WO2020224303A1 - 空调器过压检测电路、空调器电控装置和空调器 - Google Patents

空调器过压检测电路、空调器电控装置和空调器 Download PDF

Info

Publication number
WO2020224303A1
WO2020224303A1 PCT/CN2020/073235 CN2020073235W WO2020224303A1 WO 2020224303 A1 WO2020224303 A1 WO 2020224303A1 CN 2020073235 W CN2020073235 W CN 2020073235W WO 2020224303 A1 WO2020224303 A1 WO 2020224303A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
air conditioner
terminal
voltage
resistor
Prior art date
Application number
PCT/CN2020/073235
Other languages
English (en)
French (fr)
Inventor
霍兆镜
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2020224303A1 publication Critical patent/WO2020224303A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16504Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the components employed
    • G01R19/16523Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the components employed using diodes, e.g. Zener diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters

Definitions

  • This application relates to the technical field of air conditioners, in particular to an air conditioner overvoltage detection circuit, an air conditioner electric control device, and an air conditioner.
  • the circuit for over-voltage detection of the input AC voltage in the air conditioner basically uses a dedicated over-voltage detection chip.
  • the dedicated over-voltage detection chip is expensive, or it uses a large loss sampling resistor to sample and output an over-voltage signal.
  • the current flowing through the sampling resistor is too large, resulting in a large power loss in the sampling resistor.
  • the use of a dedicated overvoltage detection chip to detect the input voltage has a high cost, while the use of a voltage divider resistor and a detection chip method has greater losses.
  • the main purpose of this application is to provide an overvoltage detection circuit for an air conditioner, which aims to solve the problems of high cost in the input voltage detection method using a dedicated chip, and large loss in the voltage divider resistor and detection chip method.
  • an air conditioner overvoltage detection circuit proposed in this application includes:
  • the power input terminal of the rectifier circuit is connected to the first AC input terminal and the second AC input terminal, respectively, the power output terminal of the rectifier circuit is connected to the input terminal of the resistor divider circuit, and the resistor divider
  • the signal output end of the circuit is connected to the reference electrode of the voltage reference chip, the anode of the voltage reference chip is grounded, the cathode of the voltage reference chip is connected to the signal input end of the optocoupler feedback circuit, and the optocoupler feedback
  • the signal output terminal of the circuit is the signal output terminal of the air conditioner overvoltage detection circuit;
  • the rectifier circuit is configured to rectify the AC power input from the first AC input terminal and the second AC input terminal and output the DC power to the resistor divider circuit;
  • the resistance voltage divider circuit is used to sample the direct current voltage and output a voltage sampling signal to the voltage reference chip;
  • the voltage reference chip is used for turning on when the voltage value of the voltage sampling signal is greater than a reference voltage, and outputting an overvoltage detection signal to the optocoupler feedback circuit;
  • the optocoupler feedback circuit is used for signal isolation and output of the overvoltage detection signal.
  • the resistor divider circuit includes a first input terminal and a second input terminal
  • the rectifier circuit includes a first diode and a Zener diode
  • the anode of the first diode is connected to the The first AC input terminal is connected
  • the cathode of the first diode is connected to the first input terminal of the resistor divider circuit
  • the cathode of the Zener diode is connected to the second AC input terminal
  • the voltage stabilizer The anode of the diode is connected to the second input terminal of the resistor divider circuit.
  • the optocoupler feedback circuit includes an optocoupler, a first resistor, a second resistor, a third resistor, a first capacitor, a first working voltage input terminal, and a second working voltage input terminal;
  • the cathode of the voltage reference chip is connected to the cathode of the optocoupler, the anode of the optocoupler is connected to the first end of the first resistor, and the second end of the first resistor is connected to the first operating voltage
  • the input end is connected, the emitter of the optocoupler is grounded, the collector of the optocoupler, the first end of the second resistor, and the first end of the third resistor are interconnected, and the second end of the second resistor Connected to the second operating voltage input terminal, the first terminal of the third resistor is connected to the first terminal of the first capacitor, the second terminal of the first capacitor is grounded, and the connection node is the air conditioner The signal output terminal of the overvoltage detection circuit.
  • the model of the voltage reference chip is TL431.
  • This application also proposes an air conditioner electric control device, including a power supply circuit and the above-mentioned air conditioner overvoltage detection circuit, the power supply circuit including a rectifier filter circuit, a switch circuit, a controller, and a voltage conversion circuit;
  • the first input end of the rectification filter circuit is connected to the first AC input end, the second input end of the rectification filter circuit is connected to the second AC input end, and the positive output end of the rectification filter circuit is connected to the
  • the first input terminal of the voltage conversion circuit is connected, the negative electrode of the output terminal of the rectification filter circuit is connected to the first terminal of the switch circuit, and the second terminal of the switch circuit is connected to the second input of the voltage conversion circuit.
  • the controlled terminal of the switch circuit is connected to the control terminal of the controller, the first output terminal of the voltage conversion circuit is connected to the first working voltage output terminal, and the second The output terminal is connected to the second working voltage output terminal;
  • the rectification filter circuit is used to rectify and filter the input AC power and output the DC power;
  • the controller is configured to output a control signal to control the switching circuit to be turned on or off;
  • the voltage conversion circuit is used to transform the DC power and output working voltages of different voltage levels.
  • the signal output terminal of the air conditioner overvoltage detection circuit is connected to the signal terminal of the controller.
  • the voltage conversion circuit includes a transformer, a second diode, a third diode, a second capacitor, and a third capacitor, and the transformer includes a primary coil, a first secondary coil, and a second secondary coil. ;
  • the first end of the primary coil is connected to the positive terminal of the output terminal of the rectifier filter circuit
  • the second end of the primary coil is connected to the first end of the switch circuit
  • the first end of the first secondary coil Is connected to the anode of the second diode
  • the cathode of the second diode is connected to the first end of the second capacitor
  • the connection node is the first output end of the voltage conversion circuit.
  • the second end of the secondary coil is connected to the second end of the second capacitor, and the first end of the second secondary coil is connected to the anode of the third diode.
  • the cathode is connected to the first end of the third capacitor
  • the connection node is the second output end of the voltage conversion circuit
  • the second end of the second secondary coil is connected to the second end of the third capacitor And grounded.
  • the switch circuit is an NMOS transistor.
  • the power supply circuit further includes an absorption circuit for absorbing leakage inductance spike voltage
  • the absorption circuit includes a fourth resistor, a fourth capacitor, and a fourth diode
  • the first of the fourth resistor is Terminal, the first terminal of the fourth capacitor, and the output terminal of the rectifier filter circuit are interconnected, the second terminal of the fourth resistor, the second terminal of the fourth capacitor, and the fourth diode
  • the cathode is connected, and the anode of the fourth diode is connected to the first end of the switch circuit.
  • This application also proposes an air conditioner, including an indoor unit, an outdoor unit, a current loop communication circuit, and the above-mentioned electric control device for the air conditioner.
  • the indoor unit and the outdoor unit communicate through the current loop communication circuit.
  • the power output terminal of the electronic control device of the indoor unit is connected with the power terminal of the processor of the indoor unit.
  • the technical solution of the present application forms an air conditioner overvoltage detection circuit by using a first AC input terminal, a second AC input terminal, a rectifier circuit, a resistor divider circuit, a voltage reference chip, and an optocoupler feedback circuit.
  • the AC input terminal is used to input AC power to the power circuit of the air conditioner to power the electronic control components of the air conditioner.
  • the signal terminal of the air conditioner overvoltage detection circuit is connected to the first AC input terminal and the second AC input terminal respectively.
  • the AC input from an AC input terminal and a second AC input terminal are rectified and output DC to the resistance divider circuit.
  • the resistance divider circuit divides and samples the DC power and outputs a voltage sampling signal to the voltage reference chip.
  • the reference electrode voltage of the voltage reference chip is greater than the internal reference voltage, the voltage reference chip is turned on, and the optocoupler feedback circuit is controlled to output an overvoltage feedback signal to the processor of the air conditioner or the controller in the power circuit of the air conditioner to cut off the power accordingly Input to achieve overvoltage protection.
  • This application uses a preset reference voltage inside the voltage reference chip to achieve voltage detection, and the current value through the resistor divider circuit is small, and the power consumed by the resistor divider circuit is in the milliwatt level, thereby reducing loss and cost.
  • FIG. 1 is a schematic diagram of modules of an embodiment of an overvoltage detection circuit for an air conditioner according to the present application
  • FIG. 2 is a schematic diagram of the circuit structure of an embodiment of an overvoltage detection circuit for an air conditioner according to the present application
  • FIG. 3 is a schematic diagram of modules of an embodiment of an electronic control device for an air conditioner according to the present application.
  • FIG. 4 is a schematic diagram of the circuit structure of an embodiment of an electronic control device for an air conditioner according to this application.
  • FIG. 1 is a schematic diagram of modules of an embodiment of an overvoltage detection circuit for an air conditioner according to the present application
  • FIG. 2 is a schematic diagram of the circuit structure of an embodiment of an overvoltage detection circuit for an air conditioner according to the present application
  • FIG. 3 is a schematic diagram of modules of an embodiment of an electronic control device for an air conditioner according to the present application.
  • FIG. 4 is a schematic diagram of the circuit structure of an embodiment of an electronic control device for an air conditioner according to this application.
  • This application proposes an air conditioner overvoltage detection circuit 10.
  • Fig. 1 is a schematic diagram of modules of an embodiment of an air conditioner overvoltage detection circuit according to the present application.
  • the air conditioner overvoltage detection circuit 10 includes:
  • the power input terminal of the rectifier circuit 11 is connected to the first AC input terminal L and the second AC input terminal N, respectively, the power output terminal of the rectifier circuit 11 is connected to the input terminal of the resistance voltage divider circuit 12, and the signal output of the resistance voltage divider circuit 12 is The terminal is connected to the reference electrode of the voltage reference chip IC1, the anode of the voltage reference chip IC1 is grounded, the cathode of the voltage reference chip IC1 is connected to the signal input terminal of the optocoupler feedback circuit 13, and the signal output terminal of the optocoupler feedback circuit 13 is the air conditioner pass The signal output terminal of the voltage detection circuit 10;
  • the rectifier circuit 11 is used to rectify the AC power input from the first AC input terminal L and the second AC input terminal N and output the DC power to the resistor divider circuit 12;
  • the resistance voltage divider circuit 12 is used to divide the voltage sampling of the direct current and output a voltage sampling signal to the voltage reference chip IC1;
  • Voltage reference chip IC1 used for turning on when the voltage value of the voltage sampling signal is greater than the reference voltage, and outputting an overvoltage detection signal to the optocoupler feedback circuit 13;
  • the optocoupler feedback circuit 13 is used to isolate the overvoltage detection signal and output it.
  • first AC input terminal L and the second AC input terminal N are connected to the rectifier circuit 11, they also correspond to the connection of the power input terminal of the power supply circuit 20 of the air conditioner.
  • the power supply circuit 20 is used to power the air conditioner.
  • the control component provides working power.
  • the rectifier circuit 11 can be a half-wave rectifier circuit 11 or a full-bridge rectifier circuit 11, which can be specifically selected according to actual conditions.
  • the resistance voltage divider circuit 12 is used to divide the direct current output by the rectifier circuit 11.
  • the resistance voltage divider circuit 12 includes an upper bias voltage divider resistor R5 and a lower bias voltage divider resistor R6. One end is connected to an output end of the rectifier circuit 11, one end of the lower bias voltage divider resistor R6 is connected to the other output end of the rectifier circuit 11, and the other end of the upper bias voltage divider resistor R5 is connected to the other end of the lower bias voltage divider resistor R6. It is the signal output terminal of the resistance voltage divider circuit 12.
  • the model of the voltage reference chip IC1 can be selected according to requirements.
  • the selection of the voltage reference chip IC1 is TL431, and the reference voltage of the reference electrode of the voltage reference chip IC1 is 2.5V.
  • the bias voltage divider resistor R5 and The resistance value of the down-bias voltage divider resistor R6 When the AC is overvoltage, the reference electrode voltage of the voltage reference chip IC1 is 2.5V, the cathode and anode of the voltage reference chip IC1 are turned on, and the overvoltage detection signal is output to the optocoupler feedback circuit 13.
  • the optocoupler feedback circuit 13 performs signal isolation and outputs an overvoltage feedback signal.
  • the model of the voltage reference chip IC1 can be selected according to requirements.
  • the overvoltage detection circuit 10 of the air conditioner and the electric control component of the air conditioner can be arranged on the same or different circuit board, and can be arranged correspondingly, and there is no specific limitation.
  • the technical solution of the present application forms the air conditioner overvoltage detection circuit 10 by using the first AC input terminal L, the second AC input terminal N, the rectifier circuit 11, the resistor divider circuit 12, the voltage reference chip IC1 and the optocoupler feedback circuit 13.
  • An AC input terminal L and a second AC input terminal N are used to input AC power to the power circuit 20 of the air conditioner to supply power to the electric control components of the air conditioner.
  • the signal terminal of the air conditioner overvoltage detection circuit 10 is respectively connected to the first AC input terminal L and the second AC input terminal N, the rectifier circuit 11 rectifies the AC input from the first AC input terminal L and the second AC input terminal N and outputs the DC power to the resistance divider circuit 12, and the resistance divider circuit 12 divides the DC power Voltage sampling and output voltage sampling signal to the voltage reference chip IC1.
  • the reference electrode voltage of the voltage reference chip IC1 is greater than the internal reference voltage, the voltage reference chip IC1 is turned on, and the optocoupler feedback circuit 13 is controlled to output overvoltage feedback
  • the signal is sent to the processor of the air conditioner or the controller 24 in the power circuit 20 of the air conditioner, and then the power input is cut off accordingly to realize overvoltage protection.
  • This application uses a preset reference voltage inside the voltage reference chip IC1 to achieve voltage detection, and the current value through the resistor divider circuit 12 is small, and the power consumed by the resistor divider circuit 12 is in the milliwatt level, thereby reducing loss and cost.
  • FIG. 2 is a schematic diagram of the circuit structure of an embodiment of an overvoltage detection circuit for an air conditioner according to the present application.
  • the resistor divider circuit 12 includes a first input terminal and a second input terminal
  • the rectifier circuit 11 includes The first diode D1 and the Zener diode D5, the anode of the first diode D1 is connected to the first AC input terminal L, and the cathode of the first diode D1 is connected to the first input terminal of the resistor divider circuit 12,
  • the cathode of the Zener diode D5 is connected to the second AC input terminal NN, and the anode of the Zener diode D5 is connected to the second input terminal of the resistor divider circuit 12.
  • the rectifier circuit 11 includes a first diode D1 and a Zener diode D5.
  • the second diode D2 performs half-wave rectification of the alternating current.
  • the Zener diode D5 is used for voltage stabilization. When the voltage of the alternating current is greater than 30V It has a clamping effect, and compared with the full-bridge rectifier circuit 11, the half-wave rectifier circuit 11 has lower cost and simpler structure.
  • the Zener diode D5 can also reuse the components on the electronic control components of the air conditioner, such as The Zener diode D5 in the current loop communication circuit reduces the design cost.
  • the optocoupler feedback circuit 13 includes an optocoupler U1, a first resistor R1, a second resistor R2, a third resistor R3, a first capacitor C1, a first working voltage V1 input terminal, and a first 2.
  • the cathode of the voltage reference chip IC1 is connected to the cathode of the optocoupler U1
  • the anode of the optocoupler U1 is connected to the first end of the first resistor R1
  • the second end of the first resistor is connected to the input terminal of the first working voltage V1.
  • the optocoupler U1 The emitter of the photocoupler U1, the first end of the second resistor R2, and the first end of the third resistor R3 are interconnected, and the second end of the second resistor R2 is connected to the input end of the second working voltage V2, The first end of the third resistor R3 is connected to the first end of the first capacitor C1, the second end of the first capacitor C1 is grounded, and the connection node is the signal output end of the air conditioner overvoltage detection circuit 10.
  • the second resistor R2 is a pull-up resistor.
  • the alternating current is not overvoltage
  • the anode and cathode of the voltage reference chip IC1 are not conductive
  • the anode and cathode of the optocoupler U1 are not conductive
  • the light emitting diode does not work.
  • the photodiode of the coupling U1 is not conducting, and under the action of the pull-up resistor, the air conditioner overvoltage detection circuit 10 outputs a high level.
  • the voltage reference chip IC1 When the AC is overvoltage, the voltage reference chip IC1 is turned on, the light-emitting diode of the optocoupler U1 works, the photodiode of the optocoupler U1 is turned on, the air conditioner overvoltage detection circuit 10 outputs a low level, and the air conditioner power circuit 20 controls
  • the air conditioner 24 or the processor of the air conditioner can correspondingly control the power switch to be turned on or off according to the high and low level signals, thereby realizing the overvoltage protection of the air conditioner.
  • FIG. 3 is a schematic diagram of modules of an embodiment of an electric control device for an air conditioner according to the present application.
  • This application also proposes an electric control device for an air conditioner.
  • the electric control device for an air conditioner includes a power supply circuit 20 and an air conditioner overvoltage detection.
  • Circuit 10 the power supply circuit 20 includes a rectifier filter circuit 21, a switch circuit 23, a controller 24, and a voltage conversion circuit 22;
  • the first input terminal of the rectifier filter circuit 21 is connected to the first AC input terminal L
  • the second input terminal of the rectifier filter circuit 21 is connected to the second AC input terminal N
  • the positive output terminal of the rectifier filter circuit 21 is connected to the voltage conversion circuit 22
  • the first input terminal is connected
  • the negative terminal of the output terminal of the rectifier filter circuit 21 is connected to the first terminal of the switch circuit 23
  • the second terminal of the switch circuit 23 is connected to the second input terminal of the voltage conversion circuit 22, and the controlled terminal of the switch circuit 23 Connected with the control terminal of the controller 24, the first output terminal of the voltage conversion circuit 22 is connected with the first working voltage V1 output terminal, and the second output terminal of the voltage conversion circuit 22 is connected with the second working voltage V2 output terminal;
  • the rectifier filter circuit 21 is used to rectify and filter the input AC power and output the DC power;
  • the controller 24 is used to output a control signal to control the switching circuit 23 to be turned on or off;
  • the voltage conversion circuit 22 is used to transform the DC power and output working voltages of different voltage levels.
  • the power circuit 20 is used to output DC power to supply power to the electronic control components of the air conditioner.
  • the rectifier circuit 11 includes a rectifier bridge BR1 and a filter capacitor C5.
  • the AC power is rectified into DC power by the rectifier bridge BR1, and the filter capacitor C5 stores the DC power.
  • the voltage conversion circuit 22 transforms the DC power and outputs the first working voltage V1 and the second working voltage V2.
  • the controller 24 can be connected to the processor of the air conditioner, that is, the signal terminal of the processor of the air conditioner is connected to The signal output terminal of the air conditioner overvoltage detection circuit 10 is connected.
  • the processor of the air conditioner When the processor of the air conditioner receives the overvoltage feedback signal, it outputs an overvoltage command to the controller 24, and the controller 24 outputs a control signal corresponding to the overvoltage command to control the switch circuit 23 Turn on or off, the controller 24 can also be directly connected to the controller 24, and correspondingly control the switching circuit 23 to turn on or off according to the overvoltage feedback signal, the controller 24, the processor of the air conditioner, and the overvoltage of the air conditioner
  • the detection circuit can be connected correspondingly, and there is no specific limitation here.
  • the signal output end of the air conditioner overvoltage detection circuit 10 is connected to the signal end of the controller 24.
  • the voltage conversion circuit 22 may adopt a voltage stabilizing circuit or a transformer T1, etc.
  • the switching circuit 23 may adopt a switching device with on-off capability, such as a MOS tube, a triode, etc.
  • the output terminals of the voltage conversion circuit 22 are respectively connected to the optocoupler feedback circuit 13 in the air conditioner overvoltage detection circuit 10 to provide the first working voltage V1 and the second Working voltage V2.
  • FIG. 4 is a schematic diagram of the circuit structure of an embodiment of an electronic control device for an air conditioner according to the present application.
  • the voltage conversion circuit 22 includes a transformer T1, a second diode D2, a third diode D3, and a second capacitor C2. And a third capacitor C3, the transformer T1 includes a primary winding T1-A, a first secondary winding T1-B, and a second secondary winding T1-C;
  • the first terminal of the primary coil T1-A is connected to the positive terminal of the output terminal of the rectifier filter circuit 21, the second terminal of the primary coil T1-A is connected to the first terminal of the switch circuit 23, and the first terminal of the first secondary coil T1-B
  • the terminal is connected to the anode of the second diode D2
  • the cathode of the second diode D2 is connected to the first terminal of the second capacitor C2
  • the connection node is the first output terminal of the voltage conversion circuit 22
  • the second end of T1-B is connected to the second end of the second capacitor C2
  • the first end of the second secondary winding T1-C is connected to the anode of the third diode D3
  • the cathode of the third diode D3 is connected to The first end of the third capacitor C3 is connected
  • the connection node is the second output end of the voltage conversion circuit 22
  • the second end of the second secondary coil T1-C is connected to the second end of the third capacitor C
  • the number of turns of the first secondary coil T1-B and the second secondary coil T1-C are different.
  • the switch circuit 23 is the NMOS transistor Q1.
  • the NMOS transistor Q1 receives the PWM signal output by the controller 24, so that the transformer T1 outputs alternating current and converts the first working voltage V1 and the second working voltage V2.
  • the power supply circuit 20 is reversed Excitation power circuit.
  • the power supply circuit 20 further includes an absorption circuit 25 for absorbing leakage inductance spike voltage spikes, and the absorption circuit 25 includes a fourth resistor R4, a fourth capacitor C4, and a fourth diode D4;
  • the first terminal of the fourth resistor R4, the first terminal of the fourth capacitor C4, and the output terminal of the rectifier filter circuit 21 are interconnected, and the second terminal of the fourth resistor R4, the second terminal of the fourth capacitor C4, and the fourth terminal
  • the cathode of the pole tube D4 is connected, and the anode of the fourth diode D4 is connected to the first end of the switch circuit 23.
  • the primary coil T1-A will produce a short-term leakage inductance spike voltage.
  • the greater the leakage inductance the greater the leakage inductance spike voltage generated. Therefore, an absorption circuit is required. 25 Absorb the leakage inductance spike voltage to avoid the leakage inductance spike voltage from damaging the NMOS tube Q1.
  • the fourth diode D4 is used to release the leakage inductance spike voltage, and the fourth resistor R4 and the fourth capacitor C4 are used for leakage inductance. Absorption of spike voltage.
  • the application also proposes an air conditioner, which includes an indoor unit, an outdoor unit, a current loop communication circuit, and an air conditioner electric control device.
  • the specific structure of the air conditioner electric control device refers to the above-mentioned embodiment, because the air conditioner adopts All the technical solutions of all the foregoing embodiments have at least all the beneficial effects brought about by the technical solutions of the foregoing embodiments, and will not be repeated here.
  • the indoor unit and the outdoor unit communicate through a current loop communication circuit, and the power output end of the air conditioner electric control device 20 is connected to the power end of the processor of the indoor unit.
  • the indoor unit and the outdoor unit communicate through a current loop communication circuit.
  • the electric control component of the indoor unit obtains power from the power circuit 20 of the air conditioner electric control device 20.
  • the power output terminal of the power circuit 20 is also connected to the current
  • the power terminal of the loop communication circuit is connected to provide working power for the current loop communication circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请公开一种空调器过压检测电路、空调器电控装置和空调器,其中,空调器过压检测电路包括第一交流输入端、第二交流输入端、整流电路、电阻分压电路、电压基准芯片和光耦反馈电路组成了空调器过压检测电路,在交流电过压时,电压基准芯片的参考极电压大于内部参考电压,电压基准芯片导通,并控制光耦反馈电路输出过压反馈信号至空调器的处理器或者空调器的电源电路中的控制器,进而对应切断电源输入,实现过压保护。

Description

空调器过压检测电路、空调器电控装置和空调器
相关申请
本申请要求2019年05月05日申请的,申请号为201910374529.2,名称为“空调器过压检测电路、空调器电控装置和空调器”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及空调器技术领域,特别涉及一种空调器过压检测电路、空调器电控装置和空调器。
背景技术
目前空调器中对输入交流电压进行过电压检测的电路中基本采用了专用的过压检测芯片,专用的过压检测芯片价格昂贵,或者采用损耗较大的采样电阻分压采样并输出过压信号至检测芯片的形式,而流经采样电阻的电流过大,导致损耗在采样电阻上的功耗较大。采用专用的过压检测芯片对输入电压进行检测方式成本较高,而采用分压电阻以及检测芯片方式则存在较大损耗。
发明概述
技术问题
问题的解决方案
技术解决方案
本申请的主要目的是提供一种空调器过压检测电路,旨在解决采用专用芯片对输入电压进行检测方式成本较高,采用分压电阻以及检测芯片方式较大损耗的问题。
为实现上述目的,本申请提出的一种空调器过压检测电路,包括:
第一交流输入端、第二交流输入端、整流电路、电阻分压电路、电压基准芯片和光耦反馈电路;
所述整流电路的电源输入端分别与所述第一交流输入端和第二交流输入端连接,所述整流电路的电源输出端与所述电阻分压电路的输入端连接,所述电阻分 压电路的信号输出端与所述电压基准芯片的参考极连接,所述电压基准芯片的阳极接地,所述电压基准芯片的阴极与所述光耦反馈电路的信号输入端连接,所述光耦反馈电路的信号输出端为所述空调器过压检测电路的信号输出端;
所述整流电路,用于将所述第一交流输入端和所述第二交流输入端输入的交流电进行整流并输出直流电至所述电阻分压电路;
所述电阻分压电路,用于对所述直流电进行分压采样,并输出电压采样信号至所述电压基准芯片;
所述电压基准芯片,用于所述电压采样信号的电压值大于参考电压时导通,并输出过压检测信号至所述光耦反馈电路;
所述光耦反馈电路,用于将所述过压检测信号进行信号隔离,并输出。
在一实施例中,所述电阻分压电路包括第一输入端和第二输入端,所述整流电路包括第一二极管和稳压二极管,所述第一二极管的阳极与所述第一交流输入端连接,所述第一二极管的阴极与所述电阻分压电路的第一输入端连接,所述稳压二极管的阴极与所述第二交流输入端连接,所稳压二极管的阳极与所述电阻分压电路的第二输入端连接。
在一实施例中,所述光耦反馈电路包括光耦、第一电阻、第二电阻、第三电阻、第一电容、第一工作电压输入端和第二工作电压输入端;
所述电压基准芯片的阴极与所述光耦的阴极连接,所述光耦的阳极与所述第一电阻的第一端连接,所述第一电阻的第二端与所述第一工作电压输入端连接,所述光耦的发射极接地,所述光耦的集电极、所述第二电阻的第一端及第三电阻的第一端互连,所述第二电阻的第二端与所述第二工作电压输入端连接,所述第三电阻的第一端与所述第一电容的第一端连接,所述第一电容的第二端接地其连接节点为所述空调器过压检测电路的信号输出端。
在一实施例中,所述电压基准芯片的型号为TL431。
本申请还提出一种空调器电控装置,包括电源电路和如上所述的空调器过压检测电路,所述电源电路包括整流滤波电路、开关电路、控制器和电压转换电路;
所述整流滤波电路的第一输入端与所述第一交流输入端连接,所述整流滤波电 路的第二输入端与所述第二交流输入端连接,所述整流滤波电路的输出端正极与所述电压转换电路的第一输入端连接,所述整流滤波电路的输出端负极与所述开关电路的第一端连接,所述开关电路的第二端与所述电压转换电路的第二输入端连接,所述开关电路的受控端与所述控制器的控制端连接,所述电压转换电路的第一输出端与所述第一工作电压输出端连接,所述电压转换电路的第二输出端与所述第二工作电压输出端连接;
所述整流滤波电路,用于将输入的交流电进行整流滤波并输出直流电;
所述控制器,用于输出控制信号控制所述开关电路导通或者关断;
所述电压转换电路,用于将所述直流电进行变压转换,并输出不同电压等级的工作电压。
在一实施例中,所述空调器过压检测电路的信号输出端与所述控制器的信号端连接。
在一实施例中,电压转换电路包括变压器、第二二极管、第三二极管、第二电容和第三电容,所述变压器包括初级线圈、第一次级线圈、第二次级线圈;
所述初级线圈的第一端与所述整流滤波电路的输出端正极连接,所述初级线圈的第二端与所述开关电路的第一端连接,所述第一次级线圈的第一端与所述第二二极管的阳极连接,所述第二二极管的阴极与所述第二电容的第一端连接,其连接节点为所述电压转换电路的第一输出端,第一次级线圈的第二端与所述第二电容的第二端连接,所述第二次级线圈的第一端与所述第三二极管的阳极连接,所述第三二极管的阴极与所述第三电容的第一端连接,其连接节点为所述电压转换电路的第二输出端,所述第二次级线圈的第二端与所述第三电容的第二端连接且接地。
在一实施例中,所述开关电路为NMOS管。
在一实施例中,所述电源电路还包括用于吸收漏感尖峰电压的吸收电路,所述吸收电路包括第四电阻、第四电容和第四二极管;所述第四电阻的第一端、所述第四电容的第一端及所述整流滤波电路的输出端正极互连,所述第四电阻的第二端、所述第四电容的第二端及第四二极管的阴极连接,所述第四二极管的阳极与所述开关电路的第一端连接。
本申请还提出一种空调器,包括室内机、室外机、电流环通信电路和如上所述的空调器电控装置,所述室内机和所述室外机通过电流环通信电路通信,所述空调器电控装置的电源输出端与所述室内机的处理器的电源端连接。
本申请技术方案通过采用第一交流输入端、第二交流输入端、整流电路、电阻分压电路、电压基准芯片和光耦反馈电路组成了空调器过压检测电路,第一交流输入端和第二交流输入端用于输入交流电至空调器的电源电路,以为空调器的电控组件供电,空调器过压检测电路的信号端分别与第一交流输入端和第二交流输入端,整流电路将第一交流输入端和第二交流输入端输入的交流电进行整流并输出直流电至电阻分压电路,电阻分压电路对直流电进行分压采样并输出电压采样信号至电压基准芯片,在交流电过压时,电压基准芯片的参考极电压大于内部参考电压,电压基准芯片导通,并控制光耦反馈电路输出过压反馈信号至空调器的处理器或者空调器的电源电路中的控制器,进而对应切断电源输入,实现过压保护。本申请采用电压基准芯片内部预设参考电压实现电压检测,通过电阻分压电路的电流值较小,电阻分压电路所损耗的功率为毫瓦级,从而降低损耗以及成本。
发明的有益效果
对附图的简要说明
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请空调器过压检测电路一实施例的模块示意图;
图2为本申请空调器过压检测电路一实施例的电路结构示意图;
图3为本申请空调器电控装置一实施例的模块示意图;
图4为本申请空调器电控装置一实施例的电路结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请空调器过压检测电路一实施例的模块示意图;
图2为本申请空调器过压检测电路一实施例的电路结构示意图;
图3为本申请空调器电控装置一实施例的模块示意图;
图4为本申请空调器电控装置一实施例的电路结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
发明实施例
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。需要说明,在本申请中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
本申请提出一种空调器过压检测电路10。
如图1所示,图1为本申请空调器过压检测电路一实施例的模块示意图,空调器过压检测电路10包括:
第一交流输入端L、第二交流输入端N、整流电路11、电阻分压电路12、电压基准芯片IC1和光耦反馈电路13;
整流电路11的电源输入端分别与第一交流输入端L和第二交流输入端N连接,整流电路11的电源输出端与电阻分压电路12的输入端连接,电阻分压电路12的信号输出端与电压基准芯片IC1的参考极连接,电压基准芯片IC1的阳极接地,电压基准芯片IC1的阴极与光耦反馈电路13的信号输入端连接,光耦反馈电路13的信号输出端为空调器过压检测电路10的信号输出端;
整流电路11,用于将第一交流输入端L和第二交流输入端N输入的交流电进行整流并输出直流电至电阻分压电路12;
电阻分压电路12,用于对直流电进行分压采样,并输出电压采样信号至电压基准芯片IC1;
电压基准芯片IC1,用于电压采样信号的电压值大于参考电压时导通,并输出过压检测信号至光耦反馈电路13;
光耦反馈电路13,用于将过压检测信号进行信号隔离,并输出。
本实施例中,第一交流输入端L和第二交流输入端N与整流电路11连接的同时,还对应于空调器的电源电路20的电源输入端连接,电源电路20用于为空调器电控组件提供工作电源。
整流电路11可为半波整流电路11或者全桥整流电路11,具体可根据实际选择。
电阻分压电路12用于对整流电路11输出的直流电进行分压,本实施例中,电阻分压电路12包括上偏分压电阻R5和下偏分压电阻R6,上偏分压电阻R5的一端与整流电路11的一输出端连接,下偏分压电阻R6的一端与整流电路11另一输出端连接,上偏分压电阻R5另一端和下偏分压电阻R6的另一端的连接节点为电阻分压电路12的信号输出端。
电压基准芯片IC1的型号可以根据需求进行对应选择,本实施例中,电压基准芯片IC1的选择为TL431,电压基准芯片IC1的参考极的参考电压为2.5V,通过设置上偏分压电阻R5和下偏分压电阻R6的阻值,在交流电过压时,电压基准芯片IC1的参考极电压为2.5V,电压基准芯片IC1的阴极和阳极导通,并输出过压检测信号至光耦反馈电路13,光耦反馈电路13进行信号隔离工作,并输出过压反馈信号,电压基准芯片IC1的型号可以根据需求进行对应选择。
同时由于电压基准芯片IC1的参考极和阳极之间的检测电流可以达到10uA,故电阻分压电路12的上偏分压电阻R5和下偏分压电阻R6可宜采用10M欧姆以上的电阻,可以理解的是,电器在交流电压90V-264V范围内可以安全可靠地工作,超过264V即为过压,因此,在交流电的电压值为265V时,损耗在上偏分压电阻R5和下偏分压电阻R6的功率P=U*I=265V*10uA=2.75mW,损耗功率小。
空调器过压检测电路10可以与空调器的电控组件设置在相同或者不同的电路板上,具体可对应设置,不做具体限制。
本申请技术方案通过采用第一交流输入端L、第二交流输入端N、整流电路11 、电阻分压电路12、电压基准芯片IC1和光耦反馈电路13组成了空调器过压检测电路10,第一交流输入端L和第二交流输入端N用于输入交流电至空调器的电源电路20,以为空调器的电控组件供电,空调器过压检测电路10的信号端分别与第一交流输入端L和第二交流输入端N,整流电路11将第一交流输入端L和第二交流输入端N输入的交流电进行整流并输出直流电至电阻分压电路12,电阻分压电路12对直流电进行分压采样并输出电压采样信号至电压基准芯片IC1,在交流电过压时,电压基准芯片IC1的参考极电压大于内部参考电压,电压基准芯片IC1导通,并控制光耦反馈电路13输出过压反馈信号至空调器的处理器或者空调器的电源电路20中的控制器24,进而对应切断电源输入,实现过压保护。本申请采用电压基准芯片IC1内部预设参考电压实现电压检测,通过电阻分压电路12的电流值较小,电阻分压电路12所损耗的功率为毫瓦级,从而降低损耗以及成本。
如图2所示,图2为本申请空调器过压检测电路一实施例的电路结构示意图,本实施例中,电阻分压电路12包括第一输入端和第二输入端,整流电路11包括第一二极管D1和稳压二极管D5,第一二极管D1的阳极与第一交流输入端L连接,第一二极管D1的阴极与电阻分压电路12的第一输入端连接,稳压二极管D5的阴极与第二交流输入端NN连接,所稳压二极管D5的阳极与电阻分压电路12的第二输入端连接。
本实施例中,整流电路11包括第一二极管D1和稳压二极管D5,第二二极管D2对交流电进行半波整流,稳压二极管D5用于稳压,当交流电的电压大于30V时起到钳压作用,且半波整流电路11相比较全桥整流电路11而言,成本更低,结构更简单,稳压二极管D5还可复用空调器的电控组件上的元器件,例如电流环通信电路中的稳压二极管D5,从而降低设计成本。
请继续参阅图2,本实施例中,光耦反馈电路13包括光耦U1、第一电阻R1、第二电阻R2、第三电阻R3、第一电容C1、第一工作电压V1输入端和第二工作电压V2输入端;
电压基准芯片IC1的阴极与光耦U1的阴极连接,光耦U1的阳极与第一电阻R1的第一端连接,第一电阻的第二端和第一工作电压V1输入端连接,光耦U1的发射 极接地,光耦U1的集电极、第二电阻R2的第一端及第三电阻R3的第一端互连,第二电阻R2的第二端与第二工作电压V2输入端连接,第三电阻R3的第一端与第一电容C1的第一端连接,第一电容C1的第二端接地,其连接节点为空调器过压检测电路10的信号输出端。
本实施例中,第二电阻R2为上拉电阻,当交流电未过压时,电压基准芯片IC1的阳极和阴极未导通,光耦U1的阳极和阴极不导通,发光二极管不工作,光耦U1的光敏二极管不导通,在上拉电阻的作用下,空调器过压检测电路10输出高电平。
在交流电过压时,电压基准芯片IC1导通,光耦U1的发光二极管工作,光耦U1的光敏二极管导通,空调器过压检测电路10输出低电平,空调器的电源电路20的控制器24或者空调器的处理器根据高低电平信号可对应控制电源开关导通或者关断,从而实现空调器的过压保护。
如图3所示,图3为本申请空调器电控装置一实施例的模块示意图,本申请还提出一种空调器电控装置,空调器电控装置包括电源电路20和空调器过压检测电路10,电源电路20包括整流滤波电路21、开关电路23、控制器24和电压转换电路22;
整流滤波电路21的第一输入端与第一交流输入端L连接,整流滤波电路21的第二输入端与第二交流输入端N连接,整流滤波电路21的输出端正极与电压转换电路22的第一输入端连接,整流滤波电路21的输出端负极与开关电路23的第一端连接,开关电路23的第二端与电压转换电路22的第二输入端连接,开关电路23的受控端与控制器24的控制端连接,电压转换电路22的第一输出端与第一工作电压V1输出端连接,电压转换电路22的第二输出端与第二工作电压V2输出端连接;
整流滤波电路21,用于将输入的交流电进行整流滤波并输出直流电;
控制器24,用于输出控制信号控制开关电路23导通或者关断;
电压转换电路22,用于将直流电进行变压转换,并输出不同电压等级的工作电压。
本实施例中,电源电路20用于输出直流电源为空调器的电控组件供电,整流电 路11包括整流桥BR1和滤波电容C5,交流电经整流桥BR1整流为直流电,滤波电容C5对直流电进行储能和滤波,电压转换电路22将直流电进行变压,并输出第一工作电压V1和第二工作电压V2,控制器24可与空调器的处理器连接,即空调器的处理器的信号端与空调器过压检测电路10的信号输出端连接,空调器的处理器接收到过压反馈信号时,输出过压指令至控制器24,控制器24根据过压指令对应输出控制信号控制开关电路23导通或者关断,控制器24还可直接与控制器24连接,并根据过压反馈信号对应控制开关电路23导通或者关断,控制器24、空调器的处理器以及空调器的过压检测电路可对应连接,在此不做具体限制,在一实施例中,空调器过压检测电路10的信号输出端与控制器24的信号端连接。
电压转换电路22可采用稳压电路或者变压器T1等,对应地,开关电路23可采用具有通断能力的开关器件,例如MOS管、三极管等。
为了减少空调器电控装置20的成本和降低设计难度,电压转换电路22的输出端分别与空调器过压检测电路10中的光耦反馈电路13连接,以提供第一工作电压V1和第二工作电压V2。
如图4所示,图4为本申请空调器电控装置一实施例的电路结构示意图,电压转换电路22包括变压器T1、第二二极管D2、第三二极管D3、第二电容C2和第三电容C3,变压器T1包括初级线圈T1-A、第一次级线圈T1-B、第二次级线圈T1-C;
初级线圈T1-A的第一端与整流滤波电路21的输出端正极连接,初级线圈T1-A的第二端与开关电路23的第一端连接,第一次级线圈T1-B的第一端与第二二极管D2的阳极连接,第二二极管D2的阴极与第二电容C2的第一端连接,其连接节点为电压转换电路22的第一输出端,第一次级线圈T1-B的第二端与第二电容C2的第二端连接,第二次级线圈T1-C的第一端与第三二极管D3的阳极连接,第三二极管D3的阴极与第三电容C3的第一端连接,其连接节点为电压转换电路22的第二输出端,第二次级线圈T1-C的第二端与第三电容C3的第二端连接且接地。
本实施例中,第一次级线圈T1-B和第二次级线圈T1-C的圈数不同,在开关电路23的开关作用下,将初级高压转换为第一交流电压和第二交流电压,并在第二二极管D2、第三二极管D3、第二电容C2和第三电容C3的整流滤波作用下,输出 第一工作电压V1和第二工作电压V2,第一工作电压V1和第二工作电压V2用于输出至空调器的电控组件和电流环通信电路以提供工作电压,同时为空调器过压检测电路10的光耦反馈电路13提供工作电压,对应地,开关电路23为NMOS管Q1,NMOS管Q1接收控制器24输出的PWM信号,从而使变压器T1输出交流电,并转换出第一工作电压V1和第二工作电压V2,本实施例中,电源电路20为反激式电源电路。
请继续参阅图4,本实施例中,电源电路20还包括用于吸收漏感尖峰电压尖峰的吸收电路25,吸收电路25包括第四电阻R4、第四电容C4和第四二极管D4;第四电阻R4的第一端、第四电容C4的第一端及整流滤波电路21的输出端正极互连,第四电阻R4的第二端、第四电容C4的第二端及第四二极管D4的阴极连接,第四二极管D4的阳极与开关电路23的第一端连接。
可以理解的是,在NMOS管Q1关断时,初级线圈T1-A会产生短时的漏感尖峰电压,漏感愈大,产生的漏感尖峰电压也就越大,因此,需要设置吸收电路25对漏感尖峰电压进行吸收,以避免漏感尖峰电压对NMOS管Q1造成损坏,第四二极管D4用于漏感尖峰电压的释放,第四电阻R4和第四电容C4用于漏感尖峰电压的吸收。
本申请还提出一种空调器,该空调器包括室内机、室外机、电流环通信电路和空调器电控装置,该空调器电控装置的具体结构参照上述实施例,由于本空调器采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,室内机和室外机通过电流环通信电路通信,空调器电控装置20的电源输出端与室内机的处理器的电源端连接。
本实施例中,室内机和室外机通过电流环通信电路进行通信,室内机的电控组件从空调器电控装置20的电源电路20获取电源,此外,电源电路20的电源输出端还与电流环通信电路的电源端连接,以为电流环通信电路提供工作电源。

Claims (15)

  1. 一种空调器过压检测电路,其中,包括:
    第一交流输入端、第二交流输入端、整流电路、电阻分压电路、电压基准芯片和光耦反馈电路;
    所述整流电路的电源输入端分别与所述第一交流输入端和第二交流输入端连接,所述整流电路的电源输出端与所述电阻分压电路的输入端连接,所述电阻分压电路的信号输出端与所述电压基准芯片的参考极连接,所述电压基准芯片的阳极接地,所述电压基准芯片的阴极与所述光耦反馈电路的信号输入端连接,所述光耦反馈电路的信号输出端为所述空调器过压检测电路的信号输出端;
    所述整流电路,用于将所述第一交流输入端和所述第二交流输入端输入的交流电进行整流并输出直流电至所述电阻分压电路;
    所述电阻分压电路,用于对所述直流电进行分压采样,并输出电压采样信号至所述电压基准芯片;
    所述电压基准芯片,用于所述电压采样信号的电压值大于参考电压时导通,并输出过压检测信号至所述光耦反馈电路;
    所述光耦反馈电路,用于将所述过压检测信号进行信号隔离,并输出。
  2. 如权利要求1所述的空调器过压检测电路,其中,所述电阻分压电路包括第一输入端和第二输入端,所述整流电路包括第一二极管和稳压二极管,所述第一二极管的阳极与所述第一交流输入端连接,所述第一二极管的阴极与所述电阻分压电路的第一输入端连接,所述稳压二极管的阴极与所述第二交流输入端连接,所稳压二极管的阳极与所述电阻分压电路的第二输入端连接。
  3. 如权利要求1所述的空调器过压检测电路,其中,所述光耦反馈电路包括光耦、第一电阻、第二电阻、第三电阻、第一电容、第一工作电压输入端和第二工作电压输入端;
    所述电压基准芯片的阴极与所述光耦的阴极连接,所述光耦的阳极与所述第一电阻的第一端连接,所述第一电阻的第二端与所述第一工作电压输入端连接,所述光耦的发射极接地,所述光耦的集电极、所述第二电阻的第一端及第三电阻的第一端互连,所述第二电阻的第二端与所述第二工作电压输入端连接,所述第三电阻的第一端与所述第一电容的第一端连接,所述第一电容的第二端接地其连接节点为所述空调器过压检测电路的信号输出端。
  4. 如权利要求1所述的空调器过压检测电路,其中,所述第二电阻为上拉电阻。
  5. 如权利要求1所述的空调器过压检测电路,其中,所述电压基准芯片的型号为TL431。
  6. 一种空调器电控装置,其中,包括电源电路和如权利要求1中所述的空调器过压检测电路,所述电源电路包括整流滤波电路、开关电路、控制器和电压转换电路;
    所述整流滤波电路的第一输入端与所述第一交流输入端连接,所述整流滤波电路的第二输入端与所述第二交流输入端连接,所述整流滤波电路的输出端正极与所述电压转换电路的第一输入端连接,所述整流滤波电路的输出端负极与所述开关电路的第一端连接,所述开关电路的第二端与所述电压转换电路的第二输入端连接,所述开关电路的受控端与所述控制器的控制端连接,所述电压转换电路的第一输出端与所述第一工作电压输出端连接,所述电压转换电路的第二输出端与所述第二工作电压输出端连接;
    所述整流滤波电路,用于将输入的交流电进行整流滤波并输出直流电;
    所述控制器,用于输出控制信号控制所述开关电路导通或者关断;
    所述电压转换电路,用于将所述直流电进行变压转换,并输出不同电压等级的工作电压。
  7. 如权利要求6所述的空调器电控装置,其中,所述电阻分压电路包括第一输入端和第二输入端,所述整流电路包括第一二极管和稳压二极管,所述第一二极管的阳极与所述第一交流输入端连接,所述第一二极管的阴极与所述电阻分压电路的第一输入端连接,所述稳压二极管的阴极与所述第二交流输入端连接,所稳压二极管的阳极与所述电阻分压电路的第二输入端连接。
  8. 如权利要求6所述的空调器电控装置,其中,所述光耦反馈电路包括光耦、第一电阻、第二电阻、第三电阻、第一电容、第一工作电压输入端和第二工作电压输入端;
    所述电压基准芯片的阴极与所述光耦的阴极连接,所述光耦的阳极与所述第一电阻的第一端连接,所述第一电阻的第二端与所述第一工作电压输入端连接,所述光耦的发射极接地,所述光耦的集电极、所述第二电阻的第一端及第三电阻的第一端互连,所述第二电阻的第二端与所述第二工作电压输入端连接,所述第三电阻的第一端与所述第一电容的第一端连接,所述第一电容的第二端接地其连接节点为所述空调器过压检测电路的信号输出端。
  9. 如权利要求6所述的空调器电控装置,其中,所述空调器过压检测电路的信号输出端与所述控制器的信号端连接。
  10. 如权利要求6所述的空调器电控装置,其中,所述电压转换电路包括变压器、第二二极管、第三二极管、第二电容和第三电容,所述变压器包括初级线圈、第一次级线圈、第二次级线圈;
    所述初级线圈的第一端与所述整流滤波电路的输出端正极连接,所述初级线圈的第二端与所述开关电路的第一端连接,所述第一次级线圈的第一端与所述第二二极管的阳极连接,所述第二二极管的阴极与所述第二电容的第一端连接,其连接节点为所述电压转换电路的第一输出端,第一次级线圈的第二端与所述第二电容的第二端连接,所述第二次级线圈的第一端与所述第三二极管的阳极连接,所述第三二极管的阴极与所述第三电容的第一端连接 ,其连接节点为所述电压转换电路的第二输出端,所述第二次级线圈的第二端与所述第三电容的第二端连接且接地。
  11. 如权利要求10所述的空调器电控装置,其中,所述开关电路为NMOS管。
  12. 如权利要求11所述的空调器电控装置,其中,所述电源电路还包括用于吸收漏感尖峰电压的吸收电路,所述吸收电路包括第四电阻、第四电容和第四二极管;所述第四电阻的第一端、所述第四电容的第一端及所述整流滤波电路的输出端正极互连,所述第四电阻的第二端、所述第四电容的第二端及第四二极管的阴极连接,所述第四二极管的阳极与所述开关电路的第一端连接。
  13. 一种空调器,其中,包括室内机、室外机、电流环通信电路和如权利要求6中所述的空调器电控装置,所述室内机和所述室外机通过电流环通信电路通信,所述空调器电控装置的电源输出端与所述室内机的处理器的电源端连接。
  14. 如权利要求13所述的空调器,其中,所述空调器过压检测电路的信号输出端与所述空调器电控装置的控制器的信号端连接。
  15. 如权利要求13所述的空调器,其中,空调器过压检测电路的电阻分压电路包括第一输入端和第二输入端,所述整流电路包括第一二极管和稳压二极管,所述第一二极管的阳极与所述第一交流输入端连接,所述第一二极管的阴极与所述电阻分压电路的第一输入端连接,所述稳压二极管的阴极与所述第二交流输入端连接,所稳压二极管的阳极与所述电阻分压电路的第二输入端连接。
PCT/CN2020/073235 2019-05-05 2020-01-20 空调器过压检测电路、空调器电控装置和空调器 WO2020224303A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910374529.2 2019-05-05
CN201910374529.2A CN110165630A (zh) 2019-05-05 2019-05-05 空调器过压检测电路、空调器电控装置和空调器

Publications (1)

Publication Number Publication Date
WO2020224303A1 true WO2020224303A1 (zh) 2020-11-12

Family

ID=67633400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073235 WO2020224303A1 (zh) 2019-05-05 2020-01-20 空调器过压检测电路、空调器电控装置和空调器

Country Status (2)

Country Link
CN (1) CN110165630A (zh)
WO (1) WO2020224303A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022214186A1 (en) * 2021-04-08 2022-10-13 Electrolux Appliances Aktiebolag Household appliance and operating method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165630A (zh) * 2019-05-05 2019-08-23 广东美的制冷设备有限公司 空调器过压检测电路、空调器电控装置和空调器
CN110173845B (zh) * 2019-05-10 2021-10-26 广东美的制冷设备有限公司 空调器及空调器的通信控制方法、装置
CN110445366A (zh) * 2019-08-26 2019-11-12 广东美的制冷设备有限公司 多路交错式pfc电路和空调器
CN113193792B (zh) * 2021-06-28 2021-09-10 江苏东成工具科技有限公司 一种输入电压控制方法
CN117805474A (zh) * 2024-03-01 2024-04-02 珠海泰坦科技股份有限公司 一种无源的直流过电压隔离检测电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651544A (zh) * 2012-03-27 2012-08-29 深圳市朗科电器有限公司 场效应管过电压保护方法
CN204615684U (zh) * 2015-05-15 2015-09-02 广东美的暖通设备有限公司 三相交流输入的电源模块和空调器
US20170212399A1 (en) * 2013-06-16 2017-07-27 Tang System W5RS: Anlinx & Milinx & Zilinx for Green Energy Smart Window
CN107492355A (zh) * 2017-08-07 2017-12-19 深圳市华星光电技术有限公司 一种驱动电路及电源
CN110165630A (zh) * 2019-05-05 2019-08-23 广东美的制冷设备有限公司 空调器过压检测电路、空调器电控装置和空调器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202978235U (zh) * 2012-11-30 2013-06-05 东莞市盈聚电子有限公司 一种用于开关电源的高精度过压保护电路
DE102014116734A1 (de) * 2014-11-17 2016-05-19 Eaton Electrical Ip Gmbh & Co. Kg Schaltung zum Schutz vor Überspannungen
CN205489447U (zh) * 2016-01-26 2016-08-17 成都赛林科技有限公司 一种模块化电源输出过压保护装置
CN209327439U (zh) * 2018-10-31 2019-08-30 广东美的制冷设备有限公司 空调器的过压检测电路及空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651544A (zh) * 2012-03-27 2012-08-29 深圳市朗科电器有限公司 场效应管过电压保护方法
US20170212399A1 (en) * 2013-06-16 2017-07-27 Tang System W5RS: Anlinx & Milinx & Zilinx for Green Energy Smart Window
CN204615684U (zh) * 2015-05-15 2015-09-02 广东美的暖通设备有限公司 三相交流输入的电源模块和空调器
CN107492355A (zh) * 2017-08-07 2017-12-19 深圳市华星光电技术有限公司 一种驱动电路及电源
CN110165630A (zh) * 2019-05-05 2019-08-23 广东美的制冷设备有限公司 空调器过压检测电路、空调器电控装置和空调器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022214186A1 (en) * 2021-04-08 2022-10-13 Electrolux Appliances Aktiebolag Household appliance and operating method thereof

Also Published As

Publication number Publication date
CN110165630A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2020224303A1 (zh) 空调器过压检测电路、空调器电控装置和空调器
US7525259B2 (en) Primary side regulated power supply system with constant current output
WO2016028942A1 (en) Driving circuit, lighting device and method of reducing power dissipation
WO2017152456A1 (zh) 交流转直流电源输出系统
US10044285B1 (en) Alternating current conversion circuit
US10602580B2 (en) Constant voltage dimming power supply and dimming system for lighting device
JP2014090625A (ja) スイッチング電源装置
CN106921303B (zh) 一种开关电源变压器
CN207218539U (zh) 一种双管正激式恒流电源
JP2011010397A (ja) コンバータ
WO2017031919A1 (zh) 发光二极管调光驱动电路
WO2018024037A1 (zh) 一种直接滤波式开关电源
WO2023207442A1 (zh) 一种电源电路及电源适配器
TWI652967B (zh) 無頻閃發光二極體驅動裝置及線性穩壓方法
CN203504839U (zh) 一种采用初级检测和调控的led灯驱动电源
CN209930150U (zh) 温控腰带的电源电路
CN203339979U (zh) 一种应用于医疗液晶显示器的开关电源电路
KR101382419B1 (ko) 직류전원 발생장치 및 발생 방법
CN111432523A (zh) 输入电压随输出电压变化的buck恒流控制电路及电源
CN107819399B (zh) 过电压保护电路
CN215378777U (zh) 开关电源电路及应用该电路的开关电源系统
CN216905392U (zh) 一种无频闪调光电路及装置
CN214959316U (zh) 开关电源电路及电源装置
CN217846447U (zh) Ac电压过零检测电路和控制芯片
CN215186489U (zh) 开关电源电路以及多级输出开关电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20801913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20801913

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 19.04.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20801913

Country of ref document: EP

Kind code of ref document: A1