WO2022123983A1 - Fluid control device and electronic equipment - Google Patents

Fluid control device and electronic equipment Download PDF

Info

Publication number
WO2022123983A1
WO2022123983A1 PCT/JP2021/041142 JP2021041142W WO2022123983A1 WO 2022123983 A1 WO2022123983 A1 WO 2022123983A1 JP 2021041142 W JP2021041142 W JP 2021041142W WO 2022123983 A1 WO2022123983 A1 WO 2022123983A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible portion
control device
fluid control
flow path
facing
Prior art date
Application number
PCT/JP2021/041142
Other languages
French (fr)
Japanese (ja)
Inventor
裕人 川口
洋志 鈴木
健太郎 吉田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to US18/255,228 priority Critical patent/US20240026872A1/en
Publication of WO2022123983A1 publication Critical patent/WO2022123983A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive

Definitions

  • This technology relates to fluid control devices that transport fluids and electronic devices.
  • a diaphragm type pump using a diaphragm has been put into practical use (see, for example, Patent Document 1).
  • the diaphragm type pump is equipped with a pump chamber whose volume fluctuates due to bending deformation of the diaphragm, and it is possible to suck the fluid into the pump chamber by increasing the volume and discharge the fluid from the pump chamber by reducing the volume. be.
  • the purpose of this technique is to provide a small and high-performance fluid control device and an electronic device using the same.
  • the fluid control device includes a flow path space component, an inlet, an outlet, and a drive mechanism.
  • the flow path space constituent portion has a flexible portion having flexibility and a facing portion facing the flexible portion, and a fluid flow path is provided between the flexible portion and the facing portion. It constitutes a flow path space.
  • the inflow port is formed in the outer peripheral portion of the flow path space when viewed from the opposite direction in which the flexible portion and the facing portion face each other, and causes the fluid to flow into the flow path space.
  • the outlet is configured at a position different from the inlet on the outer peripheral portion of the flow path space when viewed from the opposite direction, and causes the fluid to flow out from the flow path space.
  • the drive mechanism bends the flexible portion and increases or decreases the volume of the flow path space. Further, in the reference state in which the flexible portion is not bent by the drive mechanism, at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the facing direction is opposed to the flexible portion. It is configured to be concave toward the portion.
  • the flexible portion may be configured such that the central portion when viewed from the facing direction is concave toward the facing portion in the reference state.
  • the flexible portion may have a shape in which a plate-shaped member is concavely deformed toward the facing portion in the reference state.
  • the facing portion When the flexible portion is a first flexible portion, the facing portion may be composed of a second flexible portion having flexibility.
  • the drive mechanism may bend the second flexible portion.
  • at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the opposite direction in the reference state is the first flexible portion. It may be configured to be concave toward the portion.
  • the facing portion may be composed of a second flexible portion having flexibility.
  • the first flexible portion and the second flexible portion may be configured to resonate with each other.
  • the drive mechanism may have a piezoelectric element connected to a surface of the first flexible portion opposite to the surface of the first flexible portion facing the second flexible portion.
  • the resonance frequency of the second flexible portion may be configured to be close to the resonance frequency of the entire first flexible portion and the piezoelectric element.
  • the thickness of the second flexible portion may be larger than the thickness of the first flexible portion.
  • the first flexible portion At least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the opposite direction in the reference state is the first flexible portion. It may be configured to be concave toward.
  • the flexible portion may have a groove portion configured in the vicinity of the outer peripheral portion of the flexible portion when viewed from the facing direction.
  • the fluid control device may further include a suction port, a suction space component, a discharge port, and a discharge space component.
  • the fluid is sucked into the suction port.
  • the suction space component constitutes a suction space that communicates the suction port and the inflow port.
  • the fluid is discharged from the discharge port.
  • the discharge space configuration constitutes a discharge space that communicates the discharge port and the outlet.
  • the central region constitutes the flexible portion when viewed from the facing direction, and the first plate-shaped member made of a metal material and the central region when viewed from the facing direction.
  • the region constitutes the facing portion, the second plate-shaped member made of a metal material, and the central region as an opening when viewed from the facing direction, have a predetermined thickness, and the first plate-shaped member.
  • the second plate-shaped member and may have a spacer member which is arranged between the first plate-shaped member and the second plate-shaped member and is joined to each of the first plate-shaped member by diffusion bonding.
  • a suction port into which the fluid is sucked is configured in at least one of a region covering the suction opening of the first plate-shaped member or a region covering the suction opening of the second plate-shaped member. You may.
  • the discharge port for discharging the fluid to at least one of the region covering the discharge opening of the first plate-shaped member or the region covering the discharge opening of the second plate-shaped member. May be configured.
  • the electronic device is equipped with the fluid control device.
  • FIG. 2 is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 2 is a schematic diagram which shows the structural example of a drive mechanism.
  • FIG. 7 is a cross-sectional view taken along the line BB shown in FIG. 7. It is a figure which showed each member which constitutes a fluid control device individually.
  • the X direction in the figure is the left-right direction (the direction of the arrow is the left side / the opposite direction is the right side), and the Y direction is the depth direction (the direction of the arrow is the front side / the opposite direction is the back side).
  • the Z direction will be described as the vertical direction (the direction of the arrow is the upper side / the opposite direction is the lower side).
  • the direction in which the fluid control device 1 is used is not limited.
  • FIG. 1 is a perspective view of the fluid control device 1 viewed obliquely from above on the left side.
  • FIG. 2 is a top view of the fluid control device 1 as viewed from above.
  • FIG. 3 is a cross-sectional view taken along the line AA shown in FIG. Note that FIG. 2 shows the internal configuration of the fluid control device 1 with a broken line. Further, the drive mechanism 5 shown in FIG. 3 is not shown in FIGS. 1 and 2.
  • the fluid control device 1 has a flow path space component 2, an inlet 3, an outlet 4, and a drive mechanism 5.
  • the flow path space component 2 constitutes the flow path space S1 which is the flow path of the fluid F.
  • the space constituent part includes a part constituting the space (a part in contact with the space) and a member including the part.
  • a plurality of partition walls are connected on one member to form a plurality of spaces separated from each other.
  • one member to which a plurality of partition walls are connected functions as a space component for each of the plurality of spaces. That is, one member may be commonly used as a space component that constitutes a plurality of spaces.
  • the approximate outer shape of the flow path space component 2 is a cylindrical shape (cylindrical shape), and the flow path space S1 is formed inside.
  • the flow path space component 2 is composed of an upper surface member 6, a lower surface member 7, and spacer members 8a and 8b.
  • the internal space surrounded by the upper surface member 6, the lower surface member 7, and the spacer members 8a and 8b is the flow path space S1.
  • the flow path space S1 can be said to be a pump chamber that causes a pump function to act on the fluid F by generating pressure inside.
  • the upper surface member 6 is a disk-shaped member having a circular outer shape when viewed from the vertical direction (Z direction).
  • the upper surface member 6 is composed of a flexible member.
  • the lower surface member 7 is a disk-shaped member having a circular outer shape when viewed from the vertical direction.
  • the lower surface member 7 is configured so that the outer shape seen from the vertical direction is equal to that of the upper surface member 6. Further, the lower surface member 7 is arranged so as to face the upper surface member 6 along the vertical direction. Therefore, the vertical direction (Z direction) corresponds to the facing direction in which the upper surface member 6 and the lower surface member 7 face each other.
  • the spacer members 8a and 8b are arranged between the upper surface member 6 and the lower surface member 7. As shown in FIG. 2, when viewed from the vertical direction, the peripheral region 10a of the semicircular portion on the inner side of the upper surface member 6 and the lower surface member 7 is located on the inner side from the position P1 having a diameter extending in the X direction.
  • the spacer member 8a is arranged in a region excluding the position up to the position P2 offset to. Further, when viewed from the vertical direction, from the position P1 having a diameter extending in the X direction to the position P3 offset to the front side in the peripheral region 10b of the semicircular portion on the front side of the upper surface member 6 and the lower surface member 7.
  • the spacer member 8b is arranged in the area other than the above. Therefore, among the peripheral peripheral regions 10a and 10b having a circular shape of the upper surface member 6 and the lower surface member 7 when viewed from the vertical direction, the back side and the front side from the position P1 having the diameter extending in the X direction. Spacer members 8a and 8b are arranged in a region excluding the region up to the position offset to (P2 and P3).
  • the inflow port 3 is an opening for the fluid F to flow into the flow path space S1. As shown in FIG. 2, the inflow port 3 is configured in the outer peripheral portion 11 of the flow path space S1 when viewed from the vertical direction.
  • the inflow port 3 is an opening that communicates the external space of the flow path space component 2 with the flow path space S1.
  • the gap between the right end portion 12a of the spacer member 8a and the right end portion 13a of the spacer member 8b is configured as the inflow port 3.
  • the outflow port 4 is an opening for the fluid F to flow out from the flow path space S1. As shown in FIG. 2, the outlet 4 is configured at a position different from the inlet 3 of the outer peripheral portion 11 of the flow path space S1 when viewed from above and below.
  • the outflow port 4 also serves as an opening that communicates the external space of the flow path space component 2 with the flow path space S1.
  • the gap between the left end portion 12b of the spacer member 8a and the left end portion 13b of the spacer member 8b is configured as the outlet 4. Therefore, the inflow port 3 and the outflow port 4 are configured to face each other along the X direction.
  • the positions, numbers, shapes, etc. of the inlet 3 and the outlet 4 are not limited and may be arbitrarily designed.
  • a plurality of inlets 3 and a plurality of outlets 4 may be formed.
  • the reference state is a state in which the upper surface member 6 is not bent by the drive mechanism 5 described later. That is, the reference state is a state in which the operation of bending the upper surface member 6 by the drive mechanism 5 is not executed. It can be said that the reference state is a state in which the fluid control device 1 is not driven.
  • the concave configuration includes, for example, a configuration in which a pressing force is applied to a certain point on the surface of the member and the member itself is deformed into a concave shape.
  • a configuration in which the plate-shaped member is deformed into a concave shape by pressing a certain point on the plate-shaped member is included.
  • a case where a part of the surface of the member is recessed and is configured as a hole is also included.
  • any configuration that can be expressed as being recessed toward the facing member is included.
  • the configuration in which the upper surface member 6 is concave toward the lower surface member 7 means that the facing distance to at least a part of the lower surface member 7 in the inner region of the upper surface member 6 is the upper surface member. It can also be expressed as a configuration that is smaller than the facing distance to the lower surface member 7 on the outer peripheral portion of 6.
  • the facing distance may decrease in a curved shape from the outer peripheral portion of the upper surface member 6 to the portion where the facing distance is the smallest (the portion closest to the lower surface member 7). obtain.
  • the facing distance between the upper surface member 6 and the lower surface member 7 can also be referred to as the flow path height of the fluid F.
  • the configuration in which the upper surface member 6 is concave toward the lower surface member 7 in the present embodiment is such that the flow path height in at least a part of the region on the inner side of the upper surface member 6 is the flow path in the outer peripheral portion of the upper surface member 6. It can also be expressed as a configuration that is smaller than the height.
  • the central portion 15 when the upper surface member 6 is viewed from the vertical direction is configured to be concave toward the lower surface member 7. That is, in the reference state, the upper surface member 6 which is a plate-shaped member is deformed in a concave shape toward the lower surface member 7 at the central portion 15. Therefore, the flow path space S1 is a space having a shape in which the upper surface (the surface on the side in contact with the upper surface member 6) of the cylindrical space is concave in the reference state.
  • the shape of the flow path space S1 that serves as the pump chamber is not limited. For example, any shape such as a circular shape (a perfect circle, an ellipse) or a polygon when viewed from the vertical direction may be adopted.
  • the upper surface member in a concave shape toward the lower surface member, it can be realized as an embodiment of the fluid control device 1 according to the present technique.
  • the drive mechanism 5 bends the upper surface member 6 to increase or decrease the volume of the flow path space S1.
  • the drive mechanism 5 is configured so that the upper surface member 6 configured to be concave toward the lower surface member 7 bends downward and upward, respectively.
  • the drive mechanism 5 is configured so that the upper surface member 6 is periodically bent downward and upward, and the upper surface member 6 vibrates in the vertical direction.
  • the upper surface member 6 is bent so that the central portion 15, which is a concave portion (the portion where the facing distance is the smallest) in the reference state of the upper surface member 6, moves most in the vertical direction.
  • FIG. 3A is a diagram of a reference state in which the upper surface member 6 is not bent. It can be said that the reference state is a state in which no voltage is applied to the piezoelectric element 17.
  • the upper surface member 6 is bent downward. As a result, the volume of the flow path space S1 is reduced.
  • the minimum volume state When the central portion 15 of the upper surface member 6 moves to the lowermost side, the volume is reduced most (hereinafter, referred to as the minimum volume state).
  • the upper surface member 6 is bent upward from the reference state. As a result, the volume of the flow path space S1 increases.
  • the maximum volume state when the central portion 15 of the upper surface member 6 moves to the uppermost side, the volume increases most (hereinafter, referred to as the maximum volume state).
  • the upper surface member 6 is bent from the reference state shown in FIG. 3A, and the maximum volume state and the minimum volume state are periodically and repeatedly generated.
  • the pump function is realized, and the fluid F flowing into the flow path space S1 from the inflow port 3 can flow out from the outflow port 4 to the outside of the flow path space S1.
  • FIG. 4 is a schematic diagram showing a configuration example of the drive mechanism 5.
  • the drive mechanism 5 includes a piezoelectric element 17 and a drive control unit 18.
  • the piezoelectric element 17 is connected to the upper surface 20 on the side opposite to the lower surface 19 on the side facing the lower surface member 7 of the upper surface member 6.
  • the piezoelectric element 17 has a circular shape and is connected to a circular region covering the flow path space S1 of the upper surface member 6.
  • the drive control unit 18 applies a voltage (AC voltage) to the piezoelectric element 17 as a drive signal via wiring or the like.
  • the specific configuration of the drive control unit 18 is not limited, and any circuit configuration or the like may be adopted.
  • the piezoelectric element 17 is an element capable of electro-mechanical conversion, and can bend the upper surface member 6 by expanding and contracting in response to the application of a voltage.
  • a piezoelectric element By using a piezoelectric element, it is possible to realize vibration in a high frequency band with a high response force. That is, it is possible to repeat the increase / decrease in the volume of the flow path space S1 having a relatively small fluctuation amount at a very high speed. As a result, the output (pressure) of the pump can be improved, and a high pump function can be realized.
  • the diaphragm 22 is configured by the upper surface member 6 and the piezoelectric element 17.
  • the configuration of the drive mechanism 5 is not limited to the configuration in which the piezoelectric element 17 is used.
  • a configuration in which a dielectric elastomer or the like is used, a configuration in which a solenoid is used, or the like may be adopted.
  • the present embodiment since it is a diaphragm type fluid control device 1, it is very advantageous for miniaturization.
  • the upper surface member 6 and the lower surface member 7 it is possible to realize a size of about 10 mm in diameter ⁇ 1 mm in thickness.
  • the reference facing distance between the upper surface member 6 and the lower surface member 7 it is also possible to design the reference facing distance between the upper surface member 6 and the lower surface member 7 to be about 100 ⁇ m.
  • the reference facing distance corresponds to the facing distance before the upper surface member 6 is formed in a concave shape, and can be said to be the facing distance on the outer peripheral portion 11 of the upper surface member 6.
  • the amount of dent (deformation) of the upper surface member 6 can be designed to be, for example, 10 ⁇ m to 80 ⁇ m.
  • the amount of dent is the amount of deformation of the central portion 15 closest to the lower surface member 7 from the state before deformation to the downward side. That is, it is possible to design the central portion 15 closest to the lower surface member 7 to be as close as 20 ⁇ m to 90 ⁇ m to the lower surface member 7.
  • the embodiment of the fluid control device 1 according to the present technology can be realized in any size without being limited to such a size design. It is desirable that the upper surface member 6 does not come into contact with the lower surface member 7 in the minimum volume state shown in FIG. 3B.
  • metal materials such as stainless steel and 42 alloy are used as the upper surface member 6, the lower surface member 7, and the spacer members 8a and 8b.
  • other metallic materials may be used.
  • any material other than the metal material such as a plastic material may be used.
  • Each of the upper surface member 6, the lower surface member 7, and the spacer members 8a and 8b may be made of different materials.
  • the portion of the upper surface member 6 connected to the spacer members 8a and 8b and the portion in contact with the flow path space S1 may be made of different materials. That is, the portion bent to increase or decrease the volume of the flow path space S1 and the portion connected to the spacer members 8a and 8b may be made of different materials.
  • the region on the outer peripheral side of the upper surface member may be made of a metal material
  • the region on the inner side may be made of a plastic material.
  • an upper surface member 6, a lower surface member 7, and spacer members 8a and 8b made of a metal material are produced by an arbitrary processing technique such as etching or laser processing.
  • the created upper surface member 6, lower surface member 7, and spacer members 8a and 8b are connected to each other so as to be laminated along the vertical direction.
  • the upper surface member 6, the lower surface member 7, and the spacer members 8a and 8 are laminated with predetermined position accuracy and joined by diffusion bonding. This makes it possible to integrally configure the flow path space component 2 as a metal.
  • the specific method and configuration for performing processing such as etching and diffusion bonding are not limited, and for example, a well-known technique may be used.
  • the upper surface member 6, the lower surface member 7, and the spacer members 8a and 8b may be connected to each other by a method other than diffusion joining.
  • other arbitrary methods such as die casting may be adopted for forming the flow path space component 2.
  • FIG. 5 is a schematic view showing an example of a method of connecting the piezoelectric element 17 to the upper surface member 6.
  • the flow path space component 2 (hereinafter, referred to as the flow path space component 2 before the concave structure) in which the upper surface member 6 is not configured in a concave shape is placed on the holding jig 23. Will be done.
  • the lower surface member 7 side of the flow path space component 2 before the concave structure is placed on the holding jig 23.
  • the specific configuration of the holding jig 23 is not limited, and any jig that can hold the flow path space configuration portion 2 before the concave configuration may be used.
  • an appropriate amount of adhesive is applied to the upper surface 20 of the upper surface member 6 before the concave structure, and the piezoelectric element 17 is set at a predetermined position.
  • an epoxy adhesive or the like can be applied by a method such as a dispenser or pad printing. Of course, it is not limited to this.
  • the pressurizing jig 24 is set on the upper side of the flow path space configuration portion 2 before the concave configuration.
  • the shape of the pressurizing jig 24 when viewed from the vertical direction is the same as that of the piezoelectric element 17 and has a circular shape. Then, the position of the pressurizing jig 24 is set so that the entire surface of the piezoelectric element 17 can be pressurized.
  • the tip portion 25 of the pressurizing jig 24 on the pressurizing surface side is made of a flexible material such as silicon rubber.
  • the piezoelectric element 17 is pressurized from above to below by the pressurizing jig 24. Due to the pressurization by the pressurizing jig 24, the piezoelectric element 17 and the upper surface member 6 are deformed in a concave shape toward the lower surface member 7. In this state, the curing process of the adhesive is executed.
  • the tip portion 25 of the pressurizing jig 24 is made of a flexible material. Therefore, the tip portion 25 is deformed following the deformation of the piezoelectric element 17.
  • the tip portion 25 is made of a flexible material, it is possible to absorb the unevenness of the surface of the piezoelectric element 17, and it is possible to prevent the piezoelectric element 17 from being destroyed by pressurization.
  • the pressurizing conditions are not limited. Conditions that can deform the upper surface member 6 into a concave shape may be appropriately set. For example, the pressing force, the pressurizing time, the temperature, and the like may be appropriately set so that the dented amount of the upper surface member 6 becomes a desired dented amount.
  • the present embodiment it is possible to simultaneously perform bonding of the piezoelectric element 17 and deformation for making the upper surface member 6 concave.
  • the bonding process of the piezoelectric element 17 it is possible to simultaneously deform the upper surface member 6 into a concave shape. Therefore, a special process, a special jig, or the like for forming the upper surface member 6 in a concave shape becomes unnecessary.
  • the manufacturing process of the flow path space component 2 can be simplified, and the manufacturing time can be shortened.
  • the method is not limited to the method shown in FIG.
  • the upper surface member 6 may be configured in a concave shape in advance and may be connected to the spaces 8a and 8b.
  • the piezoelectric element 17 may be adhered to the upper surface member 6 which is formed in a concave shape in advance.
  • FIG. 6 is a schematic diagram for explaining the initial volume.
  • FIG. 6A is a diagram schematically showing the flow path space S1 before the concave configuration.
  • FIG. 6B is a diagram schematically showing the flow path space S1 in the reference state.
  • FIG. 6C is a diagram schematically showing the flow path space S1 during pump drive.
  • the upper surface member 6 and the lower surface member 7 are arranged at a reference facing distance H.
  • the upper surface member 6 is formed in a concave shape with a dent amount Z.
  • the volume of the flow path space S1 in the reference state shown in FIG. 5B is defined as the initial volume.
  • FIG. 6C it is assumed that the upper surface member 6 vibrates with an amplitude M along the vertical direction from the reference state. Further, the smallest facing distance between the upper surface member 6 and the lower surface member 7 in the minimum volume state is defined as the minimum gap Gm.
  • volume volatility volume fluctuation amount / initial volume ... (1)
  • the volume fluctuation amount is the volume fluctuation amount of the flow path space S1 due to the bending of the upper surface member 6, and can be expressed by the difference between the minimum volume and the maximum volume of the flow path space S1. Therefore, the volume fluctuation amount can be expressed by the deformation amount (displacement amount) of the upper surface member 6 on the lower side and the upper side.
  • the volume volatility is calculated by dividing the difference between the minimum volume and the maximum volume of the flow path space S1 by the initial volume. The higher the volume volatility, the higher the pump function is exhibited, and it becomes possible to realize the high-performance fluid control device 1. For example, when the deformation amounts of the upper surface members 6 are the same, the smaller the initial volume, the larger the volume volatility, and the higher the pump function is exhibited. For example, the amount of deformation of the upper surface member 6 is greatly affected by the area of the piezoelectric element 17 connected to the upper surface member 6. Therefore, when the areas of the piezoelectric elements 17 are equal, it is important to reduce the initial volume.
  • the initial volume can be reduced. Therefore, as shown in the equation (1), it is possible to increase the volume volatility and realize a high pump function.
  • the facing distance between the upper surface member 6 and the lower surface member 7 in a state where the upper surface member 6 is not configured in a concave shape as shown in FIG. 6A is also uniformly reduced. Therefore, the cross-sectional areas of the inflow port 3 and the outflow port 4 become small. As a result, the flow path resistance at the inflow port 3 and the outflow port 4 becomes large, and the pump function deteriorates.
  • the facing distance is maintained at the reference facing distance H in the outer peripheral portion 11 of the flow path space S1.
  • the initial volume is reduced while the height of the flow path at the inlet 3 and the outlet 4 is sufficiently maintained. This makes it possible to prevent the flow path resistance at the inflow port 3 and the outflow port 4 from becoming large. As a result, the flow of the fluid F is not obstructed, that is, the flow path loss can be sufficiently suppressed, and a high pump function can be realized.
  • the reaction force (back pressure) with respect to the force applied to the upper surface member 6 in the vertical direction greatly acts on the entire upper surface member 6.
  • high-speed vibration pron movement
  • the pump function deteriorates.
  • the central portion 15 of the upper surface member 6 is closest to the lower surface member 7 and is vibrated with the largest amplitude M.
  • the fluctuation of the facing distance is small, and the amplitude of vibration is also suppressed.
  • the fluid control device is configured with the configuration before the upper surface member 6 becomes concave as shown in FIG. 5A.
  • the amount of deformation of the upper surface member 6 is the same, the amount of volume fluctuation in the equation (1) is the same.
  • the upper surface member 6 is formed in a concave shape to reduce the initial area.
  • the initial volume is set to 60% of the volume before the concave configuration. In this case, it is possible to increase the volume volatility by about 1.67 times from the equation (1).
  • the pump function can be significantly improved.
  • the minimum facing distance between the central portion 15 of the upper surface member 6 and the lower surface member 7 in the reference state shown in FIG. 5B is larger than 1/2 of the amplitude of the central portion 15 of the upper surface member 6 when the pump is driven. Is desirable.
  • the optimum value of the deformation amount of the upper surface member 6 varies depending on the relationship between the bending rigidity of the piezoelectric element 17, the bending rigidity of the upper surface member 6, and the pressing force at the time of bonding the piezoelectric element 17. Therefore, it is also important to adjust the pressing force in consideration of the bending rigidity of each member.
  • the upper surface member 6 corresponds to one embodiment of the flexible portion having flexibility.
  • the lower surface member 7 corresponds to one embodiment of the facing portion facing the flexible portion.
  • the upper surface member 6 is also an embodiment of the first plate-shaped member in which the central region constitutes a flexible portion and is made of a metal material. In the present embodiment, the entire flexible portion including the central region constitutes a flexible portion.
  • the lower surface member 7 is also an embodiment of a second plate-shaped member whose central region constitutes a facing portion and is made of a metal material. In the present embodiment, the entire region including the central region constitutes the facing portion.
  • the spacer members 8a and 8b have an opening in the central region, have a predetermined thickness, are arranged between the first plate-shaped member and the second plate-shaped member, and are arranged between the first plate-shaped member and the second plate-shaped member. Corresponds to one embodiment of the spacer member connected to each of the plate-shaped members by diffusion bonding.
  • the opening in the central region corresponds to the portion that becomes the flow path space S1.
  • the flow path space component 2 constitutes the flow path space S1 between the flexible portion and the facing portion.
  • the drive mechanism 5 bends the flexible portion to increase or decrease the volume of the flow path space S1.
  • the inflow port 3 shown in FIG. 2 or the like may be used as a suction port for sucking the fluid F into the fluid control device 1.
  • the outlet 4 may be used as a discharge port for discharging the fluid F to the outside of the fluid control device 1.
  • the suction port and the discharge port may be configured separately from the inflow port 3 and the outflow port 4.
  • a suction space component that constitutes a suction space that communicates the suction port and the inflow port 3 may be further configured.
  • the suction space is a space that guides the fluid F sucked from the suction port to the inflow port 3.
  • a discharge space component that constitutes a discharge space that communicates the discharge port and the outlet 4 may be further configured.
  • the discharge space is a space that guides the fluid flowing out from the outlet 4 to the discharge port. Even when such a suction space and a discharge space are configured, it is possible to realize a high pump function in the flow path space S1, and it is possible to realize a compact and high-performance fluid control device 1. ..
  • the lower surface member 7 is configured as a flexible member. It is also possible to configure the flow path space component 2 so that the upper surface member 6 and the lower surface member 7 resonate with each other. By resonating the upper surface member 6 and the lower surface member 7 with each other, it is possible to increase the volume fluctuation amount represented by the equation (1), and it is possible to improve the pump function.
  • a configuration in which the upper surface member 6 and the lower surface member 7 resonate with each other may be referred to as a resonance configuration. Further, it may be described as a resonance effect that the pump function is improved by the resonance of the upper surface member 6 and the lower surface member 7 with each other.
  • the lower surface member 7 also functions as a diaphragm.
  • the diaphragm composed of the upper surface member 6 and the piezoelectric element 17 may be described as a first diaphragm, and the diaphragm composed of the lower surface member 6 may be described as a second diaphragm. Resonating the upper surface member 6 and the lower surface member 7 with each other corresponds to resonating the first diaphragm and the second diaphragm with each other.
  • the resonance frequency (primary resonance frequency) of the entire upper surface member 6 and the piezoelectric element 17 is configured to be close to the resonance frequency of the lower surface member 7. That is, the resonance frequency of the first diaphragm is configured to be close to the resonance frequency of the second diaphragm.
  • the resonance frequency causes the first diaphragm (upper surface member 6 + piezoelectric element 17) to bend upward and the second diaphragm (lower surface member 7) to bend downward in synchronization.
  • the downward bending of the first diaphragm (upper surface member 6 + piezoelectric element 17) and the upward bending of the second diaphragm (lower surface member 7) occur in synchronization with each other. That is, in both diaphragms, bending in the direction of increasing the volume of the flow path space S1 and bending in the direction of decreasing the volume of the flow path space S1 are generated in synchronization with each other. As a result, a high resonance effect is exhibited.
  • the resonance frequency is defined by the specific gravity, Young's modulus, thickness, size, etc. of the material.
  • a metal material such as stainless steel or 42 alloy is used to form the upper surface member 6.
  • the lower surface member 7 is made of the same metal material. Since the piezoelectric element 17 is adhered to the upper surface 20 of the upper surface member 6, the resonance frequency of the first diaphragm as a whole is higher than that of the upper surface member 6 in which the piezoelectric element 17 is not adhered.
  • the thickness of the lower surface member 7 serving as the second diaphragm is made larger than the thickness of the upper surface member 6. This makes it possible to bring the resonance frequency of the entire first diaphragm (upper surface member 6 + piezoelectric element 17) closer to the resonance frequency of the second diaphragm (lower surface member 7). As a result, it becomes possible to realize a resonance configuration and exert a resonance effect.
  • the upper surface member 6 corresponds to one embodiment of the first flexible portion.
  • the lower surface member 7 corresponds to one embodiment of the second flexible portion.
  • the resonance configuration has a structure in which the first flexible portion and the second flexible portion resonate with each other.
  • transmission loss of vibration energy, deviation of resonance frequency, and the like are likely to occur, and it is difficult to realize a resonance configuration.
  • the upper surface member 6, the spacer members 8a and 8b, and the lower surface member 7 are joined by diffusion joining, and the flow path space component 2 is integrally formed as metal. As a result, it is possible to suppress transmission loss of vibration energy, deviation of resonance frequency, and the like, and it is possible to easily realize a resonance configuration.
  • the vibration energy generated in the first diaphragm can be circulated with the second diaphragm, and the loss of the vibration energy can be suppressed. As a result, it becomes possible to exert a high pump function.
  • the application of this technique is not limited to the case where the resonance configuration is adopted.
  • Products that utilize fluids such as gases and liquids are used in various applications such as industrial air cylinders, air bags, and cuffs for blood pressure measurement.
  • fluid force of the fluid By using the fluid force of the fluid, it is possible to realize new functions such as movement different from the conventional actuator and generation of pressure sensation and tactile sensation utilizing pressure.
  • a device that produces fluid flow and pressure is required.
  • conventionally used pumps and blowers (fans) are relatively large in size and difficult to apply to small devices and wearables.
  • the diaphragm type pump that utilizes the vibration of the piezoelectric element is suitable for miniaturization, and the pressure and flow rate can also be controlled. For example, it can be sufficiently applied as a pressure source for the cuff of a portable blood pressure monitor.
  • the upper surface member 6 arranged so as to sandwich the flow path space S1 is configured to be concave toward the lower surface member 7. Further, the inflow port 3 and the outflow port 4 are configured in the outer peripheral portion 11 of the flow path space S1. This makes it possible to realize a compact and high-performance fluid control device 1. Further, by adopting the resonance configuration, it is possible to further improve the performance.
  • FIG. 7 is a top view of the fluid control device 27 according to the second embodiment when viewed from above.
  • FIG. 8 is a cross-sectional view taken along the line BB shown in FIG.
  • the BB line is a line bent at a right angle at the center portion 37 of the first resonance plate 29.
  • FIG. 9 is a diagram showing each member constituting the fluid control device 27 individually. In FIG. 9, the piezoelectric element is not shown.
  • the approximate outer shape of the fluid control device 27 according to the present embodiment is a quadrangular prism shape, and a flow path space S1, a suction space S2, and a discharge space S3 are internally configured.
  • the fluid control device 27 has a first fixing plate 28, a first resonance plate 29, a spacer member 30, a second resonance plate 31, and a second fixing plate 32. Further, the fluid control device 27 has a first piezoelectric element 33, a second piezoelectric element 34, and a check valve 35. As shown in FIG. 8, each of the first fixing plate 28, the first resonance plate 29, the spacer member 30, the second resonance plate 31, and the second fixing plate 32 is configured as a plate-shaped member. .. Further, as shown in FIG. 9, each member has a rectangular shape in which the approximate outer shapes seen from the vertical direction are equal to each other. With the outer edges of the members aligned, the members are stacked and connected in the vertical direction. As shown in FIG. 8, from the lower side to the upper side, the second fixing plate 32, the second resonance plate 31, the spacer member 30, the first resonance plate 29, and the first fixing plate 28 are in this order. The members are laminated.
  • the spacer member 30 has a central opening 38, two suction openings 39a and 39b, and two ejection openings 40a and 40b.
  • the central opening 38 When viewed from the vertical direction, the central opening 38 is formed in the central region of the spacer member 30. Further, the shape of the central opening 38 when viewed from the vertical direction is a circular shape. The central opening 38 is configured so that the position of the central portion is equal to the position of the central portion 37 of the first resonance plate 29.
  • the two suction openings 39a and 39b are formed on a diagonal line from the apex portion 41a on the right side and the back side of the spacer member 30 toward the apex portion 41c on the left side and the front side with the central opening 38 interposed therebetween. Further, the two suction openings 39a and 39b are formed so as to communicate with the outer peripheral portion 38a of the central opening 38.
  • the suction opening 39a is configured to communicate with the central opening 38 between the central opening 38 and the apex 41a.
  • the suction opening 39b is configured to communicate with the central opening 38 between the central opening 38 and the apex 41c.
  • the two discharge openings 40a and 40b are formed on the diagonal line from the left and back apex 41d of the spacer member 30 toward the right and front apex 41b with the central opening 38 interposed therebetween. Further, the two discharge openings 40a and 40b are formed so as to communicate with the outer peripheral portion 38a of the central opening 38.
  • the discharge opening 40a is configured to communicate with the central opening 38 between the central opening 38 and the apex portion 41d.
  • the discharge opening 40b is configured to communicate with the central opening 38 between the central opening 38 and the apex portion 41b.
  • the two suction openings 39a and 39b and the two discharge openings 40a and 40b are the central portion of the spacer member 30 (the center of the central opening 38). It is formed at positions that are symmetrical with respect to the part). Further, the two suction openings 39a and 39b and the two discharge openings 40a and 40b have the same shape and are formed so as to face the central portion of the spacer member 30.
  • the first resonance plate 29 has a flexible first flexible portion 42 and two discharge ports 43a and 43b.
  • the first flexible portion 42 When viewed from the vertical direction, the first flexible portion 42 is formed in the central region of the first resonance plate 29. Further, the shape of the first flexible portion 42 when viewed from the vertical direction is a circular shape.
  • the first flexible portion 42 is configured so that the central portion thereof is equal to the central portion 37 of the first resonance plate 29. That is, the central portion 37 can be said to be the central portion 37 of the first flexible portion 42.
  • the first flexible portion 42 is configured at a position that covers the central opening 38 of the spacer member 30 from above (at a position that overlaps with the central opening 38). Further, the central portion 37 of the first flexible portion 42 and the central portion of the central opening 38 of the spacer member 30 are located at equal positions with each other.
  • the first flexible portion 42 is on the inner side of the outer peripheral portion 11 of the flow path space S1 when viewed from the vertical direction. It is configured to be concave toward the resonance plate 31 of 2.
  • the first flexible portion 42 is configured such that the central portion 37 when viewed from the vertical direction is concave toward the second resonance plate 31 in the reference state.
  • the two discharge ports 43a and 43b sandwich the first flexible portion 42 on the diagonal line from the apex portion 45d on the left side and the back side of the first resonance plate 29 toward the apex portion 45b on the right side and the front side. Formed by.
  • the discharge port 43a is formed between the first flexible portion 42 and the apex portion 45d. As shown in FIG. 7, the discharge port 43a is formed at a position on the inner side of the discharge opening 40a of the spacer member 30 when viewed from above and below.
  • the discharge port 43b is formed between the first flexible portion 42 and the apex portion 45b.
  • the discharge port 43b is formed at a position on the inner side of the discharge opening 40b of the spacer member 30 when viewed from the vertical direction.
  • the first fixing plate 28 has a central opening 46 and two ejection openings 47a and 47b.
  • the central opening 46 is formed in the central region of the first fixing plate 28.
  • the shape of the central opening 46 when viewed from the vertical direction is a circular shape.
  • the central opening 46 is configured so that the position of the central portion is equal to the position of the central portion of the central opening 38 of the spacer member 30.
  • the two ejection openings 47a and 47b are formed diagonally from the left and back apex 48d of the first fixing plate 28 toward the right and front apex 48b with the central opening 46 interposed therebetween. Will be done.
  • the discharge opening 47a is configured between the central opening 46 and the apex portion 48d.
  • the discharge opening 47a has a shape in which a rectangular opening and a semicircular opening communicate with each other.
  • the discharge opening 47a is formed so that the rectangular opening portion is located along the central opening 46 and the apex of the semicircular opening portion faces the apex portion 48d.
  • the discharge opening 47b is configured between the central opening 46 and the apex 48db.
  • the discharge opening 47b has the same shape as the discharge opening 47a.
  • the discharge opening 47b is formed so that the rectangular opening portion is located along the central opening 46 and the apex of the semicircular opening portion faces the apex portion 48b.
  • the discharge opening 47a is formed so that the discharge port 43a of the first resonance plate 29 is located inside when viewed from the vertical direction.
  • the discharge opening 47b is formed so that the discharge port 43b of the first resonance plate 29 is located inside when viewed from the vertical direction. Therefore, when viewed from the vertical direction, the ejection opening 40a of the spacer member 30 and the ejection opening 47a of the first fixed plate 28 are formed at positions where they overlap each other. Further, the ejection opening 40b of the spacer member 30 and the ejection opening 47b of the first fixing plate 28 are formed at positions where they overlap each other.
  • the second resonance plate 31 has a second flexible portion 49 having flexibility and two suction ports 50a and 50b.
  • the second flexible portion 49 When viewed from the vertical direction, the second flexible portion 49 is formed in the central region of the second resonance plate 31. Further, the shape of the second flexible portion 49 when viewed from the vertical direction is a circular shape.
  • the second flexible portion 49 is configured so that the central portion thereof is equal to the central portion 51 of the second resonance plate 29. That is, the central portion 51 can be said to be the central portion 51 of the second flexible portion 49.
  • the second flexible portion 49 is configured at a position that covers the central opening 38 of the spacer member 30 from below (at a position that overlaps with the central opening 38). Further, the central portion 51 of the second flexible portion 49 and the central portion of the central opening 38 of the spacer member 30 are located at equal positions with each other.
  • the second flexible portion 49 is on the inner side of the outer peripheral portion 11 of the flow path space S1 when viewed from the vertical direction. It is configured to be concave toward the resonance plate 29 of 1.
  • the second flexible portion 49 is configured such that the central portion 51 when viewed from the vertical direction is concave toward the first resonance plate 29 in the reference state.
  • the first flexible portion 42 of the first resonance plate 29 and the second flexible portion 49 of the second resonance plate 31 are aligned in the vertical direction. , With the central opening 38 of the spacer member 30 in between, they face each other.
  • the first flexible portion 42 is configured such that the central portion 37 is concave toward the second flexible portion 49 in the reference state.
  • the second flexible portion 49 is configured such that the central portion 51 is concave toward the first flexible portion 42 in the reference state.
  • the two suction ports 50a and 50b sandwich a second flexible portion 49 on a diagonal line from the apex portion 52a on the right side and the back side of the second resonance plate 31 toward the apex portion 52c on the left side and the front side. Is formed by.
  • the suction port 50a is formed between the second flexible portion 49 and the apex portion 52a. As shown in FIG. 7, the suction port 50a is formed at a position on the inner side of the suction opening 39a of the spacer member 30 when viewed from above and below.
  • the suction port 50b is formed between the second flexible portion 49 and the apex portion 52c.
  • the suction port 50b is formed at a position on the inner side of the suction opening 39b of the spacer member 30 when viewed from above and below.
  • the second fixing plate 32 has a central opening 53 and two suction openings 54a and 54b.
  • the central opening 53 is formed in the central region of the second fixing plate 32.
  • the shape of the central opening 53 when viewed from the vertical direction is a circular shape.
  • the central opening 53 is configured so that the position of the central portion is equal to the position of the central portion of the central opening 38 of the spacer member 30.
  • the two suction openings 54a and 54b are formed diagonally from the apex 55a on the right side and the back side of the second fixing plate 32 toward the apex 55c on the left side and the front side with the central opening 53 interposed therebetween. Will be done.
  • the suction opening 54a is configured between the central opening 53 and the apex 55a.
  • the suction opening 54a has the same shape as the discharge opening 47a formed in the first fixing plate 28.
  • An inhalation opening 54a is formed such that the rectangular opening is located along the central opening 53 and the apex of the semicircular opening faces the apex 55a.
  • the suction opening 54b is configured between the central opening 53 and the apex 55c.
  • the inhalation opening 54b has the same shape as the inhalation opening 54a.
  • An inhalation opening 54b is formed such that the rectangular opening is located along the central opening 53 and the apex of the semicircular opening faces the apex 55c.
  • the suction opening 54a is formed so that the suction port 50a of the second resonance plate 31 is located inside when viewed from above and below.
  • the suction opening 54b is formed so that the suction port 50b of the second resonance plate 31 is located inside when viewed from above and below. Therefore, when viewed from the vertical direction, the suction opening 39a of the spacer member 30 and the suction opening 54a of the second fixing plate 32 are formed at positions where they overlap each other. Further, the suction opening 39b of the spacer member 30 and the suction opening 54b of the second fixing plate 32 are formed at positions where they overlap each other.
  • the first fixing plate 28 when viewed from the vertical direction, the first fixing plate 28 is rotated by 90 degrees to have the same configuration as the second fixing plate 32. That is, the first fixing plate 28 and the second fixing plate 32 have a configuration in which the arrangement relations of the openings are equal to each other when viewed from the vertical direction. Therefore, by preparing two of the same members and changing their orientations, they can be used as the first fixing plate 28 and the second fixing plate 32, respectively.
  • the first resonance plate 29 and the second resonance plate 31 also have a flexible portion (first flexible portion 42 and a second flexible portion 49) configured in the center and two holes (suction port). The positional relationship with the 50a and 50b / discharge ports 43a and 43b) is equal to each other. Therefore, by preparing two identical members and changing their orientations, they can be used as the first resonance plate 29 and the second resonance plate 31, respectively. Since the same member can be used in different directions in this way, it is possible to reduce the production cost of the parts.
  • the first fixing plate 28, the first resonance plate 29, the spacer member 30, the second resonance plate 31, and the second fixing plate 32 are laminated and connected in the vertical direction. Will be done.
  • the central opening 38 of the spacer member 30 is sandwiched between the first flexible portion 42 of the first resonance plate 29 and the second flexible portion 42 of the second resonance plate 31, so that the flow path space S1 Is configured.
  • the portion of the communication hole that communicates the central opening 38 shown in FIG. 9 and the two suction openings 39a and 39b is configured as the inflow port 3 shown in FIG. Further, the portion of the communication hole that communicates the central opening 38 and the two discharge openings 40a and 40b is configured as the outlet 4 shown in FIG. Therefore, in the present embodiment, the first resonance plate 29, the second resonance plate 31, and the spacer member 30 function as a flow path space component.
  • the suction space S2 is formed by sandwiching the two suction openings 39a and 39b of the spacer member 30 by the first resonance plate 29 and the second resonance plate 31.
  • the suction ports 50a and 50b are formed in the region of the second resonance plate 31 that covers the two suction openings 39a and 39b of the spacer member 30.
  • the suction ports 50a and 50b communicate the suction space S2 with the two suction openings 54a and 54b of the second fixed plate 32.
  • the first resonance plate 29, the second resonance plate 31, and the spacer member 30 form a suction space component S2 that communicates the suction ports 50a and 50b with the inflow port 3. Also works as.
  • the discharge space S3 is formed by sandwiching the two discharge openings 40a and 40b of the spacer member 30 between the first resonance plate 29 and the second resonance plate 31.
  • Discharge ports 43a and 43b are formed in the region of the first resonance plate 29 that covers the two ejection openings 40a and 40b of the spacer member 30.
  • the discharge ports 43a and 43b communicate the discharge space S3 with the two discharge openings 47a and 47b of the first fixed plate 28.
  • the first resonance plate 29, the second resonance plate 31, and the spacer member 30 form a discharge space component S3 that communicates the discharge ports 43a and 43b with the outlet 4. Also works as.
  • the fluid F is sucked into the suction space S2 from the two suction openings 54a and 54b of the second fixed plate 32 through the suction ports 50a and 50b.
  • the sucked fluid F flows into the flow path space S1 that functions as a pump chamber through the inflow port 3.
  • the fluid F flowing into the flow path space S1 is discharged from the outlet 4 to the discharge space S3 by the pump function.
  • the fluid F is discharged from the discharge space S3 through the discharge ports 43a and 43b to the two discharge openings 47a and 47b of the first fixed plate 28.
  • the first piezoelectric element 33 is connected to the upper surface 57 of the first flexible portion 42.
  • the upper surface 57 of the first flexible portion 42 is a surface opposite to the surface facing the second flexible portion 49.
  • the first piezoelectric element 33 is arranged in the central opening 46 of the first fixing plate 28.
  • the first piezoelectric element 33 has a circular shape when viewed from the vertical direction.
  • the first piezoelectric element 33 is connected to the upper surface 57 of the first flexible portion 42 so that the central portion is at the same position as the central portion 37 of the first flexible portion 42.
  • the size of the first piezoelectric element 33 is one size smaller than the size of the upper surface 57 of the first flexible portion 42. That is, the first piezoelectric element 33 is arranged in a region one size smaller than the entire region of the upper surface of the flow path space S1 when viewed from the vertical direction.
  • the second piezoelectric element 34 is connected to the lower surface 58 of the second flexible portion 49.
  • the lower surface 58 of the second flexible portion 49 is a surface opposite to the surface facing the first flexible portion 42.
  • the second piezoelectric element 34 is arranged in the central opening 53 of the second fixing plate 32.
  • the second piezoelectric element 34 has a circular shape equal to that of the first piezoelectric element 33 when viewed from above and below. Further, the second piezoelectric element 34 is arranged at a position overlapping with the first piezoelectric element 33 when viewed from the vertical direction.
  • the second piezoelectric element 34 is connected to the lower surface 58 of the second flexible portion 49 so that the central portion is at the same position as the central portion 51 of the second flexible portion 49. Further, when viewed from the vertical direction, the size of the second piezoelectric element 34 is one size smaller than the size of the lower surface 58 of the second flexible portion 49. That is, the second piezoelectric element 34 is arranged in a region one size smaller than the entire region of the lower surface of the flow path space S1 when viewed from the vertical direction.
  • the first diaphragm is configured by the first flexible portion 42 of the first resonance plate 29 and the first piezoelectric element 33.
  • the second flexible portion 49 of the second resonance plate 31 and the second piezoelectric element 34 form a second diaphragm.
  • the check valve 35 is installed at each of the two discharge ports 43a and 44b, respectively.
  • the check valve 35 allows the flow of the fluid F discharged from the discharge ports 43a and 44b to the discharge openings 47a and 47b.
  • the flow of the fluid F from the discharge openings 47a and 47b to the discharge ports 43a and 44b is restricted.
  • the specific configuration of the check valve 35 is not limited, and any configuration may be adopted. Note that the check valve 35 is not shown in FIG. 7.
  • the first diaphragm and the second diaphragm have a high response in the high frequency band. It can be vibrated by force. That is, the volume increase / decrease (pump operation) of the flow path space S1 is repeated at high speed. As a result, high performance was maintained without deteriorating the pump function even if the check valves were not provided in the suction ports 50a and 50b. Therefore, it is possible to reduce the number of required check valves and reduce the cost of parts. Of course, check valves may be provided at the suction ports 50a and 50b.
  • the first resonance plate 29 corresponds to one embodiment of the first plate-shaped member.
  • the second resonance plate 31 corresponds to one embodiment of the second plate-shaped member. It can also be considered that the first resonance plate 29 corresponds to one embodiment of the second plate-shaped member, and the second resonance plate 31 corresponds to one embodiment of the first plate-shaped member.
  • the spacer member 30 corresponds to one embodiment of the spacer member.
  • the first piezoelectric element 33 and the second piezoelectric element function as a drive mechanism for bending each of the first flexible portion 42 and the second flexible portion 49.
  • a drive signal (AC voltage) is applied to the first piezoelectric element 33 and the second piezoelectric element 34 from a drive control unit (not shown) that functions as the same drive mechanism.
  • each of the first fixing plate 28, the first resonance plate 29, the spacer member 30, the second resonance plate 31, and the second fixing plate 32 is made of a metal material such as stainless steel or 42 alloy. Used. Of course, other metallic materials may be used. Further, any material other than the metal material such as a plastic material may be used.
  • the first flexible portion 42 of the first resonance plate 29 may be made of a plastic material or the like, and the portion connected to the spacer member 30 or the first fixing plate 28 may be made of a metal material.
  • the second flexible portion 49 of the second resonance plate 31 may be made of a plastic material or the like, and the portion connected to the spacer member 30 or the second fixing plate 32 may be made of a metal material.
  • the configuration is adopted. That is, the first flexible portion 42 and the second flexible portion 49 are configured to resonate with each other.
  • the overall resonance frequency of the first flexible portion 42 and the first piezoelectric element 33 is close to the overall resonance frequency of the second flexible portion 49 and the second piezoelectric element 34. It is composed.
  • FIGS. 10A and 10B are schematic views for explaining a manufacturing method of the fluid control device 27.
  • the created first fixing plate 28, first resonance plate 29, spacer member 30, second resonance plate 31, and second fixing plate 32 have predetermined positional accuracy. It is laminated and connected with.
  • each member is joined by diffusion joining. This makes it possible to integrally join each member as a metal. Of course, other methods may be used.
  • the first piezoelectric element 33 is connected to the upper surface 57 of the first flexible portion 42 via the adhesive 60. Further, the second piezoelectric element 34 is connected to the lower surface 58 of the second flexible portion 49 via the adhesive 61.
  • the first flexible portion 42 is formed in a concave shape toward the second flexible portion 49. Further, the second flexible portion 49 is formed in a concave shape toward the first flexible portion 42.
  • check valves 35 are installed at the two discharge ports 43a and 44b.
  • FIG. 11 is a schematic view showing an example of a method of connecting the first piezoelectric element 33 and the second piezoelectric element 34 to the first flexible portion 42 and the second flexible portion 49.
  • the fluid control device 27 before the concave configuration shown in FIG. 10B is placed on the holding jig 23.
  • the second fixing plate 32 side is placed on the holding jig 23.
  • the first piezoelectric element 33 is pressurized from above to below by the pressurizing jig 24. Due to the pressurization by the pressurizing jig 24, the first piezoelectric element 33 and the first flexible portion 42 are deformed in a concave shape toward the second flexible portion 49.
  • the curing treatment of the adhesive 60 is executed.
  • the fluid control device 27 in which the first diaphragm (first flexible portion 42 + first piezoelectric element 33) is concavely formed is created.
  • the tip portion 25 of the pressurizing jig 24 is made of a flexible material such as silicon rubber.
  • the fluid control device 27 is turned upside down, and the first fixing plate 28 side is placed on the holding jig 23. Then, as shown in FIG. 11C, the second piezoelectric element 34 is pressurized from above to below by the pressurizing jig 24. Due to the pressurization by the pressurizing jig 24, the second piezoelectric element 34 and the second flexible portion 49 are deformed in a concave shape toward the first flexible portion 42. In this state, the curing process of the adhesive 61 is executed. As a result, as shown in FIG. 11D, the fluid control device 27 in which the second diaphragm (second flexible portion 49 + second piezoelectric element 34) is configured in a concave shape is created.
  • Pressurizing conditions for adhering the first piezoelectric element 33 (hereinafter referred to as first pressurizing conditions) and pressurizing conditions for adhering the second piezoelectric element 34 (second pressurizing conditions).
  • first pressurizing conditions and pressurizing conditions for adhering the second piezoelectric element 34
  • second pressurizing conditions may be arbitrarily set.
  • the pressing force, the pressurizing time, the temperature, and the like may be appropriately set so that the respective dents of the first flexible portion 42 and the second flexible portion 49 have a desired dent amount.
  • the first pressurizing condition and the second pressurizing condition are made equal. This makes it possible to simplify the process. Further, it is possible to make the amount of the dent of the first flexible portion 42 equal to the amount of the dent of the second flexible portion 49.
  • the resonance frequency of the member is also affected by the shape of the member. Therefore, making the first pressurizing condition equal to the second pressurizing condition is to make the first diaphragm (first flexible portion 42 + first piezoelectric element 33) and the second diaphragm (first). It is advantageous to bring the resonance frequencies of the flexible portions 49 + the second piezoelectric element 34) of 2 closer to each other.
  • the first pressurizing condition and the second pressurizing condition may be set so as to be different from each other.
  • the dented amount of the first flexible portion 42 and the dented amount of the second flexible portion 49 may be configured to be different from each other.
  • the present embodiment it is possible to simultaneously perform the bonding of the first piezoelectric element 33 and the deformation for making the first flexible portion 42 concave.
  • the bonding step of the first piezoelectric element 33 it is possible to simultaneously deform the first flexible portion 42 into a concave shape.
  • the bonding of the second piezoelectric element 34 and the deformation for making the second flexible portion 49 concave it is possible to simultaneously perform the bonding of the second piezoelectric element 34 and the deformation for making the second flexible portion 49 concave.
  • the manufacturing process of the fluid control device 27 can be simplified, and the manufacturing time can be shortened.
  • the same drive signal (AC voltage) is applied to each of the first piezoelectric element 33 and the second piezoelectric element 34 of the drive control unit (not shown).
  • the first diaphragm (first flexible portion 42 + first piezoelectric element 33) is bent upward
  • the second diaphragm (second flexible portion 49 + second piezoelectric element 34) is bent upward. It is possible to generate downward bending while synchronizing with each other. Further, the bending of the first diaphragm (first flexible portion 42 + first piezoelectric element 33) downward and above the second diaphragm (second flexible portion 49 + second piezoelectric element 34). It is possible to generate lateral bending while synchronizing with each other.
  • a resonance configuration in which the first diaphragm and the second diaphragm resonate with each other is adopted. Therefore, at the resonance frequency, each of the first diaphragm and the second diaphragm becomes the maximum vibration, and a very high pump function is exhibited.
  • FIG. 12 is a schematic diagram showing an example of the flow of the fluid F during pump operation.
  • the fluid F sucked from the suction port 50a on the right side and the back side passes through the flow path space S1 and is discharged from the discharge port 43b on the right side and the front side.
  • the fluid F sucked from the suction port 50b on the left side and the front side passes through the flow path space S1 and is discharged from the discharge port 43a on the left side and the back side.
  • it is not limited to such a flow path design.
  • suction ports may be formed in the regions of the first resonance plate 29 that cover the two suction openings 39a and 39b of the spacer member 30, respectively.
  • discharge ports may be formed in the regions of the second resonance plate 31 that cover the two ejection openings 40a and 40b of the spacer member 30, respectively.
  • FIG. 13A is a diagram schematically showing the flow path space S1 before the concave configuration.
  • FIG. 13B is a diagram schematically showing the flow path space S1 in the reference state.
  • FIG. 13C is a diagram schematically showing the flow path space S1 during pump drive.
  • the first flexible portion 42 and the second flexible portion 49 are arranged at the reference facing distance H.
  • the first flexible portion 42 is formed in a concave shape with a recess amount Z1.
  • the second flexible portion 49 is formed in a concave shape with a dent amount Z2.
  • FIG. 13C it is assumed that the first flexible portion 42 vibrates with an amplitude M1 along the vertical direction from the reference state. Further, it is assumed that the second flexible portion 49 vibrates with an amplitude M2 in synchronization with the first flexible portion 42.
  • the smallest facing distance between the first flexible portion 42 and the second flexible portion 49 in the minimum volume state is defined as the minimum gap Gm.
  • each of the first flexible portion 42 and the second flexible portion 49 is formed in a concave shape in the reference state, the initial volume can be reduced. Will be. Therefore, as shown in the equation (1), it is possible to increase the volume volatility and realize a high pump function. Further, in the outer peripheral portion 11 of the flow path space S1, the facing distance is maintained at the reference facing distance H. Therefore, it is possible to prevent the flow path resistance at the inflow port 3 and the outflow port 4 from becoming large. As a result, the flow of the fluid F is not obstructed, that is, the flow path loss can be sufficiently suppressed, and a high pump function can be realized. Further, since the reaction force (back pressure) can be suppressed for each of the first flexible portion 42 and the second flexible portion 49, high-speed vibration (piston movement) becomes possible and a high pump function is possible. Is demonstrated.
  • the first flexible portion 42 and the second flexible portion 49 are configured to have a diameter of 9 mm. Further, it constitutes two embodiments in which the reference facing distance H is 0.1 mm and 0.2 mm. Further, the dent amount Z1 of the first flexible portion 42 and the dent amount Z2 of the second flexible portion 49 are designed to have the same size. In this case, the relationship between the initial volume and the amount of dent is as shown in the table of FIG.
  • the initial volume is 6.361725 cubic mm.
  • the initial volume is 5.725552 cubic mm. Therefore, it is possible to reduce the initial volume to 90% as compared with the case before the concave structure.
  • the initial volume is 5.089372 cubic mm. Therefore, it is possible to reduce the initial volume to 80% as compared with the case before the concave structure.
  • the initial volume is 3.816968 cubic mm. Therefore, it is possible to reduce the initial volume to 60% as compared with the case before the concave structure. As a result, it is possible to increase the volume volatility by about 1.67 times from the equation (1).
  • the initial volume is 12.72345 cubic mm.
  • the initial volume is 12.08728 cubic mm. Therefore, it is possible to reduce the initial volume to 95% as compared with the case before the concave structure. As a result, it is possible to increase the volume volatility by about 1.05 times from the equation (1).
  • the initial volume is 11.4511 cubic mm. Therefore, it is possible to reduce the initial volume to 90% as compared with the case before the concave structure.
  • the initial volume is 10.17869 cubic mm. Therefore, it is possible to reduce the initial volume to 80% as compared with the case before the concave structure. As a result, it is possible to increase the volume volatility by about 1.25 times from the equation (1).
  • the minimum facing distance between the central portion 37 of the first flexible portion 42 and the central portion 51 of the lower surface member 7 in the reference state shown in FIG. 13B is (amplitude M1 / 2 + amplitude M2 / 2) when the pump is driven. ) Is desirable.
  • the amount of deformation of the first flexible portion 42 and the second flexible portion 49 is the bending rigidity of each of the first piezoelectric element 33 and the second piezoelectric element 34, and the first flexible portion 42 and the first flexible portion 49.
  • the optimum value will be appropriately different depending on the relationship between the bending rigidity of each of the flexible portions 49 of 2 and the pressing force at the time of bonding each of the first piezoelectric element 33 and the second piezoelectric element 34. Therefore, it is also important to adjust the pressing force in consideration of the bending rigidity of each member.
  • the configuration of the fluid control device 27 according to the present embodiment is adopted, and the first flexible portion 42 and the second flexible portion 49 are respectively configured with a diameter of 13 mm.
  • the reference facing distance H was set to 1 mm.
  • An AC voltage of 30 Vpp was applied to the first piezoelectric element 33 and the second piezoelectric element 34 to drive the fluid control device 27.
  • an output with a maximum flow rate of 800 ml / min or more and a maximum pressure of 30 kPa or more was obtained. In this way, it is possible to realize a fluid control device 27 which is small in size but has very high performance.
  • FIG. 15 is a schematic diagram showing a configuration example of the fluid control device according to the third embodiment.
  • the fluid control device 64 of the present embodiment has a configuration in which the second piezoelectric element 34 is not provided as compared with the fluid control device 27 according to the second embodiment. That is, in the present embodiment, the piezoelectric element (first piezoelectric element 33) is connected only to the first flexible portion 42. Then, the vibration of the first flexible portion 42 causes the first flexible portion 42 and the second flexible portion to resonate with each other.
  • the fluid control device 64 according to the present embodiment can be said to be a combination of the fluid control device 1 according to the first embodiment and the fluid control device 27 according to the second embodiment.
  • the second resonance plate 65 may be used in the state of a flat plate without being deformed in a concave shape. Therefore, the second flexible portion 66 is not formed in a concave shape and is in a flat plate state.
  • the thickness of the second flexible portion 66 which is the second diaphragm, is designed to be larger than the thickness of the first flexible portion 42. This makes it possible to bring the resonance frequency of the entire first diaphragm (first flexible portion 42 + first piezoelectric element 33) closer to the resonance frequency of the second diaphragm (second flexible portion 66). Become. As a result, it becomes possible to realize a resonance configuration, and it becomes possible to exhibit a high pump function due to the resonance effect.
  • the second flexible portion 66 of the second resonance plate 65 may be configured to be concave toward the first flexible portion 42. This makes it possible to reduce the initial volume of the flow path space S1. Therefore, as shown in the equation (1), it is possible to increase the volume volatility and realize a high pump function.
  • the fluid control device 64 Since only one piezoelectric element is used in the fluid control device 64 according to the present embodiment, it is possible to reduce the component cost. Further, since the bonding process of the piezoelectric element may be performed only once, the manufacturing process of the fluid control device 64 can be simplified. In addition, the time required for manufacturing can be shortened. In the configuration shown in FIG. 15A, the step of forming the second flexible portion 66 in a concave shape becomes unnecessary. Therefore, it is possible to simplify the manufacturing process and shorten the time required for manufacturing. On the other hand, in the configuration shown in FIG. 15B, a high pump function is exhibited.
  • FIG. 16 is a schematic diagram showing a configuration example of the fluid control device according to another embodiment.
  • a groove portion is located near the outer peripheral portion of the flexible portion (first flexible portion 71 and second flexible portion 72).
  • 73 is configured.
  • the vicinity of the outer peripheral portion is a region closer to the outer peripheral portion on the inner side than the outer peripheral portion.
  • the maximum width is the size of the portion having the widest width when the flexible portion is viewed from the vertical direction. Based on the maximum width, it is possible to define a region in the vicinity of the outer peripheral portion.
  • a region from the outer peripheral portion to a size of 25% of the maximum width can be defined as a region in the vicinity of the outer peripheral portion.
  • a region up to a proportion smaller than 25% may be defined as a region in the vicinity of the outer peripheral portion.
  • the groove portion 73 is formed over the entire circumference along the outer peripheral portion of the flexible portion when viewed from the vertical direction.
  • the groove 73 may be formed intermittently at predetermined intervals.
  • a plurality of groove portions 73 may be formed concentrically over the entire circumference of the flexible portion.
  • a groove portion 73 is formed on the lower surface 74 of the first flexible portion 71 over the entire circumference when viewed from the vertical direction. Further, a groove portion 73 is formed on the upper surface 75 of the second flexible portion 72 over the entire circumference when viewed from the vertical direction. The groove portion 73 formed in the first flexible portion 71 and the groove portion 73 formed in the second flexible portion 72 are formed at the same positions when viewed from the vertical direction.
  • a groove portion 73 is formed on the upper surface 76 of the first flexible portion 71 over the entire circumference when viewed from the vertical direction. Further, a groove portion 73 is formed on the lower surface 77 of the second flexible portion 72 over the entire circumference when viewed from the vertical direction. The groove portion 73 formed in the first flexible portion 71 and the groove portion 73 formed in the second flexible portion 72 are formed at the same positions when viewed from the vertical direction.
  • two groove portions 73 are formed concentrically on the lower surface 74 of the first flexible portion 71 over the entire circumference when viewed from the vertical direction. Further, on the upper surface 75 of the second flexible portion 72, two groove portions 73 are formed concentrically over the entire circumference when viewed from the vertical direction. The two groove portions 73 formed in the first flexible portion 71 and the two groove portions 73 formed in the second flexible portion 72 are formed at the same positions when viewed from the vertical direction.
  • the portion in which the groove portion 73 is formed is easily deformed. This makes it possible to optimize the amount of deformation and the deformed shape of the resonance plate due to pressurization during bonding of the piezoelectric element. Further, in the outer peripheral portion of the piezoelectric element bonded to the flexible portion, the stress generated in the flexible portion becomes large. Therefore, by forming the groove portion 73 at a position with respect to the outer peripheral portion of the piezoelectric element, it is possible to relieve the stress generated in the flexible portion. As a result, it is possible to prevent the flexible portion from being destroyed.
  • the position with respect to the outer peripheral portion of the piezoelectric element includes an arbitrary position determined with reference to the outer peripheral portion of the piezoelectric element.
  • the position when viewed from the vertical direction, the position is the same as the outer peripheral portion of the piezoelectric element, the position is outside the outer peripheral portion of the piezoelectric element by a predetermined length, and the position is inside the outer peripheral portion of the piezoelectric element by a predetermined length. Is included in the position with respect to the outer peripheral portion.
  • the predetermined length may be arbitrarily set.
  • the position set by any other method may be included as the position with respect to the outer peripheral portion of the piezoelectric element.
  • the resonance frequency of the flexible portion and the entire piezoelectric element may vary depending on the amount of the adhesive.
  • the groove portion 73 it is possible to suppress the variation in the resonance frequency. For example, by appropriately forming the groove portion 73, it becomes easy to bring the resonance frequencies of the first flexible portion 71 and the second flexible portion 72 closer to each other.
  • the formation position, number, width, depth, etc. of the groove 73 are not limited, and may be arbitrarily designed. Since these parameters are closely related to the resonance frequency of the resonance plate, the amount of deformation of the piezoelectric element after bonding, and the like, it is desirable to determine these parameters in consideration of these.
  • the method of forming the groove 73 is also not limited. For example, any processing technique such as etching or laser processing may be used. When the resonance plate is produced by etching, laser processing, or the like, the groove portion 73 can also be formed at the same time.
  • each fluid control device can discharge the air inside the electronic device to the outside or suck the air from the outside of the electronic device.
  • each fluid control device can be used for various purposes such as a human body-mounted device for generating compression, a small cooling device, and a pump for a pneumatic actuator such as a robot.
  • each of the above fluid control devices can be used as a cooling device that suppresses heat generation by blowing a fluid onto a heating element in an electronic device.
  • a mobile device such as a mobile phone can be equipped with a fluid control device for cooling.
  • the fluid control device can be mounted on an electronic device such as a tactile presentation device, and a pseudo pressure sense or a tactile sense can be presented. Further, the fluid control device can be mounted on an electronic device such as a blood pressure monitor. Further, each of the above-mentioned fluid control devices can be applied to an artificial muscle which is an elastic actuator made of rubber or the like that expands and contracts by air pressure. Since each fluid control device can be miniaturized, it can be easily incorporated in an electronic device. It is also very advantageous for miniaturization of electronic devices. Further, since each fluid control device has high performance, it is possible to realize a high-performance electronic device in each application.
  • expressions using "more” such as “greater than A” and “less than A” comprehensively include both the concept including the case equivalent to A and the concept not including the case equivalent to A. It is an expression included in. For example, “greater than A” is not limited to the case where the equivalent of A is not included, and “greater than or equal to A” is also included. Further, “less than A” is not limited to “less than A” and includes “less than or equal to A”. When implementing this technique, specific settings and the like may be appropriately adopted from the concepts included in “greater than A” and “less than A” so that the effects described above can be exhibited.
  • a flow having a flexible portion and a facing portion facing the flexible portion, and forming a flow path space serving as a fluid flow path between the flexible portion and the facing portion.
  • Road space component When viewed from the opposite direction in which the flexible portion and the facing portion face each other, an inflow port configured on the outer peripheral portion of the flow path space and allowing the fluid to flow into the flow path space.
  • the outlet When viewed from the opposite direction, the outlet is configured at a position different from the inlet of the outer peripheral portion of the flow path space, and the fluid flows out from the flow path space. It is provided with a drive mechanism that bends the flexible portion and increases or decreases the volume of the flow path space.
  • a fluid control device configured to be concave toward.
  • the flexible portion is a fluid control device configured such that, in the reference state, the central portion when viewed from the facing direction is concave toward the facing portion.
  • the flexible portion is a fluid control device having a shape in which a plate-shaped member is deformed in a concave shape toward the facing portion in the reference state. (4) The fluid control device according to any one of (1) to (3).
  • the drive mechanism is a fluid control device that bends the flexible portion so that the concave portion of the flexible portion in the reference state moves most along the facing direction.
  • the fluid control device according to any one of (1) to (4).
  • the drive mechanism is any one of fluid control devices (6) (1) to (5) having a piezoelectric element connected to a surface of the flexible portion opposite to the surface of the flexible portion facing the facing portion.
  • the fluid control device according to one. Assuming that the flexible portion is the first flexible portion, The facing portion is composed of a second flexible portion having flexibility. The drive mechanism bends the second flexible portion, and the drive mechanism bends the second flexible portion.
  • the first flexible portion In the second flexible portion, at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the opposite direction in the reference state is the first flexible portion.
  • a fluid control device configured to be concave toward.
  • the first flexible portion and the second flexible portion are fluid control devices configured to resonate with each other.
  • the drive mechanism is A first piezoelectric element connected to a surface of the first flexible portion opposite to the surface of the first flexible portion facing the second flexible portion. It has a second piezoelectric element connected to a surface of the second flexible portion opposite to the surface of the first flexible portion facing the first flexible portion.
  • Fluid control configured so that the overall resonance frequency of the first flexible portion and the first piezoelectric element is close to the overall resonance frequency of the second flexible portion and the second piezoelectric element.
  • Device (9) The fluid control device according to any one of (1) to (5). Assuming that the flexible portion is the first flexible portion, The facing portion is composed of a second flexible portion having flexibility. The first flexible portion and the second flexible portion are fluid control devices configured to resonate with each other. (10) The fluid control device according to (9).
  • the drive mechanism has a piezoelectric element connected to a surface of the first flexible portion opposite to the surface of the first flexible portion facing the second flexible portion.
  • a fluid control device configured such that the resonance frequency of the second flexible portion is close to the resonance frequency of the entire first flexible portion and the piezoelectric element.
  • the fluid control device according to (10).
  • In the second flexible portion at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the opposite direction in the reference state is the first flexible portion.
  • a fluid control device configured to be concave toward.
  • the flexible portion is a fluid control device having a groove portion formed in the vicinity of the outer peripheral portion of the flexible portion when viewed from the facing direction.
  • the drive mechanism has a piezoelectric element connected to a surface of the flexible portion opposite to the surface of the flexible portion facing the facing portion.
  • the groove portion is a fluid control device configured at a position with respect to the outer peripheral portion of the piezoelectric element when viewed from the facing direction.
  • the fluid control device according to any one of (1) to (14), and further.
  • the fluid control device according to any one of (1) to (15).
  • the flow path space component is When viewed from the opposite direction, the central region constitutes the flexible portion, and the first plate-shaped member made of a metal material and When viewed from the facing direction, the central region constitutes the facing portion, and the second plate-shaped member made of a metal material and When viewed from the opposite direction, the central region becomes an opening, has a predetermined thickness, is arranged between the first plate-shaped member and the second plate-shaped member, and has the first plate-shaped member.
  • a fluid control device having a spacer member bonded to each of the member and the second plate-shaped member by diffusion bonding. (17) The fluid control device according to (16).
  • the spacer member is configured for suction at a position different from the suction opening so as to communicate with the outer peripheral portion of the opening and the suction opening so as to communicate with the outer peripheral portion of the opening.
  • a fluid control device with an opening. (18) The fluid control device according to (17).
  • a suction port into which the fluid is sucked is configured in at least one of a region covering the suction opening of the first plate-shaped member or a region covering the suction opening of the second plate-shaped member.
  • a discharge port for discharging the fluid is configured in at least one of a region covering the discharge opening of the first plate-shaped member or a region covering the discharge opening of the second plate-shaped member. Fluid control device.
  • a flow having a flexible portion and a facing portion facing the flexible portion, and forming a flow path space serving as a fluid flow path between the flexible portion and the facing portion.
  • Road space component When viewed from the opposite direction in which the flexible portion and the facing portion face each other, an inflow port configured on the outer peripheral portion of the flow path space and allowing the fluid to flow into the flow path space.
  • the outlet When viewed from the opposite direction, the outlet is configured at a position different from the inlet of the outer peripheral portion of the flow path space, and the fluid flows out from the flow path space. It has a drive mechanism that bends the flexible portion and increases or decreases the volume of the flow path space.
  • a fluid control device configured to be concave toward.

Abstract

This fluid control device includes a flow path space component, an inlet, an outlet, and a driving mechanism. The flow path space component has a flexible portion having flexibility and an opposite portion opposite to the flexible portion, and a flow path space serving as a fluid flow path is configured between the flexible portion and the opposite portion. The inlet is configured in an outer peripheral portion of the flow path space when viewed from an opposite direction in which the flexible portion and the opposite portion are opposite to each other and allows a fluid to flow into the flow path space. The outlet is configured at a location different from the inlet at the outer peripheral portion of the flow path space when viewed from the opposite direction and allows the fluid to flow out from the flow path space. The driving mechanism bends the flexible portion to increase or decrease the volume of the flow path space. Further, in a reference state in which the flexible portion is not bent by the driving mechanism, at least a portion of a region on an inner side from the outer peripheral portion of the flow path space when viewed from the opposite direction is configured to be concave toward the opposite portion.

Description

流体制御装置、及び電子機器Fluid control device and electronic equipment
 本技術は、流体を輸送する流体制御装置、及び電子機器に関する。 This technology relates to fluid control devices that transport fluids and electronic devices.
 小型かつ薄型のポンプとして、例えばダイヤフラムを用いたダイヤフラム型ポンプが実用化されている(例えば、特許文献1参照)。ダイヤフラム型ポンプは、ダイヤフラムの屈曲変形によって容積が変動するポンプ室を備え、容積を大きくすることにより流体をポンプ室に吸入し、容積を小さくすることにより流体をポンプ室から吐出することが可能である。 As a small and thin pump, for example, a diaphragm type pump using a diaphragm has been put into practical use (see, for example, Patent Document 1). The diaphragm type pump is equipped with a pump chamber whose volume fluctuates due to bending deformation of the diaphragm, and it is possible to suck the fluid into the pump chamber by increasing the volume and discharge the fluid from the pump chamber by reducing the volume. be.
特開2011-256741号Japanese Unexamined Patent Publication No. 2011-256741
 特許文献1に記載のような流体制御装置に関して、小型化及び高性能化を実現可能な技術が求められている。 Regarding the fluid control device as described in Patent Document 1, there is a demand for a technique capable of realizing miniaturization and high performance.
 以上のような事情に鑑み、本技術の目的は、小型で高性能な流体制御装置、及びこれを用いた電子機器を提供することにある。 In view of the above circumstances, the purpose of this technique is to provide a small and high-performance fluid control device and an electronic device using the same.
 上記目的を達成するため、本技術の一形態に係る流体制御装置は、流路空間構成部と、流入口と、流出口と、駆動機構とを具備する。
 前記流路空間構成部は、可撓性を有する可撓部と、前記可撓部に対向する対向部とを有し、前記可撓部と前記対向部との間に、流体の流路となる流路空間を構成する。
 前記流入口は、前記可撓部と前記対向部とが対向する対向方向から見た場合に、前記流路空間の外周部に構成され、前記流路空間へ前記流体を流入させる。
 前記流出口は、前記対向方向から見た場合に、前記流路空間の外周部の前記流入口とは異なる位置に構成され、前記流路空間から前記流体を流出させる。
 前記駆動機構は、前記可撓部を屈曲させ、前記流路空間の体積を増減させる。
 また前記可撓部は、前記駆動機構により屈曲されていない基準状態において、前記対向方向から見た場合に前記流路空間の前記外周部よりも内部側となる領域の少なくとも一部が、前記対向部に向かって凹状となるように構成される。
In order to achieve the above object, the fluid control device according to one embodiment of the present technology includes a flow path space component, an inlet, an outlet, and a drive mechanism.
The flow path space constituent portion has a flexible portion having flexibility and a facing portion facing the flexible portion, and a fluid flow path is provided between the flexible portion and the facing portion. It constitutes a flow path space.
The inflow port is formed in the outer peripheral portion of the flow path space when viewed from the opposite direction in which the flexible portion and the facing portion face each other, and causes the fluid to flow into the flow path space.
The outlet is configured at a position different from the inlet on the outer peripheral portion of the flow path space when viewed from the opposite direction, and causes the fluid to flow out from the flow path space.
The drive mechanism bends the flexible portion and increases or decreases the volume of the flow path space.
Further, in the reference state in which the flexible portion is not bent by the drive mechanism, at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the facing direction is opposed to the flexible portion. It is configured to be concave toward the portion.
 前記可撓部は、前記基準状態において、前記対向方向から見た場合の中心部が、前記対向部に向かって凹状となるように構成されてもよい。 The flexible portion may be configured such that the central portion when viewed from the facing direction is concave toward the facing portion in the reference state.
 前記可撓部は、前記基準状態において、板状部材が前記対向部に向かって凹状に変形された形状を有してもよい。 The flexible portion may have a shape in which a plate-shaped member is concavely deformed toward the facing portion in the reference state.
 前記駆動機構は、前記可撓部の前記基準状態において凹状となる部分が、前記対向方向に沿って最も大きく移動するように、前記可撓部を屈曲させてもよい。 The drive mechanism may bend the flexible portion so that the concave portion of the flexible portion in the reference state moves most along the facing direction.
 前記駆動機構は、前記可撓部の前記対向部に対向する側の面とは反対側の面に接続される圧電素子を有してもよい。 The drive mechanism may have a piezoelectric element connected to a surface of the flexible portion opposite to the surface of the flexible portion facing the facing portion.
 前記可撓部を、第1の可撓部とすると、前記対向部は、可撓性を有する第2の可撓部により構成されてもよい。この場合、前記駆動機構は、前記第2の可撓部を屈曲させてもよい。また前記第2の可撓部は、前記基準状態において、前記対向方向から見た場合に前記流路空間の前記外周部よりも内部側となる領域の少なくとも一部が、前記第1の可撓部に向かって凹状となるように構成されてもよい。 When the flexible portion is a first flexible portion, the facing portion may be composed of a second flexible portion having flexibility. In this case, the drive mechanism may bend the second flexible portion. Further, in the second flexible portion, at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the opposite direction in the reference state is the first flexible portion. It may be configured to be concave toward the portion.
 前記第1の可撓部及び前記第2の可撓部は、互いに共振するように構成されてもよい。 The first flexible portion and the second flexible portion may be configured to resonate with each other.
 前記駆動機構は、前記第1の可撓部の前記第2の可撓部に対向する側の面とは反対側の面に接続される第1の圧電素子と、前記第2の可撓部の前記第1の可撓部に対向する側の面とは反対側の面に接続される第2の圧電素子とを有してもよい。この場合、前記第1の可撓部及び前記第1の圧電素子の全体の共振周波数が、前記第2の可撓部及び前記第2の圧電素子の全体の共振周波数に近くなるように構成されてもよい。 The drive mechanism includes a first piezoelectric element connected to a surface of the first flexible portion opposite to the surface of the first flexible portion facing the second flexible portion, and the second flexible portion. It may have a second piezoelectric element connected to a surface opposite to the surface facing the first flexible portion of the above. In this case, the resonance frequency of the entire first flexible portion and the first piezoelectric element is configured to be close to the overall resonance frequency of the second flexible portion and the second piezoelectric element. You may.
 前記可撓部を、第1の可撓部とすると、前記対向部は、可撓性を有する第2の可撓部により構成されてもよい。この場合、前記第1の可撓部及び前記第2の可撓部は、互いに共振するように構成されてもよい。 When the flexible portion is a first flexible portion, the facing portion may be composed of a second flexible portion having flexibility. In this case, the first flexible portion and the second flexible portion may be configured to resonate with each other.
 前記駆動機構は、前記第1の可撓部の前記第2の可撓部に対向する側の面とは反対側の面に接続される圧電素子を有してもよい。この場合、第2の可撓部の共振周波数が、前記第1の可撓部及び前記圧電素子の全体の共振周波数に近くなるように構成されてもよい。 The drive mechanism may have a piezoelectric element connected to a surface of the first flexible portion opposite to the surface of the first flexible portion facing the second flexible portion. In this case, the resonance frequency of the second flexible portion may be configured to be close to the resonance frequency of the entire first flexible portion and the piezoelectric element.
 前記第2の可撓部の厚みは、前記第1の可撓部の厚みよりも大きくてもよい。 The thickness of the second flexible portion may be larger than the thickness of the first flexible portion.
 前記第2の可撓部は、前記基準状態において、前記対向方向から見た場合に前記流路空間の前記外周部よりも内部側となる領域の少なくとも一部が、前記第1の可撓部に向かって凹状となるように構成されてもよい。 In the second flexible portion, at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the opposite direction in the reference state is the first flexible portion. It may be configured to be concave toward.
 前記可撓部は、前記対向方向から見た場合に、前記可撓部の外周部の近傍に構成された溝部を有してもよい。 The flexible portion may have a groove portion configured in the vicinity of the outer peripheral portion of the flexible portion when viewed from the facing direction.
 前記駆動機構は、前記可撓部の前記対向部に対向する側の面とは反対側の面に接続される圧電素子を有してもよい。この場合、前記溝部は、前記対向方向から見た場合に、前記圧電素子の外周部を基準とした位置に構成されてもよい。 The drive mechanism may have a piezoelectric element connected to a surface of the flexible portion opposite to the surface of the flexible portion facing the facing portion. In this case, the groove portion may be configured at a position with respect to the outer peripheral portion of the piezoelectric element when viewed from the facing direction.
 前記流体制御装置は、さらに、吸入口と、吸入空間構成部と、吐出口と、吐出空間構成部とを具備してもよい。
 前記吸入口は、前記流体が吸入される。
 前記吸入空間構成部は、前記吸入口と前記流入口とを連通する吸入空間を構成する。
 前記吐出口は、前記流体が吐出される。
 前記吐出空間構成は、前記吐出口と前記流出口とを連通する吐出空間を構成する。
The fluid control device may further include a suction port, a suction space component, a discharge port, and a discharge space component.
The fluid is sucked into the suction port.
The suction space component constitutes a suction space that communicates the suction port and the inflow port.
The fluid is discharged from the discharge port.
The discharge space configuration constitutes a discharge space that communicates the discharge port and the outlet.
 前記流路空間構成部は、前記対向方向から見た場合に中央の領域が前記可撓部を構成し、金属材料からなる第1の板状部材と、前記対向方向から見た場合に中央の領域が前記対向部を構成し、金属材料からなる第2の板状部材と、前記対向方向から見た場合に中央の領域が開口となり、所定の厚みを有し、前記第1の板状部材と前記第2の板状部材との間に配置され、前記第1の板状部材と前記第2の板状部材との各々に拡散接合により接合されるスペーサ部材とを有してもよい。 In the flow path space component, the central region constitutes the flexible portion when viewed from the facing direction, and the first plate-shaped member made of a metal material and the central region when viewed from the facing direction. The region constitutes the facing portion, the second plate-shaped member made of a metal material, and the central region as an opening when viewed from the facing direction, have a predetermined thickness, and the first plate-shaped member. And the second plate-shaped member, and may have a spacer member which is arranged between the first plate-shaped member and the second plate-shaped member and is joined to each of the first plate-shaped member by diffusion bonding.
 前記スペーサ部材は、前記開口の外周部に連通するように構成された吸入用の開口と、前記開口の外周部に連通するように前記吸入用の開口とは異なる位置に構成された吐出用の開口とを有してもよい。 The spacer member is configured for suction at a position different from the suction opening so as to communicate with the outer peripheral portion of the opening and the suction opening so as to communicate with the outer peripheral portion of the opening. It may have an opening.
 前記第1の板状部材の前記吸入用の開口を覆う領域、又は前記第2の板状部材の前記吸入用の開口を覆う領域の少なくとも一方に、前記流体が吸入される吸入口が構成されてもよい。この場合、前記第1の板状部材の前記吐出用の開口を覆う領域、又は前記第2の板状部材の前記吐出用の開口を覆う領域の少なくとも一方に、前記流体が吐出される吐出口が構成されてもよい。 A suction port into which the fluid is sucked is configured in at least one of a region covering the suction opening of the first plate-shaped member or a region covering the suction opening of the second plate-shaped member. You may. In this case, the discharge port for discharging the fluid to at least one of the region covering the discharge opening of the first plate-shaped member or the region covering the discharge opening of the second plate-shaped member. May be configured.
 本技術の一形態に係る電子機器は、前記流体制御装置を具備する。 The electronic device according to one form of the present technology is equipped with the fluid control device.
第1の実施形態に係る流体制御装置を左側の上方から斜めに見た斜視図である。It is a perspective view which saw diagonally from the upper left side of the fluid control device which concerns on 1st Embodiment. 流体制御装置を上方から見た上面図である。It is the top view which looked at the fluid control device from above. 図2に示すA-A線での断面図である。FIG. 2 is a cross-sectional view taken along the line AA shown in FIG. 駆動機構の構成例を示す模式図である。It is a schematic diagram which shows the structural example of a drive mechanism. 上面部材への圧電素子の接続方法の一例を示す模式図である。It is a schematic diagram which shows an example of the connection method of a piezoelectric element to a top surface member. 初期体積について説明するための模式図である。It is a schematic diagram for demonstrating the initial volume. 第2の実施形態に係る流体制御装置を上方から見た場合の上面図である。It is a top view when the fluid control apparatus which concerns on 2nd Embodiment is seen from above. 図7に示すB-B線での断面図である。FIG. 7 is a cross-sectional view taken along the line BB shown in FIG. 7. 流体制御装置を構成する各部材を個別に図示した図である。It is a figure which showed each member which constitutes a fluid control device individually. 流体制御装置の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of a fluid control apparatus. 第1の可撓部及び第2の可撓部への第1の圧電素子及び第2の圧電素子の接続方法の一例を示す模式図である。It is a schematic diagram which shows an example of the connection method of the 1st piezoelectric element and the 2nd piezoelectric element to the 1st flexible part and the 2nd flexible part. ポンプ動作時における流体の流れの一例を示す模式図である。It is a schematic diagram which shows an example of the fluid flow at the time of a pump operation. 初期体積について説明するための模式図及び表である。It is a schematic diagram and a table for demonstrating an initial volume. 初期体積について説明するための模式図及び表である。It is a schematic diagram and a table for demonstrating an initial volume. 第3の実施形態に係る流体制御装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the fluid control apparatus which concerns on 3rd Embodiment. 他の実施形態に係る流体制御装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the fluid control apparatus which concerns on other embodiment.
 以下、本技術に係る実施形態を、図面を参照しながら説明する。 Hereinafter, embodiments relating to this technique will be described with reference to the drawings.
 <第1の実施形態>
 [流体制御装置の構成例]
 本技術の第1の実施形態に係る流体制御装置の構成例について説明する。
 流体制御装置1は、ダイヤフラム型の流体制御装置であり、流体を吸入し、吐出することが可能なポンプとして機能する。
 なお、流体は気体、液体又はその他の流動体等であり、特に限定されない。
<First Embodiment>
[Fluid control device configuration example]
A configuration example of the fluid control device according to the first embodiment of the present technology will be described.
The fluid control device 1 is a diaphragm type fluid control device, and functions as a pump capable of sucking in and discharging a fluid.
The fluid is a gas, a liquid, another fluid, or the like, and is not particularly limited.
 以下、説明を分かりやすくするために、図中のX方向を左右方向(矢印の向きが左側/反対向きが右側)、Y方向を奥行方向(矢印の向きが手前側/反対向きが奥側)、Z方向を上下方向(矢印の向きが上方側/反対向きが下方側)として説明を行う。
 もちろん、流体制御装置1が使用される向き等が限定される訳ではない。
Below, for the sake of clarity, the X direction in the figure is the left-right direction (the direction of the arrow is the left side / the opposite direction is the right side), and the Y direction is the depth direction (the direction of the arrow is the front side / the opposite direction is the back side). , The Z direction will be described as the vertical direction (the direction of the arrow is the upper side / the opposite direction is the lower side).
Of course, the direction in which the fluid control device 1 is used is not limited.
 図1は、流体制御装置1を左側の上方から斜めに見た斜視図である。
 図2は、流体制御装置1を上方から見た上面図である。
 図3は、図2に示すA-A線での断面図である。
 なお、図2には、流体制御装置1の内部構成が破線にて示されている。また、図3に示す駆動機構5について、図1及び図2では、その図示が省略されている。
FIG. 1 is a perspective view of the fluid control device 1 viewed obliquely from above on the left side.
FIG. 2 is a top view of the fluid control device 1 as viewed from above.
FIG. 3 is a cross-sectional view taken along the line AA shown in FIG.
Note that FIG. 2 shows the internal configuration of the fluid control device 1 with a broken line. Further, the drive mechanism 5 shown in FIG. 3 is not shown in FIGS. 1 and 2.
 図1~図3に示すように、流体制御装置1は、流路空間構成部2と、流入口3と、流出口4と、駆動機構5とを有する。 As shown in FIGS. 1 to 3, the fluid control device 1 has a flow path space component 2, an inlet 3, an outlet 4, and a drive mechanism 5.
 流路空間構成部2は、流体Fの流路となる流路空間S1を構成する。
 なお、本開示において、空間構成部とは、空間を構成する部分(空間に接する部分)、及び当該部分を含む部材を含む。例えば、1つの部材上に複数の仕切り壁が接続され、互いに区切られた複数の空間が構成されるとする。この場合、複数の仕切り壁が接続される1つの部材は、複数の空間の各々に対して、空間構成部として機能する。
 すなわち、1つの部材が、複数の空間を構成する空間構成部として共通して用いられる場合もあり得る。
The flow path space component 2 constitutes the flow path space S1 which is the flow path of the fluid F.
In the present disclosure, the space constituent part includes a part constituting the space (a part in contact with the space) and a member including the part. For example, it is assumed that a plurality of partition walls are connected on one member to form a plurality of spaces separated from each other. In this case, one member to which a plurality of partition walls are connected functions as a space component for each of the plurality of spaces.
That is, one member may be commonly used as a space component that constitutes a plurality of spaces.
 図1~図3に示すように、本実施形態では、流路空間構成部2の、おおよその外形は、シリンドリカル形状(円筒形状)となり、内部に流路空間S1が構成される。
 具体的には、流路空間構成部2は、上面部材6と、下面部材7と、スペーサ部材8a及び8bとにより構成される。上面部材6、下面部材7、及びスペーサ部材8a及び8bに囲まれた内部の空間が、流路空間S1となる。
 流路空間S1は、内部に圧力を発生することで、流体Fにポンプ機能を作用させるポンプ室ともいえる。
As shown in FIGS. 1 to 3, in the present embodiment, the approximate outer shape of the flow path space component 2 is a cylindrical shape (cylindrical shape), and the flow path space S1 is formed inside.
Specifically, the flow path space component 2 is composed of an upper surface member 6, a lower surface member 7, and spacer members 8a and 8b. The internal space surrounded by the upper surface member 6, the lower surface member 7, and the spacer members 8a and 8b is the flow path space S1.
The flow path space S1 can be said to be a pump chamber that causes a pump function to act on the fluid F by generating pressure inside.
 上面部材6は、上下方向(Z方向)から見た外形が円形状となる円板状の部材である。上面部材6は、可撓性を有する部材により構成される。
 下面部材7は、上下方向から見た外形が円形状となる円板状の部材である。下面部材7は、上下方向から見た外形が上面部材6と等しくなるように構成される。
 また下面部材7は、上下方向に沿って、上面部材6と対向して配置される。従って、上下方向(Z方向)は、上面部材6と下面部材7とが対向する対向方向に相当する。
The upper surface member 6 is a disk-shaped member having a circular outer shape when viewed from the vertical direction (Z direction). The upper surface member 6 is composed of a flexible member.
The lower surface member 7 is a disk-shaped member having a circular outer shape when viewed from the vertical direction. The lower surface member 7 is configured so that the outer shape seen from the vertical direction is equal to that of the upper surface member 6.
Further, the lower surface member 7 is arranged so as to face the upper surface member 6 along the vertical direction. Therefore, the vertical direction (Z direction) corresponds to the facing direction in which the upper surface member 6 and the lower surface member 7 face each other.
 スペーサ部材8a及び8bは、上面部材6及び下面部材7の間に配置される。
 図2に示すように、上下方向から見た場合に、上面部材6及び下面部材7の奥側の半円部分の周縁領域10aのうち、X方向に延在する直径の位置P1から、奥側にオフセットした位置P2までを除く領域に、スペーサ部材8aが配置される。
 また上下方向から見た場合に、上面部材6及び下面部材7の手前側の半円部分の周縁領域10bのうち、X方向に延在する直径の位置P1から、手前側にオフセットした位置P3までを除く領域に、スペーサ部材8bが配置される。
 従って、上下方向から見た場合に、上面部材6及び下面部材7の円形状となる全周の周縁領域10a及び10bのうち、X方向に延在する直径の位置P1から、奥側と手前側とにオフセットした位置(P2及びP3)までの領域を除く領域に、スペーサ部材8a及び8bが配置される。
The spacer members 8a and 8b are arranged between the upper surface member 6 and the lower surface member 7.
As shown in FIG. 2, when viewed from the vertical direction, the peripheral region 10a of the semicircular portion on the inner side of the upper surface member 6 and the lower surface member 7 is located on the inner side from the position P1 having a diameter extending in the X direction. The spacer member 8a is arranged in a region excluding the position up to the position P2 offset to.
Further, when viewed from the vertical direction, from the position P1 having a diameter extending in the X direction to the position P3 offset to the front side in the peripheral region 10b of the semicircular portion on the front side of the upper surface member 6 and the lower surface member 7. The spacer member 8b is arranged in the area other than the above.
Therefore, among the peripheral peripheral regions 10a and 10b having a circular shape of the upper surface member 6 and the lower surface member 7 when viewed from the vertical direction, the back side and the front side from the position P1 having the diameter extending in the X direction. Spacer members 8a and 8b are arranged in a region excluding the region up to the position offset to (P2 and P3).
 流入口3は、流路空間S1に流体Fが流入するための開口である。図2に示すように、流入口3は、上下方向から見た場合に、流路空間S1の外周部11に構成される。流入口3は、流路空間構成部2の外部空間と、流路空間S1とを連通する開口となる。
 本実施形態では、スペーサ部材8aの右側の端部12aと、スペーサ部材8bの右側の端部13aとの間の隙間が、流入口3として構成される。
The inflow port 3 is an opening for the fluid F to flow into the flow path space S1. As shown in FIG. 2, the inflow port 3 is configured in the outer peripheral portion 11 of the flow path space S1 when viewed from the vertical direction. The inflow port 3 is an opening that communicates the external space of the flow path space component 2 with the flow path space S1.
In the present embodiment, the gap between the right end portion 12a of the spacer member 8a and the right end portion 13a of the spacer member 8b is configured as the inflow port 3.
 流出口4は、流路空間S1から流体Fが流出するための開口である。図2に示すように、流出口4は、上下方向から見た場合に、流路空間S1の外周部11の流入口3とは異なる位置に構成される。流出口4も、流路空間構成部2の外部空間と、流路空間S1とを連通する開口となる。
 本実施形態では、スペーサ部材8aの左側の端部12bと、スペーサ部材8bの左側の端部13bとの間の隙間が、流出口4として構成される。
 従って、流入口3と流出口4とは、X方向に沿って対向するように構成される。
The outflow port 4 is an opening for the fluid F to flow out from the flow path space S1. As shown in FIG. 2, the outlet 4 is configured at a position different from the inlet 3 of the outer peripheral portion 11 of the flow path space S1 when viewed from above and below. The outflow port 4 also serves as an opening that communicates the external space of the flow path space component 2 with the flow path space S1.
In the present embodiment, the gap between the left end portion 12b of the spacer member 8a and the left end portion 13b of the spacer member 8b is configured as the outlet 4.
Therefore, the inflow port 3 and the outflow port 4 are configured to face each other along the X direction.
 なお、流入口3及び流出口4の位置、数、形状等は限定されず、任意に設計されてよい。例えば、複数の流入口3や複数の流出口4が形成されてもよい。 The positions, numbers, shapes, etc. of the inlet 3 and the outlet 4 are not limited and may be arbitrarily designed. For example, a plurality of inlets 3 and a plurality of outlets 4 may be formed.
 また図3に示すように、基準状態において、上面部材6は、上下方向から見た場合に流路空間S1の外周部11よりも内部側となる領域の少なくとも一部が、下面部材7に向かって凹状となるように構成される。
 すなわち、上下方向から見た場合に、上面部材6の内部側の領域の少なくとも一部が、下面部材7に向かって凹状となるように構成される。
 なお基準状態とは、上面部材6が、後に説明する駆動機構5により屈曲されていない状態である。すなわち、基準状態は、駆動機構5による上面部材6を屈曲する動作が実行されていない状態である。基準状態は、流体制御装置1が駆動していない状態ともいえる。
Further, as shown in FIG. 3, in the reference state, at least a part of the region of the upper surface member 6 on the inner side of the outer peripheral portion 11 of the flow path space S1 when viewed from the vertical direction faces the lower surface member 7. It is configured to be concave.
That is, when viewed from the vertical direction, at least a part of the region on the inner side of the upper surface member 6 is configured to be concave toward the lower surface member 7.
The reference state is a state in which the upper surface member 6 is not bent by the drive mechanism 5 described later. That is, the reference state is a state in which the operation of bending the upper surface member 6 by the drive mechanism 5 is not executed. It can be said that the reference state is a state in which the fluid control device 1 is not driven.
 本開示において、凹状となる構成とは、例えば、部材表面のある点に対して押圧力が加えられ、部材自体が凹状に変形した構成が含まれる。例えば、板状部材上のある点を押圧することで、板状部材が凹状に変形した構成が含まれる。
 あるいは、部材表面の一部の領域が凹んでおり穴部として構成される場合も含まれる。その他、対向する部材に向かって凹んでいる状態であると表現可能な任意の構成が含まれる。
In the present disclosure, the concave configuration includes, for example, a configuration in which a pressing force is applied to a certain point on the surface of the member and the member itself is deformed into a concave shape. For example, a configuration in which the plate-shaped member is deformed into a concave shape by pressing a certain point on the plate-shaped member is included.
Alternatively, a case where a part of the surface of the member is recessed and is configured as a hole is also included. In addition, any configuration that can be expressed as being recessed toward the facing member is included.
 また図3に示すような、上面部材6の下面部材7に向かって凹状となる構成のことを、上面部材6の内部側の領域の少なくとも一部の下面部材7までの対向距離が、上面部材6の外周部の下面部材7までの対向距離よりも小さくなる構成と表現することも可能である。
 例えば、図3に示す断面図のように、上面部材6の外周部から、対向距離が最も小さくなる部分(下面部材7に最も近接する部位)にかけて、曲線状に対向距離が減少する場合もあり得る。
 また、上面部材6の内部側の領域の一部の領域のみが、下面部材7に近接するように構成される場合もあり得る。
Further, as shown in FIG. 3, the configuration in which the upper surface member 6 is concave toward the lower surface member 7 means that the facing distance to at least a part of the lower surface member 7 in the inner region of the upper surface member 6 is the upper surface member. It can also be expressed as a configuration that is smaller than the facing distance to the lower surface member 7 on the outer peripheral portion of 6.
For example, as shown in the cross-sectional view shown in FIG. 3, the facing distance may decrease in a curved shape from the outer peripheral portion of the upper surface member 6 to the portion where the facing distance is the smallest (the portion closest to the lower surface member 7). obtain.
Further, there may be a case where only a part of the region on the inner side of the upper surface member 6 is configured to be close to the lower surface member 7.
 上面部材6と下面部材7との間の対向距離を、流体Fの流路高さと呼ぶことも可能である。
 本実施形態における上面部材6の下面部材7に向かって凹状となる構成のことを、上面部材6の内部側の領域の少なくとも一部における流路高さが、上面部材6の外周部における流路高さよりも小さくなる構成と表現することも可能である。
The facing distance between the upper surface member 6 and the lower surface member 7 can also be referred to as the flow path height of the fluid F.
The configuration in which the upper surface member 6 is concave toward the lower surface member 7 in the present embodiment is such that the flow path height in at least a part of the region on the inner side of the upper surface member 6 is the flow path in the outer peripheral portion of the upper surface member 6. It can also be expressed as a configuration that is smaller than the height.
 本実施形態では、基準状態において、上面部材6を上下方向から見た場合の中心部15が、下面部材7に向かって凹状となるように構成される。すなわち、基準状態において、板状部材である上面部材6が、中心部15にて下面部材7に向かって凹状に変形された形状となっている。
 従って、流路空間S1は、基準状態において、円柱形状となる空間の上方側の面(上面部材6と接する側の面)が凹状となるような形状の空間となる。
 なお、ポンプ室となる流路空間S1の形状が限定される訳ではない。例えば、上下方向から見て、円形状(正円、楕円)、多角形等の任意の形状が採用されてよい。例えば、上面部材を下面部材に向け凹状に構成することで、本技術に係る流体制御装置1の実施形態として実現可能である。
In the present embodiment, in the reference state, the central portion 15 when the upper surface member 6 is viewed from the vertical direction is configured to be concave toward the lower surface member 7. That is, in the reference state, the upper surface member 6 which is a plate-shaped member is deformed in a concave shape toward the lower surface member 7 at the central portion 15.
Therefore, the flow path space S1 is a space having a shape in which the upper surface (the surface on the side in contact with the upper surface member 6) of the cylindrical space is concave in the reference state.
The shape of the flow path space S1 that serves as the pump chamber is not limited. For example, any shape such as a circular shape (a perfect circle, an ellipse) or a polygon when viewed from the vertical direction may be adopted. For example, by forming the upper surface member in a concave shape toward the lower surface member, it can be realized as an embodiment of the fluid control device 1 according to the present technique.
 図3に示すように、駆動機構5は、上面部材6を屈曲させ、流路空間S1の体積を増減させる。
 本実施形態では、下面部材7に向かって凹状となるように構成された上面部材6が、下方側及び上方側にそれぞれ屈曲するように、駆動機構5が構成される。また、上面部材6の下方側及び上方側への屈曲が周期的に行われ、上面部材6が上下方向に沿って振動するように、駆動機構5が構成される。
 本実施形態では、上面部材6の基準状態において凹状となる部分(最も対向距離が小さくなる部分)である中心部15が、上下方向に沿って最も大きく移動するように、上面部材6が屈曲される。
As shown in FIG. 3, the drive mechanism 5 bends the upper surface member 6 to increase or decrease the volume of the flow path space S1.
In the present embodiment, the drive mechanism 5 is configured so that the upper surface member 6 configured to be concave toward the lower surface member 7 bends downward and upward, respectively. Further, the drive mechanism 5 is configured so that the upper surface member 6 is periodically bent downward and upward, and the upper surface member 6 vibrates in the vertical direction.
In the present embodiment, the upper surface member 6 is bent so that the central portion 15, which is a concave portion (the portion where the facing distance is the smallest) in the reference state of the upper surface member 6, moves most in the vertical direction. To.
 図3Aは、上面部材6が屈曲されていない基準状態の図である。基準状態は、圧電素子17に電圧が印加されていない状態ともいえる。
 図3Bに示すように、上面部材6が下方側に屈曲される。これにより、流路空間S1の体積が減少する。上面部材6の中心部15が最も下方側に移動した場合に、体積が最も減少する(以下、最小体積状態と記載する)。
 図3Cに示すように、基準状態から、上面部材6が上方側に屈曲される。これにより、流路空間S1の体積が増加する。そして、上面部材6の中心部15が最も上方側に移動した場合に、体積が最も増加する(以下、最大体積状態と記載する)。
 図3Aに示す基準状態から上面部材6を屈曲させ、最大体積状態と最小体積状態とを周期的に繰り返して発生させる。これにより、ポンプ機能が実現され、流入口3から流路空間S1へ流入した流体Fを、流出口4から流路空間S1の外部へ流出することが可能となる。
FIG. 3A is a diagram of a reference state in which the upper surface member 6 is not bent. It can be said that the reference state is a state in which no voltage is applied to the piezoelectric element 17.
As shown in FIG. 3B, the upper surface member 6 is bent downward. As a result, the volume of the flow path space S1 is reduced. When the central portion 15 of the upper surface member 6 moves to the lowermost side, the volume is reduced most (hereinafter, referred to as the minimum volume state).
As shown in FIG. 3C, the upper surface member 6 is bent upward from the reference state. As a result, the volume of the flow path space S1 increases. Then, when the central portion 15 of the upper surface member 6 moves to the uppermost side, the volume increases most (hereinafter, referred to as the maximum volume state).
The upper surface member 6 is bent from the reference state shown in FIG. 3A, and the maximum volume state and the minimum volume state are periodically and repeatedly generated. As a result, the pump function is realized, and the fluid F flowing into the flow path space S1 from the inflow port 3 can flow out from the outflow port 4 to the outside of the flow path space S1.
 図4は、駆動機構5の構成例を示す模式図である。
 本実施形態では、図4に示すように、駆動機構5は、圧電素子17と、駆動制御部18とを含む。
 圧電素子17は、上面部材6の下面部材7に対向する側の下面19とは反対側の上面20に接続される。上下方向から見た場合に、圧電素子17は円形状を有し、上面部材6の流路空間S1を覆う円形状の領域に接続される。
 駆動制御部18は、配線等を介して、圧電素子17に電圧(交流電圧)を駆動信号として印可する。駆動制御部18の具体的な構成は限定されず、任意の回路構成等が採用されてよい。
FIG. 4 is a schematic diagram showing a configuration example of the drive mechanism 5.
In this embodiment, as shown in FIG. 4, the drive mechanism 5 includes a piezoelectric element 17 and a drive control unit 18.
The piezoelectric element 17 is connected to the upper surface 20 on the side opposite to the lower surface 19 on the side facing the lower surface member 7 of the upper surface member 6. When viewed from the vertical direction, the piezoelectric element 17 has a circular shape and is connected to a circular region covering the flow path space S1 of the upper surface member 6.
The drive control unit 18 applies a voltage (AC voltage) to the piezoelectric element 17 as a drive signal via wiring or the like. The specific configuration of the drive control unit 18 is not limited, and any circuit configuration or the like may be adopted.
 圧電素子17は、電気-機械変換が可能な素子であり、電圧の印加に応じて伸縮することで、上面部材6を屈曲させることが可能である。
 圧電素子を用いることで、高周波数帯域での振動を高い応答力にて実現することが可能となる。すなわち比較的小さい変動量となる流路空間S1の体積の増減を、非常に高速に繰り返すことが可能となる。この結果、ポンプの出力(圧力)を向上させることが可能となり、高いポンプ機能を実現することが可能となる。
The piezoelectric element 17 is an element capable of electro-mechanical conversion, and can bend the upper surface member 6 by expanding and contracting in response to the application of a voltage.
By using a piezoelectric element, it is possible to realize vibration in a high frequency band with a high response force. That is, it is possible to repeat the increase / decrease in the volume of the flow path space S1 having a relatively small fluctuation amount at a very high speed. As a result, the output (pressure) of the pump can be improved, and a high pump function can be realized.
 本実施形態では、上面部材6及び圧電素子17により、ダイヤフラム22が構成される。
 なお、駆動機構5の構成が、圧電素子17が用いられる構成に限定される訳ではない。例えば誘電エラストマ等が用いられる構成や、ソレノイドが用いられる構成等が採用されてもよい。
In the present embodiment, the diaphragm 22 is configured by the upper surface member 6 and the piezoelectric element 17.
The configuration of the drive mechanism 5 is not limited to the configuration in which the piezoelectric element 17 is used. For example, a configuration in which a dielectric elastomer or the like is used, a configuration in which a solenoid is used, or the like may be adopted.
 [サイズ]
 本実施形態では、ダイヤフラム型の流体制御装置1であるので、小型化に非常に有利である。
 例えば、上面部材6及び下面部材7として、直径10mm×厚み1mm程度のサイズを実現可能である。また上面部材6及び下面部材7の基準対向距離を、100μm程度に設計することも可能である。なお基準対向距離は、上面部材6が凹状に構成される前の対向距離に相当し、上面部材6の外周部11における対向距離ともいえる。
 上面部材6の凹み量(変形量)としては、例えば10μm~80μm等の設計が可能である。なお凹み量とは、最も下面部材7に近接する中心部15の、変形前の状態からの下方側への変形量である。すなわち最も下面部材7に近接する中心部15を、下面部材7に対して、20μm~90μmまで近づけるような設計が可能である。
 もちろんこのようなサイズ設計に限定されず、任意のサイズにて、本技術に係る流体制御装置1の実施形態を実現することが可能である。
 なお、図3Bに示す最小体積状態において、上面部材6が下面部材7に接触しないことが望ましい。
[size]
In the present embodiment, since it is a diaphragm type fluid control device 1, it is very advantageous for miniaturization.
For example, as the upper surface member 6 and the lower surface member 7, it is possible to realize a size of about 10 mm in diameter × 1 mm in thickness. It is also possible to design the reference facing distance between the upper surface member 6 and the lower surface member 7 to be about 100 μm. The reference facing distance corresponds to the facing distance before the upper surface member 6 is formed in a concave shape, and can be said to be the facing distance on the outer peripheral portion 11 of the upper surface member 6.
The amount of dent (deformation) of the upper surface member 6 can be designed to be, for example, 10 μm to 80 μm. The amount of dent is the amount of deformation of the central portion 15 closest to the lower surface member 7 from the state before deformation to the downward side. That is, it is possible to design the central portion 15 closest to the lower surface member 7 to be as close as 20 μm to 90 μm to the lower surface member 7.
Of course, the embodiment of the fluid control device 1 according to the present technology can be realized in any size without being limited to such a size design.
It is desirable that the upper surface member 6 does not come into contact with the lower surface member 7 in the minimum volume state shown in FIG. 3B.
 [材料]
 本実施形態では、上面部材6、下面部材7、及びスペーサ部材8a及び8bとして、ステンレスや42アロイ等の金属材料が用いられる。もちろん、その他の金属材料が用いられてもよい。またプラスチック材料等の、金属材料以外の任意の材料が用いられてもよい。
 上面部材6、下面部材7、及びスペーサ部材8a及び8bの各々が、異なる材料で構成されてもよい。また上面部材6の、スペーサ部材8a及び8bと接続される部分と、流路空間S1に接する部分とが、異なる材料で構成されてもよい。すなわち流路空間S1の体積を増減させるために屈曲する部分と、スペーサ部材8a及び8bに接続される部分とが、異なる材料で構成されてもよい。
 例えば、上下方向から見た場合に、上面部材の外周側の領域は金属材料で構成され、内部側の領域はプラスチック材料で構成されてもよい。
[material]
In this embodiment, metal materials such as stainless steel and 42 alloy are used as the upper surface member 6, the lower surface member 7, and the spacer members 8a and 8b. Of course, other metallic materials may be used. Further, any material other than the metal material such as a plastic material may be used.
Each of the upper surface member 6, the lower surface member 7, and the spacer members 8a and 8b may be made of different materials. Further, the portion of the upper surface member 6 connected to the spacer members 8a and 8b and the portion in contact with the flow path space S1 may be made of different materials. That is, the portion bent to increase or decrease the volume of the flow path space S1 and the portion connected to the spacer members 8a and 8b may be made of different materials.
For example, when viewed from the vertical direction, the region on the outer peripheral side of the upper surface member may be made of a metal material, and the region on the inner side may be made of a plastic material.
 [製造方法]
 まず、例えばエッチングやレーザ加工等の任意の加工技術により、金属材料からなる上面部材6、下面部材7、及びスペーサ部材8a及び8bが作成される。
 作成された上面部材6、下面部材7、及びスペーサ部材8a及び8bが、上下方向に沿って積層されるように、互いに接続される。
 本実施形態では、上面部材6、下面部材7、及びスペーサ部材8a及び8が所定の位置精度で積層され、拡散接合により接合される。これにより、流路空間構成部2を金属として一体的に構成することが可能となる。
 この結果、ダイヤフラム22(上面部材6+圧電素子17)を、高周波数帯域にて高い応答力で振動させることに有利となる。
 エッチング等の加工や拡散接合を行うための具体的な方法や構成は限定されず、例えば周知の技術が用いられてよい。
 もちろん、拡散接合以外の方法により、上面部材6、下面部材7、及びスペーサ部材8a及び8bが互いに接続されてもよい。
 その他、流路空間構成部2を形成するためにダイキャスト等の他の任意の方法が採用されてもよい。
[Production method]
First, an upper surface member 6, a lower surface member 7, and spacer members 8a and 8b made of a metal material are produced by an arbitrary processing technique such as etching or laser processing.
The created upper surface member 6, lower surface member 7, and spacer members 8a and 8b are connected to each other so as to be laminated along the vertical direction.
In the present embodiment, the upper surface member 6, the lower surface member 7, and the spacer members 8a and 8 are laminated with predetermined position accuracy and joined by diffusion bonding. This makes it possible to integrally configure the flow path space component 2 as a metal.
As a result, it is advantageous to vibrate the diaphragm 22 (upper surface member 6 + piezoelectric element 17) with a high response force in a high frequency band.
The specific method and configuration for performing processing such as etching and diffusion bonding are not limited, and for example, a well-known technique may be used.
Of course, the upper surface member 6, the lower surface member 7, and the spacer members 8a and 8b may be connected to each other by a method other than diffusion joining.
In addition, other arbitrary methods such as die casting may be adopted for forming the flow path space component 2.
 図5は、上面部材6への圧電素子17の接続方法の一例を示す模式図である。
 図5Aに示すように、上面部材6が凹状に構成されていない流路空間構成部2(以下、凹状構成前の流路空間構成部2と記載する)が、保持治具23上に載置される。凹状構成前の流路空間構成部2は、下面部材7側が保持治具23上に載置される。
 保持治具23の具体的な構成は限定されず、凹状構成前の流路空間構成部2を保持可能な任意の治具が用いられてよい。
 凹状構成前の上面部材6の上面20に、適量の接着剤が塗布され、所定の位置に圧電素子17がセットされる。例えば、エポキシ接着剤等を、ディスペンサー、Pad印刷等の方法で塗布することが可能である。もちろん、これに限定されない。
FIG. 5 is a schematic view showing an example of a method of connecting the piezoelectric element 17 to the upper surface member 6.
As shown in FIG. 5A, the flow path space component 2 (hereinafter, referred to as the flow path space component 2 before the concave structure) in which the upper surface member 6 is not configured in a concave shape is placed on the holding jig 23. Will be done. The lower surface member 7 side of the flow path space component 2 before the concave structure is placed on the holding jig 23.
The specific configuration of the holding jig 23 is not limited, and any jig that can hold the flow path space configuration portion 2 before the concave configuration may be used.
An appropriate amount of adhesive is applied to the upper surface 20 of the upper surface member 6 before the concave structure, and the piezoelectric element 17 is set at a predetermined position. For example, an epoxy adhesive or the like can be applied by a method such as a dispenser or pad printing. Of course, it is not limited to this.
 凹状構成前の流路空間構成部2の上方側に、加圧治具24がセットされる。
 加圧治具24は、上下方向から見た形状が、圧電素子17と等しく円形状となる。そして、圧電素子17の全面を加圧可能なように、加圧治具24の位置がセットされる。
 加圧治具24の加圧面側の先端部25は、シリコンゴム等の柔軟材により構成されている。
The pressurizing jig 24 is set on the upper side of the flow path space configuration portion 2 before the concave configuration.
The shape of the pressurizing jig 24 when viewed from the vertical direction is the same as that of the piezoelectric element 17 and has a circular shape. Then, the position of the pressurizing jig 24 is set so that the entire surface of the piezoelectric element 17 can be pressurized.
The tip portion 25 of the pressurizing jig 24 on the pressurizing surface side is made of a flexible material such as silicon rubber.
 図5Bに示すように、加圧治具24により上方から下方に向けて、圧電素子17が加圧される。加圧治具24による加圧により、圧電素子17及び上面部材6が、下面部材7に向かって凹状に変形される。この状態で、接着剤の硬化処理が実行される。
 本実施形態では、加圧治具24の先端部25が柔軟材により構成される。従って、圧電素子17の変形に追従して、先端部25が変形する。これにより、圧電素子17の全面にわたって適正に加圧することが可能となり、圧電素子17の十分な接着、及び所望の凹形状への変形を実現することが可能となる。
 また先端部25が柔軟材により構成されているので、圧電素子17の表面の凹凸を吸収することも可能となり、加圧による圧電素子17の破壊等を防止することが可能となる。
As shown in FIG. 5B, the piezoelectric element 17 is pressurized from above to below by the pressurizing jig 24. Due to the pressurization by the pressurizing jig 24, the piezoelectric element 17 and the upper surface member 6 are deformed in a concave shape toward the lower surface member 7. In this state, the curing process of the adhesive is executed.
In the present embodiment, the tip portion 25 of the pressurizing jig 24 is made of a flexible material. Therefore, the tip portion 25 is deformed following the deformation of the piezoelectric element 17. As a result, it is possible to appropriately pressurize the entire surface of the piezoelectric element 17, and it is possible to realize sufficient adhesion of the piezoelectric element 17 and deformation into a desired concave shape.
Further, since the tip portion 25 is made of a flexible material, it is possible to absorb the unevenness of the surface of the piezoelectric element 17, and it is possible to prevent the piezoelectric element 17 from being destroyed by pressurization.
 加圧治具24による加圧に関して、加圧条件は限定されない。上面部材6を凹状に変形することが可能な条件が適宜設定されてよい。例えば、上面部材6の凹み量が所望の凹み量となるように、加圧力、加圧時間、温度等が適宜設定されてよい。 Regarding the pressurization by the pressurizing jig 24, the pressurizing conditions are not limited. Conditions that can deform the upper surface member 6 into a concave shape may be appropriately set. For example, the pressing force, the pressurizing time, the temperature, and the like may be appropriately set so that the dented amount of the upper surface member 6 becomes a desired dented amount.
 図5に示すように、本実施形態では、圧電素子17の接着と、上面部材6を凹状とするための変形とを、同時に実行することが可能である。言い換えれば、圧電素子17の接着工程を行うことで、同時に上面部材6を凹状に変形させることが可能である。
 従って、上面部材6を凹状に構成するための特別な工程や特別な治具等が不要となる。この結果、流路空間構成部2の製造工程を簡素化することが可能となり、製造にかかる時間も短縮することが可能である。
 もちろん、図5に示す方法に限定されない。例えば、上面部材6が予め凹状に構成され、すぺーさぶざい8a及び8bに接続されてもよい。また、予め凹状に構成された上面部材6に、圧電素子17が接着されてもよい。
As shown in FIG. 5, in the present embodiment, it is possible to simultaneously perform bonding of the piezoelectric element 17 and deformation for making the upper surface member 6 concave. In other words, by performing the bonding process of the piezoelectric element 17, it is possible to simultaneously deform the upper surface member 6 into a concave shape.
Therefore, a special process, a special jig, or the like for forming the upper surface member 6 in a concave shape becomes unnecessary. As a result, the manufacturing process of the flow path space component 2 can be simplified, and the manufacturing time can be shortened.
Of course, the method is not limited to the method shown in FIG. For example, the upper surface member 6 may be configured in a concave shape in advance and may be connected to the spaces 8a and 8b. Further, the piezoelectric element 17 may be adhered to the upper surface member 6 which is formed in a concave shape in advance.
 [初期体積の減少]
 図6は、初期体積について説明するための模式図である。
 図6Aは、凹状構成前の流路空間S1を模式的に示す図である。
 図6Bは、基準状態の流路空間S1を模式的に示す図である。
 図6Cは、ポンプ駆動中の流路空間S1を模式的に示す図である。
[Reduction of initial volume]
FIG. 6 is a schematic diagram for explaining the initial volume.
FIG. 6A is a diagram schematically showing the flow path space S1 before the concave configuration.
FIG. 6B is a diagram schematically showing the flow path space S1 in the reference state.
FIG. 6C is a diagram schematically showing the flow path space S1 during pump drive.
 図6Aに示すように、上面部材6及び下面部材7が基準対向距離Hで配置される。
 図6Bに示すように、上面部材6が凹み量Zにて凹状に構成される。図5Bに示す基準状態における流路空間S1の体積を、初期体積とする。
 図6Cに示すように、上面部材6が基準状態から上下方向に沿って、振幅Mにて振動するとする。また、最小体積状態における、上面部材6と下面部材7との最も小さくなる対向距離を、最小ギャップGmとする。
As shown in FIG. 6A, the upper surface member 6 and the lower surface member 7 are arranged at a reference facing distance H.
As shown in FIG. 6B, the upper surface member 6 is formed in a concave shape with a dent amount Z. The volume of the flow path space S1 in the reference state shown in FIG. 5B is defined as the initial volume.
As shown in FIG. 6C, it is assumed that the upper surface member 6 vibrates with an amplitude M along the vertical direction from the reference state. Further, the smallest facing distance between the upper surface member 6 and the lower surface member 7 in the minimum volume state is defined as the minimum gap Gm.
 流路空間S1に流体Fを流入させて、流路空間S1から吐出するポンプ機能を評価する指標として、以下の式で示す体積変動率を挙げることが可能である。
 体積変動率=体積変動量/初期体積・・・・(1)
As an index for evaluating the pump function of flowing the fluid F into the flow path space S1 and discharging the fluid F from the flow path space S1, the volume volatility represented by the following equation can be mentioned.
Volume volatility = volume fluctuation amount / initial volume ... (1)
 体積変動量は、上面部材6の屈曲による流路空間S1の体積の変動量であり、流路空間S1の最小体積と最大体積との差により表すことが可能である。従って、体積変動量は、上面部材6の下方側及び上方側への変形量(変位量)により表すことも可能である。
 流路空間S1の最小体積と最大体積との差を初期体積で割ることで、体積変動率が算出される。体積変動率が高いほど、高いポンプ機能が発揮され、高性能の流体制御装置1を実現することが可能となる。
 例えば、上面部材6の変形量が等しい場合には、初期体積が小さいほど体積変動率が大きくなり、高いポンプ機能が発揮される。例えば、上面部材6の変形量は、上面部材6に接続される圧電素子17の面積が大きく影響を及ぼす。従って、圧電素子17の面積が等しい場合には、初期体積を小さくすることが重要となる。
The volume fluctuation amount is the volume fluctuation amount of the flow path space S1 due to the bending of the upper surface member 6, and can be expressed by the difference between the minimum volume and the maximum volume of the flow path space S1. Therefore, the volume fluctuation amount can be expressed by the deformation amount (displacement amount) of the upper surface member 6 on the lower side and the upper side.
The volume volatility is calculated by dividing the difference between the minimum volume and the maximum volume of the flow path space S1 by the initial volume. The higher the volume volatility, the higher the pump function is exhibited, and it becomes possible to realize the high-performance fluid control device 1.
For example, when the deformation amounts of the upper surface members 6 are the same, the smaller the initial volume, the larger the volume volatility, and the higher the pump function is exhibited. For example, the amount of deformation of the upper surface member 6 is greatly affected by the area of the piezoelectric element 17 connected to the upper surface member 6. Therefore, when the areas of the piezoelectric elements 17 are equal, it is important to reduce the initial volume.
 図6Bに示すように、本実施形態では、基準状態において、上面部材6が下面部材7に向かって凹状に構成されているので、初期体積を小さくすることが可能となる。従って、式(1)に示すように、体積変動率を大きくすることが可能となり、高いポンプ機能を実現することが可能となる。 As shown in FIG. 6B, in the present embodiment, since the upper surface member 6 is formed in a concave shape toward the lower surface member 7 in the reference state, the initial volume can be reduced. Therefore, as shown in the equation (1), it is possible to increase the volume volatility and realize a high pump function.
 例えば図6Aに示すような上面部材6が凹状に構成されていない状態で、上面部材6と下面部材7との対向距離を小さくすることで、初期体積を小さくすることも可能である。しかしながらこの場合、流路空間S1の外周部11に構成される流入口3及び流出口4における対向距離も一様に小さくなってしまう。従って流入口3及び流出口4の断面積が小さくなってしまう。この結果、流入口3及び流出口4における流路抵抗が大きくなってしまい、ポンプ機能が低下してしまう。
 図6Bに示すように、本実施形態では、流路空間S1の外周部11においては、対向距離が基準対向距離Hに維持される。従って、流入口3及び流出口4における流路高さは十分に維持された状態で、初期体積が低減されている。
 これにより、流入口3及び流出口4における流路抵抗が大きくなってしまうことを防止することが可能となる。この結果、流体Fの流れを阻害することがなく、すなわち流路ロスを十分に抑えることが可能となり、高いポンプ機能を実現することが可能となる。
For example, it is possible to reduce the initial volume by reducing the facing distance between the upper surface member 6 and the lower surface member 7 in a state where the upper surface member 6 is not configured in a concave shape as shown in FIG. 6A. However, in this case, the facing distance between the inflow port 3 and the outflow port 4 formed in the outer peripheral portion 11 of the flow path space S1 is also uniformly reduced. Therefore, the cross-sectional areas of the inflow port 3 and the outflow port 4 become small. As a result, the flow path resistance at the inflow port 3 and the outflow port 4 becomes large, and the pump function deteriorates.
As shown in FIG. 6B, in the present embodiment, the facing distance is maintained at the reference facing distance H in the outer peripheral portion 11 of the flow path space S1. Therefore, the initial volume is reduced while the height of the flow path at the inlet 3 and the outlet 4 is sufficiently maintained.
This makes it possible to prevent the flow path resistance at the inflow port 3 and the outflow port 4 from becoming large. As a result, the flow of the fluid F is not obstructed, that is, the flow path loss can be sufficiently suppressed, and a high pump function can be realized.
 また上面部材6を凹状に構成しない場合には、上面部材6に印加される上下方向に沿った力に対する反力(背圧)が、上面部材6の全体に大きく作用してしまう。この結果、高速の振動(ピストン運動)が阻害されてしまいポンプ機能が低下してしまう。
 図6Bに示すように、本実施形態では、上面部材6の中心部15が最も下面部材7に近接され、最も大きい振幅Mにて振動される。一方で、流路空間S1の外周部11では対向距離の変動が少なく、振動の振幅も抑えられる。
 すなわち、本実施形態では、上面部材6の中央側の領域で非常に高い圧力が発生させつつ、流路空間S1の外周部11では圧力の発生が抑えられている。この結果、上面部材6の全体に作用する反力を抑えることが可能となるので、高速の振動(ピストン運動)が可能となり、高いポンプ機能が発揮される。
Further, when the upper surface member 6 is not formed in a concave shape, the reaction force (back pressure) with respect to the force applied to the upper surface member 6 in the vertical direction greatly acts on the entire upper surface member 6. As a result, high-speed vibration (piston movement) is hindered and the pump function deteriorates.
As shown in FIG. 6B, in the present embodiment, the central portion 15 of the upper surface member 6 is closest to the lower surface member 7 and is vibrated with the largest amplitude M. On the other hand, in the outer peripheral portion 11 of the flow path space S1, the fluctuation of the facing distance is small, and the amplitude of vibration is also suppressed.
That is, in the present embodiment, while a very high pressure is generated in the region on the central side of the upper surface member 6, the generation of pressure is suppressed in the outer peripheral portion 11 of the flow path space S1. As a result, it becomes possible to suppress the reaction force acting on the entire upper surface member 6, so that high-speed vibration (piston movement) becomes possible and a high pump function is exhibited.
 例えば、比較例として、図5Aに示すような上面部材6が凹状となる前の構成で、流体制御装置を構成したとする。この場合、上面部材6の変形量は等しいので、式(1)の体積変動量は等しくなる。
 図6Bに示すように上面部材6を凹状に構成して、初期面積を低減させる。例えば、初期体積を、凹状構成前の体積の60%に設定する。この場合、式(1)から、体積変動率を約1.67倍に増加させることが可能となる。
 このように、上面部材6を凹状に構成することにより、ポンプ機能を大幅に向上させることが可能となる。
For example, as a comparative example, it is assumed that the fluid control device is configured with the configuration before the upper surface member 6 becomes concave as shown in FIG. 5A. In this case, since the amount of deformation of the upper surface member 6 is the same, the amount of volume fluctuation in the equation (1) is the same.
As shown in FIG. 6B, the upper surface member 6 is formed in a concave shape to reduce the initial area. For example, the initial volume is set to 60% of the volume before the concave configuration. In this case, it is possible to increase the volume volatility by about 1.67 times from the equation (1).
By forming the upper surface member 6 in a concave shape in this way, the pump function can be significantly improved.
 なお、図6Bに示す基準状態において、上面部材6が下面部材7に接触しないことが望ましい。従って、基準対向距離H>凹み量Zとなることが望ましい。なお、(基準対向距離H-凹み量Z)は、基準状態における上面部材6と下面部材7との最小距離に相当する。
 また、流体制御装置1の駆動時に、最小体積状態となった際に、上面部材6が下面部材7に接触しないことが望ましい。
 従って、図5Cに示すように、最小ギャップGm>0となることが望ましい。なお最小最小ギャップGmは、以下の式で表される。
 最小ギャップGm=基準対向距離H-凹み量Z-(振幅M/2)・・・(2)
 すなわち、図5Bに示す基準状態における上面部材6の中心部15と下面部材7との間の最小対向距離が、ポンプ駆動時の上面部材6の中心部15の振幅の1/2よりも大きくなることが望ましい。
 なお、上面部材6の変形量は、圧電素子17の曲げ剛性、上面部材6の曲げ剛性、圧電素子17の接着時の加圧力との関係によって、適宜最適値が異なってくる。従って、各部材の曲げ剛性を考慮して、加圧力を調整することも重要である。
In the reference state shown in FIG. 6B, it is desirable that the upper surface member 6 does not come into contact with the lower surface member 7. Therefore, it is desirable that the reference facing distance H> the dent amount Z. In addition, (reference facing distance H-recess amount Z) corresponds to the minimum distance between the upper surface member 6 and the lower surface member 7 in the reference state.
Further, it is desirable that the upper surface member 6 does not come into contact with the lower surface member 7 when the minimum volume state is reached when the fluid control device 1 is driven.
Therefore, as shown in FIG. 5C, it is desirable that the minimum gap Gm> 0. The minimum minimum gap Gm is expressed by the following equation.
Minimum gap Gm = reference facing distance H-dent amount Z- (amplitude M / 2) ... (2)
That is, the minimum facing distance between the central portion 15 of the upper surface member 6 and the lower surface member 7 in the reference state shown in FIG. 5B is larger than 1/2 of the amplitude of the central portion 15 of the upper surface member 6 when the pump is driven. Is desirable.
The optimum value of the deformation amount of the upper surface member 6 varies depending on the relationship between the bending rigidity of the piezoelectric element 17, the bending rigidity of the upper surface member 6, and the pressing force at the time of bonding the piezoelectric element 17. Therefore, it is also important to adjust the pressing force in consideration of the bending rigidity of each member.
 本実施形態において、上面部材6は、可撓性を有する可撓部の一実施形態に相当する。また、下面部材7は、可撓部に対向する対向部の一実施形態に相当する。
 また上面部材6は、中央の領域が可撓部を構成し金属材料からなる第1の板状部材の一実施形態ともなる。本実施形態では、中央の領域を含む全体が、可撓部を構成している。
 また下面部材7は、中央の領域が対向部を構成し金属材料からなる第2の板状部材の一実施形態ともなる。本実施形態では、中央の領域を含む全体が、対向部を構成している。
 スペーサ部材8a及び8bは、中央の領域が開口となり、所定の厚みを有し、第1の板状部材と第2の板状部材との間に配置され、第1の板状部材と第2の板状部材との各々に拡散接合により接続されるスペーサ部材の一実施形態に相当する。中央の領域の開口は、流路空間S1となる部分に相当する。
 流路空間構成部2は、可撓部と対向部との間に流路空間S1を構成する
 駆動機構5は、可撓部を屈曲させ、流路空間S1の体積を増減させる
In the present embodiment, the upper surface member 6 corresponds to one embodiment of the flexible portion having flexibility. Further, the lower surface member 7 corresponds to one embodiment of the facing portion facing the flexible portion.
Further, the upper surface member 6 is also an embodiment of the first plate-shaped member in which the central region constitutes a flexible portion and is made of a metal material. In the present embodiment, the entire flexible portion including the central region constitutes a flexible portion.
Further, the lower surface member 7 is also an embodiment of a second plate-shaped member whose central region constitutes a facing portion and is made of a metal material. In the present embodiment, the entire region including the central region constitutes the facing portion.
The spacer members 8a and 8b have an opening in the central region, have a predetermined thickness, are arranged between the first plate-shaped member and the second plate-shaped member, and are arranged between the first plate-shaped member and the second plate-shaped member. Corresponds to one embodiment of the spacer member connected to each of the plate-shaped members by diffusion bonding. The opening in the central region corresponds to the portion that becomes the flow path space S1.
The flow path space component 2 constitutes the flow path space S1 between the flexible portion and the facing portion. The drive mechanism 5 bends the flexible portion to increase or decrease the volume of the flow path space S1.
 図2等に示す流入口3が、流体制御装置1内へ流体Fを吸入するための吸入口として用いられてもよい。また流出口4が、流体制御装置1外へ流体Fを吐出するための吐出口として用いられてもよい。
 または、吸入口及び吐出口が、流入口3及び流出口4とは別に構成されてもよい。この場合、例えば、吸入口と流入口3とを連通する吸入空間を構成する吸入空間構成部がさらに構成されてもよい。吸入空間は、吸入口から吸入された流体Fを流入口3に導く空間となる。また吐出口と流出口4とを連通する吐出空間を構成する吐出空間構成部がさらに構成されてもよい。吐出空間は、流出口4から流出された流体を吐出口に導く空間となる。
 このような吸入空間や吐出空間が構成される場合においても、流路空間S1にて高いポンプ機能を実現することが可能となり、小型で高性能な流体制御装置1を実現することが可能となる。
The inflow port 3 shown in FIG. 2 or the like may be used as a suction port for sucking the fluid F into the fluid control device 1. Further, the outlet 4 may be used as a discharge port for discharging the fluid F to the outside of the fluid control device 1.
Alternatively, the suction port and the discharge port may be configured separately from the inflow port 3 and the outflow port 4. In this case, for example, a suction space component that constitutes a suction space that communicates the suction port and the inflow port 3 may be further configured. The suction space is a space that guides the fluid F sucked from the suction port to the inflow port 3. Further, a discharge space component that constitutes a discharge space that communicates the discharge port and the outlet 4 may be further configured. The discharge space is a space that guides the fluid flowing out from the outlet 4 to the discharge port.
Even when such a suction space and a discharge space are configured, it is possible to realize a high pump function in the flow path space S1, and it is possible to realize a compact and high-performance fluid control device 1. ..
 [共振構成]
 下面部材7を、可撓性を有する部材として構成する。そして上面部材6と下面部材7とが互いに共振するように、流路空間構成部2を構成することも可能である。
 上面部材6及び下面部材7を互いに共振させることで、式(1)に示す体積変動量を増加させることが可能となり、ポンプ機能を向上させることが可能となる。
 以下、上面部材6及び下面部材7が互いに共振する構成を、共振構成と記載する場合がある。また上面部材6及び下面部材7が互いに共振することによりポンプ機能が向上することを共振効果と記載する場合がある。
 なお、共振構成が採用される場合、下面部材7も、ダイヤフラムとして機能する。上面部材6及び圧電素子17により構成されるダイヤフラムを第1のダイヤフラムと記載し、下面部材6により構成されるダイヤフラムを第2のダイヤフラムと記載する場合がある。
 上面部材6及び下面部材7を互いに共振させることは、第1のダイヤフラム及び第2のダイヤフラムを互いに共振させることに相当する。
[Resonance configuration]
The lower surface member 7 is configured as a flexible member. It is also possible to configure the flow path space component 2 so that the upper surface member 6 and the lower surface member 7 resonate with each other.
By resonating the upper surface member 6 and the lower surface member 7 with each other, it is possible to increase the volume fluctuation amount represented by the equation (1), and it is possible to improve the pump function.
Hereinafter, a configuration in which the upper surface member 6 and the lower surface member 7 resonate with each other may be referred to as a resonance configuration. Further, it may be described as a resonance effect that the pump function is improved by the resonance of the upper surface member 6 and the lower surface member 7 with each other.
When the resonance configuration is adopted, the lower surface member 7 also functions as a diaphragm. The diaphragm composed of the upper surface member 6 and the piezoelectric element 17 may be described as a first diaphragm, and the diaphragm composed of the lower surface member 6 may be described as a second diaphragm.
Resonating the upper surface member 6 and the lower surface member 7 with each other corresponds to resonating the first diaphragm and the second diaphragm with each other.
 例えば、上面部材6及び圧電素子17の全体の共振周波数(1次共振周波数)が、下面部材7の共振周波数に近くなるように構成する。すなわち、第1のダイヤフラムの共振周波数が、第2のダイヤフラムの共振周波数に近くなるように構成する。
 これにより、共振周波数にて、第1のダイヤフラム及び第2のダイヤフラムの各々が最大振動となり、ポンプ室に大きな圧力を発生させることが可能となる。
 なお、共振により、第1のダイヤフラム(上面部材6+圧電素子17)の上方側への屈曲と、第2のダイヤフラム(下面部材7)の下方側への屈曲とが、同期して発生する。また、共振により、第1のダイヤフラム(上面部材6+圧電素子17)の下方側への屈曲と、第2のダイヤフラム(下面部材7)の上方側への屈曲とが、同期して発生する。
 すなわち、両方のダイヤフラムにおいて、流路空間S1の体積を増加させる方向への屈曲と、流路空間S1の体積を減少させる方向への屈曲とが、それぞれ同期して発生される。これにより、高い共振効果が発揮される。
For example, the resonance frequency (primary resonance frequency) of the entire upper surface member 6 and the piezoelectric element 17 is configured to be close to the resonance frequency of the lower surface member 7. That is, the resonance frequency of the first diaphragm is configured to be close to the resonance frequency of the second diaphragm.
As a result, at the resonance frequency, each of the first diaphragm and the second diaphragm becomes the maximum vibration, and it becomes possible to generate a large pressure in the pump chamber.
It should be noted that the resonance causes the first diaphragm (upper surface member 6 + piezoelectric element 17) to bend upward and the second diaphragm (lower surface member 7) to bend downward in synchronization. Further, due to resonance, the downward bending of the first diaphragm (upper surface member 6 + piezoelectric element 17) and the upward bending of the second diaphragm (lower surface member 7) occur in synchronization with each other.
That is, in both diaphragms, bending in the direction of increasing the volume of the flow path space S1 and bending in the direction of decreasing the volume of the flow path space S1 are generated in synchronization with each other. As a result, a high resonance effect is exhibited.
 なお共振周波数は、材料の比重、ヤング率、厚み、サイズ等により規定される。上面部材6、圧電素子17、及び下面部材7の材料やサイズ等を適宜設計することで、第1のダイヤフラム及び第2のダイヤフラムの各々の共振周波数を互いに近づけることが可能である。 The resonance frequency is defined by the specific gravity, Young's modulus, thickness, size, etc. of the material. By appropriately designing the materials and sizes of the upper surface member 6, the piezoelectric element 17, and the lower surface member 7, the resonance frequencies of the first diaphragm and the second diaphragm can be brought close to each other.
 例えば、ステンレスや42アロイ等の金属材料を用いて、上面部材6を構成する。同じ金属材料を用いて下面部材7を構成する。上面部材6の上面20には圧電素子17が接着されるので、第1のダイヤフラム全体としては、圧電素子17が接着されていない状態の上面部材6よりも高い共振周波数となる。
 第2のダイヤフラムとなる下面部材7の厚みを、上面部材6の厚みよりも大きくする。これにより、第1のダイヤフラム(上面部材6+圧電素子17)全体の共振周波数を、第2のダイヤフラム(下面部材7)の共振周波数に近づけることが可能となる。この結果、共振構成を実現することが可能となり、共振効果を発揮することが可能となる。
For example, a metal material such as stainless steel or 42 alloy is used to form the upper surface member 6. The lower surface member 7 is made of the same metal material. Since the piezoelectric element 17 is adhered to the upper surface 20 of the upper surface member 6, the resonance frequency of the first diaphragm as a whole is higher than that of the upper surface member 6 in which the piezoelectric element 17 is not adhered.
The thickness of the lower surface member 7 serving as the second diaphragm is made larger than the thickness of the upper surface member 6. This makes it possible to bring the resonance frequency of the entire first diaphragm (upper surface member 6 + piezoelectric element 17) closer to the resonance frequency of the second diaphragm (lower surface member 7). As a result, it becomes possible to realize a resonance configuration and exert a resonance effect.
 共振構成が採用される場合、上面部材6が、第1の可撓部の一実施形態に相当する。また、下面部材7が、第2の可撓部の一実施形態に相当する。共振構成は、第1の可撓部及び第2の可撓部が互いに共振する構造となる。 When the resonance configuration is adopted, the upper surface member 6 corresponds to one embodiment of the first flexible portion. Further, the lower surface member 7 corresponds to one embodiment of the second flexible portion. The resonance configuration has a structure in which the first flexible portion and the second flexible portion resonate with each other.
 例えば、上面部材6、スペーサ部材8a及び8b、及び下面部材7の接続に、接着材等が用いられるとする。この場合、振動エネルギーの伝達ロスや、共振周波数のずれ等が発生しやすく、共振構成を実現するのが難しい。
 本実施形態のように、上面部材6、スペーサ部材8a及び8b、及び下面部材7を拡散接合にて接合し、流路空間構成部2を金属として一体的に構成する。これにより、振動エネルギーの伝達ロスや、共振周波数のずれ等を抑制することが可能となり、共振構成を容易に実現することが可能となる。
 また共振構成を採用することで、第1のダイヤフラムにて発生する振動エネルギーを、第2のダイヤフラムとの間で循環させることが可能となり、振動エネルギーのロスを抑えることが可能となる。この結果、高いポンプ機能を発揮させることが可能となる。
 もちろん、本技術の適用が、共振構成が採用される場合に限定される訳ではない。
For example, it is assumed that an adhesive or the like is used for connecting the upper surface member 6, the spacer members 8a and 8b, and the lower surface member 7. In this case, transmission loss of vibration energy, deviation of resonance frequency, and the like are likely to occur, and it is difficult to realize a resonance configuration.
As in the present embodiment, the upper surface member 6, the spacer members 8a and 8b, and the lower surface member 7 are joined by diffusion joining, and the flow path space component 2 is integrally formed as metal. As a result, it is possible to suppress transmission loss of vibration energy, deviation of resonance frequency, and the like, and it is possible to easily realize a resonance configuration.
Further, by adopting the resonance configuration, the vibration energy generated in the first diaphragm can be circulated with the second diaphragm, and the loss of the vibration energy can be suppressed. As a result, it becomes possible to exert a high pump function.
Of course, the application of this technique is not limited to the case where the resonance configuration is adopted.
 気体や液体等の流体を活用した製品は、例えば産業用のエアーシリンダーや、空気袋、血圧計測用のカフ等の様々な用途で用いられている。流体の流体力を用いることで、従来のアクチュエータとは異なる動きや、圧力を活用した圧覚触覚の発生等、新しい機能を実現することが可能となる。
 流体力を活かす為には、流体の流れや圧力を産み出すデバイスが必要である。例えば、従来用いられているポンプやブロアー(ファン)は比較的サイズが大きく、小型デバイスやウェアラブルに適用することが難しい。
 圧電素子の振動を活かしたダイヤフラム型ポンプは小型化に適しており、圧力や流量も制御可能である。例えば携帯型の血圧計のカフの圧力発生源としても十分に適用可能である。
 今後の流体力活用の為には、ポンプ機能を有するデバイスの更なる小型化・高性能化が望まれる。
 本実施形態では、基準状態において、流路空間S1を間に挟むように配置される上面部材6が、下面部材7に向かって凹状に構成される。また流入口3及び流出口4が、流路空間S1の外周部11に構成される。これにより、小型で高性能な流体制御装置1を実現することが可能となる。
 また、共振構成を採用することで、さらに高性能化を図ることが可能となる。
Products that utilize fluids such as gases and liquids are used in various applications such as industrial air cylinders, air bags, and cuffs for blood pressure measurement. By using the fluid force of the fluid, it is possible to realize new functions such as movement different from the conventional actuator and generation of pressure sensation and tactile sensation utilizing pressure.
In order to utilize the fluid force, a device that produces fluid flow and pressure is required. For example, conventionally used pumps and blowers (fans) are relatively large in size and difficult to apply to small devices and wearables.
The diaphragm type pump that utilizes the vibration of the piezoelectric element is suitable for miniaturization, and the pressure and flow rate can also be controlled. For example, it can be sufficiently applied as a pressure source for the cuff of a portable blood pressure monitor.
In order to utilize the fluid force in the future, it is desired to further reduce the size and performance of the device having a pump function.
In the present embodiment, in the reference state, the upper surface member 6 arranged so as to sandwich the flow path space S1 is configured to be concave toward the lower surface member 7. Further, the inflow port 3 and the outflow port 4 are configured in the outer peripheral portion 11 of the flow path space S1. This makes it possible to realize a compact and high-performance fluid control device 1.
Further, by adopting the resonance configuration, it is possible to further improve the performance.
 <第2の実施形態>
 本技術の第2の実施形態に係る流体制御装置について説明する。これ以降の説明では、上記の実施形態で説明した流体制御装置1における構成及び作用と同様な部分については、その説明を省略又は簡略化する。
<Second embodiment>
The fluid control device according to the second embodiment of the present technique will be described. In the following description, the description thereof will be omitted or simplified with respect to the parts similar to the configuration and operation in the fluid control device 1 described in the above embodiment.
 図7は、第2の実施形態に係る流体制御装置27を上方から見た場合の上面図である。
 図8は、図7に示すB-B線での断面図である。B-B線は、第1の共振板29の中心部37にて中心部にて直角に折れ曲がった線である。
 図9は、流体制御装置27を構成する各部材を個別に図示した図である。なお、図9では、圧電素子の図示は省略されている。
FIG. 7 is a top view of the fluid control device 27 according to the second embodiment when viewed from above.
FIG. 8 is a cross-sectional view taken along the line BB shown in FIG. The BB line is a line bent at a right angle at the center portion 37 of the first resonance plate 29.
FIG. 9 is a diagram showing each member constituting the fluid control device 27 individually. In FIG. 9, the piezoelectric element is not shown.
 本実施形態に係る流体制御装置27のおおよその外形は、四角柱形状となり、内部に流路空間S1と、吸入空間S2と、吐出空間S3とが構成される。 The approximate outer shape of the fluid control device 27 according to the present embodiment is a quadrangular prism shape, and a flow path space S1, a suction space S2, and a discharge space S3 are internally configured.
 流体制御装置27は、第1の固定プレート28と、第1の共振板29と、スペーサ部材30と、第2の共振板31と、第2の固定プレート32とを有する。また流体制御装置27は、第1の圧電素子33と、第2の圧電素子34と、逆止弁35とを有する。
 図8に示すように、第1の固定プレート28、第1の共振板29、スペーサ部材30、第2の共振板31、及び第2の固定プレート32の各々は、板状部材として構成される。また図9に示すように、各部材は、上下方向からみたおおよその外形が、互いに等しい矩形状となる。各部材の外縁がそろえられた状態で、各部材が上下方向に積層されて接続される。
 図8に示すように、下方側から上方側にかけて、第2の固定プレート32、第2の共振板31、スペーサ部材30、第1の共振板29、第1の固定プレート28の順番で、各部材が積層される。
The fluid control device 27 has a first fixing plate 28, a first resonance plate 29, a spacer member 30, a second resonance plate 31, and a second fixing plate 32. Further, the fluid control device 27 has a first piezoelectric element 33, a second piezoelectric element 34, and a check valve 35.
As shown in FIG. 8, each of the first fixing plate 28, the first resonance plate 29, the spacer member 30, the second resonance plate 31, and the second fixing plate 32 is configured as a plate-shaped member. .. Further, as shown in FIG. 9, each member has a rectangular shape in which the approximate outer shapes seen from the vertical direction are equal to each other. With the outer edges of the members aligned, the members are stacked and connected in the vertical direction.
As shown in FIG. 8, from the lower side to the upper side, the second fixing plate 32, the second resonance plate 31, the spacer member 30, the first resonance plate 29, and the first fixing plate 28 are in this order. The members are laminated.
 図9に示すように、スペーサ部材30は、中央開口38と、2つの吸入用の開口39a及び39bと、2つの吐出用の開口40a及び40bとを有する。
 上下方向から見た場合に、中央開口38は、スペーサ部材30の中央の領域に形成される。また中央開口38の上下方向から見た形状は、円形状となる。中央開口38は、中心部の位置が、第1の共振板29の中心部37の位置と等しくなるように構成される。
As shown in FIG. 9, the spacer member 30 has a central opening 38, two suction openings 39a and 39b, and two ejection openings 40a and 40b.
When viewed from the vertical direction, the central opening 38 is formed in the central region of the spacer member 30. Further, the shape of the central opening 38 when viewed from the vertical direction is a circular shape. The central opening 38 is configured so that the position of the central portion is equal to the position of the central portion 37 of the first resonance plate 29.
 2つの吸入用の開口39a及び39bは、スペーサ部材30の右側かつ奥側の頂点部41aから左側かつ手前側の頂点部41cに向かう対角線上に、中央開口38を間に挟んで形成される。また、2つの吸入用の開口39a及び39bは、中央開口38の外周部38aに連通するように形成される。
 吸入用の開口39aは、中央開口38と頂点部41aとの間に、中央開口38と連通するように構成される。
 吸入用の開口39bは、中央開口38と頂点部41cとの間に、中央開口38と連通するように構成される。
The two suction openings 39a and 39b are formed on a diagonal line from the apex portion 41a on the right side and the back side of the spacer member 30 toward the apex portion 41c on the left side and the front side with the central opening 38 interposed therebetween. Further, the two suction openings 39a and 39b are formed so as to communicate with the outer peripheral portion 38a of the central opening 38.
The suction opening 39a is configured to communicate with the central opening 38 between the central opening 38 and the apex 41a.
The suction opening 39b is configured to communicate with the central opening 38 between the central opening 38 and the apex 41c.
 2つの吐出用の開口40a及び40bは、スペーサ部材30の左側かつ奥側の頂点部41dから右側かつ手前側の頂点部41bに向かう対角線上に、中央開口38を間に挟んで形成される。また、2つの吐出用の開口40a及び40bは、中央開口38の外周部38aに連通するように形成される。
 吐出用の開口40aは、中央開口38と頂点部41dとの間に、中央開口38と連通するように構成される。
 吐出用の開口40bは、中央開口38と頂点部41bとの間に、中央開口38と連通するように構成される。
The two discharge openings 40a and 40b are formed on the diagonal line from the left and back apex 41d of the spacer member 30 toward the right and front apex 41b with the central opening 38 interposed therebetween. Further, the two discharge openings 40a and 40b are formed so as to communicate with the outer peripheral portion 38a of the central opening 38.
The discharge opening 40a is configured to communicate with the central opening 38 between the central opening 38 and the apex portion 41d.
The discharge opening 40b is configured to communicate with the central opening 38 between the central opening 38 and the apex portion 41b.
 図9に示すように、上下方向から見た場合に、2つの吸入用の開口39a及び39bと、2つの吐出用の開口40a及び40bとは、スペーサ部材30の中心部(中央開口38の中心部)に対して、対称となる位置にそれぞれ形成される。
 また2つの吸入用の開口39a及び39bと、2つの吐出用の開口40a及び40bとは、互いに等しい形状を有し、各々がスペーサ部材30の中心部に向くように形成される。
As shown in FIG. 9, when viewed from the vertical direction, the two suction openings 39a and 39b and the two discharge openings 40a and 40b are the central portion of the spacer member 30 (the center of the central opening 38). It is formed at positions that are symmetrical with respect to the part).
Further, the two suction openings 39a and 39b and the two discharge openings 40a and 40b have the same shape and are formed so as to face the central portion of the spacer member 30.
 第1の共振板29は、可撓性を有する第1の可撓部42と、2つの吐出口43a及び43bとを有する。
 上下方向から見た場合に、第1の可撓部42は、第1の共振板29の中央の領域に形成される。また第1の可撓部42の上下方向から見た形状は、円形状となる。
 第1の可撓部42は、中心部が、第1の共振板29の中心部37と等しくなるように構成される。すなわち中心部37は、第1の可撓部42の中心部37ともいえる。
 また第1の可撓部42は、スペーサ部材30の中央開口38を上方側から覆う位置(中央開口38と重なる位置に)に構成される。また、第1の可撓部42の中心部37と、スペーサ部材30の中央開口38の中心部とは、互いに等しい位置となる。
The first resonance plate 29 has a flexible first flexible portion 42 and two discharge ports 43a and 43b.
When viewed from the vertical direction, the first flexible portion 42 is formed in the central region of the first resonance plate 29. Further, the shape of the first flexible portion 42 when viewed from the vertical direction is a circular shape.
The first flexible portion 42 is configured so that the central portion thereof is equal to the central portion 37 of the first resonance plate 29. That is, the central portion 37 can be said to be the central portion 37 of the first flexible portion 42.
Further, the first flexible portion 42 is configured at a position that covers the central opening 38 of the spacer member 30 from above (at a position that overlaps with the central opening 38). Further, the central portion 37 of the first flexible portion 42 and the central portion of the central opening 38 of the spacer member 30 are located at equal positions with each other.
 図8に示すように、第1の可撓部42は、基準状態において、上下方向から見た場合に流路空間S1の外周部11よりも内部側となるよう領域の少なくとも一部が、第2の共振板31に向かって凹状となるように構成される。
 本実施形態では、第1の可撓部42は、基準状態において、上下方向から見た場合の中心部37が、第2の共振板31に向かって凹状となるように構成される。
As shown in FIG. 8, in the reference state, at least a part of the region of the first flexible portion 42 is on the inner side of the outer peripheral portion 11 of the flow path space S1 when viewed from the vertical direction. It is configured to be concave toward the resonance plate 31 of 2.
In the present embodiment, the first flexible portion 42 is configured such that the central portion 37 when viewed from the vertical direction is concave toward the second resonance plate 31 in the reference state.
 2つの吐出口43a及び43bは、第1の共振板29の左側かつ奥側の頂点部45dから右側かつ手前側の頂点部45bに向かう対角線上に、第1の可撓部42を間に挟んで形成される。
 吐出口43aは、第1の可撓部42と、頂点部45dとの間に形成される。図7に示すように、吐出口43aは、上下方向から見た場合に、スペーサ部材30の吐出用の開口40aの内部側となる位置に形成される。
 吐出口43bは、第1の可撓部42と、頂点部45bとの間に形成される。吐出口43bは、上下方向から見た場合に、スペーサ部材30の吐出用の開口40bの内部側となる位置に形成される。
The two discharge ports 43a and 43b sandwich the first flexible portion 42 on the diagonal line from the apex portion 45d on the left side and the back side of the first resonance plate 29 toward the apex portion 45b on the right side and the front side. Formed by.
The discharge port 43a is formed between the first flexible portion 42 and the apex portion 45d. As shown in FIG. 7, the discharge port 43a is formed at a position on the inner side of the discharge opening 40a of the spacer member 30 when viewed from above and below.
The discharge port 43b is formed between the first flexible portion 42 and the apex portion 45b. The discharge port 43b is formed at a position on the inner side of the discharge opening 40b of the spacer member 30 when viewed from the vertical direction.
 第1の固定プレート28は、中央開口46と、2つの吐出用の開口47a及び47bとを有する。
 上下方向から見た場合に、中央開口46は、第1の固定プレート28の中央の領域に形成される。また中央開口46の上下方向から見た形状は、円形状となる。中央開口46は、中心部の位置が、スペーサ部材30の中央開口38の中心部の位置と等しくなるように構成される。
The first fixing plate 28 has a central opening 46 and two ejection openings 47a and 47b.
When viewed from above and below, the central opening 46 is formed in the central region of the first fixing plate 28. Further, the shape of the central opening 46 when viewed from the vertical direction is a circular shape. The central opening 46 is configured so that the position of the central portion is equal to the position of the central portion of the central opening 38 of the spacer member 30.
 2つの吐出用の開口47a及び47bは、第1の固定プレート28の左側かつ奥側の頂点部48dから右側かつ手前側の頂点部48bに向かう対角線上に、中央開口46を間に挟んで形成される。
 吐出用の開口47aは、中央開口46と頂点部48dとの間に構成される。吐出用の開口47aは、矩形状の開口と半円状の開口とが連通したような形状を有する。矩形状の開口部分が中央開口46に沿うように位置し、半円状の開口部分の頂点が頂点部48dに向くように、吐出用の開口47aが形成される。
 吐出用の開口47bは、中央開口46と頂点部48dbの間に構成される。吐出用の開口47bは、吐出用の開口47aと等しい形状を有する。矩形状の開口部分が中央開口46に沿うように位置し、半円状の開口部分の頂点が頂点部48bに向くように、吐出用の開口47bが形成される。
The two ejection openings 47a and 47b are formed diagonally from the left and back apex 48d of the first fixing plate 28 toward the right and front apex 48b with the central opening 46 interposed therebetween. Will be done.
The discharge opening 47a is configured between the central opening 46 and the apex portion 48d. The discharge opening 47a has a shape in which a rectangular opening and a semicircular opening communicate with each other. The discharge opening 47a is formed so that the rectangular opening portion is located along the central opening 46 and the apex of the semicircular opening portion faces the apex portion 48d.
The discharge opening 47b is configured between the central opening 46 and the apex 48db. The discharge opening 47b has the same shape as the discharge opening 47a. The discharge opening 47b is formed so that the rectangular opening portion is located along the central opening 46 and the apex of the semicircular opening portion faces the apex portion 48b.
 また図7に示すように、吐出用の開口47aは、上下方向から見た場合に、第1の共振板29の吐出口43aが内部に位置するように形成される。吐出用の開口47bは、上下方向から見た場合に、第1の共振板29の吐出口43bが内部に位置するように形成される。
 従って、上下方向から見た場合に、スペーサ部材30の吐出用の開口40aと、第1の固定プレート28の吐出用の開口47aとは、互いに重なり合う位置にそれぞれ形成される。またスペーサ部材30の吐出用の開口40bと、第1の固定プレート28の吐出用の開口47bとは、互いに重なり合う位置にそれぞれ形成される。
Further, as shown in FIG. 7, the discharge opening 47a is formed so that the discharge port 43a of the first resonance plate 29 is located inside when viewed from the vertical direction. The discharge opening 47b is formed so that the discharge port 43b of the first resonance plate 29 is located inside when viewed from the vertical direction.
Therefore, when viewed from the vertical direction, the ejection opening 40a of the spacer member 30 and the ejection opening 47a of the first fixed plate 28 are formed at positions where they overlap each other. Further, the ejection opening 40b of the spacer member 30 and the ejection opening 47b of the first fixing plate 28 are formed at positions where they overlap each other.
 第2の共振板31は、可撓性を有する第2の可撓部49と、2つの吸入口50a及び50bとを有する。
 上下方向から見た場合に、第2の可撓部49は、第2の共振板31の中央の領域に形成される。また第2の可撓部49の上下方向から見た形状は、円形状となる。
 第2の可撓部49は、中心部が、第2の共振板29の中心部51と等しくなるように構成される。すなわち中心部51は、第2の可撓部49の中心部51ともいえる。
 また第2の可撓部49は、スペーサ部材30の中央開口38を下方側から覆う位置(中央開口38と重なる位置に)に構成される。また、第2の可撓部49の中心部51と、スペーサ部材30の中央開口38の中心部とは、互いに等しい位置となる。
The second resonance plate 31 has a second flexible portion 49 having flexibility and two suction ports 50a and 50b.
When viewed from the vertical direction, the second flexible portion 49 is formed in the central region of the second resonance plate 31. Further, the shape of the second flexible portion 49 when viewed from the vertical direction is a circular shape.
The second flexible portion 49 is configured so that the central portion thereof is equal to the central portion 51 of the second resonance plate 29. That is, the central portion 51 can be said to be the central portion 51 of the second flexible portion 49.
The second flexible portion 49 is configured at a position that covers the central opening 38 of the spacer member 30 from below (at a position that overlaps with the central opening 38). Further, the central portion 51 of the second flexible portion 49 and the central portion of the central opening 38 of the spacer member 30 are located at equal positions with each other.
 図8に示すように、第2の可撓部49は、基準状態において、上下方向から見た場合に流路空間S1の外周部11よりも内部側となるよう領域の少なくとも一部が、第1の共振板29に向かって凹状となるように構成される。
 本実施形態では、第2の可撓部49は、基準状態において、上下方向から見た場合の中心部51が、第1の共振板29に向かって凹状となるように構成される。
As shown in FIG. 8, in the reference state, at least a part of the second flexible portion 49 is on the inner side of the outer peripheral portion 11 of the flow path space S1 when viewed from the vertical direction. It is configured to be concave toward the resonance plate 29 of 1.
In the present embodiment, the second flexible portion 49 is configured such that the central portion 51 when viewed from the vertical direction is concave toward the first resonance plate 29 in the reference state.
 図8に示すように、本実施形態では、第1の共振板29の第1の可撓部42と、第2の共振板31の第2の可撓部49とが、上下方向に沿って、スペーサ部材30の中央開口38を間に挟んで、互いに対向する。
 第1の可撓部42は、基準状態において、中心部37が第2の可撓部49に向かって凹状となるように構成される。第2の可撓部49は、基準状態において、中心部51が第1の可撓部42に向かって凹状となるように構成される。
As shown in FIG. 8, in the present embodiment, the first flexible portion 42 of the first resonance plate 29 and the second flexible portion 49 of the second resonance plate 31 are aligned in the vertical direction. , With the central opening 38 of the spacer member 30 in between, they face each other.
The first flexible portion 42 is configured such that the central portion 37 is concave toward the second flexible portion 49 in the reference state. The second flexible portion 49 is configured such that the central portion 51 is concave toward the first flexible portion 42 in the reference state.
 2つの吸入口50a及び50bは、第2の共振板31の右側かつ奥側の頂点部52aから左側かつ手前側の頂点部52cに向かう対角線上に、第2の可撓部49を間に挟んで形成される。
 吸入口50aは、第2の可撓部49と、頂点部52aとの間に形成される。図7に示すように、吸入口50aは、上下方向から見た場合に、スペーサ部材30の吸入用の開口39aの内部側となる位置に形成される。
 吸入口50bは、第2の可撓部49と、頂点部52cとの間に形成される。吸入口50bは、上下方向から見た場合に、スペーサ部材30の吸入用の開口39bの内部側となる位置に形成される。
The two suction ports 50a and 50b sandwich a second flexible portion 49 on a diagonal line from the apex portion 52a on the right side and the back side of the second resonance plate 31 toward the apex portion 52c on the left side and the front side. Is formed by.
The suction port 50a is formed between the second flexible portion 49 and the apex portion 52a. As shown in FIG. 7, the suction port 50a is formed at a position on the inner side of the suction opening 39a of the spacer member 30 when viewed from above and below.
The suction port 50b is formed between the second flexible portion 49 and the apex portion 52c. The suction port 50b is formed at a position on the inner side of the suction opening 39b of the spacer member 30 when viewed from above and below.
 第2の固定プレート32は、中央開口53と、2つの吸入用の開口54a及び54bとを有する。
 上下方向から見た場合に、中央開口53は、第2の固定プレート32の中央の領域に形成される。また中央開口53の上下方向から見た形状は、円形状となる。中央開口53は、中心部の位置が、スペーサ部材30の中央開口38の中心部の位置と等しくなるように構成される。
The second fixing plate 32 has a central opening 53 and two suction openings 54a and 54b.
When viewed from above and below, the central opening 53 is formed in the central region of the second fixing plate 32. Further, the shape of the central opening 53 when viewed from the vertical direction is a circular shape. The central opening 53 is configured so that the position of the central portion is equal to the position of the central portion of the central opening 38 of the spacer member 30.
 2つの吸入用の開口54a及び54bは、第2の固定プレート32の右側かつ奥側の頂点部55aから左側かつ手前側の頂点部55cに向かう対角線上に、中央開口53を間に挟んで形成される。
 吸入用の開口54aは、中央開口53と頂点部55aとの間に構成される。吸入用の開口54aは、第1の固定プレート28に形成される吐出用の開口47aと等しい形状を有する。矩形状の開口部分が中央開口53に沿うように位置し、半円状の開口部分の頂点が頂点部55aに向くように、吸入用の開口54aが形成される。
 吸入用の開口54bは、中央開口53と頂点部55cの間に構成される。吸入用の開口54bは、吸入用の開口54aと等しい形状を有する。矩形状の開口部分が中央開口53に沿うように位置し、半円状の開口部分の頂点が頂点部55cに向くように、吸入用の開口54bが形成される。
The two suction openings 54a and 54b are formed diagonally from the apex 55a on the right side and the back side of the second fixing plate 32 toward the apex 55c on the left side and the front side with the central opening 53 interposed therebetween. Will be done.
The suction opening 54a is configured between the central opening 53 and the apex 55a. The suction opening 54a has the same shape as the discharge opening 47a formed in the first fixing plate 28. An inhalation opening 54a is formed such that the rectangular opening is located along the central opening 53 and the apex of the semicircular opening faces the apex 55a.
The suction opening 54b is configured between the central opening 53 and the apex 55c. The inhalation opening 54b has the same shape as the inhalation opening 54a. An inhalation opening 54b is formed such that the rectangular opening is located along the central opening 53 and the apex of the semicircular opening faces the apex 55c.
 また図7に示すように、吸入用の開口54aは、上下方向から見た場合に、第2の共振板31の吸入口50aが内部に位置するように形成される。吸入用の開口54bは、上下方向から見た場合に、第2の共振板31の吸入口50bが内部に位置するように形成される。
 従って、上下方向から見た場合に、スペーサ部材30の吸入用の開口39aと、第2の固定プレート32の吸入用の開口54aとは、互いに重なり合う位置にそれぞれ形成される。またスペーサ部材30の吸入用の開口39bと、第2の固定プレート32の吸入用の開口54bとは、互いに重なり合う位置にそれぞれ形成される。
Further, as shown in FIG. 7, the suction opening 54a is formed so that the suction port 50a of the second resonance plate 31 is located inside when viewed from above and below. The suction opening 54b is formed so that the suction port 50b of the second resonance plate 31 is located inside when viewed from above and below.
Therefore, when viewed from the vertical direction, the suction opening 39a of the spacer member 30 and the suction opening 54a of the second fixing plate 32 are formed at positions where they overlap each other. Further, the suction opening 39b of the spacer member 30 and the suction opening 54b of the second fixing plate 32 are formed at positions where they overlap each other.
 図9に示すように、上下方向から見た場合に、第1の固定プレート28を90度回転させることで、第2の固定プレート32と等しい構成となる。すなわち第1の固定プレート28及び第2の固定プレート32は、上下方向から見た場合に、各開口の配置関係が、互いに等しい構成となる。従って、同じ部材を2つ準備し、向きを変えることで、第1の固定プレート28及び第2の固定プレート32としてそれぞれ使用することが可能となる。
 また、第1の共振板29及び第2の共振板31も、中央に構成される可撓部(第1の可撓部42及び第2の可撓部49)と、2つの孔(吸入口50a及び50b/吐出口43a及び43b)との位置関係が、互いに等しい構成となる。従って、同じ部材を2つ準備し、向きを変えることで、第1の共振板29及び第2の共振板31としてそれぞれ使用することが可能となる。
 このように同じ部材を向きを変えて使用することが可能であるので、部品の作成コストを抑えることが可能となる。
As shown in FIG. 9, when viewed from the vertical direction, the first fixing plate 28 is rotated by 90 degrees to have the same configuration as the second fixing plate 32. That is, the first fixing plate 28 and the second fixing plate 32 have a configuration in which the arrangement relations of the openings are equal to each other when viewed from the vertical direction. Therefore, by preparing two of the same members and changing their orientations, they can be used as the first fixing plate 28 and the second fixing plate 32, respectively.
Further, the first resonance plate 29 and the second resonance plate 31 also have a flexible portion (first flexible portion 42 and a second flexible portion 49) configured in the center and two holes (suction port). The positional relationship with the 50a and 50b / discharge ports 43a and 43b) is equal to each other. Therefore, by preparing two identical members and changing their orientations, they can be used as the first resonance plate 29 and the second resonance plate 31, respectively.
Since the same member can be used in different directions in this way, it is possible to reduce the production cost of the parts.
 図8に示すように、第1の固定プレート28、第1の共振板29、スペーサ部材30、第2の共振板31、及び第2の固定プレート32が、上下方向に沿って積層されて接続される。
 スペーサ部材30の中央開口38が、第1の共振板29の第1の可撓部42と、第2の共振板31の第2の可撓部42とにより挟まれることにより、流路空間S1が構成される。
 図9に示す中央開口38と、2つの吸入用の開口39a及び39bとを連通する連通孔の部分が、図1に示す流入口3として構成される。また中央開口38と、2つの吐出用の開口40a及び40bとを連通する連通孔の部分が、図1に示す流出口4として構成される。
 従って、本実施形態では、第1の共振板29及び第2の共振板31と、スペーサ部材30とが、流路空間構成部として機能する。
As shown in FIG. 8, the first fixing plate 28, the first resonance plate 29, the spacer member 30, the second resonance plate 31, and the second fixing plate 32 are laminated and connected in the vertical direction. Will be done.
The central opening 38 of the spacer member 30 is sandwiched between the first flexible portion 42 of the first resonance plate 29 and the second flexible portion 42 of the second resonance plate 31, so that the flow path space S1 Is configured.
The portion of the communication hole that communicates the central opening 38 shown in FIG. 9 and the two suction openings 39a and 39b is configured as the inflow port 3 shown in FIG. Further, the portion of the communication hole that communicates the central opening 38 and the two discharge openings 40a and 40b is configured as the outlet 4 shown in FIG.
Therefore, in the present embodiment, the first resonance plate 29, the second resonance plate 31, and the spacer member 30 function as a flow path space component.
 図8に示すように、スペーサ部材30の2つの吸入用の開口39a及び39bが、第1の共振板29及び第2の共振板31により挟まれることにより、吸入空間S2が構成される。
 第2の共振板31の、スペーサ部材30の2つの吸入用の開口39a及び39bを覆う領域には、吸入口50a及び50bが形成される。当該吸入口50a及び50bにより、吸入空間S2が、第2の固定プレート32の2つの吸入用の開口54a及び54bと連通される。
 本実施形態では、第1の共振板29及び第2の共振板31と、スペーサ部材30とが、吸入口50a及び50bと、流入口3とを連通する吸入空間S2を構成する吸入空間構成部としても機能する。
As shown in FIG. 8, the suction space S2 is formed by sandwiching the two suction openings 39a and 39b of the spacer member 30 by the first resonance plate 29 and the second resonance plate 31.
The suction ports 50a and 50b are formed in the region of the second resonance plate 31 that covers the two suction openings 39a and 39b of the spacer member 30. The suction ports 50a and 50b communicate the suction space S2 with the two suction openings 54a and 54b of the second fixed plate 32.
In the present embodiment, the first resonance plate 29, the second resonance plate 31, and the spacer member 30 form a suction space component S2 that communicates the suction ports 50a and 50b with the inflow port 3. Also works as.
 図8に示すように、スペーサ部材30の2つの吐出用の開口40a及び40bが、第1の共振板29及び第2の共振板31により挟まれることにより、吐出空間S3が構成される。
 第1の共振板29の、スペーサ部材30の2つの吐出用の開口40a及び40bを覆う領域には、吐出口43a及び43bが形成される。当該吐出口43a及び43bにより、吐出空間S3が、第1の固定プレート28の2つの吐出用の開口47a及び47bと連通される。
 本実施形態では、第1の共振板29及び第2の共振板31と、スペーサ部材30とが、吐出口43a及び43bと、流出口4とを連通する吐出空間S3を構成する吐出空間構成部としても機能する。
As shown in FIG. 8, the discharge space S3 is formed by sandwiching the two discharge openings 40a and 40b of the spacer member 30 between the first resonance plate 29 and the second resonance plate 31.
Discharge ports 43a and 43b are formed in the region of the first resonance plate 29 that covers the two ejection openings 40a and 40b of the spacer member 30. The discharge ports 43a and 43b communicate the discharge space S3 with the two discharge openings 47a and 47b of the first fixed plate 28.
In the present embodiment, the first resonance plate 29, the second resonance plate 31, and the spacer member 30 form a discharge space component S3 that communicates the discharge ports 43a and 43b with the outlet 4. Also works as.
 流体Fは、第2の固定プレート32の2つの吸入用の開口54a及び54bから吸入口50a及び50bを介して、吸入空間S2内に吸入される。吸入された流体Fは、流入口3を介して、ポンプ室として機能する流路空間S1内に流入される。
 流路空間S1に流入された流体Fは、ポンプ機能により、流出口4から吐出空間S3へ流出される。吐出空間S3から、吐出口43a及び43bを介して、第1の固定プレート28の2つの吐出用の開口47a及び47bに流体Fが吐出される。
The fluid F is sucked into the suction space S2 from the two suction openings 54a and 54b of the second fixed plate 32 through the suction ports 50a and 50b. The sucked fluid F flows into the flow path space S1 that functions as a pump chamber through the inflow port 3.
The fluid F flowing into the flow path space S1 is discharged from the outlet 4 to the discharge space S3 by the pump function. The fluid F is discharged from the discharge space S3 through the discharge ports 43a and 43b to the two discharge openings 47a and 47b of the first fixed plate 28.
 図8に示すように、第1の圧電素子33は、第1の可撓部42の上面57に接続される。第1の可撓部42の上面57は、第2の可撓部49に対向する面とは反対側の面である。第1の圧電素子33は、第1の固定プレート28の中央開口46内に配置される。
 図7に示すように、第1の圧電素子33は、上下方向から見た場合に、円形状となる。第1の圧電素子33は、中心部が、第1の可撓部42の中心部37と等しい位置となるように、第1の可撓部42の上面57に接続される。
 また上下方向から見て、第1の圧電素子33のサイズは、第1の可撓部42の上面57のサイズに対して一回り小さい。すなわち第1の圧電素子33は、上下方向から見て、流路空間S1の上方側の面の全領域に対して、一回り小さい領域に配置される。
As shown in FIG. 8, the first piezoelectric element 33 is connected to the upper surface 57 of the first flexible portion 42. The upper surface 57 of the first flexible portion 42 is a surface opposite to the surface facing the second flexible portion 49. The first piezoelectric element 33 is arranged in the central opening 46 of the first fixing plate 28.
As shown in FIG. 7, the first piezoelectric element 33 has a circular shape when viewed from the vertical direction. The first piezoelectric element 33 is connected to the upper surface 57 of the first flexible portion 42 so that the central portion is at the same position as the central portion 37 of the first flexible portion 42.
Further, when viewed from the vertical direction, the size of the first piezoelectric element 33 is one size smaller than the size of the upper surface 57 of the first flexible portion 42. That is, the first piezoelectric element 33 is arranged in a region one size smaller than the entire region of the upper surface of the flow path space S1 when viewed from the vertical direction.
 図8に示すように、第2の圧電素子34は、第2の可撓部49の下面58に接続される。第2の可撓部49の下面58は、第1の可撓部42に対向する面とは反対側の面である。第2の圧電素子34は、第2の固定プレート32の中央開口53内に配置される。
 第2の圧電素子34は、上下方向から見た場合に、第1の圧電素子33と等しい円形状となる。また第2の圧電素子34は、上下方向から見た場合に、第1の圧電素子33と重なる位置に配置される。
 従って、第2の圧電素子34は、中心部が、第2の可撓部49の中心部51と等しい位置となるように、第2の可撓部49の下面58に接続される。
 また上下方向から見て、第2の圧電素子34のサイズは、第2の可撓部49の下面58のサイズに対して一回り小さい。すなわち第2の圧電素子34は、上下方向から見て、流路空間S1の下方側の面の全領域に対して、一回り小さい領域に配置される。
As shown in FIG. 8, the second piezoelectric element 34 is connected to the lower surface 58 of the second flexible portion 49. The lower surface 58 of the second flexible portion 49 is a surface opposite to the surface facing the first flexible portion 42. The second piezoelectric element 34 is arranged in the central opening 53 of the second fixing plate 32.
The second piezoelectric element 34 has a circular shape equal to that of the first piezoelectric element 33 when viewed from above and below. Further, the second piezoelectric element 34 is arranged at a position overlapping with the first piezoelectric element 33 when viewed from the vertical direction.
Therefore, the second piezoelectric element 34 is connected to the lower surface 58 of the second flexible portion 49 so that the central portion is at the same position as the central portion 51 of the second flexible portion 49.
Further, when viewed from the vertical direction, the size of the second piezoelectric element 34 is one size smaller than the size of the lower surface 58 of the second flexible portion 49. That is, the second piezoelectric element 34 is arranged in a region one size smaller than the entire region of the lower surface of the flow path space S1 when viewed from the vertical direction.
 本実施形態では、第1の共振板29の第1の可撓部42と、第1の圧電素子33とにより、第1のダイヤフラムが構成される。第2の共振板31の第2の可撓部49と、第2の圧電素子34とにより、第2のダイヤフラムが構成される。 In the present embodiment, the first diaphragm is configured by the first flexible portion 42 of the first resonance plate 29 and the first piezoelectric element 33. The second flexible portion 49 of the second resonance plate 31 and the second piezoelectric element 34 form a second diaphragm.
 図8に示すように、逆止弁35は、2つの吐出口43a及び44bにそれぞれ設置される。逆止弁35は、吐出口43a及び44bから吐出用の開口47a及び47bに吐出される流体Fの流れを許容する。一方で、吐出用の開口47a及び47bから吐出口43a及び44bへ向かう流体Fの流れを規制する。
 吐出口43a及び44bに逆止弁35を設置することで、流体Fの逆流を防止することが可能となり、高いポンプ機能を発揮することが可能である。
 逆止弁35の具体的な構成は限定されず、任意の構成が採用されてよい。なお、図7では、逆止弁35の図示は省略されている。
As shown in FIG. 8, the check valve 35 is installed at each of the two discharge ports 43a and 44b, respectively. The check valve 35 allows the flow of the fluid F discharged from the discharge ports 43a and 44b to the discharge openings 47a and 47b. On the other hand, the flow of the fluid F from the discharge openings 47a and 47b to the discharge ports 43a and 44b is restricted.
By installing the check valves 35 at the discharge ports 43a and 44b, it is possible to prevent the backflow of the fluid F and to exhibit a high pump function.
The specific configuration of the check valve 35 is not limited, and any configuration may be adopted. Note that the check valve 35 is not shown in FIG. 7.
 なお、本実施形態では、第1の圧電素子33及び第2の圧電素子34に駆動信号(交流電圧)を印加することにより、第1のダイヤフラム及び第2のダイヤフラムを高周波数帯域にて高い応答力で振動させることが可能である。すなわち流路空間S1の体積の増減(ポンプ動作)が、高速に繰り返される。
 この結果、吸入口50a及び50bに逆止弁を設けなくても、ポンプ機能が低下することなく、高い性能が維持された。従って、必要な逆止弁の数を低減させることが可能となり、部品コストを抑えることが可能である。
 もちろん、吸入口50a及び50bに、逆止弁が設けられてもよい。
In this embodiment, by applying a drive signal (AC voltage) to the first piezoelectric element 33 and the second piezoelectric element 34, the first diaphragm and the second diaphragm have a high response in the high frequency band. It can be vibrated by force. That is, the volume increase / decrease (pump operation) of the flow path space S1 is repeated at high speed.
As a result, high performance was maintained without deteriorating the pump function even if the check valves were not provided in the suction ports 50a and 50b. Therefore, it is possible to reduce the number of required check valves and reduce the cost of parts.
Of course, check valves may be provided at the suction ports 50a and 50b.
 本実施形態において、第1の共振板29は、第1の板状部材の一実施形態に相当する。第2の共振板31は、第2の板状部材の一実施形態に相当する。第1の共振板29が第2の板状部材の一実施形態に相当し、第2の共振板31が第1の板状部材の一実施形態に相当すると見做すことも可能である。
 スペーサ部材30は、スペーサ部材の一実施形態に相当する。
 第1の圧電素子33及び第2の圧電素子は、第1の可撓部42及び第2の可撓部49のそれぞれを屈曲させる駆動機構として機能する。同じ駆動機構として機能する駆動制御部(図示は省略)から、第1の圧電素子33及び第2の圧電素子34に駆動信号(交流電圧)が印加される。
In the present embodiment, the first resonance plate 29 corresponds to one embodiment of the first plate-shaped member. The second resonance plate 31 corresponds to one embodiment of the second plate-shaped member. It can also be considered that the first resonance plate 29 corresponds to one embodiment of the second plate-shaped member, and the second resonance plate 31 corresponds to one embodiment of the first plate-shaped member.
The spacer member 30 corresponds to one embodiment of the spacer member.
The first piezoelectric element 33 and the second piezoelectric element function as a drive mechanism for bending each of the first flexible portion 42 and the second flexible portion 49. A drive signal (AC voltage) is applied to the first piezoelectric element 33 and the second piezoelectric element 34 from a drive control unit (not shown) that functions as the same drive mechanism.
 [材料]
 本実施形態では、第1の固定プレート28、第1の共振板29、スペーサ部材30、第2の共振板31、及び第2の固定プレート32の各々は、ステンレスや42アロイ等の金属材料が用いられる。もちろん、その他の金属材料が用いられてもよい。またプラスチック材料等の、金属材料以外の任意の材料が用いられてもよい。
 例えば、第1の共振板29の第1の可撓部42はプラスチック材料等で構成され、スペーサ部材30や第1の固定プレート28と接続される部分は金属材料で構成されてもよい。
 同様に、第2の共振板31の第2の可撓部49はプラスチック材料等で構成され、スペーサ部材30や第2の固定プレート32と接続される部分は金属材料で構成されてもよい。
[material]
In the present embodiment, each of the first fixing plate 28, the first resonance plate 29, the spacer member 30, the second resonance plate 31, and the second fixing plate 32 is made of a metal material such as stainless steel or 42 alloy. Used. Of course, other metallic materials may be used. Further, any material other than the metal material such as a plastic material may be used.
For example, the first flexible portion 42 of the first resonance plate 29 may be made of a plastic material or the like, and the portion connected to the spacer member 30 or the first fixing plate 28 may be made of a metal material.
Similarly, the second flexible portion 49 of the second resonance plate 31 may be made of a plastic material or the like, and the portion connected to the spacer member 30 or the second fixing plate 32 may be made of a metal material.
 [共振構成]
 本実施形態では、第1のダイヤフラム(第1の可撓部42+第1の圧電素子33)、及び第2のダイヤフラム(第2の可撓部49+第2の圧電素子34)を互いに共振させる共振構成が採用される。すなわち第1の可撓部42及び第2の可撓部49は、互いに共振するように構成される。
 具体的には、第1の可撓部42及び第1の圧電素子33の全体の共振周波数が、第2の可撓部49及び第2の圧電素子34の全体の共振周波数に近くなるように構成される。
[Resonance configuration]
In this embodiment, the resonance that resonates the first diaphragm (first flexible portion 42 + first piezoelectric element 33) and the second diaphragm (second flexible portion 49 + second piezoelectric element 34) with each other. The configuration is adopted. That is, the first flexible portion 42 and the second flexible portion 49 are configured to resonate with each other.
Specifically, the overall resonance frequency of the first flexible portion 42 and the first piezoelectric element 33 is close to the overall resonance frequency of the second flexible portion 49 and the second piezoelectric element 34. It is composed.
 [製造方法]
 図10及び図11は、流体制御装置27の製造方法を説明するための模式図である。
 まず、例えばエッチングやレーザ加工等の任意の加工技術により、金属材料からなる第1の固定プレート28、第1の共振板29、スペーサ部材30、第2の共振板31、及び第2の固定プレート32が作成される。
 図10A及びBに示すように、作成された第1の固定プレート28、第1の共振板29、スペーサ部材30、第2の共振板31、及び第2の固定プレート32が、所定の位置精度で積層され接続される。
 本実施形態では、拡散接合により各部材が接合される。これにより、各部材を金属として一体的に接合することが可能となる。もちろん、他の方法が用いられてもよい。
[Production method]
10 and 11 are schematic views for explaining a manufacturing method of the fluid control device 27.
First, a first fixing plate 28 made of a metal material, a first resonance plate 29, a spacer member 30, a second resonance plate 31, and a second fixing plate made of a metal material by an arbitrary processing technique such as etching or laser processing. 32 is created.
As shown in FIGS. 10A and 10B, the created first fixing plate 28, first resonance plate 29, spacer member 30, second resonance plate 31, and second fixing plate 32 have predetermined positional accuracy. It is laminated and connected with.
In this embodiment, each member is joined by diffusion joining. This makes it possible to integrally join each member as a metal. Of course, other methods may be used.
 図10Cに示すように、第1の可撓部42の上面57に、接着剤60を介して第1の圧電素子33が接続される。また、第2の可撓部49の下面58に、接着剤61を介して第2の圧電素子34が接続される。
 図10Dに示すように、第1の可撓部42が第2の可撓部49に向かって凹状に構成される。また、第2の可撓部49が第1の可撓部42に向かって凹状に構成される。
 図10Dに示すように、2つの吐出口43a及び44bに、逆止弁35が設置される。
As shown in FIG. 10C, the first piezoelectric element 33 is connected to the upper surface 57 of the first flexible portion 42 via the adhesive 60. Further, the second piezoelectric element 34 is connected to the lower surface 58 of the second flexible portion 49 via the adhesive 61.
As shown in FIG. 10D, the first flexible portion 42 is formed in a concave shape toward the second flexible portion 49. Further, the second flexible portion 49 is formed in a concave shape toward the first flexible portion 42.
As shown in FIG. 10D, check valves 35 are installed at the two discharge ports 43a and 44b.
 図11は、第1の可撓部42及び第2の可撓部49への第1の圧電素子33及び第2の圧電素子34の接続方法の一例を示す模式図である。
 図11Aに示すように、図10Bに示す凹状構成前の流体制御装置27が、保持治具23上に載置される。まずは、第2の固定プレート32側が、保持治具23上に載置される。
 そして、図11Aに示すように、加圧治具24により上方から下方に向けて、第1の圧電素子33が加圧される。加圧治具24による加圧により、第1の圧電素子33及び第1の可撓部42が、第2の可撓部49に向かって凹状に変形される。この状態で、接着剤60の硬化処理が実行される。
 これにより、図11Bに示すように、第1のダイヤフラム(第1の可撓部42+第1の圧電素子33)が凹状に構成された流体制御装置27が作成される。
 なお、加圧治具24は、先端部25がシリコンゴム等の柔軟材により構成されている。
FIG. 11 is a schematic view showing an example of a method of connecting the first piezoelectric element 33 and the second piezoelectric element 34 to the first flexible portion 42 and the second flexible portion 49.
As shown in FIG. 11A, the fluid control device 27 before the concave configuration shown in FIG. 10B is placed on the holding jig 23. First, the second fixing plate 32 side is placed on the holding jig 23.
Then, as shown in FIG. 11A, the first piezoelectric element 33 is pressurized from above to below by the pressurizing jig 24. Due to the pressurization by the pressurizing jig 24, the first piezoelectric element 33 and the first flexible portion 42 are deformed in a concave shape toward the second flexible portion 49. In this state, the curing treatment of the adhesive 60 is executed.
As a result, as shown in FIG. 11B, the fluid control device 27 in which the first diaphragm (first flexible portion 42 + first piezoelectric element 33) is concavely formed is created.
The tip portion 25 of the pressurizing jig 24 is made of a flexible material such as silicon rubber.
 図11Cに示すように、流体制御装置27の上下が反転され、第1の固定プレート28側が、保持治具23上に載置される。
 そして、図11Cに示すように、加圧治具24により上方から下方に向けて、第2の圧電素子34が加圧される。加圧治具24による加圧により、第2の圧電素子34及び第2の可撓部49が、第1の可撓部42に向かって凹状に変形される。この状態で、接着剤61の硬化処理が実行される。
 これにより、図11Dに示すように、第2のダイヤフラム(第2の可撓部49+第2の圧電素子34)が凹状に構成された流体制御装置27が作成される。
As shown in FIG. 11C, the fluid control device 27 is turned upside down, and the first fixing plate 28 side is placed on the holding jig 23.
Then, as shown in FIG. 11C, the second piezoelectric element 34 is pressurized from above to below by the pressurizing jig 24. Due to the pressurization by the pressurizing jig 24, the second piezoelectric element 34 and the second flexible portion 49 are deformed in a concave shape toward the first flexible portion 42. In this state, the curing process of the adhesive 61 is executed.
As a result, as shown in FIG. 11D, the fluid control device 27 in which the second diaphragm (second flexible portion 49 + second piezoelectric element 34) is configured in a concave shape is created.
 第1の圧電素子33を接着する際の加圧条件(以下、第1の加圧条件と記載する)、及び第2の圧電素子34を接着する際の加圧条件(第2の加圧条件と記載する)の各々は、任意に設定されてよい。例えば、第1の可撓部42及び第2の可撓部49の各々の凹み量が所望の凹み量となるように、加圧力、加圧時間、温度等が適宜設定されてよい。
 例えば、第1の加圧条件と、第2の加圧条件とを等しくする。これにより、工程の簡素化を図ることが可能となる。また、第1の可撓部42の凹み量と第2の可撓部49の凹む量とを等しくすることが可能となる。
 上でも述べたが、部材の共振周波数は、部材の形状からも影響を受ける。従って、第1の加圧条件と、第2の加圧条件とを等しくすることは、第1のダイヤフラム(第1の可撓部42+第1の圧電素子33)、及び第2のダイヤフラム(第2の可撓部49+第2の圧電素子34)の各々の共振周波数を互いに近づけるのに有利となる。
 もちろん、第1の加圧条件と、第2の加圧条件とが互いに異なるように設定されてもよい。例えば、第1の可撓部42の凹み量と第2の可撓部49の凹む量とが互いにことなるように構成されてもよい。
Pressurizing conditions for adhering the first piezoelectric element 33 (hereinafter referred to as first pressurizing conditions) and pressurizing conditions for adhering the second piezoelectric element 34 (second pressurizing conditions). Each of (described as) may be arbitrarily set. For example, the pressing force, the pressurizing time, the temperature, and the like may be appropriately set so that the respective dents of the first flexible portion 42 and the second flexible portion 49 have a desired dent amount.
For example, the first pressurizing condition and the second pressurizing condition are made equal. This makes it possible to simplify the process. Further, it is possible to make the amount of the dent of the first flexible portion 42 equal to the amount of the dent of the second flexible portion 49.
As mentioned above, the resonance frequency of the member is also affected by the shape of the member. Therefore, making the first pressurizing condition equal to the second pressurizing condition is to make the first diaphragm (first flexible portion 42 + first piezoelectric element 33) and the second diaphragm (first). It is advantageous to bring the resonance frequencies of the flexible portions 49 + the second piezoelectric element 34) of 2 closer to each other.
Of course, the first pressurizing condition and the second pressurizing condition may be set so as to be different from each other. For example, the dented amount of the first flexible portion 42 and the dented amount of the second flexible portion 49 may be configured to be different from each other.
 図11に示すように、本実施形態では、第1の圧電素子33の接着と、第1の可撓部42を凹状とするための変形とを、同時に実行することが可能である。言い換えれば、第1の圧電素子33の接着工程を行うことで、同時に第1の可撓部42を凹状に変形させることが可能である。
 また、本実施形態では、第2の圧電素子34の接着と、第2の可撓部49を凹状とするための変形とを、同時に実行することが可能である。言い換えれば、第2の圧電素子34の接着工程を行うことで、同時に第2の可撓部49を凹状に変形させることが可能である。
 この結果、流体制御装置27の製造工程を簡素化することが可能となり、製造にかかる時間も短縮することが可能である。
As shown in FIG. 11, in the present embodiment, it is possible to simultaneously perform the bonding of the first piezoelectric element 33 and the deformation for making the first flexible portion 42 concave. In other words, by performing the bonding step of the first piezoelectric element 33, it is possible to simultaneously deform the first flexible portion 42 into a concave shape.
Further, in the present embodiment, it is possible to simultaneously perform the bonding of the second piezoelectric element 34 and the deformation for making the second flexible portion 49 concave. In other words, by performing the bonding step of the second piezoelectric element 34, it is possible to simultaneously deform the second flexible portion 49 into a concave shape.
As a result, the manufacturing process of the fluid control device 27 can be simplified, and the manufacturing time can be shortened.
 [ポンプ動作]
 本実施形態では、駆動制御部(図示は省略)第1の圧電素子33及び第2の圧電素子34の各々に、同じ駆動信号(交流電圧)が印加される。
 これにより、第1のダイヤフラム(第1の可撓部42+第1の圧電素子33)の上方側への屈曲と、第2のダイヤフラム(第2の可撓部49+第2の圧電素子34)の下方側への屈曲とを、互いに同期させながら発生させることが可能となる。
 また、第1のダイヤフラム(第1の可撓部42+第1の圧電素子33)の下方側への屈曲と、第2のダイヤフラム(第2の可撓部49+第2の圧電素子34)の上方側への屈曲とを、互いに同期させながら発生させることが可能となる。
 すなわち、両方のダイヤフラムにおいて、流路空間S1の体積を増加させる方向への屈曲と、流路空間S1の体積を減少させる方向への屈曲とが、それぞれ同期して発生される。これにより、非常に高いポンプ機能が発揮される。
[Pump operation]
In the present embodiment, the same drive signal (AC voltage) is applied to each of the first piezoelectric element 33 and the second piezoelectric element 34 of the drive control unit (not shown).
As a result, the first diaphragm (first flexible portion 42 + first piezoelectric element 33) is bent upward, and the second diaphragm (second flexible portion 49 + second piezoelectric element 34) is bent upward. It is possible to generate downward bending while synchronizing with each other.
Further, the bending of the first diaphragm (first flexible portion 42 + first piezoelectric element 33) downward and above the second diaphragm (second flexible portion 49 + second piezoelectric element 34). It is possible to generate lateral bending while synchronizing with each other.
That is, in both diaphragms, bending in the direction of increasing the volume of the flow path space S1 and bending in the direction of decreasing the volume of the flow path space S1 are generated in synchronization with each other. As a result, a very high pump function is exhibited.
 また本実施形態では、第1のダイヤフラム、及び第2のダイヤフラムを互いに共振させる共振構成が採用される。従って、共振周波数にて、第1のダイヤフラム及び第2のダイヤフラムの各々が最大振動となり、非常に高いポンプ機能が発揮される。 Further, in the present embodiment, a resonance configuration in which the first diaphragm and the second diaphragm resonate with each other is adopted. Therefore, at the resonance frequency, each of the first diaphragm and the second diaphragm becomes the maximum vibration, and a very high pump function is exhibited.
 図12は、ポンプ動作時における流体Fの流れの一例を示す模式図である。
 本実施形態では、右側かつ奥側の吸入口50aから吸入された流体Fは、流路空間S1を通って、右側かつ手前側の吐出口43bから吐出される。
 また、左側かつ手前側の吸入口50bから吸入された流体Fは、流路空間S1を通って、左側かつ奥側側の吐出口43aから吐出される。
 もちろん、このような流路設計に限定される訳ではない。
FIG. 12 is a schematic diagram showing an example of the flow of the fluid F during pump operation.
In the present embodiment, the fluid F sucked from the suction port 50a on the right side and the back side passes through the flow path space S1 and is discharged from the discharge port 43b on the right side and the front side.
Further, the fluid F sucked from the suction port 50b on the left side and the front side passes through the flow path space S1 and is discharged from the discharge port 43a on the left side and the back side.
Of course, it is not limited to such a flow path design.
 なお、第1の共振板29の、スペーサ部材30の2つの吸入用の開口39a及び39bを覆う領域に、吸入口がそれぞれ形成されてもよい。また、第2の共振板31の、スペーサ部材30の2つの吐出用の開口40a及び40bを覆う領域に、吐出口がそれぞれ形成されてもよい。 Note that suction ports may be formed in the regions of the first resonance plate 29 that cover the two suction openings 39a and 39b of the spacer member 30, respectively. Further, discharge ports may be formed in the regions of the second resonance plate 31 that cover the two ejection openings 40a and 40b of the spacer member 30, respectively.
 [初期体積の減少]
 図13及び図14は、初期体積について説明するための模式図及び表である。
 図13Aは、凹状構成前の流路空間S1を模式的に示す図である。
 図13Bは、基準状態の流路空間S1を模式的に示す図である。
 図13Cは、ポンプ駆動中の流路空間S1を模式的に示す図である。
[Reduction of initial volume]
13 and 14 are schematic views and tables for explaining the initial volume.
FIG. 13A is a diagram schematically showing the flow path space S1 before the concave configuration.
FIG. 13B is a diagram schematically showing the flow path space S1 in the reference state.
FIG. 13C is a diagram schematically showing the flow path space S1 during pump drive.
 図13Aに示すように、第1の可撓部42及び第2の可撓部49が基準対向距離Hで配置される。
 図13Bに示すように、第1の可撓部42が凹み量Z1にて凹状に構成される。また第2の可撓部49が凹み量Z2にて凹状に構成される。
 図13Cに示すように、第1の可撓部42が基準状態から上下方向に沿って、振幅M1にて振動するとする。また第2の可撓部49が、第1の可撓部42に同期して、振幅M2にて振動するとする。
 最小体積状態における、第1の可撓部42と第2の可撓部49との最も小さくなる対向距離を、最小ギャップGmとする。
As shown in FIG. 13A, the first flexible portion 42 and the second flexible portion 49 are arranged at the reference facing distance H.
As shown in FIG. 13B, the first flexible portion 42 is formed in a concave shape with a recess amount Z1. Further, the second flexible portion 49 is formed in a concave shape with a dent amount Z2.
As shown in FIG. 13C, it is assumed that the first flexible portion 42 vibrates with an amplitude M1 along the vertical direction from the reference state. Further, it is assumed that the second flexible portion 49 vibrates with an amplitude M2 in synchronization with the first flexible portion 42.
The smallest facing distance between the first flexible portion 42 and the second flexible portion 49 in the minimum volume state is defined as the minimum gap Gm.
 図13Bに示すように、本実施形態では、基準状態において、第1の可撓部42及び第2の可撓部49の各々が凹状に構成されているので、初期体積を小さくすることが可能となる。従って、式(1)に示すように、体積変動率を大きくすることが可能となり、高いポンプ機能を実現することが可能となる。
 また、流路空間S1の外周部11においては、対向距離が基準対向距離Hに維持される。従って、流入口3及び流出口4における流路抵抗が大きくなってしまうことを防止することが可能となる。この結果、流体Fの流れを阻害することがなく、すなわち流路ロスを十分に抑えることが可能となり、高いポンプ機能を実現することが可能となる。
 また、第1の可撓部42及び第2の可撓部49の各々に関して、反力(背圧)を抑えることが可能となるので、高速の振動(ピストン運動)が可能となり、高いポンプ機能が発揮される。
As shown in FIG. 13B, in the present embodiment, since each of the first flexible portion 42 and the second flexible portion 49 is formed in a concave shape in the reference state, the initial volume can be reduced. Will be. Therefore, as shown in the equation (1), it is possible to increase the volume volatility and realize a high pump function.
Further, in the outer peripheral portion 11 of the flow path space S1, the facing distance is maintained at the reference facing distance H. Therefore, it is possible to prevent the flow path resistance at the inflow port 3 and the outflow port 4 from becoming large. As a result, the flow of the fluid F is not obstructed, that is, the flow path loss can be sufficiently suppressed, and a high pump function can be realized.
Further, since the reaction force (back pressure) can be suppressed for each of the first flexible portion 42 and the second flexible portion 49, high-speed vibration (piston movement) becomes possible and a high pump function is possible. Is demonstrated.
 例えば、第1の可撓部42及び第2の可撓部49を、直径9mmとなるサイズで構成する。また、基準対向距離Hが、0.1mm及び0.2mmとなる2つの実施形態を構成する。
 さらに、第1の可撓部42の凹み量Z1と、第2の可撓部49の凹み量Z2を等しい大きさに設計する。
 この場合、初期体積と、凹み量との関係は、図14の表に示す通りになる。
For example, the first flexible portion 42 and the second flexible portion 49 are configured to have a diameter of 9 mm. Further, it constitutes two embodiments in which the reference facing distance H is 0.1 mm and 0.2 mm.
Further, the dent amount Z1 of the first flexible portion 42 and the dent amount Z2 of the second flexible portion 49 are designed to have the same size.
In this case, the relationship between the initial volume and the amount of dent is as shown in the table of FIG.
 基準対向距離Hが0.1mmの場合、凹み量Z1及びZ2がともに0の場合(すなわち凹状構成前)は、初期体積は、6.361725立方mmとなる。
 凹み量Z1及びZ2がともに0.01mmの場合、初期体積は、5.725552立方mmとなる。従って、凹状構成前と比較すると、初期体積を90%に低減させることが可能となる。この結果、式(1)から、体積変動率を約1.11倍に増加させることが可能となる。
 凹み量Z1及びZ2がともに0.02mmの場合、初期体積は、5.089372立方mmとなる。従って、凹状構成前と比較すると、初期体積を80%に低減させることが可能となる。この結果、式(1)から、体積変動率を約1.25倍に増加させることが可能となる。
 凹み量Z1及びZ2がともに0.04mmの場合、初期体積は、3.816968立方mmとなる。従って、凹状構成前と比較すると、初期体積を60%に低減させることが可能となる。この結果、式(1)から、体積変動率を約1.67倍に増加させることが可能となる。
When the reference facing distance H is 0.1 mm and the recess amounts Z1 and Z2 are both 0 (that is, before the concave configuration), the initial volume is 6.361725 cubic mm.
When the dent amounts Z1 and Z2 are both 0.01 mm, the initial volume is 5.725552 cubic mm. Therefore, it is possible to reduce the initial volume to 90% as compared with the case before the concave structure. As a result, from the equation (1), it is possible to increase the volume volatility by about 1.11 times.
When the dent amounts Z1 and Z2 are both 0.02 mm, the initial volume is 5.089372 cubic mm. Therefore, it is possible to reduce the initial volume to 80% as compared with the case before the concave structure. As a result, it is possible to increase the volume volatility by about 1.25 times from the equation (1).
When the dent amounts Z1 and Z2 are both 0.04 mm, the initial volume is 3.816968 cubic mm. Therefore, it is possible to reduce the initial volume to 60% as compared with the case before the concave structure. As a result, it is possible to increase the volume volatility by about 1.67 times from the equation (1).
 基準対向距離Hが0.2mmの場合、凹み量Z1及びZ2がともに0の場合(すなわち凹状構成前)は、初期体積は、12.72345立方mmとなる。
 凹み量Z1及びZ2がともに0.01mmの場合、初期体積は、12.08728立方mmとなる。従って、凹状構成前と比較すると、初期体積を95%に低減させることが可能となる。この結果、式(1)から、体積変動率を約1.05倍に増加させることが可能となる。
 凹み量Z1及びZ2がともに0.02mmの場合、初期体積は、11.4511立方mmとなる。従って、凹状構成前と比較すると、初期体積を90%に低減させることが可能となる。この結果、式(1)から、体積変動率を約1.11倍に増加させることが可能となる。
 凹み量Z1及びZ2がともに0.04mmの場合、初期体積は、10.17869立方mmとなる。従って、凹状構成前と比較すると、初期体積を80%に低減させることが可能となる。この結果、式(1)から、体積変動率を約1.25倍に増加させることが可能となる。
When the reference facing distance H is 0.2 mm and the recess amounts Z1 and Z2 are both 0 (that is, before the concave configuration), the initial volume is 12.72345 cubic mm.
When the dent amounts Z1 and Z2 are both 0.01 mm, the initial volume is 12.08728 cubic mm. Therefore, it is possible to reduce the initial volume to 95% as compared with the case before the concave structure. As a result, it is possible to increase the volume volatility by about 1.05 times from the equation (1).
When the dent amounts Z1 and Z2 are both 0.02 mm, the initial volume is 11.4511 cubic mm. Therefore, it is possible to reduce the initial volume to 90% as compared with the case before the concave structure. As a result, from the equation (1), it is possible to increase the volume volatility by about 1.11 times.
When the dent amounts Z1 and Z2 are both 0.04 mm, the initial volume is 10.17869 cubic mm. Therefore, it is possible to reduce the initial volume to 80% as compared with the case before the concave structure. As a result, it is possible to increase the volume volatility by about 1.25 times from the equation (1).
 なお、図13Bに示す基準状態において、第1の可撓部42が第2の可撓部49に接触しないことが望ましい。従って、基準対向距離H>凹み量Z1+凹み量Z2となることが望ましい。なお、(基準対向距離H-(凹み量Z1+凹み量Z2))は、基準状態における第1の可撓部42と第2の可撓部49との最小対向距離に相当する。
 また、流体制御装置1の駆動時に、最小体積状態となった際に、第1の可撓部42が第2の可撓部49に接触しないことが望ましい。
 従って、図13Cに示すように、最小ギャップGm>0となることが望ましい。なお最小最小ギャップGmは、以下の式で表される。
 最小ギャップGm=基準対向距離H-(凹み量Z1+凹み量Z2)-(振幅M1/2+振幅M2/2)・・・(3)
In the reference state shown in FIG. 13B, it is desirable that the first flexible portion 42 does not come into contact with the second flexible portion 49. Therefore, it is desirable that the reference facing distance H> the dent amount Z1 + the dent amount Z2. In addition, (reference facing distance H- (recess amount Z1 + dent amount Z2)) corresponds to the minimum facing distance between the first flexible portion 42 and the second flexible portion 49 in the reference state.
Further, it is desirable that the first flexible portion 42 does not come into contact with the second flexible portion 49 when the minimum volume state is reached when the fluid control device 1 is driven.
Therefore, as shown in FIG. 13C, it is desirable that the minimum gap Gm> 0. The minimum minimum gap Gm is expressed by the following equation.
Minimum gap Gm = Reference facing distance H- (dent amount Z1 + dent amount Z2)-(amplitude M1 / 2 + amplitude M2 / 2) ... (3)
 すなわち、図13Bに示す基準状態における第1の可撓部42の中心部37と下面部材7の中心部51との間の最小対向距離が、ポンプ駆動時における(振幅M1/2+振幅M2/2)よりも大きくなることが望ましい。
 なお、第1の可撓部42及び第2の可撓部49の変形量は、第1の圧電素子33及び第2の圧電素子34の各々の曲げ剛性、第1の可撓部42及び第2の可撓部49の各々の曲げ剛性、第1の圧電素子33及び第2の圧電素子34の各々の接着時の加圧力との関係によって、適宜最適値が異なってくる。従って、各部材の曲げ剛性を考慮して、加圧力を調整することも重要である。
That is, the minimum facing distance between the central portion 37 of the first flexible portion 42 and the central portion 51 of the lower surface member 7 in the reference state shown in FIG. 13B is (amplitude M1 / 2 + amplitude M2 / 2) when the pump is driven. ) Is desirable.
The amount of deformation of the first flexible portion 42 and the second flexible portion 49 is the bending rigidity of each of the first piezoelectric element 33 and the second piezoelectric element 34, and the first flexible portion 42 and the first flexible portion 49. The optimum value will be appropriately different depending on the relationship between the bending rigidity of each of the flexible portions 49 of 2 and the pressing force at the time of bonding each of the first piezoelectric element 33 and the second piezoelectric element 34. Therefore, it is also important to adjust the pressing force in consideration of the bending rigidity of each member.
 本実施形態に係る流体制御装置27の構成を採用し、直径13mmにて、第1可撓部42及び第2の可撓部49をそれぞれ構成した。また基準対向距離Hは、1mmに設定した。
 第1の圧電素子33及び第2の圧電素子34に、30Vppの交流電圧を印加して、流体制御装置27を駆動させた。
 その結果、最大流量800ml/min以上、最大圧力30kPa以上の出力が得られた。このように、小型でありつつも非常に高性能な流体制御装置27が実現可能となる。
The configuration of the fluid control device 27 according to the present embodiment is adopted, and the first flexible portion 42 and the second flexible portion 49 are respectively configured with a diameter of 13 mm. The reference facing distance H was set to 1 mm.
An AC voltage of 30 Vpp was applied to the first piezoelectric element 33 and the second piezoelectric element 34 to drive the fluid control device 27.
As a result, an output with a maximum flow rate of 800 ml / min or more and a maximum pressure of 30 kPa or more was obtained. In this way, it is possible to realize a fluid control device 27 which is small in size but has very high performance.
 <第3の実施形態>
 図15は、第3の実施形態に係る流体制御装置の構成例を示す模式図である。
 本実施形態の流体制御装置64は、第2の実施形態に係る流体制御装置27と比較して、第2の圧電素子34が設けられない構成となる。
 すなわち、本実施形態では、第1の可撓部42のみに圧電素子(第1の圧電素子33)が接続される。そして、第1の可撓部42の振動により、第1の可撓部42と第2の可撓部とが、互いに共振するように構成される。
 本実施形態に係る流体制御装置64は、第1の実施形態に係る流体制御装置1と、第2の実施形態に係る流体制御装置27とを組み合わせた構成とも言える。
<Third embodiment>
FIG. 15 is a schematic diagram showing a configuration example of the fluid control device according to the third embodiment.
The fluid control device 64 of the present embodiment has a configuration in which the second piezoelectric element 34 is not provided as compared with the fluid control device 27 according to the second embodiment.
That is, in the present embodiment, the piezoelectric element (first piezoelectric element 33) is connected only to the first flexible portion 42. Then, the vibration of the first flexible portion 42 causes the first flexible portion 42 and the second flexible portion to resonate with each other.
The fluid control device 64 according to the present embodiment can be said to be a combination of the fluid control device 1 according to the first embodiment and the fluid control device 27 according to the second embodiment.
 図15Aに示すように、第2の共振板65が、平板の状態で凹状に変形されることなく用いられてもよい。従って、第2の可撓部66は、凹状に構成されず、平板状態となる。
 第2のダイヤフラムとなる第2の可撓部66の厚みは、第1の可撓部42の厚みよりも大きく設計される。これにより、第1のダイヤフラム(第1の可撓部42+第1の圧電素子33)全体の共振周波数を、第2のダイヤフラム(第2の可撓部66)の共振周波数に近づけることが可能となる。この結果、共振構成を実現することが可能となり、共振効果により高いポンプ機能を発揮することが可能となる。
As shown in FIG. 15A, the second resonance plate 65 may be used in the state of a flat plate without being deformed in a concave shape. Therefore, the second flexible portion 66 is not formed in a concave shape and is in a flat plate state.
The thickness of the second flexible portion 66, which is the second diaphragm, is designed to be larger than the thickness of the first flexible portion 42. This makes it possible to bring the resonance frequency of the entire first diaphragm (first flexible portion 42 + first piezoelectric element 33) closer to the resonance frequency of the second diaphragm (second flexible portion 66). Become. As a result, it becomes possible to realize a resonance configuration, and it becomes possible to exhibit a high pump function due to the resonance effect.
 図15Bに示すように、基準状態において、第2の共振板65の第2の可撓部66が、第1の可撓部42に向かって凹状に構成されてもよい。これにより、流路空間S1の初期体積を小さくすることが可能となる。従って、式(1)に示すように、体積変動率を大きくすることが可能となり、高いポンプ機能を実現することが可能となる。 As shown in FIG. 15B, in the reference state, the second flexible portion 66 of the second resonance plate 65 may be configured to be concave toward the first flexible portion 42. This makes it possible to reduce the initial volume of the flow path space S1. Therefore, as shown in the equation (1), it is possible to increase the volume volatility and realize a high pump function.
 本実施形態に係る流体制御装置64では、圧電素子が1枚しか用いられないので、部品コストを低減することが可能となる。また、圧電素子の接着工程も1回でよいので、流体制御装置64の製造工程を簡素化することが可能となる。また、製造にかかる時間も短縮することが可能である。
 図15Aに示す構成では、第2の可撓部66を凹状に構成する工程が不要となる。従って、製造工程を簡素化することが可能となり、製造にかかる時間も短縮することが可能である。一方で、図15Bに示す構成では、高いポンプ機能が発揮される。
Since only one piezoelectric element is used in the fluid control device 64 according to the present embodiment, it is possible to reduce the component cost. Further, since the bonding process of the piezoelectric element may be performed only once, the manufacturing process of the fluid control device 64 can be simplified. In addition, the time required for manufacturing can be shortened.
In the configuration shown in FIG. 15A, the step of forming the second flexible portion 66 in a concave shape becomes unnecessary. Therefore, it is possible to simplify the manufacturing process and shorten the time required for manufacturing. On the other hand, in the configuration shown in FIG. 15B, a high pump function is exhibited.
 <その他の実施形態>
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
<Other embodiments>
The present technique is not limited to the embodiments described above, and various other embodiments can be realized.
 図16は、他の実施形態に係る流体制御装置の構成例を示す模式図である。
 図16に示す流体制御装置70では、上下方向(Z方向)から見た場合に、可撓部(第1の可撓部71及び第2の可撓部72)の外周部の近傍に、溝部73が構成される。
 外周部の近傍は、外周部よりも内部側となる外周部に近い領域である。例えば、上下方向から可撓部を見た場合に最も幅が大きい部分のサイズを最大幅とする。その最大幅に基づいて、外周部の近傍となる領域を規定することが可能となる。
 例えば、外周部から最大幅の25%のサイズまでの領域を、外周部の近傍となる領域として規定することが可能となる。もちろん、25%よりも小さい割合のサイズまでの領域が、外周部の近傍となる領域として規定されてもよい。
FIG. 16 is a schematic diagram showing a configuration example of the fluid control device according to another embodiment.
In the fluid control device 70 shown in FIG. 16, when viewed from the vertical direction (Z direction), a groove portion is located near the outer peripheral portion of the flexible portion (first flexible portion 71 and second flexible portion 72). 73 is configured.
The vicinity of the outer peripheral portion is a region closer to the outer peripheral portion on the inner side than the outer peripheral portion. For example, the maximum width is the size of the portion having the widest width when the flexible portion is viewed from the vertical direction. Based on the maximum width, it is possible to define a region in the vicinity of the outer peripheral portion.
For example, a region from the outer peripheral portion to a size of 25% of the maximum width can be defined as a region in the vicinity of the outer peripheral portion. Of course, a region up to a proportion smaller than 25% may be defined as a region in the vicinity of the outer peripheral portion.
 典型的には、溝部73は、上下方向から見た場合に、可撓部の外周部に沿って全周にわたって形成される。これに限定されず、所定の間隔をあけて、間欠的に溝部73が形成されてもよい。
 また、可撓部の全周にわたって、同心円状に複数の溝部73が形成されてもよい。
Typically, the groove portion 73 is formed over the entire circumference along the outer peripheral portion of the flexible portion when viewed from the vertical direction. Not limited to this, the groove 73 may be formed intermittently at predetermined intervals.
Further, a plurality of groove portions 73 may be formed concentrically over the entire circumference of the flexible portion.
 図16Aに示す例では、第1の可撓部71の下面74に、上下方向から見て全周にわたって、溝部73が形成される。また第2の可撓部72の上面75に、上下方向からみて全周にわたって溝部73が形成される。第1の可撓部71に形成される溝部73と、第2の可撓部72に形成される溝部73とは、上下方向から見た場合に互いに等しい位置に形成される。 In the example shown in FIG. 16A, a groove portion 73 is formed on the lower surface 74 of the first flexible portion 71 over the entire circumference when viewed from the vertical direction. Further, a groove portion 73 is formed on the upper surface 75 of the second flexible portion 72 over the entire circumference when viewed from the vertical direction. The groove portion 73 formed in the first flexible portion 71 and the groove portion 73 formed in the second flexible portion 72 are formed at the same positions when viewed from the vertical direction.
 図16Bに示す例では、第1の可撓部71の上面76に、上下方向から見て全周にわたって、溝部73が形成される。また第2の可撓部72の下面77に、上下方向からみて全周にわたって溝部73が形成される。第1の可撓部71に形成される溝部73と、第2の可撓部72に形成される溝部73とは、上下方向から見た場合に互いに等しい位置に形成される。 In the example shown in FIG. 16B, a groove portion 73 is formed on the upper surface 76 of the first flexible portion 71 over the entire circumference when viewed from the vertical direction. Further, a groove portion 73 is formed on the lower surface 77 of the second flexible portion 72 over the entire circumference when viewed from the vertical direction. The groove portion 73 formed in the first flexible portion 71 and the groove portion 73 formed in the second flexible portion 72 are formed at the same positions when viewed from the vertical direction.
 図16Cに示す例では、第1の可撓部71の下面74に、上下方向から見て全周にわたって、同心円状に2つの溝部73が形成される。また第2の可撓部72の上面75に、上下方向からみて全周にわたって、同心円状に2つの溝部73が形成される。第1の可撓部71に形成される2つの溝部73と、第2の可撓部72に形成される2つの溝部73とは、上下方向から見た場合に互いに等しい位置に形成される。 In the example shown in FIG. 16C, two groove portions 73 are formed concentrically on the lower surface 74 of the first flexible portion 71 over the entire circumference when viewed from the vertical direction. Further, on the upper surface 75 of the second flexible portion 72, two groove portions 73 are formed concentrically over the entire circumference when viewed from the vertical direction. The two groove portions 73 formed in the first flexible portion 71 and the two groove portions 73 formed in the second flexible portion 72 are formed at the same positions when viewed from the vertical direction.
 図16Bに示す例では、第1の可撓部71の上面76及び下面74の各々に、上下方向から見て全周にわたって、溝部73が形成される。これら2つの溝部73は、上下方向から見た場合に、同心円状となる位置にそれぞれ形成される。
 また、第2の可撓部72の下面77及び上面75の各々に、上下方向から見て全周にわたって、溝部73が形成される。これら2つの溝部73は、上下方向から見た場合に、同心円状となる位置にそれぞれ形成される。
 第1の可撓部71に形成される2つの溝部73と、第2の可撓部72に形成される2つの溝部73とは、上下方向から見た場合に互いに等しい位置に形成される。
In the example shown in FIG. 16B, a groove portion 73 is formed on each of the upper surface 76 and the lower surface 74 of the first flexible portion 71 over the entire circumference when viewed from the vertical direction. These two groove portions 73 are formed at positions that are concentric when viewed from the vertical direction.
Further, a groove portion 73 is formed on each of the lower surface 77 and the upper surface 75 of the second flexible portion 72 over the entire circumference when viewed from the vertical direction. These two groove portions 73 are formed at positions that are concentric when viewed from the vertical direction.
The two groove portions 73 formed in the first flexible portion 71 and the two groove portions 73 formed in the second flexible portion 72 are formed at the same positions when viewed from the vertical direction.
 溝部73を形成することで、溝部73が形成される部分が変形しやすくなる。これにより、圧電素子の接着時の加圧による共振板の変形量や変形形状を最適化する事が可能となる。
 また、可撓部に接着される圧電素子の外周部では、可撓部に発生する応力が大きくなる。従って、圧電素子の外周部を基準とした位置に溝部73を形成することで、可撓部に発生する応力を緩和することが可能となる。この結果、可撓部が破壊されてしまうといったことを防止することが可能となる。
 なお、圧電素子の外周部を基準とした位置は、圧電素子の外周部を基準として定められる任意の位置を含む。
 例えば、上下方向から見た場合において、圧電素子の外周部と同じ位置、圧電素子の外周部よりも所定の長さだけ外側となる位置、圧電素子の外周部よりも所定の長さだけ内側となる位置等が、外周部を基準とした位置に含まれる。なお、所定の長さは任意に設定されてよい。
 もちろん、圧電素子の外周部を基準とした位置として、他の任意の方法にて設定された位置が含まれてもよい。
By forming the groove portion 73, the portion in which the groove portion 73 is formed is easily deformed. This makes it possible to optimize the amount of deformation and the deformed shape of the resonance plate due to pressurization during bonding of the piezoelectric element.
Further, in the outer peripheral portion of the piezoelectric element bonded to the flexible portion, the stress generated in the flexible portion becomes large. Therefore, by forming the groove portion 73 at a position with respect to the outer peripheral portion of the piezoelectric element, it is possible to relieve the stress generated in the flexible portion. As a result, it is possible to prevent the flexible portion from being destroyed.
The position with respect to the outer peripheral portion of the piezoelectric element includes an arbitrary position determined with reference to the outer peripheral portion of the piezoelectric element.
For example, when viewed from the vertical direction, the position is the same as the outer peripheral portion of the piezoelectric element, the position is outside the outer peripheral portion of the piezoelectric element by a predetermined length, and the position is inside the outer peripheral portion of the piezoelectric element by a predetermined length. Is included in the position with respect to the outer peripheral portion. The predetermined length may be arbitrarily set.
Of course, the position set by any other method may be included as the position with respect to the outer peripheral portion of the piezoelectric element.
 また、接着剤を用いて、圧電素子を可撓部に接着させる場合、接着剤の量によって、可撓部及び圧電素子全体の共振周波数にばらつきが発生してしまう可能性がある。
 これに対して、溝部73を適宜形成することで、共振周波数のばらつきを抑えることが可能となる。
 例えば、溝部73を適宜形成することで、第1の可撓部71及び第2の可撓部72の各々の共振周波数を互いに近づけることが容易となる。
Further, when the piezoelectric element is adhered to the flexible portion by using an adhesive, the resonance frequency of the flexible portion and the entire piezoelectric element may vary depending on the amount of the adhesive.
On the other hand, by appropriately forming the groove portion 73, it is possible to suppress the variation in the resonance frequency.
For example, by appropriately forming the groove portion 73, it becomes easy to bring the resonance frequencies of the first flexible portion 71 and the second flexible portion 72 closer to each other.
 溝部73の形成位置、数、幅、深さ等は限定されず、任意に設計されてよい。これらのパラメータは、共振板の共振周波数や、圧電素子の接着後の変形量等と密接な関係が有るので、これらを考慮して決定する事が望まれる。
 溝部73の形成方法も限定されない。例えばエッチングやレーザ加工等の任意の加工技術が用いられてよい。エッチングやレーザ加工等により共振板を作成する際に、溝部73も同時に形成することが可能である。
The formation position, number, width, depth, etc. of the groove 73 are not limited, and may be arbitrarily designed. Since these parameters are closely related to the resonance frequency of the resonance plate, the amount of deformation of the piezoelectric element after bonding, and the like, it is desirable to determine these parameters in consideration of these.
The method of forming the groove 73 is also not limited. For example, any processing technique such as etching or laser processing may be used. When the resonance plate is produced by etching, laser processing, or the like, the groove portion 73 can also be formed at the same time.
 [電子機器について]
 上述した本技術に係る各流体制御装置の用途は特に限定されないが、例えば電子機器に搭載することが可能である。各流体制御装置は電子機器内の空気を外部に吐出し、あるいは電子機器外部から空気を吸入することができる。
 例えば、人体装着型の圧迫発生用のデバイス、小型冷却デバイス、ロボット等の空気圧アクチュエータ用のポンプ等、様々な用途に、各流体制御装置を活用する事が可能である。
 具体例として、例えば、上記の各流体制御装置は、電子機器内の発熱体に流体を吹き付けることによって発熱を抑制する冷却用デバイスとして利用することができる。例えば携帯電話などの携帯機器に流体制御装置を搭載させて、冷却を行うことができる。
 また、触覚提示装置等の電子機器に上記流体制御装置を搭載することができ、擬似的圧覚や触覚を提示することができる。
 また、血圧計といった電子機器に上記流体制御装置を搭載することができる。
 また、空気圧で伸縮するゴムなどで作られる伸縮性のアクチュエータである人工筋肉に上述の各流体制御装置を適用することができる。
 各流体制御装置は小型化が可能であるため、容易に電子機器内に内蔵させることが可能である。また電子機器の小型化にも非常に有利である。また各流体制御装置は高い性能を有しているので、各用途において、高性能な電子機器を実現することが可能となる。
[About electronic devices]
The application of each fluid control device according to the above-mentioned technique is not particularly limited, but it can be mounted on, for example, an electronic device. Each fluid control device can discharge the air inside the electronic device to the outside or suck the air from the outside of the electronic device.
For example, each fluid control device can be used for various purposes such as a human body-mounted device for generating compression, a small cooling device, and a pump for a pneumatic actuator such as a robot.
As a specific example, for example, each of the above fluid control devices can be used as a cooling device that suppresses heat generation by blowing a fluid onto a heating element in an electronic device. For example, a mobile device such as a mobile phone can be equipped with a fluid control device for cooling.
Further, the fluid control device can be mounted on an electronic device such as a tactile presentation device, and a pseudo pressure sense or a tactile sense can be presented.
Further, the fluid control device can be mounted on an electronic device such as a blood pressure monitor.
Further, each of the above-mentioned fluid control devices can be applied to an artificial muscle which is an elastic actuator made of rubber or the like that expands and contracts by air pressure.
Since each fluid control device can be miniaturized, it can be easily incorporated in an electronic device. It is also very advantageous for miniaturization of electronic devices. Further, since each fluid control device has high performance, it is possible to realize a high-performance electronic device in each application.
 各図面を参照して説明した流体制御装置、流路空間構成部、吸入空間構成部、吐出空間構成部、流路空間、吸入空間、吐出空間、駆動機構、圧電素子、溝部等の各構成、各製造方法等はあくまで一実施形態であり、本技術の趣旨を逸脱しない範囲で、任意に変形可能である。すなわち本技術を実施するための他の任意の構成や方法等が採用されてよい。 Each configuration of the fluid control device, flow path space configuration unit, suction space configuration unit, discharge space configuration unit, flow path space, suction space, discharge space, drive mechanism, piezoelectric element, groove portion, etc., described with reference to each drawing. Each manufacturing method and the like is only one embodiment, and can be arbitrarily modified without departing from the spirit of the present technology. That is, any other configuration, method, or the like for implementing the present technique may be adopted.
 本開示において、説明の理解を容易とするために、「略」「ほぼ」「おおよそ」等の文言が適宜使用されている。一方で、これら「略」「ほぼ」「おおよそ」等の文言を使用する場合と使用しない場合とで、明確な差異が規定されるわけではない。
 すなわち、本開示において、「中心」「中央」「均一」「等しい」「同じ」「直交」「平行」「対称」「延在」「軸方向」「円柱形状」「円筒形状」「リング形状」「円環形状」等の、形状、サイズ、位置関係、状態等を規定する概念は、「実質的に中心」「実質的に中央」「実質的に均一」「実質的に等しい」「実質的に同じ」「実質的に直交」「実質的に平行」「実質的に対称」「実質的に延在」「実質的に軸方向」「実質的に円柱形状」「実質的に円筒形状」「実質的にリング形状」「実質的に円環形状」等を含む概念とする。
 例えば「完全に中心」「完全に中央」「完全に均一」「完全に等しい」「完全に同じ」「完全に直交」「完全に平行」「完全に対称」「完全に延在」「完全に軸方向」「完全に円柱形状」「完全に円筒形状」「完全にリング形状」「完全に円環形状」等を基準とした所定の範囲(例えば±10%の範囲)に含まれる状態も含まれる。
 従って、「略」「ほぼ」「おおよそ」等の文言が付加されていない場合でも、いわゆる「略」「ほぼ」「おおよそ」等を付加して表現され得る概念が含まれ得る。反対に、「略」「ほぼ」「おおよそ」等を付加して表現された状態について、完全な状態が必ず排除されるというわけではない。
In this disclosure, words such as "abbreviation", "almost", and "approximate" are appropriately used to facilitate understanding of the explanation. On the other hand, there is no clear difference between the case where these words such as "abbreviation", "almost" and "approximate" are used and the case where they are not used.
That is, in the present disclosure, "center", "center", "uniform", "equal", "same", "orthogonal", "parallel", "symmetrical", "extended", "axial direction", "cylindrical shape", "cylindrical shape", and "ring shape". Concepts that define shape, size, positional relationship, state, etc., such as "circular shape", are "substantially center", "substantially center", "substantially uniform", "substantially equal", and "substantially equal". Same as "substantially orthogonal""substantiallyparallel""substantiallysymmetric""substantiallyextended""substantiallyaxial""substantiallycylindrical""substantiallycylindrical""substantiallycylindrical" The concept includes "substantially a ring shape" and "substantially an annular shape".
For example, "perfectly centered", "perfectly centered", "perfectly uniform", "perfectly equal", "perfectly identical", "perfectly orthogonal", "perfectly parallel", "perfectly symmetric", "perfectly extending", "perfectly extending". Includes states that are included in a predetermined range (for example, ± 10% range) based on "axial direction", "completely cylindrical shape", "completely cylindrical shape", "completely ring shape", "completely annular shape", etc. Is done.
Therefore, even when words such as "abbreviation", "almost", and "approximate" are not added, a concept that can be expressed by adding so-called "abbreviation", "almost", "approximate", etc. can be included. On the contrary, the complete state is not always excluded from the state expressed by adding "abbreviation", "almost", "approximate" and the like.
 本開示において、「Aより大きい」「Aより小さい」といった「より」を使った表現は、Aと同等である場合を含む概念と、Aと同等である場合を含まない概念の両方を包括的に含む表現である。例えば「Aより大きい」は、Aと同等は含まない場合に限定されず、「A以上」も含む。また「Aより小さい」は、「A未満」に限定されず、「A以下」も含む。
 本技術を実施する際には、上記で説明した効果が発揮されるように、「Aより大きい」及び「Aより小さい」に含まれる概念から、具体的な設定等を適宜採用すればよい。
In the present disclosure, expressions using "more" such as "greater than A" and "less than A" comprehensively include both the concept including the case equivalent to A and the concept not including the case equivalent to A. It is an expression included in. For example, "greater than A" is not limited to the case where the equivalent of A is not included, and "greater than or equal to A" is also included. Further, "less than A" is not limited to "less than A" and includes "less than or equal to A".
When implementing this technique, specific settings and the like may be appropriately adopted from the concepts included in "greater than A" and "less than A" so that the effects described above can be exhibited.
 以上説明した本技術に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。 It is also possible to combine at least two feature parts among the feature parts related to the present technology described above. That is, the various feature portions described in each embodiment may be arbitrarily combined without distinction between the respective embodiments. Further, the various effects described above are merely exemplary and not limited, and other effects may be exhibited.
 なお、本技術は以下のような構成も採ることができる。
(1)
 可撓性を有する可撓部と、前記可撓部に対向する対向部とを有し、前記可撓部と前記対向部との間に、流体の流路となる流路空間を構成する流路空間構成部と、
 前記可撓部と前記対向部とが対向する対向方向から見た場合に、前記流路空間の外周部に構成され、前記流路空間へ前記流体を流入させる流入口と、
 前記対向方向から見た場合に、前記流路空間の前記外周部の前記流入口とは異なる位置に構成され、前記流路空間から前記流体を流出させる流出口と、
 前記可撓部を屈曲させ、前記流路空間の体積を増減させる駆動機構と
 を具備し、
 前記可撓部は、前記駆動機構により屈曲されていない基準状態において、前記対向方向から見た場合に前記流路空間の前記外周部よりも内部側となる領域の少なくとも一部が、前記対向部に向かって凹状となるように構成される
 流体制御装置。
(2)(1)に記載の流体制御装置であって、
 前記可撓部は、前記基準状態において、前記対向方向から見た場合の中心部が、前記対向部に向かって凹状となるように構成される
 流体制御装置。
(3)(1)又は(2)に記載の流体制御装置であって、
 前記可撓部は、前記基準状態において、板状部材が前記対向部に向かって凹状に変形された形状を有する
 流体制御装置。
(4)(1)から(3)のうちいずれか1つに記載の流体制御装置であって、
 前記駆動機構は、前記可撓部の前記基準状態において凹状となる部分が、前記対向方向に沿って最も大きく移動するように、前記可撓部を屈曲させる
 流体制御装置。
(5)(1)から(4)のうちいずれか1つに記載の流体制御装置であって、
 前記駆動機構は、前記可撓部の前記対向部に対向する側の面とは反対側の面に接続される圧電素子を有する
 流体制御装置
(6)(1)から(5)のうちいずれか1つに記載の流体制御装置であって、
 前記可撓部を、第1の可撓部とすると、
 前記対向部は、可撓性を有する第2の可撓部により構成され、
 前記駆動機構は、前記第2の可撓部を屈曲させ、
 前記第2の可撓部は、前記基準状態において、前記対向方向から見た場合に前記流路空間の前記外周部よりも内部側となる領域の少なくとも一部が、前記第1の可撓部に向かって凹状となるように構成される
 流体制御装置。
(7)(6)に記載の流体制御装置であって、
 前記第1の可撓部及び前記第2の可撓部は、互いに共振するように構成される
 流体制御装置。
(8)(7)に記載の流体制御装置であって、
 前記駆動機構は、
 前記第1の可撓部の前記第2の可撓部に対向する側の面とは反対側の面に接続される第1の圧電素子と、
 前記第2の可撓部の前記第1の可撓部に対向する側の面とは反対側の面に接続される第2の圧電素子と
 を有し、
 前記第1の可撓部及び前記第1の圧電素子の全体の共振周波数が、前記第2の可撓部及び前記第2の圧電素子の全体の共振周波数に近くなるように構成される
 流体制御装置。
(9)(1)から(5)のうちいずれか1つに記載の流体制御装置であって、
 前記可撓部を、第1の可撓部とすると、
 前記対向部は、可撓性を有する第2の可撓部により構成され、
 前記第1の可撓部及び前記第2の可撓部は、互いに共振するように構成される
 流体制御装置。
(10)(9)に記載の流体制御装置であって、
 前記駆動機構は、前記第1の可撓部の前記第2の可撓部に対向する側の面とは反対側の面に接続される圧電素子を有し、
 第2の可撓部の共振周波数が、前記第1の可撓部及び前記圧電素子の全体の共振周波数に近くなるように構成される
 流体制御装置。
(11)(10)に記載の流体制御装置であって、
 前記第2の可撓部の厚みは、前記第1の可撓部の厚みよりも大きい
 流体制御装置。
(12)(8)から(11)のうちいずれか1つに記載の流体制御装置であって、
 前記第2の可撓部は、前記基準状態において、前記対向方向から見た場合に前記流路空間の前記外周部よりも内部側となる領域の少なくとも一部が、前記第1の可撓部に向かって凹状となるように構成される
 流体制御装置。
(13)(1)から(12)のうちいずれか1つに記載の流体制御装置であって、
 前記可撓部は、前記対向方向から見た場合に、前記可撓部の外周部の近傍に構成された溝部を有する
 流体制御装置。
(14)(13)に記載の流体制御装置であって、
 前記駆動機構は、前記可撓部の前記対向部に対向する側の面とは反対側の面に接続される圧電素子を有し、
 前記溝部は、前記対向方向から見た場合に、前記圧電素子の外周部を基準とした位置に構成される
 流体制御装置。
(15)(1)から(14)のうちいずれか1つに記載の流体制御装置であって、さらに、
 前記流体が吸入される吸入口と、
 前記吸入口と前記流入口とを連通する吸入空間を構成する吸入空間構成部と、
 前記流体が吐出される吐出口と、
 前記吐出口と前記流出口とを連通する吐出空間を構成する吐出空間構成部と
 を具備する流体制御装置。
(16)(1)から(15)のうちいずれか1つに記載の流体制御装置であって、
 前記流路空間構成部は、
 前記対向方向から見た場合に中央の領域が前記可撓部を構成し、金属材料からなる第1の板状部材と、
 前記対向方向から見た場合に中央の領域が前記対向部を構成し、金属材料からなる第2の板状部材と、
 前記対向方向から見た場合に中央の領域が開口となり、所定の厚みを有し、前記第1の板状部材と前記第2の板状部材との間に配置され、前記第1の板状部材と前記第2の板状部材との各々に拡散接合により接合されるスペーサ部材と
 を有する流体制御装置。
(17)(16)に記載の流体制御装置であって、
 前記スペーサ部材は、前記開口の外周部に連通するように構成された吸入用の開口と、前記開口の外周部に連通するように前記吸入用の開口とは異なる位置に構成された吐出用の開口とを有する
 流体制御装置。
(18)(17)に記載の流体制御装置であって、
 前記第1の板状部材の前記吸入用の開口を覆う領域、又は前記第2の板状部材の前記吸入用の開口を覆う領域の少なくとも一方に、前記流体が吸入される吸入口が構成され、
 前記第1の板状部材の前記吐出用の開口を覆う領域、又は前記第2の板状部材の前記吐出用の開口を覆う領域の少なくとも一方に、前記流体が吐出される吐出口が構成される
 流体制御装置。
(19)
  可撓性を有する可撓部と、前記可撓部に対向する対向部とを有し、前記可撓部と前記対向部との間に、流体の流路となる流路空間を構成する流路空間構成部と、
  前記可撓部と前記対向部とが対向する対向方向から見た場合に、前記流路空間の外周部に構成され、前記流路空間へ前記流体を流入させる流入口と、
  前記対向方向から見た場合に、前記流路空間の前記外周部の前記流入口とは異なる位置に構成され、前記流路空間から前記流体を流出させる流出口と、
 前記可撓部を屈曲させ、前記流路空間の体積を増減させる駆動機構と
 を有し、
 前記可撓部は、前記駆動機構により屈曲されていない基準状態において、前記対向方向から見た場合に前記流路空間の前記外周部よりも内部側となる領域の少なくとも一部が、前記対向部に向かって凹状となるように構成される
 流体制御装置。
 を具備する電子機器。
The present technology can also adopt the following configurations.
(1)
A flow having a flexible portion and a facing portion facing the flexible portion, and forming a flow path space serving as a fluid flow path between the flexible portion and the facing portion. Road space component and
When viewed from the opposite direction in which the flexible portion and the facing portion face each other, an inflow port configured on the outer peripheral portion of the flow path space and allowing the fluid to flow into the flow path space.
When viewed from the opposite direction, the outlet is configured at a position different from the inlet of the outer peripheral portion of the flow path space, and the fluid flows out from the flow path space.
It is provided with a drive mechanism that bends the flexible portion and increases or decreases the volume of the flow path space.
In the reference state where the flexible portion is not bent by the drive mechanism, at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the facing direction is the facing portion. A fluid control device configured to be concave toward.
(2) The fluid control device according to (1).
The flexible portion is a fluid control device configured such that, in the reference state, the central portion when viewed from the facing direction is concave toward the facing portion.
(3) The fluid control device according to (1) or (2).
The flexible portion is a fluid control device having a shape in which a plate-shaped member is deformed in a concave shape toward the facing portion in the reference state.
(4) The fluid control device according to any one of (1) to (3).
The drive mechanism is a fluid control device that bends the flexible portion so that the concave portion of the flexible portion in the reference state moves most along the facing direction.
(5) The fluid control device according to any one of (1) to (4).
The drive mechanism is any one of fluid control devices (6) (1) to (5) having a piezoelectric element connected to a surface of the flexible portion opposite to the surface of the flexible portion facing the facing portion. The fluid control device according to one.
Assuming that the flexible portion is the first flexible portion,
The facing portion is composed of a second flexible portion having flexibility.
The drive mechanism bends the second flexible portion, and the drive mechanism bends the second flexible portion.
In the second flexible portion, at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the opposite direction in the reference state is the first flexible portion. A fluid control device configured to be concave toward.
(7) The fluid control device according to (6).
The first flexible portion and the second flexible portion are fluid control devices configured to resonate with each other.
(8) The fluid control device according to (7).
The drive mechanism is
A first piezoelectric element connected to a surface of the first flexible portion opposite to the surface of the first flexible portion facing the second flexible portion.
It has a second piezoelectric element connected to a surface of the second flexible portion opposite to the surface of the first flexible portion facing the first flexible portion.
Fluid control configured so that the overall resonance frequency of the first flexible portion and the first piezoelectric element is close to the overall resonance frequency of the second flexible portion and the second piezoelectric element. Device.
(9) The fluid control device according to any one of (1) to (5).
Assuming that the flexible portion is the first flexible portion,
The facing portion is composed of a second flexible portion having flexibility.
The first flexible portion and the second flexible portion are fluid control devices configured to resonate with each other.
(10) The fluid control device according to (9).
The drive mechanism has a piezoelectric element connected to a surface of the first flexible portion opposite to the surface of the first flexible portion facing the second flexible portion.
A fluid control device configured such that the resonance frequency of the second flexible portion is close to the resonance frequency of the entire first flexible portion and the piezoelectric element.
(11) The fluid control device according to (10).
A fluid control device in which the thickness of the second flexible portion is larger than the thickness of the first flexible portion.
(12) The fluid control device according to any one of (8) to (11).
In the second flexible portion, at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the opposite direction in the reference state is the first flexible portion. A fluid control device configured to be concave toward.
(13) The fluid control device according to any one of (1) to (12).
The flexible portion is a fluid control device having a groove portion formed in the vicinity of the outer peripheral portion of the flexible portion when viewed from the facing direction.
(14) The fluid control device according to (13).
The drive mechanism has a piezoelectric element connected to a surface of the flexible portion opposite to the surface of the flexible portion facing the facing portion.
The groove portion is a fluid control device configured at a position with respect to the outer peripheral portion of the piezoelectric element when viewed from the facing direction.
(15) The fluid control device according to any one of (1) to (14), and further.
The suction port from which the fluid is sucked and
A suction space component that constitutes a suction space that communicates the suction port and the inflow port,
The discharge port from which the fluid is discharged and
A fluid control device including a discharge space component that constitutes a discharge space that communicates the discharge port and the outlet.
(16) The fluid control device according to any one of (1) to (15).
The flow path space component is
When viewed from the opposite direction, the central region constitutes the flexible portion, and the first plate-shaped member made of a metal material and
When viewed from the facing direction, the central region constitutes the facing portion, and the second plate-shaped member made of a metal material and
When viewed from the opposite direction, the central region becomes an opening, has a predetermined thickness, is arranged between the first plate-shaped member and the second plate-shaped member, and has the first plate-shaped member. A fluid control device having a spacer member bonded to each of the member and the second plate-shaped member by diffusion bonding.
(17) The fluid control device according to (16).
The spacer member is configured for suction at a position different from the suction opening so as to communicate with the outer peripheral portion of the opening and the suction opening so as to communicate with the outer peripheral portion of the opening. A fluid control device with an opening.
(18) The fluid control device according to (17).
A suction port into which the fluid is sucked is configured in at least one of a region covering the suction opening of the first plate-shaped member or a region covering the suction opening of the second plate-shaped member. ,
A discharge port for discharging the fluid is configured in at least one of a region covering the discharge opening of the first plate-shaped member or a region covering the discharge opening of the second plate-shaped member. Fluid control device.
(19)
A flow having a flexible portion and a facing portion facing the flexible portion, and forming a flow path space serving as a fluid flow path between the flexible portion and the facing portion. Road space component and
When viewed from the opposite direction in which the flexible portion and the facing portion face each other, an inflow port configured on the outer peripheral portion of the flow path space and allowing the fluid to flow into the flow path space.
When viewed from the opposite direction, the outlet is configured at a position different from the inlet of the outer peripheral portion of the flow path space, and the fluid flows out from the flow path space.
It has a drive mechanism that bends the flexible portion and increases or decreases the volume of the flow path space.
In the reference state where the flexible portion is not bent by the drive mechanism, at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the facing direction is the facing portion. A fluid control device configured to be concave toward.
An electronic device equipped with.
 Gm…最小ギャップ
 H…基準対向距離
 M…振幅
 S1…流路空間
 S2…吸入空間
 S3…吐出空間
 Z…凹み量
 1、27、64、70…流体制御装置
 2…流路空間構成部
 3…流入口
 4…流出口
 5…駆動機構
 6…上面部材
 7…下面部材
 8a、8b、30…スペーサ部材
 11…流路空間の外周部
 15…上面部材の中心部
 17…圧電素子
 29…第1の共振板
 31、65…第2の共振板
 33…第1の圧電素子
 34…第2の圧電素子
 37…第1の可撓部の中心部
 42、71…第1の可撓部
 43a、43b…吐出口
 49、66、72…第2の可撓部
 50a、50b…吸入口
 51…第2の可撓部の中心部
 73…溝部
Gm ... Minimum gap H ... Reference facing distance M ... Amplification S1 ... Flow path space S2 ... Suction space S3 ... Discharge space Z ... Depression amount 1, 27, 64, 70 ... Fluid control device 2 ... Flow path space component 3 ... Flow Inlet 4 ... Outlet 5 ... Drive mechanism 6 ... Top surface member 7 ... Bottom surface member 8a, 8b, 30 ... Spacer member 11 ... Outer peripheral part of flow path space 15 ... Central part of top surface member 17 ... Piezoelectric element 29 ... First resonance Plates 31, 65 ... Second resonance plate 33 ... First piezoelectric element 34 ... Second piezoelectric element 37 ... Central portion of first flexible portion 42, 71 ... First flexible portion 43a, 43b ... Discharge Outlets 49, 66, 72 ... Second flexible portion 50a, 50b ... Suction port 51 ... Central portion of the second flexible portion 73 ... Groove portion

Claims (19)

  1.  可撓性を有する可撓部と、前記可撓部に対向する対向部とを有し、前記可撓部と前記対向部との間に、流体の流路となる流路空間を構成する流路空間構成部と、
     前記可撓部と前記対向部とが対向する対向方向から見た場合に、前記流路空間の外周部に構成され、前記流路空間へ前記流体を流入させる流入口と、
     前記対向方向から見た場合に、前記流路空間の前記外周部の前記流入口とは異なる位置に構成され、前記流路空間から前記流体を流出させる流出口と、
     前記可撓部を屈曲させ、前記流路空間の体積を増減させる駆動機構と
     を具備し、
     前記可撓部は、前記駆動機構により屈曲されていない基準状態において、前記対向方向から見た場合に前記流路空間の前記外周部よりも内部側となる領域の少なくとも一部が、前記対向部に向かって凹状となるように構成される
     流体制御装置。
    A flow having a flexible portion and a facing portion facing the flexible portion, and forming a flow path space serving as a fluid flow path between the flexible portion and the facing portion. Road space component and
    When viewed from the opposite direction in which the flexible portion and the facing portion face each other, an inflow port configured on the outer peripheral portion of the flow path space and allowing the fluid to flow into the flow path space.
    When viewed from the opposite direction, the outlet is configured at a position different from the inlet of the outer peripheral portion of the flow path space, and the fluid flows out from the flow path space.
    It is provided with a drive mechanism that bends the flexible portion and increases or decreases the volume of the flow path space.
    In the reference state where the flexible portion is not bent by the drive mechanism, at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the facing direction is the facing portion. A fluid control device configured to be concave toward.
  2.  請求項1に記載の流体制御装置であって、
     前記可撓部は、前記基準状態において、前記対向方向から見た場合の中心部が、前記対向部に向かって凹状となるように構成される
     流体制御装置。
    The fluid control device according to claim 1.
    The flexible portion is a fluid control device configured such that, in the reference state, the central portion when viewed from the facing direction is concave toward the facing portion.
  3.  請求項1に記載の流体制御装置であって、
     前記可撓部は、前記基準状態において、板状部材が前記対向部に向かって凹状に変形された形状を有する
     流体制御装置。
    The fluid control device according to claim 1.
    The flexible portion is a fluid control device having a shape in which a plate-shaped member is deformed in a concave shape toward the facing portion in the reference state.
  4.  請求項1に記載の流体制御装置であって、
     前記駆動機構は、前記可撓部の前記基準状態において凹状となる部分が、前記対向方向に沿って最も大きく移動するように、前記可撓部を屈曲させる
     流体制御装置。
    The fluid control device according to claim 1.
    The drive mechanism is a fluid control device that bends the flexible portion so that the concave portion of the flexible portion in the reference state moves most along the facing direction.
  5.  請求項1に記載の流体制御装置であって、
     前記駆動機構は、前記可撓部の前記対向部に対向する側の面とは反対側の面に接続される圧電素子を有する
     流体制御装置
    The fluid control device according to claim 1.
    The drive mechanism is a fluid control device having a piezoelectric element connected to a surface of the flexible portion opposite to the surface of the flexible portion facing the facing portion.
  6.  請求項1に記載の流体制御装置であって、
     前記可撓部を、第1の可撓部とすると、
     前記対向部は、可撓性を有する第2の可撓部により構成され、
     前記駆動機構は、前記第2の可撓部を屈曲させ、
     前記第2の可撓部は、前記基準状態において、前記対向方向から見た場合に前記流路空間の前記外周部よりも内部側となる領域の少なくとも一部が、前記第1の可撓部に向かって凹状となるように構成される
     流体制御装置。
    The fluid control device according to claim 1.
    Assuming that the flexible portion is the first flexible portion,
    The facing portion is composed of a second flexible portion having flexibility.
    The drive mechanism bends the second flexible portion, and the drive mechanism bends the second flexible portion.
    In the second flexible portion, at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the opposite direction in the reference state is the first flexible portion. A fluid control device configured to be concave toward.
  7.  請求項6に記載の流体制御装置であって、
     前記第1の可撓部及び前記第2の可撓部は、互いに共振するように構成される
     流体制御装置。
    The fluid control device according to claim 6.
    The first flexible portion and the second flexible portion are fluid control devices configured to resonate with each other.
  8.  請求項7に記載の流体制御装置であって、
     前記駆動機構は、
     前記第1の可撓部の前記第2の可撓部に対向する側の面とは反対側の面に接続される第1の圧電素子と、
     前記第2の可撓部の前記第1の可撓部に対向する側の面とは反対側の面に接続される第2の圧電素子と
     を有し、
     前記第1の可撓部及び前記第1の圧電素子の全体の共振周波数が、前記第2の可撓部及び前記第2の圧電素子の全体の共振周波数に近くなるように構成される
     流体制御装置。
    The fluid control device according to claim 7.
    The drive mechanism is
    A first piezoelectric element connected to a surface of the first flexible portion opposite to the surface of the first flexible portion facing the second flexible portion.
    It has a second piezoelectric element connected to a surface of the second flexible portion opposite to the surface of the first flexible portion facing the first flexible portion.
    Fluid control configured so that the overall resonance frequency of the first flexible portion and the first piezoelectric element is close to the overall resonance frequency of the second flexible portion and the second piezoelectric element. Device.
  9.  請求項1に記載の流体制御装置であって、
     前記可撓部を、第1の可撓部とすると、
     前記対向部は、可撓性を有する第2の可撓部により構成され、
     前記第1の可撓部及び前記第2の可撓部は、互いに共振するように構成される
     流体制御装置。
    The fluid control device according to claim 1.
    Assuming that the flexible portion is the first flexible portion,
    The facing portion is composed of a second flexible portion having flexibility.
    The first flexible portion and the second flexible portion are fluid control devices configured to resonate with each other.
  10.  請求項9に記載の流体制御装置であって、
     前記駆動機構は、前記第1の可撓部の前記第2の可撓部に対向する側の面とは反対側の面に接続される圧電素子を有し、
     第2の可撓部の共振周波数が、前記第1の可撓部及び前記圧電素子の全体の共振周波数に近くなるように構成される
     流体制御装置。
    The fluid control device according to claim 9.
    The drive mechanism has a piezoelectric element connected to a surface of the first flexible portion opposite to the surface of the first flexible portion facing the second flexible portion.
    A fluid control device configured such that the resonance frequency of the second flexible portion is close to the resonance frequency of the entire first flexible portion and the piezoelectric element.
  11.  請求項10に記載の流体制御装置であって、
     前記第2の可撓部の厚みは、前記第1の可撓部の厚みよりも大きい
     流体制御装置。
    The fluid control device according to claim 10.
    A fluid control device in which the thickness of the second flexible portion is larger than the thickness of the first flexible portion.
  12.  請求項8に記載の流体制御装置であって、
     前記第2の可撓部は、前記基準状態において、前記対向方向から見た場合に前記流路空間の前記外周部よりも内部側となる領域の少なくとも一部が、前記第1の可撓部に向かって凹状となるように構成される
     流体制御装置。
    The fluid control device according to claim 8.
    In the second flexible portion, at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the opposite direction in the reference state is the first flexible portion. A fluid control device configured to be concave toward.
  13.  請求項1に記載の流体制御装置であって、
     前記可撓部は、前記対向方向から見た場合に、前記可撓部の外周部の近傍に構成された溝部を有する
     流体制御装置。
    The fluid control device according to claim 1.
    The flexible portion is a fluid control device having a groove portion formed in the vicinity of the outer peripheral portion of the flexible portion when viewed from the facing direction.
  14.  請求項13に記載の流体制御装置であって、
     前記駆動機構は、前記可撓部の前記対向部に対向する側の面とは反対側の面に接続される圧電素子を有し、
     前記溝部は、前記対向方向から見た場合に、前記圧電素子の外周部を基準とした位置に構成される
     流体制御装置。
    The fluid control device according to claim 13.
    The drive mechanism has a piezoelectric element connected to a surface of the flexible portion opposite to the surface of the flexible portion facing the facing portion.
    The groove portion is a fluid control device configured at a position with respect to the outer peripheral portion of the piezoelectric element when viewed from the facing direction.
  15.  請求項1に記載の流体制御装置であって、さらに、
     前記流体が吸入される吸入口と、
     前記吸入口と前記流入口とを連通する吸入空間を構成する吸入空間構成部と、
     前記流体が吐出される吐出口と、
     前記吐出口と前記流出口とを連通する吐出空間を構成する吐出空間構成部と
     を具備する流体制御装置。
    The fluid control device according to claim 1, further
    The suction port from which the fluid is sucked and
    A suction space component that constitutes a suction space that communicates the suction port and the inflow port,
    The discharge port from which the fluid is discharged and
    A fluid control device including a discharge space component that constitutes a discharge space that communicates the discharge port and the outlet.
  16.  請求項1に記載の流体制御装置であって、
     前記流路空間構成部は、
     前記対向方向から見た場合に中央の領域が前記可撓部を構成し、金属材料からなる第1の板状部材と、
     前記対向方向から見た場合に中央の領域が前記対向部を構成し、金属材料からなる第2の板状部材と、
     前記対向方向から見た場合に中央の領域が開口となり、所定の厚みを有し、前記第1の板状部材と前記第2の板状部材との間に配置され、前記第1の板状部材と前記第2の板状部材との各々に拡散接合により接合されるスペーサ部材と
     を有する流体制御装置。
    The fluid control device according to claim 1.
    The flow path space component is
    When viewed from the opposite direction, the central region constitutes the flexible portion, and the first plate-shaped member made of a metal material and
    When viewed from the facing direction, the central region constitutes the facing portion, and the second plate-shaped member made of a metal material and
    When viewed from the opposite direction, the central region becomes an opening, has a predetermined thickness, is arranged between the first plate-shaped member and the second plate-shaped member, and has the first plate-shaped member. A fluid control device having a spacer member bonded to each of the member and the second plate-shaped member by diffusion bonding.
  17.  請求項16に記載の流体制御装置であって、
     前記スペーサ部材は、前記開口の外周部に連通するように構成された吸入用の開口と、前記開口の外周部に連通するように前記吸入用の開口とは異なる位置に構成された吐出用の開口とを有する
     流体制御装置。
    The fluid control device according to claim 16.
    The spacer member is configured for suction at a position different from the suction opening so as to communicate with the outer peripheral portion of the opening and the suction opening so as to communicate with the outer peripheral portion of the opening. A fluid control device with an opening.
  18.  請求項17に記載の流体制御装置であって、
     前記第1の板状部材の前記吸入用の開口を覆う領域、又は前記第2の板状部材の前記吸入用の開口を覆う領域の少なくとも一方に、前記流体が吸入される吸入口が構成され、
     前記第1の板状部材の前記吐出用の開口を覆う領域、又は前記第2の板状部材の前記吐出用の開口を覆う領域の少なくとも一方に、前記流体が吐出される吐出口が構成される
     流体制御装置。
    The fluid control device according to claim 17.
    A suction port into which the fluid is sucked is configured in at least one of a region covering the suction opening of the first plate-shaped member or a region covering the suction opening of the second plate-shaped member. ,
    A discharge port for discharging the fluid is configured in at least one of a region covering the discharge opening of the first plate-shaped member or a region covering the discharge opening of the second plate-shaped member. Fluid control device.
  19.   可撓性を有する可撓部と、前記可撓部に対向する対向部とを有し、前記可撓部と前記対向部との間に、流体の流路となる流路空間を構成する流路空間構成部と、
      前記可撓部と前記対向部とが対向する対向方向から見た場合に、前記流路空間の外周部に構成され、前記流路空間へ前記流体を流入させる流入口と、
      前記対向方向から見た場合に、前記流路空間の前記外周部の前記流入口とは異なる位置に構成され、前記流路空間から前記流体を流出させる流出口と、
     前記可撓部を屈曲させ、前記流路空間の体積を増減させる駆動機構と
     を有し、
     前記可撓部は、前記駆動機構により屈曲されていない基準状態において、前記対向方向から見た場合に前記流路空間の前記外周部よりも内部側となる領域の少なくとも一部が、前記対向部に向かって凹状となるように構成される
     流体制御装置。
     を具備する電子機器。
    A flow having a flexible portion and a facing portion facing the flexible portion, and forming a flow path space serving as a fluid flow path between the flexible portion and the facing portion. Road space component and
    When viewed from the opposite direction in which the flexible portion and the facing portion face each other, an inflow port configured on the outer peripheral portion of the flow path space and allowing the fluid to flow into the flow path space.
    When viewed from the opposite direction, the outlet is configured at a position different from the inlet of the outer peripheral portion of the flow path space, and the fluid flows out from the flow path space.
    It has a drive mechanism that bends the flexible portion and increases or decreases the volume of the flow path space.
    In the reference state where the flexible portion is not bent by the drive mechanism, at least a part of a region on the inner side of the outer peripheral portion of the flow path space when viewed from the facing direction is the facing portion. A fluid control device configured to be concave toward.
    An electronic device equipped with.
PCT/JP2021/041142 2020-12-08 2021-11-09 Fluid control device and electronic equipment WO2022123983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/255,228 US20240026872A1 (en) 2020-12-08 2021-11-09 Fluid control apparatus and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020203353A JP2024015457A (en) 2020-12-08 2020-12-08 Fluid control equipment and electronic equipment
JP2020-203353 2020-12-08

Publications (1)

Publication Number Publication Date
WO2022123983A1 true WO2022123983A1 (en) 2022-06-16

Family

ID=81972948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041142 WO2022123983A1 (en) 2020-12-08 2021-11-09 Fluid control device and electronic equipment

Country Status (3)

Country Link
US (1) US20240026872A1 (en)
JP (1) JP2024015457A (en)
WO (1) WO2022123983A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825201Y1 (en) * 1967-08-24 1973-07-23
JPS6483870A (en) * 1987-09-26 1989-03-29 Maruka Seiki Kk Diaphragm for blower
JPH04101082A (en) * 1990-08-14 1992-04-02 Honda Motor Co Ltd Piezoelectric plate for gas pump
JPH04194380A (en) * 1990-11-28 1992-07-14 Hitachi Ltd Fluid feed pump
JPH08506874A (en) * 1993-02-23 1996-07-23 ステーメ,エリック Diaphragm positive displacement pump
JP2003139064A (en) * 2001-10-31 2003-05-14 Matsushita Electric Ind Co Ltd Small pump
JP2003322085A (en) * 2002-04-26 2003-11-14 Matsushita Electric Ind Co Ltd Small-sized pump
JP2010138911A (en) * 2008-07-08 2010-06-24 Panasonic Corp Fluid conveying device using electrically conductive polymer
WO2012140967A1 (en) * 2011-04-11 2012-10-18 株式会社村田製作所 Actuator-support structure and pump device
CN106246515A (en) * 2016-10-05 2016-12-21 吉林大学 A kind of bionic pump based on flexible piezoelectric driver
WO2019230161A1 (en) * 2018-05-31 2019-12-05 株式会社村田製作所 Pump

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825201Y1 (en) * 1967-08-24 1973-07-23
JPS6483870A (en) * 1987-09-26 1989-03-29 Maruka Seiki Kk Diaphragm for blower
JPH04101082A (en) * 1990-08-14 1992-04-02 Honda Motor Co Ltd Piezoelectric plate for gas pump
JPH04194380A (en) * 1990-11-28 1992-07-14 Hitachi Ltd Fluid feed pump
JPH08506874A (en) * 1993-02-23 1996-07-23 ステーメ,エリック Diaphragm positive displacement pump
JP2003139064A (en) * 2001-10-31 2003-05-14 Matsushita Electric Ind Co Ltd Small pump
JP2003322085A (en) * 2002-04-26 2003-11-14 Matsushita Electric Ind Co Ltd Small-sized pump
JP2010138911A (en) * 2008-07-08 2010-06-24 Panasonic Corp Fluid conveying device using electrically conductive polymer
WO2012140967A1 (en) * 2011-04-11 2012-10-18 株式会社村田製作所 Actuator-support structure and pump device
CN106246515A (en) * 2016-10-05 2016-12-21 吉林大学 A kind of bionic pump based on flexible piezoelectric driver
WO2019230161A1 (en) * 2018-05-31 2019-12-05 株式会社村田製作所 Pump

Also Published As

Publication number Publication date
JP2024015457A (en) 2024-02-02
US20240026872A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
US20210164464A1 (en) Blower
TWI679346B (en) Micro-gas pressure driving apparatus
EP2090781B1 (en) Piezoelectric micro-blower
US7972124B2 (en) Piezoelectric micro-blower
JP6531122B2 (en) Small pneumatic power unit
US11041580B2 (en) Valve and fluid control device
JP6585741B2 (en) Fluid control device
US10794378B2 (en) Fluid control device, decompression device, and compression device
EP2312158A1 (en) Piezoelectric microblower
CN109477478B (en) Valve and gas control device
WO2016009870A1 (en) Fluid control device
JPWO2019124060A1 (en) pump
JP6904436B2 (en) Pump and fluid control
JP2018112193A (en) Blower
JP2018109407A (en) Miniature fluid control device
JP2018123796A (en) Micro diaphragm pump
WO2022123983A1 (en) Fluid control device and electronic equipment
WO2021090729A1 (en) Valve module, fluid control device, and electronic apparatus
TWI676737B (en) Micro-gas pressure driving apparatus
JP2018040351A (en) Miniature fluid control device
CN211500945U (en) Fluid control device
CN108278196B (en) Fluid control device
JP2023070785A (en) diaphragm compressor
JP2006132477A (en) Diaphragm gas pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903087

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18255228

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP