WO2022121305A1 - 软启动电路及电源电路 - Google Patents

软启动电路及电源电路 Download PDF

Info

Publication number
WO2022121305A1
WO2022121305A1 PCT/CN2021/105673 CN2021105673W WO2022121305A1 WO 2022121305 A1 WO2022121305 A1 WO 2022121305A1 CN 2021105673 W CN2021105673 W CN 2021105673W WO 2022121305 A1 WO2022121305 A1 WO 2022121305A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
soft
power supply
bus capacitor
voltage
Prior art date
Application number
PCT/CN2021/105673
Other languages
English (en)
French (fr)
Inventor
胡齐桂
苑珂
李伟进
郑雪云
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US18/016,555 priority Critical patent/US20230283189A1/en
Priority to EP21902016.1A priority patent/EP4167456A4/en
Priority to AU2021397921A priority patent/AU2021397921A1/en
Publication of WO2022121305A1 publication Critical patent/WO2022121305A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present disclosure is based on the Chinese application with the application number of 202011439784.X and the filing date of December 10, 2020 , and claims its priority.
  • the disclosure of the Chinese application is hereby incorporated into the present disclosure as a whole.
  • the present disclosure relates to the technical field of electronic power, and in particular, to a soft-start circuit and a power supply circuit.
  • the power supply circuit is generally used to supply power to the load.
  • a relay charging circuit or a thermistor is used to supply power.
  • the size of the starting current is suppressed, and the circuit is complex and bulky; the thermistor has always been loss after starting, and is sensitive to temperature.
  • the current suppressing effect of the thermistor is weakened, and the circuit device cannot be effectively protected.
  • the use of chip control switching devices can realize soft start, but it needs to involve chip control circuits and control programs, which complicates the design of the power supply circuit of the load.
  • the embodiments of the present disclosure provide a soft-start circuit and a power supply circuit to solve the problems in the prior art that the design of the power supply circuit required for the soft-start function is complex and difficult to implement.
  • a soft-start circuit for a power supply circuit, the power supply circuit includes a filter protection module and a constant current module, the filter protection module is connected to a DC power supply, and the constant current module includes a DC power supply bus capacitor, the soft-start circuit is arranged between the negative terminal of the DC bus capacitor and the negative terminal of the DC power supply; after starting, according to the current input by the DC bus capacitor in the constant current module, controlling whether the connection between the DC power supply and the DC bus capacitor is conducted;
  • One end of the soft start circuit is further connected to the filter protection module, and is used for controlling the conduction between the DC power supply and the DC bus capacitor according to the voltage output by the filter protection module at the start time.
  • the soft-start circuit includes a soft-start chip, including:
  • the first pin is connected to the positive terminal of the DC power supply through the filter capacitor and the charging resistor in the filter protection module, and is used for inputting a voltage signal at the start of startup to control the conduction between the fourth pin and the fifth pin; wherein , the fourth pin is connected to the sampling resistor; the fifth pin is connected to the negative electrode of the DC bus capacitor;
  • the second pin and the third pin are respectively connected to the two ends of the sampling resistor for detecting the voltage across the sampling resistor, wherein the voltage across the sampling resistor is proportional to the current input by the DC bus capacitor ;
  • the soft-start chip is used to control the on-off between the fourth pin and the fifth pin according to the voltage at both ends of the sampling resistor after starting, and then control the DC power supply and the DC power supply. Whether there is continuity between the bus capacitors.
  • the soft-start chip further includes:
  • the first switch is arranged between the fourth pin and the fifth pin, and its control end is connected to the first pin; it is used to control the fourth pin and the first switch through its on-off. On-off between five pins;
  • a detection unit arranged between the second pin and the third pin, for detecting the voltage across the sampling resistor
  • the second switch is arranged between the second pin and the first pin, and is used to turn on when the voltage across the sampling resistor is greater than the first preset value, thereby controlling the first switch to turn off turn off; turn off when the voltage across the sampling resistor is less than a second preset value, and then control the first switch to be turned on; wherein, the second preset value is less than the first preset value.
  • the soft-start chip further includes:
  • the first unidirectional element is connected between the second pin and the first pin, and is connected in series with the second switch for controlling the current to flow from the first pin to the second pin.
  • the soft-start chip further includes:
  • the voltage stabilizing unit is arranged between the gate electrode and the source electrode of the first switch, and is used for stabilizing the voltage between the gate electrode and the source electrode of the first switch.
  • the soft-start circuit further includes: an inductor, the first end of which is connected to the negative electrode of the DC bus capacitor, and the second end of which is connected to the fifth pin;
  • the soft-start chip further includes: a sixth pin, the first end of which is connected to the fifth pin, and the second end of which is connected between the positive terminal of the DC power supply and the positive electrode of the DC bus capacitor;
  • the inductor, the fifth pin, the sixth pin and the formed closed loop are used to maintain the voltage across the DC bus capacitor when the DC power supply stops supplying power to the DC bus capacitor .
  • the soft-start chip further includes:
  • the second unidirectional element the anode of which is connected to the fifth pin, and the cathode of which is connected to the sixth pin; it is used for controlling the current to flow from the fifth pin to the sixth pin.
  • the soft-start chip further includes:
  • the seventh pin is connected between the positive terminal of the DC power supply and the positive terminal of the DC bus capacitor, and is used for inputting a voltage signal, so as to control the first switch to maintain an on state after the startup is completed.
  • the soft-start circuit further includes:
  • a voltage limiting resistor is arranged between the line drawn between the positive terminal of the DC power supply and the positive terminal of the DC bus capacitor and the seventh pin, and is used to limit the voltage input to the seventh pin.
  • a power supply circuit including: a filter protection module, a constant current module, and the soft-start circuit of the above embodiment.
  • a soft-start circuit is set between the negative terminal of the DC bus capacitor and the negative terminal of the DC power supply; after starting, the DC power supply and the DC bus are controlled according to the current input by the DC bus capacitor in the constant current module. Whether the capacitors are connected to each other; one end of the soft-start circuit is also connected to the filter protection module, which is used to control the conduction between the DC power supply and the DC bus capacitor according to the voltage output by the filter protection module at the start of the start, so that the DC power supply can be connected to the DC bus capacitor.
  • the filter protection module which is used to control the conduction between the DC power supply and the DC bus capacitor according to the voltage output by the filter protection module at the start of the start, so that the DC power supply can be connected to the DC bus capacitor.
  • FIG. 1 is a structural diagram of a power supply circuit and a soft-start circuit according to some embodiments of the disclosure
  • FIG. 2 is a structural diagram of a soft-start circuit according to other embodiments of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a soft-start chip according to some embodiments of the disclosure.
  • FIG. 4 is a schematic diagram of a module composition of a power supply circuit according to some embodiments of the present disclosure
  • FIG. 5 is a comparison diagram of a startup current waveform of a startup circuit in the related art and a startup current waveform of a soft-start circuit according to an embodiment of the present disclosure.
  • first, second, etc. may be used to describe switches in embodiments of the present disclosure, these switches should not be limited by these terms. These terms are only used to distinguish between different switches.
  • the first switch may also be referred to as the second switch, and similarly, the second switch may also be referred to as the first switch, without departing from the scope of the embodiments of the present disclosure.
  • the words “if”, “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting”.
  • the phrases “if determined” or “if detected (the stated condition or event)” can be interpreted as “when determined” or “in response to determining” or “when detected (the stated condition or event),” depending on the context )” or “in response to detection (a stated condition or event)”.
  • FIG. 1 is a structural diagram of a power supply circuit and a soft-start circuit according to some embodiments of the disclosure.
  • the power supply circuit includes a DC power supply, a filter protection module 10 and a constant current module 30 .
  • the filter protection module 10 includes a charging resistor R1, a filter capacitor C1 and a fuse tube FUSE1.
  • the filter capacitor C1 is connected to the DC power supply through the charging resistor R1 and the fuse tube FUSE1.
  • the constant current module 30 includes a DC bus capacitor C2.
  • the positive electrode of the DC bus capacitor C2 The fuse tube FUSE1 is connected to the positive terminal of the DC power supply, and the negative pole is connected to the negative terminal of the DC power supply.
  • the constant current module 30 further includes a half-bridge type switch tube Q2, a switch tube Q3, a second inductor L2, a transformer T1, and a third capacitor C3. Resonant circuit for efficient isolated conversion.
  • the output is composed of diodes D3, D4, and a fourth capacitor C4 to form a rectifier circuit, and the output voltage is sent to the LED light source module 40 through the positive terminal V0+.
  • the LED light source module 40 includes two parallel-connected LED lamp beads, and may further include a resistor R4 connected in parallel to both ends of the LED lamp beads.
  • the soft-start circuit 20 is arranged between the negative terminal of the DC bus capacitor C2 in the constant current module 30 and the negative terminal of the DC power supply, so that after the start-up starts, according to the DC bus capacitor in the constant current module 30
  • the current input by C2 controls the continuity between the DC power supply and the DC bus capacitor C2;
  • One end of the soft start circuit 20 is also connected to the filter protection module 10 for controlling the conduction between the DC power supply and the DC bus capacitor C2 according to the voltage output by the filter protection module 10 at the start time.
  • a soft-start circuit is set between the negative terminal of the DC bus capacitor and the negative terminal of the DC power supply; after starting, the DC power supply and the DC power supply are controlled according to the current input by the DC bus capacitor in the constant current module after the start. Whether there is continuity between the DC bus capacitors; one end of the soft-start circuit is also connected to the filter protection module, which is used to control the conduction between the DC power supply and the DC bus capacitors according to the voltage output by the filter protection module at the start of the startup.
  • the filter protection module which is used to control the conduction between the DC power supply and the DC bus capacitors according to the voltage output by the filter protection module at the start of the startup.
  • the soft-start circuit includes a soft-start chip IC, which includes: a first pin IN1, a second pin ISEN1, a third pin Pin ISEN2, fourth pin DC2- and fifth pin DC1-.
  • the first pin IN1 is connected to the positive terminal of the DC power supply through the filter capacitor C1 and the charging resistor R1 in the filter protection module 10, and is configured to input a voltage signal at the start of the startup to control the fourth pin DC2- and the fifth pin Conduction between pins DC1-.
  • the fourth pin DC2- is connected to the sampling resistor R2;
  • the fifth pin DC1- is connected to the negative electrode of the DC bus capacitor C2;
  • the second pin ISEN1 and the third pin ISEN2 are respectively connected to both ends of the sampling resistor R2 and are configured as The voltage across the sampling resistor R2 is detected, wherein the voltage across the sampling resistor R2 is proportional to the current input by the DC bus capacitor.
  • the soft-start chip IC is configured to control the on-off between the fourth pin DC2- and the fifth pin DC1- according to the voltage across the sampling resistor R2 after the start-up, and then control whether the connection between the DC power supply and the DC bus capacitor is on.
  • the soft start chip IC further includes: a first switch Q1, a detection unit 201 and a second switch K. in:
  • the first switch Q1 is set between the fourth pin DC2- and the fifth pin DC1-, and its control end is connected to the first pin IN1; it is used to control the fourth pin DC2- and the fifth pin through its on-off. On-off between DC1-.
  • the detection unit 201 is disposed between the second pin ISEN1 and the third pin ISEN2, and is configured to detect the voltage across the sampling resistor R2.
  • the second switch K is set between the second pin ISEN1 and the first pin IN1, and is configured to be turned on when the voltage across the sampling resistor R2 is greater than the first preset value, thereby controlling the first switch Q1 to be turned off;
  • the voltage across the sampling resistor R2 is less than the second preset value, it is turned off, and then the first switch Q1 is controlled to be turned on; wherein the second preset value is less than the first preset value, the second preset value and the first preset value are The specific value needs to be determined according to the maximum current allowed by the DC bus capacitor and the resistance value of the sampling resistor R2.
  • the soft-start chip IC shown in FIG. 2 further includes: a first unidirectional element D1, connected to between the second pin ISEN1 and the first pin IN1 During this time, it is connected in series with the second switch K for controlling the current to flow from the first pin IN1 to the second pin ISEN1.
  • the above-mentioned soft-start chip IC further includes: a voltage regulator unit ZD1, which is arranged on the gate of the first switch Q and Between the sources, it is used to stabilize the voltage between the gate and the source of the first switch, that is, to limit the driving voltage of the first switch Q1.
  • the soft start chip IC also includes: the sixth pin DC+, the first end of which is connected to the fifth pin DC1-, as shown in Figure 2
  • the above soft-start circuit also includes: an inductor L1, the first end of which is connected to the negative electrode of the DC bus capacitor C2, the second end of which is connected to the fifth pin DC1-, and the second end of the sixth pin DC+ is connected to the DC power supply. Between the positive terminal and the positive terminal of the DC bus capacitor C2.
  • the inductor L1, the fifth pin DC1-, and the sixth pin DC+ form a closed loop and are configured to maintain the voltage across the DC bus capacitor C2 when the DC power supply stops supplying power to the DC bus capacitor C2.
  • the above soft-start chip IC further includes: a second unidirectional element D2, the anode of which is connected to the fifth pin DC1-, and the cathode of which is connected to the fifth pin DC1-. Connect the sixth pin DC+; for controlling the current to flow from the fifth pin DC1- to the sixth pin DC+.
  • the above-mentioned soft-start chip IC also includes:
  • the seventh pin IN2 is connected between the positive terminal of the DC power supply and the positive terminal of the DC bus capacitor C2, and is used for inputting a voltage signal, so as to control the first switch to be turned on after the startup is completed.
  • the above soft-start circuit also includes: a voltage limiting resistor R3, which is set between the positive terminal of the DC power supply and the DC bus.
  • the line drawn between the positive electrodes of the capacitor C2 and the seventh pin IN2 is configured to limit the input voltage of the seventh pin IN2.
  • reserved pins NC may also be included.
  • the power supply circuit includes a filter protection module 10 , a constant current module 30 and a soft start circuit 20 , the constant current module 30 is connected to the LED light source module 40 , and the soft start circuit 20 It is configured to control the start-up current through the soft-start circuit 30 to avoid excessive start-up current.
  • the soft-start circuit of other embodiments of this embodiment is used for the power supply circuit.
  • the power supply circuit includes: a filter protection module 10 , a soft-start circuit 20 , and a DC/DC constant current module 30 (that is, the above-mentioned embodiment). constant current module 30) and LED light source module 40.
  • the DC output current is input to the filter protection module 10 through the DC bus, and the soft-start circuit 20 controls the built-in switch tube to turn on and off at high frequency by collecting voltage and current signals, charging the DC bus capacitor C2, and then passing through the subsequent DC
  • the /DC constant current module 30 outputs the driving current to control the lighting of the LED light source module to complete the start-up process.
  • the filter protection module 10 includes: a charging resistor R1, a filter capacitor C1, and a fuse tube FUSE1, which are configured to remove the fault when a serious short-circuit fault occurs in the subsequent circuit, so as to avoid affecting the power supply of the DC source bus.
  • the DC/DC constant current module 30 includes a half-bridge resonant circuit composed of a switch tube Q2, a switch tube Q3, an inductor L2, a transformer T1, and a third capacitor C3, so as to realize efficient isolation conversion.
  • the output is composed of a diode D3, a diode D4, and a fourth capacitor C4 to form a rectifier circuit, and the output voltage is sent to the LED light source module 40 through the positive terminal V0+.
  • the LED light source module 40 includes two parallel LED lamp beads, and may also include a resistor R4, which is connected in parallel to both ends of the LED lamp beads.
  • the soft-start circuit includes a soft-start chip IC. As shown in FIG. 3 , the first to seventh pins, the detection unit 201 , the second switch K (ie the second switch K in the above embodiment), the diode D1 ( That is, the first unidirectional conduction element D1 in the above-mentioned embodiment, the diode D2 (that is, the second unidirectional conduction element D2 in the above-mentioned embodiment), the voltage regulator tube ZD1 (and the voltage regulator unit ZD1 in the above-mentioned embodiment), The switch tube Q1 (ie, the first switch Q1 in the above embodiment).
  • the working principle of the soft start chip IC is:
  • the first pin IN1 of the soft-start chip IC is externally connected to the filter capacitor C1 and the charging resistor R1.
  • the DC power supply charges C1 through the charging resistor R1 to generate a rising edge voltage signal and control the switch tube Q1 to turn on.
  • the voltage regulator tube ZD1 limits the driving voltage value of the switching tube Q1 and protects the switching tube Q1; when the driving voltage value Vgs reaches the conduction threshold of the switching tube Q1, the switching tube Q1 is turned on, at this time the DC bus capacitor C2, inductor L1,
  • the sampling resistor R2 forms a loop, and the DC power supply charges the DC bus capacitor C2.
  • the fifth pin DC1- of the chip IC is output by the fourth pin DC2- through the switch tube Q1, and returns to the negative electrode of the DC power supply through the current sampling resistor R2.
  • the voltage When U is higher than the first reference value Von_ref, the connection between the second pin ISEN1 and the negative electrode of the DC power supply will be conducted, and the driving voltage Vgs of the switch tube Q1 will be pulled down and then turned off. After the switch tube Q1 is turned off, the DC bus C2 freewheels through the inductor L1 and the diode D1 to maintain the voltage across it.
  • the detection module 201 controls the second pin ISEN1 to disconnect from the negative electrode of the DC power supply, and at this time, the DC power supply charges C1 through the charging resistor R1 , a rising edge voltage signal is generated, so that the switching tube driving voltage Vgs rises, and then the switching tube Q1 is controlled, and so on.
  • the soft-start peak current can be changed to meet the needs of different products, and it can also be used as an overcurrent protection function for the circuit input.
  • the charging current value will gradually decrease each time.
  • the detection module 201 controls the second pin ISEN1 It is always disconnected from the negative pole of the DC power supply, and the driving voltage Vgs is kept at a high level through the seventh pin IN2, and the control switch tube Q1 is always turned on to complete the soft-start process.
  • FIG. 5 is a comparison diagram of the startup current waveform of the startup circuit in the related art and the startup current waveform of the soft-start circuit according to the embodiment of the present disclosure, wherein FIG. 5( a ) is the startup current waveform of the startup circuit in the related art, and FIG. 5( b ) ) is the start-up current waveform of the soft-start circuit according to the embodiment of the present disclosure, and to is the start-up time.
  • FIG. 5( a ) is the startup current waveform of the startup circuit in the related art
  • FIG. 5( b ) ) is the start-up current waveform of the soft-start circuit according to the embodiment of the present disclosure, and to is the start-up time.
  • the DC bus capacitor C2 reaches the set value of the bus voltage, and the subsequent DC/DC constant current module starts to drive the load to work.
  • the load is an LED light source module. After the soft start is completed, the LED The light source module is lit.
  • circuit embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware.
  • the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic A disc, an optical disc, etc., includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Details Of Television Scanning (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

本公开提供了一种软启动电路及电源电路。其中,该软启动电路设置在直流母线电容的负极和直流电源的负极端子之间;用于在启动开始之后,根据恒流模块中的直流母线电容输入的电流,控制直流电源与直流母线电容之间是否导通;软启动电路的一端还连接滤波保护模块,用于在启动开始时刻,根据滤波保护模块输出的电压控制直流电源与直流母线电容之间导通。通过本公开,能够在直流母线电容的输入的电流过大时,控制直流电源与直流母线电容之间断开,只通过软启动电路实现软启动,电路结构简单,无需复杂的控制程序,提高了控制效率。

Description

软启动电路及电源电路
相关申请的横向引用
本公开是以申请号为 202011439784.X,申请日为 2020年12月10日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及电子电力技术领域,具体而言,涉及一种软启动电路及电源电路。
背景技术
现有技术中,一般通过电源电路为负载供电,随着负载(例如LED灯)电路集成化、小型化要求越来越高,现有电源的技术方案中,通过继电器充电电路或热敏电阻来抑制启动电流的大小,电路复杂体积较大;热敏电阻启动后一直存在损耗,对温度敏感,在高温时开关灯具,热敏电阻的电流抑制作用减弱,无法有效保护电路器件。采用芯片控制开关器件能够实现软启动,但是需要涉及芯片控制电路和控制程序,使负载的电源电路设计变得复杂。
针对相关技术中软启动功能所需的电源电路设计复杂,难以实现的问题,目前尚未提出有效的解决方案。
发明内容
本公开的实施例提供了一种软启动电路及电源电路,以解决现有技术中软启动功能所需的电源电路设计复杂,难以实现的问题。
根据本公开的一方面,提供了一种软启动电路,用于电源电路,所述电源电路包括滤波保护模块和恒流模块,所述滤波保护模块连接直流电源,所述恒流模块中包括直流母线电容,所述软启动电路设置在所述直流母线电容的负极和所述直流电源的负极端子之间;用于在启动开始之后,根据所述恒流模块中的直流母线电容输入的电流,控制所述直流电源与所述直流母线电容之间是否导通;
所述软启动电路的一端还连接所述滤波保护模块,用于在启动开始时刻,根据滤波保护模块输出的电压控制所述直流电源与所述直流母线电容之间导通。
在一些实施例中,所述软启动电路包括软启动芯片,其中包括:
第一引脚,通过滤波保护模块中的滤波电容和充电电阻连接直流电源的正极端子,用于在启动开始时刻输入电压信号,以控制第四引脚和第五引脚之间导通;其中,所述第四引脚连接所述采样电阻;所述第五引脚连接所述直流母线电容的负极;
第二引脚和第三引脚,分别连接至所述采样电阻的两端,用于检测所述采样电阻两端的电压,其中,采样电阻两端的电压与所述直流母线电容输入的电流成正比;
所述软启动芯片用于在启动开始之后,根据所述采样电阻两端的电压控制所述第四引脚和所述第五引脚之间的通断,进而控制所述直流电源与所述直流母线电容之间是否导通。
在一些实施例中,所述软启动芯片还包括:
第一开关,设置在所述第四引脚和所述第五引脚之间,其控制端连接所述第一引脚;用于通过自身通断控制所述第四引脚和所述第五引脚之间的通断;
检测单元,设置在所述第二引脚和所述第三引脚之间,用于检测所述采样电阻两端的电压;
第二开关,设置在所述第二引脚和所述第一引脚之间,用于在所述采样电阻两端的电压大于第一预设值时导通,进而控制所述第一开关关断;在所述采样电阻两端的电压小于第二预设值时关断,进而控制所述第一开关导通;其中,所述第二预设值小于所述第一预设值。
在一些实施例中,所述软启动芯片还包括:
第一单向元件,连接至所述第二引脚和所述第一引脚之间,与所述第二开关串联,用于控制电流由第一引脚流向第二引脚。
在一些实施例中,所述软启动芯片还包括:
稳压单元,设置在所述第一开关的栅极和源极之间,用于稳定所述第一开关的栅极和源极之间的电压。
在一些实施例中,所述软启动电路还包括:电感,其第一端连接所述直流母线电容的负极,其第二端连接所述第五引脚;
所述软启动芯片还包括:第六引脚,其第一端连接所述第五引脚,其第二端连接至所述直流电源的正极端子与所述直流母线电容的正极之间;
所述电感、所述第五引脚、所述第六引脚和所述形成闭合回路,用于在所述直流 电源停止为所述直流母线电容供电时,保持所述直流母线电容两端的电压。
在一些实施例中,所述软启动芯片还包括:
第二单向元件,其阳极连接所述第五引脚,其阴极连接所述第六引脚;用于控制电流由所述第五引脚流向所述第六引脚。
在一些实施例中,所述软启动芯片还包括:
第七引脚,连接至所述直流电源的正极端子与所述直流母线电容的正极之间,用于输入电压信号,以实现在启动完成后,控制所述第一开关维持导通状态。
在一些实施例中,所述软启动电路还包括:
限压电阻,设置在所述直流电源的正极端子与所述直流母线电容的正极之间引出的线路与所述第七引脚之间,用于限制输入所述第七引脚输入的电压。
根据本公开的另一方面,提供了一种电源电路,包括:滤波保护模块、恒流模块和上述实施例的软启动电路。
应用本公开的技术方案,在直流母线电容的负极和直流电源的负极端子之间设置软启动电路;在启动开始之后,根据恒流模块中的直流母线电容输入的电流,控制直流电源与直流母线电容之间是否导通;该软启动电路的一端还连接滤波保护模块,用于在启动开始时刻,根据滤波保护模块输出的电压控制直流电源与所述直流母线电容之间导通,能够在直流母线电容的输入的电流过大时,控制直流电源与直流母线电容之间断开,只通过软启动电路实现软启动,电路结构简单,无需复杂的控制程序,提高了控制效率。
附图说明
图1为本公开一些实施例的电源电路和软启动电路的结构图;
图2为本公开另一些实施例的软启动电路的结构图;
图3为本公开一些实施例的软启动芯片的结构示意图;
图4为本公开一些实施例的电源电路的模块组成示意图;
图5为相关技术中启动电路的启动电流波形与本公开实施例的软启动电路的启动电流波形对比图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在本公开实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本公开实施例中可能采用术语第一、第二等来描述开关,但这些开关不应限于这些术语。这些术语仅用来将不同开关区分开。例如,在不脱离本公开实施例范围的情况下,第一开关也可以被称为第二开关,类似地,第二开关也可以被称为第一开关。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
下面结合附图详细说明本公开的可选实施例。
本实施例提供一种软启动电路,用于电源电路,图1为本公开一些实施例的电源电路和软启动电路的结构图,该电源电路包括直流电源、滤波保护模块10和恒流模块 30,滤波保护模块10包括充电电阻R1和滤波电容C1以及保险管FUSE1,滤波电容C1通过充电电阻R1和保险管FUSE1连接直流电源,恒流模块30中包括直流母线电容C2,直流母线电容C2的正极通过保险管FUSE1连接直流电源的正极端子,负极连接直流电源的负极端子,恒流模块30还包括开关管Q2、开关管Q3、第二电感L2、变压器T1、第三电容C3构成的半桥式谐振电路,实现高效隔离转换。输出由二极管D3、D4、第四电容C4组成整流电路,通过正极端子V0+输出电压至LED光源模块40。LED光源模块40包括两个并联的LED灯珠,还可以包括一个电阻R4,并联在LED灯珠两端。
如图1所示,软启动电路20设置在恒流模块30中的直流母线电容C2的负极和直流电源的负极端子之间,用于在启动开始之后,根据恒流模块30中的直流母线电容C2输入的电流,控制直流电源与直流母线电容C2之间是否导通;
软启动电路20的一端还连接滤波保护模块10,用于在启动开始时刻,根据滤波保护模块10输出的电压控制直流电源与直流母线电容C2之间导通。
通过本实施例的软启动电路,在直流母线电容的负极和直流电源的负极端子之间设置软启动电路;在启动开始之后,根据恒流模块中的直流母线电容输入的电流,控制直流电源与直流母线电容之间是否导通;该软启动电路的一端还连接滤波保护模块,用于在启动开始时刻,根据滤波保护模块输出的电压控制直流电源与直流母线电容之间导通,能够在直流母线电容的输入的电流过大时,控制直流电源与直流母线电容之间断开,只通过软启动电路实现软启动,电路结构简单,无需复杂的控制程序,提高了控制效率。
图2为本公开另一些实施例的软启动电路的结构图,为了具体实现软启动功能,软启动电路包括软启动芯片IC,其中包括:第一引脚IN1、第二引脚ISEN1、第三引脚ISEN2、第四引脚DC2-和第五引脚DC1-。
其中,第一引脚IN1通过滤波保护模块10中的滤波电容C1和充电电阻R1连接直流电源的正极端子,被配置为在启动开始时刻输入电压信号,以控制第四引脚DC2-和第五引脚DC1-之间导通。第四引脚DC2-连接采样电阻R2;第五引脚DC1-连接直流母线电容C2的负极;第二引脚ISEN1和第三引脚ISEN2,分别连接至采样电阻R2的两端,被配置为检测采样电阻R2两端的电压,其中,采样电阻R2两端的电压与直流母线电容输入的电流成正比。软启动芯片IC被配置为在启动开始之后,根据采样电 阻R2两端的电压控制第四引脚DC2-和第五引脚DC1-之间的通断,进而控制直流电源与直流母线电容之间是否导通。
图3为本公开一些实施例的软启动芯片的结构图,为了实现根据采样电阻R2两端的电压控制第四引脚DC2-和第五引脚DC1-之间的通断,如图3所示,软启动芯片IC还包括:第一开关Q1、检测单元201和第二开关K。其中:
第一开关Q1设置在第四引脚DC2-和第五引脚DC1-之间,其控制端连接第一引脚IN1;用于通过自身通断控制第四引脚DC2-和第五引脚DC1-之间的通断。
检测单元201设置在第二引脚ISEN1和第三引脚ISEN2之间,被配置为检测采样电阻R2两端的电压。
第二开关K设置在第二引脚ISEN1和第一引脚IN1之间,被配置为在采样电阻R2两端的电压大于第一预设值时导通,进而控制第一开关Q1关断;在采样电阻R2两端的电压小于第二预设值时关断,进而控制第一开关Q1导通;其中,第二预设值小于第一预设值,第二预设值和第一预设值的具体值,需要根据直流母线电容允许通过的最大电流和采样电阻R2的阻值确定。通过第二开关K的反复地导通、关断,控制第一开关Q1反复地导通、关断,进而控制流入直流母线电容的电流,即控制启动电流。
为了避免电流由第二引脚ISEN1流向第一引脚IN1,如图2所示的软启动芯片IC还包括:第一单向元件D1,连接至第二引脚ISEN1和第一引脚IN1之间,与第二开关K串联,用于控制电流由第一引脚IN1流向第二引脚ISEN1。
如果第一开关Q1的驱动电压过大,可能会导致第一开关Q1失效,为了避免这种情况发生,上述软启动芯片IC还包括:稳压单元ZD1,设置在第一开关Q的栅极和源极之间,用于稳定第一开关的栅极和源极之间的电压,即限制第一开关Q1驱动电压。
根据上文,在直流母线电容C2的电流大于第一预设值时,控制直流电源与直流母线电容C2之间关断,此时直流母线电容C2失去供电源,为了在直流电源与直流母线电容C2之间关断时,维持直流母线电容C2两端的电压,如图3所示软启动芯片IC还包括:第六引脚DC+,其第一端连接第五引脚DC1-,如图2所示,上述软启动电路还包括:电感L1,其第一端连接直流母线电容C2的负极,其第二端连接第五引脚DC1-,第六引脚DC+的第二端连接至直流电源的正极端子与直流母线电容C2的正极 之间。
电感L1、第五引脚DC1-、第六引脚DC+和形成闭合回路,被配置为在直流电源停止为直流母线电容C2供电时,保持直流母线电容C2两端的电压。
为了避免电流由第六引脚DC+流向第五引脚DC1-,如图3所示,上述软启动芯片IC还包括:第二单向元件D2,其阳极连接第五引脚DC1-,其阴极连接第六引脚DC+;用于控制电流由第五引脚DC1-流向第六引脚DC+。
由于第一引脚IN1连接滤波电容C1,在启动完成后,母线电容输入的是直流电,滤波电容C1具有隔直流的作用,因此第一引脚IN1不再输入电压信号,为了控制第一开关Q1继续导通,进而控制负载与直流电源导通,如图2所示,上述软启动芯片IC还包括:
第七引脚IN2,连接至直流电源的正极端子与直流母线电容C2的正极之间,用于输入电压信号,以实现在启动完成后,控制第一开关导通。
由于芯片引脚不能输入过高的电压,为了限制第七引脚IN2输入的电压,如图2所示,上述软启动电路还包括:限压电阻R3,设置在直流电源的正极端子与直流母线电容C2的正极之间引出的线路与第七引脚IN2之间,被配置为限制输入第七引脚IN2输入的电压。在上述芯片IC中,还可以包括预留引脚NC。
图4为根据本公开另一些实施例的电源电路的结构图,该电源电路包括滤波保护模块10、恒流模块30和软启动电路20,恒流模块30连接LED光源模块40,软启动电路20被配置为通过软启动电路30控制启动电流,避免启动电流过大。
本实施例另一些实施例的软启动电路,用于电源电路,如图1所示,该电源电路包括:滤波保护模块10、软启动电路20、DC/DC恒流模块30(即上述实施例中的恒流模块30)、LED光源模块40。直流输出的电流通过直流母线,输入至滤波保护模块10,软启动电路20通过采集电压、电流信号,控制内置的开关管高频率地开、关,给直流母线电容C2充电,再经过后级DC/DC恒流模块30,输出驱动电流控制LED光源模块点亮,完成启动过程。
滤波保护模块10包括:充电电阻R1、滤波电容C1、保险管FUSE1,被配置为在后级电路发生严重短路故障时切除故障,避免影响直流源母线供电。
DC/DC恒流模块30包括开关管Q2、开关管Q3、电感L2、变压器T1、第三电容C3构成的半桥式谐振电路,实现高效隔离转换。输出由二极管D3、二极管D4、第 四电容C4组成整流电路,通过正极端子V0+输出电压至LED光源模块40。LED光源模块40包括两个并联的LED灯珠,还可以包括电阻R4,并联在LED灯珠两端。
软启动电路中包括软启动芯片IC,如图3所示,第一引脚~第七引脚、检测单元201、第二开关K(即上述实施例中的第二开关K)、二极管D1(即上述实施例中的第一单向导通元件D1)、二极管D2(即上述实施例中的第二单向导通元件D2),稳压管ZD1(及上述实施例中的稳压单元ZD1)、开关管Q1(即上述实施例中的第一开关Q1)。
软启动芯片IC的工作原理为:
软启动芯片IC的第一引脚IN1,外部一次连接滤波电容C1、充电电阻R1,当直流源开启时,直流电源通过充电电阻R1给C1充电,产生上升沿电压信号,控制开关管Q1导通,稳压管ZD1限制开关管Q1的驱动电压值,保护开关管Q1;当驱动电压值Vgs达到开关管Q1的导通阈值时,开关管Q1导通,此时直流母线电容C2、电感L1、采样电阻R2形成回路,直流电源给直流母线电容C2充电,由于电容电压不能突变,上电瞬间直流母线电容C2充电电流上升,利用电感L1电流不能突变的原理,可抑制电流峰值,电流经过软启动芯片IC的第五引脚DC1-,通过开关管Q1,由第四引脚DC2-输出,经过电流采样电阻R2,回到直流电源负极。
采样电阻R2两端产生电压信号(U=R*I),软启动芯片IC的第二引脚ISEN1和第三引脚ISEN2采集采样电阻R2两端的电压信号U,传输至检测模块201,当电压U高于第一基准值Von_ref时,会使第二引脚ISEN1与直流电源负极之间导通,开关管Q1的驱动电压Vgs被拉低,进而关断。开关管Q1关断后,直流母线C2通过电感L1、二极管D1续流,维持其两端电压。当采样电阻R2两端的电压U小于第二基准值Voff ref值时,此时检测模块201控制第二引脚ISEN1与直流电源负极之间断开,此时,直流电源又通过充电电阻R1给C1充电,产生上升沿电压信号,使开关管驱动电压Vgs上升,进而又控制开关管Q1,如此往复。
通过计算改变采样电阻R2的阻值大小,可以改变软启动峰值电流大小,以便适应不同产品需求,也可以作为电路输入的过流保护功能。
直流母线电容C2两端的电压逐渐接近母线电压值的过程中,每次充电电流值会逐渐减小,当采样电阻R2两端的电压U一直小于Voff ref值时,检测模块201控制第二引脚ISEN1与直流电源负极之间一直保持断开,通过第七引脚IN2使驱动电压 Vgs电压保持高电平,控制开关管Q1一直导通,完成软启动过程。
图5为相关技术中启动电路的启动电流波形与本公开实施例的软启动电路的启动电流波形对比图,其中,图5(a)为相关技术中启动电路的启动电流波形,图5(b)为根据本公开实施例的软启动电路的启动电流波形,to为启动开始时刻,通过对比可知,与相关技术相比,采用本公开的软启动电路之后,峰值电流Imax值减低很多,且该最大电流过冲值可以计算设置。
完成软启动后,直流母线电容C2电容达到母线电压设定值,后级DC/DC恒流模块启动,驱动负载工作,在本实施例中,负载为LED光源模块,在完成软启动后,LED光源模块被点亮。
以上所描述的电路实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种软启动电路,用于电源电路,所述电源电路包括滤波保护模块和恒流模块,所述滤波保护模块连接所述直流电源,所述恒流模块包括直流母线电容,其中,
    所述软启动电路设置在所述直流母线电容的负极和所述直流电源的负极端子之间,被配置为在启动开始之后,根据所述恒流模块中的直流母线电容输入的电流,控制所述直流电源与所述直流母线电容之间是否导通;
    所述软启动电路的一端还连接所述滤波保护模块,被配置为在启动开始时刻,根据滤波保护模块输出的电压控制所述直流电源与所述直流母线电容之间导通。
  2. 根据权利要求1所述的软启动电路,其中,所述软启动电路包括软启动芯片,所述软启动芯片包括:
    第一引脚,通过所述滤波保护模块中的滤波电容和充电电阻连接直流电源的正极端子,被配置为在启动开始时刻输入电压信号,以控制所述软启动芯片的第四引脚和第五引脚之间导通;其中,所述第四引脚连接所述采样电阻,所述第五引脚连接所述直流母线电容的负极;
    第二引脚和第三引脚,分别连接至所述采样电阻的两端,被配置为检测所述采样电阻两端的电压,其中,所述采样电阻两端的电压与所述直流母线电容输入的电流成正比;和
    所述软启动芯片被配置为在启动开始之后,根据所述采样电阻两端的电压控制所述第四引脚和所述第五引脚之间的通断,进而控制所述直流电源与所述直流母线电容之间是否导通。
  3. 根据权利要求2所述的软启动电路,其中,所述软启动芯片还包括:
    第一开关,设置在所述第四引脚和所述第五引脚之间,其控制端连接所述第一引脚,被配置为通过自身通断控制所述第四引脚和所述第五引脚之间的通断;
    检测单元,设置在所述第二引脚和所述第三引脚之间,被配置为检测所述采样电阻两端的电压;和
    第二开关,设置在所述第二引脚和所述第一引脚之间,被配置为在所述采样电阻两端的电压大于第一预设值时导通,进而控制所述第一开关关断;在所述采样电阻两端的电压小于第二预设值时关断,进而控制所述第一开关导通;其中,所述第二预设值小于所述第一预设值。
  4. 根据权利要求3所述的软启动电路,其中,所述软启动芯片还包括:
    第一单向元件,连接至所述第二引脚和所述第一引脚之间,与所述第二开关串联,被配置为控制电流由第一引脚流向第二引脚。
  5. 根据权利要求3或4所述的软启动电路,其中,所述软启动芯片还包括:
    稳压单元,设置在所述第一开关的栅极和源极之间,被配置为稳定所述第一开关的栅极和源极之间的电压。
  6. 根据权利要求2至5任一项所述的软启动电路,还包括:
    电感,所述电感的第一端连接所述直流母线电容的负极,所述电感的第二端连接所述第五引脚;和
    第六引脚,所述第六引脚的第一端连接所述第五引脚,所述第六引脚的第二端连接至所述直流电源的正极端子与所述直流母线电容的正极之间;
    其中,所述电感、所述第五引脚、所述第六引脚和所述形成闭合回路,被配置为在所述直流电源停止为所述直流母线电容供电时,保持所述直流母线电容两端的电压。
  7. 根据权利要求6所述的软启动电路,其中,所述软启动芯片还包括:
    第二单向元件,所述第二单向元件的阳极连接所述第五引脚,第二单向元件的阴极连接所述第六引脚,被配置为控制电流由所述第五引脚流向所述第六引脚。
  8. 根据权利要求2至7任一项所述的软启动电路,其中,所述软启动芯片还包括:
    第七引脚,连接至所述直流电源的正极端子与所述直流母线电容的正极之间,被配置为输入电压信号,以实现在启动完成后,控制所述第一开关维持导通状态。
  9. 根据权利要求8所述的软启动电路,其中,所述软启动电路还包括:
    限压电阻,设置在所述直流电源的正极端子与所述直流母线电容的正极之间引出的线路与所述第七引脚之间,被配置为限制输入所述第七引脚输入的电压。
  10. 一种电源电路,包括:
    滤波保护模块;
    恒流模块;和
    权利要求1至9中任一项所述的软启动电路。
PCT/CN2021/105673 2020-12-10 2021-07-12 软启动电路及电源电路 WO2022121305A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/016,555 US20230283189A1 (en) 2020-12-10 2021-07-12 Soft Start Circuit and Power Supply Circuit
EP21902016.1A EP4167456A4 (en) 2020-12-10 2021-07-12 SOFT START CIRCUIT AND POWER SUPPLY CIRCUIT
AU2021397921A AU2021397921A1 (en) 2020-12-10 2021-07-12 Soft start circuit and power supply circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011439784.XA CN112510985A (zh) 2020-12-10 2020-12-10 一种软启动电路及电源电路
CN202011439784.X 2020-12-10

Publications (1)

Publication Number Publication Date
WO2022121305A1 true WO2022121305A1 (zh) 2022-06-16

Family

ID=74971934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105673 WO2022121305A1 (zh) 2020-12-10 2021-07-12 软启动电路及电源电路

Country Status (5)

Country Link
US (1) US20230283189A1 (zh)
EP (1) EP4167456A4 (zh)
CN (1) CN112510985A (zh)
AU (1) AU2021397921A1 (zh)
WO (1) WO2022121305A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115864814A (zh) * 2023-02-27 2023-03-28 阳光电源股份有限公司 一种软启动电路和功率变换设备
CN116599237A (zh) * 2023-07-17 2023-08-15 深圳市高斯宝电气技术有限公司 一种储能逆变器电网侧高频隔离取电电路

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112510985A (zh) * 2020-12-10 2021-03-16 珠海格力电器股份有限公司 一种软启动电路及电源电路
CN113824301B (zh) * 2021-09-10 2023-09-12 珠海格力电器股份有限公司 开关电源的启动电路及其开关电源
CN117458854B (zh) * 2023-12-22 2024-03-08 安徽雷彻科技有限公司 一种供电电源的软启动电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104426126A (zh) * 2013-08-27 2015-03-18 华为技术有限公司 浪涌保护装置
CN206332447U (zh) * 2016-12-29 2017-07-14 石家庄泽润科技有限公司 直流输入防浪涌电压电路
CN207368636U (zh) * 2017-11-10 2018-05-15 深圳市垅运照明电器有限公司 一种可自恢复的恒压输出短路保护电路
CN112510985A (zh) * 2020-12-10 2021-03-16 珠海格力电器股份有限公司 一种软启动电路及电源电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492987B2 (en) * 2009-10-07 2013-07-23 Lutron Electronics Co., Inc. Load control device for a light-emitting diode light source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104426126A (zh) * 2013-08-27 2015-03-18 华为技术有限公司 浪涌保护装置
CN206332447U (zh) * 2016-12-29 2017-07-14 石家庄泽润科技有限公司 直流输入防浪涌电压电路
CN207368636U (zh) * 2017-11-10 2018-05-15 深圳市垅运照明电器有限公司 一种可自恢复的恒压输出短路保护电路
CN112510985A (zh) * 2020-12-10 2021-03-16 珠海格力电器股份有限公司 一种软启动电路及电源电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4167456A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115864814A (zh) * 2023-02-27 2023-03-28 阳光电源股份有限公司 一种软启动电路和功率变换设备
CN115864814B (zh) * 2023-02-27 2023-05-30 阳光电源股份有限公司 一种软启动电路和功率变换设备
CN116599237A (zh) * 2023-07-17 2023-08-15 深圳市高斯宝电气技术有限公司 一种储能逆变器电网侧高频隔离取电电路
CN116599237B (zh) * 2023-07-17 2023-10-17 深圳市高斯宝电气技术有限公司 一种储能逆变器电网侧高频隔离取电电路

Also Published As

Publication number Publication date
CN112510985A (zh) 2021-03-16
US20230283189A1 (en) 2023-09-07
EP4167456A1 (en) 2023-04-19
EP4167456A4 (en) 2024-01-17
AU2021397921A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
WO2022121305A1 (zh) 软启动电路及电源电路
JP6251395B2 (ja) フライバック方式の快速起動駆動回路及び駆動方法
US20060274468A1 (en) Active inrush current control using a relay for AC to DC converters
JP2004166489A (ja) モーター電源供給装置及びモーター電源供給方法
KR20000057052A (ko) 전원공급회로
TWI646767B (zh) 電源控制裝置及電源控制系統
JP2004312901A (ja) スイッチング電源の過電流保護回路
CN111917103A (zh) 一种用于电源模组的可关断电源ic的主备电转换检测电路
WO2017031919A1 (zh) 发光二极管调光驱动电路
US9049770B2 (en) Circuit arrangement and method for operating at least one luminous means
JP3564694B2 (ja) 突入電流抑止装置
JP5632732B2 (ja) 発光ダイオード点灯装置及び該発光ダイオード点灯装置を用いた照明装置
CN214045432U (zh) 一种软启动电路及电源电路
CN211655724U (zh) 一种pfc电路及其保护电路
JP2022128382A (ja) 感電防止保護策を備え、且つ多様な電気供給モードとの互換性を有する照明管
JP2012152065A (ja) 電源装置
CN104078921A (zh) 一种具有短路保护装置的控制器
CN213521266U (zh) 一种带过流保护电源电路及电子设备
CN205389171U (zh) Ac-dc开关电源浪涌电流抑制电路
TWI491160B (zh) 無高壓電解電容器的電源供應器
CN216672597U (zh) 一种兼具防反接、上电延迟的过流过压保护电路
CN212343314U (zh) 一种用于电源模组的可关断电源ic的主备电转换检测电路
JP7380174B2 (ja) 点灯装置および照明器具
CN210743551U (zh) 驱动电压保护电路及驱动装置
JP3972329B2 (ja) 放電灯点灯装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021902016

Country of ref document: EP

Effective date: 20230113

ENP Entry into the national phase

Ref document number: 2021397921

Country of ref document: AU

Date of ref document: 20210712

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE