WO2021249332A1 - 一种电荷泵控制电路及驱动电源 - Google Patents

一种电荷泵控制电路及驱动电源 Download PDF

Info

Publication number
WO2021249332A1
WO2021249332A1 PCT/CN2021/098593 CN2021098593W WO2021249332A1 WO 2021249332 A1 WO2021249332 A1 WO 2021249332A1 CN 2021098593 W CN2021098593 W CN 2021098593W WO 2021249332 A1 WO2021249332 A1 WO 2021249332A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
circuit
signal
voltage
switch
Prior art date
Application number
PCT/CN2021/098593
Other languages
English (en)
French (fr)
Inventor
陈志飞
姜德来
Original Assignee
英飞特电子(杭州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英飞特电子(杭州)股份有限公司 filed Critical 英飞特电子(杭州)股份有限公司
Publication of WO2021249332A1 publication Critical patent/WO2021249332A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • This application relates to the technical field of LED lamps, in particular to a charge pump control circuit; and also to a driving power supply.
  • the driving power supply will select a resonant circuit to achieve the purpose of achieving high power density and high efficiency.
  • the resonant circuit can realize zero-voltage turn-on of two or more switch tubes on the primary side and zero-current turn-off of the secondary side rectifier diode, which can reduce the switching loss of the power supply and improve the efficiency and power density of the power converter.
  • an active PFC circuit that is, a power factor correction circuit, is often added to the front stage of the resonant circuit.
  • the prior art replaces the PFC circuit with a charge pump circuit, so that the single-stage resonant circuit meets the power factor requirement.
  • the resonant circuit with a charge pump has the following problems: when the circuit is under working conditions where the amplitude of the input voltage changes within a certain range, when the amplitude of the input voltage increases, and the energy required by the resonance main circuit does not change When the voltage on the bus capacitor increases immediately; or, when the output power of the resonant main circuit changes within a certain range (that is, the power required by the resonant main circuit changes within a certain range), the output power decreases and the input voltage does not change When the time, the voltage on the bus capacitor increases immediately.
  • the purpose of this application is to provide a charge pump control circuit that can stabilize the voltage of the bus capacitor at a certain voltage value and avoid voltage stress on the devices of the subsequent circuit due to excessively high bus capacitor voltage; another purpose of the application It is to provide a driving power supply, which also has the above-mentioned technical effects.
  • control switch and a control circuit; the control switch is connected in parallel to both ends of the charge pump circuit, and the control terminal of the control switch is connected to the output terminal of the control circuit;
  • the switch tube includes an upper switch tube and a lower switch tube in a bridge structure; the magnitude of the feedback signal is negatively related to the magnitude of the voltage across the bus capacitor, and the conduction time of the control switch is The magnitude of the feedback signal is negatively correlated.
  • a comparator a triangle wave generating circuit and a feedback circuit; wherein the driving signal is a driving signal of the lower switch tube;
  • the input terminal of the triangle wave generating circuit inputs the driving signal, and the output terminal of the triangle wave generating circuit is connected to the non-inverting terminal of the comparator for generating a triangle wave signal according to the driving signal, and outputting the triangle wave signal to all
  • the non-inverting terminal of the comparator ;
  • the start time of the triangular wave signal is the turn-off time of the lower switch tube;
  • the signal period of the triangular wave signal is the signal period of the drive signal;
  • the input terminal of the feedback circuit inputs a reference signal and the voltage at both ends of the bus capacitor, and the output terminal of the feedback circuit is connected to the negative phase input terminal of the comparator, and is used to respond to the two terminals of the reference signal and the bus capacitor.
  • the voltage at the terminal generates the feedback signal, and outputs the feedback signal to the negative phase input terminal of the comparator;
  • the output terminal of the comparator is used as the output terminal of the control circuit and is connected to the control switch for generating the control signal according to the triangle wave signal and the feedback signal, and outputting the control signal to the control switch.
  • the first voltage source is connected to the first end of the first resistor and the second end of the controllable switch, and the second end of the first resistor is connected to the first end of the controllable switch and the first end of the controllable switch.
  • the first end of the two resistors, the second end of the second resistor is connected to the first end of the first capacitor, and the second end of the first capacitor is connected to the drive of the switch tube of the resonance main circuit Signal
  • the third end of the controllable switch is connected to the first common end of the third resistor and the second capacitor in parallel, and serves as the output end of the triangle wave generating circuit.
  • the third resistor is connected to the The second common terminal of the second capacitor connected in parallel is grounded.
  • controllable switch is a PNP-type transistor; the base of the PNP-type transistor is the first end of the switching tube, the emitter of the PNP-type transistor is the second end of the switching tube, the The collector of the PNP transistor is the third end of the switch tube.
  • the feedback circuit includes:
  • An operational amplifier a fourth resistor, a fifth resistor, a sixth resistor, and a third capacitor; the fourth resistor and the fifth resistor are connected in series to both ends of the bus capacitor, and the inverting input terminal of the operational amplifier Connect the end of the fourth resistor and the fifth resistor, the non-inverting terminal of the operational amplifier inputs a reference signal, the output terminal of the operational amplifier serves as the output terminal of the feedback circuit, and the output of the operational amplifier
  • the third capacitor and the sixth resistor are connected in series to the negative input terminal of the operational amplifier.
  • the other end of the fourth resistor is connected to the voltage across the bus capacitor. One end is grounded.
  • this application also provides a driving power supply, including:
  • control switch in the charge pump control circuit is a MOS tube
  • the charge pump circuit and the MOS tube share the parasitic diode of the MOS tube.
  • the charge pump control circuit includes a control switch and a control circuit.
  • the control switch is connected in parallel to both ends of the charge pump circuit, and the control circuit is used to control the on-off state of the control switch.
  • the control circuit is used to control the switching state of the control switch according to the feedback signal related to the voltage across the bus capacitor and the drive signal of the switch tube in the resonant main circuit, so that the control switch passes the forward resonant current in the resonant main circuit
  • the charge pump circuit is short-circuited within the period of time, so that the bus capacitor releases electric energy to the subsequent circuit.
  • the feedback signal is negatively related to the voltage across the bus capacitor, and the conduction time of the control switch is negative with the magnitude of the feedback signal Therefore, the greater the voltage across the bus capacitor, the smaller the feedback signal, and the longer the control switch will be turned on.
  • the bus capacitor will release more power to the subsequent circuit, thereby making the bus capacitor The voltage drops to stabilize the voltage across the bus capacitor at a certain voltage value to avoid voltage stress on the components of the subsequent circuit due to the excessively high bus capacitor voltage.
  • the driving power supply provided by this application also has the above technical effects.
  • Figure 1 is a schematic diagram of an existing driving power supply
  • FIG. 4 is a waveform diagram provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a triangle wave generating circuit provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a feedback circuit provided by an embodiment of the application.
  • the core of this application is to provide a charge pump control circuit that can stabilize the voltage of the bus capacitor at a certain voltage value and avoid voltage stress on the devices of the subsequent circuit due to the excessively high bus capacitor voltage; another core of the application It is to provide a driving power supply, which also has the above-mentioned technical effects.
  • the existing driving power supply includes a rectifier bridge, a bus capacitor, a resonance main circuit, a resonance control circuit, and a charge pump circuit.
  • the resonance control circuit is responsible for collecting the output parameters of the resonance main circuit, such as output voltage or output current, and controlling the working status of the switching tube Q1 and the switching tube Q2 in the resonance main circuit according to the output parameters, so that the resonance main circuit can output a stable output voltage or output Current.
  • the resonant inductor L, the resonant capacitor C3, and the transformer T resonantly work to generate a resonant current Ir.
  • the switching tube Q1 and the switching tube Q2 in the resonant main circuit have a bridge structure, and this application defines two switching tubes similar to the bridge structure as the upper switching tube and the lower switching tube, which will be connected to the high level of the DC voltage
  • the switch tube is called the upper switch tube.
  • Q1 in Fig. 1 is the upper switch tube, and the switch tube connected to the low level of the DC voltage is called the lower switch tube.
  • Q2 in Fig. 1 is the lower switch tube.
  • the voltage VC1 on the bus capacitor of the resonant main circuit (ie the voltage across the bus capacitor C1), the bus capacitor C1, is used as intermediate energy storage, the energy of the input power is stored in the bus capacitor, and the subsequent resonant main circuit grabs it from the bus capacitor energy.
  • the voltage VC1 on the bus capacitor increases immediately big.
  • the bus capacitance increases immediately. If the voltage VC1 on the bus capacitor is at a higher amplitude level, the relevant components of the subsequent resonant main circuit (switch tube Q1, switch tube Q2, and resonant capacitor C3) need to withstand higher voltage pressure. For this reason, the present application provides a charge pump control circuit, which can effectively solve the above technical defects.
  • FIG. 2 is a schematic diagram of a charge pump control circuit provided by an embodiment of the application.
  • the charge pump control circuit mainly includes:
  • the control switch S1 is connected to the control circuit 10; the control switch S1 is connected in parallel to both ends of the charge pump circuit, and the control terminal of the control switch S1 is connected to the output terminal of the control circuit 10, and the control switch S1 is controlled by the control circuit 10.
  • the control circuit 10 is used to generate a feedback signal according to the voltage across the bus capacitor, generate a triangle wave signal according to the drive signal of the switch tube in the resonance main circuit, and generate a control signal according to the feedback signal and the triangle wave signal, and output the control signal to the control switch S1 , Control the control switch S1.
  • the feedback signal is compared with the triangular wave signal.
  • the control switch S1 is controlled to be turned on to short-circuit the charge pump circuit.
  • the control control switch S1 is turned off.
  • the triangular wave signal is generated according to the driving signal of the switch tube of the resonant main circuit, that is, the periodic phase of the triangular wave signal is the same as that of the switching tube Q1 or Q2, and the control signal generated by the triangular wave signal is in the switching tube Q1 or Q2.
  • the control switch S1 is controlled to be turned on for a certain period of time during the switching period of the switch tube, and it is turned off during the rest of the switching period of the switching tube Q1 or Q2.
  • the on-time of the control switch is changed by the magnitude of the feedback signal, so that the energy released by the bus capacitor to the subsequent resonant circuit can be adjusted in a longer time period (the time period is much larger than the switching period of the switch tube Q1 or Q2) , To stabilize the voltage on the bus capacitor at the set value.
  • the magnitude of the feedback signal is negatively correlated with the magnitude of the voltage across the bus capacitor
  • the control signal after the feedback signal is compared with the triangular wave makes the on-time of the control switch negatively correlated with the magnitude of the feedback signal, thus, The on-time of the control switch will be positively correlated with the voltage across the bus capacitor, so that when the voltage of the bus capacitor is higher than the preset value, the feedback signal will decrease, the on-time of the control switch will increase, and the bus capacitor will release more energy to the resonant main circuit.
  • the bus capacitor voltage can be adjusted to reduce to the preset value; similarly, when the bus capacitor voltage is lower than the preset value, the feedback signal increases, the control switch conduction time decreases, and the bus capacitor discharges to the resonance main circuit decreases. In the same way, the voltage rise of the bus capacitor can be adjusted to the preset value.
  • control switch S1 is repeated with the switching cycle of the switching tube Q1 or Q2. That is to say, the control switch S1 will be turned on and turned off once in one switching cycle of the switching tube Q1 or Q2.
  • the change in the magnitude of the feedback signal is not completed in a switching cycle, but is adjusted in a longer period of time, that is, the change in the discharge and storage of the bus capacitor is also completed in this longer period of time .
  • one is the switching period of the switch Q1 or Q2
  • the other is the adjustment time period of the bus capacitance
  • control switch S1 is connected in parallel to both ends of the charge pump circuit, so that when the control switch S1 is turned on, the charge pump circuit is short-circuited.
  • control switch S1 is a MOS tube.
  • LG represents the drive signal of the lower switch tube Q2
  • X2 represents the triangular wave signal (here, specifically the sawtooth wave)
  • X3 represents the feedback signal
  • X4 represents the control signal that controls the switch S1
  • TON represents the control signal.
  • High level time The triangular wave generating circuit 101 inputs the driving signal LG of the lower switch tube Q2, and the triangular wave generating circuit 101 instantly rises to a high level (the slope is close to 90 degrees) at the falling edge of the driving signal of the lower switch tube Q2, and then follows a certain slope (less than 90 degrees).
  • the slope of the degree is decreased to generate a sawtooth wave signal and output; the comparator U1 compares the triangular wave signal X2 with the feedback signal X3 and outputs a control signal X4, which is used to control the control switch S1.
  • the feedback circuit 102 sets the bus voltage preset value. The higher the voltage across the bus capacitor is than the bus voltage preset value, the smaller the feedback signal X3, and the longer the high level time of the control signal X4, the control switch S1 is turned on. The longer the time, the shorter the accumulation time for the charge pump circuit to shunt the resonant current, the more energy on the bus capacitor is released to the subsequent stage, and the voltage across the bus capacitor drops to the bus voltage preset value. The reverse is also true, thereby achieving the purpose of adjusting the voltage across the bus capacitor to stabilize it at the preset value of the bus voltage set by the feedback circuit 102.
  • the triangle wave generating circuit 101 includes: a controllable switch S2, a first voltage source VCC1, a first resistor R1, a second resistor R2, a third resistor R3, and a third resistor R3.
  • the third end of the controllable switch S2 is connected to the first common end of the third resistor R3 in parallel with the second capacitor C5, and serves as the output end of the triangle wave generating circuit.
  • the third resistor R3 is connected to the The second common terminal of the second capacitor C5 connected in parallel is grounded.
  • controllable switch S2 may specifically be a PNP-type transistor; the base of the PNP-type transistor is the first end of the switching tube, the emitter of the PNP-type transistor is the second end of the switching tube, and the collector of the PNP-type transistor is the first end of the switching tube. Three ends.
  • the base of the PNP transistor is connected to the first voltage source VCC1 through the first resistor R1, and the driving end of the switch tube Q2 of the resonant main circuit is connected in series through the second resistor R2R2 and the first capacitor C4.
  • the collector is connected to the first common terminal of the third resistor R3 and the second capacitor C5 and serves as the output terminal of the triangle wave generating circuit 101.
  • the emitter of the PNP transistor is directly connected to the first voltage source VCC1.
  • the selection of the amplitude of the first voltage source VCC1 is related to the amplitude of the drive signal LG, the resistance of the first resistor R1 and the second resistor R2R2, and it needs to meet: when the drive signal LG is at a high level, the current of the PNP transistor is insufficient So that the PNP transistor is turned on.
  • the driving signal LG is at a high level before the falling edge moment, during which no current flows through the base of the PNP transistor, the PNP transistor is turned off, and the output terminal of the triangle wave generating circuit 101 is at zero level; at the falling edge of the drive signal LG During the process, the driving signal LG jumps from high level to low level instantaneously, and the first voltage source VCC1 divides the voltage through the first resistor R1 and the second resistor R2 to provide current to the PNP type transistor to force the PNP type transistor to conduct, and a triangular wave
  • the output terminal of the generating circuit 101 instantly rises to a high level (the slope is close to 90 degrees), the first capacitor C4 is charged, and the voltage at point A shown in the figure is quickly charged to the voltage value of the first voltage source, and then the PNP type
  • the triode stops conducting, and the voltage at the output end of the triangle wave generating circuit 101 drops according to a certain slope (a slope less than 90 degrees) under the discharge action of the third resistor R3 and the
  • the feedback circuit 102 includes: an operational amplifier U2, a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, and a third capacitor C6; a fourth resistor R4 It is connected in series with the fifth resistor R5 and then connected to both ends of the bus capacitor.
  • the inverting input terminal of the operational amplifier U2 is connected to the end of the fourth resistor R4 and the fifth resistor R5, that is, the inverting input terminal inputs the bus voltage.
  • the non-inverting terminal of the operational amplifier U2 inputs the reference signal, the output terminal of the operational amplifier U2 is used as the output terminal of the feedback circuit 102, and the output terminal of the operational amplifier U2 is connected in series with the third capacitor C6 and the sixth resistor R6 and then connected to the negative phase of the operational amplifier U2 At the input end, the other end of the fourth resistor R4 is connected to the voltage across the bus capacitor, and the other end of the fifth resistor R5 is grounded.
  • the sixth resistor R6 and the third capacitor C6 are connected in series to form an operational amplifier loop, which is connected in parallel to the output terminal and the negative phase input terminal of the operational amplifier U2.
  • the fourth resistor R4 and the fifth resistor R5 sample the voltage at both ends of the bus capacitor, and input the divided voltage signal to the negative input terminal of the operational amplifier U2, and the positive input terminal of the operational amplifier U2 inputs the reference signal Vref.
  • the amplifier U2 compares the signal at the positive-phase input terminal and the signal at the negative-phase input terminal, performs proportional integral operation through the operational amplifier loop, and outputs a feedback signal.
  • the anode of the terminal voltage regulator tube U3 is connected to one end of the eighth resistor R8 and grounded, the other end of the eighth resistor R8 is connected to one end of the seventh resistor R7, and the other end of the seventh resistor R7 is connected to the voltage across the bus capacitor.
  • the reference end of the tube U3 is connected in series with the fourth capacitor C7 and the ninth resistor R9 and then connected to the cathode of the three-terminal voltage regulator tube U3.
  • the seventh resistor R7 and the eighth resistor R8 are connected in series and connected to both ends of the bus capacitor, and the three-terminal voltage stabilizer
  • the reference end of the tube U3 is connected between the seventh resistor R7 and the eighth resistor R8.
  • the feedback circuit 102 includes a three-terminal voltage regulator tube U3, a seventh resistor R7 to a tenth resistor R10, and a fourth capacitor C7.
  • the ninth resistor R9, the tenth resistor R10, the fourth capacitor C7, and the second voltage source VCC2 form a feedback loop.
  • the seventh resistor R7 and the eighth resistor R8 divide the voltage across the bus capacitor, and connect the divided voltage signal to the reference terminal of the three-terminal voltage regulator tube U3, the anode of the three-terminal voltage regulator tube U3 is connected to the common ground, and the three terminals
  • the cathode of the Zener tube U3 is connected to the second voltage source VCC2 through the tenth resistor R10.
  • the three-terminal zener tube U3 performs calculations based on the signal from the reference terminal and through the feedback loop to output a feedback signal;
  • the charge pump control circuit includes a control switch and a control circuit.
  • the control switch is connected in parallel to both ends of the charge pump circuit, and the control circuit is used to control the switch state of the control switch.
  • the control circuit is used to control the switching state of the control switch according to the feedback signal related to the voltage across the bus capacitor and the drive signal of the switch tube in the resonant main circuit, so that the control switch passes the forward resonant current in the resonant main circuit
  • the charge pump circuit is short-circuited within the period of time, so that the bus capacitor releases electric energy to the subsequent circuit.
  • the feedback signal is negatively related to the voltage across the bus capacitor, and the conduction time of the control switch is negative with the magnitude of the feedback signal Therefore, the greater the voltage across the bus capacitor, the smaller the feedback signal, and the longer the control switch will be turned on.
  • the bus capacitor will release more power to the subsequent circuit, thereby making the bus capacitor The voltage drops to stabilize the voltage across the bus capacitor at a certain voltage value to avoid voltage stress on the components of the subsequent circuit due to the excessively high bus capacitor voltage.
  • the present application also provides a driving power supply.
  • the driving power supply includes a rectifier bridge BD1, a bus capacitor C1, a resonance main circuit, a charge pump circuit, a resonance control circuit, and the charge pump control described in the above embodiment. Circuit.
  • the rectifier bridge BD1 is used to convert the input AC voltage into a rectified voltage and output;
  • the resonance control circuit is used to collect the output parameters of the resonance main circuit, and control the switching tube Q1 and the switching tube Q2 in the resonance main circuit according to the output parameters to make the resonance main circuit Output stable output voltage or output current.
  • the resonance control circuit includes a voltage-controlled oscillator and a drive control circuit; the input terminal of the voltage-controlled oscillator collects the output parameters of the resonance main circuit, and the output terminal outputs a frequency control signal V1 to the drive control circuit,
  • the aforementioned output parameters are parameters that characterize the output voltage or output current of the resonant main circuit.
  • the voltage controlled oscillator adjusts the frequency of the output frequency control signal V1 according to the amplitude of the parameter characterizing the output voltage or output current of the main resonance circuit.
  • the drive control circuit outputs a drive signal according to the frequency control signal V1 to control the switching tube Q1 and the switching tube Q2 in the resonance main circuit, so that the resonance main circuit outputs a stable output voltage or output current.
  • the charge pump circuit includes a diode D1 and a capacitor C2.
  • the resonant current charges the capacitor C2 in the charge pump circuit until the voltage value on the capacitor C2 is equal to the rectified value of the input voltage The difference between the voltage on the bus capacitor C1 and the voltage on the bus capacitor C1. At this time, the charging is stopped, and the resonant current forms a loop with the input power supply through the rectifier bridge BD1.
  • the diode D1 in the charge pump circuit provides a current loop for the resonant current.
  • the control switch in the charge pump control circuit is a MOS tube
  • the charge pump circuit and the MOS tube share the parasitic diode of the MOS tube. That is, at this time, the charge pump circuit does not need an additional diode, only the capacitor is reserved.

Abstract

一种电荷泵控制电路及驱动电源,该电荷泵控制电路包括控制开关与控制电路;控制开关并联于电荷泵电路的两端,且控制开关的控制端连接控制电路的输出端;控制电路,用于根据母线电容两端的电压生成反馈信号,根据谐振主电路中开关管的驱动信号生成三角波信号,并将反馈信号与三角波信号进行比较,当三角波信号大于反馈信号时,控制控制开关导通,以将电荷泵电路短路。其中,开关管包括为桥式结构的上开关管与下开关管;反馈信号的大小与母线电容两端的电压的大小呈负相关,控制开关的导通时间与反馈信号的大小呈负相关。该电路能够将母线电容的电压稳定在某一个电压值。

Description

一种电荷泵控制电路及驱动电源
本申请要求于2020年06月12日提交至中国专利局、申请号为202010538156.0、发明名称为“一种电荷泵控制电路及驱动电源”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及LED灯技术领域,特别涉及一种电荷泵控制电路;还涉及一种驱动电源。
背景技术
在LED灯技术领域,高功率密度、高效率和低成本的驱动电源更加具有竞争力。通常驱动电源会选择谐振电路来达到实现高功率密度及高效率的目的。谐振电路可以实现原边两个或两个以上的开关管的零电压开通和副边整流二极管的零电流关断,可以降低电源的开关损耗,提高功率变换器的效率和功率密度。同时,为了提高功率因素,往往在谐振电路的前级增加一级有源PFC电路即功率因素校正电路。然而,这样会导致电路复杂且成本高。
为此,现有技术通过电荷泵电路代替PFC电路,使单级的谐振电路满足功率因素要求。然而,具有电荷泵的谐振电路存在如下问题:在电路处于输入电压的幅值在一定范围内变化的工作条件下时,当输入电压的幅值增大、且谐振主电路所需的能量不变时,母线电容上的电压随即增大;或者,当谐振主电路的输出功率在一定范围内变化(即谐振主电路所需的功率在一定范围内变化),输出功率减小且输入电压不变时,母线电容上的电压随即增大。若母线电容上的电压处于一个较高的幅值水平,则后级谐振主电路的相关器件需要承受较高的电压压力。因此,设计电路时,谐振主电路的这些器件需要按照最高幅值的母线电容电压来选择耐压性能。耐压性能高的器件较为昂贵,对于长时间工作在低幅值的母线电容电压下、偶尔工作在高幅值的母线电容电压下的电路来说,选择耐压性能高的器件过于浪费却必须选择,否则在高幅值的母线电容电压下,器件会由于耐压问 题而损坏。
有鉴于此,如何将母线电容的电压稳定在某一个电压值,避免由于母线电容电压过高而对后级电路的器件造成电压压力已成为本领域技术人员亟待解决的技术问题。
发明内容
本申请的目的是提供一种电荷泵控制电路,能够将母线电容的电压稳定在某一个电压值,避免由于母线电容电压过高而对后级电路的器件造成电压压力;本申请的另一个目的是提供一种驱动电源,同样具有上述技术效果。
为解决上述技术问题,本申请提供了一种电荷泵控制电路,包括:
控制开关与控制电路;所述控制开关并联于电荷泵电路的两端,且所述控制开关的控制端连接所述控制电路的输出端;
所述控制电路,用于根据母线电容两端的电压生成反馈信号,根据谐振主电路中开关管的驱动信号生成三角波信号,并将所述反馈信号与所述三角波信号进行比较,当所述三角波信号大于所述反馈信号时,控制所述控制开关导通,以将所述电荷泵电路短路,当所述三角波信号不大于所述反馈信号时,控制所述控制开关断开;
其中,所述开关管包括为桥式结构的上开关管与下开关管;所述反馈信号的大小与所述母线电容两端的电压的大小呈负相关,所述控制开关的导通时间与所述反馈信号的大小呈负相关。
可选的,所述控制电路包括:
比较器、三角波发生电路以及反馈电路;其中,所述驱动信号为所述下开关管的驱动信号;
所述三角波发生电路的输入端输入所述驱动信号,所述三角波发生电路的输出端连接所述比较器的同相端,用于根据所述驱动信号生成三角波信号,并输出所述三角波信号至所述比较器的同相端;所述三角波信号的起始时刻为所述下开关管的关断时刻;所述三角波信号的信号周期为所述驱动信号的信号周期;
所述反馈电路的输入端输入基准信号与所述母线电容两端的电压,所述反馈电路的输出端连接所述比较器的负相输入端,用于根据所述基准信 号与所述母线电容两端的电压生成所述反馈信号,并输出所述反馈信号至所述比较器的负相输入端;
所述比较器的输出端作为所述控制电路的输出端,连接所述控制开关,用于根据所述三角波信号与所述反馈信号生成所述控制信号,并输出所述控制信号至所述控制开关。
可选的,所述三角波发生电路包括:
可控开关、第一电压源、第一电阻、第二电阻、第三电阻、第一电容以及第二电容;
所述第一电压源连接所述第一电阻的第一端与所述可控开关的第二端,所述第一电阻的第二端连接所述可控开关的第一端与所述第二电阻的第一端,所述第二电阻的第二端连接所述第一电容的第一端,所述第一电容的第二端连接到所述谐振主电路的所述开关管的驱动信号,所述可控开关的第三端连接所述第三电阻与所述第二电容并联后的第一公共端,并作为所述三角波发生电路的输出端,所述第三电阻与所述第二电容并联后的第二公共端接地。
可选的,所述可控开关为PNP型三极管;所述PNP型三极管的基极为所述开关管的第一端,所述PNP型三极管的发射极为所述开关管的第二端,所述PNP型三极管的集电极为所述开关管的第三端。
可选的,所述反馈电路包括:
运算放大器、第四电阻、第五电阻、第六电阻以及第三电容;所述第四电阻与所述第五电阻串联后连接在所述母线电容两端,所述运算放大器的反相输入端连接所述第四电阻与所述第五电阻相连的一端,所述运算放大器的同相端输入基准信号,所述运算放大器的输出端作为所述反馈电路的输出端,且所述运算放大器的输出端串接所述第三电容与所述第六电阻后连接所述运算放大器的负相输入端,所述第四电阻的另一端连接所述母线电容两端的电压,所述第五电阻的另一端接地。
可选的,所述反馈电路包括:
三端稳压管、第二电压源、第七电阻、第八电阻、第九电阻、第十电阻以及第四电容;
所述三端稳压管的阴极作为所述反馈电路的输出端,且所述三端稳压 管的阴极串接所述第十电阻后连接所述第二电压源,所述三端稳压管的阳极连接所述第八电阻的一端并接地,所述第八电阻的另一端连接所述第七电阻的一端,所述第七电阻的另一端连接所述母线电容两端的电压,所述三端稳压管的基准端串接所述第四电容与所述第九电阻后连接所述三端稳压管的阴极,所述第七电阻与所述第八电阻串联后连接在所述母线电容两端,且所述三端稳压管的基准端连接于所述第七电阻与所述第八电阻之间。
可选的,所述控制开关为MOS管。
为解决上述技术问题,本申请还提供了一种驱动电源,包括:
整流桥、母线电容、谐振主电路、电荷泵电路、谐振控制电路以及如上所述的电荷泵控制电路。
可选的,当所述电荷泵控制电路中的控制开关为MOS管时,所述电荷泵电路与所述MOS管共用所述MOS管的寄生二极管。
本申请所提供的电荷泵控制电路包括:控制开关与控制电路;所述控制开关并联于电荷泵电路的两端,且所述控制开关的控制端连接所述控制电路的输出端;所述控制电路,用于根据母线电容两端的电压生成反馈信号,根据谐振主电路中开关管的驱动信号生成三角波信号,并将所述反馈信号与所述三角波信号进行比较,当所述三角波信号大于所述反馈信号时,控制所述控制开关导通,以将所述电荷泵电路短路,当所述三角波信号不大于所述反馈信号时,控制所述控制开关断开;其中,所述开关管包括为桥式结构的上开关管与下开关管;所述反馈信号的大小与所述母线电容两端的电压的大小呈负相关,所述控制开关的导通时间与所述反馈信号的大小呈负相关。
可见,本申请所提供的电荷泵控制电路,包括控制开关与控制电路,控制开关并联于电荷泵电路的两端,控制电路用于控制控制开关的开关状态。具体而言,控制电路用于根据与母线电容两端的电压相关的反馈信号以及谐振主电路中开关管的驱动信号来控制控制开关的开关状态,使控制开关在谐振主电路中通过正向谐振电流的时间内导通,将电荷泵电路短路,从而使母线电容向后级电路释放电能,由于反馈信号与母线电容两端的电压呈负相关,以及控制开关的导通时间与反馈信号的大小呈负相关,因此,母线电容两端的电压越大,反馈信号就会越小,控制开关导通的时间就会 越长,母线电容就会向后级电路释放更多的电能,进而使母线电容两端的电压下降,将母线电容两端的电压稳定在某一个电压值,避免由于母线电容电压过高而对后级电路的器件造成电压压力。
本申请所提供的驱动电源同样具有上述技术效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有驱动电源的示意图;
图2为本申请实施例所提供的一种电荷泵控制电路的示意图;
图3为本申请实施例所提供的一种控制电路的示意图;
图4为本申请实施例所提供的一种波形图;
图5为本申请实施例所提供的一种三角波发生电路的示意图;
图6为本申请实施例所提供的一种反馈电路的示意图;
图7为本申请实施例所提供的另一种反馈电路的示意图;
图8为本申请实施例所提供的一种谐振控制电路的示意图。
具体实施方式
本申请的核心是提供一种电荷泵控制电路,能够将母线电容的电压稳定在某一个电压值,避免由于母线电容电压过高而对后级电路的器件造成电压压力;本申请的另一个核心是提供一种驱动电源,同样具有上述技术效果。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参考图1所示,现有的驱动电源包括整流桥、母线电容、谐振主电路、 谐振控制电路以及电荷泵电路。谐振控制电路负责采集谐振主电路的输出参数,如输出电压或输出电流,并根据输出参数控制谐振主电路中开关管Q1和开关管Q2的工作状态,使谐振主电路输出稳定的输出电压或输出电流。谐振主电路中谐振电感L、谐振电容C3和变压器T谐振工作产生谐振电流Ir,桥式结构的开关管Q1与开关管Q2互补导通,或者占空比相同的错相导通。当谐振主电路通过正向谐振电流Ir时,如图1标示的Ir的方向,电荷泵电路对正向谐振电流Ir进行分流,此期间内大部分时间与开关管Q1的导通时间相重叠;当谐振主电路通过负向谐振电流Ir时,与图1标示的Ir的方向相反,电荷泵对负向谐振电流Ir不作处理,仅提供电流回路(通过二极管D),此期间内大部分时间与开关管Q2的导通时间相重叠。
其中,谐振主电路中开关管Q1和开关管Q2为桥式结构,并且本申请将类似该桥式结构的两个开关管定义为上开关管与下开关管,将与直流电压高电平连接的开关管称为上开关管,如图1中的Q1为上开关管,将与直流电压低电平连接的开关管称为下开关管,如图1中的Q2为下开关管。
谐振主电路的母线电容上的电压VC1(即母线电容C1两端的电压),母线电容C1,用作中间能量的存储,输入电源的能量存在母线电容上,后级谐振主电路从母线电容上攫取能量。在电路处于输入电压Vin的幅值会在一定范围内变化的工作条件下时,当输入电压Vin的幅值增大且谐振主电路所需的能量不变时,母线电容上的电压VC1随即增大。或者,在谐振主电路的输出功率会在一定范围内变化(即谐振主电路所需的功率在一定范围内变化)的工作条件下,当输出功率减小且输入电压Vin不变时,母线电容上的电压VC1随即增大。若母线电容上的电压VC1处于一个较高的幅值水平,则后级谐振主电路相关器件(开关管Q1、开关管Q2以及谐振电容C3)需要承受较高的电压压力。为此,本申请提供了一种电荷泵控制电路,能够有效解决上述技术缺陷。
请参考图2,图2为本申请实施例所提供的一种电荷泵控制电路的示意图,参考图2所示,该电荷泵控制电路主要包括:
控制开关S1与控制电路10;控制开关S1并联于电荷泵电路的两端,且控制开关S1的控制端连接控制电路10的输出端,控制开关S1受控于 控制电路10。
控制电路10,用于根据母线电容两端的电压生成反馈信号,根据谐振主电路中开关管的驱动信号生成三角波信号,以及根据反馈信号与三角波信号生成控制信号,并将控制信号输出至控制开关S1,控制控制开关S1。具体即将反馈信号与三角波信号进行比较,当三角波信号大于反馈信号时,控制控制开关S1导通,以将电荷泵电路短路。当所述三角波信号不大于反馈信号时,控制控制开关S1断开。
其中,反馈信号根据母线电容两端的电压生成,优选的,将母线电压与母线电压预设值比较,输入到运放的比例积分电路,通过该电路输出反馈信号。因此,反馈信号的大小反映了母线电压与预设值之间的差值。
其中,由于三角波信号是根据谐振主电路的开关管的驱动信号生成的,也就是说,三角波信号的周期相位与开关管Q1或Q2相同,而由三角波信号生成的控制信号在开关管Q1或Q2的开关周期内控制控制开关S1导通一定的时间,而在开关管Q1或Q2的开关周期的其余时间关断。再通过反馈信号的大小改变控制控制开关的导通时间,使得在较长的时间周期内(该时间周期远大于开关管Q1或Q2的开关周期)能够调节母线电容对后级谐振电路释放的能量,使母线电容上的电压稳定在设定值。具体的,因为反馈信号的大小与母线电容两端的电压的大小呈负相关,且反馈信号与三角波比较后的控制信号使控制开关的导通时间与所述反馈信号的大小呈负相关,这样,控制开关的导通时间会与母线电容两端的电压呈正相关,使得当母线电容电压高于预设值时,反馈信号减小、控制开关导通时间增大、母线电容向谐振主电路释能更多,这样可以调节母线电容电压降低以至预设值;同理,当母线电容电压低于预设值时,反馈信号增大、控制开关导通时间减小、母线电容向谐振主电路释能减少,同样这样可以调节母线电容电压升高以至预设值。
需要说明的是,控制开关S1的通断,是随着开关管Q1或Q2的开关周期周而复始的。也就是说,控制开关S1在开关管Q1或Q2的一个开关周期内会进行一次导通和一次关断。而反馈信号的大小变化不是在一个开关周期内完成的,而是在一个较长的时间周期内调节的,也即母线电容的释能和储能变化也是在这个较长的时间周期内完成的。上述两个时间周期, 一个是开关管Q1或Q2的开关周期,另一个是母线电容的调节时间周期,后者远大于前者。
本申请将控制开关S1并联于电荷泵电路的两端,以当控制开关S1导通时,将电荷泵电路短路。其中,在一种具体的实施方式中,控制开关S1为MOS管。
参考图3所示,在一种具体的实施方式中,控制电路10包括:比较器U1、三角波发生电路101以及反馈电路102;其中,驱动信号为下开关管Q2的驱动信号;三角波发生电路101的输入端输入驱动信号,三角波发生电路101的输出端连接比较器U1的同相端,用于根据驱动信号生成三角波信号,并输出三角波信号至比较器U1的同相端;三角波信号的起始时刻为下开关管Q2的关断时刻;三角波信号的信号周期为驱动信号的信号周期;反馈电路102的输入端母线电容两端的电压X1,内部具有母线电压预设值,反馈电路102的输出端连接比较器U1的负相输入端,用于根据母线电压预设值与母线电容两端的电压生成反馈信号,并输出反馈信号至比较器U1的负相输入端;比较器U1的输出端作为控制电路10的输出端,连接控制开关S1,用于根据三角波信号与反馈信号生成控制信号,并输出控制信号至控制开关S1。
例如,如图4所示,LG表示下开关管Q2的驱动信号,X2表示三角波信号(此处具体为锯齿波),X3表示反馈信号,X4表示控制开关S1的控制信号,TON表示控制信号的高电平时间。三角波发生电路101输入下开关管Q2的驱动信号LG,三角波发生电路101在下开关管Q2的驱动信号的下降沿时瞬间上升至高电平(斜率接近90度)、并在此后按照一定斜率(小于90度的斜率)下降,以此生成锯齿波信号并输出;比较器U1将三角波信号X2和反馈信号X3进行比较运算输出控制信号X4,用于控制控制开关S1。反馈电路102设定了母线电压预设值,母线电容两端的电压越高于母线电压预设值,反馈信号X3越小,从而控制信号X4的高电平时间越长,控制开关S1的导通时间越长,则电荷泵电路对谐振电流进行分流的累积时间越短,母线电容上的能量向后级释放的越多,母线电容两端的电压下降直至母线电压预设值。反之亦然,由此,达到调节母线电容两端的电压的目的,使其稳定于反馈电路102设定的母线电压预设值。
进一步,参考图5所示,在一种具体的实施方式中,三角波发生电路101包括:可控开关S2、第一电压源VCC1、第一电阻R1、第二电阻R2、第三电阻R3、第一电容C4以及第二电容C5;第一电压源VCC1连接第一电阻R1的第一端与可控开关S2的第二端,第一电阻R1的第二端连接可控开关S2的第一端与第二电阻R2的第一端,第二电阻R2的第二端连接第一电容C4的第一端,第一电容C4的第二端连接到谐振主电路的下开关管的驱动端,用于获取下开关管的驱动信号LG,可控开关S2的第三端连接第三电阻R3与第二电容C5并联后的第一公共端,并作为三角波发生电路的输出端,第三电阻R3与第二电容C5并联后的第二公共端接地。
且上述可控开关S2具体可为PNP型三极管;PNP型三极管的基极为开关管的第一端,PNP型三极管的发射极为开关管的第二端,PNP型三极管的集电极为开关管的第三端。
具体的,PNP型三极管的基极通过第一电阻R1接到第一电压源VCC1、同时通过第二电阻R2R2和第一电容C4串联连接谐振主电路的开关管Q2的驱动端,PNP型三极管的集电极连接第三电阻R3与第二电容C5的第一公共端,并作为三角波发生电路101的输出端,PNP型三极管的发射极直接连接第一电压源VCC1。
第一电压源VCC1的幅值的选取与驱动信号LG的幅值、第一电阻R1与第二电阻R2R2的阻值相关,需满足:当驱动信号LG为高电平时,PNP型三极管的电流不足以让PNP三极管导通。
驱动信号LG在下降沿时刻之前处于高电平,此期间PNP型三极管的基极无电流流过,PNP型三极管截止,三角波发生电路101的输出端为零电平;在驱动信号LG的下降沿过程中,驱动信号LG瞬间由高电平跳跃到低电平,第一电压源VCC1通过第一电阻R1与第二电阻R2进行分压,给PNP型三极管提供电流迫使PNP型三极管导通,三角波发生电路101的输出端瞬间升为高电平(斜率接近90度),第一电容C4充电,并快速的将图中所示A点的电压充到第一电压源的电压值,进而PNP型三极管停止导通,三角波发生电路101的输出端的电压在第三电阻R3与第二电容C5的放电作用下,按照一定斜率下降(小于90度的斜率),由此三角波信号产生,具体为锯齿波。
进一步,参考图6所示,在一种具体的实施方式中,反馈电路102包括:运算放大器U2、第四电阻R4、第五电阻R5、第六电阻R6以及第三电容C6;第四电阻R4与第五电阻R5串联后连接在母线电容两端,运算放大器U2的反相输入端连接第四电阻R4与第五电阻R5相连的一端,也即该反相输入端输入母线电压。运算放大器U2的同相端输入基准信号,运算放大器U2的输出端作为反馈电路102的输出端,且运算放大器U2的输出端串接第三电容C6与第六电阻R6后连接运算放大器U2的负相输入端,第四电阻R4的另一端连接母线电容两端的电压,第五电阻R5的另一端接地。
具体的,第六电阻R6与第三电容C6串联构成运放环路,并联于运算放大器U2的输出端与负相输入端。第四电阻R4与第五电阻R5对母线电容两端的电压进行分压采样,并把分压信号输入到运算放大器U2的负相输入端,运算放大器U2的正相输入端输入基准信号Vref,运算放大器U2将正相输入端的信号和负相输入端的信号进行比较运算并通过运放环路进行比例积分运算,输出反馈信号。
其中,基准信号Vref用于设置母线电压预设值,即母线电压预设值VC1=(Vref*(R4+R5))/R5。
进一步,参考图7所示,在另一种具体的实施方式中,反馈电路102包括:三端稳压管U3、第二电压源VCC2、第七电阻R7、第八电阻R8、第九电阻R9、第十电阻R10以及第四电容C7;三端稳压管U3的阴极作为反馈电路102的输出端,且三端稳压管U3的阴极串接第十电阻R10后连接第二电压源,三端稳压管U3的阳极连接第八电阻R8的一端并接地,第八电阻R8的另一端连接第七电阻R7的一端,第七电阻R7的另一端连接母线电容两端的电压,三端稳压管U3的基准端串接第四电容C7与第九电阻R9后连接三端稳压管U3的阴极,第七电阻R7与第八电阻R8串联后连接在母线电容两端,且三端稳压管U3的基准端连接于第七电阻R7与第八电阻R8之间。
具体的,本实施例中,反馈电路102包括三端稳压管U3、第七电阻R7至第十电阻R10以及第四电容C7。第九电阻R9、第十电阻R10、第四电容C7以及第二电压源VCC2构成反馈环路。第七电阻R7与第八电阻 R8对母线电容两端的电压进行分压,并把分压信号与三端稳压管U3的基准端相连,三端稳压管U3的阳极接公共地,三端稳压管U3的阴极通过第十电阻R10接到第二电压源VCC2。三端稳压管U3内部有一个基准信号Vref2与三端稳压管U3的基准端的输入信号进行比较运算,三端稳压管U3根据基准端的信号并通过反馈环路进行运算,输出反馈信号;
其中,三端稳压管U3内部的基准信号Vref2用于设置母线电压预设值,即母线电压预设值VC1=(Vref2*(R7+R8))/R8。
综上所述,本申请所提供的电荷泵控制电路,包括控制开关与控制电路,控制开关并联于电荷泵电路的两端,控制电路用于控制控制开关的开关状态。具体而言,控制电路用于根据与母线电容两端的电压相关的反馈信号以及谐振主电路中开关管的驱动信号来控制控制开关的开关状态,使控制开关在谐振主电路中通过正向谐振电流的时间内导通,将电荷泵电路短路,从而使母线电容向后级电路释放电能,由于反馈信号与母线电容两端的电压呈负相关,以及控制开关的导通时间与反馈信号的大小呈负相关,因此,母线电容两端的电压越大,反馈信号就会越小,控制开关导通的时间就会越长,母线电容就会向后级电路释放更多的电能,进而使母线电容两端的电压下降,将母线电容两端的电压稳定在某一个电压值,避免由于母线电容电压过高而对后级电路的器件造成电压压力。
本申请还提供了一种驱动电源,参考图2所示,该驱动电源包括整流桥BD1、母线电容C1、谐振主电路、电荷泵电路、谐振控制电路以及如上述实施例所述的电荷泵控制电路。整流桥BD1用于将输入的交流电压转换为整流电压并输出;谐振控制电路用于收集谐振主电路的输出参数,根据输出参数控制谐振主电路中开关管Q1和开关管Q2,使谐振主电路输出稳定的输出电压或输出电流。具体而言,参考图8所示,谐振控制电路包括压控振荡器和驱动控制电路;压控振荡器的输入端收集谐振主电路的输出参数,输出端输出频率控制信号V1至驱动控制电路,上述输出参数为表征谐振主电路的输出电压或输出电流的参数。压控振荡器根据表征谐振主电路的输出电压或输出电流的参数的幅值大小调节输出频率控制信号V1 的频率。驱动控制电路根据频率控制信号V1输出驱动信号控制谐振主电路中的开关管Q1和开关管Q2,使谐振主电路输出稳定的输出电压或输出电流。
电荷泵电路包括二极管D1与电容C2,当谐振电流为正向时且控制开关断开时,谐振电流为电荷泵电路中的电容C2充电,直至该电容C2上的电压值等于输入电压的整流值与母线电容C1上的电压的差值,此时停止充电,谐振电流通过整流桥BD1与输入电源形成回路。当谐振电流为反向时,电荷泵电路中的二极管D1为谐振电流提供电流回路。
其中,当电荷泵控制电路中的控制开关为MOS管时,电荷泵电路与MOS管共用MOS管的寄生二极管。即此时电荷泵电路无需额外的设置二极管,仅保留电容即可。
对于驱动电源中电荷泵控制电路,参考上述电荷泵控制电路的相关实施例即可,本申请在此不做赘述。
因为情况复杂,无法一一列举进行阐述,本领域技术人员应能意识到,在本申请提供的实施例的基本原理下结合实际情况可以存在多个例子,在不付出足够的创造性劳动下,应均在本申请的范围内。
说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上对本申请所提供的电荷泵控制电路以及驱动电源进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素, 而且还包括没有明确列出的其它要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (9)

  1. 一种电荷泵控制电路,其特征在于,包括:
    控制开关与控制电路;所述控制开关并联于电荷泵电路的两端,且所述控制开关的控制端连接所述控制电路的输出端;
    所述控制电路,用于根据母线电容两端的电压生成反馈信号,根据谐振主电路中开关管的驱动信号生成三角波信号,并将所述反馈信号与所述三角波信号进行比较,当所述三角波信号大于所述反馈信号时,控制所述控制开关导通,以将所述电荷泵电路短路,当所述三角波信号不大于所述反馈信号时,控制所述控制开关断开;
    其中,所述开关管包括为桥式结构的上开关管与下开关管;所述反馈信号的大小与所述母线电容两端的电压的大小呈负相关,所述控制开关的导通时间与所述反馈信号的大小呈负相关。
  2. 根据权利要求1所述的电荷泵控制电路,其特征在于,所述控制电路包括:
    比较器、三角波发生电路以及反馈电路;其中,所述驱动信号为所述下开关管的驱动信号;
    所述三角波发生电路的输入端输入所述驱动信号,所述三角波发生电路的输出端连接所述比较器的同相端,用于根据所述驱动信号生成三角波信号,并输出所述三角波信号至所述比较器的同相端;所述三角波信号的起始时刻为所述下开关管的关断时刻;所述三角波信号的信号周期为所述驱动信号的信号周期;
    所述反馈电路的输入端输入基准信号与所述母线电容两端的电压,所述反馈电路的输出端连接所述比较器的负相输入端,用于根据所述基准信号与所述母线电容两端的电压生成所述反馈信号,并输出所述反馈信号至所述比较器的负相输入端;
    所述比较器的输出端作为所述控制电路的输出端,连接所述控制开关,用于根据所述三角波信号与所述反馈信号生成所述控制信号,并输出所述控制信号至所述控制开关。
  3. 根据权利要求2所述的电荷泵控制电路,其特征在于,所述三角波发生电路包括:
    可控开关、第一电压源、第一电阻、第二电阻、第三电阻、第一电容以及第二电容;
    所述第一电压源连接所述第一电阻的第一端与所述可控开关的第二端,所述第一电阻的第二端连接所述可控开关的第一端与所述第二电阻的第一端,所述第二电阻的第二端连接所述第一电容的第一端,所述第一电容的第二端连接到所述谐振主电路的所述开关管的驱动信号,所述可控开关的第三端连接所述第三电阻与所述第二电容并联后的第一公共端,并作为所述三角波发生电路的输出端,所述第三电阻与所述第二电容并联后的第二公共端接地。
  4. 根据权利要求3所述的电荷泵控制电路,其特征在于,所述可控开关为PNP型三极管;所述PNP型三极管的基极为所述开关管的第一端,所述PNP型三极管的发射极为所述开关管的第二端,所述PNP型三极管的集电极为所述开关管的第三端。
  5. 根据权利要求2所述的电荷泵控制电路,其特征在于,所述反馈电路包括:
    运算放大器、第四电阻、第五电阻、第六电阻以及第三电容;所述第四电阻与所述第五电阻串联后连接在所述母线电容两端,所述运算放大器的反相输入端连接所述第四电阻与所述第五电阻相连的一端,所述运算放大器的同相端输入基准信号,所述运算放大器的输出端作为所述反馈电路的输出端,且所述运算放大器的输出端串接所述第三电容与所述第六电阻后连接所述运算放大器的负相输入端,所述第四电阻的另一端连接所述母线电容两端的电压,所述第五电阻的另一端接地。
  6. 根据权利要求2所述的电荷泵控制电路,其特征在于,所述反馈电路包括:
    三端稳压管、第二电压源、第七电阻、第八电阻、第九电阻、第十电阻以及第四电容;
    所述三端稳压管的阴极作为所述反馈电路的输出端,且所述三端稳压管的阴极串接所述第十电阻后连接所述第二电压源,所述三端稳压管的阳极连接所述第八电阻的一端并接地,所述第八电阻的另一端连接所述第七电阻的一端,所述第七电阻的另一端连接所述母线电容两端的电压,所述 三端稳压管的基准端串接所述第四电容与所述第九电阻后连接所述三端稳压管的阴极,所述第七电阻与所述第八电阻串联后连接在所述母线电容两端,且所述三端稳压管的基准端连接于所述第七电阻与所述第八电阻之间。
  7. 根据权利要求1所述的电荷泵控制电路,其特征在于,所述控制开关为MOS管。
  8. 一种驱动电源,其特征在于,包括:
    整流桥、母线电容、谐振主电路、电荷泵电路、谐振控制电路以及如权利要求1至7任一项所述的电荷泵控制电路。
  9. 根据权利要求8所述的驱动电源,其特征在于,当所述电荷泵控制电路中的控制开关为MOS管时,所述电荷泵电路与所述MOS管共用所述MOS管的寄生二极管。
PCT/CN2021/098593 2020-06-12 2021-06-07 一种电荷泵控制电路及驱动电源 WO2021249332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010538156.0 2020-06-12
CN202010538156.0A CN111629496B (zh) 2020-06-12 2020-06-12 一种电荷泵控制电路及驱动电源

Publications (1)

Publication Number Publication Date
WO2021249332A1 true WO2021249332A1 (zh) 2021-12-16

Family

ID=72272836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098593 WO2021249332A1 (zh) 2020-06-12 2021-06-07 一种电荷泵控制电路及驱动电源

Country Status (2)

Country Link
CN (1) CN111629496B (zh)
WO (1) WO2021249332A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111629496B (zh) * 2020-06-12 2022-01-25 英飞特电子(杭州)股份有限公司 一种电荷泵控制电路及驱动电源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197740A (ja) * 2000-01-11 2001-07-19 Murata Mfg Co Ltd スイッチング電源装置
CN202385330U (zh) * 2011-09-06 2012-08-15 上海新进半导体制造有限公司 Led驱动电路
CN107257194A (zh) * 2017-08-16 2017-10-17 英飞特电子(杭州)股份有限公司 一种谐振变换器
CN108631562A (zh) * 2017-03-16 2018-10-09 赤多尼科两合股份有限公司 一种pfc电荷泵电路
CN110808681A (zh) * 2019-11-13 2020-02-18 杭州优特电源有限公司 一种无源pfc谐振变换器及其控制方法
CN111629496A (zh) * 2020-06-12 2020-09-04 英飞特电子(杭州)股份有限公司 一种电荷泵控制电路及驱动电源

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9185767B2 (en) * 2013-04-19 2015-11-10 Cirrus Logic, Inc. Self-oscillating resonant converter-based light emitting diode (LED) driver
CN109639151A (zh) * 2019-01-21 2019-04-16 杭州士兰微电子股份有限公司 用于llc谐振变换器的恒流控制电路及恒流控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197740A (ja) * 2000-01-11 2001-07-19 Murata Mfg Co Ltd スイッチング電源装置
CN202385330U (zh) * 2011-09-06 2012-08-15 上海新进半导体制造有限公司 Led驱动电路
CN108631562A (zh) * 2017-03-16 2018-10-09 赤多尼科两合股份有限公司 一种pfc电荷泵电路
CN107257194A (zh) * 2017-08-16 2017-10-17 英飞特电子(杭州)股份有限公司 一种谐振变换器
CN110808681A (zh) * 2019-11-13 2020-02-18 杭州优特电源有限公司 一种无源pfc谐振变换器及其控制方法
CN111629496A (zh) * 2020-06-12 2020-09-04 英飞特电子(杭州)股份有限公司 一种电荷泵控制电路及驱动电源

Also Published As

Publication number Publication date
CN111629496A (zh) 2020-09-04
CN111629496B (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
US10879791B2 (en) DC/DC resonant converters and power factor correction using resonant converters, and corresponding control methods
JP5230181B2 (ja) エネルギー伝達装置およびエネルギー伝達制御用半導体装置
JP3707436B2 (ja) スイッチング電源装置
US6639811B2 (en) Switching power supply unit
US6788557B2 (en) Single conversion power converter with hold-up time
US10263510B2 (en) DC/DC resonant converters and power factor correction using resonant converters, and corresponding control methods
US11437924B2 (en) Switching power supply circuit
US6295211B1 (en) Switching power supply unit having delay circuit for reducing switching frequency
US20190081565A1 (en) Dc/dc resonant converters and power factor correction using resonant converters, and corresponding control methods
JP6868031B2 (ja) Dc/dc共振コンバータ及び共振コンバータを用いた力率補正、並びに対応する制御方法
Irving et al. Analysis and design of self-oscillating flyback converter
TWI650927B (zh) 用於主開關切換轉換的零電壓開關式返馳變換器
JP2015053225A (ja) Led駆動回路
CN209930559U (zh) Llc谐振变换器和led驱动电路
WO2021249332A1 (zh) 一种电荷泵控制电路及驱动电源
US10447147B2 (en) DC/DC resonant converters and power factor correction using resonant converters, and corresponding control methods
WO2023207442A1 (zh) 一种电源电路及电源适配器
CN218783723U (zh) 一种基于控制芯片的反激式开关电源
CN113872428B (zh) 一种氮化镓晶体管的驱动控制电路、方法、设备、介质
JP7141916B2 (ja) 電源制御装置、およびllc共振コンバータ
WO2017137342A1 (en) Dc/dc resonant converters and power factor correction using resonant converters, and corresponding control methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821413

Country of ref document: EP

Kind code of ref document: A1