WO2022120915A1 - 环保设备控制装置、生产计划优化系统、方法及计算机可读取介质 - Google Patents

环保设备控制装置、生产计划优化系统、方法及计算机可读取介质 Download PDF

Info

Publication number
WO2022120915A1
WO2022120915A1 PCT/CN2020/137063 CN2020137063W WO2022120915A1 WO 2022120915 A1 WO2022120915 A1 WO 2022120915A1 CN 2020137063 W CN2020137063 W CN 2020137063W WO 2022120915 A1 WO2022120915 A1 WO 2022120915A1
Authority
WO
WIPO (PCT)
Prior art keywords
production
environmental protection
protection equipment
production plan
unit
Prior art date
Application number
PCT/CN2020/137063
Other languages
English (en)
French (fr)
Inventor
薛斌杰
任银姬
倪悦勇
董苏芮
佐藤隆臣
Original Assignee
三菱电机(中国)有限公司
三菱电机株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱电机(中国)有限公司, 三菱电机株式会社 filed Critical 三菱电机(中国)有限公司
Priority to EP20964847.6A priority Critical patent/EP4261632A1/en
Priority to CN202080107806.4A priority patent/CN116802656A/zh
Priority to JP2023558917A priority patent/JP2023554176A/ja
Priority to US18/266,271 priority patent/US20240036560A1/en
Priority to KR1020237019475A priority patent/KR20230104934A/ko
Publication of WO2022120915A1 publication Critical patent/WO2022120915A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4188Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by CIM planning or realisation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1412Controlling the absorption process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4183Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/30Administration of product recycling or disposal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25297Identify controlled element, valve, and read characteristics
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2605Wastewater treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/40Minimising material used in manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to an environmental protection equipment control device, a production plan optimization system equipped with the environmental protection equipment control device, a production plan optimization method, and a computer-readable medium storing a program whose result is to execute the production plan optimization method, and particularly relates to an environmental protection equipment control device.
  • environmental protection equipment In the process of automatic factory production, in order to minimize the impact on the environment, environmental protection equipment is usually configured for treating the pollutants generated in the production process.
  • environmental protection equipment include, for example, VOC processing equipment for processing VOCs (Volatile Organic Compounds) generated by volatilization of resins, adhesives, etc. during the production of electronic components, and VOC processing equipment for processing The industrial wastewater produced in the process is treated and recycled by water recycling equipment, etc.
  • the existing environmental protection equipment can technically realize the following functions: automatic opening and closing control according to the generation of pollutants in the production process. In this way, it can be ensured that the production process of the factory meets the requirements of environmental quality standards and pollutant discharge standards.
  • the operation of the existing environmental protection equipment is isolated from the operation of the entire factory.
  • the environmental protection equipment can only passively respond to pollutants when they are generated, and cannot predict the subsequent discharge and treatment of pollutants according to the production plan. This further exacerbates the problem of prompting environmental protection equipment to run at full capacity for a long time in order to avoid the risk of environmental failure.
  • the present invention has been made in view of the above-mentioned problems, and its object is to provide an environmental protection equipment control device, a production plan optimization system including the environmental protection equipment control device, a production plan optimization method, and a stored result for executing the production plan optimization method.
  • the computer-readable medium of the program can improve the operation efficiency of environmental protection equipment, reduce the energy consumption of environmental protection equipment, and use the operation of environmental protection equipment as the production plan under the premise of meeting environmental quality standards and pollutant discharge standards.
  • One of the elements so as to formulate an optimal production plan that can meet environmental protection requirements and minimize costs according to different production requirements.
  • the environmental protection equipment control device involved in the first aspect of the present invention includes: an environmental parameter acquisition unit, the environmental parameter acquisition unit acquires environmental parameters during the operation of the environmental protection equipment; an adjustment unit, the adjustment unit equipment to adjust; and a control unit, which controls the adjustment unit based on the environmental parameters acquired by the environmental parameter acquisition unit, so that the environmental parameters meet the minimum environmental protection requirements while reducing The operating cost of the environmental protection equipment.
  • the production plan optimization system includes: the environmental protection equipment control device according to the first aspect of the present invention, the environmental protection equipment control device performs the environmental protection equipment according to the production plan. control, so that the environmental parameters meet the minimum environmental protection requirements, and obtain environmental protection equipment operation information from the environmental protection equipment; production control device, the production control device controls the production equipment according to the production plan, and obtains production related information from the production equipment information; and a production plan optimization device, the production plan optimization device obtains production demand information, obtains the production-related information from the production control device, and obtains the environmental protection equipment operation information from the environmental protection equipment control device, and, based on The production-related information and the environmental protection equipment operation information are used to generate a plurality of production plans corresponding to the production demand information, and to obtain the cost of each production plan in the plurality of production plans, and then obtain the cost of each production plan from the plurality of production plans.
  • the production plan with the lowest cost of the production plan is
  • the production plan optimization method includes a learning step, in which the learning step is based on production-related information acquired from a production control device that controls the production equipment according to the production plan , from the environmental protection equipment operation information and production demand information obtained from the environmental protection equipment control device that controls the environmental protection equipment according to the production plan, to compare the production demand information and the cost of the plurality of production plans corresponding to the production demand information. and an optimal production plan decision step, in which the optimal production plan decision step selects from the plurality of production plans according to the production demand information based on the learning result of the learning step.
  • the production plan with the lowest cost of the production plans is regarded as the optimal production plan.
  • the computer-readable medium stores a program for executing the production plan optimization method described in the third aspect of the present invention.
  • the production plan optimization system including the environmental protection equipment control device, the production plan optimization method, and the computer-readable medium storing the program resulting in the execution of the production plan optimization method, it is possible to On the premise of meeting environmental quality standards and pollutant discharge standards, improve the operation efficiency of environmental protection equipment, reduce energy consumption of environmental protection equipment, and take the operation of environmental protection equipment as one of the elements in formulating production plans, so as to formulate existing environmental protection equipment according to different production requirements. Optimal production planning that can meet environmental requirements and minimize costs.
  • FIG. 1 is a block diagram for explaining the configuration of an eco-friendly facility control device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing a specific example of an environmental protection facility control device.
  • FIG. 3 is a schematic diagram showing another specific example of the environmental protection facility control device.
  • FIG. 4 is a block diagram for explaining a configuration of a production plan optimization system according to Embodiment 2 of the present invention.
  • FIG. 5 is a block diagram for explaining the configuration of the production plan optimization apparatus in FIG. 4 .
  • FIG. 6 is a flowchart for explaining a production plan optimization method.
  • FIG. 7 is a flowchart for explaining one embodiment of the learning step in FIG. 6 .
  • FIG. 8 is a flowchart for explaining another embodiment of the learning step in FIG. 6 .
  • FIG. 9 is a block diagram for explaining a configuration of a production plan optimization system according to Embodiment 3 of the present invention.
  • FIG. 10 is a block diagram for explaining the configuration of the production plan optimization apparatus in FIG. 9 .
  • FIG. 11 is a diagram showing an example of supply device information according to Embodiment 3.
  • FIG. 11 is a diagram showing an example of supply device information according to Embodiment 3.
  • FIG. 12 is a diagram showing an example of required resource amount information according to Embodiment 3.
  • FIG. 12 is a diagram showing an example of required resource amount information according to Embodiment 3.
  • FIG. 13 is a diagram showing an example of expense item information according to Embodiment 3.
  • FIG. 13 is a diagram showing an example of expense item information according to Embodiment 3.
  • FIG. 14 is a diagram showing an example of fee information according to Embodiment 3.
  • FIG. 14 is a diagram showing an example of fee information according to Embodiment 3.
  • FIG. 15 is a diagram showing an example of production evaluation index information according to Embodiment 3.
  • FIG. 15 is a diagram showing an example of production evaluation index information according to Embodiment 3.
  • FIG. 1 is a block diagram for explaining the configuration of the environmental protection facility control device 1 according to the first embodiment.
  • the environmental protection equipment control apparatus 1 includes an environmental parameter acquisition unit 10 , an adjustment unit 11 and a control unit 12 .
  • the environmental parameter acquisition unit 10 is respectively connected to a plurality of environmental protection equipments A to C, and acquires environmental parameters from one or more of the environmental protection equipments A to C.
  • an environmental parameter for example, it can be the concentration of harmful substances such as VOCs, carbon oxides, sulfur oxides, or heavy metals in industrial waste gas, or the content of toxic and harmful substances such as heavy metals, radioactive substances, or chemical substances in industrial wastewater. and other water quality parameters.
  • the environmental parameter acquisition unit 10 can detect environmental parameters during the operation of each environmental protection equipment A to C through various existing detection means such as pollutant sensing devices installed at the front, middle and rear ends of the environmental protection equipment.
  • the adjustment unit 11 is connected to a plurality of environmental protection equipments A to C, respectively, and adjusts the plurality of environmental protection equipments A to C.
  • the adjustment object may be, for example, the operating frequency of variable frequency pumps, fans, and dosing devices installed in each environmental protection equipment, or the operating hours of each environmental protection equipment, and the flow path of industrial water.
  • the adjustment unit 11 can adjust each of the environmental protection equipment A to C by, for example, various existing control means such as an inverter and a solenoid valve controller installed in the environmental protection equipment.
  • the control unit 12 is respectively connected with the environmental parameter acquisition unit 10 and the adjustment unit 11, respectively acquires the environmental parameters of each environmental protection equipment A to C from the environmental parameter acquisition unit 10, and adjusts the environmental parameters based on the environmental parameters of each environmental protection equipment A to C respectively.
  • the adjustment unit 11 performs control so that the adjustment unit 11 adjusts the corresponding environmental protection equipments A to C respectively, so that the environmental parameters meet the minimum environmental protection requirements and at the same time reduce the operating costs of the environmental protection equipments A to C as much as possible.
  • the so-called minimum environmental protection requirements for example, when the environmental parameter is VOC concentration, means that the VOC concentration in the purified gas reaches the local emission standard, such as below 100ppm (due to the different environmental protection requirements of different industries, This is just an example), when the environmental parameter is the water quality parameter, it means that the water quality after water treatment meets the local discharge standard, or meets the discharge standard formulated by the enterprise according to its own situation.
  • the so-called operating cost of each environmental protection equipment may include, for example, the power cost of each environmental protection equipment, and the power cost can be obtained by calculating the power consumption of the environmental protection equipment according to the operating frequency and working time of the environmental protection equipment, etc. Multiply the electricity consumption by the real-time electricity bill while the eco-friendly device is working.
  • the operating cost of each environmental protection equipment may also include the electricity cost of the water cycle of the reused water treatment system, the cost of discarding filtered pollutants, and the cost of wastewater treatment for wastewater that cannot be reused. Other environmental protection equipment running costs.
  • the environmental parameters can be obtained from only one environmental protection device, or the environmental parameters can be obtained from two or more environmental protection devices.
  • the plurality of environmental protection devices may be the same type of environmental protection devices, or may be different types of environmental protection devices.
  • FIG. 2 is a schematic diagram showing a specific example of an environmental protection facility control device.
  • the environmental protection equipment is, for example, VOC treatment equipment, including a VOC collection device, a VOC treatment device, and a purified gas discharge device, wherein the VOC treatment device includes, for example, a spray tower and an activated carbon adsorption box (not shown).
  • the VOC treatment equipment treats VOC substances in the production environment.
  • the VOC concentration monitoring probe including the VOC collection device monitoring probe 101 and the purified gas VOC concentration monitoring probe 102 corresponds to the environmental parameter acquisition unit of the present invention
  • the inverter including the fan inverter 201 corresponds to the adjustment unit of the present invention.
  • These VOC concentration monitoring probes and frequency converters together with the control unit 12 constitute the environmental protection equipment control device of the present invention.
  • only one fan inverter 201 is shown here, but since the number and types of fans used in different VOC treatment processes in actual production may be different, multiple different inverters can also be configured to The operating frequency of the fan is controlled.
  • the VOC collection device monitoring probe 101 acquires the VOC concentration before the VOC treatment, that is, the VOC concentration at the entrance of the VOC collection device, and uploads the VOC concentration to the control unit 12 .
  • the control unit 12 stores the VOC concentration as environmental protection equipment operation information, and compares the VOC concentration with a preset VOC concentration threshold at the entrance, that is, a minimum environmental protection requirement. When the VOC concentration is higher than the VOC concentration threshold at the entrance, the control unit 12 controls the fan inverter 201 so that the fan inverter 201 increases the working frequency of the workshop exhaust fan located at the entrance of the VOC collection device.
  • the control unit 12 controls the fan inverter 201 so that the fan inverter 201 reduces the working frequency of the workshop exhaust fan until it stops working. In this way, the operating energy consumption of the fan can be reduced as much as possible on the premise of ensuring that the VOC concentration in the production environment is fully collected.
  • the purified gas VOC concentration monitoring probe 102 acquires the VOC concentration of the purified gas exhaust gas in the purified gas discharge device, and uploads the VOC concentration to the control unit 12 .
  • the control unit 12 stores the VOC concentration as environmental protection equipment operation information, and compares the VOC concentration with a preset purification gas VOC concentration threshold, that is, a minimum environmental protection requirement. When the VOC concentration is higher than the purified gas VOC concentration threshold, the control unit 12 controls the fan inverter 201 so that the fan inverter 201 increases the operating frequency of each fan in the VOC processing equipment.
  • the control unit 12 controls the fan inverter 201 so that the fan inverter 201 reduces the operating frequency of each fan in the VOC treatment equipment until it stops working.
  • the operating energy consumption of VOC treatment equipment can be reduced as much as possible on the premise of ensuring VOC emission standards.
  • FIG. 3 is a schematic diagram showing another specific example of the environmental protection facility control device.
  • the environmental protection equipment is, for example, water recycling equipment, including an industrial water treatment device, a water use process section, an industrial wastewater treatment device and a reused water treatment device, wherein the industrial water treatment device includes, for example, not shown.
  • the water process section includes, for example, degreasing equipment not shown, multiple pure water washing equipment, silane washing equipment, etc., and reused water treatment devices such as Including not shown activated carbon equipment, sand filter equipment, etc.
  • the water recycling equipment recycles and reuses industrial wastewater.
  • the flowmeter including the flowmeter 104 and the flowmeter 105 and the water quality monitoring probe 106 correspond to the environmental parameter acquisition unit of the present invention
  • the solenoid valve controller 203 corresponds to the adjustment unit of the present invention.
  • the flow meter 104 acquires the amount of tap water, that is, the water flow rate, from the industrial water treatment device, and uploads the water flow rate to the control unit 12 .
  • the water treated by the industrial water treatment device enters the water process section for use.
  • the water quality monitoring probe 106 obtains the used water quality parameters in real time from, for example, pure water washing equipment in the water process section, and uploads the water quality parameters to the control unit 12 .
  • the control unit 12 stores the above-mentioned water quality parameters and water flow as the operation information of the environmental protection equipment, and compares the water quality parameters with the preset reuse water standard.
  • the control unit 12 controls the solenoid valve controller 203 to adjust the conduction direction of the solenoid valve disposed between the water process section and the industrial wastewater treatment device to lead to the reuse water treatment device.
  • the control unit 12 controls the solenoid valve controller 203 to adjust the conduction direction of the solenoid valve to the direction leading to the industrial wastewater treatment device. Therefore, on the premise of ensuring that the water quality parameters of industrial wastewater meet the minimum environmental protection requirements, the reused water can be fully utilized, so as to reduce the use of tap water as much as possible, and reduce, for example, EDI equipment in industrial water treatment plants and industrial wastewater treatment. The operating energy consumption of the associated equipment in the installation.
  • a water quality monitoring probe can also be installed at the outlet of the reused water treatment device to detect and upload the water quality parameters of the reused water treated by the reused water treatment device to the control unit 12 .
  • the control unit 12 compares the water quality parameters of the reused water with the reused water standard again, and controls the conduction direction of the solenoid valve located at the outlet of the reused water treatment device, so that the reused water treated by the industrial water treatment device reaches the water quality level.
  • the reuse water standard it flows to the industrial water treatment device, and when the water quality does not meet the reuse water standard, it flows to the industrial wastewater treatment device.
  • the environmental parameter acquisition unit monitors various environmental parameters during the operation of each environmental protection equipment in real time, and the control unit determines the environmental parameters based on the environmental parameters acquired by the environmental parameter acquisition unit.
  • the adjustment unit is controlled so that the environmental parameters meet the minimum environmental protection requirements, and at the same time, the operating cost of the environmental protection equipment can be reduced as much as possible. Therefore, the energy consumption cost of the environmental protection equipment calculated in combination with the real-time electricity bill, and other costs for the operation of the environmental protection equipment, such as the treatment cost of waste water, waste gas and other wastes, can be reduced as much as possible.
  • FIG. 4 is a block diagram illustrating the configuration of the production plan optimization system 100 according to the second embodiment
  • FIG. 5 is a block diagram illustrating the configuration of the production plan optimization device 3 in FIG. 4 .
  • the production plan optimization system 100 includes an environmental protection equipment control device 1 , a production control device 2 , and a production plan optimization device 3 .
  • the environmental protection equipment control device 1 is, for example, the environmental protection equipment control device described in Embodiment 1, and the environmental protection equipment control device 1 further controls the environmental protection equipment A to C according to the production plan from the production plan optimization device 3, so that the environmental protection equipment A to C
  • the environmental parameters in the operation process of C meet the minimum environmental protection requirements, and the environmental protection equipment operation information is obtained from the environmental protection equipments A to C respectively.
  • the environmental protection equipment operation information includes, for example, at least the VOC concentration, water quality parameters, water flow and other environmental parameters described in Embodiment 1, as well as the operating frequencies and operating hours of environmental protection equipment A to C.
  • the environmental protection equipment operation information may also include, for example, maintenance cycles of the environmental protection equipments A to C, and the like.
  • the production control device 2 controls the production facilities a to c based on the production plan from the production plan optimization device 3 , and acquires production-related information from the production facilities a to c.
  • the so-called production-related information includes, for example, at least the production speed, power consumption, and production time period of the production equipment.
  • the production plan optimization device 3 obtains production demand information, obtains production-related information from the production control device 2, and obtains environmental protection equipment operation information from the environmental protection equipment control device 1.
  • the production demand information input by the operator may be acquired from outside the production planning optimization system 100 through an input device (not shown), or the production planning optimization system 100 may be obtained from an input device not shown in the figure.
  • the storage device acquires the production demand information stored therein.
  • the production demand information may be, for example, product orders, product specification requirements, and the like.
  • the production plan optimization device 3 determines a plurality of production plans according to the production demand information, and calculates the cost of each production plan among the plurality of production plans based on the production-related information and the environmental protection equipment operation information .
  • the following production methods can be used: use one production line in the morning to produce 50 units, and in the afternoon Use one production line to produce 50 units; use two production lines to produce 100 units in the morning; use one production line to produce 50 units each in two mornings, etc.
  • the above-mentioned different production plans will correspond to different pollutant discharge and treatment conditions.
  • the production plan optimization device 3 can simulate the cost of each production plan corresponding to different production conditions (corresponding to different production requirements, production-related information and environmental protection equipment operation information) before actual production. .
  • the so-called cost of the production plan is, for example, the cost of electricity consumed by each production facility a to c and each environmental protection facility A to C when the production plan is executed, and is multiplied by the power consumption of each production facility and each environmental protection facility by the The unit price of electricity in the time period is obtained.
  • the cost of the production plan may also include the cost of resources such as water and natural gas consumed, and the cost of consumables such as paint.
  • the cost of the production plan may include, for example, the maintenance cost of production equipment and environmental protection equipment, and the like, which will be described in detail later.
  • the production plan optimization device 3 selects a production plan with the lowest cost among the plurality of production plans, and provides it to the production control device 2 and the environmental protection equipment control device 1 as the optimal production plan.
  • the production plan optimization device 3 includes a learning unit 30 and an optimal production plan decision unit 31 .
  • the learning unit 30 calculates the cost of the production plan corresponding to each production plan based on the production-related information and the environmental protection equipment operation information obtained from the production control device 2 and the environmental protection equipment control device 1 respectively, and calculates the cost of the production plan corresponding to each production plan.
  • a large amount of accumulation of three kinds of data such as operation information and cost of production plan, using machine learning and other methods, to establish a set of algorithms that associate production demand information with the cost of multiple production plans, so as to compare the production demand information with the cost of multiple production plans.
  • the relationship between program costs is studied.
  • the learning unit 30 may directly provide the learning result to the optimal production plan determining unit 31 described later for its use, or may store the learning result in the learning result storage unit 32 as shown in FIG.
  • the optimal production plan decision unit 31 is called when necessary.
  • the optimal production plan determination unit 31 acquires production demand information from, for example, the outside of the production plan optimization system 100, calls the learning result from the learning result storage unit 32, and determines an optimal production plan with the lowest cost based on the above-mentioned learning result and the production demand information , and provide the optimal production plan to the production control device 2 and the environmental protection equipment control device 1 respectively.
  • the learning unit 30 includes a data acquisition unit 300 , a reward calculation unit 301 , and an action value function update unit 302 .
  • the data acquisition unit 300 acquires production-related information including at least the production speed, power consumption, and production time period of the production equipment from the production control device 2 , and obtains at least the environmental parameters and the operating frequency of the environmental protection equipment from the environmental protection equipment control device 1 . , environmental protection equipment operation information including working hours, and obtain production demand information from outside the production planning optimization system 100, for example.
  • the reward calculation unit 301 obtains the above information from the data acquisition unit 300, and calculates the power consumption per unit time according to the operating frequency of the environmental protection equipment, and multiplies the power consumption per unit time by the operating time of the environmental protection equipment to obtain the electricity consumption of the environmental protection equipment quantity. Then, the reward calculation unit 301 calculates the total power consumption by adding the power consumption of each production facility and the power consumption of the environmental protection facilities. Finally, the remuneration calculation unit 301 obtains, for example, the unit electricity price during the production time period from the external situation obtaining unit 34 described later, and multiplies the previously obtained total electricity consumption by the unit electricity price, thereby calculating the price of each production facility and environmental protection equipment. Total electricity cost. The reward calculation unit 301 calculates the reward based on the calculated total electricity consumption cost as the cost of each production plan. The specific calculation method of the remuneration will be explained later.
  • the environmental protection equipment control device 1 is the environmental protection equipment control device shown in the above-mentioned first embodiment, it can also control the environmental protection equipment, so as to ensure that the environmental parameters can meet the minimum environmental protection requirements.
  • the action value function update unit 302 acquires the calculated reward from the reward calculation unit 301 , and acquires the production demand information, as well as the production speed, production time slot, and operating frequency of the environmental protection device corresponding to each production plan from the data acquisition unit 300 . , working hours and other information, based on the above information, to update the action value function, and store the updated action value function as one of the learning results in the learning result storage unit 32 for the optimal production plan decision unit 31 to call to decide the next production plan.
  • Any learning algorithm can be used as a method for updating the action value function by the action value function update unit 302 .
  • reinforcement learning refers to the agent (action subject) in a certain environment observes the current state and decides the action that should be taken. The agent is rewarded from the environment by choosing actions, learning strategies that are most rewarded through a series of actions.
  • Q-learning Q-learning
  • TD-learning time difference learning
  • the general update formula (action value table) of the action value function Q(s, a) is represented by the mathematical formula 1.
  • Equation 1 s t represents the state at time t, and at t represents the action at time t. Due to action at, the state becomes s t +1 . r t+1 represents the reward obtained by the change of the state, ⁇ represents the discount rate, and ⁇ represents the learning coefficient.
  • the next production plan determined by the optimal production plan determination unit 31 is used as an instruction to execute the action at.
  • Equation 1 For the update formula shown in Equation 1, if the action value of the best action a at time t+1 is greater than the action value Q of the action a executed at time t, the action value Q at time t is increased, and in the opposite case, Then reduce the action value Q at time t.
  • the action value function Q(s, a) is updated in such a way that the action value Q of the action a t at time t is close to the optimal action value at time t+1.
  • the best action value in an environment is in turn propagated to the action value in its previous environment.
  • each production plan corresponding to the production demand is executed. data, and calculate the cost of each production plan, including the operating cost of environmental protection equipment to meet environmental protection requirements, and establish a set of correlation models between production plans and costs through machine learning.
  • the operation of the environmental protection equipment can be taken as one of the elements in formulating the production plan, so that the optimal production plan that can meet the environmental protection requirements and minimize the cost can be formulated according to different production requirements.
  • the maintenance cost of the environmental protection equipment may also be taken into consideration when the compensation calculation section calculates the compensation.
  • the data acquisition unit 300 can also acquire the maintenance period of the environmental protection equipment from the environmental protection equipment control device 1, and the reward calculation unit 301 calculates the environmental protection equipment within a certain working time based on the relationship between the working hours of the environmental protection equipment and the maintenance period
  • the maintenance cost of environmental protection equipment corresponding to each production plan is calculated based on the number of maintenance needs and the cost of each maintenance.
  • the reward calculation unit 301 adds the calculated maintenance cost of the environmental protection equipment to the previously calculated electricity consumption cost as the total cost of each production plan.
  • maintenance costs of environmental protection equipment include, for example, costs for components and materials to be replaced, labor costs for workers, and costs for energy consumption and resource consumption in maintenance work (for example, in the case of using cleaning equipment) Need to replace the washing water) and so on.
  • the production plan optimization device 3 may further include an original production plan providing unit 33, and the original production plan providing unit 33 stores a list of actions to be executed in the initial stage of learning, that is, the original production plan.
  • the original production plan is supplied to the optimal production plan decision unit 31 in the initial stage after the start.
  • a production engineer who is a user may input through an input device (not shown), or may refer to the previous production plan stored in the original production plan providing unit 33 in advance. resume to determine the original production plan.
  • the optimal production plan decision unit 31 first causes the production control device 2 and the environmental protection equipment control device 1 to execute the original production plan, and the data acquisition unit 300 obtains after the execution of the original production plan.
  • the action value function update unit 302 also updates the action value function based on the remuneration calculated by the remuneration calculation unit and the production-related information and environmental protection equipment operation information after executing the original production plan. , and provide the updated action value function to the optimal production plan decision unit 31 again.
  • the production plan optimization device 3 may further include an external situation acquisition unit 34, and the external situation acquisition unit 34 acquires the external situation that changes based on time within the working day from the outside of the production plan optimization system 100, based on the external situation.
  • the cost reduction due to the use of unconventional energy is calculated for a plurality of production plans corresponding to the production demand information according to the situation, and the cost reduction due to the use of the unconventional energy is provided to the learning unit 30 .
  • the external conditions acquiring unit 34 acquires the weather conditions during the working day from the outside in real time, for example, through the communication unit not shown in the figure. , calculate the cost that can be reduced by using solar energy based on the light intensity information in it, calculate the cost that can be reduced by using wind energy based on the wind information, and calculate the cost that can be reduced by using unconventional energy such as solar energy and wind energy.
  • the cost of is provided to the reward calculation unit 301 in the learning unit 30 .
  • the remuneration calculation unit 301 calculates the remuneration by taking into consideration these costs that can be reduced by using unconventional energy such as solar energy and wind energy.
  • the learning unit 30 learns the relationship between the production demand information and the cost of the production plan under different external conditions, taking into account the cost reduction that can be achieved by using unconventional energy. Then, the optimal production plan decision unit 31 decides the optimal production plan under different external conditions according to the production demand information based on the learning result of the learning unit 30 .
  • the external situation acquisition unit 34 can also acquire the real-time electricity price in the production time period from the outside through the communication unit (not shown), and provide it to the reward calculation unit 301 in the learning unit 30 for calculating Electricity costs for production equipment and environmental protection equipment.
  • the real-time weather conditions and other external conditions are considered when calculating the compensation, and the real-time electricity price is adopted, so that the cost of each production plan can be calculated more accurately, and the environment can be ensured. Under the premise that the parameters can meet the minimum environmental requirements, a better production plan can be obtained.
  • FIG. 6 is a flowchart for explaining a production plan optimization method
  • FIG. 7 is a flowchart for explaining one example of the learning step in FIG. 6
  • FIG. 8 is a flowchart for explaining the learning step in FIG. 6 . Another embodiment of the flow chart is illustrated.
  • step S1 the learning unit 30 in the production plan optimization device 3 obtains the production-related information from the production control device 2, obtains the environmental protection equipment operation information from the environmental protection equipment control device 1, and obtains the obtained
  • the production demand information is used to learn the relationship between the production demand information and the costs of a plurality of production plans corresponding to the production demand information, the learning result is stored in the learning result storage unit 32, and the process proceeds to step S2.
  • the specific method of learning will be explained below.
  • step S2 the optimal production plan determination unit 31 retrieves the learning result from the learning result storage unit 32, and based on the learning result, selects from a plurality of production plans corresponding to the production demand information according to the production demand information.
  • the production plan with the lowest cost of the production plan is used as the optimal production plan.
  • step S101 the optimal production plan determination unit 31 acquires the original production plan from the original production plan providing unit 33, and temporarily regards the original production plan as the optimal production plan so far.
  • the plan is provided to the environmental protection equipment control device 1 and the production control device 2, and each environmental protection equipment A to C and each production equipment a to c execute the original production plan, and the process proceeds to step S102.
  • step S102 the data acquisition unit 300 in the learning unit 30 acquires from the production control device 2 at least production-related information including the production speed, power consumption, and production time period of each production facility a to c, and from the environmental protection
  • the equipment control device 1 acquires at least the environmental parameters during the operation of each environmental protection equipment A to C, as well as the environmental protection equipment operation information including the operating frequency and working time of each environmental protection equipment A to C, and obtains the production demand information, and then proceeds to: Step S103.
  • step S103 the reward calculation unit 301 in the learning unit 30 calculates the power consumption of each environmental protection equipment A to C according to the operating frequency and working time of each environmental protection equipment A to C, respectively, and calculates the power consumption of the environmental protection equipment A to C.
  • the electricity consumption of the production equipment a to c is added and multiplied by the unit electricity price obtained from the external situation acquisition unit 34 during the production time period, so as to calculate the consumption of the production equipment a to c and the environmental protection equipment A to C.
  • the electricity cost is taken as the cost of the production plan, and then the process proceeds to step S104.
  • step S104 the reward calculation unit 301 judges the change in cost.
  • an original cost can be preset, and the calculated cost of the original production plan is compared with the original cost.
  • step S104: cost reduction the process proceeds to step S105, and the reward is increased, for example, +1, and the reward calculation unit 301 ends the reward calculation process and calculates the result of the calculation. It is sent to the action value function update unit 302 .
  • step S104: the cost is unchanged the process proceeds to step S106 to keep the reward unchanged, and the reward calculation unit 301 ends the reward calculation process and calculates the result of the calculation.
  • step S104 determines that the cost is increased compared to the original cost (step S104: cost increase)
  • step S107 the reward is decreased, for example, -1
  • step S107 the reward calculation unit 301 ends the reward calculation process and calculates the The calculation result is sent to the action value function update unit 302 .
  • step S108 the action value function update unit 302 uses the reward calculated by the reward calculation unit 301, the production demand information, and the production speed and production time slot of each production facility a to c corresponding to the original production plan. And the working frequency and working time of each environmental protection equipment A to C, to update the action value function.
  • the specific method of updating the action value function is as described above.
  • the learning unit 30 judges whether the learning satisfies the learning end condition.
  • the term "learning end condition” refers to a condition under which the learning unit 30 ends the machine learning.
  • the number of learning times may exceed a predetermined upper limit value, or when a certain production demand is met, the production-related information accumulated in the past, the operation information of environmental protection equipment, and the production demand may be
  • the reward calculated by substituting the history of data such as information into the action value function is the same as the reward calculated by the reward calculation unit 301 based on the actual measurement value, or the difference between the two is within a predetermined range.
  • step S109: NO the process proceeds to step S110 to execute the next production plan, and then returns to step S102 to restart the learning of the next production plan. In this case, the above-mentioned steps S102 to S109 are repeatedly executed.
  • step S109: YES the entire learning process is ended.
  • step S111 the data acquisition unit 300 not only acquires production-related information, environmental protection equipment operation information, and production demand information, but also acquires the maintenance cycle of each environmental protection equipment A to C from the environmental protection equipment control device 1 .
  • the reward calculation unit 301 after calculating the electricity consumption costs of the environmental protection equipment A to C and the production equipment a to c in step S103, the reward calculation unit 301 also calculates the maintenance of the environmental protection equipment according to the working time and maintenance cycle of the environmental protection equipment in step S112. In addition, in step S113, the electricity consumption cost calculated in step S103 and the maintenance cost of environmental protection equipment calculated in step S112 are added together as the cost of the production plan.
  • the data acquisition unit 300 may also acquire, from the external situation acquiring unit 34 , the external situation that changes based on time during the working day.
  • the remuneration calculation unit 301 also calculates the cost that can be reduced by using unconventional energy based on external conditions, and calculates the production by taking the cost that can be reduced by using unconventional energy into account. the cost of the plan.
  • the production plan optimization apparatus of the present invention is realized by hardware has been described above, but the present invention is not limited to this.
  • the production plan optimization method of the present invention can also be realized by software, or the present invention can be realized by a combination of software and hardware.
  • the program for executing the production plan optimization method of the present invention may be stored in various computer-readable media, and may be loaded into, for example, a CPU or the like for execution when necessary.
  • the computer-readable medium is not particularly limited. For example, optical disks such as HDD, CD-ROM, CD-R, MO, MD, and DVD, IC cards, floppy disks, and semiconductors such as mask ROM, EPROM, EEPROM, and flash ROM can be used. memory etc.
  • FIG. 9 is a block diagram for explaining the configuration of the production plan optimization system according to the third embodiment.
  • the production plan optimization system 100 ′ according to the third embodiment is different from the production plan optimization system 100 according to the second embodiment in that it further includes a supply device 4 , and the supply device 4 is directed to the production devices a to a to c A device that provides resources.
  • the resources provided by the supply equipment 4 to the production equipments a to c are, for example, cold water, warm water, compressed air, or electricity.
  • the supply facility 4 generates supply facility information related to the supply facility 4, and outputs the generated supply facility information to the production plan optimization device 3'.
  • the supply facility 4 controls the supply of resources in accordance with an instruction from the production plan optimization device 3'.
  • the production facilities a to c and the supply facility 4 are connected by a supply line for supplying resources, such as a water supply pipe, an air pipe, or an electric line, for example.
  • the production plan optimization device 3 ′ is different from the production plan optimization device 3 of the second embodiment in that it further includes a required resource calculation unit 401 , a cost calculation unit 402 , and a production evaluation Index calculation unit 403 .
  • the required resource amount calculation unit 401 acquires the production-related information from the production control device 2 after implementing the production plan, and acquires the supply facility information from the supply facility 4 after implementing the production plan. Then, the required resource amount calculation unit 401 determines a variety of resources for realizing the production plan based on the production plan based on the obtained production-related information and supply facility information. Then, the required resource amount calculation unit 401 calculates the amount of various resources necessary to realize the production plan as the required resource amount. Since the production plan includes a plurality of production processes, the required resource amount calculation unit 401 determines the resources required to realize each production process for each process, and calculates the required resource amount of the determined resources.
  • FIG. 11 shows an example of the supply equipment information of the present embodiment, that is, an example of the supply equipment information of the compressed air supply equipment.
  • the supply facility information of the compressed air supply facility includes supply facility, operation time, supply amount, facility operation, supply facility resource, and the like.
  • the required resource amount calculation unit 401 acquires the supply facility information from the supply facility 4 and acquires production-related information from the production control device 2, and based on the acquired supply facility information and production-related information, calculates the production facilities a to c and the production facilities a to c. The required amount of resources consumed by the supply facility 4 in each production process is totaled to generate required resource amount information.
  • FIG. 12 shows an example of necessary resource amount information.
  • the required resource amount information in FIG. 12 the required resource amount calculated by the required resource amount calculation unit 401 is shown for each production process.
  • consumption resources, inventory management resources, and supply facility resources are exemplified as resources for realizing the production plan.
  • the so-called consumption resources refer to the resources consumed in production. Consumption resources include, for example, materials for production.
  • inventory management resources refer to resources used for inventory management of products.
  • supply equipment resources refer to the resources consumed by the supply equipment that provides consumption resources to provide consumption resources. In FIG. 12, "600 roots" and the like described in the column of consumption resources are the necessary resource amounts for consumption resources.
  • "3000 storage management resources" described in the column of inventory management resources is the required resource amount of inventory management resources.
  • the required resource amount of consumption resources, the required resource amount of inventory management resources, and the required resource amount of supply equipment resources are shown for each production process.
  • the fee calculation unit 402 calculates a fee for obtaining the required resource amount for each resource specified by the required resource amount calculation unit 401 . As described above, since the required resource amount calculation unit 401 calculates the required resource amount for each production process, the cost calculation unit 402 also calculates the cost for obtaining the required resource amount for each production process. Specifically, the cost calculation unit 402 acquires the above-mentioned required resource amount information from the required resource amount calculation unit 401, integrates it with the stored cost item information, and calculates the resources required by the production equipment and the supply equipment in each production process cost to generate cost information.
  • FIG. 13 shows expense item information.
  • the expense item information is composed of expense items, expenses, and expense categories.
  • the expense item corresponds to the expense item of the consumption resource shown in FIG. 12 .
  • the cost column shows the cost unit price of each expense item.
  • the column of cost classification shows the classification of the cost in the usage class.
  • the column of remarks shown in FIG. 13 is for reference and is not included in the expense item information.
  • FIG. 14 shows fee information. As shown in FIG. 14 , the structure of the fee information is the same as that of the required resource amount information of FIG. 12 . However, in the required resource amount information in FIG. 12 , the required resource amount is described for each production process and each resource, and in the cost information in FIG. 14 , the cost is described for each production process and each resource .
  • the cost calculation unit 402 calculates the cost of each resource by multiplying the required resource amount described in the required resource amount information in FIG. 12 by the cost value described in the expense item information in FIG. 13 .
  • the fee calculation section 402 calculates the fee according to the following formula 1.
  • Inventory management fee ⁇ [(stock quantity) ⁇ (material cost) ⁇ (stock interest)/100+(stock quantity) ⁇ (retention time) ⁇ (inventory management fee) ⁇ (storage management resource)]
  • the production evaluation index calculation unit 403 acquires cost information from the cost calculation unit 402 , and calculates a production index to be an index for optimization of a production plan based on the acquired cost information.
  • the production evaluation index calculation unit 403 assigns each resource to a certain usage category according to the usage of the resource for each production process. Then, the production evaluation index calculation unit 403 totals the cost of resources for each production process and usage type. In addition, the production evaluation index calculation unit 403 indexes the total results of the costs of the various usage categories of the plurality of production processes. The total result of the costs obtained by indexing by the production evaluation index calculation unit 403 is referred to as a production evaluation index.
  • FIG. 15 shows production evaluation index information.
  • the production evaluation index information shows the production evaluation index for each application category calculated by the production evaluation index calculation unit 403 for each production process.
  • the material category, the energy category, the inventory management category, and the like are listed as the usage categories.
  • the production evaluation index of the material category is the sum of the values obtained by multiplying the material cost and labor cost by the load time and dividing by the production quantity (see the following formula 2).
  • the material cost is the value of screws and paint
  • the labor cost is the value of the operator.
  • the load time is a time obtained by subtracting the planned stop time from the operation time of the production plan based on the current state, as shown in the following formula 5.
  • the production evaluation index of the energy category is the sum of the values obtained by multiplying the energy cost by the load time and dividing it by the production quantity (see Equation 3 below).
  • the energy cost is the value of air and electricity.
  • the production evaluation index of the inventory management category is the sum of the values obtained by multiplying the inventory management fee by the load time and dividing it by the production quantity (see Equation 4 below).
  • the inventory management fee is the value of the storage management resource.
  • the production evaluation index calculation unit 403 calculates the evaluation value of the production plan using the production evaluation index for each application category and the weighting coefficient for each application category.
  • This evaluation value is an index value obtained by unifying the production evaluation indexes of each use category.
  • w1, w2, and w3 are weighting coefficients, which can be appropriately set by the user according to conditions such as the environment of the production site and the priority of evaluation.
  • the production evaluation index calculation unit 403 inputs the produced evaluation value to the data acquisition unit 300 of the learning unit 30, and the reward calculation unit 301 uses it as a reward together with the running cost of the environmental protection facility.
  • the cost of various necessary resources such as materials, energy, and inventory management in the production process is also taken into consideration, and the cost of each resource is considered.
  • the cost of the production plan including the operating cost of the environmental protection equipment to meet the environmental protection requirements, is calculated, and a set of correlation models between the production plan and the cost is established through machine learning, thereby further reducing the cost of the production plan. , to obtain a more optimized production plan.
  • a production plan optimization system provided with the environmental protection equipment control device, a production plan optimization method, and a computer-readable medium storing a program whose result is to execute the production plan optimization method, It is useful for optimizing the operation mode of the environmental protection equipment in the factory with the environmental protection equipment and the production plan of the whole factory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Analytical Chemistry (AREA)
  • Strategic Management (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Marketing (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Tourism & Hospitality (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Sustainable Development (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种环保设备控制装置(1)、生产计划优化系统(100)、方法及计算机可读取介质,能在达到环保标准的前提下,提高环保设备运行效率,降低环保设备能耗,并能将环保设备的运行作为制定生产计划的要素之一。环保设备控制装置(1)包括:获取环保设备运行过程中的环境参数的环境参数获取单元(10);对环保设备进行调整的调整单元(11);以及基于环境参数获取单元(10)所获取到的环境参数,对调整单元(11)进行控制,使得环境参数满足最低限度的环保要求的同时,降低环保设备的运行成本的控制单元(12)。

Description

环保设备控制装置、生产计划优化系统、方法及计算机可读取介质 技术领域
本发明涉及环保设备控制装置、具备该环保设备控制装置的生产计划优化系统、生产计划优化方法、以及存储有结果为执行该生产计划优化方法的程序的计算机可读取介质,特别涉及对具备环保设备的工厂中的环保设备的运行方式及整个工厂的生产计划进行优化的系统和方法。
背景技术
在工厂自动化生产过程中,为了尽可能减小对环境的影响,通常配置有用于对生产过程中所产生的污染物进行处理的环保设备。作为环保设备的具体例,例如有用于对电子元器件生产过程中因树脂和胶合剂等挥发而产生的VOC(Volatile Organic Compounds:挥发性有机化合物)进行处理的VOC处理设备、以及用于对生产过程中所产生的工业废水进行水处理并进行回收再利用的水回收再利用设备等。
现有的环保设备在技术上能够实现以下功能:根据生产过程中污染物的产生而自动进行开启关闭控制。由此,能够确保工厂生产过程达到环境质量标准和污染物排放标准等要求。
发明内容
发明所要解决的问题
然而,以往出于使生产环境稳定达标的目的,只要检测到污染物的产生,就会使相应的环保设备进入满负荷运行状态,因此,环保设备长时间处于满负荷运行状态,会消耗大量的能源,增加废水、废气等污染物处理的成本,从而造成生产成本的提高。
另外,现有的环保设备的运行与整个工厂的运行是隔离的,环保设备只能在污染物产生时被动进行应对,而无法根据生产计划对接下来污染物 的排放和处理情况做出预测,从而进一步加剧了为规避环境不达标的风险而促使环保设备长时间满负荷运行的问题。
此外,以往环保设备的运行控制一般与生产计划的安排相互独立,因此,大都不对环保设备运行所产生的数据进行记录,或者即使记录也未将该数据作为生产计划决策的依据而加以利用。因而,造成在制定生产计划时未将环保设备运行情况考虑在内,从而无法获得能以较低的成本兼顾生产效率和环境保护的生产计划优化方案。
本发明是鉴于上述问题而完成的,其目的在于,提供一种环保设备控制装置、具备该环保设备控制装置的生产计划优化系统、生产计划优化方法、以及存储有结果为执行该生产计划优化方法的程序的计算机可读取介质,能在达到环境质量标准和污染物排放标准等标准的前提下,提高环保设备运行效率,降低环保设备能耗,并能将环保设备的运行作为制定生产计划的要素之一,从而针对不同生产要求制定既能满足环保要求又能使成本最小化的最优生产计划。
解决技术问题的技术方案
为了解决上述问题,本发明的第一方面所涉及的环保设备控制装置包括:环境参数获取单元,该环境参数获取单元获取环保设备运行过程中的环境参数;调整单元,该调整单元对所述环保设备进行调整;以及控制单元,该控制单元基于所述环境参数获取单元所获取到的所述环境参数,对所述调整单元进行控制,使得所述环境参数满足最低限度的环保要求的同时,降低所述环保设备的运行成本。
另外,为了解决上述问题,本发明的第二方面所涉及的生产计划优化系统包括:如上述本发明的第一方面所述的环保设备控制装置,该环保设备控制装置根据生产计划对环保设备进行控制,使得环境参数满足最低限度的环保要求,并从所述环保设备获取环保设备运行信息;生产控制装置,该生产控制装置根据生产计划对生产设备进行控制,并从所述生产设备获取生产相关信息;以及生产计划优化装置,该生产计划优化装置获取生产需求信息,从所述生产控制装置获取所述生产相关信息,并从所述环保设备控制装置获取所述环保设备运行信息,并且,基于所述生产相关信息和 所述环保设备运行信息,来生成与所述生产需求信息相对应的多个生产计划,并获得所述多个生产计划中的各生产计划的成本,然后从所述多个生产计划中选出所述生产计划的成本最低的生产计划作为最优生产计划,将所述最优生产计划提供给所述环保设备控制装置和所述生产控制装置。
另外,为了解决上述问题,本发明的第三方面所涉及的生产计划优化方法包括:学习步骤,在该学习步骤中,基于从根据生产计划对生产设备进行控制的生产控制装置获取的生产相关信息、从根据生产计划对环保设备进行控制的环保设备控制装置获取的环保设备运行信息、以及生产需求信息,来对所述生产需求信息与对应于所述生产需求信息的多个生产计划的成本之间的关系进行学习;以及最优生产计划决定步骤,在该最优生产计划决定步骤中,基于所述学习步骤的学习结果,根据所述生产需求信息来从所述多个生产计划中选出所述生产计划的成本最低的生产计划作为最优生产计划。
另外,为了解决上述问题,本发明的第四方面所涉及的计算机可读取介质存储有如下程序,该程序用于执行如上述本发明的第三方面所述的生产计划优化方法。
发明效果
根据本发明所涉及的环保设备控制装置、具备该环保设备控制装置的生产计划优化系统、生产计划优化方法、以及存储有结果为执行该生产计划优化方法的程序的计算机可读取介质,能在达到环境质量标准和污染物排放标准等标准的前提下,提高环保设备运行效率,降低环保设备能耗,并能将环保设备的运行作为制定生产计划的要素之一,从而针对不同生产要求制定既能满足环保要求又能使成本最小化的最优生产计划。
附图说明
图1是用于对本发明的实施方式1所涉及的环保设备控制装置的结构进行说明的框图。
图2是表示环保设备控制装置的一个具体例的示意图。
图3是表示环保设备控制装置的另一个具体例的示意图。
图4是用于对本发明的实施方式2所涉及的生产计划优化系统的结构进行说明的框图。
图5是用于对图4中的生产计划优化装置的结构进行说明的框图。
图6是用于对生产计划优化方法进行说明的流程图。
图7是用于对图6中的学习步骤的一个实施例进行说明的流程图。
图8是用于对图6中的学习步骤的另一个实施例进行说明的流程图。
图9是用于对本发明的实施方式3所涉及的生产计划优化系统的结构进行说明的框图。
图10是用于对图9中的生产计划优化装置的结构进行说明的框图。
图11是表示实施方式3所涉及的供给设备信息的示例的图。
图12是表示实施方式3所涉及的必要资源量信息的示例的图。
图13是表示实施方式3所涉及的经费项目信息的示例的图。
图14是表示实施方式3所涉及的费用信息的示例的图。
图15是表示实施方式3所涉及的生产评价指标信息的示例的图。
具体实施方式
实施方式1.
下面,参照图1~3,对本实施方式1所涉及的环保设备控制装置进行说明。
图1是用于对本实施方式1所涉及的环保设备控制装置1的结构进行说明的框图。如图1所示,环保设备控制装置1包括环境参数获取单元10、调整单元11和控制单元12。
环境参数获取单元10分别与多个环保设备A~C相连接,从各环保设备A~C中的一处或多处获取环境参数。作为环境参数,例如可以是工业废气中的VOC、碳氧化物、硫氧化物、或重金属等有害物质的浓度,也可以是工业废水中的重金属、放射性物质、或化学物质等有毒有害物质的含量等水质参数。环境参数获取单元10例如可以通过安装于环保设备的前端、中端和后端的污染物感知装置等现有的各种检测手段,来对各环保设备A~C运行过程中的环境参数进行检测。
调整单元11分别与多个环保设备A~C相连接,对多个环保设备A~C进行调整。作为调整对象,例如可以是安装于各环保设备的可变频运行的水泵、风机、加药装置等的工作频率、或者各环保设备的工作时长、工业用水流通路径等。调整单元11例如可以通过安装于环保设备的变频器、电磁阀控制器等现有的各种控制手段,来对各环保设备A~C进行调整。
控制单元12分别与环境参数获取单元10和调整单元11相连接,从环境参数获取单元10分别获取各环保设备A~C的环境参数,并分别基于各环保设备A~C的环境参数,来对调整单元11进行控制,使调整单元11分别对相应的环保设备A~C进行调整,使得环境参数满足最低限度的环保要求的同时,尽可能降低各环保设备A~C的运行成本。所谓最低限度的环保要求,例如,在环境参数为VOC浓度的情况下,是指经净化处理后的气体中的VOC浓度达到所在地的排放标准,例如在100ppm以下(由于不同行业的环保要求不同,此处仅为示例),在环境参数为水质参数的情况下,是指经水处理后的水质达到所在地的排放标准,或者达到企业根据自身情况所制定的排放标准。另外,所谓各环保设备的运行成本,例如可以包括各环保设备的电力成本,该电力成本可以通过如下方式来获得:根据环保设备的工作频率、工作时长等来计算出环保设备的耗电量,将耗电量乘以环保设备工作时的实时电费。此外,各环保设备的运行成本还可以包括回用水处理系统的水循环的电力成本、对过滤后的污染物进行废弃的成本、以及对无法回用的废水进行废水处理的成本等其他用于环保设备运行的成本。
在本实施方式中,示出了三个环保设备A~C的示例,但环境参数获取单元10所能检测的环保设备的数量并不局限于此。例如,可以仅从一个环保设备获取环境参数,也可以从两个以上的多个环保设备获取环境参数。此外,在从多个环保设备获取环境参数的情况下,该多个环保设备可以为相同种类的环保设备,也可以为不同种类的环保设备。
图2是表示环保设备控制装置的一个具体例的示意图。如图2的虚线框所示,环保设备例如是VOC处理设备,包括VOC收集装置、VOC处理装置和净化气体排放装置,其中,VOC处理装置例如包括未图示的喷淋塔和活性炭吸附箱。该VOC处理设备对生产环境中的VOC物质进行处理。
包含VOC收集装置监测探头101和净化气体VOC浓度监测探头102在内的VOC浓度监测探头相当于本发明的环境参数获取单元,包含风机变频器201在内的变频器相当于本发明的调整单元。这些VOC浓度监测探头和变频器与控制单元12一起,组成了本发明的环保设备控制装置。另外,此处仅示出了一个风机变频器201,但由于实际生产中不同的VOC处理工艺所使用的风机的数量及类型可能不同,因此,也可以配置多个不同的变频器来分别对这些风机的工作频率进行控制。
下面,对VOC处理设备的控制方式进行说明。
VOC收集装置监测探头101获取VOC处理前的VOC浓度、即VOC收集装置入口处的VOC浓度,并将该VOC浓度上传至控制单元12。控制单元12将该VOC浓度作为环保设备运行信息来进行存储,并将该VOC浓度与预先设定的入口处VOC浓度阈值即最低限度的环保要求进行比较。当VOC浓度高于入口处VOC浓度阈值时,控制单元12对风机变频器201进行控制,使风机变频器201将位于VOC收集装置入口处的车间排风机的工作频率提高。另一方面,当VOC浓度小于等于生产环境VOC浓度阈值时,控制单元12对风机变频器201进行控制,使风机变频器201将车间排风机的工作频率降低直至停止工作。由此,能在确保生产环境中VOC浓度全收集的前提下,尽可能降低风机的运行能耗。
另外,净化气体VOC浓度监测探头102获取净化气体排放装置中经净化处理后的排放气体的VOC浓度,并将该VOC浓度上传至控制单元12。控制单元12将该VOC浓度作为环保设备运行信息来进行存储,并将该VOC浓度与预先设定的净化气体VOC浓度阈值即最低限度的环保要求进行比较。当VOC浓度高于净化气体VOC浓度阈值时,控制单元12对风机变频器201进行控制,使风机变频器201将VOC处理设备中的各风机的工作频率提高。另一方面,当VOC浓度小于等于净化气体VOC浓度阈值时,控制单元12对风机变频器201进行控制,使风机变频器201将VOC处理设备中各风机的工作频率降低直至停止工作。由此,能在确保VOC达标排放的前提下,尽可能降低VOC处理设备的运行能耗。
图3是表示环保设备控制装置的另一个具体例的示意图。如图3的虚线 框所示,环保设备例如是水回收再利用设备,包括工业水处理装置、用水工艺段、工业废水处理装置和回用水处理装置,其中,工业水处理装置例如包括未图示的沙过滤设备、反渗透设备、EDI(Electrodeionization:电去离子净水)设备等,用水工艺段例如包括未图示的脱脂设备、多个纯水洗设备、硅烷洗设备等,回用水处理装置例如包括未图示的活性炭设备、沙过滤设备等。该水回收再利用设备对工业废水进行回收再利用。
包含流量计104、流量计105在内的流量计和水质监测探头106相当于本发明的环境参数获取单元,电磁阀控制器203相当于本发明的调整单元。这些流量计、水质监测探头和电磁阀控制器与控制单元12一起,组成了本发明的环保设备控制装置。
下面,对水回收再利用设备的控制方式进行说明。
自来水与后述的回用水进入工业水处理装置进行处理,流量计104从工业水处理装置获取自来水的用量即水流量,并将该水流量上传至控制单元12。经工业水处理装置处理后的水进入用水工艺段供使用,水质监测探头106从用水工艺段的例如各纯水洗设备实时获取经使用后的水质参数,并将该水质参数上传至控制单元12。控制单元12将上述水质参数和水流量作为环保设备运行信息来进行存储,并将水质参数与预先设定的回用水标准进行比较。当水质参数达到回用水标准时,控制单元12对电磁阀控制器203进行控制,使设置于用水工艺段与工业废水处理装置之间的电磁阀的导通方向调整为导向回用水处理装置的方向。另一方面,当水质参数未达到回用水标准时,控制单元12对电磁阀控制器203进行控制,使上述电磁阀的导通方向调整为导向工业废水处理装置的方向。由此,能在确保工业废水的水质参数满足最低限度的环保要求的前提下,充分利用回用水,从而尽可能减少自来水的使用量,并降低例如工业水处理装置中的EDI设备和工业废水处理装置中的相关设备的运行能耗。
另外,虽未图示,但还可以在回用水处理装置的出口加装水质监测探头,对经回用水处理装置处理后的回用水水质参数进行检测并上传至控制单元12。控制单元12将该回用水水质参数再次与回用水标准进行比较,并对位于回用水处理装置出口处的电磁阀的导通方向进行控制,使经工业水 处理装置处理后的回用水在水质达到回用水标准时流向工业水处理装置,在水质未达到回用水标准时流向工业废水处理装置。
根据本实施方式1所涉及的环保设备控制装置,通过环境参数获取单元来对各环保设备运行过程中的各环境参数进行实时监控,控制单元基于环境参数获取单元所获取到的各环境参数,来对调整单元进行控制,使得环境参数满足最低限度的环保要求的同时,尽可能地降低环保设备的运行成本,因此,能在满足环保要求的前提下,避免环保设备长时间处于满负荷运行状态,从而能尽可能降低结合实时电费所计算出环保设备的能耗成本、以及如废水、废气等废弃物的处理成本等其他用于环保设备运行的成本。
实施方式2.
下面,参照图4~8,对本实施方式2所涉及的具备环保设备控制装置的生产计划优化系统、生产计划优化方法、以及存储有结果为执行该生产计划优化方法的程序的计算机可读取介质进行说明。
首先,参照附图,对生产计划优化系统的结构进行说明。图4是用于对本实施方式2所涉及的生产计划优化系统100的结构进行说明的框图,图5是用于对图4中的生产计划优化装置3的结构进行说明的框图。
如图4所示,生产计划优化系统100包括环保设备控制装置1、生产控制装置2以及生产计划优化装置3。
环保设备控制装置1例如是如实施方式1所述的环保设备控制装置,该环保设备控制装置1进一步根据来自生产计划优化装置3的生产计划对环保设备A~C进行控制,使得环保设备A~C运行过程中的环境参数满足最低限度的环保要求,并从环保设备A~C分别获取环保设备运行信息。所谓环保设备运行信息,例如至少包含实施方式1中所述的VOC浓度、水质参数、水流量等环境参数、以及环保设备A~C的工作频率、工作时长等。另外,环保设备运行信息例如还可以包括环保设备A~C的维护周期等。
生产控制装置2根据来自生产计划优化装置3的生产计划对生产设备a~c进行控制,并从生产设备a~c获取生产相关信息。所谓生产相关信息,例如至少包含生产设备的生产速度、用电量、生产时间段等。
生产计划优化装置3获取生产需求信息,从生产控制装置2获取生产相 关信息,并从环保设备控制装置1获取环保设备运行信息。作为获取生产需求信息的方式,例如可以通过未图示的输入装置从生产计划优化系统100的外部获取由操作人员所输入的生产需求信息,也可以从生产计划优化系统100内的未图示的存储装置获取存储于其中的生产需求信息。另外,作为生产需求信息,例如可以是产品订单、产品规格要求等。生产计划优化装置3在获取到上述这些信息后,根据生产需求信息来决定多个生产计划,并且,基于生产相关信息和环保设备运行信息,来计算出多个生产计划中的各生产计划的成本。作为根据生产需求信息来决定多个生产计划的示例,以根据生产需求(例如生产订单)需要生产100个单位的产品为例,可以采用以下几种生产方式:上午动用一条生产线生产50单位、下午动用一条生产线生产50单位;上午动用两条生产线生产100单位;分两个上午分别动用一条生产线各生产50单位等。上述不同的生产计划分别会对应不同的污染物排放和处理状况。生产计划优化装置3在经过一定的数据积累和学习之后,可以在实际生产之前模拟出不同生产状况(对应于不同的生产需求、生产相关信息及环保设备运行信息)所对应的各生产计划的成本。
另外,所谓生产计划的成本,例如是执行该生产计划时各生产设备a~c和各环保设备A~C所耗费的用电成本,由各生产设备及各环保设备的用电量乘以生产时间段内的单位电价来获得。另外,生产计划的成本也可以包括所消耗的水、天然气等资源的成本、以及例如涂料等耗材的成本。此外,生产计划的成本例如还可以包括生产设备、环保设备的维护成本等,关于这一点,将在后文中进行详细说明。接下来,生产计划优化装置3从多个生产计划中选出生产计划的成本最低的生产计划,以作为最优生产计划来提供给生产控制装置2和环保设备控制装置1。
下面对生产计划优化装置3的具体结构进行说明。如图5所示,生产计划优化装置3包括学习单元30和最优生产计划决定单元31。
学习单元30基于分别从生产控制装置2和环保设备控制装置1所获取到的生产相关信息和环保设备运行信息来计算与各生产计划相对应的生产计划的成本,通过对生产相关信息、环保设备运行信息及生产计划的成本这三种数据的大量积累,利用机器学习等方式,来建立一套将生产需求信息 与多个生产计划的成本关联起来的算法,从而对生产需求信息与多个生产计划的成本之间的关系进行学习。另外,学习单元30可以将学习结果直接提供给后述的最优生产计划决定单元31供其使用,也可以如图5所示那样,先将学习结果存储于学习结果存储部32,然后由最优生产计划决定单元31在需要时进行调用。
最优生产计划决定单元31从例如生产计划优化系统100的外部获取生产需求信息,并从学习结果存储部32调用学习结果,基于上述学习结果,根据生产需求信息来决定成本最低的最优生产计划,并将该最优生产计划分别提供给生产控制装置2和环保设备控制装置1。
下面对学习单元30的具体结构进行说明。如图5所示,学习单元30包括数据获取部300、报酬计算部301和行动价值函数更新部302。
数据获取部300从生产控制装置2获取至少包含生产设备的生产速度、用电量、生产时间段在内的生产相关信息,从环保设备控制装置1获取至少包含环境参数、以及环保设备的工作频率、工作时长在内的环保设备运行信息,并从例如生产计划优化系统100的外部获取生产需求信息。
报酬计算部301从数据获取部300获取上述各信息,并且,根据环保设备的工作频率来计算其单位时间功耗,将单位时间功耗乘以环保设备的工作时长,从而获得环保设备的用电量。然后,报酬计算部301将各生产设备的用电量与环保设备的用电量相加,来计算出总用电量。最后,报酬计算部301例如从后述的外界情况获取单元34获取生产时间段内的单位电价,并将之前所获得的总用电量乘以单位电价,从而计算出各生产设备和环保设备的总用电成本。报酬计算部301将所计算出的上述总用电成本作为各生产计划的成本,并基于其来对报酬进行计算。关于报酬的具体计算方法,将在后文中进行说明。
此外,由于环保设备控制装置1是上述实施方式1所示的环保设备控制装置,因此,同样能够对环保设备进行控制,使得确保环境参数能够满足最低限度的环保要求。
行动价值函数更新部302从报酬计算部301获取计算出的报酬,从数据获取部300获取生产需求信息、以及与各生产计划相对应的生产设备的生产 速度、生产时间段及环保设备的工作频率、工作时长等信息,基于上述这些信息,来对行动价值函数进行更新,并将更新后的行动价值函数作为学习结果之一而存储于学习结果存储部32,供最优生产计划决定单元31调用来决定下一步的生产计划。
对于行动价值函数更新部302更新行动价值函数的方法,可以采用任何的学习算法。作为一个示例,例如可以列举出应用强化学习(Reinforcement Learning)的情况。所谓强化学习是指某环境内的智能体(行动主体)观测当前的状态,决定应该采取的行动。智能体通过选择行动来从环境得到报酬,学习通过一连串的行动而得到最多报酬的对策。作为强化学习的代表性方法,已知有Q学习(Q-learning)和TD学习(TD–learning,时间差学习)。例如,在Q学习的情况下,行动价值函数Q(s,a)的一般的更新式(行动价值表)由数学式1表示。
[数学式1]
Figure PCTCN2020137063-appb-000001
在数学式1中,s t表示时刻t的状态,a t表示时刻t的行动。由于行动a t,状态变为s t+1。r t+1表示通过该状态的变化得到的报酬,γ表示折扣率,α表示学习系数。此处,在应用Q学习的情况下,使最优生产计划决定单元31所决定的下一步的生产计划成为执行行动a t的指示。
对于数学式1所示的更新式,若时刻t+1的最佳行动a的行为价值大于时刻t执行的行动a的行动价值Q,则增大时刻t的行动价值Q,相反的情况下,则减小时刻t的行动价值Q。换言之,以使时刻t的行动a t的行动价值Q接近时刻t+1的最佳行动价值的方式更新行动价值函数Q(s,a)。由此,某环境中的最佳行动价值依次传播到其以前的环境中的行动价值。
根据本实施方式2所涉及的生产计划优化系统,通过从生产控制装置和环保设备控制装置大量收集包括生产相关信息和环保设备运行信息在内的与生产需求相对应的各生产计划的执行过程中的数据,并对各生产计划的包括为达到环保要求而付出的环保设备运行成本在内的成本进行计算,通过机器学习来建立起一套生产计划与成本之间的关联模型,从而能在获知生产需求的情况下,协助决策者迅速地通过模拟来获得与该生产需求相对应的各生产计划的成 本,并从中选出成本最低的最优生产计划。因此,能将环保设备的运行作为制定生产计划的要素之一,从而针对不同生产要求制定既能满足环保要求又能使成本最小化的最优生产计划。
以上对本实施方式的生产计划优化系统100的主要结构进行了说明。然而,在报酬计算部计算报酬时,还可以将环保设备的维护成本考虑在内。具体而言,数据获取部300还可以从环保设备控制装置1获取环保设备的维护周期,报酬计算部301基于环保设备的工作时长与维护周期之间的关系,来计算一定的工作时长内环保设备需要进行维护的次数,并结合每次进行维护的成本,来计算与各生产计划相对应的环保设备的维护成本。并且,报酬计算部301将所计算出的环保设备的维护成本与之前所计算出的用电成本相加,来作为各生产计划的总成本。
另外,作为环保设备的维护成本的示例,例如可以列举进行更换的元器件、材料等的费用、作业人员的劳务费、维护作业的能耗和资源消耗等的费用(例如在采用清洗设备的情况下需要更换洗涤用水)等。
由于将环保设备的维护成本也考虑在内,因此,能更准确地计算出在确保环境参数能够满足最低限度的环保要求的前提下,某个生产计划的成本是多少,从而能更准确地获得最优生产计划。
另外,如图5所示,生产计划优化装置3还可以包括原始生产计划提供部33,该原始生产计划提供部33中保存有在学习初始阶段所要执行的行动清单、即原始生产计划,在学习开始后的初始阶段将该原始生产计划提供给最优生产计划决定单元31。作为决定原始生产计划的方法的示例,例如可以由作为用户的生产技术人员通过未图示的输入装置来进行输入,也可以参照预先保存于该原始生产计划提供部33的到目前为止的生产计划履历来决定原始生产计划。
此外,在学习开始后的初始阶段,最优生产计划决定单元31先使生产控制装置2和环保设备控制装置1执行该原始生产计划,数据获取部300所获取的是执行了该原始生产计划后的生产相关信息和环保设备运行信息,行动价值函数更新部302也是基于报酬计算部计算出的报酬和执行了该原始生产计划后的生产相关信息和环保设备运行信息,来对行动价值函数进行 更新,并将更新后的行动价值函数重新提供给最优生产计划决定单元31。
另外,如图5所示,生产计划优化装置3还可以包括外界情况获取单元34,该外界情况获取单元34从生产计划优化系统100的外部获取工作日内基于时间发生变化的外界情况,基于外界情况来计算与生产需求信息相对应的多个生产计划因采用非常规能源所能降低的成本,并将该因采用非常规能源所能降低的成本提供给学习单元30。
作为外界情况的一个示例,例如为工作日内基于时间而发生变化的光照强度、风力等天气情况,外界情况获取单元34例如通过未图示的通信部,从外部实时获取工作日内的天气情况,基于其中的光照强度信息来计算因采用太阳能所能降低的成本,基于其中的风力信息来计算因采用风能所能降低的成不,并将这些因采用太阳能、风能等非常规能源所能降低的成本提供给学习单元30中的报酬计算部301。报酬计算部301将这些因采用太阳能、风能等非常规能源所能降低的成本考虑在内,来计算报酬。由此,学习单元30将采用非常规能源所能降低的成本考虑在内,来对生产需求信息与不同的外部情况下生产计划的成本之间的关系进行学习。然后,最优生产计划决定单元31基于学习单元30的学习结果,根据生产需求信息来决定不同的外部情况下的最优生产计划。
此外,如上所述,外界情况获取单元34还可以通过未图示的通信部,从外部获取生产时间段内的实时电价,并将其提供给学习单元30中的报酬计算部301,用于计算生产设备与环保设备的用电成本。
根据上述结构,由于包括外界情况获取单元,在计算报酬时考虑了实时的天气情况等外界情况,并采用了实时电价,因此,能更准确地计算出各生产计划的成本,从而能在确保环境参数能够满足最低限度的环保要求的前提下,获得更好的生产计划。
接下来,参照附图,对生产计划优化方法进行说明。图6是用于对生产计划优化方法进行说明的流程图,图7是用于对图6中的学习步骤的一个实施例进行说明的流程图,图8是用于对图6中的学习步骤的另一个实施例进行说明的流程图。
如图6所示,首先,在步骤S1中,生产计划优化装置3中的学习单元30 基于从生产控制装置2获取生产相关信息、从环保设备控制装置1获取环保设备运行信息、以及所获取的生产需求信息,来对生产需求信息与对应于生产需求信息的多个生产计划的成本之间的关系进行学习,将学习结果存储于学习结果存储部32,并前进至步骤S2。关于学习的具体方法,将在下文中进行说明。
接着,在步骤S2中,最优生产计划决定单元31从学习结果存储部32中调取学习结果,基于该学习结果,根据生产需求信息来从与生产需求信息相对应的多个生产计划中选出生产计划的成本最低的生产计划,以作为最优生产计划。
下面对学习的一个具体实施例进行说明。
如图7所示,在学习开始后,首先,在步骤S101中,最优生产计划决定单元31从原始生产计划提供部33获取原始生产计划,将该原始生产计划暂时作为目前为止最优的生产计划来提供给环保设备控制装置1和生产控制装置2,使各环保设备A~C以及各生产设备a~c执行该原始生产计划,并前进至步骤S102。
接着,在步骤S102中,学习单元30中的数据获取部300从生产控制装置2获取至少包含各生产设备a~c的生产速度、用电量、生产时间段在内的生产相关信息,从环保设备控制装置1获取至少包含各环保设备A~C运行过程中的环境参数、以及各环保设备A~C的工作频率、工作时长在内的环保设备运行信息,并获取生产需求信息,然后前进至步骤S103。
在步骤S103中,学习单元30中的报酬计算部301根据各环保设备A~C的工作频率与工作时长来分别计算各环保设备A~C的用电量,将环保设备A~C的用电量与生产设备a~c的用电量相加并乘以从外界情况获取单元34获得的、生产时间段内的单位电价,由此来计算生产设备a~c与环保设备A~C的用电成本,以作为生产计划的成本,然后前进至步骤S104。
在步骤S104中,报酬计算部301对成本的变化情况进行判断。例如,可以预先设定一个原始成本,将所计算出的原始生产计划的成本与该原始成本进行比较。当在步骤S104中判断为与原始成本相比成本减少时(步骤S104:成本减少),前进至步骤S105,使报酬增加,例如+1,然后报酬计 算部301结束报酬计算处理,并将计算结果发送至行动价值函数更新部302。当在步骤S104中判断为与原始成本相比成本不变时(步骤S104:成本不变),前进至步骤S106,使报酬保持不变,然后报酬计算部301结束报酬计算处理,并将计算结果发送至行动价值函数更新部302。当在步骤S104中判断为与原始成本相比成本增大时(步骤S104:成本增大),前进至步骤S107,使报酬减少,例如-1,然后报酬计算部301结束报酬计算处理,并将计算结果发送至行动价值函数更新部302。
接下来,在步骤S108中,行动价值函数更新部302根据报酬计算部301所计算出的报酬、生产需求信息、以及与原始生产计划相对应的各生产设备a~c的生产速度、生产时间段及各环保设备A~C的工作频率、工作时长,来对行动价值函数进行更新。具体的更新行动价值函数的方法如上所述。
然后,在步骤S109中,学习单元30对学习是否满足学习结束条件进行判断。此处,所谓学习结束条件,是指学习单元30结束机器学习的条件。作为学习结束条件的示例,例如可以是学习次数超过预定的上限值,或者,也可以是在针对某一生产需求时,在将以往所累积的生产相关信息、环保设备运行信息及该生产需求信息等数据的履历代入行动价值函数后所计算出的报酬、与由报酬计算部301根据实测值所计算出的报酬相同、或两者的偏差在预定范围以内。在学习单元30判断为不满足上述学习结束条件的情况下(步骤S109:否),前进至步骤S110,执行下一个生产计划,然后,返回至步骤S102,重新开始下一个生产计划的学习。在这种情况下,重复执行上述步骤S102~S109。另一方面,在学习单元30判断为满足上述学习结束条件的情况下(步骤S109:是),则结束整个学习过程。
下面对学习的另一个具体实施例进行说明。
该学习的实施例与上一个实施例的不同之处在于,在步骤S101中执行原始生产计划之后,前进至步骤S111。在步骤S111中,数据获取部300不仅获取生产相关信息、环保设备运行信息和生产需求信息,还从环保设备控制装置1获取各环保设备A~C的维护周期。
另外,报酬计算部301在步骤S103中计算出环保设备A~C与生产设备a~c的用电成本后,还在步骤S112中根据环保设备的工作时长和维护周期 来计算出环保设备的维护成本,并且,在步骤S113中将步骤S103中所计算出的用电成本与步骤S112中所计算出的环保设备维护成本相加,来作为生产计划的成本。
本实施例的其他步骤与上一个实施例相同,此处省略说明。
以上对本实施方式的生产计划优化方法进行了说明,但本发明并不局限于此。例如,数据获取部300在完成步骤S102或步骤S111后,还可以从外界情况获取单元34获取工作日内基于时间发生变化的外界情况。报酬计算部301在步骤S103或步骤S113中,还基于外界情况,来计算该因采用非常规能源所能降低的成本,并将该因采用非常规能源所能降低的成本考虑在内来计算生产计划的成本。
另外,以上对通过硬件来实现本发明的生产计划优化装置的情况进行了说明,但本发明并不局限于此。也可以通过软件来实现本发明的生产计划优化方法,或者通过软件与硬件的结合来实现本发明。此外,也可以将用于执行本发明的生产计划优化方法的程序存储于各种计算机可读取介质,并在需要时将其加载至例如CPU等中来执行。作为计算机可读取介质并无特别限定,例如可使用HDD、CD-ROM、CD-R、MO、MD、DVD等光盘、IC卡、软盘、以及掩模ROM、EPROM、EEPROM、闪存ROM等半导体存储器等。
实施方式3.
下面,参照图9~14,对本实施方式3所涉及的具备环保设备控制装置的生产计划优化系统进行说明。
图9是用于对本实施方式3所涉及的生产计划优化系统的结构进行说明的框图。如图9所示,本实施方式3所涉及的生产计划优化系统100’与实施方式2的生产计划优化系统100不同之处在于,还包括供给设备4,该供给设备4是向生产设备a~c提供资源的设备。
供给设备4提供给生产设备a~c的资源例如是冷水、温水、压缩空气或电力等。供给设备4生成与供给设备4有关的供给设备信息,将所生成的供给设备信息输出至生产计划优化装置3’。此外,供给设备4根据来自生产计划优化装置3’的指令,来对资源的供给情况进行控制。另外,虽未图示, 生产设备a~c与供给设备4之间例如通过供水管、空气管或电气线路等用于提供资源的供给线路而相连接。
下面对生产计划优化装置3’的具体结构进行说明。如图5所示,本实施方式所涉及的生产计划优化装置3’与实施方式2的生产计划优化装置3的不同之处在于,还包括必要资源量计算部401、费用计算部402和生产评价指标计算部403。
必要资源量计算部401从生产控制装置2获取其实施生产计划后所产生的生产相关信息,并从供给设备4获取其实施生产计划后所产生的供给设备信息。并且,必要资源量计算部401根据所获得的上述生产相关信息和供给设备信息,基于生产计划来确定用于实现生产计划的多种资源。然后,必要资源量计算部401将实现生产计划所必须的各种资源的量计算作为必要资源量。由于生产计划中包含有多个生产工序,因此,必要资源量计算部401针对每个工序,确定实现各生产工序所需的资源,并计算所确定的资源的必要资源量。
图11表示本实施方式的供给设备信息的一个示例、即压缩空气供给设备的供给设备信息的示例。如图11所示,压缩空气供给设备的供给设备信息由供给设备、动作时刻、供给量、设备动作、供给设备资源等构成。
必要资源量计算部401从供给设备4获取该供给设备信息,并从生产控制装置2获取生产相关信息,并且,基于所获取到的供给设备信息和生产相关信息,来对生产设备a~c及供给设备4在各生产工序中所消耗的资源的必要量进行合计,从而生成必要资源量信息。
图12表示必要资源量信息的示例。在图12的必要资源量信息中,针对每个生产工序示出了必要资源量计算部401所计算出的必要资源量。在图12的必要资源量信息中,作为用于实现生产计划的资源,例示出了消费资源、库存管理资源及供给设备资源。所谓消费资源,是指生产中所消费的资源。消费资源中例如包含用于生产的材料。所谓库存管理资源,是指用于产品的库存管理的资源。所谓供给设备资源,是指提供消费资源的供给设备为提供消费资源而耗费的资源。在图12中,消费资源一栏中所记载的“600根”等是消费资源的必要资源量。另外,库存管理资源一栏中所记载的“3000 保管管理资源”是库存管理资源的必要资源量。由此,在图12中,针对每个生产工序示出了消费资源的必要资源量、库存管理资源的必要资源量和供给设备资源的必要资源量。
费用计算部402针对必要资源量计算部401所确定的每种资源,计算用于获得必要资源量的费用。如上所述,由于必要资源量计算部401针对每个生产工序计算必要资源量,因此,费用计算部402也针对每个生产工序计算用于获得必要资源量的费用。具体而言,费用计算部402从必要资源量计算部401获取上述必要资源量信息,将其与所保存的经费项目信息进行整合,来计算每个生产工序中生产设备和供给设备所需的资源的费用,从而生成费用信息。
图13表示经费项目信息。如图13所示,经费项目信息由经费项目、费用、以及费用分类构成。经费项目与图12所示的消费资源的经费项目相对应。费用一栏示出有每个经费项目的费用单价。费用分类一栏示出有用途类别中的费用的分类。此外,图13所示的备注一栏用于参考,不包含于经费项目信息中。
图14表示费用信息。如图14所示,费用信息的结构与图12的必要资源量信息的结构相同。然而,在图12的必要资源量信息中,是针对每个生产工序和每种资源记载了必要资源量,而在图14的费用信息中,是针对每个生产工序和每种资源记载了费用。
对于除库存管理资源以外的资源,费用计算部402将图12的必要资源量信息所记载的必要资源量乘以图13的经费项目信息所记载的费用的值,从而计算出各资源的费用。
对于库存管理资源,费用计算部402根据以下公式1来计算费用。
[式1]
库存管理费=∑[(库存数量)×(材料费)×(库存利息)/100+(库存数量)×(滞留时间)×(库存管理费)×(保管管理资源)]
生产评价指标计算部403从费用计算部402获取费用信息,基于所获取到的费用信息,来计算成为生产计划优化指标的生产指标。
具体而言,生产评价指标计算部403针对每个生产工序,根据资源的用 途,将各资源分配给某个用途类别。然后,生产评价指标计算部403针对每个生产工序和用途类别,对资源的费用进行合计。另外,生产评价指标计算部403将多个生产工序的多种用途类别的费用的合计结果进行指标化。将经生产评价指标计算部403指标化后所得的费用的合计结果称为生产评价指标。
图15表示生产评价指标信息。生产评价指标信息针对每个生产工序示出了由生产评价指标计算部403所计算出的每种用途类别的生产评价指标。在图15的示例中,作为用途类别,列举了材料类别、能源类别及库存管理类别等。
材料类别的生产评价指标是将材料费和劳务费与负荷时间相乘后除以生产数量而得的值的总和(参见以下式2)。在图15的示例中,材料费是螺钉和涂料的值,劳务费是作业人员的值。此处,负荷时间如以下式5所示,是从基于现状的生产计划的作业时间减去计划停顿时间而得的时间。
能源类别的生产评价指标是能源费乘以负荷时间后除以生产数量而得的值的总和(参见以下式3)。在图15的示例中,能源费是空气和电气的值。
库存管理类别的生产评价指标是库存管理费乘以负荷时间后除以生产数量而得的值的总和(参见以下式4)。在图15的示例中,库存管理费是保管管理资源的值。
[式2]
(材料)=∑{(材料费)+(劳务费)}×(负荷时间)/(生产数量)
[式3]
(能源)=∑(能源费)×(负荷时间)/(生产数量)
[式4]
(库存管理)=∑(库存管理费)×(负荷时间)/(生产数量)
[式5]
(负荷时间)=(作业时间)-(计划停顿时间)
如上所述,若针对每种用途类别求出生产评价指标,则生产评价指标计算部403利用每种用途类别的生产评价指标、以及每种用途类别的加权系 数,来计算生产计划的评价值。该评价值是对每种用途类别的生产评价指标进行统一后所得的指标值。
具体而言,越是合适的生产计划,由以下式6所获得的评价值越小。
[式6]
(评价值)=w1×(材料)+w2×(能源)+w3×(库存管理)
其中,w1、w2、w3是加权系数,可由用户根据生产现场的环境、评价的优先顺序等状况来适当地进行设定。
最后,生产评价指标计算部403将所生产的评价值输入至学习单元30的数据获取部300,再由报酬计算部301将其与环保设备的运行成本一起作为报酬来加以利用。
根据本实施方式3所涉及的生产计划优化系统,除考虑了生产设备的用电成本以外,还将生产过程中的材料、能源、库存管理等多种必要资源的费用考虑在内,来对各生产计划的包括为达到环保要求而付出的环保设备运行成本在内的成本进行计算,通过机器学习来建立起一套生产计划与成本之间的关联模型,由此,能进一步降低生产计划的成本,获得更优化的生产计划。
此外,应当认为本次披露的实施方式的所有方面仅是举例表示,并非是限制性的。本发明的范围由权利要求书来表示,而并非由上述实施方式来表示,本发明的范围还包括与权利要求书等同的含义及范围内的所有的修正和变形。
工业上的实用性
如上所述,根据本发明的环保设备控制装置、具备该环保设备控制装置的生产计划优化系统、生产计划优化方法、以及存储有结果为执行该生产计划优化方法的程序的计算机可读取介质,对于对具备环保设备的工厂中的环保设备的运行方式及整个工厂的生产计划进行优化的方面是有用的。
标号说明
1  环保设备控制装置
2  生产控制装置
3、3’ 生产计划优化装置
4      供给设备
10     环境参数获取单元
11     调整单元
12     控制单元
30     学习单元
31     最优生产计划决定单元
32     学习结果存储部
33     原始生产计划提供部
34     外界情况获取单元
100、100’  生产计划优化系统
101    VOC收集装置监测探头
102    净化气体VOC浓度监测探头
104、105    流量计
106    水质监测探头
201    风机变频器
203    电磁阀控制器
300    数据获取部
301    报酬计算部
302    行动价值函数更新部
401    必要资源量计算部
402    费用计算部
403    生产评价指标计算部

Claims (15)

  1. 一种环保设备控制装置,其特征在于,包括:
    环境参数获取单元,该环境参数获取单元获取环保设备运行过程中的环境参数;
    调整单元,该调整单元对所述环保设备进行调整;以及
    控制单元,该控制单元基于所述环境参数获取单元所获取到的所述环境参数,对所述调整单元进行控制,使得所述环境参数满足最低限度的环保要求的同时,降低所述环保设备的运行成本。
  2. 如权利要求1所述的环保设备控制装置,其特征在于,
    所述环保设备是VOC处理设备,包括VOC收集装置、VOC处理装置和净化气体排放装置,
    所述环境参数获取单元是VOC浓度监测探头,至少分别从所述VOC收集装置和所述净化气体排放装置获取VOC浓度,将所述VOC浓度用作为所述环境参数,
    所述调整单元是变频器,至少对所述VOC处理设备的风机的工作频率进行调整,
    所述控制单元基于所述VOC浓度对所述变频器进行控制,使得所述VOC浓度满足最低限度的环保要求的同时,降低所述VOC处理设备的运行成本。
  3. 如权利要求1所述的环保设备控制装置,其特征在于,
    所述环保设备是水回收再利用设备,包括工业水处理装置、用水工艺段、工业废水处理装置和回用水处理装置,
    所述环境参数获取单元是水质监测探头和流量计,所述水质监测探头至少从所述用水工艺段获取使用后的工业废水的水质参数,所述流量计至少从所述工业水处理装置和所述回用水处理装置获取水流量,将所述水质参数和所述水流量用作为所述环境参数,
    所述调整单元是电磁阀控制器,对设置于所述用水工艺段与所述工业废水处理装置之间的电磁阀的导通方向进行调整,
    所述控制单元基于所述水质参数和所述水流量对所述电磁阀控制器进 行控制,使得所述水质参数满足最低限度的环保要求的同时,降低所述水回收再利用设备的运行成本。
  4. 一种生产计划优化系统,其特征在于,包括:
    如权利要求1至3的任一项所述的环保设备控制装置,该环保设备控制装置根据生产计划对环保设备进行控制,使得环境参数满足最低限度的环保要求,并从所述环保设备获取环保设备运行信息;
    生产控制装置,该生产控制装置根据生产计划对生产设备进行控制,并从所述生产设备获取生产相关信息;以及
    生产计划优化装置,该生产计划优化装置获取生产需求信息,从所述生产控制装置获取所述生产相关信息,并从所述环保设备控制装置获取所述环保设备运行信息,并且,根据所述生产需求信息来决定多个生产计划,基于所述生产相关信息和所述环保设备运行信息,来获得所述多个生产计划中的各生产计划的成本,然后从所述多个生产计划中选出所述生产计划的成本最低的生产计划作为最优生产计划,将所述最优生产计划提供给所述环保设备控制装置和所述生产控制装置。
  5. 如权利要求4所述的生产计划优化系统,其特征在于,
    所述生产计划优化装置包括:
    学习单元,该学习单元基于所述生产相关信息、所述环保设备运行信息和所述生产需求信息,来对所述生产需求信息与所述多个生产计划的成本之间的关系进行学习;以及
    最优生产计划决定单元,该最优生产计划决定单元基于所述学习单元的学习结果,根据所述生产需求信息来决定所述最优生产计划。
  6. 如权利要求5所述的生产计划优化系统,其特征在于,
    所述学习单元包括:
    数据获取部,该数据获取部从所述生产控制装置获取至少包含所述生产设备的生产速度、用电量、生产时间段在内的所述生产相关信息,从所述环保设备控制装置获取至少包含所述环境参数、以及所述环保设备的工作频率、工作时长在内的所述环保设备运行信息,并获取所述生产需求信息;
    报酬计算部,该报酬计算部根据所述环保设备的工作频率与工作时长来计算所述环保设备的用电量,将所述环保设备的用电量与所述生产设备的用电量相加并乘以所述生产时间段内的单位电价,来计算所述生产设备与所述环保设备的用电成本,以作为所述多个生产计划中的各生产计划的成本,所述报酬计算部基于所述各生产计划的成本来对报酬进行计算;以及
    行动价值函数更新部,该行动价值函数更新部根据所述报酬计算部所计算出的所述报酬、所述生产需求信息、以及与所述各生产计划相对应的所述生产设备的生产速度、生产时间段及所述环保设备的工作频率、工作时长,来对行动价值函数进行更新。
  7. 如权利要求6所述的生产计划优化系统,其特征在于,
    所述数据获取部还从所述环保设备控制装置获取所述环保设备的维护周期,
    所述报酬计算部根据所述环保设备的工作时长和维护周期来计算所述环保设备的维护成本,将所述环保设备的维护成本与所述生产计划优化系统的用电成本相加,以作为所述多个生产计划中的各生产计划的成本。
  8. 如权利要求5所述的生产计划优化系统,其特征在于,
    所述生产计划优化装置还包括原始生产计划提供部,该原始生产计划提供部根据用户的输入或保存于该原始生产计划提供部的生产计划履历,来决定原始生产计划,并将该原始生产计划提供给所述最优生产计划决定单元,
    所述最优生产计划决定单元将所述原始生产计划提供给所述生产控制装置和所述环保设备控制装置。
  9. 如权利要求5至8的任一项所述的生产计划优化系统,其特征在于,
    所述生产计划优化装置还包括外界情况获取单元,该外界情况获取单元从所述生产计划优化系统外部获取工作日内基于时间发生变化的外界情况,并基于所述外界情况,来计算与所述生产需求信息相对应的所述多个生产计划因采用非常规能源所能降低的成本,
    所述学习单元进一步将所述采用非常规能源所能降低的成本考虑在 内,对所述生产需求信息与不同的所述外部情况下所述多个生产计划的成本之间的关系进行学习,
    所述最优生产计划决定单元基于所述学习单元的学习结果,根据所述生产需求信息来决定不同的所述外部情况下的所述最优生产计划。
  10. 一种生产计划优化方法,其特征在于,包括:
    学习步骤,在该学习步骤中,基于从根据生产计划对生产设备进行控制的生产控制装置获取的生产相关信息、从根据生产计划对环保设备进行控制的环保设备控制装置获取的环保设备运行信息、以及生产需求信息,来对所述生产需求信息与对应于所述生产需求信息的多个生产计划的成本之间的关系进行学习;以及
    最优生产计划决定步骤,在该最优生产计划决定步骤中,基于所述学习步骤的学习结果,根据所述生产需求信息来从所述多个生产计划中选出所述生产计划的成本最低的生产计划作为最优生产计划。
  11. 如权利要求10所述的生产计划优化方法,其特征在于,
    在所述学习步骤中,包括:
    数据获取步骤,在该数据获取步骤中,从所述生产控制装置获取至少包含所述生产设备的生产速度、用电量、生产时间段在内的所述生产相关信息,从所述环保设备控制装置获取至少包含所述环保设备运行过程中的环境参数、以及所述环保设备的工作频率、工作时长在内的所述环保设备运行信息,并获取所述生产需求信息;
    报酬计算步骤,在该报酬计算步骤中,根据所述环保设备的工作频率与工作时长来计算所述环保设备的用电量,将所述环保设备的用电量与所述生产设备的用电量相加并乘以所述生产时间段内的单位电价,来计算所述生产设备与所述环保设备的用电成本,以作为所述多个生产计划中的各生产计划的成本,所述报酬计算部基于所述各生产计划的成本来对报酬进行计算;以及
    行动价值函数更新步骤,在该行动价值函数更新步骤中,根据所述报酬计算步骤中所计算出的所述报酬、所述生产需求信息、以及与所述各生产计划相对应的所述生产设备的生产速度、生产时间段及所述环保设备的 工作频率、工作时长,来对行动价值函数进行更新。
  12. 如权利要求11所述的生产计划优化方法,其特征在于,
    在所述数据获取步骤中,还从所述环保设备控制装置获取所述环保设备的维护周期,
    在所述报酬计算步骤中,根据所述环保设备的工作时长和维护周期来计算所述环保设备的维护成本,将所述环保设备的维护成本与所述用电成本相加,以作为所述多个生产计划中的各生产计划的成本。
  13. 如权利要求10所述的生产计划优化方法,其特征在于,
    还包括原始生产计划提供步骤,在该原始生产计划提供步骤中,根据用户的输入或所保存的生产计划履历,来决定并提供原始生产计划,
    在所述最优生产计划决定步骤中,将所述原始生产计划提供给所述生产控制装置和所述环保设备控制装置。
  14. 如权利要求10至13的任一项所述的生产计划优化方法,其特征在于,
    还包括外界情况获取步骤,在该外界情况获取步骤中,从外部获取工作日内基于时间发生变化的外界情况,并基于所述外界情况,来计算与所述生产需求信息相对应的所述多个生产计划因采用非常规能源所能降低的成本,
    在所述学习步骤中,进一步将所述采用非常规能源所能降低的成本考虑在内,对所述生产需求信息与不同的所述外部情况下所述多个生产计划的成本之间的关系进行学习,
    在所述最优生产计划决定步骤中,基于所述学习步骤的学习结果,根据所述生产需求信息来决定不同的所述外部情况下的所述最优生产计划。
  15. 一种计算机可读取介质,该计算机可读取介质存储有如下程序,该程序用于执行如权利要求10至14的任一项所述的生产计划优化方法。
PCT/CN2020/137063 2020-12-11 2020-12-17 环保设备控制装置、生产计划优化系统、方法及计算机可读取介质 WO2022120915A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20964847.6A EP4261632A1 (en) 2020-12-11 2020-12-17 Environment-friendly device control apparatus, production plan optimizing system and method, and computer-readable medium
CN202080107806.4A CN116802656A (zh) 2020-12-11 2020-12-17 环保设备控制装置、生产计划优化系统、方法及计算机可读取介质
JP2023558917A JP2023554176A (ja) 2020-12-11 2020-12-17 環境保護設備の制御装置、生産計画最適化システム、生産計画最適化方法およびコンピュータ読み取り可能な媒体
US18/266,271 US20240036560A1 (en) 2020-12-11 2020-12-17 Environmental protection device control apparatus, production plan optimization system, method and computer-readable medium
KR1020237019475A KR20230104934A (ko) 2020-12-11 2020-12-17 친환경 디바이스 제어 장치, 생산 계획 최적화 시스템, 방법 및 컴퓨터 판독 가능 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011457934.X 2020-12-11
CN202011457934.XA CN114625073A (zh) 2020-12-11 2020-12-11 环保设备控制装置、生产计划优化系统、方法及计算机可读取介质

Publications (1)

Publication Number Publication Date
WO2022120915A1 true WO2022120915A1 (zh) 2022-06-16

Family

ID=81894847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137063 WO2022120915A1 (zh) 2020-12-11 2020-12-17 环保设备控制装置、生产计划优化系统、方法及计算机可读取介质

Country Status (6)

Country Link
US (1) US20240036560A1 (zh)
EP (1) EP4261632A1 (zh)
JP (1) JP2023554176A (zh)
KR (1) KR20230104934A (zh)
CN (2) CN114625073A (zh)
WO (1) WO2022120915A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116931533A (zh) * 2023-09-18 2023-10-24 山东世纪阳光科技有限公司 一种精萘生产装置的自动化控制方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029054A1 (ja) * 2022-08-05 2024-02-08 三菱電機株式会社 情報処理システム、情報処理方法及び情報処理プログラム
CN116128102B (zh) * 2022-12-09 2024-01-23 常熟中佳新材料有限公司 一种制冷设备用异形铜管生产优化方法及系统
CN117455080B (zh) * 2023-12-25 2024-04-05 深圳市宏大联合实业有限公司 一种基于物联网的生产车间环境优化方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027905A (ja) * 1999-07-14 2001-01-30 Matsushita Electric Ind Co Ltd 生産計画作成方法及び装置
CN104977911A (zh) * 2015-06-29 2015-10-14 东北大学 一种提高钢铁能源利用率的在线能源分配控制方法
CN106228257A (zh) * 2016-07-08 2016-12-14 中冶赛迪工程技术股份有限公司 一种面向钢铁企业生产工序的成本分析与评估系统及方法
CN206285661U (zh) * 2016-12-16 2017-06-30 华润利尔(青岛)环保技术有限公司 一种车间废气净化装置
CN111077808A (zh) * 2019-12-26 2020-04-28 深圳市前海汰洋环保科技有限公司 一种实时数据反馈人工智能控制系统及其控制方法
CN111108454A (zh) * 2017-12-26 2020-05-05 株式会社日立制作所 生产计划制定辅助系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027905A (ja) * 1999-07-14 2001-01-30 Matsushita Electric Ind Co Ltd 生産計画作成方法及び装置
CN104977911A (zh) * 2015-06-29 2015-10-14 东北大学 一种提高钢铁能源利用率的在线能源分配控制方法
CN106228257A (zh) * 2016-07-08 2016-12-14 中冶赛迪工程技术股份有限公司 一种面向钢铁企业生产工序的成本分析与评估系统及方法
CN206285661U (zh) * 2016-12-16 2017-06-30 华润利尔(青岛)环保技术有限公司 一种车间废气净化装置
CN111108454A (zh) * 2017-12-26 2020-05-05 株式会社日立制作所 生产计划制定辅助系统
CN111077808A (zh) * 2019-12-26 2020-04-28 深圳市前海汰洋环保科技有限公司 一种实时数据反馈人工智能控制系统及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116931533A (zh) * 2023-09-18 2023-10-24 山东世纪阳光科技有限公司 一种精萘生产装置的自动化控制方法及系统
CN116931533B (zh) * 2023-09-18 2023-12-15 山东世纪阳光科技有限公司 一种精萘生产装置的自动化控制方法及系统

Also Published As

Publication number Publication date
CN114625073A (zh) 2022-06-14
EP4261632A1 (en) 2023-10-18
US20240036560A1 (en) 2024-02-01
JP2023554176A (ja) 2023-12-26
CN116802656A (zh) 2023-09-22
KR20230104934A (ko) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2022120915A1 (zh) 环保设备控制装置、生产计划优化系统、方法及计算机可读取介质
Mala-Jetmarova et al. Lost in optimisation of water distribution systems? A literature review of system operation
JP5602878B2 (ja) 発電プラントに対する負荷スケジューリングを最適化する方法及び制約解析モジュール
JP4764353B2 (ja) 設備更新計画支援システム
Zhang et al. Minimizing pump energy in a wastewater processing plant
CN107949814A (zh) 用于废水处理工艺控制的系统和方法
CN107958354A (zh) 一种电网层设备利用率主要影响因素的分析方法
CN109827004A (zh) 对调节阀特性分析的方法及装置
Faisal et al. Control technologies of wastewater treatment plants: the state-of-the-art, current challenges, and future directions
JP5855964B2 (ja) プラント設備の最適制御方法及び最適制御装置
JP2007070829A (ja) 送水運用制御装置
CN114904655B (zh) 一种单电场节能控制方法及装置
JP3321308B2 (ja) プラント予測制御装置
Suh et al. Robust optimal design of wastewater reuse network of plating process
CN111174824A (zh) 一种酸雾排放的管控平台
Wang et al. Energy economics in multistage manufacturing systems with quality control: A modeling and improvement approach
Behrouznia et al. Prediction of manufacturing lead time based on adaptive neuro-fuzzy inference system (ANFIS)
Niedermeier et al. Energy supply aware power planning for flexible loads
CN112364562B (zh) 一种烟气环保岛协同控制方法及系统
RU183468U1 (ru) Автоматизированная система контроля и управления электропотреблением предприятий
Pitarch Pérez et al. Online decision support for an evaporation network
CN116258604A (zh) 基于核电厂备件历史使用的备件定额管理辅助决策方法
JPH1145109A (ja) 運転支援装置
Mohammed et al. Trade-Off Between Cost and Time to the Project to Assist in Decision-Making Using Multi-Objective Genetic Algorithm (MOGA)
CN118116503A (zh) 核算碳排放量的方法、装置与存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964847

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107806.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237019475

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2301003553

Country of ref document: TH

Ref document number: 18266271

Country of ref document: US

Ref document number: 2023558917

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020964847

Country of ref document: EP

Effective date: 20230711