一种传输下行控制信息的方法。
第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第一方面及其各种实现方式中的任一种传输下行控制信息的方法。
第十方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第二方面及其各种实现方式中的任一种传输下行控制信 息的方法。
附图说明
图1是根据本申请的通信系统的示意性架构图。
图2是根据本申请的传输下行控制信息的方法的示意性交互图。
图3是根据本申请的一个控制信道承载资源单位的资源组成结构示意图。
图4是根据本申请的资源子集的分布状态的一例示意图。
图5是根据本申请的资源子集的分布状态的另一例示意图。
图6是根据本申请的资源子集的分布状态的再一例示意图。
图7是根据本申请的承载下行控制信息的控制信道承载资源单位的分布状态的一例示意图。
图8是根据本申请的承载下行控制信息的控制信道承载资源单位的分布状态的另一例示意图。
图9是根据本申请的承载下行控制信息的控制信道承载资源单位的分布状态的再一例示意图。
图10是根据本申请的资源子集在目标资源的时域资源中的分布状态的示意图。
图11是根据本申请的传输下行控制信息的装置的示意性框图。
图12是根据本申请的传输下行控制信息的装置的示意性框图。
图13是根据本申请的传输下行控制信息的装置的示意性结构图。
图14是根据本申请的传输下行控制信息的装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是适用本申请的传输上行控制信号的方法和装置的通信系统的示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、编码器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是,例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(Time Division Duplex,TDD)系统和全双工(Full Duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可 包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
需要说明的是,在本申请中,发送设备可以使上述网络设备102也可以是终端设备(例如,终端设备116或终端设备122),相对应的,接收端设备可以使上述终端设备(例如,终端设备116或终端设备122),也可以是网络设备102,本申请并未特别限定。
图2示出了根据本申请的传输下行控制信息的方法的示意性流程图。图2中的终端设备可以为图1中的终端设备116、122中的终端设备;网络设备可以为图1中的网络设备102。当然,实际系统中,网络设备和终端设备的数量可以不局限于本实施例或其他实施例的举例,以下不再赘述。如图2所示,该方法可以包括:
S210,将目标资源划分为M个资源子集,该M个资源子集中至少两个资源子集在频域上至少部分不重叠,且每个资源子集包括至少一个控制信道承载资源单位,M为整数,且M≥2;
S220,根据该M个资源子集,确定第一资源集合,该第一资源集合包括N个控制信道承载资源单位,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位所属于的资源子集不同,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位在频域上不连续,N≥2。
可选地,该目标资源在频域上被划分为多个频域单元,一个控制信道承载资源单位包括连续的至少两个频域单元。
具体而言,网络设备将一段目标资源划分为M个资源子集,该目标资源可以是一段在频域上连续的资源,该M个资源子集中的每个资源子集包括至少一个控制信道承载资源单位。每个控制信道承载资源单位包括n个频域单元,每个频域单元可以为频域上的一个资源单元(Resource Element,RE);也可以是频域上的一个资源单元组(Resource Element Group,REG),一个资源单元组包含多个资源单元RE;还可以是频域上连续的若干个控制信道单元(Control Channel Element,CCE),一个控制信道单元包含多个资源单元组REG。本申请对此不作任何限定。
图3示出了一个控制信道承载资源单位包含频域上5个连续的资源单元组,每个资源单元组包含4个或者6个资源单元。其中,由图3可以看出,在包含6个资源单元的资源组中,有两个资源单元用于承载参考信号。
网络设备在向终端设备发送下行控制信息时,从该M个资源子集中确定一个控制信道承载资源单位,最终构成资源集合,其中,承载第一下行控制信息的资源集合为第一资源集合,该第一资源集合包括N个控制信道承载资源单位,N≥2,即该第一资源集合至少包括两个控制信道承载资源单位。该N个控制信道承载资源单位中的至少两个资源单元所属于的资源子集不同,即该M个资源子集中的一个资源子集包括该N个控制信道承载资源单位中的一个控制信道承载资源单位,最终网络设备通过该N个控制信道承载资源单位向终端设备发送第一下行控制信息。
例如,网络设备将目标资源划分为8个资源子集,当向终端设备发送下行控制信息时,网络设备可以从该8个资源子集的每个资源子集中确定一个控制信道承载资源单位,即网络设备最终通过8个控制信道承载资源单位承载发送至终端设备的下行控制信息。
还例如,网络设备可以从该8个资源子集的6个资源子集中确定一个控制信道承载资源单位,即网络设备最终通过6个控制信道承载资源单位承载发送至终端设备的下行控制信息。
再例如,网络设备将目标资源划分为2个资源子集,当向终端设备发送下行控制信息时,网络设备可以从该2个资源子集的每个资源子集中确定4个控制信道承载资源单位,即网络设备最终通过8个控制信道承载资源单位承载发送至终端设备的下行控制信息。
综合看来,网络设备可以从该M个资源子集的每个资源子集中确定一个控制信道承载资源单位,也可以从该M个资源子集的部分资源子集中确定数量小于M的控制信道承载资源单位,也可以从该M个资源子集的部分资源子集中确定数量大于M的控制信道承载资源单位,本申请对此不作任何限定。
该M个资源子集中至少两个资源子集在频域上至少部分不重叠。例如,如图4所示,以包括两个资源子集为例对该M个资源子集在频域上的分布情况进行说明。可以看出,资源子集1和资源子集2之间存在一定的间隔,即资源子集1和资源子集2在频域上不连续。
还例如,如图5所示,资源子集1和资源子集2可以连续,但之间并不存在重叠区域;再例如,如图6所示,资源子集1和资源子集2之间可以存在部分重叠区域,但资源子集1和资源子集2之间不能完全重叠。
应理解,本申请仅以上述几种资源子集之间的分布方式为例进行说明,但本申请并不限于此。资源子集之间的分布方式还可以包括其他方式。
用于承载下行控制信息的该N个控制信道承载资源单位中的至少两个资源在频域上不连续,即当在M个资源子集中确定承载下行控制信息的N个控制信道承载资源单位时,要保证该N个控制信道承载资源单位中的至少两个资源在频域上不连续。
例如,如图7所示,可以看出,资源子集1和资源子集2在频域上不连续,即资源子集1和资源子集2中的至少一个控制信道承载资源单位在频域上均不连续,则可以在资源子集1和资源子集2中,分别将资源子集1中的至少一个控制信道承载资源单位和资源子集2中的至少一个控制信道承载资源单位确定为承载下行控制信息的资源,从而保证承载下行控制信息的控制信道承载资源单位在频域上不连续。
该目标资源在频域上被划分为至少一个频域单元,每个控制信道承载资源单位包括连续的至少两个频域单元,能够使得接收该下行控制信息的终端设备采用自身的参考信号解调该下行控制信息,而不需要与同一小区内的其他终端设备共享一个参考信号,从而提高系统的频谱效率。每个频域单元可以为频域上的一个资源单元(Resource Element,RE);也可以是频域上的一个资源单元组(Resource Element Group,REG);还可以是频域上连续的若干个控制信道单元(Control Channel Element,CCE),本申请对此不作任何限定。
还例如,如图8所示,可以看出,资源子集1和资源子集2在频域上连续,但并不存在重叠区域,即资源子集1和资源子集2在连接部分存在频域上连续的控制信道承载资源单位。此时网络设备可以在资源子集1中选择任意一个控制信道承载资源单位,再在资源子集2中选择一个控制信道承载资源单位,其中,在资源子集2中选择的控制信道承载资源单位与在资源子集1中选择的的控制信道承载资源单位在频域上不连续。在资源子集2中选择的控制信道承载资源单位和在资源子集1中的控制信道承载资源单位一起被确定 为承载下行控制信息的资源,从而保证承载下行控制信息的控制信道承载资源单位在频域上不连续。
再例如,如图9所示,可以看出资源子集1和资源子集2在频域上存在重叠区域,但并没有完全重叠,即资源子集1和资源子集2在重叠区域部分存在频域上连续的控制信道承载资源单位。此时网络设备可以在资源子集1和资源子集2中的非重叠区域中,将资源子集1中的非重叠区域的至少一个控制信道承载资源单位和资源子集2中的非重叠区域的至少一个控制信道承载资源单位确定为承载下行控制信息的资源,从而保证承载下行控制信息的控制信道承载资源单位在频域上不连续。
应理解,本申请仅以一个频域单元为上述几种资源为例对频域单元的类型进行说明,但本申请并不限于此,频域单元还可以为其他类型的资源。
可选地,确定映射关系,该映射关系用于指示包括第一下行控制信息在内的至少一个下行控制信息与包括第一资源集合在内的至少一个资源集合之间的对应关系;根据该映射关系,将与该第一下行控制信息对应的资源集合确定为承载该第一下行控制信息的第一资源集合。
具体而言,网络设备可以通过确定映射关系,该映射关系可以基于协议规定进行确定,也可以通过系统预先配置给网络设备。该映射关系用于指示包括第一下行控制信息在内的至少一个下行控制信息与包括第一资源集合在内的至少一个资源集合之间的对应关系。当网络设备向终端设备发送第一下行控制信息时,可以根据该映射关系,将该映射关系中与该第一下行控制信息对应的资源集合确定为承载该第一下行控制信息的第一资源集合。
例如,该映射关系可以为映射关系表,网络设备可以通过查表的方式,确定与该第一下行及控制信息对应的第一资源集合。
还例如,该映射关系还可以为映射公式,网络设备可以通过映射公式进行计算,确定与该第一下行及控制信息对应的第一资源集合。
应理解,本申请仅以上述两种通过资源映射关系确定资源集合的方式为例进行说明,但本申请并不限于此。还可以通过其他方式确定资源集合,本申请对此不作任何限定。
S230,在该第一资源集合上向终端设备发送第一下行控制信息。
具体而言,网络设备在确定了承载第一下行控制信息的N个控制信道承载资源单位之后,便通过该N个控制信道承载资源单位向终端设备发送下行控制信息,即通过该第一资源集合向终端设备发送下行控制信息。具体地,该N个控制信道承载资源单位中的每一个控制信道承载资源单位仅仅承载待发送的下行控制信息的部分信息,网络设备最终通过该N个控制信道承载资源单位将下行控制信息发送至终端设备。
可选地,该目标资源在时域上被划分为至少一个时域单元,一个控制信道承载资源单位包括该至少一个时域单元中的部分或全部时域单元。
具体而言,网络设备将目标资源划分为至少一个时域单元,一个控制信道承载资源单位可以包括目标资源的全部时域单元,也可以仅包括目标资源的部分时域单元。例如,如图10所示,资源子集1和资源子集2仅包括该目标资源的部分时域单元,从图10中可以看出,资源子集1仅包括该目标资源的第一个时域单元,资源子集2仅包括该目标资源的第二个时域单元。
应理解,本申请仅以上述控制信道承载资源单位在目标资源的时域单元中的分布情况为例进行说明,但本申请并不限于此。
可选地,该M个资源子集占用的频域带宽小于或等于该目标资源的带宽。
具体而言,网络设备将目标资源划分为M个资源子集,该M个资源子集占用的频域带宽小于或等于目标资源的带宽。以便于终端设备采用较窄的频域宽度接收下行控制信息,从而能够降低终端设备的功耗使用。
S240,在该第一资源集合上接收网络设备发送的第一下行控制信息。
可选地,在该M个资源子集中确定第一资源集合,该第一资源集合包括N个控制信道承载资源单位,该N个控制信道承载资源单位中的至少两个资源单元所属于的资源子集不同,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位在频域上不连续,N≥2。
可选地,确定映射关系,该映射关系用于指示包括该第一下行控制信息在内的至少一个下行控制信息与包括该第一资源集合在内的至少一个资源集合之间的对应关系;该在该M个资源子集中确定第一资源集合,包括:根据该映射关系,将与该第一下行控制信息对应的资源集合确定为该第一资源集合。
具体而言,终端设备首先确定承载第一下行控制信息的第一资源集合。其中,终端设备可以通过确定映射关系,该映射关系可以基于协议规定进行确定;也可以通过系统预先配置给终端设备;还可以由网络设备发送至终端设备,本申请对此不作任何限定。
该映射关系用于指示包括第一下行控制信息在内的至少一个下行控制信息与包括第一资源集合在内的至少一个资源集合之间的对应关系。当终端设备接收网络设备发送的第一下行控制信息时,终端设备可以根据该映射关系,将该映射关系中与该第一下行控制信息对应的资源集合确定为承载该第一下行控制信息的第一资源集合,并通过该第一资源集合接收网络设备发送的第一下行控制信息。
例如,该映射关系可以为映射关系表,网络设备可以通过查表的方式,确定与该第一下行及控制信息对应的第一资源集合。
还例如,该映射关系还可以为映射公式,网络设备可以通过映射公式进行计算,确定与该第一下行及控制信息对应的第一资源集合。
应理解,本申请仅以上述两种通过资源映射关系确定资源集合的方式为例进行说明,但本申请并不限于此。还可以通过其他方式确定资源集合,本申请对此不作任何限定。
因此,本申请的传输上行控制信息的方法,通过将目标资源划分为M个资源子集,并通过该M个资源子集确定在频域上不连续的N个控制信道承载资源单位,从而在不连续的N个控制信道承载资源单位上发送下行控制信息,从而保证频率分集增益。
图11是根据本申请的传输下行控制信息的装置300的示意性框图。如图11所示,该装置300包括处理单元310和发送单元320。
其中,处理单元310用于将目标资源划分为M个资源子集,该M个资源子集中至少两个资源子集在频域上至少部分不重叠,且每个资源子集包括至少一个控制信道承载资源单位,M为整数,且M≥2;
该处理单元310还用于根据该M个资源子集,确定第一资源集合,该第一资源集合包括N个控制信道承载资源单位,该N个控制信道承载资源单位中的至少两个控制信道 承载资源单位所属于的资源子集不同,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位在频域上不连续,N≥2;
发送单元320用于在该第一资源集合上向终端设备发送第一下行控制信息
可选地,该处理单元310还用于:
确定映射关系,该映射关系用于指示包括该第一下行控制信息在内的至少一个下行控制信息与包括该第一资源集合在内的至少一个资源集合之间的对应关系;
该处理单元310还用于:
根据该映射关系,将与该第一下行控制信息对应的资源集合确定为该第一资源集合。
可选地,该目标资源在频域上被划分为多个频域单元,一个控制信道承载资源单位包括连续的至少两个频域单元。
可选地,该目标资源在时域上被划分为至少一个时域单元,一个控制信道承载资源单位包括该至少一个时域单元中的部分或全部时域单元。
可选地,该M个资源子集占用的频域带宽小于或等于该目标资源的带宽。
应理解,根据本申请的传输下行控制信息的装置300可对应于本申请的方法中的网络设备,且该传输下行控制信息的装置300中的各单元及模块和上述其他操作和/或功能分别为了实现方法200中由网络设备执行的相应流程,为了简洁,此处不再赘述。
因此,本申请的传输上行控制信息的装置,通过将目标资源划分为M个资源子集,并通过该M个资源子集确定在频域上不连续的N个控制信道承载资源单位,从而在不连续的N个控制信道承载资源单位上发送下行控制信息,从而保证频率分集增益。
图12是根据本申请的传输下行控制信息的装置400的示意性框图。如图12所示,该装置400包括处理单元410和接收单元420。
其中,处理单元410用于根据该M个资源子集,确定第一资源集合,该第一资源集合包括N个控制信道承载资源单位,M为整数,且M≥2,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位所属于的资源子集不同,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位在频域上不连续,N≥2;
接收单元420用于在该第一资源集合上接收网络设备发送的第一下行控制信息。
可选地,处理单元410还用于:
确定映射关系,该映射关系用于指示包括第一下行控制信息在内的至少一个下行控制信息与包括第一资源集合在内的至少一个资源集合之间的对应关系;
该处理单元410还用于根据该映射关系,将与该第一下行控制信息对应的资源集合确定为该第一资源集合。
可选地,该目标资源在频域上被划分为多个频域单元,一个控制信道承载资源单位包括连续的至少两个频域单元。
可选地,该目标资源在时域上被划分为至少一个时域单元,一个控制信道承载资源单位包括该至少一个时域单元中的部分或全部时域单元。
可选地,该M个资源子集占用的频域带宽小于或等于该目标资源的带宽。
应理解,根据本申请的传输下行控制信息的装置400可对应于本申请的方法中的终端设备,且该传输下行控制信息的装置400中的各单元及模块和上述其他操作和/或功能分别为了实现方法200中由终端设备执行的相应流程,为了简洁,此处不再赘述。
因此,本申请的传输上行控制信息的装置,通过将目标资源划分为M个资源子集,并通过该M个资源子集确定在频域上不连续的N个控制信道承载资源单位,从而在不连续的N个控制信道承载资源单位上发送下行控制信息,从而保证频率分集增益。
图13示出了本申请的传输下行控制信息的装置500的示意性结构图,该装置500包括:
发送器510;
处理器520;
存储器530;
其中,该存储器530用于存储指令,该处理器520用于执行该存储器530存储的指令,以控制该发送器510发送信号。
其中,该处理器520用于将目标资源划分为M个资源子集,该M个资源子集中至少两个资源子集在频域上至少部分不重叠,且每个资源子集包括至少一个控制信道承载资源单位,M为整数,且M≥2;
该处理器520还用于根据该M个资源子集,确定第一资源集合,该第一资源集合包括N个控制信道承载资源单位,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位所属于的资源子集不同,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位在频域上不连续,N≥2;
该发送器510用于在该第一资源集合上向终端设备发送第一下行控制信息
可选地,该处理器520还用于:
确定映射关系,该映射关系用于指示包括该第一下行控制信息在内的至少一个下行控制信息与包括该第一资源集合在内的至少一个资源集合之间的对应关系;
该处理器520还用于:
根据该映射关系,将与该第一下行控制信息对应的资源集合确定为该第一资源集合。
可选地,该目标资源在频域上被划分为多个频域单元,一个控制信道承载资源单位包括连续的至少两个频域单元。
可选地,该目标资源在时域上被划分为至少一个时域单元,一个控制信道承载资源单位包括该至少一个时域单元中的部分或全部时域单元。
可选地,该M个资源子集占用的频域带宽小于或等于该目标资源的带宽。
应理解,在本申请中,该处理器520可以是中央处理单元(Central Processing Unit,CPU),该处理器520还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器530可以包括只读存储器和随机存取存储器,并向处理器520提供指令和数据。存储器530的一部分还可以包括非易失性随机存取存储器。例如,存储器530还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器520中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器, 闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器530,处理器520读取存储器530中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,根据本申请的传输下行控制信息的装置500可对应于本申请的方法中的网络设备,且该传输下行控制信息的装置500中的各单元及模块和上述其他操作和/或功能分别为了实现方法200中由网络设备执行的相应流程,为了简洁,此处不再赘述。
因此,本申请的传输上行控制信息的装置,通过将目标资源划分为M个资源子集,并通过该M个资源子集确定在频域上不连续的N个控制信道承载资源单位,从而在不连续的N个控制信道承载资源单位上发送下行控制信息,从而保证频率分集增益。
图14是根据本申请的传输下行控制信息的装置600的示意性结构图。该装置600包括:
接收器610;
处理器620;
存储器630;
其中,该存储器630用于存储指令,该处理器620用于执行该存储器630存储的指令,以控制该接收器610接收信号。
其中,该处理器620用于根据该M个资源子集,确定第一资源集合,该第一资源集合包括N个控制信道承载资源单位,M为整数,且M≥2,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位所属于的资源子集不同,该N个控制信道承载资源单位中的至少两个控制信道承载资源单位在频域上不连续,N≥2;
该接收器610用于在该第一资源集合上接收网络设备发送的第一下行控制信息。
可选地,该处理器620还用于确定映射关系,该映射关系用于指示包括第一下行控制信息在内的至少一个下行控制信息与包括第一资源集合在内的至少一个资源集合之间的对应关系;
该处理器620还用于根据该映射关系,将与该第一下行控制信息对应的资源集合确定为该第一资源集合。
可选地,该目标资源在频域上被划分为多个频域单元,一个控制信道承载资源单位包括连续的至少两个频域单元。
可选地,该目标资源在时域上被划分为至少一个时域单元,一个控制信道承载资源单位包括该至少一个时域单元中的部分或全部时域单元。
可选地,该M个资源子集占用的频域带宽小于或等于该目标资源的带宽。
应理解,在本申请中,该处理器620可以是中央处理单元(Central Processing Unit,CPU),该处理器620还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器630可以包括只读存储器和随机存取存储器,并向处理器620提供指令和数据。存储器630的一部分还可以包括非易失性随机存取存储器。例如,存储器630还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器620中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器630,处理器620读取存储器630中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,根据本申请的传输下行控制信息的装置600可对应于本申请的方法中的终端设备,且该传输下行控制信息的装置600中的各单元及模块和上述其他操作和/或功能分别为了实现方法200中由终端设备执行的相应流程,为了简洁,此处不再赘述。
因此,本申请的传输上行控制信息的装置,通过将目标资源划分为M个资源子集,并通过该M个资源子集确定在频域上不连续的N个控制信道承载资源单位,从而在不连续的N个控制信道承载资源单位上发送下行控制信息,从而保证频率分集增益。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求所述的保护范围为准。

Claims (20)

  1. 一种传输下行控制信息的方法,其特征在于,所述方法包括:
    将目标资源划分为M个资源子集,所述M个资源子集中至少两个资源子集在频域上至少部分不重叠,且每个资源子集包括至少一个控制信道承载资源单位,M为整数,且M≥2;
    根据所述M个资源子集,确定第一资源集合,所述第一资源集合包括N个控制信道承载资源单位,所述N个控制信道承载资源单位中的至少两个控制信道承载资源单位所属于的资源子集不同,所述N个控制信道承载资源单位中的至少两个控制信道承载资源单位在频域上不连续,N≥2;
    在所述第一资源集合上向终端设备发送第一下行控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定映射关系,所述映射关系用于指示包括所述第一下行控制信息在内的至少一个下行控制信息与包括所述第一资源集合在内的至少一个资源集合之间的对应关系;
    所述在所述M个资源子集中确定第一资源集合,包括:
    根据所述映射关系,将与所述第一下行控制信息对应的资源集合确定为所述第一资源集合。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标资源在频域上被划分为至少一个频域单元,一个控制信道承载资源单位包括连续的至少两个频域单元。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述目标资源在时域上被划分为至少一个时域单元,一个控制信道承载资源单位包括所述至少一个时域单元中的部分或全部时域单元。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述M个资源子集占用的频域带宽小于或等于所述目标资源的带宽。
  6. 一种传输下行控制信息的方法,其特征在于,所述方法包括:
    根据M个资源子集,确定第一资源集合,所述第一资源集合包括N个控制信道承载资源单位,M为整数,且M≥2,所述N个控制信道承载资源单位中的至少两个控制信道承载资源单位所属于的资源子集不同,所述N个控制信道承载资源单位中的至少两个控制信道承载资源单位在频域上不连续,N≥2;
    在所述第一资源集合上接收网络设备发送的第一下行控制信息。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    确定映射关系,所述映射关系用于指示包括所述第一下行控制信息在内的至少一个下行控制信息与包括所述第一资源集合在内的至少一个资源集合之间的对应关系;
    所述在所述M个资源子集中确定第一资源集合,包括:
    根据所述映射关系,将与所述第一下行控制信息对应的资源集合确定为所述第一资源集合。
  8. 根据权利要求6或7所述的方法,其特征在于,所述目标资源在频域上被划分为多个频域单元,一个控制信道承载资源单位包括连续的至少两个频域单元。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述目标资源在时域上被划分为至少一个时域单元,一个控制信道承载资源单位包括所述至少一个时域单元中的部分或全部时域单元。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述M个资源子集占用的频域带宽小于或等于所述目标资源的带宽。
  11. 一种传输下行控制信息的装置,其特征在于,所述装置包括:
    处理单元,用于将目标资源划分为M个资源子集,所述M个资源子集中至少两个资源子集在频域上至少部分不重叠,且每个资源子集包括至少一个控制信道承载资源单位,M为整数,且M≥2;
    确定单元,用于根据所述M个资源子集,确定第一资源集合,所述第一资源集合包括N个控制信道承载资源单位,所述N个控制信道承载资源单位中的至少两个控制信道承载资源单位所属于的资源子集不同,所述N个控制信道承载资源单位中的至少两个控制信道承载资源单位在频域上不连续,N≥2;
    发送单元,用于在所述第一资源集合上向终端设备发送第一下行控制信息。
  12. 根据权利要求11所述的装置,其特征在于,所述处理单元还用于:
    确定映射关系,所述映射关系用于指示包括所述第一下行控制信息在内的至少一个下行控制信息与包括所述第一资源集合在内的至少一个资源集合之间的对应关系;
    所述确定单元还用于:
    根据所述映射关系,将与所述第一下行控制信息对应的资源集合确定为所述第一资源集合。
  13. 根据权利要求11或12所述的装置,其特征在于,所述目标资源在频域上被划分为多个频域单元,一个控制信道承载资源单位包括连续的至少两个频域单元。
  14. 根据权利要求11至13中任一项所述的装置,其特征在于,所述目标资源在时域上被划分为至少一个时域单元,一个控制信道承载资源单位包括所述至少一个时域单元中的部分或全部时域单元。
  15. 根据权利要求11至14中任一项所述的装置,其特征在于,所述M个资源子集占用的频域带宽小于或等于所述目标资源的带宽。
  16. 一种传输下行控制信息的装置,其特征在于,所述装置包括:
    确定单元,用于根据M个资源子集,确定第一资源集合,所述第一资源集合包括N个控制信道承载资源单位,M为整数,且M≥2,所述N个控制信道承载资源单位中的至少两个控制信道承载资源单位所属于的资源子集不同,所述N个控制信道承载资源单位中的至少两个控制信道承载资源单位在频域上不连续,N≥2;
    接收单元,用于在所述第一资源集合上接收网络设备发送的第一下行控制信息。
  17. 根据权利要求16所述的装置,其特征在于,所述装置还包括:
    处理单元,用于确定映射关系,所述映射关系用于指示包括第一下行控制信息在内的至少一个下行控制信息与包括第一资源集合在内的至少一个资源集合之间的对应关系;
    所述确定单元还用于:
    根据所述映射关系,将与所述第一下行控制信息对应的资源集合确定为所述第一资源集合。
  18. 根据权利要求16或17所述的装置,其特征在于,所述目标资源在频域上被划分为多个频域单元,一个控制信道承载资源单位包括连续的至少两个频域单元。
  19. 根据权利要求16至18中任一项所述的装置,其特征在于,所述目标资源在时域上被划分为至少一个时域单元,一个控制信道承载资源单位包括所述至少一个时域单元中的部分或全部时域单元。
  20. 根据权利要求16至19中任一项所述的装置,其特征在于,所述M个资源子集占用的频域带宽小于或等于所述目标资源的带宽。
PCT/CN2017/119812 2017-02-10 2017-12-29 传输下行控制信息的方法和装置 WO2018145532A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2019543815A JP6961707B2 (ja) 2017-02-10 2017-12-29 ダウンリンク制御情報送信方法および装置
EP17896278.3A EP3579630B1 (en) 2017-02-10 2017-12-29 Method and device for transmitting downlink control information
EP22167065.6A EP4099787B1 (en) 2017-02-10 2017-12-29 Downlink control information transmission method and apparatus
ES17896278T ES2913766T3 (es) 2017-02-10 2017-12-29 Procedimiento y dispositivo para transmitir información de control de enlace descendente
CN201780086197.7A CN110268771B (zh) 2017-02-10 2017-12-29 传输下行控制信息的方法和装置
BR112019016592-4A BR112019016592A2 (pt) 2017-02-10 2017-12-29 Método e aparelho de transmissão de informações de controle de enlace descendente
KR1020197025876A KR102293231B1 (ko) 2017-02-10 2017-12-29 다운링크 제어 정보 전송 방법 및 장치
US16/537,207 US11115969B2 (en) 2017-02-10 2019-08-09 Downlink control information transmission method and apparatus
US17/387,175 US11671985B2 (en) 2017-02-10 2021-07-28 Downlink control information transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710073164.0A CN108419293B (zh) 2017-02-10 2017-02-10 传输下行控制信息的方法和装置
CN201710073164.0 2017-02-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/537,207 Continuation US11115969B2 (en) 2017-02-10 2019-08-09 Downlink control information transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018145532A1 true WO2018145532A1 (zh) 2018-08-16

Family

ID=63107902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119812 WO2018145532A1 (zh) 2017-02-10 2017-12-29 传输下行控制信息的方法和装置

Country Status (8)

Country Link
US (2) US11115969B2 (zh)
EP (2) EP4099787B1 (zh)
JP (1) JP6961707B2 (zh)
KR (1) KR102293231B1 (zh)
CN (3) CN108419293B (zh)
BR (1) BR112019016592A2 (zh)
ES (1) ES2913766T3 (zh)
WO (1) WO2018145532A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263449A (zh) * 2019-01-07 2020-06-09 维沃移动通信有限公司 信息传输的方法、终端设备和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200684A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
CN103249087A (zh) * 2012-02-10 2013-08-14 华为技术有限公司 一种控制信道资源传输方法、基站及用户设备
CN103813460A (zh) * 2012-11-05 2014-05-21 上海贝尔股份有限公司 一种标识用于传输控制信道的资源的方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110017811A (ko) * 2009-08-14 2011-02-22 삼성전자주식회사 릴레이를 위한 백홀 서브프레임의 제어 채널 구성과 다중화 방법 및 장치
CN101765120B (zh) * 2010-01-21 2011-12-21 华为技术有限公司 一种分布式频谱资源分配方法及装置
JP5856810B2 (ja) * 2011-11-02 2016-02-10 シャープ株式会社 基地局装置、移動局装置、無線通信方法、無線通信システムおよび集積回路
CN102395206B (zh) * 2011-11-08 2015-07-15 电信科学技术研究院 下行控制信息的传输方法和设备
CN102611524B (zh) * 2011-12-19 2015-02-04 电信科学技术研究院 一种传输信息的方法、系统及设备
US9445409B2 (en) * 2012-03-21 2016-09-13 Mediatek, Inc. Method for search space configuration of enhanced physical downlink control channel
CN102638892B (zh) * 2012-03-26 2014-07-09 电信科学技术研究院 一种对e-pdcch进行资源映射的方法及装置
KR20130111999A (ko) * 2012-04-02 2013-10-11 엘지전자 주식회사 무선 통신 시스템에서 분산적 타입 하향링크 제어 채널의 검색 영역을 위하여 자원 블록을 구성하는 방법 및 이를 위한 장치
US20130301562A1 (en) * 2012-05-09 2013-11-14 Mediatek, Inc. Methods for Resource Multiplexing of Distributed and Localized transmission in Enhanced Physical Downlink Control Channel
JP5809103B2 (ja) * 2012-05-09 2015-11-10 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信システム及び無線通信方法
US20130336249A1 (en) * 2012-06-15 2013-12-19 Qualcomm Incorporated Apparatus and methods for resource element group based traffic to pilot ratio aided signal processing
CN103202080B (zh) * 2012-07-26 2014-08-13 华为终端有限公司 控制信道传输方法及设备
EP2693677A1 (en) * 2012-08-02 2014-02-05 Fujitsu Limited E-PDCCH for LTE Advanced wireless communication
US9936523B2 (en) * 2013-01-16 2018-04-03 Telefonaktiebolaget Lm Ericsson (Publ) PRACH signals with different bandwidths
EP3187016B1 (en) * 2014-09-04 2019-11-06 Huawei Technologies Co., Ltd. System and method for communicating resource allocation for d2d
CN105934917B (zh) * 2014-12-31 2019-05-03 华为技术有限公司 一种下行控制信道传输方法及设备
WO2016195177A1 (ko) * 2015-05-29 2016-12-08 엘지전자(주) 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
US10681502B2 (en) * 2015-09-17 2020-06-09 Lg Electronics Inc. Methods, user equipment, and base station for receiving and transmitting single cell-point to multipoint (SC-PTM) data
JP6165276B2 (ja) * 2016-01-08 2017-07-19 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
BR112018067470A2 (pt) * 2016-03-31 2019-01-02 Sony Corp dispositivo de terminal, dispositivo de estação base, e, método de comunicação.
US10432441B2 (en) * 2017-02-06 2019-10-01 Samsung Electronics Co., Ltd. Transmission structures and formats for DL control channels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200684A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
CN103249087A (zh) * 2012-02-10 2013-08-14 华为技术有限公司 一种控制信道资源传输方法、基站及用户设备
CN103813460A (zh) * 2012-11-05 2014-05-21 上海贝尔股份有限公司 一种标识用于传输控制信道的资源的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3579630A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111263449A (zh) * 2019-01-07 2020-06-09 维沃移动通信有限公司 信息传输的方法、终端设备和网络设备

Also Published As

Publication number Publication date
US11671985B2 (en) 2023-06-06
JP6961707B2 (ja) 2021-11-05
JP2020511045A (ja) 2020-04-09
US20210360597A1 (en) 2021-11-18
CN113422674A (zh) 2021-09-21
CN108419293B (zh) 2021-05-18
CN110268771A (zh) 2019-09-20
BR112019016592A2 (pt) 2020-03-31
EP3579630B1 (en) 2022-04-27
EP4099787B1 (en) 2024-01-31
KR20190113910A (ko) 2019-10-08
CN108419293A (zh) 2018-08-17
EP4099787A1 (en) 2022-12-07
ES2913766T3 (es) 2022-06-06
CN110268771B (zh) 2021-10-01
KR102293231B1 (ko) 2021-08-23
US20190364552A1 (en) 2019-11-28
EP3579630A4 (en) 2020-03-11
EP3579630A1 (en) 2019-12-11
US11115969B2 (en) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
US10932251B2 (en) Data receiving method and apparatus thereof, and data sending method and apparatus thereof
WO2021143942A1 (zh) 探测参考信号传输方法及相关产品
CN112532366B (zh) 传输上行控制信息的方法和设备
CN110710296B (zh) D2d通信中资源池共享的方法、终端设备和网络设备
JP2021503210A (ja) リソース構成方法、端末装置及びネットワーク装置
US20240090006A1 (en) Wireless communication method and network device
WO2020024271A1 (zh) 资源分配的方法、终端设备和网络设备
CN110547012B (zh) 处理信号的方法和设备
JP7332635B2 (ja) 帯域幅部分処理方法、端末機器およびネットワーク機器
WO2019047188A1 (zh) 无线通信方法、网络设备和终端设备
US11671985B2 (en) Downlink control information transmission method and apparatus
US20220104247A1 (en) Information transmission method, apparatus, device and storage medium
WO2018082173A1 (zh) 传输上行控制信号的方法和装置
CN114285501B (zh) 无线通信的方法、终端设备、网络设备和存储介质
WO2017152416A1 (zh) 传输上行控制信息的方法和装置
CN110710268B (zh) 确定第一多天线发送模式的方法、终端设备和网络设备
WO2020024250A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019016592

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197025876

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017896278

Country of ref document: EP

Effective date: 20190905

ENP Entry into the national phase

Ref document number: 112019016592

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190809