WO2017031919A1 - 发光二极管调光驱动电路 - Google Patents

发光二极管调光驱动电路 Download PDF

Info

Publication number
WO2017031919A1
WO2017031919A1 PCT/CN2016/070010 CN2016070010W WO2017031919A1 WO 2017031919 A1 WO2017031919 A1 WO 2017031919A1 CN 2016070010 W CN2016070010 W CN 2016070010W WO 2017031919 A1 WO2017031919 A1 WO 2017031919A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
current
led
diode
Prior art date
Application number
PCT/CN2016/070010
Other languages
English (en)
French (fr)
Inventor
谢玮
Original Assignee
京东方科技集团股份有限公司
京东方光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 京东方光科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/301,767 priority Critical patent/US9877366B2/en
Priority to EP16763429.4A priority patent/EP3346803B1/en
Publication of WO2017031919A1 publication Critical patent/WO2017031919A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/31Phase-control circuits
    • H05B45/315Reverse phase-control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]

Definitions

  • the present disclosure relates to the field of LED (Light-emitting Diode) dimming, and more particularly to an LED dimming driving circuit.
  • LED Light-emitting Diode
  • the TRIAC (triac) dimmer is only required to be a single triac thyristor. Compared with other types of dimmers, the structure is simple, the cost is low, and the application range is wide in the market.
  • peripheral circuit structure currently applicable to TRIAC dimming is complicated.
  • the current peripheral circuit conversion efficiency is low, and there are problems in the linearity difference of dimming, the narrow dimming range, and the dimming performance such as flicker.
  • a primary object of the present disclosure is to provide an LED dimming drive circuit that overcomes the need in the prior art to employ complex circuit configurations to be compatible with problems from TRIAC dimmers.
  • a light emitting diode LED dimming driving circuit including:
  • a triac TRIAC dimmer for regulating the input AC voltage
  • a self-oscillating pulse transducer RCC coupled to the TRIAC dimmer for regulating an AC voltage from the TRIAC dimmer to provide a drive current for the LED load.
  • the RCC includes at least:
  • a rectifying circuit for rectifying an alternating voltage from a TRIAC dimmer to obtain a direct current voltage
  • the power conversion circuit is configured to perform power conversion on the filtered DC voltage to filter out an AC component in the filtered DC voltage to provide a driving current for the LED load.
  • the RCC further includes a first passive bleeder circuit
  • the first passive bleeder circuit is located between the TRIAC dimmer and the rectifier circuit for passive bleed of an AC voltage from the TRIAC dimmer.
  • the rectifier circuit includes a first alternating current voltage input end and a second alternating current voltage input end, and an alternating voltage from the TRIAC dimmer passes through the first alternating current voltage input end and the second alternating current input end Input
  • the first passive bleeder circuit specifically includes:
  • An input resistor the first end being connected to the first alternating voltage input
  • the input capacitor has a first end connected to the second end of the input resistor and a second end connected to the second AC voltage input end.
  • the resistance value of the input resistor ranges from 500 ohms to 5000 ohms
  • the capacitance value of the input capacitor ranges from 47 nF to 220 nF.
  • the RCC further includes a second passive bleeder circuit
  • the second passive bleeder circuit is located between the rectifier circuit and the filter circuit for passive bleed of the DC voltage from the rectifier circuit.
  • the rectifier circuit includes a first DC voltage output terminal and a second DC voltage output terminal; a DC voltage rectified by the rectifier circuit passes through the first DC voltage output terminal and the second DC voltage output terminal Terminal output
  • the second passive bleeder circuit specifically includes a pi type filter
  • the pi type filter includes:
  • the second output capacitor has a first end connected to the second end of the first differential mode inductor and a second end connected to the second DC voltage output end.
  • the value range of the capacitance value of the first output capacitor and the capacitance value of the second output capacitor are both in a range of 90 nF to 110 nF.
  • the rectifier circuit includes a rectifier bridge
  • the rectifier bridge includes:
  • a first rectifier diode an anode connected to the first alternating current voltage input end, and a cathode connected to the first direct current voltage output end
  • the anode is connected to the second alternating voltage input end, and the cathode is connected to the cathode of the first rectifier diode;
  • a third rectifier diode an anode connected to the second DC voltage output terminal, and a cathode connected to a cathode of the second rectifier diode;
  • a fourth rectifier diode having an anode connected to an anode of the third rectifier diode and a cathode connected to an anode of the first rectifier diode.
  • the filtering circuit includes:
  • the first end is connected to the second end of the first differential mode inductor
  • the electrolytic capacitor is connected, the positive plate is connected to the second end of the filtered differential mode inductor, and the negative plate is connected to the second DC voltage output end.
  • the filtered differential mode inductor has a value ranging from 1 mH to 2 mH, and the capacitance of the filter electrolytic capacitor ranges from 0.68 uF to 2.2 uF.
  • the self-oscillating pulse converter further includes a power supply circuit
  • the power supply circuit includes:
  • a starting unit coupled to the filter circuit, for converting a DC voltage filtered by the filter circuit into a startup voltage
  • a driving unit is respectively connected to the starting unit and the LED load for performing positive feedback self-oscillation according to the starting voltage to provide a driving current for the LED load.
  • the driving unit includes a power supply diode, a first switching tube, a positive feedback current conversion module, and a transformer including a primary winding and a secondary winding, wherein
  • the power supply diode, the cathode is respectively connected to the second end of the filtered differential mode inductor and the anode of the LED load;
  • the first switching transistor, the control electrode is connected to the second end of the filtered differential mode inductor through the starting unit, the first pole is connected to the anode of the power supply diode, and the second pole and the second DC voltage output End connection
  • the primary winding the first end is connected to the cathode of the LED load, and the second end is connected to the first pole of the first switch tube;
  • the secondary winding the first end is connected to the control pole of the first switch tube through the positive feedback current conversion module, and the second end is grounded;
  • the positive feedback current conversion module is configured to convert an induced electromotive force generated by the secondary winding into a positive feedback current, and input the positive feedback current to a control pole of the first switching transistor;
  • the primary winding When the first switch tube is turned on, the primary winding provides a driving current to the LED load through the first switch tube and the filter electrolytic capacitor; when the first switch tube is disconnected, the The primary winding provides a drive current to the LED load through the supply diode.
  • the starting unit includes a first resistance module; the driving unit further includes a second resistance module connected between the second pole of the first switching tube and the second DC voltage output end.
  • the positive feedback current conversion module includes:
  • a feedback resistor the first end being coupled to the first end of the secondary winding
  • the first end is connected to the second end of the feedback resistor, and the second end is connected to the control pole of the first switch tube;
  • the power supply circuit further includes a transformer capacitor
  • the second end of the secondary winding is grounded through the variable voltage capacitor.
  • the positive feedback current conversion module further includes: a feedback diode, the anode is connected to the control electrode of the first switch tube, and the cathode is connected to the first end of the feedback capacitor.
  • the power supply circuit further includes: a current limiting protection unit, respectively connected to the first end of the secondary winding and the control pole of the first switching tube, for first when the secondary winding The first switch is turned off to limit the load current when the potential of the terminal is greater than a predetermined value.
  • the current limiting protection unit includes a second switching tube, a Zener diode, a current limiting diode, a current limiting capacitor, and a current limiting resistor, where
  • the current limiting resistor has a first end connected to the first end of the secondary winding
  • the current limiting diode is connected to the second end of the current limiting resistor
  • the Zener diode is connected to a cathode of the current limiting diode
  • the second switching transistor has a control electrode connected to an anode of the Zener diode, a first pole and the The control pole of the first switch is connected, and the second pole is connected to the second DC voltage output.
  • the power protection circuit includes a power protection electrolytic capacitor and a power protection resistor connected in parallel with each other between an anode connected to the LED load and a cathode of the LED load.
  • the capacitance value of the power protection electrolytic capacitor ranges from 82 uF to 220 uF.
  • the LED dimming driving circuit of the present disclosure adopts RCC for LED dimming. Since the RCC is driven by a self-exciting topology, the structure is simpler than that of a general-excited circuit. High conversion efficiency and low cost. And because of its own control characteristics, RCC can make the change of the input voltage after passing the TRIAC dimmer almost linearly into the change of output current. The starting voltage required by RCC is generally low, even when input When the AC voltage is small, the RCC can work normally, which solves the problem of dimming range.
  • FIG. 1 is a block diagram showing the structure of an LED dimming driving circuit according to an embodiment of the present disclosure
  • FIG. 2 is a structural block diagram of some specific embodiments of an LED dimming driving circuit according to the present disclosure
  • 3A is a structural block diagram of some specific embodiments of an LED dimming driving circuit according to the present disclosure.
  • 3B is a circuit diagram of some specific embodiments of the LED dimming drive circuit of the present disclosure.
  • 4A is a circuit diagram of some specific embodiments of the LED dimming drive circuit of the present disclosure.
  • 4B is a circuit diagram of some specific embodiments of the LED dimming driver circuit of the present disclosure.
  • FIG. 5 is a structural block diagram of some specific embodiments of an LED dimming driving circuit according to the present disclosure.
  • FIG. 6 is a structural block diagram of some specific embodiments of an LED dimming driving circuit according to the present disclosure.
  • FIG. 7 is a circuit diagram of some specific embodiments of the LED dimming drive circuit of the present disclosure.
  • FIG. 8A is a circuit diagram of some embodiments of a power supply loop included in an RCC of the LED dimming drive circuit of the present disclosure
  • 8B is a circuit diagram of some specific embodiments of a power supply loop included in an RCC of the LED dimming drive circuit of the present disclosure
  • 8C is a circuit diagram of some specific embodiments of a power supply loop included in an RCC of the LED dimming drive circuit of the present disclosure
  • 8D is a circuit diagram of some specific embodiments of a power supply loop included in an RCC of the LED dimming drive circuit of the present disclosure
  • FIG. 9 is a schematic diagram of the overall structure of an LED dimming driving circuit according to the present disclosure.
  • an LED dimming driving circuit includes:
  • a two-way thyristor TRIAC dimmer 1 for regulating the input AC voltage
  • An RCC (RINGING CHOKE CONVERTER) 2 connected to the TRIAC dimmer 1 is used to regulate an AC voltage from the TRIAC dimmer 1 to provide a drive current for the LED load.
  • reference numeral L is a hot line of a commercial power supply that supplies an alternating voltage
  • reference numeral N is a neutral line of a commercial power supply that supplies an alternating voltage
  • the TRIAC dimmer 1 and RCC 2 have two inputs and two outputs, respectively. Specifically, the first input end of the TRIAC dimmer 1 is connected to the live line L, the second input end is connected to the neutral line N, the first output end is connected to the first input end of the RCC 2, and the second output end is connected to the The second input of RCC2 is connected.
  • a first output of the RCC 2 is coupled to an anode (LED+) of the LED load, and a second output of the RCC 2 is coupled to a cathode (LED-) of the LED load.
  • the LED dimming drive circuit of the embodiments of the present disclosure employs an RCC to regulate the AC voltage from the TRIAC dimmer to overcome the problem of the need to employ a complex circuit structure to the AC voltage from the TRIAC dimmer in the prior art.
  • RCC is used for LED dimming. Since RCC is driven by a self-excited topology, the phase Compared with the general circuit of his excitation, the structure is simple, the conversion efficiency is high, and the cost is low. And because of its own control characteristics, RCC can make the change of the input voltage after passing the TRIAC dimmer almost linearly into the change of output current. The starting voltage required by RCC is generally low, even when input When the AC voltage is small, the RCC can work normally, which solves the problem of dimming range.
  • the RCC2 includes at least:
  • a rectifier circuit 21 for rectifying an AC voltage from the TRIAC dimmer 1 to obtain a DC voltage
  • a filter circuit 22 configured to filter the DC voltage
  • the power conversion circuit 23 is configured to perform power conversion on the filtered DC voltage to filter out an AC component in the filtered DC voltage to provide a driving current for the LED load.
  • the rectifier circuit 21 rectifies the AC voltage from the TRIAC dimmer 1 to obtain a DC voltage, and then the DC voltage passes through the filter circuit 22 and the power conversion circuit 23 to obtain a DC voltage that substantially removes the AC component. And providing a driving circuit for the LED load according to the DC voltage.
  • the RCC 2 further includes a first passive bleeder circuit 24;
  • the first passive bleeder circuit 24 is located between the TRIAC dimmer 1 and the rectifier circuit 21 for passive bleed of the AC voltage from the TRIAC dimmer 1 .
  • the present disclosure increases the first passive bleeder circuit 24 between the TRIAC dimmer 1 and the rectifying circuit 21, thereby enabling the LED load to achieve a stable current input and solving the flicker caused by the output current change.
  • the first input passive bleeder circuit 24 is mainly for providing a large trigger holding current when the TRIAC dimmer 1 is just turned on, preventing the power from being small when the dimming knob is adjusted to a lower position. Providing a proper holding current causes the TRIAC dimmer 1 to be turned on and off again, causing flicker.
  • the rectifier circuit 21 includes a first AC voltage input terminal AI1 and a second AC voltage input terminal AI2, and an AC voltage from the TRIAC dimmer passes through the first AC voltage input terminal AI1 and the second AC input AI2 input.
  • the first passive bleeder circuit 24 specifically includes:
  • Input resistor RI the first end is connected to the first AC voltage input terminal AI1;
  • the input capacitor CI has a first end connected to the second end of the input resistor RI and a second end connected to the second AC voltage input terminal AI2.
  • the input resistor RI is connected in series with the input capacitor CI and in parallel with the TRIAC dimmer 1.
  • the first passive bleeder circuit 24 includes an RC circuit composed of an input resistor RI and an input capacitor CI.
  • the specific working process of the first passive bleeder circuit is as follows: when the TRIAC dimmer 1 is turned off, the voltage across the input capacitor CI is zero, so that when the TRIAC dimmer 1 triggers conduction, the first passive diarrhea
  • the instantaneous current peak generated by the discharge circuit 24 is the voltage at which the TRIAC dimmer 1 is triggered divided by the resistance value of the input resistor RI. From the dimming performance of the entire circuit, the larger the capacitance of the input capacitor CI, the better the dimming effect. However, when the capacitance of the input capacitor CI is too large, the adjustable range of the circuit is narrowed, so that compromise is required.
  • the input resistance RI is mainly for controlling the peak value of the trigger current and its sustain time, preventing the transient high current generated during the trigger from burning the TRIAC dimmer 1 and preventing the RC from oscillating, causing the input current to become negative, resulting in a phenomenon.
  • the TRIAC dimmer malfunction is turned off, causing flicker. Therefore, the value of the resistance of the input resistor RI is critical.
  • the resistance value of the input resistor RI may range from 500 ohms to 5000 ohms, and optionally, 2000 ohms and 3,000 ohms; the capacitance value of the input capacitor CI may range from 47 nF to 220nF, optional, is 100nF, 150nF, 200nF, etc.
  • the RCC 2 may further include a second passive bleeder circuit 25;
  • the second passive discharge circuit 25 is located between the rectifier circuit 21 and the filter circuit 22 for passively discharging the DC voltage from the rectifier circuit 21.
  • the present disclosure increases the second current bleeder circuit 25 between the rectifier circuit 21 and the filter circuit 22, so that the LED load can achieve a stable current input and solve the flicker caused by the change of the output current.
  • the rectifier circuit 21 includes a first DC voltage output terminal DO1 and a second DC voltage output terminal DO2.
  • the DC voltage rectified by the rectifier circuit 21 passes through the first DC voltage output.
  • the terminal DO1 and the second DC voltage output terminal DO2 are output.
  • the second passive bleeder circuit 25 specifically includes a pi-type filter.
  • the pi type filter includes:
  • the first output capacitor CO1 is connected between the first DC voltage output terminal DO1 and the second DC voltage output terminal DO2;
  • a first differential mode inductor NF1 the first end being connected to the first DC voltage output terminal DO1;
  • the second output capacitor CO2 has a first end connected to the second end of the first differential mode inductor NF1 and a second end connected to the second DC voltage output terminal DO2.
  • the second passive bleeder circuit 25 includes a pi-type filter, and the second passive bleeder circuit 25 has two main functions, one is to block the high-frequency effect of the output on the input, To prevent the TRIAC dimmer from malfunctioning, the second is to add a second passive bleeder circuit on the DC side after rectification, the purpose is also to provide a large peak to the TRIAC dimmer.
  • the rectifier circuit 21 includes a rectifier bridge.
  • the rectifier bridge includes a first AC voltage input terminal AI1, a second AC voltage input terminal AI2, a first DC voltage output terminal DO1, and a second DC voltage output terminal DO2;
  • the rectifier bridge further includes:
  • a first rectifier diode DR1 an anode connected to the first alternating voltage input terminal AI1, and a cathode connected to the first direct current voltage output terminal DO1
  • a second rectifier diode DR2 an anode connected to the second alternating voltage input terminal AI2, and a cathode connected to a cathode of the first rectifier diode DR1;
  • the fourth rectifier diode DR4 has an anode connected to the anode of the third rectifier diode DR3, and a cathode connected to the anode of the first rectifier diode DR1.
  • the capacitance value of the first output capacitor CO1 and the capacitance value of the second output capacitor CO2 can be slightly larger.
  • the capacitance value of CO1 and the capacitance value of CO2 can be controlled in the range of 90 to 110 nF, for example, can be controlled at 100 nF.
  • the rectifier diode of the rectifier circuit 21 includes a second rectifier diode DR2 and a third rectifier diode DR3 corresponding to the damping resistance of the first output capacitor CO1, and the DCR of the first differential mode inductor NF1 (the DCR is the first differential mode inductor NF1).
  • the DC resistance of the coil is equivalent to the damping resistance of the second output capacitor CO2.
  • the filter circuit 22 includes:
  • the first end is connected to the second end of the first differential mode inductor NF1;
  • the filter electrolytic capacitor CD1 has a positive electrode plate connected to the second end of the filtered differential mode inductor NF2, and a negative electrode plate connected to the second DC voltage output terminal DO2.
  • the function of the filter electrolytic capacitor CD1 is to supply a suitable DC input voltage to the power supply.
  • the value of the DC input voltage should not be too large. If the value is too large, the input current will be lower than the required TRIAC holding current, which will make the dimming flicker. Too small will make the DC voltage too small, which will cause the input current to be too large and damage the TRAIC. Therefore, CD1
  • the value is more critical.
  • the capacitance value of CD1 ranges from 0.68uF to 2.2uF, for example, 1uF.
  • the main function of the filtered differential mode inductor NF2 is to block the influence of the output high frequency on the input.
  • the inductance value of NF2 should not be too large. It should be determined according to the capacitance value of CD1.
  • the inductance value of NF2 ranges from 1mH to 2mH. It is 1.5mH.
  • the power conversion circuit includes a power protection electrolytic capacitor and a power protection resistor connected in parallel with each other and connected between the anode of the LED load and the cathode of the LED load.
  • the power protection resistor is mainly used to shunt the current of the LED load at low power ( ⁇ 1W), so that the LED load does not work under a weak current, effectively preventing the low-end flicker problem.
  • Power protection electrolytic capacitor is mainly to improve the output ripple current problem, so the capacitance value of the power protection electrolytic capacitor can not be too small, and the output voltage will change too much, resulting in flickering phenomenon. Therefore, it is necessary to ensure that the voltage is basically unchanged within 10ms.
  • the capacitance value of the power protection electrolytic capacitor ranges from 82uF to 220uF, and optionally, 100uF, 150uF, 200uF, and the like.
  • the power protection electrolytic capacitor may have a capacitance value of 195 to 205 uF, and optionally 200 uF.
  • the second DC voltage output terminal DO2 is connected to the ground terminal GND.
  • the LED dimming drive circuit of the embodiment of the present disclosure further includes a power supply circuit 26;
  • the power supply circuit 26 includes:
  • the startup unit 261 is connected to the filter circuit 22 for converting the DC voltage filtered by the filter circuit 22 into a startup voltage
  • the driving unit 262 is respectively connected to the starting unit 261 and the LED load for performing positive feedback self-oscillation according to the starting voltage to provide a driving current for the LED load.
  • the driving unit 262 includes a power supply diode D1, a first switching transistor Q1, a positive feedback current conversion module 81, and a transformer T1 including a primary winding T11 and a secondary winding T12, wherein
  • the power supply diode D1, the cathode is respectively connected to the second end of the filtered differential mode inductor NF2 and the anode LED+ of the LED load;
  • the first switching transistor Q1 the control electrode is connected to the second end of the filtered differential mode inductor through the starting unit 261, the first pole is connected to the anode of the power supply diode D1, and the second pole and the second pole DC voltage output terminal DO2 is connected;
  • the primary winding T11 has a first end connected to the LED LED of the LED load, and a second end connected to the first pole of the first switching transistor Q1;
  • the first side winding T12, the first end is connected to the control pole of the first switch tube Q1 through the positive feedback current conversion module 81, and the second end is grounded;
  • the positive feedback current conversion module 81 is configured to convert the induced electromotive force generated by the secondary winding T12 into a positive feedback current, and input the positive feedback current to the control pole of the first switching transistor Q1;
  • the primary winding T11 When the first switching transistor Q1 is turned on, the primary winding T11 provides a driving current to the LED load through the first switching transistor Q1 and the filter electrolytic capacitor CD1; when the first switching transistor Q1 When disconnected, the primary winding T11 provides a drive current to the LED load through the supply diode D1.
  • the first switching transistor Q1 adopts a triode
  • the control pole of the first switching transistor Q1 is a base
  • the first extremely collector of the first switching transistor Q1
  • the emitter is extremely emitter, however in other embodiments the first switch Q1 can be replaced with another form of switch, and the second DC output AO2 is connected to the ground GND.
  • the positive feedback current conversion module 81 includes:
  • a feedback resistor RF the first end being connected to the first end of the secondary winding T12;
  • a feedback capacitor CF the first end is connected to the second end of the feedback resistor RF, and the second end is connected to the control pole of the first switch tube Q1;
  • the driving unit further includes a transformer capacitor CT;
  • the second end of the secondary winding T12 passes through the transformer GND of the transformer GND.
  • the positive feedback current conversion module 81 further includes: a feedback diode DF, the anode is connected to the control electrode of the first switch tube Q1, and the cathode is connected to the first end of the feedback capacitor .
  • the starting unit includes a first resistor module;
  • the first resistor module includes a first starting resistor RS1 and a second starting resistor RS2 connected in series with each other;
  • the driving unit further includes a second resistance module connected to the DO2 between the second pole of the first switching transistor Q1 and the second DC voltage output terminal;
  • the second resistance module includes a first resistor R1 and a second resistor R2 connected in parallel with each other.
  • the power supply circuit shown in FIG. 8B of the present disclosure can be divided into two processes when power is supplied:
  • the power supply circuit After Q1 is turned on, the power supply circuit enters oscillation; when the RCC is just powered on, the voltage of CD1 power-on rises instantaneously, and the voltage transmitted to the base of Q1 through RS1 and RS2 makes Q1 turn on. At this time, Q1 is passed.
  • R1 and R2 and CD1 are connected in parallel to each other to supply power to the LED load, and the current IC control T1 generated between the collector and the emitter of Q1 generates a self-induced electromotive force, and the secondary winding T12 of T1 is connected to Q1 through RF and CF.
  • the base thereby further increasing the current IC between the collector and the emitter of Q1, so that positive feedback is formed in the power supply loop until Q1 exits from the supersaturation state and enters the amplification region, and then Q1 is cut off.
  • the primary winding T11 of T1 supplies power to the LED load through D1, and the power supply loop enters dynamic balance; after that, Q1 can be turned on again after the primary winding T11 of T1 is discharged to the LED load.
  • the power supply circuit further includes: a current limiting protection unit, respectively connected to the first end of the secondary winding and the control pole of the first switching tube, for the first end of the secondary winding Controlling the first switch tube to open to limit the load current when the potential is greater than a predetermined value; and the change of the first end of the secondary winding varies with the change of the DC voltage output by the rectifier circuit, that is,
  • the current limiting protection unit is for limiting the fluctuation of the magnitude of the DC voltage.
  • the current limiting protection unit includes a second switching transistor Q2, a Zener diode ZD1, a current limiting diode DL, a current limiting capacitor CL, and a current limiting resistor RL.
  • the current limiting resistor RL has a first end connected to the first end of the secondary winding T12;
  • the current limiting diode DL is connected to the second end of the current limiting resistor RL;
  • the Zener diode ZD1 the cathode is connected to the cathode of the current limiting diode DL;
  • the current limiting capacitor CL is connected to the anode of the current limiting diode DL, and the second end is connected to the second pole of the first switching transistor Q1;
  • the second switching transistor Q2 has a control electrode connected to the anode of the Zener diode ZD1, first a pole is connected to the control pole of the first switch tube Q1, and a second pole is connected to the second DC voltage output end;
  • the second switching transistor Q2 adopts a triode
  • the control pole of the second switching transistor Q2 is a base
  • the first extremely collector of the second switching transistor Q2 and the second of the second switching transistor Q2.
  • the emitter is extremely emitter, however in other embodiments the second switch Q2 can be replaced with other forms of switch.
  • the current limiting protection unit further includes: a collecting diode D2, the anode is connected to the second pole (ie, the emitter) of the second switching transistor Q2, and the cathode and the second The first pole (ie, the collector) of the switching transistor Q2 is connected.
  • a power conversion circuit is further included between the LED-loaded anode LED+ and the LED-loaded cathode LED-, the power conversion circuit including an anode LED+ connected to the LED load and the LED load a parallel power protection electrolytic capacitor CD2 and a power protection resistor RW between the cathode LEDs;
  • the positive plate of CD2 is connected with LED+, and the negative plate of CD2 is connected with LED-;
  • CD2 is charging and discharging.
  • CD2 is a DC current with high-frequency AC component when charging, and a constant DC current when discharging to LED. The high-frequency component is removed to realize power conversion.
  • the role of the RW is to discharge the excess charge on the CD2 when the input AC voltage is small, preventing the LED load from being accumulated due to the accumulation of the threshold voltage of the LED load. It is equivalent to bypassing the current of the LED load.
  • the LED dimming drive circuit of the present disclosure will be described below by way of a specific embodiment.
  • this specific embodiment of the LED dimming driving circuit of the present disclosure includes:
  • TRIAC dimmer 1 for regulating the input AC voltage
  • An RCC (RINGING CHOKE CONVERTER) connected to the TRIAC dimmer 1 for adjusting an AC voltage from the TRIAC dimmer 1
  • the LED load provides the drive current.
  • the LED dimming driving circuit shown in FIG. 9 of the present disclosure may be an 18W built-in dimming LED glass straight tube.
  • reference numeral L is a hot line of a commercial power supply that supplies an alternating voltage
  • reference numeral N is a neutral line of a commercial power supply that supplies an alternating voltage
  • an anode of the LED load is labeled as LED+
  • a cathode of the LED load is labeled as an LED-;
  • the RCC includes:
  • a rectifier circuit 21 for rectifying an AC voltage from the TRIAC dimmer 1 to obtain a DC voltage
  • a filter circuit 22 configured to filter the DC voltage
  • the power conversion circuit 23 is configured to perform power conversion on the filtered DC voltage to filter out an AC component in the filtered DC voltage to provide a driving current for the LED load;
  • a second passive bleeder circuit 25 located between the rectifier circuit 21 and the filter circuit 22, for passively discharging the DC voltage from the rectifier circuit 21;
  • the power supply circuit 26 includes:
  • the startup unit 261 is connected to the filter circuit 22 for converting the DC voltage filtered by the filter circuit 22 into a startup voltage
  • the driving unit 262 is respectively connected to the starting unit 261 and the LED load for performing positive feedback self-oscillation according to the starting voltage to provide a driving current for the LED load.
  • the rectifying circuit 21 includes a first alternating current voltage input terminal AI1 and a second alternating current voltage input terminal AI2.
  • the rectifier bridge further includes:
  • a first rectifier diode DR1 an anode connected to the first alternating voltage input terminal AI1, and a cathode connected to the first direct current voltage output terminal DO1
  • a second rectifier diode DR2 the anode is connected to the second AC voltage input terminal AI2, and the cathode Connecting with a cathode of the first rectifier diode DR1;
  • the fourth rectifier diode DR4 has an anode connected to the anode of the third rectifier diode DR3, and a cathode connected to the anode of the first rectifier diode DR1.
  • the filter circuit 22 includes:
  • the first end is connected to the second end of the first differential mode inductor NF1;
  • the filter electrolytic capacitor CD1 has a positive electrode plate connected to the second end of the filtered differential mode inductor NF2, and a negative electrode plate connected to the second DC voltage output terminal DO2.
  • the power conversion circuit 23 includes a power protection electrolytic capacitor CD2 and a power protection resistor RW connected in parallel with the anode LED+ connected to the LED load and the cathode LED of the LED load.
  • the positive plate of CD2 is connected to LED+, and the negative plate of CD2 is connected to LED-.
  • the first passive bleeder circuit 24 specifically includes:
  • Input resistor RI the first end is connected to the first AC voltage input terminal AI1;
  • the input capacitor CI has a first end connected to the second end of the input resistor RI and a second end connected to the second AC voltage input terminal AI2.
  • the second passive bleeder circuit 25 specifically includes a pi-type filter.
  • the pi type filter includes:
  • the first output capacitor CO1 is connected between the first DC voltage output terminal DO1 and the second DC voltage output terminal DO2;
  • a first differential mode inductor NF1 the first end being connected to the first DC voltage output terminal DO1;
  • the second output capacitor CO2 has a first end connected to the second end of the first differential mode inductor NF1 and a second end connected to the second DC voltage output terminal DO2.
  • the starting unit 261 includes a first starting resistor RS1 and a second starting resistor RS2 connected in series with each other;
  • the first starting resistor RS1 has a first end connected to the second end of the filtered differential mode inductor NF2, and a second end connected to the first end of the second starting resistor RS2.
  • the driving unit 262 includes a power supply diode D1, a first switching transistor Q1, a positive feedback current conversion module 81, a transformer capacitor CT, a second resistor module, and a transformer T1 including a primary winding T11 and a secondary winding T12, wherein
  • the power supply diode D1, the cathode is respectively connected to the second end of the filtered differential mode inductor NF2 and the anode LED+ of the LED load;
  • the first switch tube Q1 is a triode
  • the first switch transistor Q1 has a base connected to the second end of the second start resistor RS2, a collector connected to the anode of the power supply diode D1, and an emitter passing through the second resistor module and the second DC voltage output terminal DO2 is connected;
  • the second resistance module includes a first resistor R1 and a second resistor R2 connected in parallel with each other;
  • the primary winding T11 has a first end connected to the LED LED of the LED load, and a second end connected to the first pole of the first switching tube D1;
  • the first side winding T12, the first end is connected to the control electrode of the first switch tube Q1 through the positive feedback current conversion module 81, and the second end is grounded through the transformer capacitor CT;
  • the positive feedback current conversion module 81 is configured to convert the induced electromotive force generated by the secondary winding T12 into a positive feedback current, and input the positive feedback current to the base of the first switching transistor Q1;
  • the primary winding T11 When the first switching transistor Q1 is turned on, the primary winding T11 provides a driving current to the LED load through the first switching transistor Q1 and the filter electrolytic capacitor CD1; when the first switching transistor Q1 When disconnected, the primary winding T11 provides a drive current to the LED load through the supply diode D1.
  • the positive feedback current conversion module 81 includes:
  • a feedback resistor RF the first end being connected to the first end of the secondary winding T12;
  • a feedback capacitor CF the first end is connected to the second end of the feedback resistor RF, and the second end is connected to the base of the first switch tube Q1;
  • a feedback diode DF is connected to the base of the first switching transistor Q1, and a cathode is connected to the first end of the feedback capacitor.
  • the power supply circuit further includes: a current limiting protection unit 82, respectively connected to the first end of the secondary winding T12 and the base of the first switching transistor Q1, for the first of the secondary winding T12 Controlling that the first switching transistor Q1 is turned off to limit the load current when the potential of the terminal is greater than a predetermined value;
  • the change of the first end of the secondary winding T12 varies with the change of the DC voltage outputted by the rectifier circuit 22, that is, the current limiting protection unit 82 is for limiting the magnitude fluctuation of the DC voltage.
  • the current limiting protection unit 82 includes a second switching transistor Q2, a Zener diode ZD1, a current limiting diode DL, a current limiting capacitor CL, a current limiting resistor RL, and a collecting diode D2.
  • the second switch tube Q2 is a triode
  • the current limiting resistor RL has a first end connected to the first end of the secondary winding T12;
  • the current limiting diode DL is connected to the second end of the current limiting resistor RL;
  • the Zener diode ZD1 the cathode is connected to the cathode of the current limiting diode DL;
  • the current limiting capacitor CL is connected to the anode of the current limiting diode DL, and the second end is connected to the emitter of the first switching transistor Q1;
  • the second switching transistor Q2 has a base connected to an anode of the Zener diode ZD1, a collector connected to a base of the first switching transistor Q1, and an emitter connected to the second DC voltage output terminal;
  • the collecting diode D2 has an anode connected to the emitter of the second switching transistor Q2 and a cathode between the cathode and the collector of the second switching transistor Q2.
  • FIG. 9 is a schematic diagram of an overall structure of an LED dimming driving circuit according to an embodiment of the present disclosure.
  • the specific embodiment of the LED dimming driving circuit of the present disclosure adopts RCC for LED dimming. Since it is a self-excited topology driving, the circuit structure of the present disclosure is simpler than that of a general-excited circuit. High efficiency, low cost, and because of its own control characteristics, it can make the change of input voltage after TRIAC dimmer almost linearly change into output current.
  • the starting voltage required by RCC is generally very high. Low, so that even when the input AC voltage is small, the RCC can work normally, which solves the problem of the dimming range.
  • the specific embodiment of the LED dimming driving circuit of the present disclosure is directed to the phenomenon that the existing TRIAC dimming circuit has flicker in the dimming process, and the present disclosure increases the first by rectifying the input and the rectifying output respectively.
  • the passive bleeder circuit, the second passive bleeder circuit, and the method of increasing the blanking resistance at the LED load end and increasing the output electrolytic storage capacitor smooth the output current, so that the LED load (such as LED lamp bead) achieves stable current input. To solve the flicker problem caused by the change of output current.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明提供一种发光二极管(LED)调光驱动电路。该LED调光驱动电路包括:双向可控硅(TRIAC)调光器,用于调节输入的交流电压;与该TRIAC调光器连接的自激振荡脉冲变换器(RCC),用于调节来自TRIAC调光器的交流电压,为LED负载提供驱动电流。

Description

发光二极管调光驱动电路
相关申请的交叉引用
本申请主张在2015年8月21日在中国提交的中国专利申请号No.201510516167.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及LED(Light-emitting Diode,发光二极管)调光领域,尤其涉及一种LED调光驱动电路。
背景技术
TRIAC(双向可控硅)调光器在结构上只需一个双向可控硅晶闸管即可实现。相比其他类型的调光器,其结构简单,成本低,在市场上应用范围较广。
当LED照明替代白炽灯成为新一代照明方案时,就需要有能够兼容TRIAC调光的外围电路。
而目前适用于TRIAC调光的外围电路结构复杂。此外,目前的外围电路转换效率低下,存在调光的线性度差、调光范围窄以及闪烁等调光性能方面的问题。
发明内容
本公开的主要目的在于提供一种LED调光驱动电路,以克服现有技术中需要采用复杂的电路结构来兼容来自TRIAC调光器的问题。
为了达到上述目的,本公开提供了一种发光二极管LED调光驱动电路,包括:
三端双向可控硅TRIAC调光器,用于调节输入的交流电压;
与所述TRIAC调光器连接的自激振荡脉冲变换器RCC,用于调节来自所述TRIAC调光器的交流电压,为LED负载提供驱动电流。
可选地,所述RCC至少包括:
整流电路,用于将来自TRIAC调光器的交流电压进行整流,从而得到直流电压;
滤波电路,用于对所述直流电压进行滤波;
功率转换电路,用于对滤波后的直流电压进行功率转换,以滤除所述滤波后的直流电压中的交流分量,为LED负载提供驱动电流。
可选地,所述RCC还包括第一无源泻放电路;
所述第一无源泻放电路位于所述TRIAC调光器与所述整流电路之间,用于对来自所述TRIAC调光器的交流电压进行无源泄放。
可选地,所述整流电路包括第一交流电压输入端和第二交流电压输入端,来自所述TRIAC调光器的交流电压通过所述第一交流电压输入端和所述第二交流输入端输入;
所述第一无源泻放电路具体包括:
输入电阻,第一端与所述第一交流电压输入端连接;以及,
输入电容,第一端与所述输入电阻的第二端连接,第二端与所述第二交流电压输入端连接。
可选地,所述输入电阻的电阻值的取值范围为500欧-5000欧,所述输入电容的电容值的取值范围为47nF-220nF。
可选地,所述RCC还包括第二无源泻放电路;
所述第二无源泻放电路位于所述整流电路和滤波电路之间,用于对来自整流电路的直流电压进行无源泄放。
可选地,所述整流电路包括第一直流电压输出端和第二直流电压输出端;经所述整流电路整流后的直流电压通过所述第一直流电压输出端和所述第二直流电压输出端输出;
所述第二无源泻放电路具体包括pi型滤波器;
所述pi型滤波器包括:
第一输出电容,连接于所述第一直流电压输出端和所述第二直流电压输出端之间;
第一差模电感,第一端与所述第一直流电压输出端连接;以及,
第二输出电容,第一端与所述第一差模电感的第二端连接,第二端与所述第二直流电压输出端连接。
可选地,所述第一输出电容的电容值的取值范围和所述第二输出电容的电容值的取值范围都为90nF-110nF。
可选地,所述整流电路包括整流桥;
所述整流桥包括:
第一整流二极管,阳极与所述第一交流电压输入端连接,阴极与所述第一直流电压输出端连接,
第二整流二极管,阳极与所述第二交流电压输入端连接,阴极与所述第一整流二极管的阴极连接;
第三整流二极管,阳极与所述第二直流电压输出端连接,阴极与所述第二整流二极管的阴极连接;以及,
第四整流二极管,阳极与所述第三整流二极管的阳极连接,阴极与所述第一整流二极管的阳极连接。
可选地,所述滤波电路包括:
滤波差模电感,第一端与所述第一差模电感的第二端连接;以及,
滤波电解电容,正极板与所述滤波差模电感的第二端连接,负极板与所述第二直流电压输出端连接。
可选地,所述滤波差模电感的取值范围为1mH-2mH,所述滤波电解电容的电容值的取值范围为0.68uF-2.2uF。
可选地,所述自激振荡脉冲变换器还包括供电回路;
所述供电回路包括:
启动单元,与所述滤波电路连接,用于将经所述滤波电路滤波后的直流电压转换为启动电压;以及,
驱动单元,分别与所述启动单元和所述LED负载连接,用于根据所述启动电压进行正反馈自激振荡而为LED负载提供驱动电流。
可选地,所述驱动单元包括供电二极管、第一开关管、正反馈电流转换模块和包括原边绕组和副边绕组的变压器,其中,
所述供电二极管,阴极分别与所述滤波差模电感的第二端和所述LED负载的阳极连接;
所述第一开关管,控制极通过所述启动单元与所述滤波差模电感的第二端连接,第一极与所述供电二极管的阳极连接,第二极与所述第二直流电压输出端连接;
所述原边绕组,第一端与LED负载的阴极连接,第二端与所述第一开关管的第一极连接;
所述副边绕组,第一端通过所述正反馈电流转换模块与所述第一开关管的控制极连接,第二端接地;
所述正反馈电流转换模块,用于将所述副边绕组产生的感应电动势转换为正反馈电流,并将该正反馈电流输入至所述第一开关管的控制极;
当所述第一开关管导通时,所述原边绕组通过所述第一开关管和所述滤波电解电容向所述LED负载提供驱动电流;当所述第一开关管断开时,所述原边绕组通过所述供电二极管向所述LED负载提供驱动电流。
可选地,所述启动单元包括第一电阻模块;所述驱动单元还包括连接于所述第一开关管的第二极与所述第二直流电压输出端之间的第二电阻模块。
可选地,所述正反馈电流转换模块包括:
反馈电阻,第一端与所述副边绕组的第一端连接;以及
反馈电容,第一端与所述反馈电阻的第二端连接,第二端与所述第一开关管的控制极连接;
所述供电回路还包括变压电容;
所述副边绕组的第二端通过所述变压电容接地。
可选地,所述正反馈电流转换模块还包括:反馈二极管,阳极与所述第一开关管的控制极连接,阴极与所述反馈电容的第一端连接。
可选地,所述供电回路还包括:限流保护单元,分别与所述副边绕组的第一端和所述第一开关管的控制极连接,用于当所述副边绕组的第一端的电位大于预定值时控制所述第一开关管断开以限制负载电流。
可选地,所述限流保护单元包括第二开关管、稳压二极管、限流二极管、限流电容和限流电阻,其中,
所述限流电阻,第一端与所述副边绕组的第一端连接;
所述限流二极管,阳极与所述限流电阻的第二端连接;
所述稳压二极管,阴极与所述限流二极管的阴极连接;
所述限流电容;
所述第二开关管,控制极与所述稳压二极管的阳极连接,第一极与所述 第一开关管的控制极连接,第二极与所述第二直流电压输出端连接。
可选地,所述功率保护电路包括连接于所述LED负载的阳极和所述LED负载的阴极之间的相互并联的功率保护电解电容和功率保护电阻。
可选地,所述功率保护电解电容的电容值的取值范围为82uF-220uF。
与现有技术相比,本公开所述的LED调光驱动电路采用了RCC来进行LED调光,由于RCC是自激型拓扑驱动,因此相比一般的他激式的电路,其结构简单,转换效率高,成本低。并且由于RCC的自身控制特点,使其能够很好地将通过TRIAC调光器后的输入电压的变化几乎线性地转变为输出电流的变化,RCC所需的启动电压一般很低,这样即使当输入交流电压很小时,RCC也能正常工作,这就解决了调光范围的问题。
附图说明
图1是本公开实施例所述的LED调光驱动电路的结构框图;
图2是本公开所述的LED调光驱动电路的一些具体实施例的结构框图;
图3A是本公开所述的LED调光驱动电路的一些具体实施例的结构框图;
图3B是本公开所述的LED调光驱动电路的一些具体实施例的电路图;
图4A是本公开所述的LED调光驱动电路的一些具体实施例的电路图;
图4B是本公开所述的LED调光驱动电路的一些具体实施例的电路图;
图5是本公开所述的LED调光驱动电路的一些具体实施例的结构框图;
图6是本公开所述的LED调光驱动电路的一些具体实施例的结构框图;
图7是本公开所述的LED调光驱动电路的一些具体实施例的电路图;
图8A是本公开所述的LED调光驱动电路的RCC包括的供电回路的一些具体实施例的电路图;
图8B是本公开所述的LED调光驱动电路的RCC包括的供电回路的一些具体实施例的电路图;
图8C是本公开所述的LED调光驱动电路的RCC包括的供电回路的一些具体实施例的电路图;
图8D是本公开所述的LED调光驱动电路的RCC包括的供电回路的一些具体实施例的电路图;
图9为本公开所述的LED调光驱动电路整体结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
如图1所示,本公开实施例所述的LED调光驱动电路,包括:
双向可控硅TRIAC调光器1,用于调节输入的交流电压;
与所述TRIAC调光器1连接的RCC(RINGING CHOKE CONVERTER,自激振荡脉冲变换器)2,用于调节来自所述TRIAC调光器1的交流电压,为LED负载提供驱动电流。
在图1中,标号L为提供交流电压的市电的火线,标号N为提供交流电压的市电的零线。所述TRIAC调光器1和RCC2分别具有两个输入端和两个输出端。具体的,TRIAC调光器1的第一输入端与火线L连接,第二输入端与零线N连接,第一输出端与所述RCC2的第一输入端连接,第二输出端与所述RCC2的第二输入端连接。所述RCC2的第一输出端与所述LED负载的阳极(LED+)连接,所述RCC2的第二输出端与所述LED负载的阴极(LED-)连接。
本公开实施例所述的LED调光驱动电路采用RCC来调节来自TRIAC调光器的交流电压,以克服现有技术中需要采用复杂的电路结构来对来自TRIAC调光器的交流电压的问题。
具体的,采用RCC来进行LED调光,由于RCC是自激型拓扑驱动,相 比一般的他激式的电路,其结构简单,转换效率高,成本低。并且由于RCC的自身控制特点,使其能够很好地将通过TRIAC调光器后的输入电压的变化几乎线性地转变为输出电流的变化,RCC所需的启动电压一般很低,这样即使当输入交流电压很小时,RCC也能正常工作,这就解决了调光范围的问题。
具体的,如图2所示,所述RCC2至少包括:
整流电路21,用于将来自TRIAC调光器1的交流电压进行整流,从而得到直流电压;
滤波电路22,用于对所述直流电压进行滤波;
功率转换电路23,用于对滤波后的直流电压进行功率转换,以滤除所述滤波后的直流电压中的交流分量,为LED负载提供驱动电流。
在实际操作时,整流电路21对来自TRIAC调光器1的交流电压进行整流而得到直流电压,之后该直流电压先后经过滤波电路22和功率转换电路23,得到基本滤除了交流分量的直流电压,并根据该直流电压为LED负载提供驱动电路。
如图3A所示,所述RCC2还包括第一无源泻放电路24;
所述第一无源泻放电路24位于所述TRIAC调光器1与所述整流电路21之间,用于对来自所述TRIAC调光器1的交流电压进行无源泄放。
本公开通过在TRIAC调光器1和整流电路21之间增加第一无源泄放电路24,从而可以使LED负载实现稳定电流输入,解决输出电流变化造成的闪烁。
所述第一输入无源泻放电路24主要是为了TRIAC调光器1在刚被触发导通时提供一个大的触发维持电流,防止当调光旋钮调至较低位置时由于功率较小不能提供适当的维持电流造成了TRIAC调光器1刚被触发导通又被关断,从而出现闪烁现象。
具体的,所述整流电路21包括第一交流电压输入端AI1和第二交流电压输入端AI2,来自所述TRIAC调光器的交流电压通过所述第一交流电压输入端AI1和所述第二交流输入端AI2输入。
如图3B所示,所述第一无源泻放电路24具体包括:
输入电阻RI,第一端与所述第一交流电压输入端AI1连接;以及,
输入电容CI,第一端与所述输入电阻RI的第二端连接,第二端与所述第二交流电压输入端AI2连接。
即,输入电阻RI与输入电容CI串联,并与TRIAC调光器1并联。
根据一种具体实施方式,所述第一无源泻放电路24包括由输入电阻RI和输入电容CI构成的RC电路。
该第一无源泄放电路的具体工作过程如下:当TRIAC调光器1关断时,输入电容CI两端的电压为0,这样当TRIAC调光器1触发导通时,第一无源泻放电路24所产生的瞬时电流峰值即为TRIAC调光器1触发时的电压除以输入电阻RI的电阻值。从整个电路的调光性能来讲,输入电容CI的电容值越大,调光效果越好。但当输入电容CI的电容值过大时,会使电路的可调范围变窄,因此这里面需要折中考虑。而输入电阻RI主要是为了控制触发电流峰值以及其维持时间,防止触发时所产的瞬态大电流将TRIAC调光器1烧毁,另外防止RC产生振荡,出现输入电流变为负的现象,造成TRIAC调光器误动作被关断,产生闪烁现象。因此输入电阻RI的电阻值的取值较为关键。
具体的,所述输入电阻RI的电阻值的取值范围可以为500欧-5000欧,可选的,为2000欧、3000欧;所述输入电容CI的电容值的取值范围可以为47nF-220nF,可选的,为100nF、150nF、200nF等。
具体的,如图4A所示,所述RCC2还可以包括第二无源泻放电路25;
所述第二无源泻放电路25位于所述整流电路21和滤波电路22之间,用于对来自整流电路21的直流电压进行无源泄放。
本公开通过在整流电路21和滤波电路22之间增加第二无源泄放电路25,从而可以使LED负载实现稳定电流输入,解决输出电流变化造成的闪烁。
具体的,如图4B所示,所述整流电路21包括第一直流电压输出端DO1和第二直流电压输出端DO2;经所述整流电路21整流后的直流电压通过所述第一直流电压输出端DO1和所述第二直流电压输出端DO2输出。
所述第二无源泻放电路25具体包括pi型滤波器。
所述pi型滤波器包括:
第一输出电容CO1,连接于所述第一直流电压输出端DO1和所述第二直流电压输出端DO2之间;
第一差模电感NF1,第一端与所述第一直流电压输出端DO1连接;以及,
第二输出电容CO2,第一端与所述第一差模电感NF1的第二端连接,第二端与所述第二直流电压输出端DO2连接。
根据一种具体实施方式,所述第二无源泻放电路25包括pi型滤波器,该第二无源泄放电路25的主要功能有两个,一是隔断输出对输入的高频影响,防止TRIAC调光器误动作,二是在整流后即直流侧增加了第二无源泻放电路,目的同样是向TRIAC调光器提供一个较大的峰值。
具体的,如图5所示,所述整流电路21包括整流桥。
所述整流桥包括第一交流电压输入端AI1、第二交流电压输入端AI2、第一直流电压输出端DO1和第二直流电压输出端DO2;
所述整流桥还包括:
第一整流二极管DR1,阳极与所述第一交流电压输入端AI1连接,阴极与所述第一直流电压输出端DO1连接,
第二整流二极管DR2,阳极与所述第二交流电压输入端AI2连接,阴极与所述第一整流二极管DR1的阴极连接;
第三整流二极管DR3,阳极与所述第二直流电压输出端DO2连接,阴极与所述第二整流二极管DR2的阳极连接;以及,
第四整流二极管DR4,阳极与所述第三整流二极管DR3的阳极连接,阴极与所述第一整流二极管DR1的阳极连接。
在具体可选地,由于该第二无源泻放电路25设置在整流电路21之后,不会对调光范围造成影响,因此第一输出电容CO1的电容值与第二输出电容CO2的电容值可以略大。可选的,CO1的电容值和CO2的电容值的取值范围可控制在90~110nF,比如,可控制在100nF。而整流电路21的整流桥包括的第二整流二极管DR2和第三整流二极管DR3相当于第一输出电容CO1的阻尼电阻,而第一差模电感NF1的DCR(DCR为第一差模电感NF1的线圈的直流电阻)相当于第二输出电容CO2的阻尼电阻。
具体的,如图6所示,所述滤波电路22包括:
滤波差模电感NF2,第一端与所述第一差模电感NF1的第二端连接;以及,
滤波电解电容CD1,正极板与所述滤波差模电感NF2的第二端连接,负极板与所述第二直流电压输出端DO2连接。
在该滤波电路22中,滤波电解电容CD1的作用是向电源提供一个合适的直流输入电压。该直流输入电压的值不能太大,太大会造成输入电流低于所需的TRIAC维持电流,使调光闪烁,太小会使得直流电压太小,从而造成输入电流过大而损坏TRAIC,因此CD1的取值较为关键。CD1的电容值的取值范围为0.68uF-2.2uF,例如可以为1uF。滤波差模电感NF2主要的作用是隔断输出高频对输入的影响,NF2的电感值不能太大,应根据CD1的电容值决定,NF2的电感值的取值范围为1mH-2mH,可选的为1.5mH。
具体的,所述功率转换电路包括相互并联的、连接于所述LED负载的阳极和所述LED负载的阴极之间的、功率保护电解电容和功率保护电阻。
该功率保护电阻主要为了在低功率时(<1W)能够分流LED负载的电流,从而使LED负载不在弱电流下工作,有效防止了低端闪烁问题。功率保护电解电容主要是为了改善输出纹波电流问题,因此功率保护电解电容的电容值不能太小,小会使输出电压变化过大,产生闪烁现象,因此需要保证在10ms以内保证电压基本无变化,功率保护电解电容的电容值的取值范围为82uF-220uF,可选的,为100uF、150uF、200uF等。例如所述功率保护电解电容的电容值可以为195~205uF,可选的为200uF。
如图6所示,第二直流电压输出端DO2与地端GND连接。
具体的,如图7所示,本公开实施例所述的LED调光驱动电路还包括供电回路26;
所述供电回路26包括:
启动单元261,与所述滤波电路22连接,用于将经所述滤波电路22滤波后的直流电压转换为启动电压;以及,
驱动单元262,分别与所述启动单元261和LED负载连接,用于根据所述启动电压进行正反馈自激振荡而为LED负载提供驱动电流。
具体的,如图8A所示,所述驱动单元262包括供电二极管D1、第一开关管Q1、正反馈电流转换模块81和包括原边绕组T11和副边绕组T12的变压器T1,其中,
所述供电二极管D1,阴极分别与所述滤波差模电感NF2的第二端连接和所述LED负载的阳极LED+连接;
所述第一开关管Q1,控制极通过所述启动单元261与所述滤波差模电感的第二端连接,第一极与所述供电二极管D1的阳极连接,第二极与所述第二直流电压输出端DO2连接;
所述原边绕组T11,第一端与LED负载的阴极LED-连接,第二端与所述第一开关管Q1的第一极连接;
所述副边绕组T12,第一端通过所述正反馈电流转换模块81与所述第一开关管Q1的控制极连接,第二端接地;
所述正反馈电流转换模块81,用于将所述副边绕组T12产生的感应电动势转换为正反馈电流,并将该正反馈电流输入至所述第一开关管Q1的控制极;
当所述第一开关管Q1导通时,所述原边绕组T11通过所述第一开关管Q1和所述滤波电解电容CD1向所述LED负载提供驱动电流;当所述第一开关管Q1断开时,所述原边绕组T11通过所述供电二极管D1向所述LED负载提供驱动电流。
在图8A中,第一开关管Q1采用三极管,所述第一开关管Q1的控制极即为基极,所述第一开关管Q1的第一极为集电极,第一开关管Q1的第二极为发射极,然而在其他的实施例中第一开关管Q1也可以替换为其他形式的开关管,并且所述第二直流输出端AO2与地端GND连接。
具体的,如图8B所示,所述正反馈电流转换模块81包括:
反馈电阻RF,第一端与所述副边绕组T12的第一端连接;以及
反馈电容CF,第一端与所述反馈电阻RF的第二端连接,第二端与所述第一开关管Q1的控制极连接;
所述驱动单元还包括变压电容CT;
所述副边绕组T12的第二端通过所述变压电容CT接地端GND。
可选地,如图8B所示,所述正反馈电流转换模块81还包括:反馈二极管DF,阳极与所述第一开关管Q1的控制极连接,阴极与所述反馈电容的第一端连接。
在图8B中,所述启动单元包括第一电阻模块;所述第一电阻模块包括相互串联的第一启动电阻RS1和第二启动电阻RS2;
所述驱动单元还包括连接于所述第一开关管Q1的第二极与所述第二直流电压输出端之间DO2的第二电阻模块;
所述第二电阻模块包括相互并联的第一电阻R1和第二电阻R2。
本公开如图8B所示的供电回路在供电时可以分为两个过程:
1、Q1导通前,供电回路未振荡。
2、Q1导通后,供电回路进入振荡;当RCC刚上电后,CD1上电的电压瞬间上升,经过RS1和RS2传输至Q1的基极的电压使得Q1导通,此时,通过Q1、相互并联的R1和R2以及CD1从而为LED负载供电,并且Q1的集电极和发射极之间产生的电流IC控制T1产生自感电动势,T1的副边绕组T12通过RF和CF又连接至Q1的基极,从而进一步使得Q1的集电极和发射极之间产生电流IC增大,从而使得在供电回路中形成正反馈,直至Q1从过饱和状态退出,进入放大区,随后截止区时,Q1断开,T1的原边绕组T11通过D1向LED负载供电,供电回路进入动态平衡;之后需要等T1的原边绕组T11向LED负载放电结束后Q1才能再次导通。
具体的,所述供电回路还包括:限流保护单元,分别与所述副边绕组的第一端和所述第一开关管的控制极连接,用于当所述副边绕组的第一端的电位大于预定值时控制所述第一开关管断开以限制负载电流;而所述副边绕组的第一端的变化随着所述整流电路输出的直流电压的变化而变化,也即所述限流保护单元是用于限制该直流电压的大小波动。
具体的,如图8C所示,所述限流保护单元包括第二开关管Q2、稳压二极管ZD1、限流二极管DL、限流电容CL和限流电阻RL,其中,
所述限流电阻RL,第一端与所述副边绕组T12的第一端连接;
所述限流二极管DL,阳极与所述限流电阻RL的第二端连接;
所述稳压二极管ZD1,阴极与所述限流二极管DL的阴极连接;
所述限流电容CL,第一端与所述限流二极管DL的阳极连接,第二端与所述第一开关管Q1的第二极连接;
所述第二开关管Q2,控制极与所述稳压二极管ZD1的阳极连接,第一 极与所述第一开关管Q1的控制极连接,第二极与所述第二直流电压输出端连接;
在图8C中,第二开关管Q2采用三极管,所述第二开关管Q2的控制极即为基极,所述第二开关管Q2的第一极为集电极,第二开关管Q2的第二极为发射极,然而在其他的实施例中第二开关管Q2也可以替换为其他形式的开关管。
可选地,如图8C所示,所述限流保护单元还包括:集射二极管D2,阳极与所述第二开关管Q2的第二极(即发射极)连接,阴极与所述第二开关管Q2的第一极(即集电极)连接。
具体的,本公开图8C所示的供电回路在工作时,输入交流电压的波动会反映到T1的副边绕组T12上,当副边绕组T12两端的电压大于预定电压时时,Q2导通,Q1断开,从而起到限制输入交流电压的波动的作用,但实际存在RL与CL缓冲,由于CL两端的电压不能突变,需要有段上升时间,因此会存在一定的延时。
具体的,如图8D所示,在LED负载的阳极LED+和LED负载的阴极LED-之间还包括功率转换电路,该功率转换电路包括连接于所述LED负载的阳极LED+和所述LED负载的阴极LED-之间的相互并联的功率保护电解电容CD2和功率保护电阻RW;
CD2的正极板与LED+连接,CD2的负极板与LED-连接;
CD2的功能就是充电与放电,CD2进行充电时是带有高频交流分量的直流电流,而向LED放电时是恒定的直流电流,去除了高频成分实现了功率的转换。RW的作用时是当输入交流电压很小时,将CD2上存储多余电荷释放,防止累积达到LED负载的阈值电压造成LED负载闪烁。相当于旁路了LED负载的电流。
下面通过一具体实施例来说明本公开所述的LED调光驱动电路。
如图9所示,本公开所述的LED调光驱动电路的该具体实施例包括:
TRIAC调光器1,用于调节输入的交流电压;以及,
与所述TRIAC调光器1连接的RCC(RINGING CHOKE CONVERTER,自激振荡脉冲变换器),用于调节来自所述TRIAC调光器1的交流电压,为 LED负载提供驱动电流。
具体的,本公开如图9所示的LED调光驱动电路可以为18W内置调光LED玻璃直管。
在图9中,标号L为提供交流电压的市电的火线,标号N为提供交流电压的市电的零线,LED负载的阳极标示为LED+,LED负载的阴极标示为LED-;
所述RCC包括:
整流电路21,用于将来自TRIAC调光器1的交流电压进行整流,从而得到直流电压;
滤波电路22,用于对所述直流电压进行滤波;
功率转换电路23,用于对滤波后的直流电压进行功率转换,以滤除所述滤波后的直流电压中的交流分量,为LED负载提供驱动电流;
第一无源泻放电路24,位于所述TRIAC调光器1与所述整流电路21之间,用于对来自所述TRIAC调光器1的交流电压进行无源泄放;
第二无源泻放电路25,位于所述整流电路21和滤波电路22之间,用于对来自整流电路21的直流电压进行无源泄放;以及,
供电回路26。
所述供电回路26包括:
启动单元261,与所述滤波电路22连接,用于将经所述滤波电路22滤波后的直流电压转换为启动电压;以及,
驱动单元262,分别与所述启动单元261和所述LED负载连接,用于根据所述启动电压进行正反馈自激振荡而为LED负载提供驱动电流。
下面对本公开所述的LED调光驱动电路的该具体实施例包括的各功能电路包括的具体器件进行介绍:所述整流电路21包括第一交流电压输入端AI1、第二交流电压输入端AI2、第一直流电压输出端DO1和第二直流电压输出端DO2。
所述整流桥还包括:
第一整流二极管DR1,阳极与所述第一交流电压输入端AI1连接,阴极与所述第一直流电压输出端DO1连接,
第二整流二极管DR2,阳极与所述第二交流电压输入端AI2连接,阴极 与所述第一整流二极管DR1的阴极连接;
第三整流二极管DR3,阳极与所述第二直流电压输出端DO2连接,阴极与所述第二整流二极管DR2的阳极连接;以及,
第四整流二极管DR4,阳极与所述第三整流二极管DR3的阳极连接,阴极与所述第一整流二极管DR1的阳极连接。
所述滤波电路22包括:
滤波差模电感NF2,第一端与所述第一差模电感NF1的第二端连接;以及,
滤波电解电容CD1,正极板与所述滤波差模电感NF2的第二端连接,负极板与所述第二直流电压输出端DO2连接。
所述功率转换电路23包括连接于所述LED负载的阳极LED+和所述LED负载的阴极LED-之间的相互并联的功率保护电解电容CD2和功率保护电阻RW;
CD2的正极板与LED+连接,CD2的负极板与LED-连接。
所述第一无源泻放电路24具体包括:
输入电阻RI,第一端与所述第一交流电压输入端AI1连接;以及,
输入电容CI,第一端与所述输入电阻RI的第二端连接,第二端与所述第二交流电压输入端AI2连接。
所述第二无源泻放电路25具体包括pi型滤波器。
所述pi型滤波器包括:
第一输出电容CO1,连接于所述第一直流电压输出端DO1和所述第二直流电压输出端DO2之间;
第一差模电感NF1,第一端与所述第一直流电压输出端DO1连接;以及,
第二输出电容CO2,第一端与所述第一差模电感NF1的第二端连接,第二端与所述第二直流电压输出端DO2连接。
所述启动单元261包括相互串联的第一启动电阻RS1和第二启动电阻RS2;
所述第一启动电阻RS1,第一端与滤波差模电感NF2的第二端连接,第二端与第二启动电阻RS2的第一端连接。
所述驱动单元262包括供电二极管D1、第一开关管Q1、正反馈电流转换模块81、变压电容CT、第二电阻模块和包括原边绕组T11和副边绕组T12的变压器T1,其中,
所述供电二极管D1,阴极分别与所述滤波差模电感NF2的第二端连接和所述LED负载的阳极LED+连接;
所述第一开关管Q1为三极管;
所述第一开关管Q1,基极与所述第二启动电阻RS2的第二端连接,集电极与所述供电二极管D1的阳极连接,发射极通过所述第二电阻模块与所述第二直流电压输出端DO2连接;
所述第二电阻模块包括相互并联的第一电阻R1和第二电阻R2;
所述原边绕组T11,第一端与LED负载的阴极LED-连接,第二端与所述第一开关管D1的第一极连接;
所述副边绕组T12,第一端通过所述正反馈电流转换模块81与所述第一开关管Q1的控制极连接,第二端通过所述变压电容CT接地;
所述正反馈电流转换模块81,用于将所述副边绕组T12产生的感应电动势转换为正反馈电流,并将该正反馈电流输入至所述第一开关管Q1的基极;
当所述第一开关管Q1导通时,所述原边绕组T11通过所述第一开关管Q1和所述滤波电解电容CD1向所述LED负载提供驱动电流;当所述第一开关管Q1断开时,所述原边绕组T11通过所述供电二极管D1向所述LED负载提供驱动电流。
所述正反馈电流转换模块81包括:
反馈电阻RF,第一端与所述副边绕组T12的第一端连接;以及
反馈电容CF,第一端与所述反馈电阻RF的第二端连接,第二端与所述第一开关管Q1的基极连接;以及,
反馈二极管DF,阳极与所述第一开关管Q1的基极连接,阴极与所述反馈电容的第一端连接。
所述供电回路还包括:限流保护单元82,分别与所述副边绕组T12的第一端和所述第一开关管Q1的基极连接,用于当所述副边绕组T12的第一端的电位大于预定值时控制所述第一开关管Q1断开以限制负载电流;而所述 副边绕组T12的第一端的变化随着所述整流电路22输出的直流电压的变化而变化,也即所述限流保护单元82是用于限制该直流电压的大小波动。
所述限流保护单元82包括第二开关管Q2、稳压二极管ZD1、限流二极管DL、限流电容CL、限流电阻RL和集射二极管D2,其中,
所述第二开关管Q2为三极管;
所述限流电阻RL,第一端与所述副边绕组T12的第一端连接;
所述限流二极管DL,阳极与所述限流电阻RL的第二端连接;
所述稳压二极管ZD1,阴极与所述限流二极管DL的阴极连接;
所述限流电容CL,第一端与所述限流二极管DL的阳极连接,第二端与所述第一开关管Q1的发射极连接;
所述第二开关管Q2,基极与所述稳压二极管ZD1的阳极连接,集电极与所述第一开关管Q1的基极连接,发射极与所述第二直流电压输出端连接;
所述集射二极管D2,阳极与所述第二开关管Q2的发射极连接,阴极与所述第二开关管Q2的集电极之间。
图9为本公开实施例提供的LED调光驱动电路整体结构示意图。
本公开所述的LED调光驱动电路的该具体实施例采用RCC来进行LED调光,由于是自激型拓扑驱动,因此相比一般的他激式的电路,本公开的电路结构简单,转换效率高,成本低,并且由于RCC的自身控制特点,使其能够很好地将通过TRIAC调光器后的输入电压的变化几乎线性地转变为输出电流的变化,RCC所需的启动电压一般很低,这样即使当输入交流电压很小时,RCC也能正常工作,这就解决了调光范围的问题。
另外,本公开所述的LED调光驱动电路的该具体实施例针对现有的TRIAC调光电路在调光过程中存在闪烁的现象,本公开通过在整流输入前与整流输出后分别增加第一无源泻放电路、第二无源泄放电路,以及在LED负载端增加消隐电阻同时增大输出电解储能电容的方法平滑输出电流,使LED负载(例如LED灯珠)实现稳定电流输入,解决输出电流变化造成的闪烁问题。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和 润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (20)

  1. 一种发光二极管LED调光驱动电路,包括:
    三端双向可控硅TRIAC调光器,用于调节输入的交流电压;
    与所述TRIAC调光器连接的自激振荡脉冲变换器RCC,用于调节来自所述TRIAC调光器的交流电压,为LED负载提供驱动电流。
  2. 如权利要求1所述的LED调光驱动电路,其中,所述RCC至少包括:
    整流电路,用于将来自TRIAC调光器的交流电压进行整流,从而得到直流电压;
    滤波电路,用于对所述直流电压进行滤波;
    功率转换电路,用于对滤波后的直流电压进行功率转换,以滤除所述滤波后的直流电压中的交流分量,为LED负载提供驱动电流。
  3. 如权利要求2所述的LED调光驱动电路,其中,所述RCC还包括第一无源泻放电路;
    所述第一无源泻放电路位于所述TRIAC调光器与所述整流电路之间,用于对来自所述TRIAC调光器的交流电压进行无源泄放。
  4. 如权利要求3所述的LED调光驱动电路,其中,所述整流电路包括第一交流电压输入端和第二交流电压输入端,来自所述TRIAC调光器的交流电压通过所述第一交流电压输入端和所述第二交流输入端输入;
    所述第一无源泻放电路具体包括:
    输入电阻,第一端与所述第一交流电压输入端连接;以及,
    输入电容,第一端与所述输入电阻的第二端连接,第二端与所述第二交流电压输入端连接。
  5. 如权利要求4所述的LED调光驱动电路,其中,所述输入电阻的电阻值的取值范围为500欧-5000欧,所述输入电容的电容值的取值范围为47nF-220nF。
  6. 如权利要求3所述的LED调光驱动电路,其中,所述RCC还包括第二无源泻放电路;
    所述第二无源泻放电路位于所述整流电路和滤波电路之间,用于对来自 整流电路的直流电压进行无源泄放。
  7. 如权利要求6所述的LED调光驱动电路,其中,所述整流电路包括第一直流电压输出端和第二直流电压输出端;经所述整流电路整流后的直流电压通过所述第一直流电压输出端和所述第二直流电压输出端输出;
    所述第二无源泻放电路具体包括pi型滤波器;
    所述pi型滤波器包括:
    第一输出电容,连接于所述第一直流电压输出端和所述第二直流电压输出端之间;
    第一差模电感,第一端与所述第一直流电压输出端连接;以及,
    第二输出电容,第一端与所述第一差模电感的第二端连接,第二端与所述第二直流电压输出端连接。
  8. 如权利要求7所述的LED调光驱动电路,其中,所述第一输出电容的电容值的取值范围和所述第二输出电容的电容值的取值范围均为90nF-110nF。
  9. 如权利要求8所述的LED调光驱动电路,其中,所述整流电路包括整流桥;
    所述整流桥包括:
    第一整流二极管,阳极与所述第一交流电压输入端连接,阴极与所述第一直流电压输出端连接,
    第二整流二极管,阳极与所述第二交流电压输入端连接,阴极与所述第一整流二极管的阴极连接;
    第三整流二极管,阳极与所述第二直流电压输出端连接,阴极与所述第二整流二极管的阴极连接;以及,
    第四整流二极管,阳极与所述第三整流二极管的阳极连接,阴极与所述第一整流二极管的阳极连接。
  10. 如权利要求9所述的LED调光驱动电路,其中,所述滤波电路包括:
    滤波差模电感,第一端与所述第一差模电感的第二端连接;以及,
    滤波电解电容,正极板与所述滤波差模电感的第二端连接,负极板与所述第二直流电压输出端连接。
  11. 如权利要求10所述的LED调光驱动电路,其中,所述滤波差模电感的取值范围为1mH-2mH,所述滤波电解电容的电容值的取值范围为0.68uF-2.2uF。
  12. 如权利要求2至11中任一权利要求所述的LED调光驱动电路,其中,所述自激振荡脉冲变换器还包括供电回路;
    所述供电回路包括:
    启动单元,与所述滤波电路连接,用于将经所述滤波电路滤波后的直流电压转换为启动电压;以及,
    驱动单元,分别与所述启动单元和所述LED负载连接,用于根据所述启动电压进行正反馈自激振荡而为LED负载提供驱动电流。
  13. 如权利要求12所述的LED调光驱动电路,其中,
    所述驱动单元包括供电二极管、第一开关管、正反馈电流转换模块和包括原边绕组和副边绕组的变压器,其中,
    所述供电二极管,阴极分别与所述滤波差模电感的第二端和所述LED负载的阳极连接;
    所述第一开关管,控制极通过所述启动单元与所述滤波差模电感的第二端连接,第一极与所述供电二极管的阳极连接,第二极与所述第二直流电压输出端连接;
    所述原边绕组,第一端与LED负载的阴极连接,第二端与所述第一开关管的第一极连接;
    所述副边绕组,第一端通过所述正反馈电流转换模块与所述第一开关管的控制极连接,第二端接地;
    所述正反馈电流转换模块,用于将所述副边绕组产生的感应电动势转换为正反馈电流,并将该正反馈电流输入至所述第一开关管的控制极;
    当所述第一开关管导通时,所述原边绕组通过所述第一开关管和所述滤波电解电容向所述LED负载提供驱动电流;当所述第一开关管断开时,所述原边绕组通过所述供电二极管向所述LED负载提供驱动电流。
  14. 如权利要求13所述的LED调光驱动电路,其中,所述启动单元包括第一电阻模块;所述驱动单元还包括连接于所述第一开关管的第二极与所 述第二直流电压输出端之间的第二电阻模块。
  15. 如权利要求13所述的LED调光驱动电路,其中,所述正反馈电流转换模块包括:
    反馈电阻,第一端与所述副边绕组的第一端连接;以及
    反馈电容,第一端与所述反馈电阻的第二端连接,第二端与所述第一开关管的控制极连接;
    所述供电回路还包括变压电容;
    所述副边绕组的第二端通过所述变压电容接地。
  16. 如权利要求15所述的LED调光驱动电路,其中,所述正反馈电流转换模块还包括:反馈二极管,阳极与所述第一开关管的控制极连接,阴极与所述反馈电容的第一端连接。
  17. 如权利要求13所述的LED调光驱动电路,其中,所述供电回路还包括:限流保护单元,分别与所述副边绕组的第一端和所述第一开关管的控制极连接,用于当所述副边绕组的第一端的电位大于预定值时控制所述第一开关管断开以限制负载电流。
  18. 如权利要求17所述的LED调光驱动电路,其中,所述限流保护单元包括第二开关管、稳压二极管、限流二极管、限流电容和限流电阻,其中,
    所述限流电阻,第一端与所述副边绕组的第一端连接;
    所述限流二极管,阳极与所述限流电阻的第二端连接;
    所述稳压二极管,阴极与所述限流二极管的阴极连接;
    所述限流电容;
    所述第二开关管,控制极与所述稳压二极管的阳极连接,第一极与所述第一开关管的控制极连接,第二极与所述第二直流电压输出端连接。
  19. 如权利要求13所述的LED调光驱动电路,其中,所述功率保护电路包括连接于所述LED负载的阳极和所述LED负载的阴极之间的相互并联的功率保护电解电容和功率保护电阻。
  20. 如权利要求19所述的LED调光驱动电路,其中,所述功率保护电解电容的电容值的取值范围为82uF-220uF。
PCT/CN2016/070010 2015-08-21 2016-01-04 发光二极管调光驱动电路 WO2017031919A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/301,767 US9877366B2 (en) 2015-08-21 2016-01-04 Light-emitting diode dimming driver circuit
EP16763429.4A EP3346803B1 (en) 2015-08-21 2016-01-04 Light-emitting diode dimming drive circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510516167.8 2015-08-21
CN201510516167.8A CN105101556B (zh) 2015-08-21 2015-08-21 Led 调光驱动电路

Publications (1)

Publication Number Publication Date
WO2017031919A1 true WO2017031919A1 (zh) 2017-03-02

Family

ID=54580772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070010 WO2017031919A1 (zh) 2015-08-21 2016-01-04 发光二极管调光驱动电路

Country Status (4)

Country Link
US (1) US9877366B2 (zh)
EP (1) EP3346803B1 (zh)
CN (1) CN105101556B (zh)
WO (1) WO2017031919A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11528791B2 (en) * 2018-11-13 2022-12-13 Current Lighting Solutions, Llc Driving circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101556B (zh) * 2015-08-21 2017-12-12 京东方光科技有限公司 Led 调光驱动电路
US10070494B1 (en) * 2018-02-14 2018-09-04 Cvicloud Corporation Dimming switch device and methods for determining user operation events thereof
CN114925007A (zh) * 2022-06-09 2022-08-19 盈帜科技(常州)有限公司 一种信号转换电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103607825A (zh) * 2013-11-26 2014-02-26 矽力杰半导体技术(杭州)有限公司 可控硅调光电路以及调光控制方法
CN104244514A (zh) * 2014-08-11 2014-12-24 广东良得光电科技有限公司 一种反激隔离式单级pfc及triac可调光led驱动电路
CN104717795A (zh) * 2013-12-16 2015-06-17 立锜科技股份有限公司 具有调光功能的发光元件控制电路及其控制方法
CN104797044A (zh) * 2015-04-03 2015-07-22 厦门佰明光电有限公司 一种led的调光驱动线路及其驱动方法
CN105101556A (zh) * 2015-08-21 2015-11-25 京东方光科技有限公司 Led调光驱动电路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165394A (ja) * 2010-02-05 2011-08-25 Sharp Corp Led駆動回路、調光装置、led照明灯具、led照明機器、及びled照明システム
JP5067443B2 (ja) * 2010-05-24 2012-11-07 サンケン電気株式会社 Led点灯装置
US8461774B2 (en) * 2011-03-15 2013-06-11 General Electric Company Lighting power circuit with peak current limiter for EMI filter
US8853958B2 (en) * 2011-11-22 2014-10-07 Cree, Inc. Driving circuits for solid-state lighting apparatus with high voltage LED components and related methods
CN103476165B (zh) * 2012-06-08 2015-08-19 东林科技股份有限公司 具局部开关控制的光源供应模块
CN103491665B (zh) * 2012-06-14 2016-03-09 东林科技股份有限公司 具线性调光控制的光源供应模块
US9184661B2 (en) * 2012-08-27 2015-11-10 Cirrus Logic, Inc. Power conversion with controlled capacitance charging including attach state control
CN203219540U (zh) * 2013-03-06 2013-09-25 厦门阳光恩耐照明有限公司 一种具有led调光线性补偿的电路
CN203467008U (zh) * 2013-07-15 2014-03-05 邓金和 用于led的rcc非隔离恒流驱动电路
CN204362379U (zh) * 2015-01-06 2015-05-27 横店集团得邦照明股份有限公司 一种实现无极调光的自激式led转换装置
CN204559957U (zh) * 2015-04-03 2015-08-12 厦门佰明光电有限公司 一种led的调光驱动线路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103607825A (zh) * 2013-11-26 2014-02-26 矽力杰半导体技术(杭州)有限公司 可控硅调光电路以及调光控制方法
CN104717795A (zh) * 2013-12-16 2015-06-17 立锜科技股份有限公司 具有调光功能的发光元件控制电路及其控制方法
CN104244514A (zh) * 2014-08-11 2014-12-24 广东良得光电科技有限公司 一种反激隔离式单级pfc及triac可调光led驱动电路
CN104797044A (zh) * 2015-04-03 2015-07-22 厦门佰明光电有限公司 一种led的调光驱动线路及其驱动方法
CN105101556A (zh) * 2015-08-21 2015-11-25 京东方光科技有限公司 Led调光驱动电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3346803A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11528791B2 (en) * 2018-11-13 2022-12-13 Current Lighting Solutions, Llc Driving circuit

Also Published As

Publication number Publication date
EP3346803A4 (en) 2019-02-27
US9877366B2 (en) 2018-01-23
CN105101556A (zh) 2015-11-25
EP3346803B1 (en) 2022-10-05
CN105101556B (zh) 2017-12-12
EP3346803A1 (en) 2018-07-11
US20170188428A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6258951B2 (ja) 回路装置及び回路装置を備えるledランプ
KR101001241B1 (ko) 교류 led 조광장치 및 그에 의한 조광방법
JP4944562B2 (ja) スイッチング電源装置
WO2016028942A1 (en) Driving circuit, lighting device and method of reducing power dissipation
JP2012085507A (ja) スイッチング電源装置および可調節電源システム
KR20140105658A (ko) 안정기를 이용한 led 조명 장치
AU2008203249A1 (en) Apparatus and method enabling fully dimmable operation of a compact fluorescent lamp
WO2020224303A1 (zh) 空调器过压检测电路、空调器电控装置和空调器
US9263944B2 (en) Valley-fill power factor correction circuit with active conduction angle control
US20160126860A1 (en) Improvements relating to power adaptors
WO2017031919A1 (zh) 发光二极管调光驱动电路
JP2008104273A (ja) 位相制御可能な直流定電流電源装置
JP4748025B2 (ja) 位相制御型電源装置
JP5210419B2 (ja) スイッチング電源装置及びそれを用いた照明器具
JP2008104275A (ja) 無負荷時発振停止機能付きの定電流制御型dc−dcコンバータ回路
KR101092218B1 (ko) 간단한 구조의 전류원을 이용한 led 구동회로
WO2016050084A1 (zh) Led驱动电路和电子设备
JP5811329B2 (ja) 電源装置
CN203504839U (zh) 一种采用初级检测和调控的led灯驱动电源
KR101367383B1 (ko) 교류 led 조광장치
WO2021249332A1 (zh) 一种电荷泵控制电路及驱动电源
KR101029874B1 (ko) 교류 led 조광장치 및 그에 의한 조광방법
CN1674757B (zh) 电磁感应灯电路
US9179523B1 (en) Start-up voltage for solid-state lighting controller
TW201517691A (zh) 發光裝置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016763429

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15301767

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16763429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016763429

Country of ref document: EP