WO2022121494A1 - 一种高活性的氧还原催化剂及其制备方法和应用 - Google Patents

一种高活性的氧还原催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2022121494A1
WO2022121494A1 PCT/CN2021/123723 CN2021123723W WO2022121494A1 WO 2022121494 A1 WO2022121494 A1 WO 2022121494A1 CN 2021123723 W CN2021123723 W CN 2021123723W WO 2022121494 A1 WO2022121494 A1 WO 2022121494A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen reduction
reduction catalyst
catalyst
preparation
nitrogen
Prior art date
Application number
PCT/CN2021/123723
Other languages
English (en)
French (fr)
Inventor
邹柯
阮丁山
李长东
王苑
王凤梅
吴�琳
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2022121494A1 publication Critical patent/WO2022121494A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure belongs to the field of catalysts, and in particular relates to a highly active oxygen reduction catalyst and a preparation method and application thereof.
  • waste lithium-ion batteries With the rapid development of the global new energy industry, the use of lithium-ion batteries has increased dramatically, and it is also accompanied by the generation of waste lithium-ion batteries. In recent years, the recycling of waste lithium-ion batteries has received extensive attention and research. However, since the value of the negative electrode waste graphite is lower than that of the metal material in the positive electrode, and the regeneration process of the negative electrode is cumbersome and complicated, the recycling of waste lithium-ion batteries is mainly concentrated in The recycling of metal elements in cathode materials and the recycling of anode graphite materials have only received limited attention. The waste graphite has a complex composition and contains harmful impurities incorporated in the battery recycling process.
  • Proton exchange membrane fuel cell technology is an advanced energy technology with the advantages of low emission, high conversion efficiency and high energy density, and is an ideal power source.
  • the oxygen reduction reaction of the cathode is an important process of proton exchange membrane fuel cells.
  • platinum-based catalysts are mainly used as cathode catalysts.
  • platinum is expensive and the reserves are scarce. Therefore, it is urgent to develop low-platinum or non-platinum catalysts with excellent performance.
  • the embodiments of the present disclosure provide a highly active oxygen reduction catalyst and a preparation method and application thereof.
  • the embodiments of the present disclosure use waste graphite generated in the recycling process of waste lithium ion batteries as raw materials, so as to reduce the preparation cost of the oxygen reduction catalyst, and the preparation method is simple , realizing the recycling of resources.
  • the recycled waste graphite has a high degree of graphitization, which can resist the erosion of the electrolyte during use.
  • Most of the impurities mixed in the graphite are transition metals (Ni, Co, Mn, Fe, etc.) with catalytic activity, which have a negative impact on the catalyst.
  • the catalytic effect has a promoting effect, making the whole catalytic effect better.
  • the embodiments of the present disclosure provide:
  • An oxygen reduction catalyst comprising graphite oxide with pores and loose structure, the graphite oxide containing dopants; the dopants are nitrogen-containing substances and transition metals; the nitrogen-containing substances are nitrogen-containing organic substances and ammonia-containing substances Inorganic compound; the nitrogen-containing organic compound is at least one of polyaniline, urea, melamine or o-phenylenediamine; the ammonia-containing inorganic compound is at least one of ammonia water, ammonium chloride or ammonium bicarbonate; the transition The metal is at least one of Fe, Co, Mn or Ni.
  • the particle size of the oxygen reduction catalyst is 5-30 ⁇ m; in still other embodiments, the particle size of the oxygen reduction catalyst is 8-25 ⁇ m.
  • the oxygen reduction catalyst has a specific surface area of 400-1200 m 2 ⁇ g -1 ; in still other embodiments, the oxygen reduction catalyst has a specific surface area of 600-1100 m 2 ⁇ g -1 .
  • the onset potential of the oxygen reduction catalyst is 0.81-1.10 V vs. RHE.
  • the oxygen reduction catalyst has a half-wave potential of 0.60-0.91 V vs. RHE.
  • the limiting current density of the oxygen reduction catalyst is 5.10-7.20 mA ⁇ cm ⁇ 2 .
  • Embodiments of the present disclosure also provide a method for preparing an oxygen reduction catalyst, comprising the following steps:
  • step (1) the rotational speed of the ball milling is 100-500 rpm, and the time of the ball milling is 1-12 h.
  • the acid solution is one of concentrated nitric acid, concentrated hydrochloric acid or concentrated sulfuric acid; the mass concentration of the acid solution is 75-100%.
  • the power of the ultrasound is 100-600W, and the duration of the ultrasound is 0.5-6h.
  • the transition metal salt is at least one of transition metal Fe, Co, Mn, Ni sulfate, chloride, nitrate or acetate.
  • the transition metal salt is at least one of ferric sulfate, ferric chloride, ferric acetate, cobalt nitrate, cobalt chloride, or cobalt sulfate.
  • the nitrogen-containing organic substance is at least one of polyaniline, urea, melamine or o-phenylenediamine.
  • the ammonia-containing inorganic compound is at least one of ammonia water, ammonium chloride or ammonium bicarbonate.
  • the ammonia-containing inorganic compound is decomposed into gaseous NH3 and HCl during the carbonization process, and during the gas escape process, the pores of the catalyst will be enlarged, the structure will be looser, and the interaction between the active site and oxygen and electrolyte will be promoted.
  • NH 3 generated by the decomposition of ammonia-containing inorganic compounds is used as nitrogen-doped gas to further incorporate nitrogen into the catalyst, which increases the active site density of the catalyst, thereby enhancing the catalytic activity of the catalyst.
  • step (2) the mass ratio of the graphite oxide slag: transition metal salt: nitrogen-containing organic compound: ammonia-containing inorganic compound is 1: (0.1-5): (0.1-5): (0.1 -5).
  • the acid solution is one of sulfuric acid, hydrochloric acid or nitric acid, and the concentration of the acid solution is 0.5-3 mol/L.
  • step (2) the stirring speed is 200-600rpm, and the stirring time is 6-24h.
  • the freeze-drying temperature is -10°C to 0°C, and the freeze-drying time is 3-24 h.
  • the carbonization treatment atmosphere is one of nitrogen, argon or ammonia
  • the carbonization temperature is 600°C-1100°C
  • the carbonization treatment time is 1-5h.
  • Embodiments of the present disclosure also provide a fuel cell including the oxygen reduction catalyst of the above embodiments.
  • the embodiments of the present disclosure creatively use waste graphite produced in the recycling process of waste lithium ion batteries as raw materials, and the recycled waste graphite has a high degree of graphitization, which can resist the erosion of the electrolyte during use.
  • the catalytically active transition metals Ni, Co, Mn, Fe, etc.
  • Ni, Co, Mn, Fe, etc. can promote the catalytic effect of the catalyst, making the whole catalytic effect better, and at the same time reducing the preparation cost of the oxygen reduction catalyst, the preparation method is simple, and the environmental pollution is reduced , realizing the recycling of resources.
  • the main components of waste graphite are graphite, a small amount of battery plastics, diaphragms, organic impurities and metal impurities, and large particles of impurities such as plastics and diaphragms in waste graphite are removed by sieving, and the organic impurities are reduced by carbonization treatment.
  • Amorphous carbon, most of the remaining metal impurities are transition metals with catalytic activity, such as Ni, Co, Mn, Fe, etc., which can promote the catalytic performance of the catalyst.
  • the oxygen reduction catalyst prepared in the embodiment of the present disclosure has high catalytic activity.
  • the structure of graphite oxide is made looser by ultrasonic treatment of waste graphite in concentrated acid; a fully reacted catalyst precursor suspension is obtained by stirring; freeze-drying makes the catalyst precursor dopant elements The dispersion is more uniform, avoiding the agglomeration and polymerization of doping elements; carbonization treatment makes the doped nitrogen and transition metal evenly supported on the carbon support, making it catalytically active; ammonia-containing inorganic compounds are decomposed into gases NH3 and HCl, which increases the pores of the catalyst during the escape process, makes the structure more loose, and promotes the contact between the active site and oxygen and electrolytes; at the same time, the NH3 generated by the decomposition of ammonia-containing inorganic compounds acts as a nitrogen-doped gas, making nitrogen further Incorporating the catalyst into the catalyst to increase the active site density of the catalyst; further, a high-active oxygen reduction
  • Fig. 1 is the SEM image of the oxygen reduction catalyst prepared in Example 1 of the present disclosure
  • Example 2 is a TEM image of the oxygen reduction catalyst prepared in Example 1 of the present disclosure
  • Example 3 is the polarization curve of the oxygen reduction catalyst prepared in Example 1 of the present disclosure in 0.1M KOH solution saturated with oxygen at different rotational speeds;
  • Example 4 is the oxygen reduction polarization curve of the oxygen reduction catalyst prepared in Example 1 and Comparative Examples 1-2 of the present disclosure in a 0.1M KOH solution saturated with oxygen;
  • Example 5 is a performance diagram of the oxygen reduction catalyst prepared in Example 1 and Comparative Examples 1-2 of the present disclosure in a 0.1M KOH solution saturated with oxygen;
  • Example 6 is a graph of the methanol resistance performance of the oxygen reduction catalysts prepared in Example 1 and Comparative Examples 1-2 of the present disclosure in a 0.1M KOH solution saturated with oxygen.
  • the conventional conditions or the conditions suggested by the manufacturer are used.
  • the raw materials, reagents, etc., which are not specified by the manufacturer, are all conventional products that can be purchased from the market.
  • the oxygen reduction catalyst of this embodiment has a loose structure and is composed of graphite oxide, doped nitrogen sources (nitrogen generated by the decomposition of polyaniline and ammonium chloride) and transition metals (Fe); the particle size of the oxygen reduction catalyst is 7.82 ⁇ m , the specific surface area is 1085.24m 2 ⁇ g -1 , the initial potential is 0.94V vs. RHE, the half-wave potential is 0.84V vs. RHE, and the limiting current density is 6.77mA ⁇ cm -2 .
  • the oxygen reduction catalyst of this embodiment has a loose structure and is composed of graphite oxide and nitrogen and transition metal elements (cobalt) doped therein; the particle size of the oxygen reduction catalyst is 10.25 ⁇ m, the specific surface area is 865.15 m 2 ⁇ g -1 , and the The initial potential is 0.89V vs. RHE, the half-wave potential is 0.75V vs. RHE, and the limiting current density is 5.86mA ⁇ cm -2 .
  • the catalyst precursor is carbonized in an argon atmosphere, the carbonization temperature is 780°C, and the carbonization treatment time is 5h, to obtain a highly active oxygen reduction catalyst.
  • the oxygen reduction catalyst of this embodiment has a loose structure and is composed of graphite oxide and nitrogen (nitrogen produced by the decomposition of o-phenylenediamine and ammonia water) and transition metal elements (cobalt) doped therein; the particle size of the oxygen reduction catalyst is 9.26 ⁇ m , the specific surface area is 786.38m 2 ⁇ g -1 , the initial potential is 0.88V vs. RHE, the half-wave potential is 0.80V vs. RHE, and the limiting current density is 6.03mA ⁇ cm -2 .
  • the oxygen reduction catalyst of the present embodiment has a loose structure, and is composed of graphite oxide and nitrogen doped therein (nitrogen produced by the decomposition of polyaniline, melamine and ammonium chloride) and transition metal elements (iron, manganese); wherein the particle size of the oxygen reduction catalyst is It is 11.25 ⁇ m, the specific surface area is 978.36m 2 ⁇ g -1 , the initial potential is 0.90V vs. RHE, the half-wave potential is 0.81V vs. RHE, and the limiting current density is 6.12mA ⁇ cm -2 .
  • the catalyst precursor is carbonized in an ammonia gas atmosphere, the carbonization temperature is 900°C, and the carbonization treatment time is 2h, to obtain a highly active oxygen reduction catalyst.
  • the oxygen reduction catalyst of this embodiment has a loose structure and is composed of graphite oxide, nitrogen generated by the decomposition of doped nitrogen source polyaniline, o-phenylenediamine, ammonia water and ammonium bicarbonate, and doped nickel-cobalt-manganese transition elements;
  • the particle size of the catalyst is 16.21 ⁇ m, the specific surface area is 864.23m 2 ⁇ g -1 , the onset potential is 0.88V vs. RHE, the half-wave potential is 0.81V vs. RHE, and the limiting current density is 5.89mA ⁇ cm -2 .
  • Example 1 Taking the commercialized Pt/C catalyst as Comparative Example 1, the performance test was carried out by the same method as Example 1.
  • Comparative example 2 utilizes the method for the oxygen reduction catalyst prepared by waste graphite, comprising the following steps:
  • the catalyst precursor was heated to a temperature of 5 °C/min in an N 2 atmosphere, and then heat-treated at 850 °C for 3 h to obtain a carbon-based oxygen reduction catalyst using the anode graphite of waste batteries.
  • Electrochemical tests were carried out on a P3000A-DX electrochemical workstation.
  • the above electrodes were used as working electrodes, platinum wires were used as counter electrodes, and Ag/AgCl electrodes were used as reference electrodes.
  • the catalyst prepared in Example 1 of the present disclosure makes the structure of graphite more loose by oxidizing graphite slag, increases the interlayer spacing and the degree of defects, and makes the doped transition metal and nitrogen more easily supported on the graphite slag carrier.
  • the gas generated by the addition of nitrogen - containing organics in the carbonization process further increases the specific surface area of the catalyst and promotes the contact between the active site and oxygen and electrolyte; It is further incorporated into the catalyst to increase the active site density of the catalyst.
  • the preparation method of the oxygen reduction catalyst can not only improve the atomic utilization rate of the doping element, save the cost, but also effectively improve the catalytic activity of the catalyst.
  • FIG. 1 is a SEM image of the oxygen reduction catalyst prepared in Example 1 of the present disclosure
  • FIG. 2 is a TEM image of the oxygen reduction catalyst prepared in Example 1 of the present disclosure
  • FIG. 3 is an oxygen reduction catalyst prepared in Example 1 of the present disclosure in saturated oxygen
  • the polarization curves of 0.1M KOH solution at different rotational speeds are shown in Figure 4.
  • the oxygen reduction polarization curves of the oxygen reduction catalysts prepared in Example 1 and Comparative Examples 1-2 of the present disclosure in 0.1M KOH solution saturated with oxygen are shown in Figure 4.
  • 5 is a graph showing the anti-methanol performance of the oxygen reduction catalysts prepared in Example 1 and Comparative Examples 1-2 of the present disclosure in a 0.1M KOH solution saturated with oxygen. It can be seen from FIG.
  • the catalyst prepared in Example 1 of the present disclosure has a loose structure and obvious pores on the surface of the catalyst, which is more conducive to catalysis; it can be seen from the TEM spectrum in FIG. 2 that the catalyst prepared in Example 1 of the present disclosure is composed of amorphous Carbon and transparent, wrinkled, and veil-like graphene-like sheets are composed of graphene-like structures.
  • the graphene-like structure can effectively increase the specific surface area of the catalyst, thereby fully exposing the active sites and making the catalysis more sufficient; using Koutechy in Figure 3 -Levich equation calculation shows that the catalyst prepared in Example 1 of the present disclosure reacts with a four-electron transfer mechanism and has high catalytic efficiency.
  • the Pt/C catalyst in Comparative Example 1 is a commonly used commercial oxygen reduction catalyst.
  • platinum resources are expensive and reserves are scarce.
  • the large-scale use of platinum-based catalysts has seriously affected the commercialization of fuel cells.
  • the method for oxygen reduction catalyst provided by the present disclosure mainly uses waste graphite negative electrode as raw material, which is low in cost, simple in preparation process, and has excellent catalytic activity.
  • FIG. 4 the catalyst prepared in Example 1 has good oxygen reduction catalytic activity.
  • the onset potential (0.94V vs. RHE), half-wave potential (0.83V vs. RHE) and limiting current density (6.76mA cm -1 ) of the catalyst prepared in Example 1 were better than those prepared in Comparative Examples 1-2.
  • Figure 5 the catalyst prepared in the embodiment of the present disclosure has better stability; it can be seen from Figure 6 that compared with the commercial Pt/C catalyst, the catalyst prepared in Example 1 has better anti-methanol performance, Has certain application potential.
  • This embodiment provides a fuel cell comprising the oxygen reduction catalyst obtained in the above embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

提供了一种高活性的氧还原催化剂及其制备方法和应用。氧还原催化剂包括具有孔隙、结构疏松的氧化石墨,氧化石墨含掺杂物;掺杂物为含氮物质和过渡金属;含氮物质为含氮有机物和含氨无机化合物;过渡金属为Fe、Co、Mn或Ni中的至少一种。采用废旧锂离子电池回收过程中产生的废旧石墨为原料,回收的废旧石墨具有较高的石墨化度,可以抵御使用过程中电解质的侵蚀,在石墨中掺入具有催化活性的过渡金属,对催化剂的催化作用有促进作用,还降低氧还原催化剂的制备成本,制备方法简单,减少了环境污染,实现了资源的循环利用。

Description

一种高活性的氧还原催化剂及其制备方法和应用 技术领域
本公开属于催化剂领域,具体涉及一种高活性的氧还原催化剂及其制备方法和应用。
背景技术
随着全球新能源行业的快速发展,锂离子电池的使用量急剧增加,同时也伴随着废旧锂离子电池的产生。近年来,回收废旧锂离子电池已得到广泛的关注和研究,但是由于负极废石墨的价值低于正极中的金属材料,且负极的再生过程繁琐复杂,因此废旧锂离子电池的循环利用主要集中在正极材料金属元素的回收,负极石墨材料的回收利用仅受到了有限的关注。而废旧石墨成分复杂,包含在电池回收过程中掺入的有害杂质,因此若将其丢弃到垃圾场或在高温焚烧,都会对周围的土壤和空气造成污染。同时,在电池充放电过程中,石墨负极的结构几乎没有发生改变,具有很大的回收意义。因此亟需一种安全有效的方法来对废旧石墨进行回收利用。
质子交换膜燃料电池技术是一种先进的能源技术,具有低排放、转换效率高、能量密度高等优点,是一种理想的动力来源。阴极的氧还原反应是质子交换膜燃料电池的重要过程,目前主要商业主要采用铂基催化剂为阴极催化剂,但铂价格昂贵,储量稀少,因此需要亟需发展性能优良的低铂或非铂催化剂。由于碳材料的低成本、结构延展性好、电导率高和对酸碱介质的强耐受性,碳材料经常作为各种催化剂的载体被应用。但是一般的碳材料容易被电解质的侵蚀,导致催化活性低,从而影响了催化效果。
因此,亟需研发一种采用碳材料制备的催化剂,但是不易被腐蚀,而且催化效果好。
发明内容
本公开实施例提供一种高活性的氧还原催化剂及其制备方法和应用,本公开实施例采用废旧锂离子电池回收过程中产生的废旧石墨为原料,降低氧还原催化剂的制备成本,制备方法简单,实现了资源的循环利用。回收的废旧石墨具有较高的石墨化度,可以抵御使用过程中电解质的侵蚀,在石墨中掺入的杂质大多为具有催化活性的过渡金属(Ni、Co、Mn、Fe等),对催化剂的催化作用有促进作用,使得整个催化效果更好。
为实现上述目的,本公开实施例提供:
一种氧还原催化剂,包括具有孔隙、结构疏松的氧化石墨,所述氧化石墨含掺杂物; 所述掺杂物为含氮物质和过渡金属;所述含氮物质为含氮有机物和含氨无机化合物;所述含氮有机物为聚苯胺、尿素、三聚氰胺或邻苯二胺中至少一种;所述含氨无机化合物为氨水、氯化铵或碳酸氢铵中的至少一种;所述过渡金属为Fe、Co、Mn或Ni中的至少一种。
在一些实施例中,所述氧还原催化剂的粒径为5-30μm;在又一些实施例中,所述氧还原催化剂的粒径为8-25μm。
在一些实施例中,所述氧还原催化剂的比表面积为400-1200m 2·g -1;在又一些实施例中,所述氧还原催化剂的比表面积为600-1100m 2·g -1
在一些实施例中,所述氧还原催化剂的起始电位为0.81-1.10V vs.RHE。
在一些实施例中,所述氧还原催化剂的半波电位为0.60-0.91V vs.RHE。
在一些实施例中,所述氧还原催化剂的极限电流密度为5.10-7.20mA·cm -2
本公开实施例还提供一种氧还原催化剂的制备方法,包括以下步骤:
(1)从废旧电池中回收石墨渣,将石墨渣球磨过筛,并在酸液中超声,得到氧化石墨渣;
(2)将所述氧化石墨渣、过渡金属盐、含氮物质在酸溶液中搅拌,得到催化剂前体悬浮液;
(3)将所述催化剂前体悬浮液冷冻干燥,得到催化剂前体;
(4)将所述催化剂前体进行碳化处理,即得所述氧还原催化剂。
在一些实施例中,步骤(1)中,所述球磨的转速为100-500rpm,球磨的时间为1-12h。
在一些实施例中,步骤(1)中,所述酸液为浓硝酸、浓盐酸或浓硫酸中的一种;所述酸液的质量浓度为75-100%。
在一些实施例中,步骤(1)中,所述超声的功率为100-600W,超声的时间为0.5-6h。
在一些实施例中,步骤(2)中,所述过渡金属盐为过渡金属Fe、Co、Mn、Ni的硫酸盐、氯化盐、硝酸盐或醋酸盐中的至少一种。
在又一些实施例中,所述过渡金属盐为硫酸铁、氯化铁、醋酸铁、硝酸钴、氯化钴或硫酸钴中的至少一种。
在一些实施例中,步骤(2)中,所述含氮有机物为聚苯胺、尿素、三聚氰胺或邻苯二胺中的至少一种。
在一些实施例中,步骤(2)中,所述含氨无机化合物为氨水、氯化铵或碳酸氢铵中的 至少一种。根据本公开实施例,含氨无机化合物在碳化过程中分解为气体NH 3和HCl,在气体逸散过程中会增大催化剂的孔隙,使结构更加疏松,促进活性位点与氧、电解质之间的接触;同时含氨无机化合物分解产生的NH 3作为掺氮气体,使氮更进一步掺入催化剂中,增加了催化剂的活性位点密度,从而增强催化剂的催化活性。
在一些实施例中,步骤(2)中,所述氧化石墨渣:过渡金属盐:含氮有机物:含氨无机化合物的质量比为1:(0.1-5):(0.1-5):(0.1-5)。
在一些实施例中,步骤(2)中,所述酸溶液为硫酸、盐酸或硝酸中的一种,所述酸溶液的浓度为0.5-3mol/L。
在一些实施例中,步骤(2)中,所述搅拌的转速为200-600rpm,搅拌的时间为6-24h。
在一些实施例中,步骤(3)中,所述冷冻干燥的温度为-10℃~0℃,冷冻干燥的时间为3-24h。
在一些实施例中,步骤(4)中,所述碳化的处理气氛为氮气、氩气或氨气中的一种,碳化的温度为600℃-1100℃,碳化的处理时间为1-5h。
本公开实施例还提供一种燃料电池,其包括上述实施例的氧还原催化剂。
本公开实施例的优点:
1、本公开实施例创造性地采用废旧锂离子电池回收过程中产生的废旧石墨为原料,回收的废旧石墨具有较高的石墨化度,可以抵御使用过程中电解质的侵蚀,在石墨中掺入具有催化活性的过渡金属(Ni、Co、Mn、Fe等),对催化剂的催化作用有促进作用,使得整个催化效果更好,同时还降低氧还原催化剂的制备成本,制备方法简单,减少了环境污染,实现了资源的循环利用。
2、本公开实施例采用废旧石墨中主要成分为石墨、少量的电池塑料、隔膜、有机物杂质和金属杂质,过筛除去废旧石墨中的塑料、隔膜等大颗粒杂质,碳化处理将有机物杂质还原为无定型碳,剩余的金属杂质大部分为具有催化活性的过渡金属,如Ni、Co、Mn、Fe等,对催化剂的催化性能具有促进作用。
3、本公开实施例制得的氧还原催化剂具有高的催化活性。在氧还原催化剂的制备过程中,通过将废旧石墨在浓酸中超声处理,使氧化石墨的结构更加疏松;搅拌得到充分反应的催化剂前体悬浮液;冷冻干燥使催化剂前体中掺杂元素的分散更加均匀,避免掺杂元素的团聚聚合;碳化处理使掺杂的氮和过渡金属均匀的负载在碳载体上,使其具有催化活性;含氨无机化合物在碳化过程中分解为气体NH 3和HCl,在逸散过程中增大催化剂的孔隙,使结构更加疏松,促进活性位点与氧气、电解质之间的接触;同时含氨无机 化合物分解产生的NH 3作为掺氮气体,使氮更进一步掺入催化剂中,增加催化剂的活性位点密度;进而制得利用废旧石墨的高活性氧还原催化剂的粒径为5-30μm,比表面积400-1200m 2·g -1,起始电位为0.81-1.10V vs.RHE,半波电位为0.60-0.91V vs.RHE,极限电流密度为5.10-7.20mA·cm -2,具有比商业Pt/C催化剂更佳的催化活性。
附图说明
图1是本公开实施例1制备的氧还原催化剂的SEM图;
图2是本公开实施例1制备的氧还原催化剂的TEM图;
图3是本公开实施例1制备的氧还原催化剂在饱和氧气的0.1M KOH溶液中不同转速下的极化曲线;
图4是本公开实施例1和对比例1-2制备的氧还原催化剂在饱和氧气的0.1M KOH溶液中的氧还原极化曲线;
图5是本公开实施例1和对比例1-2制备的氧还原催化剂在饱和氧气的0.1M KOH溶液中的性能图;
图6是本公开实施例1和对比例1-2制备的氧还原催化剂在饱和氧气的0.1M KOH溶液中的抗甲醇性能图。
具体实施方式
为了对本公开进行深入的理解,下面结合实例对本公开若干实施方案进行描述,在一些实例中说明本公开的特点和优点,任何不偏离本公开主旨的变化或者改变能够为本领域的技术人员理解,本公开的保护范围由所属权利要求范围确定。
本公开实施例中未注明具体条件者,按照常规条件或者制造商建议的条件进行。所用未注明生产厂商者的原料、试剂等,均为可以通过市售购买获得的常规产品。
实施例1
本实施例的氧还原催化剂的方法,包括以下步骤:
(1)从废旧锂离子电池中回收废旧石墨,破碎过筛,在400rpm转速球磨处理8h,再将废旧石墨溶于浓度为85%的HNO 3,并在功率为500W的超声中处理4h,得到氧化石墨渣;
(2)将4g氧化石墨渣、10g氯化铁、15g聚苯胺和8g氯化铵溶于1mol/L HCl溶液中,并在450rpm搅拌12h,得到催化剂前体悬浮液;
(3)将催化剂前体悬浮液在-5℃冷冻干燥12h,得到催化剂前体;
(4)将催化剂前体在氮气气氛下进行碳化处理,碳化温度为980℃,碳化处理时间为3h,即得氧还原催化剂。
本实施例的氧还原催化剂结构疏松,由氧化石墨,以及掺杂的氮源(聚苯胺和氯化铵分解产生的氮)和过渡金属(Fe)组成;其中氧还原催化剂的粒径为7.82μm,比表面积为1085.24m 2·g -1,起始电位为0.94V vs.RHE,半波电位为0.84V vs.RHE,极限电流密度为6.77mA·cm -2
实施例2
本实施例的氧还原催化剂的方法,包括以下步骤:
(1)从废旧锂离子电池中回收废旧石墨,破碎过筛,在350rpm转速球磨处理6h,再将废旧石墨溶于浓度为78%的H 2SO 4,并在功率为400W的超声中处理6h,得到氧化石墨渣;
(2)将4g氧化石墨渣、12g硫酸钴、10g尿素和5g碳酸氢铵溶于0.8mol/L H 2SO 4溶液中,并在580rpm搅拌8h,得到催化剂前体悬浮液;
(3)将催化剂前体悬浮液在-8℃冷冻干燥15h,得到催化剂前体;
(4)将催化剂前体在氨气气氛下进行碳化处理,碳化温度为850℃,碳化处理时间为2.5h,即得氧还原催化剂。
本实施例的氧还原催化剂结构疏松,由氧化石墨和掺杂其中的氮和过渡金属元素(钴)组成;其中氧还原催化剂的粒径为10.25μm,比表面积865.15m 2·g -1,起始电位为0.89V vs.RHE,半波电位为0.75V vs.RHE,极限电流密度为5.86mA·cm -2
实施例3
本实施例的氧还原催化剂的方法,包括以下步骤:
(1)从废旧锂离子电池中回收废旧石墨,破碎过筛,在320rpm转速下球磨处理10h,再将废旧石墨溶于浓度为85%的HCl,并在功率为450W的超声中处理3h,得到氧化石墨渣;
(2)将4g氧化石墨渣、8g硝酸钴、12g邻苯二胺和9g氨水溶于0.5mo l/L HNO 3溶液中,并在380rpm搅拌22h,得到催化剂前体悬浮液;
(3)将催化剂前体悬浮液在0℃冷冻干燥18h,得到催化剂前体;
(4)将催化剂前体在氩气气氛下进行碳化处理,碳化温度为780℃,碳化处理时间为5h,即得高活性氧还原催化剂。
本实施例的氧还原催化剂结构疏松,由氧化石墨和掺杂其中的氮(邻苯二胺和氨水分解产生的氮)和过渡金属元素(钴)组成;其中氧还原催化剂的粒径为9.26μm,比表面积786.38m 2·g -1,起始电位为0.88V vs.RHE,半波电位为0.80V vs.RHE,极限电流密度为6.03mA·cm -2
实施例4
本实施例的氧还原催化剂的方法,包括以下步骤:
(1)从废旧锂离子电池中回收废旧石墨,破碎过筛,在430rpm转速下球磨处理10h,再将废旧石墨溶于浓度为92%的HNO 3,并在功率为480W的超声中处理6h,得到氧化石墨渣;
(2)将4g氧化石墨渣、4g醋酸铁、3g硫酸锰、8g聚苯胺、6g三聚氰胺和10g氯化铵溶于0.8mol/L H 2SO 4溶液中,并在450rpm搅拌12h,得到催化剂前体悬浮液;
(3)将催化剂前体悬浮液在-8℃冷冻干燥18h,得到催化剂前体;
(4)将催化剂前体在氮气气氛下进行碳化处理,碳化温度为1050℃,碳化处理时间为2h,即得氧还原催化剂。
本实施例的氧还原催化剂结构疏松,由氧化石墨和掺杂其中的氮(聚苯胺、三聚氰胺和氯化铵分解产生的氮)和过渡金属元素(铁、锰)组成;其中氧还原催化剂粒径为11.25μm,比表面积978.36m 2·g -1,起始电位为0.90V vs.RHE,半波电位为0.81V vs.RHE,极限电流密度为6.12mA·cm -2
实施例5
本实施例的氧还原催化剂的方法,包括以下步骤:
(1)从废旧锂离子电池中回收废旧石墨,破碎过筛,在480rpm转速下球磨处理10h,再将废旧石墨溶于93%H 2SO 4,并在功率为580W的超声中处理3h,得到氧化石墨渣;
(2)将4g氧化石墨渣、6g氯化钴、3g硫酸镍、2g硫酸锰、5g聚苯胺、3g邻苯二胺和4g氨水、6g碳酸氢铵溶于2.5mol/L HCl溶液中,并在480rpm搅拌18h,得到催化剂前体悬浮液;
(3)将催化剂前体悬浮液在-8℃冷冻干燥20h,得到催化剂前体;
(4)将催化剂前体在氨气气氛下进行碳化处理,碳化温度为900℃,碳化处理时间为2h,即得高活性氧还原催化剂。
本实施例的氧还原催化剂结构疏松,由氧化石墨,以及掺杂氮源聚苯胺、邻苯二胺、氨水和碳酸氢铵分解产生的氮和掺杂的镍钴锰过渡元素组成;其中氧还原催化剂粒径为16.21μm,比表面积864.23m 2·g -1,起始电位为0.88V vs.RHE,半波电位为0.81V vs.RHE,极限电流密度为5.89mA·cm -2
对比例1
将商业化的Pt/C催化剂作为对比例1,采用与实施例1相同的方法进行性能测试。
对比例2
对比例2利用废旧石墨制备的氧还原催化剂的方法,包括以下步骤:
(1)将废旧锂离子电池回收金属后留下的石墨渣干燥、破碎并过300目筛,以分离石墨渣中的隔膜碎片;
(2)将4g过筛后的石墨渣、3g Fe 2(SO 4) 3、6g三聚氰胺加入到100mL的2mol/L HCl溶液中,在5℃冰浴中,并在搅拌速率为300转/min下搅拌18h,反应形成络合物溶液;
(3)将络合物溶液在90℃水浴中加热,蒸干溶液中的水分,将剩余物质在90℃真空条件下干燥,得到催化剂前体;
(4)将催化剂前体在N 2气氛围下,加热升温,升温速率为5℃/min,在850℃下热处理3h,得到利用废旧电池负极石墨的碳基氧还原催化剂。
性能测试:
将实施例1-5制备的氧还原催化剂和对比例1-2制备的催化剂按如下方法进行性能测试:
(1)取6mg催化剂加入到1mL乙醇和质量分数为5%的Nafion溶液中,其中乙醇和Nafion的体积比为9:1,超声分散2小时,用移液枪取上述催化剂溶液20uL于直径为5mm的旋转圆盘的圆盘电极上,在空气中自然晾干。
(2)电化学测试在P3000A-DX电化学工作站上进行,将上述电极作为工作电极,铂丝作为对电极,Ag/AgCl电极作为参比电极。
(3)在0.1M KOH溶液中,以5mVs -1的扫描速率,测试该催化剂在饱和氧气下的循环伏安曲线,和在不同转速下的极化曲线。
表1实施例1与对比例1、对比例2的性能对比
Figure PCTCN2021123723-appb-000001
与对比例1-2相比,本公开实施例1制备的催化剂通过氧化石墨渣使石墨的结构更加疏松,增加层间距和缺陷程度,使掺杂的过渡金属和氮更易负载在石墨渣载体上;同时,含氮有机物的添加在碳化过程产生的气体更进一步增加催化剂的比表面积,促进活性位点与氧、电解质之间的接触;含氮有机物分解产生的NH 3作为掺氮气体,使氮更进一步掺入催 化剂中,增加催化剂的活性位点密度。该氧还原催化剂的制备方法不仅可以提高掺杂元素的原子利用率,节约成本,更可以有效的提高催化剂的催化活性。
图1是本公开实施例1制备的氧还原催化剂的SEM图,图2是本公开实施例1制备的氧还原催化剂的TEM图,图3为本公开实施例1制备的氧还原催化剂在饱和氧气的0.1M KOH溶液中不同转速下的极化曲线,图4为本公开实施例1和对比例1-2制备的氧还原催化剂在饱和氧气的0.1M KOH溶液中的氧还原极化曲线,图5为本公开实施例1和对比例1-2制备的氧还原催化剂在饱和氧气的0.1M KOH溶液中的抗甲醇性能图。从图1可以看出本公开实施例1制备的催化剂结构疏松,在催化剂表面有明显的孔隙,更利于催化;通过图2的TEM谱图可以看出本公开实施例1制备的催化剂由无定型碳和透明的、起皱的、面纱状的类石墨烯片组成,类石墨烯结构可有效增加催化剂的比表面积,从而使活性位点充分的暴露,使催化作用更加充分;通过图3利用Koutechy-Levich方程计算得出本公开实施例1制备的催化剂以四电子转移机理进行反应,具有较高的催化效率。对比例1中的Pt/C催化剂是目前常用的商业氧还原催化剂,然而铂资源昂贵,储量稀少,大量使用铂基催化剂已经严重影响了燃料电池的商业化。本公开提供的氧还原催化剂的方法主要采用废旧石墨负极为原料,成本低廉,制备工艺简单,具有优异的催化活性,从图4可以看出实施例1制备的催化剂具有良好的氧还原催化活性,且实施例1制备的催化剂的起始电位(0.94V vs.RHE)、半波电位(0.83V vs.RHE)和极限电流密度(6.76mA cm -1)均优于对比例1-2制备的催化剂;图5可以看出本公开实施例制备的催化剂具有更佳的稳定性;从图6可以看出相较于商业Pt/C催化剂,实施例1制备的催化剂具有更佳的抗甲醇性能,具有一定的应用潜力。
实施例6
本实施例提供一种燃料电池,其包含上述实施例所得的氧还原催化剂。
以上对本公开提供的一种高活性的氧还原催化剂及其制备方法和应用进行了详细的介绍,本文中应用了具体实施例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想,包括实施方式,并且也使得本领域的任何技术人员都能够实践本公开,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以对本公开进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。本公开专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果它们包 括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。

Claims (10)

  1. 一种氧还原催化剂,包括具有孔隙、结构疏松的氧化石墨,所述氧化石墨含掺杂物;所述掺杂物为含氮物质和过渡金属;所述含氮物质为含氮有机物和含氨无机化合物;所述含氮有机物为聚苯胺、尿素、三聚氰胺或邻苯二胺中至少一种;所述含氨无机化合物为氨水、氯化铵或碳酸氢铵中的至少一种;所述过渡金属为Fe、Co、Mn或Ni中的至少一种。
  2. 根据权利要求1所述的氧还原催化剂,其中所述氧还原催化剂的粒径为5-30μm,比表面积为400-1200m 2·g -1,起始电位为0.81-1.10V vs.RHE,半波电位为0.60-0.91V vs.RHE,极限电流密度为5.10-7.20mA·cm -2
  3. 权利要求1-2中任一项所述的氧还原催化剂的制备方法,包括以下步骤:
    (1)从废旧电池中回收石墨渣,将石墨渣球磨过筛,并在酸液中超声,得到氧化石墨渣;
    (2)将所述氧化石墨渣、过渡金属盐、含氮物质在酸溶液中搅拌,得到催化剂前体悬浮液;
    (3)将所述催化剂前体悬浮液冷冻干燥,得到催化剂前体;
    (4)将所述催化剂前体进行碳化处理,得到所述氧还原催化剂。
  4. 根据权利要求3所述的制备方法,其中步骤(1)中,所述球磨的转速为100-500rpm,球磨的时间为1-12h;步骤(1)中,所述超声的功率为100-600W,超声的时间为0.5-6h。
  5. 根据权利要求3所述的制备方法,其中步骤(1)中,所述酸液为浓硝酸、浓盐酸或浓硫酸中的一种;所述酸液的质量浓度为75-100%。
  6. 根据权利要求3所述的制备方法,其中步骤(2)中,所述过渡金属盐为过渡金属Fe、Co、Mn、Ni的硫酸盐、氯化盐、硝酸盐或醋酸盐中的至少一种。
  7. 根据权利要求3所述的制备方法,其中步骤(2)中,所述含氮有机物为聚苯胺、尿素、三聚氰胺或邻苯二胺中的至少一种;步骤(2)中,所述含氨无机化合物为氨水、氯化铵或碳酸氢铵中的至少一种。
  8. 根据权利要求3所述的制备方法,其中步骤(2)中,所述酸溶液为硫酸、盐酸或硝酸中的一种,所述酸溶液的浓度为0.5-3mol/L。
  9. 根据权利要求3所述的制备方法,其中步骤(4)中,所述碳化的处理气氛为氮气、氩气或氨气中的一种,碳化的温度为600℃-1100℃,碳化的处理时间为1-5h。
  10. 一种燃料电池,包括权利要求1-2中任一项所述的氧还原催化剂。
PCT/CN2021/123723 2020-12-11 2021-10-14 一种高活性的氧还原催化剂及其制备方法和应用 WO2022121494A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011442605.8A CN112652779A (zh) 2020-12-11 2020-12-11 一种高活性的氧还原催化剂及其制备方法和应用
CN202011442605.8 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022121494A1 true WO2022121494A1 (zh) 2022-06-16

Family

ID=75350978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123723 WO2022121494A1 (zh) 2020-12-11 2021-10-14 一种高活性的氧还原催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112652779A (zh)
WO (1) WO2022121494A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112652779A (zh) * 2020-12-11 2021-04-13 广东邦普循环科技有限公司 一种高活性的氧还原催化剂及其制备方法和应用
CN113659143A (zh) * 2021-08-06 2021-11-16 东莞市创明电池技术有限公司 钠离子电池负极材料的制备方法及负极材料,钠离子电池
CN114134534B (zh) * 2021-11-09 2022-11-11 中南大学 一种基于人造金刚石触媒的析氧催化剂及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140154A (ja) * 1997-07-18 1999-02-12 Hitachi Ltd 電極及びこれを用いた電池
CN103599805A (zh) * 2013-11-20 2014-02-26 东华大学 一种氮掺杂石墨烯燃料电池催化剂的制备和应用
US20160233031A1 (en) * 2011-08-26 2016-08-11 Semiconductor Energy Laboratory Co., Ltd. Power storage device
CN108660471A (zh) * 2018-02-11 2018-10-16 中国工程物理研究院材料研究所 一种负载在氮杂石墨泡沫上的镍铁水滑石水氧化电极的制备方法
CN109346728A (zh) * 2018-09-25 2019-02-15 中新国际联合研究院 非贵金属催化电极、膜电极及其制备方法
CN109873175A (zh) * 2017-12-04 2019-06-11 中国科学院大连化学物理研究所 一种低温燃料电池用氮化三维载体担载铂钴铱合金结构催化剂的制备方法
CN110668428A (zh) * 2019-08-29 2020-01-10 许昌许继电科储能技术有限公司 一种储能用锂离子电池负极材料及其制备方法
CN111644189A (zh) * 2020-05-07 2020-09-11 广东邦普循环科技有限公司 利用废旧电池负极石墨的氧还原催化剂及其制备方法
CN111653794A (zh) * 2020-05-07 2020-09-11 广东邦普循环科技有限公司 利用废旧电池负极石墨的碳基氧还原催化剂及其制备方法
CN112652779A (zh) * 2020-12-11 2021-04-13 广东邦普循环科技有限公司 一种高活性的氧还原催化剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148762B (zh) * 2019-06-26 2022-05-31 桂林电子科技大学 一种氮、氟和过渡金属共掺杂石墨烯结构的碳材料及其一步碳化制备方法
CN111952607B (zh) * 2020-07-16 2022-07-15 广东邦普循环科技有限公司 一种利用废旧石墨制备的氧还原催化剂及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140154A (ja) * 1997-07-18 1999-02-12 Hitachi Ltd 電極及びこれを用いた電池
US20160233031A1 (en) * 2011-08-26 2016-08-11 Semiconductor Energy Laboratory Co., Ltd. Power storage device
CN103599805A (zh) * 2013-11-20 2014-02-26 东华大学 一种氮掺杂石墨烯燃料电池催化剂的制备和应用
CN109873175A (zh) * 2017-12-04 2019-06-11 中国科学院大连化学物理研究所 一种低温燃料电池用氮化三维载体担载铂钴铱合金结构催化剂的制备方法
CN108660471A (zh) * 2018-02-11 2018-10-16 中国工程物理研究院材料研究所 一种负载在氮杂石墨泡沫上的镍铁水滑石水氧化电极的制备方法
CN109346728A (zh) * 2018-09-25 2019-02-15 中新国际联合研究院 非贵金属催化电极、膜电极及其制备方法
CN110668428A (zh) * 2019-08-29 2020-01-10 许昌许继电科储能技术有限公司 一种储能用锂离子电池负极材料及其制备方法
CN111644189A (zh) * 2020-05-07 2020-09-11 广东邦普循环科技有限公司 利用废旧电池负极石墨的氧还原催化剂及其制备方法
CN111653794A (zh) * 2020-05-07 2020-09-11 广东邦普循环科技有限公司 利用废旧电池负极石墨的碳基氧还原催化剂及其制备方法
CN112652779A (zh) * 2020-12-11 2021-04-13 广东邦普循环科技有限公司 一种高活性的氧还原催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN112652779A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2022121494A1 (zh) 一种高活性的氧还原催化剂及其制备方法和应用
WO2021223597A1 (zh) 利用废旧电池负极石墨的氧还原催化剂及其制备方法
CN102476054B (zh) 一种Ag/MnyOx/C催化剂及其制备和应用
CN111001428B (zh) 一种无金属碳基电催化剂及制备方法和应用
CN112103518B (zh) 氮掺杂氧化石墨烯负载碳纳米管及Fe/ZIF8复合材料的制备方法
CN113270597B (zh) 一种C3N4包覆的碳纳米管负载NiFe双功能氧气电催化剂及其制备方法
CN112968184B (zh) 一种三明治结构的电催化剂及其制备方法和应用
CN112886029B (zh) 以中空碳纳米管为载体的双功能氧电催化剂的制备及应用
CN108428870A (zh) 一种由金属及其金属衍生物复合的二维碳片气凝胶材料的规模化制备方法及其应用
CN111952607B (zh) 一种利用废旧石墨制备的氧还原催化剂及其制备方法
CN111653794B (zh) 利用废旧电池负极石墨的碳基氧还原催化剂及其制备方法
CN113201759B (zh) 一种三维多孔碳支撑的硫化铋/氧化铋复合催化剂及其制备方法和应用
CN114628696A (zh) 一种多孔碳载钴基双功能氧催化剂的制备方法
CN113839058A (zh) 一种碳基氧还原反应催化剂及其制备方法
CN112138697A (zh) 一种锰氮共掺杂碳纳米片电催化剂的制备方法与应用
CN115360363A (zh) 一种利用壳聚糖制备的多孔碳纳米片限域过渡金属电催化剂及方法
CN114709427A (zh) 一种具有耐酸碱氧还原催化性能的氮硫共掺杂多级孔碳催化剂的制备方法
CN114620712A (zh) 一种用于直接甲醇燃料电池阳极催化剂载体的制备方法
CN113224332A (zh) 一种锌-空气液流电池阴极材料催化剂及其制备方法
CN113201750A (zh) 一种氟改性钴酸铜修饰碳纳米管电极催化剂
CN111063895A (zh) 一种用于可充电锌空气电池的非碳基空气电极材料
CN115224288B (zh) 一种碳包覆富位错过渡金属纳米颗粒电催化剂及其制备方法和应用
CN118099455B (zh) 氮掺杂三维石墨烯负载的Pt基催化剂及制备方法和应用
CN118122392A (zh) 一种失活Pt/C催化剂的再生方法
CN117080432A (zh) 一种碳负载金属氮化物锂硫电池载硫正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902202

Country of ref document: EP

Kind code of ref document: A1