WO2022121267A1 - 一种燃气轮机故障监控系统及方法 - Google Patents

一种燃气轮机故障监控系统及方法 Download PDF

Info

Publication number
WO2022121267A1
WO2022121267A1 PCT/CN2021/099970 CN2021099970W WO2022121267A1 WO 2022121267 A1 WO2022121267 A1 WO 2022121267A1 CN 2021099970 W CN2021099970 W CN 2021099970W WO 2022121267 A1 WO2022121267 A1 WO 2022121267A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
gas turbine
speed
temperature
module
Prior art date
Application number
PCT/CN2021/099970
Other languages
English (en)
French (fr)
Inventor
袁奇俊
马吉星
靳普
Original Assignee
至玥腾风科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技集团有限公司 filed Critical 至玥腾风科技集团有限公司
Publication of WO2022121267A1 publication Critical patent/WO2022121267A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/30Control of fuel supply characterised by variable fuel pump output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/05Testing internal-combustion engines by combined monitoring of two or more different engine parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the invention relates to a gas turbine fault monitoring system and method, belonging to the technical field of gas turbines.
  • Micro gas turbines are more and more widely used in the energy field. As the core components of distributed power, cogeneration and other systems, they need to run stably for a long time without supervision. Therefore, it is of great significance to effectively identify various faults during the operation of the micro gas turbine and make different responses to different fault levels and types, so as to ensure the operation safety of the system and the personal safety of operators.
  • Chinese invention patent application CN 104481702A discloses a method for monitoring the operating state of a micro gas turbine, and monitoring the real-time operating state of the micro gas turbine is completed through monitoring software. It does not involve the classification of failure levels and the system performs different operations in response to different failure levels of gas turbines.
  • the present invention provides a gas turbine fault monitoring system and method.
  • the monitoring system and method of the present invention can set different failure shutdown procedures and cooling temperatures, so the time required for shutdown is also different, so that the micro gas turbine can be utilized more efficiently.
  • a gas turbine fault monitoring system comprising: a detection module, a fault level determination module, a control module and a fault response execution module; wherein,
  • Detection module detects the parameters of the gas turbine (such as temperature, pressure, speed, etc.) and/or communication signals (such as the signal that the emergency stop button is pressed), and sends the detected data and/or communication signals to the failure level determination module;
  • Fault level determination module determine the fault level based on the detection data and/or communication signal of the detection module, and send the fault level data and/or signal to the control module;
  • Control module determine the fault level data and/or signals of the module based on the fault level, generate control signals and/or fault-related warning information, and send the control signals to the fault response execution module;
  • Fault corresponding execution module Based on the control signal of the control module, the corresponding operation is performed.
  • the failure level determination module determines the failure level as L0, L1, L2, L3, L4 or L5:
  • L0 The data of the detection module is in the normal range, the system is in a normal state, there is no fault information, and the fault level is L0;
  • the system does not need to perform fault handling operations; at this time, if the system is in the standby state, it can enter the normal startup operation state according to the user's needs, and if the system is already in the startup state, the system can continue to run.
  • L1 When one or more of the following conditions occur, it is determined that a fault exists and the fault level is L1:
  • Ignition failure After ignition, the exhaust gas temperature of the combustion engine does not rise to a certain temperature value within a given time;
  • Oil cutting failure During the oil cutting process of the gas turbine, the exhaust gas temperature of the gas turbine did not rise to a certain temperature value;
  • the gas turbine can still enter the startup state or maintain the running state.
  • the system can still ensure the stable operation of the entire system through the feedback of the other temperature sensor; if the system communicates and operates normally, the system will record Download the fault information so that it can be repaired after the operation is completed.
  • L2 When one or more of the following conditions occur, the system has a general gas turbine control error during operation, and the gas turbine failure level is determined to be L2:
  • the exhaust gas temperature of the gas turbine is too high (such as more than 700degC) and the duration is too long (such as more than 10 seconds);
  • Unstable rotational speed At the stable operating point, the gas turbine rotational speed is lower than the target operating speed minus a certain threshold (such as 5,000 rpm lower than the target operating speed), or higher than the target operating speed plus a certain threshold (such as exceeding the target operating speed) target operating speed 2,500rpm);
  • a certain threshold such as 5,000 rpm lower than the target operating speed
  • a certain threshold such as exceeding the target operating speed
  • the temperature of the box is too high: the temperature of the cold end of the gas box is too high (such as more than 50degC) or the temperature of the hot end is too high (such as more than 80degC);
  • L3 When one or more of the following conditions occur, the system has a serious error in gas turbine control during operation, and the failure level of the gas turbine is determined to be L3:
  • the exhaust gas temperature of the gas turbine is too high (for example, over 750degC) (compared with L2 step 1, the exhaust gas temperature of the gas turbine is too high, but the upper limit of the temperature is different);
  • the failure level determination module receives the signal that the emergency stop button is pressed, or the signal that the combustible gas leaks, or the signal that there is an open flame in the gas box body, then the system failure level is determined to be L4. In this state, the cold shutdown and hot shutdown procedures will be disabled.
  • L5 It is the highest level fault of the system, and the system is in a failed state. Usually the system communication and operation functions cannot work normally in this state, such as the system CPU failure.
  • the control module based on the fault level, generates the following control signals:
  • the fault response execution module based on the control signal, performs corresponding operations:
  • the oil pump periodically reduces the fuel output based on the control voltage signal of the control module; other related valves are closed based on the control module to generate a control close signal; when the speed of the gas turbine drops to a certain speed, the motor starts based on the motor generated by the control module The signal works to cool the gas turbine.
  • the fuel pump periodically and greatly reduces the fuel output based on the control voltage signal of the control module until the output control voltage of the fuel pump is 0.
  • the motor works based on the motor start signal generated by the control module. Machine for cooling for a certain period of time (eg 15 minutes).
  • Execute thermal shutdown process 1 The control module directly sets the output control voltage of the oil pump to 0, the oil pump stops outputting fuel, and the oil circuit solenoid valve and the corresponding valve are closed.
  • Execute thermal shutdown process 2 The control module directly sets the output control voltage of the oil pump to 0, the oil pump stops outputting fuel, and the oil circuit solenoid valve and corresponding valves are closed; at the same time, all power supplies of the system are cut off and all contactors are disconnected.
  • the gas turbine fault monitoring system further includes a fault prompt module; the fault prompt module receives and displays fault-related warning information generated by the control module (including the fault level, the specific components that may have faults, and the method for handling the fault) , for example: when the fault level is determined to be L1, the control module generates a fault-related warning message, indicating that the current fault level of the system is L1, the specific components that may be faulty (such as one of the temperature sensors), and the Check the steps.
  • the control module including the fault level, the specific components that may have faults, and the method for handling the fault
  • the control module generates a fault-related warning message, indicating that the current fault level of the system is L1, the specific components that may be faulty (such as one of the temperature sensors), and the Check the steps.
  • the detection module includes a temperature sensor, a speed sensor, a pressure sensor, etc.; there are at least two temperature sensors installed at the rear end of the gas turbine turbine.
  • the fault response execution module includes a starter motor, a fuel flow control solenoid valve, a fuel pump, and the like.
  • a gas turbine fault monitoring method comprising the following steps:
  • Detection detection of gas turbine parameters (such as temperature, pressure, speed, etc.) and/or communication signals (such as the signal that the emergency stop button is pressed);
  • the failure level is determined as L0, L1, L2, L3, L4 or L5:
  • L0 The data of the detection module is in the normal range, the system is in a normal state, there is no fault information, and the fault level is L0;
  • the system does not need to perform fault handling operations; at this time, if the system is in the standby state, it can enter the normal startup operation state according to the user's needs, and if the system is already in the startup state, the system can continue to run.
  • L1 When one or more of the following conditions occur, it is determined that a fault exists and the fault level is L1:
  • Ignition failure After ignition, the exhaust gas temperature of the combustion engine does not rise to a certain temperature value within a given time;
  • Oil cutting failure During the oil cutting process of the gas turbine, the exhaust gas temperature of the gas turbine did not rise to a certain temperature value;
  • the gas turbine can still enter the startup state or maintain the running state.
  • the system can still ensure the stable operation of the entire system through the feedback of the other temperature sensor; if the system communicates and operates normally, the system will record Download the fault information so that it can be repaired after the operation is completed.
  • L2 When one or more of the following conditions occur, the system has a general gas turbine control error during operation, and the gas turbine failure level is determined to be L2:
  • the exhaust gas temperature of the gas turbine is too high (such as more than 700degC) and the duration is too long (such as more than 10 seconds);
  • Unstable rotational speed At the stable operating point, the gas turbine rotational speed is lower than the target operating speed minus a certain threshold (such as 5,000 rpm lower than the target operating speed), or higher than the target operating speed plus a certain threshold (such as exceeding the target operating speed) target operating speed 2,500rpm);
  • a certain threshold such as 5,000 rpm lower than the target operating speed
  • a certain threshold such as exceeding the target operating speed
  • the temperature of the box is too high: the temperature of the cold end of the gas box is too high (such as more than 50degC) or the temperature of the hot end is too high (such as more than 80degC);
  • L3 When one or more of the following conditions occur, the system has a serious error in gas turbine control during operation, and the gas turbine failure level is determined to be L3:
  • the exhaust gas temperature of the gas turbine is too high (such as over 750degC);
  • the failure level determination module receives the signal that the emergency stop button is pressed, or the signal that the combustible gas leaks, or the signal that there is an open flame in the gas box body, then the system failure level is determined to be L4. In this state, the cold shutdown and hot shutdown procedures will be disabled.
  • L5 It is the highest level fault of the system, and the system is in a failed state. Usually the system communication and operation functions cannot work normally in this state, such as the system CPU failure.
  • step (3) based on the fault level, the following control signals are generated:
  • step (4) based on the control signal, the following corresponding operations are performed:
  • the oil pump periodically reduces the fuel output based on the control voltage signal of the control module; other related valves are closed based on the control module to generate a control close signal; when the speed of the gas turbine drops to a certain speed, the motor starts based on the motor generated by the control module The signal works to cool the gas turbine.
  • the fuel pump periodically and greatly reduces the fuel output based on the control voltage signal of the control module until the output control voltage of the fuel pump is 0.
  • the motor works based on the motor start signal generated by the control module. Machine for cooling for a certain period of time (eg 15 minutes).
  • Execute thermal shutdown process 1 The control module directly sets the output control voltage of the oil pump to 0, the oil pump stops outputting fuel, and the oil circuit solenoid valve and the corresponding valve are closed.
  • Execute thermal shutdown process 2 The control module directly sets the output control voltage of the oil pump to 0, the oil pump stops outputting fuel, and the oil circuit solenoid valve and corresponding valves are closed; at the same time, all power supplies of the system are cut off and all contactors are disconnected.
  • step (5) fault prompt: displaying fault-related warning information (including the fault level, the specific components that may have faults, and the method for handling the fault) generated based on the fault level, for example: when it is determined that the fault level is L1.
  • a fault-related warning message will be generated, indicating that the current fault level of the system is L1, the specific components that may be faulty (such as one of the temperature sensors), and the inspection steps after the system is shut down.
  • the above-mentioned gas turbine fault monitoring system is used to perform each step of the gas turbine fault monitoring method.
  • the gas turbine fault monitoring system and method of the present invention divides faults into six levels: the L0 system can operate normally without failure; the L1 system is in a warning state, but can still run continuously; the L2 system has a general control error of the gas turbine; the L3 system has Serious control error of gas turbine; L4 system is in emergency stop state; L5 system is in failure state.
  • different failure levels different failure shutdown procedures and cooling temperatures are set (different shutdown procedures and cooling temperature settings are different, and the time required for shutdown is also different), so that the micro gas turbine can be used more efficiently.
  • the gas turbine fault monitoring system and method of the present invention can protect the machine from entering the cooling shutdown process safely in a fault state, and at the same time protect the tester, which is convenient for the tester to debug, experiment and calibrate data of the system.
  • Fig. 1 is a schematic diagram of the structure of the gas turbine fault monitoring system of the present invention.
  • 101 a detection module; 102, a failure level determination module; 103, a control module; 104, a failure response execution module; 105, a failure prompt module.
  • Example 1 A gas turbine fault monitoring system
  • a gas turbine fault monitoring system includes: a detection module 101, a fault level determination module 102, a control module 103 and a fault response execution module 104, as shown in FIG. 1; wherein,
  • Detection module detects the parameters of the gas turbine (such as temperature, pressure, speed, etc.) and/or communication signals (such as the signal that the emergency stop button is pressed), and sends the detected data and/or communication signals to the failure level determination module;
  • Fault level determination module determine the fault level based on the detection data and/or communication signal of the detection module, and send the fault level data and/or signal to the control module;
  • Control module determine the fault level data and/or signals of the module based on the fault level, generate control signals and/or fault-related warning information, and send the control signals to the fault response execution module;
  • Fault corresponding execution module Based on the control signal of the control module, the corresponding operation is performed.
  • the failure level determination module determines the failure level as L0, L1, L2, L3, L4 or L5:
  • L0 The data of the detection module is in the normal range, the system is in a normal state, there is no fault information, and the fault level is L0;
  • the system does not need to perform fault handling operations; at this time, if the system is in the standby state, it can enter the normal startup operation state according to the user's needs, and if the system is already in the startup state, the system can continue to run.
  • L1 When one or more of the following conditions occur, it is determined that a fault exists and the fault level is L1:
  • Ignition failure After ignition, the exhaust gas temperature of the combustion engine does not rise to a certain temperature value within a given time;
  • Oil cutting failure During the oil cutting process of the gas turbine, the exhaust gas temperature of the gas turbine did not rise to a certain temperature value;
  • the gas turbine can still enter the startup state or maintain the running state.
  • the system can still ensure the stable operation of the entire system through the feedback of the other temperature sensor; if the system communicates and operates normally, the system will record Download the fault information so that it can be repaired after the operation is completed.
  • L2 When one or more of the following conditions occur, the system has a general gas turbine control error during operation, and the gas turbine failure level is determined to be L2:
  • the exhaust gas temperature of the gas turbine is too high (such as more than 700degC) and the duration is too long (such as more than 10 seconds);
  • Unstable rotational speed At the stable operating point, the gas turbine rotational speed is lower than the target operating speed minus a certain threshold (such as 5,000 rpm below the target operating speed), or higher than the target operating speed plus a certain threshold (such as exceeding the target operating speed) target operating speed 2,500rpm);
  • a certain threshold such as 5,000 rpm below the target operating speed
  • a certain threshold such as exceeding the target operating speed
  • the temperature of the box is too high: the temperature of the cold end of the gas box is too high (such as more than 50degC) or the temperature of the hot end is too high (such as more than 80degC);
  • L3 When one or more of the following conditions occur, the system has a serious error in gas turbine control during operation, and the gas turbine failure level is determined to be L3:
  • the exhaust gas temperature of the gas turbine is too high (such as over 750degC);
  • the failure level determination module receives the signal that the emergency stop button is pressed, or the signal that the combustible gas leaks, or the signal that there is an open flame in the gas box body, then the system failure level is determined to be L4. In this state, the cold shutdown and hot shutdown procedures will be disabled.
  • L5 It is the highest level fault of the system, and the system is in a failed state. Usually the system communication and operation functions cannot work normally in this state, such as the system CPU failure.
  • the control module based on the fault level, generates the following control signals:
  • the fault response execution module based on the control signal, performs corresponding operations:
  • the oil pump periodically reduces the fuel output based on the control voltage signal of the control module; other related valves are closed based on the control module to generate a control close signal; when the speed of the gas turbine drops to a certain speed, the motor starts based on the motor generated by the control module The signal works to cool the gas turbine.
  • the fuel pump periodically and greatly reduces the fuel output based on the control voltage signal of the control module until the output control voltage of the fuel pump is 0.
  • the motor works based on the motor start signal generated by the control module. Machine for cooling for a certain period of time (eg 15 minutes).
  • Execute thermal shutdown process 1 The control module directly sets the output control voltage of the oil pump to 0, the oil pump stops outputting fuel, and the oil circuit solenoid valve and the corresponding valve are closed.
  • Execute thermal shutdown process 2 The control module directly sets the output control voltage of the oil pump to 0, the oil pump stops outputting fuel, and the oil circuit solenoid valve and corresponding valves are closed; at the same time, all power supplies of the system are cut off and all contactors are disconnected.
  • the gas turbine fault monitoring system further includes a fault prompting module 105; the fault prompting module receives and displays fault-related warning information generated by the control module, for example, when it is determined that the fault level is L1, the control module generates fault-related warning information , the fault-related warning information includes prompting that the current fault level of the system is L1, the specific components that may be faulty (such as one of the temperature sensors), and the inspection steps after the system is shut down.
  • the fault prompting module receives and displays fault-related warning information generated by the control module, for example, when it is determined that the fault level is L1, the control module generates fault-related warning information , the fault-related warning information includes prompting that the current fault level of the system is L1, the specific components that may be faulty (such as one of the temperature sensors), and the inspection steps after the system is shut down.
  • the detection module includes a temperature sensor, a speed sensor, a pressure sensor, etc. There are at least two temperature sensors installed at the rear end of the gas turbine turbine.
  • the fault response execution module includes a starter motor, a fuel flow control solenoid valve, a fuel pump, and the like.
  • Embodiment 2 A gas turbine fault monitoring method
  • Detection detection of gas turbine parameters (such as temperature, pressure, speed, etc.) and/or communication signals (such as the signal that the emergency stop button is pressed);
  • the failure level is determined as L0, L1, L2, L3, L4 or L5:
  • L0 The data of the detection module is in the normal range, the system is in a normal state, there is no fault information, and the fault level is L0;
  • the system does not need to perform fault handling operations; at this time, if the system is in the standby state, it can enter the normal startup operation state according to the user's needs, and if the system is already in the startup state, the system can continue to run.
  • L1 When one or more of the following conditions occur, it is determined that a fault exists and the fault level is L1:
  • Ignition failure After ignition, the exhaust gas temperature of the combustion engine does not rise to a certain temperature value within a given time;
  • Oil cutting failure During the oil cutting process of the gas turbine, the exhaust gas temperature of the gas turbine did not rise to a certain temperature value;
  • the gas turbine can still enter the startup state or maintain the running state.
  • the system can still ensure the stable operation of the entire system through the feedback of the other temperature sensor; if the system communicates and operates normally, the system will record Download the fault information so that it can be repaired after the operation is completed.
  • L2 When one or more of the following conditions occur, the system has a general gas turbine control error during operation, and the gas turbine failure level is determined to be L2:
  • the exhaust gas temperature of the gas turbine is too high (such as more than 700degC) and the duration is too long (such as more than 10 seconds);
  • Unstable rotational speed At the stable operating point, the gas turbine rotational speed is lower than the target operating speed minus a certain threshold (such as 5,000 rpm below the target operating speed), or higher than the target operating speed plus a certain threshold (such as exceeding the target operating speed) target operating speed 2,500rpm);
  • a certain threshold such as 5,000 rpm below the target operating speed
  • a certain threshold such as exceeding the target operating speed
  • the temperature of the box is too high: the temperature of the cold end of the gas box is too high (such as more than 50degC) or the temperature of the hot end is too high (such as more than 80degC);
  • L3 When one or more of the following conditions occur, the system has a serious error in gas turbine control during operation, and the gas turbine failure level is determined to be L3:
  • the exhaust gas temperature of the gas turbine is too high (such as over 750degC);
  • the failure level determination module receives the signal that the emergency stop button is pressed, or the signal that the combustible gas leaks, or the signal that there is an open flame in the gas box body, then the system failure level is determined to be L4. In this state, the cold shutdown and hot shutdown procedures will be disabled.
  • L5 It is the highest level fault of the system, and the system is in a failed state. Usually the system communication and operation functions cannot work normally in this state, such as the system CPU failure.
  • step (3) based on the fault level, the following control signals are generated:
  • step (4) based on the control signal, the following corresponding operations are performed:
  • the oil pump periodically reduces the fuel output based on the control voltage signal of the control module; other related valves are closed based on the control module to generate a control close signal; when the speed of the gas turbine drops to a certain speed, the motor starts based on the motor generated by the control module The signal works to cool the gas turbine.
  • the fuel pump periodically and greatly reduces the fuel output based on the control voltage signal of the control module until the output control voltage of the fuel pump is 0.
  • the motor works based on the motor start signal generated by the control module. Machine for cooling for a certain period of time (eg 15 minutes).
  • Execute thermal shutdown process 1 The control module directly sets the output control voltage of the oil pump to 0, the oil pump stops outputting fuel, and the oil circuit solenoid valve and the corresponding valve are closed.
  • Execute thermal shutdown process 2 The control module directly sets the output control voltage of the oil pump to 0, the oil pump stops outputting fuel, and the oil circuit solenoid valve and corresponding valves are closed; at the same time, all power supplies of the system are cut off and all contactors are disconnected.
  • fault prompt display fault-related warning information generated based on the fault level, for example: in the case of determining that the fault level is L1, generate fault-related warning information, including prompting that the current fault level of the system is L1, there may be a fault specific components (such as one of the temperature sensors), and please check the steps after the system is shut down.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Turbines (AREA)

Abstract

一种燃气轮机故障监控系统及方法,包括检测模块(101)、故障等级确定模块(102)、控制模块(103)和故障响应执行模块(104);检测模块(101):检测燃气轮机的参数和/或通讯信号,发送至故障等级确定模块(102);故障等级确定模块(102):基于检测数据和/或通讯信号确定故障等级,发送至控制模块(103);控制模块(103):基于故障等级数据和/或信号,产生并发送控制信号和/或故障相关警示信息;故障响应执行模块(104):基于控制信号,执行相应操作。故障监控系统将故障分为六个等级,根据不同的故障等级,设定不同的故障停机流程和冷却温度,可以更高效地利用微型燃气轮机,保护机器在故障状态下安全进入冷却停机流程,同时保护测试人员,便于测试人员对系统进行调试、实验和标定数据。

Description

一种燃气轮机故障监控系统及方法 技术领域
本发明涉及一种燃气轮机故障监控系统及方法,属于燃气轮机技术领域。
背景技术
微型燃气轮机越来越广泛地运用到能源领域,作为分布式电源、热电联产等系统中的核心部件,其需要长时间在无人监管的情况下稳定运行。因此,有效地识别微型燃气轮机运行过程中各类故障并针对不同故障等级、类型做出不同的响应,以确保系统的运行安全以及操作人员的人身安全,有重要意义。
中国发明专利申请CN 104481702A公开了一种微型燃气轮机运行状态的监控方法,通过监控软件,完成微型燃气轮机实时运行状态的监控。其并未涉及故障等级划分及系统响应不同的故障等级燃机执行不同操作。
发明内容
针对上述现有技术,本发明提供了一种燃气轮机故障监控系统及方法。本发明的监控系统和方法可以设定不同的故障停机流程和冷却温度,因而停机所需要的时间也不同,如此可以更高效地利用微型燃气轮机。
本发明是通过以下技术方案实现的:
一种燃气轮机故障监控系统,包括:检测模块、故障等级确定模块、控制模块和故障响应执行模块;其中,
检测模块:检测燃气轮机的参数(比如温度、压力、速度等)和/或通讯信号(比如急停按钮被按下的信号),将检测到的数据和/或通讯信号发送至故障等级确定模块;
故障等级确定模块:基于检测模块的检测数据和/或通讯信号确定故障等级,将故障等级数据和/或信号发送至控制模块;
控制模块:基于故障等级确定模块的故障等级数据和/或信号,产生控制信号和/或故障相关警示信息,将控制信号发送至故障响应执行模块;
故障相应执行模块:基于控制模块的控制信号,执行相应操作。
具体地,
所述故障等级确定模块,基于检测模块的检测数据和/或通讯信号,将故障等级确定为L0、L1、L2、L3、L4或L5:
L0:检测模块的数据处于正常范围,系统处于正常状态,无任何故障信息,故障等级为 L0;
针对故障等级L0,系统无需执行故障处理操作;此时,若系统在待机状态下则可根据用用户需求进入正常启动运行状态,若系统已在启动状态下,则系统可持续运行。
L1:当出现以下一种或多种情况时,确定存在故障且故障等级为L1:
(1)仅一路温度传感器故障:温度数据出现跳变或者不在合理范围内(参考环境温度);
(2)仅一路速度传感器故障:速度数据出现速度跳变或者不在合理范围内;
(3)径向轴承/推力轴承气压力不足:径向轴承/推力轴承气压力低于合理范围的最低限值;
(4)启动转速错误:燃机在启动过程中转速未在规定时间内达到点火速度;
(5)点火失败:点火后燃机排气温度未在给定时间内上升至一定温度值;
(6)切油失败:在燃机切油过程中,燃机排气温度未上升至一定温度值;
在该状态下,燃气轮机仍可正常进入启动状态或者保持运行状态,例如:一路温度传感器出错,系统仍可通过另一路温度传感器的反馈保证整个系统的稳定运行;系统通讯和运行正常,系统会记录下故障信息,以便运行结束后进行修复。
L2:当出现以下一种或多种情况时,系统在运行过程中出现燃机控制一般错误,确定燃机故障等级为L2:
(1)燃机排气温度过高(如大于700degC)且持续时间过长(如超过10秒);
(2)加速过快:燃机在转速爬升过程中单位时间速度增长过快(如在加速过程中转速加速度超过5,000rpm/s);
(3)加速故障:运行状态下,燃机在逐渐增大燃油控制电压时,转速反而减小(如转速在1秒内下降超过1,000rpm);
(4)超速:在运行过程中,燃机转速超过目标运行转速(如3,000rpm);
(5)转速不稳:在稳定运行工况点,燃机转速低于目标运行转速减去一定阈值(如低于目标运行转速5,000rpm),或者高于目标运行转速加上一定阈值(如超过目标运行转速2,500rpm);
(6)箱体温度过高:燃机箱体冷端温度过高(如超过50degC)或热端温度过高(如超过80degC);
(7)燃油雾化不成功导致点火失败;
(8)燃机系统内部通讯故障。
L3:当出现以下一种或多种情况时,系统在运行过程中出现燃机控制严重错误,确定燃 机故障等级为L3:
(1)燃机排气温度过高(如超过750degC)(与L2步骤1相比,都是燃机排气温度过高,但温度上限有所不同);
(2)温度传感器均故障:在待机或者运行状态下,所有温度传感器都出现温度跳变或不在合理范围内或无温度输出;
(3)速度传感器均故障:在待机或者运行状态下,所有速度传感器都出现速度跳变或不在合理范围内;
(4)油泵控制电压失效:油泵的输出控制电压与反馈的油泵控制电压差值超过设定的阈值,油泵控制电压出错;
(5)低压供电电源故障:油泵电源、点火器电源和电磁阀电源的主供电源出现故障,无法提供电源。
L4:故障等级确定模块接收到急停按钮被按下的信号,或可燃气气体泄漏的信号,或燃机箱体出现明火的信号,则确定系统故障等级为L4。在此状态下,冷停机和热停机流程将失效。
L5:为系统最高级别故障,系统处于失效状态。通常系统通讯和运行功能在此状态下不能正常工作,如系统CPU出现故障。
所述控制模块,基于故障等级,产生如下控制信号:
当故障等级为L0时,产生使得执行模块的各部件正常运行的控制信号;
当故障等级为L1时,产生使得执行模块的各部件正常运行的控制信号;
当故障等级为L2时,产生使得执行模块执行冷停机流程的控制信号;
当故障等级为L3时,产生使得执行模块执行热停机流程的控制信号;
当故障等级为L4时,产生使得执行模块执行热关机流程1的控制信号;
当故障等级为L5时,产生使得执行模块执行热关机流程2的控制信号。
所述故障响应执行模块,基于控制信号,执行相应操作:
执行正常运行:各部件正常运行;
执行冷停机流程:油泵基于控制模块的控制电压信号周期性减少燃油输出;其他相关阀门基于控制模块产生控制关闭信号关闭;在燃机的转速下降到一定转速时,电机基于控制模块产生的电机启动信号工作,对燃机进行冷却。
执行热停机流程:油泵基于控制模块的控制电压信号周期性大幅度减少燃油输出直至油泵输出控制电压为0,油泵输出控制电压降至0时,电机基于控制模块产生的电机启动信号工作,对燃机进行冷却一定时间(如15分钟)。
执行热关机流程1:控制模块直接将油泵输出控制电压设置为0,油泵停止输出燃油,油路电磁阀及相应阀门关闭。
执行热关机流程2:控制模块直接将油泵输出控制电压设置为0,油泵停止输出燃油,油路电磁阀及相应阀门关闭;同时,切断系统所有供电电源,断开所有接触器。
进一步的,所述燃气轮机故障监控系统还包括故障提示模块;所述故障提示模块,接收并显示控制模块产生的故障相关警示信息(包括故障等级,可能存在故障的具体部件,处理该故障的方法),例如:在确定故障等级为L1的情况下,控制模块产生故障相关警示信息,提示系统目前故障等级为L1,可能存在故障的具体部件(如其中一路温度传感器),以及请在系统停机后的检查步骤。
进一步的,所述检测模块,包括温度传感器、速度传感器、压力传感器等;所述温度传感器至少有两个,安装在燃气轮机透平后端。
进一步的,所述故障响应执行模块,包括启动电机、燃油流量控制电磁阀、燃油泵等。
一种燃气轮机故障监控方法,包括以下步骤:
(一)检测:检测燃气轮机的参数(比如温度、压力、速度等)和/或通讯信号(比如急停按钮被按下的信号);
(二)确定故障等级:基于上述的检测数据和/或通讯信号,确定故障等级;
(三)产生控制信号和/或故障相关警示信息:基于故障等级,产生控制信号和/或故障相关警示信息;
(四)执行:基于上述产生的控制信号,执行相应的操作;
具体地,所述步骤(二)中,将故障等级确定为L0、L1、L2、L3、L4或L5:
L0:检测模块的数据处于正常范围,系统处于正常状态,无任何故障信息,故障等级为L0;
针对故障等级L0,系统无需执行故障处理操作;此时,若系统在待机状态下则可根据用用户需求进入正常启动运行状态,若系统已在启动状态下,则系统可持续运行。
L1:当出现以下一种或多种情况时,确定存在故障且故障等级为L1:
(1)仅一路温度传感器故障:温度数据出现跳变或者不在合理范围内(参考环境温度);
(2)仅一路速度传感器故障:速度数据出现速度跳变或者不在合理范围内;
(3)径向轴承/推力轴承气压力不足:径向轴承/推力轴承气压力低于合理范围的最低限值;
(4)启动转速错误:燃机在启动过程中转速未在规定时间内达到点火速度;
(5)点火失败:点火后燃机排气温度未在给定时间内上升至一定温度值;
(6)切油失败:在燃机切油过程中,燃机排气温度未上升至一定温度值;
在该状态下,燃气轮机仍可正常进入启动状态或者保持运行状态,例如:一路温度传感器出错,系统仍可通过另一路温度传感器的反馈保证整个系统的稳定运行;系统通讯和运行正常,系统会记录下故障信息,以便运行结束后进行修复。
L2:当出现以下一种或多种情况时,系统在运行过程中出现燃机控制一般错误,确定燃机故障等级为L2:
(1)燃机排气温度过高(如大于700degC)且持续时间过长(如超过10秒);
(2)加速过快:燃机在转速爬升过程中单位时间速度增长过快(如在加速过程中转速加速度超过5,000rpm/s);
(3)加速故障:运行状态下,燃机在逐渐增大燃油控制电压时,转速反而减小(如转速在1秒内下降超过1,000rpm);
(4)超速:在运行过程中,燃机转速超过目标运行转速(如3,000rpm);
(5)转速不稳:在稳定运行工况点,燃机转速低于目标运行转速减去一定阈值(如低于目标运行转速5,000rpm),或者高于目标运行转速加上一定阈值(如超过目标运行转速2,500rpm);
(6)箱体温度过高:燃机箱体冷端温度过高(如超过50degC)或热端温度过高(如超过80degC);
(7)燃油雾化不成功导致点火失败;
(8)燃机系统内部通讯故障。
L3:当出现以下一种或多种情况时,系统在运行过程中出现燃机控制严重错误,确定燃机故障等级为L3:
(1)燃机排气温度过高(如超过750degC);
(2)温度传感器均故障:在待机或者运行状态下,所有温度传感器都出现温度跳变或不在合理范围内或无温度输出;
(3)速度传感器均故障:在待机或者运行状态下,所有速度传感器都出现速度跳变或不在合理范围内;
(4)油泵控制电压失效:油泵的输出控制电压与反馈的油泵控制电压差值超过设定的阈值,油泵控制电压出错;
(5)低压供电电源故障:油泵电源、点火器电源和电磁阀电源的主供电源出现故障,无法提供电源。
L4:故障等级确定模块接收到急停按钮被按下的信号,或可燃气气体泄漏的信号,或燃机箱体出现明火的信号,则确定系统故障等级为L4。在此状态下,冷停机和热停机流程将失效。
L5:为系统最高级别故障,系统处于失效状态。通常系统通讯和运行功能在此状态下不能正常工作,如系统CPU出现故障。
所述步骤(3)中,基于故障等级,产生如下控制信号:
当故障等级为L0时,产生使得执行模块的各部件正常运行的控制信号;
当故障等级为L1时,产生使得执行模块的各部件正常运行的控制信号;
当故障等级为L2时,产生使得执行模块执行冷停机流程的控制信号;
当故障等级为L3时,产生使得执行模块执行热停机流程的控制信号;
当故障等级为L4时,产生使得执行模块执行热关机流程1的控制信号;
当故障等级为L5时,产生使得执行模块执行热关机流程2的控制信号。
所述步骤(四)中,基于控制信号,执行以下相应操作:
执行正常运行:各部件正常运行;
执行冷停机流程:油泵基于控制模块的控制电压信号周期性减少燃油输出;其他相关阀门基于控制模块产生控制关闭信号关闭;在燃机的转速下降到一定转速时,电机基于控制模块产生的电机启动信号工作,对燃机进行冷却。
执行热停机流程:油泵基于控制模块的控制电压信号周期性大幅度减少燃油输出直至油泵输出控制电压为0,油泵输出控制电压降至0时,电机基于控制模块产生的电机启动信号工作,对燃机进行冷却一定时间(如15分钟)。
执行热关机流程1:控制模块直接将油泵输出控制电压设置为0,油泵停止输出燃油,油路电磁阀及相应阀门关闭。
执行热关机流程2:控制模块直接将油泵输出控制电压设置为0,油泵停止输出燃油,油路电磁阀及相应阀门关闭;同时,切断系统所有供电电源,断开所有接触器。
进一步的,还包括步骤(五)故障提示:显示基于故障等级产生的故障相关警示信息(包括故障等级,可能存在故障的具体部件,处理该故障的方法),例如:在确定故障等级为L1 的情况下,产生故障相关警示信息,提示系统目前故障等级为L1,可能存在故障的具体部件(如其中一路温度传感器),以及请在系统停机后的检查步骤。
具体应用时,利用上述燃气轮机故障监控系统,进行燃气轮机故障监控方法的各步操作。
本发明的燃气轮机故障监控系统和方法,将故障分为六个等级:L0系统无故障可正常运行;L1系统处于警告状态,但仍可持续运行;L2系统出现燃机一般控制错误;L3系统出现燃机严重控制错误;L4系统处于急停状态;L5系统处于失效状态。根据不同的故障等级,设定不同的故障停机流程和冷却温度(不同的故障停机流程和冷却温度设定不同,停机所需要的时间也不同),可以更高效地利用微型燃气轮机。本发明的燃气轮机故障监控系统和方法,可以保护机器在故障状态下安全进入冷却停机流程,同时保护测试人员,便于测试人员对系统进行调试、实验和标定数据。
本发明使用的各种术语和短语具有本领域技术人员公知的一般含义。提及的术语和短语如有与公知含义不一致的,以本发明所表述的含义为准。
附图说明
图1:本发明的燃气轮机故障监控系统的结构示意简图。
其中,101、检测模块;102、故障等级确定模块;103、控制模块;104、故障响应执行模块;105、故障提示模块。
具体实施方式
下面结合实施例对本发明作进一步的说明。然而,本发明的范围并不限于下述实施例。本领域的专业人员能够理解,在不背离本发明的精神和范围的前提下,可以对本发明进行各种变化和修饰。
实施例1 一种燃气轮机故障监控系统
一种燃气轮机故障监控系统,包括:检测模块101、故障等级确定模块102、控制模块103和故障响应执行模块104,如图1所示;其中,
检测模块:检测燃气轮机的参数(比如温度、压力、速度等)和/或通讯信号(比如急停按钮被按下的信号),将检测到的数据和/或通讯信号发送至故障等级确定模块;
故障等级确定模块:基于检测模块的检测数据和/或通讯信号确定故障等级,将故障等级数据和/或信号发送至控制模块;
控制模块:基于故障等级确定模块的故障等级数据和/或信号,产生控制信号和/或故障相关警示信息,将控制信号发送至故障响应执行模块;
故障相应执行模块:基于控制模块的控制信号,执行相应操作。
具体地,
所述故障等级确定模块,基于检测模块的检测数据和/或通讯信号,将故障等级确定为L0、L1、L2、L3、L4或L5:
L0:检测模块的数据处于正常范围,系统处于正常状态,无任何故障信息,故障等级为L0;
针对故障等级L0,系统无需执行故障处理操作;此时,若系统在待机状态下则可根据用用户需求进入正常启动运行状态,若系统已在启动状态下,则系统可持续运行。
L1:当出现以下一种或多种情况时,确定存在故障且故障等级为L1:
(1)仅一路温度传感器故障:温度数据出现跳变或者不在合理范围内(参考环境温度);
(2)仅一路速度传感器故障:速度数据出现速度跳变或者不在合理范围内;
(3)径向轴承/推力轴承气压力不足:径向轴承/推力轴承气压力低于合理范围的最低限值;
(4)启动转速错误:燃机在启动过程中转速未在规定时间内达到点火速度;
(5)点火失败:点火后燃机排气温度未在给定时间内上升至一定温度值;
(6)切油失败:在燃机切油过程中,燃机排气温度未上升至一定温度值;
在该状态下,燃气轮机仍可正常进入启动状态或者保持运行状态,例如:一路温度传感器出错,系统仍可通过另一路温度传感器的反馈保证整个系统的稳定运行;系统通讯和运行正常,系统会记录下故障信息,以便运行结束后进行修复。
L2:当出现以下一种或多种情况时,系统在运行过程中出现燃机控制一般错误,确定燃机故障等级为L2:
(1)燃机排气温度过高(如大于700degC)且持续时间过长(如超过10秒);
(2)加速过快:燃机在转速爬升过程中单位时间速度增长过快(如在加速过程中转速加速度超过5,000rpm/s);
(3)加速故障:运行状态下,燃机在逐渐增大燃油控制电压时,转速反而减小(如转速在1秒内下降超过1,000rpm);
(4)超速:在运行过程中,燃机转速超过目标运行转速(如3,000rpm);
(5)转速不稳:在稳定运行工况点,燃机转速低于目标运行转速减去一定阈值(如低于目标运行转速5,000rpm),或者高于目标运行转速加上一定阈值(如超过目标运行转速2,500rpm);
(6)箱体温度过高:燃机箱体冷端温度过高(如超过50degC)或热端温度过高(如超 过80degC);
(7)燃油雾化不成功导致点火失败;
(8)燃机系统内部通讯故障。
L3:当出现以下一种或多种情况时,系统在运行过程中出现燃机控制严重错误,确定燃机故障等级为L3:
(1)燃机排气温度过高(如超过750degC);
(2)温度传感器均故障:在待机或者运行状态下,所有温度传感器都出现温度跳变或不在合理范围内或无温度输出;
(3)速度传感器均故障:在待机或者运行状态下,所有速度传感器都出现速度跳变或不在合理范围内;
(4)油泵控制电压失效:油泵的输出控制电压与反馈的油泵控制电压差值超过设定的阈值,油泵控制电压出错;
(5)低压供电电源故障:油泵电源、点火器电源和电磁阀电源的主供电源出现故障,无法提供电源。
L4:故障等级确定模块接收到急停按钮被按下的信号,或可燃气气体泄漏的信号,或燃机箱体出现明火的信号,则确定系统故障等级为L4。在此状态下,冷停机和热停机流程将失效。
L5:为系统最高级别故障,系统处于失效状态。通常系统通讯和运行功能在此状态下不能正常工作,如系统CPU出现故障。
所述控制模块,基于故障等级,产生如下控制信号:
当故障等级为L0时,产生使得执行模块的各部件正常运行的控制信号;
当故障等级为L1时,产生使得执行模块的各部件正常运行的控制信号;
当故障等级为L2时,产生使得执行模块执行冷停机流程的控制信号;
当故障等级为L3时,产生使得执行模块执行热停机流程的控制信号;
当故障等级为L4时,产生使得执行模块执行热关机流程1的控制信号;
当故障等级为L5时,产生使得执行模块执行热关机流程2的控制信号。
所述故障响应执行模块,基于控制信号,执行相应操作:
执行正常运行:各部件正常运行;
执行冷停机流程:油泵基于控制模块的控制电压信号周期性减少燃油输出;其他相关阀门基于控制模块产生控制关闭信号关闭;在燃机的转速下降到一定转速时,电机基于控制模块产生的电机启动信号工作,对燃机进行冷却。
执行热停机流程:油泵基于控制模块的控制电压信号周期性大幅度减少燃油输出直至油泵输出控制电压为0,油泵输出控制电压降至0时,电机基于控制模块产生的电机启动信号工作,对燃机进行冷却一定时间(如15分钟)。
执行热关机流程1:控制模块直接将油泵输出控制电压设置为0,油泵停止输出燃油,油路电磁阀及相应阀门关闭。
执行热关机流程2:控制模块直接将油泵输出控制电压设置为0,油泵停止输出燃油,油路电磁阀及相应阀门关闭;同时,切断系统所有供电电源,断开所有接触器。
所述燃气轮机故障监控系统还包括故障提示模块105;所述故障提示模块,接收并显示控制模块产生的故障相关警示信息,例如:在确定故障等级为L1的情况下,控制模块产生故障相关警示信息,故障相关警示信息包括提示系统目前故障等级为L1,可能存在故障的具体部件(如其中一路温度传感器),以及请在系统停机后的检查步骤。
所述检测模块,包括温度传感器、速度传感器、压力传感器等;所述温度传感器至少有两个,安装在燃气轮机透平后端。
所述故障响应执行模块,包括启动电机、燃油流量控制电磁阀、燃油泵等。
实施例2 一种燃气轮机故障监控方法
利用实施例1的监控系统,包括以下步骤:
(一)检测:检测燃气轮机的参数(比如温度、压力、速度等)和/或通讯信号(比如急停按钮被按下的信号);
(二)确定故障等级:基于上述的检测数据和/或通讯信号,确定故障等级;
(三)产生控制信号和/或故障相关警示信息:基于故障等级,产生控制信号和/或故障相关警示信息;
(四)执行:基于上述产生的控制信号,执行相应的操作;
具体地,所述步骤(二)中,将故障等级确定为L0、L1、L2、L3、L4或L5:
L0:检测模块的数据处于正常范围,系统处于正常状态,无任何故障信息,故障等级为L0;
针对故障等级L0,系统无需执行故障处理操作;此时,若系统在待机状态下则可根据用用户需求进入正常启动运行状态,若系统已在启动状态下,则系统可持续运行。
L1:当出现以下一种或多种情况时,确定存在故障且故障等级为L1:
(1)仅一路温度传感器故障:温度数据出现跳变或者不在合理范围内(参考环境温度);
(2)仅一路速度传感器故障:速度数据出现速度跳变或者不在合理范围内;
(3)径向轴承/推力轴承气压力不足:径向轴承/推力轴承气压力低于合理范围的最低限值;
(4)启动转速错误:燃机在启动过程中转速未在规定时间内达到点火速度;
(5)点火失败:点火后燃机排气温度未在给定时间内上升至一定温度值;
(6)切油失败:在燃机切油过程中,燃机排气温度未上升至一定温度值;
在该状态下,燃气轮机仍可正常进入启动状态或者保持运行状态,例如:一路温度传感器出错,系统仍可通过另一路温度传感器的反馈保证整个系统的稳定运行;系统通讯和运行正常,系统会记录下故障信息,以便运行结束后进行修复。
L2:当出现以下一种或多种情况时,系统在运行过程中出现燃机控制一般错误,确定燃机故障等级为L2:
(1)燃机排气温度过高(如大于700degC)且持续时间过长(如超过10秒);
(2)加速过快:燃机在转速爬升过程中单位时间速度增长过快(如在加速过程中转速加速度超过5,000rpm/s);
(3)加速故障:运行状态下,燃机在逐渐增大燃油控制电压时,转速反而减小(如转速在1秒内下降超过1,000rpm);
(4)超速:在运行过程中,燃机转速超过目标运行转速(如3,000rpm);
(5)转速不稳:在稳定运行工况点,燃机转速低于目标运行转速减去一定阈值(如低于目标运行转速5,000rpm),或者高于目标运行转速加上一定阈值(如超过目标运行转速2,500rpm);
(6)箱体温度过高:燃机箱体冷端温度过高(如超过50degC)或热端温度过高(如超过80degC);
(7)燃油雾化不成功导致点火失败;
(8)燃机系统内部通讯故障。
L3:当出现以下一种或多种情况时,系统在运行过程中出现燃机控制严重错误,确定燃机故障等级为L3:
(1)燃机排气温度过高(如超过750degC);
(2)温度传感器均故障:在待机或者运行状态下,所有温度传感器都出现温度跳变或不在合理范围内或无温度输出;
(3)速度传感器均故障:在待机或者运行状态下,所有速度传感器都出现速度跳变或不在合理范围内;
(4)油泵控制电压失效:油泵的输出控制电压与反馈的油泵控制电压差值超过设定的阈值,油泵控制电压出错;
(5)低压供电电源故障:油泵电源、点火器电源和电磁阀电源的主供电源出现故障,无法提供电源。
L4:故障等级确定模块接收到急停按钮被按下的信号,或可燃气气体泄漏的信号,或燃机箱体出现明火的信号,则确定系统故障等级为L4。在此状态下,冷停机和热停机流程将失效。
L5:为系统最高级别故障,系统处于失效状态。通常系统通讯和运行功能在此状态下不能正常工作,如系统CPU出现故障。
所述步骤(3)中,基于故障等级,产生如下控制信号:
当故障等级为L0时,产生使得执行模块的各部件正常运行的控制信号;
当故障等级为L1时,产生使得执行模块的各部件正常运行的控制信号;
当故障等级为L2时,产生使得执行模块执行冷停机流程的控制信号;
当故障等级为L3时,产生使得执行模块执行热停机流程的控制信号;
当故障等级为L4时,产生使得执行模块执行热关机流程1的控制信号;
当故障等级为L5时,产生使得执行模块执行热关机流程2的控制信号。
所述步骤(四)中,基于控制信号,执行以下相应操作:
执行正常运行:各部件正常运行;
执行冷停机流程:油泵基于控制模块的控制电压信号周期性减少燃油输出;其他相关阀门基于控制模块产生控制关闭信号关闭;在燃机的转速下降到一定转速时,电机基于控制模块产生的电机启动信号工作,对燃机进行冷却。
执行热停机流程:油泵基于控制模块的控制电压信号周期性大幅度减少燃油输出直至油泵输出控制电压为0,油泵输出控制电压降至0时,电机基于控制模块产生的电机启动信号工作,对燃机进行冷却一定时间(如15分钟)。
执行热关机流程1:控制模块直接将油泵输出控制电压设置为0,油泵停止输出燃油,油路电磁阀及相应阀门关闭。
执行热关机流程2:控制模块直接将油泵输出控制电压设置为0,油泵停止输出燃油,油路电磁阀及相应阀门关闭;同时,切断系统所有供电电源,断开所有接触器。
还包括步骤(五)故障提示:显示基于故障等级产生的故障相关警示信息,例如:在确定故障等级为L1的情况下,产生故障相关警示信息,包括提示系统目前故障等级为L1,可能存在故障的具体部件(如其中一路温度传感器),以及请在系统停机后的检查步骤。
给本领域技术人员提供上述实施例,以完全公开和描述如何实施和使用所主张的实施方案,而不是用于限制本文公开的范围。对于本领域技术人员而言显而易见的修饰将在所附权利要求的范围内。

Claims (10)

  1. 一种燃气轮机故障监控系统,其特征在于:包括检测模块、故障等级确定模块、控制模块和故障响应执行模块;其中,
    检测模块:检测燃气轮机的参数和/或通讯信号,将检测到的数据和/或通讯信号发送至故障等级确定模块;
    故障等级确定模块:基于检测模块的检测数据和/或通讯信号确定故障等级,将故障等级数据和/或信号发送至控制模块;
    控制模块:基于故障等级确定模块的故障等级数据和/或信号,产生控制信号和/或故障相关警示信息,将控制信号发送至故障响应执行模块;
    故障相应执行模块:基于控制模块的控制信号,执行相应操作;
    具体地,
    所述故障等级确定模块,基于检测模块的检测数据和/或通讯信号,将故障等级确定为L0、L1、L2、L3、L4或L5:
    L0:检测模块的数据处于正常范围,系统处于正常状态,无任何故障信息,故障等级为L0;
    L1:当出现以下一种或多种情况时,确定存在故障且故障等级为L1:
    (1)仅一路温度传感器故障:温度数据出现跳变或者不在合理范围内;
    (2)仅一路速度传感器故障:速度数据出现速度跳变或者不在合理范围内;
    (3)径向轴承/推力轴承气压力不足:径向轴承/推力轴承气压力低于合理范围的最低限值;
    (4)启动转速错误:燃机在启动过程中转速未在规定时间内达到点火速度;
    (5)点火失败:点火后燃机排气温度未在给定时间内上升至一定温度值;
    (6)切油失败:在燃机切油过程中,燃机排气温度未上升至一定温度值;
    L2:当出现以下一种或多种情况时,系统在运行过程中出现燃机控制一般错误,确定燃机故障等级为L2:
    (1)燃机排气温度过高且持续时间过长;
    (2)加速过快:燃机在转速爬升过程中单位时间速度增长过快;
    (3)加速故障:运行状态下,燃机在逐渐增大燃油控制电压时,转速反而减小;
    (4)超速:在运行过程中,燃机转速超过目标运行转速;
    (5)转速不稳:在稳定运行工况点,燃机转速低于目标运行转速减去一定阈值,或者高于目标运行转速加上一定阈值;
    (6)箱体温度过高:燃机箱体冷端温度过高或热端温度过高;
    (7)燃油雾化不成功导致点火失败;
    (8)燃机系统内部通讯故障;
    L3:当出现以下一种或多种情况时,系统在运行过程中出现燃机控制严重错误,确定燃机故障等级为L3:
    (1)燃机排气温度过高;
    (2)温度传感器均故障:在待机或者运行状态下,所有温度传感器都出现温度跳变或不在合理范围内或无温度输出;
    (3)速度传感器均故障:在待机或者运行状态下,所有速度传感器都出现速度跳变或不在合理范围内;
    (4)油泵控制电压失效:油泵的输出控制电压与反馈的油泵控制电压差值超过设定的阈值;
    (5)低压供电电源故障:油泵电源、点火器电源和电磁阀电源的主供电源出现故障,无法提供电源;
    L4:故障等级确定模块接收到急停按钮被按下的信号,或可燃气气体泄漏的信号,或燃机箱体出现明火的信号,则确定系统故障等级为L4;
    L5:系统处于失效状态;
    所述控制模块,基于故障等级,产生如下控制信号:
    当故障等级为L0时,产生使得执行模块的各部件正常运行的控制信号;
    当故障等级为L1时,产生使得执行模块的各部件正常运行的控制信号;
    当故障等级为L2时,产生使得执行模块执行冷停机流程的控制信号;
    当故障等级为L3时,产生使得执行模块执行热停机流程的控制信号;
    当故障等级为L4时,产生使得执行模块执行热关机流程1的控制信号;
    当故障等级为L5时,产生使得执行模块执行热关机流程2的控制信号;
    所述故障响应执行模块,基于控制信号,执行以下相应操作:
    执行正常运行:各部件正常运行;
    执行冷停机流程:油泵基于控制模块的控制电压信号周期性减少燃油输出;其他相关阀门基于控制模块产生控制关闭信号关闭;在燃机的转速下降到一定转速时,电机基于控制模块产生的电机启动信号工作,对燃机进行冷却;
    执行热停机流程:油泵基于控制模块的控制电压信号周期性大幅度减少燃油输出直至油泵输出控制电压为0,油泵输出控制电压降至0时,电机基于控制模块产生的电机启动信号工作,对燃机进行冷却一定时间;
    执行热关机流程1:控制模块直接将油泵输出控制电压设置为0,油泵停止输出燃油,油路电磁阀及相应阀门关闭;
    执行热关机流程2:控制模块直接将油泵输出控制电压设置为0,油泵停止输出燃油,油路电磁阀及相应阀门关闭;同时,切断系统所有供电电源,断开所有接触器。
  2. 根据权利要求1所述的燃气轮机故障监控系统,其特征在于:所述燃气轮机故障监控系统还包括故障提示模块;所述故障提示模块,接收并显示控制模块产生的故障相关警示信息。
  3. 根据权利要求2所述的燃气轮机故障监控系统,其特征在于:所述故障相关警示信息的内容包括故障等级,可能存在故障的具体部件,及处理该故障的方法。
  4. 根据权利要求1所述的燃气轮机故障监控系统,其特征在于:所述检测模块,包括温度传感器、速度传感器、压力传感器;所述温度传感器至少有两个,安装在燃气轮机透平后端。
  5. 根据权利要求1所述的燃气轮机故障监控系统,其特征在于:所述故障响应执行模块,包括启动电机、燃油流量控制电磁阀、燃油泵。
  6. 根据权利要求1所述的燃气轮机故障监控系统,其特征在于:所述L2(1)中,燃机排气温度过高是指大于700degC;持续时间过长是指超过10秒;
    或/和:所述L2(2)中,燃机在转速爬升过程中单位时间速度增长过快是指在加速过程中转速加速度超过5,000rpm/s;
    或/和:所述L2(3)中,转速反而减小是指转速在1秒内下降超过1,000rpm;
    或/和:所述L2(4)中,目标运行转速是指3,000rpm;
    或/和:所述L2(5)中,燃机转速低于目标运行转速减去一定阈值是指低于目标运行转速5,000rpm;高于目标运行转速加上一定阈值是指超过目标运行转速2,500rpm;
    或/和:所述L2(6)中,燃机箱体冷端温度过高是指超过50degC;热端温度过高是指超过80degC;
    或/和:所述L3(1)中,燃机排气温度过高是指超过750degC。
  7. 一种燃气轮机故障监控方法,其特征在于:包括以下步骤:
    (一)检测:检测燃气轮机的参数和/或通讯信号;
    (二)确定故障等级:基于上述的检测数据和/或通讯信号,确定故障等级;
    (三)产生控制信号和/或故障相关警示信息:基于故障等级,产生控制信号和/或故障相关警示信息;
    (四)执行:基于上述产生的控制信号,执行相应的操作;
    具体地,所述步骤(二)中,将故障等级确定为L0、L1、L2、L3、L4或L5:
    L0:检测模块的数据处于正常范围,系统处于正常状态,无任何故障信息,故障等级为L0;
    L1:当出现以下一种或多种情况时,确定存在故障且故障等级为L1:
    (1)仅一路温度传感器故障:温度数据出现跳变或者不在合理范围内;
    (2)仅一路速度传感器故障:速度数据出现速度跳变或者不在合理范围内;
    (3)径向轴承/推力轴承气压力不足:径向轴承/推力轴承气压力低于合理范围的最低限值;
    (4)启动转速错误:燃机在启动过程中转速未在规定时间内达到点火速度;
    (5)点火失败:点火后燃机排气温度未在给定时间内上升至一定温度值;
    (6)切油失败:在燃机切油过程中,燃机排气温度未上升至一定温度值;
    L2:当出现以下一种或多种情况时,系统在运行过程中出现燃机控制一般错误,确定燃机故障等级为L2:
    (1)燃机排气温度过高且持续时间过长;
    (2)加速过快:燃机在转速爬升过程中单位时间速度增长过快;
    (3)加速故障:运行状态下,燃机在逐渐增大燃油控制电压时,转速反而减小;
    (4)超速:在运行过程中,燃机转速超过目标运行转速;
    (5)转速不稳:在稳定运行工况点,燃机转速低于目标运行转速减去一定阈值,或者高于目标运行转速加上一定阈值;
    (6)箱体温度过高:燃机箱体冷端温度过高或热端温度过高;
    (7)燃油雾化不成功导致点火失败;
    (8)燃机系统内部通讯故障;
    L3:当出现以下一种或多种情况时,系统在运行过程中出现燃机控制严重错误,确定燃机故障等级为L3:
    (1)燃机排气温度过高;
    (2)温度传感器均故障:在待机或者运行状态下,所有温度传感器都出现温度跳变或不在合理范围内或无温度输出;
    (3)速度传感器均故障:在待机或者运行状态下,所有速度传感器都出现速度跳变或不在合理范围内;
    (4)油泵控制电压失效:油泵的输出控制电压与反馈的油泵控制电压差值超过设定的阈值;
    (5)低压供电电源故障:油泵电源、点火器电源和电磁阀电源的主供电源出现故障,无法提供电源;
    L4:故障等级确定模块接收到急停按钮被按下的信号,或可燃气气体泄漏的信号,或燃机箱体出现明火的信号,则确定系统故障等级为L4;
    L5:系统处于失效状态;
    所述步骤(3)中,基于故障等级,产生如下控制信号:
    当故障等级为L0时,产生使得执行模块的各部件正常运行的控制信号;
    当故障等级为L1时,产生使得执行模块的各部件正常运行的控制信号;
    当故障等级为L2时,产生使得执行模块执行冷停机流程的控制信号;
    当故障等级为L3时,产生使得执行模块执行热停机流程的控制信号;
    当故障等级为L4时,产生使得执行模块执行热关机流程1的控制信号;
    当故障等级为L5时,产生使得执行模块执行热关机流程2的控制信号;
    所述步骤(四)中,基于控制信号,执行以下相应操作:
    执行正常运行:各部件正常运行;
    执行冷停机流程:油泵基于控制模块的控制电压信号周期性减少燃油输出;其他相关阀门基于控制模块产生控制关闭信号关闭;在燃机的转速下降到一定转速时,电机基于控制模块产生的电机启动信号工作,对燃机进行冷却;
    执行热停机流程:油泵基于控制模块的控制电压信号周期性大幅度减少燃油输出直至油泵输出控制电压为0,油泵输出控制电压降至0时,电机基于控制模块产生的电机启动信号工作,对燃机进行冷却一定时间;
    执行热关机流程1:控制模块直接将油泵输出控制电压设置为0,油泵停止输出燃油,油路电磁阀及相应阀门关闭;
    执行热关机流程2:控制模块直接将油泵输出控制电压设置为0,油泵停止输出燃油,油路电磁阀及相应阀门关闭;同时,切断系统所有供电电源,断开所有接触器。
  8. 根据权利要求7所述的燃气轮机故障监控方法,其特征在于:还包括步骤(五)故障提示:显示基于故障等级产生的故障相关警示信息。
  9. 根据权利要求7所述的燃气轮机故障监控方法,其特征在于:所述L2(1)中,燃机排气温度过高是指大于700degC;持续时间过长是指超过10秒;
    或/和:所述L2(2)中,燃机在转速爬升过程中单位时间速度增长过快是指在加速过程中转速加速度超过5,000rpm/s;
    或/和:所述L2(3)中,转速反而减小是指转速在1秒内下降超过1,000rpm;
    或/和:所述L2(4)中,目标运行转速是指3,000rpm;
    或/和:所述L2(5)中,燃机转速低于目标运行转速减去一定阈值是指低于目标运行转速5,000rpm;高于目标运行转速加上一定阈值是指超过目标运行转速2,500rpm;
    或/和:所述L2(6)中,燃机箱体冷端温度过高是指超过50degC;热端温度过高是指超过80degC;
    或/和:所述L3(1)中,燃机排气温度过高是指超过750degC。
  10. 根据权利要求7~9中任一项所述的燃气轮机故障监控方法,其特征在于:利用权利要求1~5中任一项所述的燃气轮机故障监控系统,进行燃气轮机故障监控方法的各步操作。
PCT/CN2021/099970 2020-12-07 2021-06-15 一种燃气轮机故障监控系统及方法 WO2022121267A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011427893.X 2020-12-07
CN202011427893.XA CN112664329A (zh) 2020-12-07 2020-12-07 一种燃气轮机故障监控系统及方法

Publications (1)

Publication Number Publication Date
WO2022121267A1 true WO2022121267A1 (zh) 2022-06-16

Family

ID=75401578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099970 WO2022121267A1 (zh) 2020-12-07 2021-06-15 一种燃气轮机故障监控系统及方法

Country Status (2)

Country Link
CN (1) CN112664329A (zh)
WO (1) WO2022121267A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112664329A (zh) * 2020-12-07 2021-04-16 靳普 一种燃气轮机故障监控系统及方法
CN113719358B (zh) * 2021-09-06 2022-12-30 上海发电设备成套设计研究院有限责任公司 一种重型燃气轮机控制方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040800A1 (en) * 1997-03-13 1998-09-17 Intelligent Applications Limited A monitoring system
JP2004108209A (ja) * 2002-09-17 2004-04-08 Mitsubishi Electric Corp マイクロガスタービン設備の遠隔監視システム
CN101694182A (zh) * 2009-09-29 2010-04-14 上海中科清洁能源技术发展中心 中/小型燃气轮机在线故障诊断、预测、反馈控制方法及装置
CN104481702A (zh) * 2014-10-15 2015-04-01 哈尔滨东安发动机(集团)有限公司 微型燃气轮机运行状态的监测方法
US20180347408A1 (en) * 2017-06-02 2018-12-06 General Electric Company System and method for risk categorization
CN112664329A (zh) * 2020-12-07 2021-04-16 靳普 一种燃气轮机故障监控系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966925A (en) * 1996-04-26 1999-10-19 Kabushiki Kaisha Toshiba Gas turbine power plant control for starting and stopping
JP4491228B2 (ja) * 2003-12-25 2010-06-30 株式会社日立製作所 発電設備の遠隔運用支援方法及び発電設備の遠隔運用支援システム
CN104500234A (zh) * 2014-12-26 2015-04-08 北京华清燃气轮机与煤气化联合循环工程技术有限公司 一种重型燃气轮机超速保护方法及装置
CN105242578B (zh) * 2015-09-29 2018-08-07 北京航天发射技术研究所 发电机组控制管理监测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040800A1 (en) * 1997-03-13 1998-09-17 Intelligent Applications Limited A monitoring system
JP2004108209A (ja) * 2002-09-17 2004-04-08 Mitsubishi Electric Corp マイクロガスタービン設備の遠隔監視システム
CN101694182A (zh) * 2009-09-29 2010-04-14 上海中科清洁能源技术发展中心 中/小型燃气轮机在线故障诊断、预测、反馈控制方法及装置
CN104481702A (zh) * 2014-10-15 2015-04-01 哈尔滨东安发动机(集团)有限公司 微型燃气轮机运行状态的监测方法
US20180347408A1 (en) * 2017-06-02 2018-12-06 General Electric Company System and method for risk categorization
CN112664329A (zh) * 2020-12-07 2021-04-16 靳普 一种燃气轮机故障监控系统及方法

Also Published As

Publication number Publication date
CN112664329A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
WO2022121267A1 (zh) 一种燃气轮机故障监控系统及方法
JP3708965B2 (ja) ガスタービン燃焼機のブローアウト検出方法及びブローアウト検出装置
US7072761B2 (en) Redundant engine shutdown system
US20110137536A1 (en) Systems and Methods for Using a Combustion Dynamics Tuning Algorithm with a Multi-Can Combustor
EP2574198A1 (en) Method of detecting a predetermined condition in a gas turbine and failure detection system for a gas turbine
EP2330275B1 (fr) Procédé de détection d'une fuite de combustible liquide dans une turbine à gaz
CN108826700B (zh) 用于燃气热水器安全保护的控制方法、装置及燃气热水器
JP4113728B2 (ja) フレームアウトを検出する方法、フレームアウト検出装置及びガスタービンエンジン
JPH0979037A (ja) ラジエータの冷却ファンシステムの異常検出装置
KR101895642B1 (ko) 터빈엔진 시동방법
US7082769B2 (en) Helicopter turbine engine protection system
US8626420B2 (en) Gas turbine sequencing method and system
EP2580449A2 (en) Control of an internal combustion engine
CA3115485A1 (en) System and method for detecting a shaft event on an engine
JPH0436259B2 (zh)
CN212563463U (zh) 一种微型燃气轮机启动系统
JP4599652B2 (ja) ジェットエンジンの制御方法及び制御装置
CN111855221A (zh) 一种燃气轮机燃烧状态监测方法及系统
CN115726887A (zh) 燃气涡轮发动机以及消除其热弯曲的系统、方法
CN113903944A (zh) 一种燃料电池系统启动方法
EP2580450A2 (en) Control of an internal combustion engine
JP2001033038A (ja) ガスタービンの火炎検出装置
JPH06264767A (ja) ガスタービンエンジンの起動装置
US20030189967A1 (en) Method for monitoring a gas appliance, in particular a heat generator, with predominantly flameless oxidation, and monitoring module for performing the method
JP2016523331A (ja) 一軸形コンバインドサイクルプラントの過回転速度防止装置をテストするための方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21901979

Country of ref document: EP

Kind code of ref document: A1