WO2022120587A1 - 具有高法向热导率、高弹性的导热垫片的制备方法 - Google Patents

具有高法向热导率、高弹性的导热垫片的制备方法 Download PDF

Info

Publication number
WO2022120587A1
WO2022120587A1 PCT/CN2020/134609 CN2020134609W WO2022120587A1 WO 2022120587 A1 WO2022120587 A1 WO 2022120587A1 CN 2020134609 W CN2020134609 W CN 2020134609W WO 2022120587 A1 WO2022120587 A1 WO 2022120587A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
film
thermal conductivity
graphite film
coupling agent
Prior art date
Application number
PCT/CN2020/134609
Other languages
English (en)
French (fr)
Inventor
叶振强
李俊伟
曾小亮
张晨旭
张月星
孙蓉
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2020/134609 priority Critical patent/WO2022120587A1/zh
Publication of WO2022120587A1 publication Critical patent/WO2022120587A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the invention belongs to the technical field of preparation of thermally conductive materials, and in particular relates to a preparation method of a thermally conductive gasket with high normal thermal conductivity and high elasticity.
  • Thermal interface material is a key material to solve the heat dissipation of electronic devices. It is used to fill the gap between device interfaces and reduce heat transfer resistance.
  • the main types of thermal interface materials are thermally conductive paste, thermally conductive gel, thermally conductive gasket, etc. Among them, thermal pads occupy an important position in the field of thermal interface materials due to their reusable advantages.
  • the thermally conductive gasket should also have good mechanical elasticity and high normal thermal conductivity. Good mechanical elasticity makes it suitable for non-smooth surfaces, and higher normal thermal conductivity enables more efficient transfer of heat between interfaces.
  • the current mainstream solution is to mix high thermal conductivity fillers with polymers to form composite materials.
  • the flexibility, low cost, and good processability of polymer materials make them widely used.
  • graphene As a high thermally conductive filler.
  • graphene has ultra-high thermal conductivity, with experimental measurements as high as 5000+W/(m K).
  • graphene has a relatively high degree of domestic production, and the performance of domestic related products is world-leading.
  • the thermal conductivity of mature commercial graphite films can also reach 1600W/(m ⁇ K).
  • the thermal conductivity of graphene is anisotropic, that is, the in-plane thermal conductivity is much larger than the out-of-plane thermal conductivity.
  • Thermal pads only need to have high thermal conductivity in the normal direction (along the thickness direction), so the current research focus is on achieving normal orientation of graphene.
  • the prior art scheme adopts ice template method, oriented hydrothermal method and mechanical method to prepare thermally conductive composite materials.
  • Freeze casting also known as freeze casting
  • the principle is that the ice crystal column produced by solidification casts colloidal particles. Extruded, evacuated and embedded between the ice crystal columns, and the ice crystals are removed by sublimation to realize the normal orientation of the colloidal particles.
  • Professor Lian Gang of Shandong University [1] prepared a normal oriented three-dimensional graphene structure by the ice template method, and used it as a thermal conductive framework to infuse epoxy resin. When the skeleton content is 0.92vol%, the thermal conductivity of the epoxy-filled composite material is 2.13W/(m ⁇ K).
  • the disadvantage of this method is that the filler is low and the actual thermal conductivity is poor.
  • the orientation hydrothermal method is to use the polycondensation reaction between the functional groups on the surface of the filler under heating conditions, resulting in volume shrinkage and spontaneous formation of a three-dimensional gel-like skeleton.
  • the research group of Professor Zhongzhen Yu from Beijing University of Chemical Technology used the oriented hydrothermal method to prepare graphene-based composites [2], in which the content of graphene skeleton was 19vol% and the thermal conductivity was 35.5W/(m ⁇ K). Compared with the ice template method, the filler content is further improved. 3.
  • the preparation of thermally conductive composite materials in the prior art has the following disadvantages.
  • the disadvantage of the ice template method is that the volume content of the filler is relatively low, and the mechanical strength of the three-dimensional skeleton is not enough. Thereby reducing the heat transfer performance of the entire three-dimensional framework.
  • the volume fraction of the three-dimensional graphene skeleton obtained by the hydrothermal method is not ideal, and it is generally difficult to exceed 25 vol%, thereby affecting the improvement of thermal conductivity.
  • the oriented graphene composite material prepared by mechanical method has two problems. First, the interlayer bonding force of graphene film is weak and it is easy to delaminate, so it is difficult for the thermal pad to pass the reliability test.
  • the present invention proposes a method for preparing a thermally conductive gasket with ultra-high normal thermal conductivity and high elasticity. control characteristics.
  • the invention provides a preparation method of a thermally conductive gasket with high normal thermal conductivity and high elasticity, comprising the following steps:
  • a preparation method of a thermally conductive gasket with high normal thermal conductivity and high elasticity characterized in that it comprises the following steps:
  • the bi-component polyolefin containing coupling agent and antioxidant is used as a polymer matrix, and the surface of the second modified graphite film or graphene film is coated with the bi-component polyolefin containing coupling agent and antioxidant olefin, and then pre-curing, using a lamination process to stack the pre-cured second modified graphite film or a composite film composed of a graphene film and a two-component polyolefin to obtain a graphite film or a graphene film/polyolefin Multi-layer composite structure molding, the thickness of the laminate is according to the application needs;
  • a step (5) is also included, and the thermal conductive gasket sample obtained in the step (4) is subjected to freeze polishing treatment.
  • the film thickness of the graphite film or the graphene film is 17 ⁇ m-30 ⁇ m;
  • the plasma modification method is to put the graphite film or the graphene film into the plasma generator for bombardment, Plasma bombardment equipment was used to etch the surface of the graphite film to graft oxygen-containing functional groups on the surface.
  • the plasma atmosphere adopts air atmosphere, pure oxygen atmosphere, inert gas atmosphere or oxygen/inert gas mixed gas atmosphere, the inlet pressure is 25-30MPa, the power of the plasma generator is 500-750kW, and the bombardment time is long. 10-30min.
  • step (2) the hydroxylation method is to immerse the first modified graphite film or graphene film in a mixed solution of hydrogen peroxide and ammonia, and the standing time is 10-12h;
  • the method for grafting the hydrolyzed coupling agent is to immerse the hydroxylated modified graphite film or graphene film in the hydrolyzed coupling agent solution, and let stand for 3-4 hours .
  • the coupling agent is selected from silane coupling agent, titanate coupling agent, preferably isopropyl triisostearate titanate, dodecyl Trimethoxysilane, hexadecyltrimethoxysilane.
  • the hydrolyzed coupling agent is prepared by the following method: mixing ethanol, water, and coupling agent in a mass ratio of 12-15:4-5:0.1-0.2, at a water bath temperature Under the condition of 70-80°C, stir in a constant temperature water bath for 20-24h to obtain the hydrolyzed coupling agent.
  • the two-component polyolefin contains 0.5-1wt% antioxidant and 0.8-1.5wt% coupling agent, and the two-component polyolefin includes terminal hydroxyl groups Polybutadiene and maleic acid-grafted polybutadiene, and the mass ratio of hydroxyl-terminated polybutadiene and maleic acid-grafted polybutadiene is (3-3.5):1;
  • the coating thickness is 50 ⁇ m-750 ⁇ m
  • the pre-curing condition is pre-curing for 0.5-1 h at a temperature of 100°C.
  • the mass fraction of the graphite film or the graphene film in the thermally conductive gasket is 17.1% to 94.9%.
  • the hot-pressing treatment conditions are that the temperature is 100-150° C., and the curing is performed for 2-5 hours;
  • the thickness of the thermally conductive gasket is 0.3-3 mm;
  • step (4) when the ShoreA hardness of the composite material is less than 60, ultrasonic cutting is used, and when the ShoreA hardness of the composite material is greater than or equal to 60, wire cutting is used.
  • the present invention has the following beneficial effects:
  • the present invention has prepared the thermally conductive gasket of the graphene laminated structure with strong interlayer bonding force and high intrinsic thermal conductivity, the present invention uses graphite film or graphene film as filler, and carries out plasma modification to make it and The polymer collective directly has good wetting properties and enhances the bonding strength of the two. Then, using a lamination process, a graphene film laminated structure is prepared, wherein the interlayer bonding layer is polyolefin. Since the graphene film has an ultra-high in-plane thermal conductivity, a thermally conductive gasket with ultra-high normal thermal conductivity can be obtained by cutting the laminated structure along the thickness direction.
  • the mechanical properties of the thermal pad can be adjusted, and combined with its high thermal conductivity, it can be applied to the field of thermal management of electronic packaging and play a role in solving the heat dissipation problem of the device.
  • the thermal conductivity of the thermally conductive gasket composite material prepared by the invention is good. When the content of graphite film as filler reaches 94.3%, the thermal conductivity is as high as 726.1W/(m ⁇ K), and when the mass fraction of graphite film as filler reaches 33.7 %, the thermal conductivity can reach 55W/(m ⁇ K).
  • the thermally conductive gasket prepared by the present invention has very superior mechanical properties, good resilience, creep properties, relaxation properties and the like.
  • the bonding ability between the filler and the polymer matrix is strong, and after 10 bending experiments, it can maintain a good shape.
  • the filler mass fraction of the present invention has strong adjustability and wide applicability.
  • the variation range of the filler mass fraction is controlled from 17.1% to 94.9%.
  • FIG. 1 is a schematic diagram of the normal orientation of a graphene sheet
  • Fig. 2 is a schematic diagram of the preparation process of the first modified graphite film or graphene film
  • FIG. 3 is a schematic diagram of the preparation process of a graphite film or a graphene film/polyolefin multilayer composite structure molding
  • Fig. 4 is the change of water droplet angle in the modification process of the first modified graphite film or graphene film
  • FIG. 5 is a schematic diagram of a prepared thermally conductive gasket sample, wherein (a) is a schematic diagram of a thermally conductive gasket sample prepared in Example 1, and (b) is a schematic diagram of a thermally conductive gasket sample prepared in Example 2;
  • Figure 6 is a schematic diagram of the creep characteristic curve of a thermally conductive gasket with a filler content of 33.7%;
  • Figure 7 is a schematic diagram of the compression rebound characteristic curve of a thermally conductive gasket with a filler content of 33.7%;
  • FIG. 8 is a schematic diagram of the stress relaxation characteristic curve of a thermally conductive gasket with a filler content of 33.7%.
  • the film thickness of the graphene film is 25 ⁇ m, and the graphene film is too thin and easily broken, which increases the difficulty of sample preparation, and the graphene film is too thick and is prone to delamination.
  • (1) take the graphite film as the high thermal conductivity filler material, put the graphite film into the plasma generator for bombardment, use the plasma bombardment equipment to etch the surface of the graphite film, the plasma atmosphere adopts the air atmosphere, the air inlet pressure is 30MPa, and the plasma is generated.
  • the power of the device was 750kW, and the bombardment time was 15min to obtain the first modified graphite film.
  • FIG. 2 is a schematic diagram of the preparation process of the first modified graphite film, specifically, firstly placing the first modified graphite film in a mixed solution of hydrogen peroxide and ammonia for hydroxylation, and then placing the graphite film in the The hydrolyzed coupling agent solution was left standing for 24 hours to graft the hydrolyzed coupling agent, and then soaked in alcohol to rinse the ungrafted functional groups on the surface of the graphite membrane to obtain a second modified graphite membrane.
  • the hydrolyzed coupling agent is obtained by mixing ethanol, water, and coupling agent in a ratio of 15:5:0.1, stirring in a constant temperature water bath for 20 hours, and a water bath temperature of 80°C.
  • Figure 3 is a schematic diagram of the preparation process of graphite film or graphene film/polyolefin multi-layer composite structure molding Butadiene and maleic acid-grafted polybutadiene, and the mass ratio of hydroxyl-terminated polybutadiene and maleic acid-grafted polybutadiene is 3.5:1.
  • the two-component polyene of oxidizing agent and 1 wt% coupling agent was coated on the surface of the second modified graphite film, and the film thickness was controlled at 50 ⁇ m, and then placed in an oven for pre-curing treatment, the pre-curing temperature was 100 ° C, and the pre-curing time was After 0.5 hours, the pre-cured graphite film or the composite film composed of the graphene film and the polyolefin is cut and stacked to obtain a graphite film/polyolefin multilayer composite structure molded body.
  • the graphite film/polyolefin multi-layer composite structure molded body is subjected to hot pressing treatment at a temperature of 100 ° C, cured for 2 hours, and cut into a thermally conductive 2mm thickness along the direction perpendicular to the upper and lower surfaces of the multi-layer composite structure molded body. gasket.
  • step (4) putting the thermally conductive gasket material obtained in step (4) into liquid nitrogen, cooling, and polishing with a polishing machine.
  • Example 1 This example is repeated twice, and the mass fraction of the graphite film is 94.3% and 94.9%. It can be seen from the test that the two samples obtained in Example 1 have ultra-high thermal conductivity, which are 726.1W/(m ⁇ K) and 688.6W respectively. /(m ⁇ K).
  • Example 2 The preparation steps of this example are the same as those of Example 1, the difference is that in Example 2, the two-component polyolefins include hydroxyl-terminated polybutadiene and maleic acid-grafted polybutadiene.
  • the ratio of hydroxypolybutadiene and maleic acid grafted polybutadiene is 3.5:1, and the two-component polyolefin containing 0.6wt% antioxidant and 1wt% coupling agent is coated on the second modified graphite film On the surface, the film thickness is controlled at 500 ⁇ m, and the mass fraction of the graphite film in this example 2 is the filler content of 33.7%. It can be seen from the test that Example 2 has higher thermal conductivity and superior mechanical properties.
  • Figure 1 is a schematic diagram of the normal orientation of the graphene sheet. It can be seen from Figure 1 that the higher the degree of orientation along the normal direction of the graphene sheet, the greater the heat flow passing efficiency.
  • Example 5 is (a) a schematic diagram of a sample of the thermally conductive gasket prepared in Example 1, and (b) a schematic diagram of a sample of the thermally conductive gasket prepared in Example 2.
  • the change of the water drop angle during the modification of the first modified graphite film or the graphene film is performed.
  • the test shows that the water drop angle value is 106°, indicating that the unmodified graphite film is a hydrophobic material.
  • the water drop angle test is carried out, and the water drop angle value is 19°, indicating that the modified graphite after plasma bombardment
  • the membrane becomes hydrophilic because the plasma modification makes the surface of the graphite membrane grafted with oxygen-containing functional groups, and the oxygen-containing groups are hydrophilic.
  • the second modification obtained by grafting the hydrolyzed coupling agent in step (2) The graphite film was tested for water drop angle, and the water drop angle value was 129°. Because the coupling agent group was hydrophobic, the second modified graphite film became hydrophobic again, indicating that the modification was successful.
  • the thermal conductivity test results come from third-party testing data, and the third-party testing organization is the Fifth Institute of Electronics, Ministry of Industry and Information Technology.
  • the two groups of thermally conductive gasket samples prepared in Example 1 were tested, and the filler mass fractions of the two groups of thermally conductive gasket samples were 94.3% and 94.93%, respectively.
  • the mass fraction of the filler is calculated according to the average density, wherein the density of the graphite film is 1.82 g/cm 3 , and the density of the polymer is 0.86 g/cm 3 , and the content of the filler is calculated as shown in formula 1.1.
  • x is the mass fraction of filler
  • ⁇ graphite is the density of the graphite film
  • ⁇ polymer is the density of polybutadiene
  • the meaning represented by the average ⁇ is the density of the composite material
  • Example 1 The two kinds of thermally conductive gasket samples obtained in Example 1 were sent to the Fifth Electronic Research Institute of the Ministry of Industry and Information Technology for testing, and the obtained testing results were shown in Table 1 below:
  • thermal conductivity test sample of the thermal pad prepared in Example 2 was tested for thermal conductivity, and the test method was the same as above.
  • FIG. 6 is a schematic diagram of the creep characteristic curve of a thermally conductive gasket with a filler content of 33.7%.
  • the creep characteristic refers to the variation of the strain under the condition of applying a constant stress for a certain period of time. The smaller the value, the better the performance. the better.
  • a pressure of 10 psi was applied to the thermally conductive gasket sample prepared in Example 2, and between 100 s and 600 s, the strain change range was less than 3%, indicating that the material itself had good stability.
  • Figure 7 shows the compression-rebound characteristics of the thermally conductive gasket with a filler content of 33.7%.
  • Figure 7 shows the compression and rebound characteristic curves of the thermally conductive gasket under three conditions of 20%, 30%, and 50% compression. The results show that the thermally conductive gasket has superior resilience.
  • Figure 8 shows a schematic diagram of the stress relaxation characteristic curve of a thermal pad with a filler content of 33.7%.
  • the stress relaxation test method is to apply a constant strain of 50% and compress for 10 minutes. The difference from the creep characteristic is that the creep is a constant stress. It can be seen from Figure 8 that the composite material can quickly relax to a stable value range in a short time.
  • the data indicated a transient stress of 0.13 MPa (about 18.9 psi) and a residual stress of 0.075 MPa (about 10.9 psi) after 10 minutes.
  • the index of a thermal pad product is: when compressed by 50%, the instantaneous stress is 100 psi, and the residual stress after 10 minutes is 20 psi.
  • the thermally conductive gasket material prepared by the present invention has superior performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种具有高法向热导率、高弹性的导热垫片的制备方法。包括以下步骤:(1)利用石墨膜或石墨烯膜作为填料,经等离子改性,得到第一改性石墨膜或石墨烯膜;(2)对第一改性石墨膜或石墨烯膜进行羟基化,接枝经水解后的偶联剂,得到第二改性石墨膜或石墨烯膜;(3)第二改性石墨膜或石墨烯膜表面涂聚烯烃,进行预固化处理,采用层压工艺,堆叠,得到石墨膜或石墨烯膜/聚烯烃多层复合结构成型体;(4)热压处理后,沿着与多层复合结构成型体上下表面垂直的方向切割成导热垫片。该导热垫片的导热性能好,填料含量达94.3%时,热导率高达726.1W/(m·K)。

Description

一种具有高法向热导率、高弹性的导热垫片的制备方法 技术领域
本发明属于导热材料制备技术领域,具体的,涉及一种具有高法向热导率、高弹性的导热垫片的制备方法。
背景技术
随着集成电路的小型化、高密度化和高功率化,电子元器件的散热问题已经严重制约集成电路产业的发展。根据美国空军电子工业部门的统计:电子产品失效的原因中,大约有55%是由于过热及与热相关的问题造成的。因此,电子器件的热管理问题亟待解决。
热界面材料是解决电子器件散热的关键材料,它用于填充器件界面间的间隙,降低传热阻抗。热界面材料主要类型有导热膏、导热凝胶、导热垫片等。其中,导热垫片因具有可重复使用的优点在热界面材料领域占据重要地位。此外,导热垫片还应具有良好的机械弹性和较高的法向热导率。良好的机械弹性能使其适应于不光滑表面,较高的法向热导率则能更高效地传递界面间的热量。
为了兼顾导热和机械性能,目前主流的解决方案是将高导热填料与聚合物混合形成复合材料。聚合物材料的柔韧性,低成本和良好的可加工性,因此得到广泛应用。为了制备高性能导热垫片,我们选用石墨烯作为高导热填料。首先,石墨烯具有超高的热导率,实验测量结果高达5000+W/(m·K)。其次,石墨烯国产程度较高,国内相关产品性能世界领先。成熟的商业化石墨膜热导率也可达1600W/(m·K)。石墨烯热导率具有各向异性的特定,即面内热导率远远大于面外热导率。导热垫片只需要法向(沿着厚度方向)具有很高热导率,因此目前的研究重点就是实现石墨烯的法向取向。
现有技术方案采用的有冰模板法、取向水热法以及机械法制备导热复合材料,其中,1、冰模板法(Freeze casting),又名冷冻铸造,原理是凝固产生的冰晶柱将胶体粒子挤压、排开、包埋至冰晶柱之间,冰晶通过升华去除,实现胶体粒子的法向取向。山东大学廉刚教授[1]采用冰模板法制备了一种法向取向的三维石墨烯结构,并以此为导热骨架,灌注环氧树脂。在骨架含量为0.92vol%时,环氧树脂填充的复合材料的导热系数为2.13W/(m·K)。此方法的缺点是填料低,实际导热效果差。2、取向水热法是利用加热条件下,填料表面官能团之间发生缩聚反应,从而出现的体积收缩、自发形成类凝胶三维骨架。北京化工大学于中振教授课题组采用取向水热法制备石墨烯基复合材料[2],其中石墨烯骨架的含量为19vol%,热导率35.5W/(m·K)。相比于冰模板法,填料含量进一步提高。3、机械法,即采用堆叠或卷曲方式,将石墨烯膜堆叠成层状结构,层间灌注聚合物。北京大学的白树林老师[3]提出将宏观的石墨纸直接缠绕成卷,再灌入PDMS作为聚合物基体,得到复合材料。当石墨烯含量为92.3wt%时,其导热系数高达614.85W/(m·K)。日本松下电工[4]提出类似的方法,先制备石墨烯、聚合物混合浆料,将其碾压成膜,获得高面内热导率的复合材料膜,然后通过卷曲的方法将面内取向转变为垂直取向。
现有技术中制备导热复合材料存在以下缺点,1、冰模板法的缺点就是填料体积含量较低,且三维骨架机械强度不够,为了增强三维骨架的机械强度,通常需要加入聚合物类的胶粘剂,从而降低整个三维骨架的传热性能。2、水热法得到的石墨烯三维骨架的体积分数不理想,一般很难超过25vol%,从而影响导热性能的提升。3、机械法制备的取向石墨烯复合材料,存在两方面问题。首先,石墨烯膜层间结合力弱,容易分层,因此导热垫片很难通过可靠性测试。其次,灌胶或涂胶的方式很难控制聚合物含量和均匀性,通常聚合物含量很低,整体的机械性能很差。日本松下电工的专利,虽然也是采用叠层技术,但是需要先制备面内取向的复合材料薄膜。在工艺上,比直接采用石墨烯膜的 工艺更加复杂,而且,为了让复合材料薄膜层间更好的结合,对聚合物要求较高。
参考文献:
[1]Lian G,Tuan C C,Li L,et al.Vertically Aligned and Interconnected Graphene Networks for High Thermal Conductivity of Epoxy Composites with Ultralow Loading.Chemistry of Materials,2016,28(17):6096-6104.
[2]An F,Li XF,Min P,Liu PF,Jiang ZG,Yu ZZ.Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities.Acs Appl Mater Inter.2018;10(20):17383-17392.
[3]Zhang YF,Han D,Zhao YH,Bai SL.High-performance thermal interface materials consisting of vertically aligned graphene film and polymer.Carbon.2016;109:552-557.
[4]G·哈法姆,P·A·劳罗,B·R·松德勒夫,J·D·杰洛梅.具有各向异性热传导特征的浆状组合物及其形成方法:中国,200510114907.1[P].2005-11-11.
发明内容
针对上述背景技术中提出的问题,本发明提出出一种具有超高法向热导率、高弹性的导热垫片的制备方法,该导热垫片具有填料/基体结合力强、填料质量分数可控的特点。
本发明提供了一种具有高法向热导率、高弹性的导热垫片的制备方法,包括以下步骤:
一种具有高法向热导率、高弹性的导热垫片的制备方法,其特征在于,包括以下步骤:
(1)利用石墨膜或石墨烯膜作为填料,经等离子改性,得到第一改性石墨膜或石墨烯膜;
(2)对第一改性石墨膜或石墨烯膜进行羟基化,清洗至中性后接枝经水解后的偶联剂,得到第二改性石墨膜或石墨烯膜;
(3)将含有偶联剂和抗氧化剂的双组分聚烯烃作为聚合物基体,在第二改性石墨膜或石墨烯膜表面涂覆所述含有偶联剂和抗氧化剂的双组分聚烯烃,然后进行预固化处理,采用层压工艺,堆叠预固化处理后的第二改性石墨膜或石墨烯膜与双组分聚烯烃组成的复合膜,得到石墨膜或石墨烯膜/聚烯烃多层复合结构成型体,叠层厚度根据应用需要;
(4)将石墨膜或石墨烯膜/聚烯烃多层复合结构成型体热压处理后,沿着与多层复合结构成型体上下表面垂直的方向切割成导热垫片。
在本发明的技术方案中,还包括步骤(5),将步骤(4)获得的导热垫片样品进行冷冻抛光处理。
在本发明的技术方案中,步骤(1)中,石墨膜或石墨烯膜的膜厚为17μm-30μm;等离子改性的方法为将石墨膜或石墨烯膜放入等离子体发生器中轰击,采用等离子轰击设备刻蚀石墨膜表面,使其表面接枝含氧官能团。
在本发明的技术方案中,等离子体氛围采用空气氛围、纯氧气氛围、惰性气体氛围或氧气/惰性气体混合气氛围,进气压力25-30MPa,等离子体发生器功率为500-750kW,轰击时长为10-30min。
在本发明的技术方案中,步骤(2)中,羟基化的方法是将第一改性石墨膜或石墨烯膜浸入过氧化氢和氨水混合溶液中,静置时间为10-12h;
优选的,步骤(2)中,接枝经水解后的偶联剂的方法为,将羟基化的改性石墨膜或石墨烯膜浸入经水解后的偶联剂溶液中,静置3-4h。
在本发明的技术方案中,步骤(2)中,所述偶联剂选自硅烷偶联剂、钛酸脂偶联剂,优选为三异硬脂酸钛酸异丙酯、十二烷基三甲氧基硅烷、十六烷基三甲氧基硅烷。
在本发明的技术方案中,经水解后的偶联剂通过以下方法制备:将乙醇、 水、偶联剂按照质量比为12-15:4-5:0.1-0.2比例进行混合,在水浴温度70-80℃条件下,恒温水浴中搅拌20-24h得到水解后的偶联剂。
在本发明的技术方案中,步骤(3)中,所述双组分聚烯烃中含有0.5~1wt%抗氧化剂和0.8~1.5wt%偶联剂,所述双组分聚烯烃包括为端羟基聚丁二烯和马来酸接枝聚丁二烯,且端羟基聚丁二烯和马来酸接枝聚丁二烯的质量比为(3~3.5):1;
优选的,步骤(3)中,涂覆厚度为50μm-750μm;
优选的,步骤(3)中,预固化处理的条件为在温度为100℃的条件下预固化0.5-1h。
在本发明的技术方案中,所述导热垫片中石墨膜或石墨烯膜的质量分数为17.1%~94.9%。
在本发明的技术方案中,步骤(4)中,热压处理条件为温度为100-150℃,固化2-5h;
优选的,步骤(4)中,所述导热垫片的厚度为0.3~3mm;
优选的,步骤(4)中,当复合材料ShoreA硬度<60时,采用超声切割,当复合材料ShoreA硬度≥60时,采用线切割。
与现有技术相比,本发明具有以下有益效果:
1、本发明制备得到了层间结合力强、本征热导率高的石墨烯叠层结构的导热垫片,本发明将石墨膜或石墨烯膜作为填料,进行等离子改性,使其与聚合物集体直接具有良好的润湿性能,增强两者的结合强度。然后利用层压工艺,制备石墨烯膜叠层结构,其中层间粘结层为聚烯烃。由于石墨烯膜具有超高面内热导率,所以将叠层结构沿着厚度方向切割,可以获得具有超高法向热导率的导热垫片。通过控制聚烯烃粘结层的厚度,可以调节导热垫片的机械性能,结合其高的导热性能,使其能够应用于电子封装热管理领域,在解决器件的散热问题中发挥作用。
2、本发明制备得到的导热垫片复合材料的导热性能好,当石墨膜作为填料含量达94.3%时,热导率高达726.1W/(m·K),当石墨膜作为填料质量分数达33.7%时,热导率可达55W/(m·K)。
3、本发明制备得到的导热垫片具有非常优越的力学性能,良好的回弹性、蠕变特性、松弛特性等。
4、本发明通过对填料进行改性处理,使得填料和聚合物基体的结合能力强,经历10次弯折实验之后,可以保持良好的形态。
5、本发明填料质量分数调节性强,适用性广,目前制备的样品,通过改变聚合物层厚度,控制填料质量分数变化范围17.1%~94.9%。
附图说明
图1是石墨烯片法向取向示意图;
图2是第一改性石墨膜或石墨烯膜制备流程示意图;
图3是石墨膜或石墨烯膜/聚烯烃多层复合结构成型体制备流程示意图;
图4是第一改性石墨膜或石墨烯膜改性过程中水滴角的变化;
图5是制备得到的导热垫片样品示意图,其中(a)图为实施例1制备得到的导热垫片样品示意图,(b)图实施例2制备得到的导热垫片样品示意图;
图6是填料含量为33.7%导热垫片的蠕变特性曲线示意图;
图7是填料含量为33.7%导热垫片的压缩回弹特性曲线示意图;
图8是填料含量为33.7%导热垫片应力松弛特性曲线示意图。
具体实施方式
下面结合实施例以及对比例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。具体包括以下实施例:
需要说明的是,下述实施例中,石墨烯膜的膜厚均为25μm,石墨烯膜太 薄容易碎,增加制样难度,而石墨烯膜太厚容易发生分层现象。
实施例1
(1)、将石墨膜作为高导热填料原料,将石墨膜放入等离子体发生器中轰击,采用等离子轰击设备刻蚀石墨膜表面,等离子体氛围采用空气气氛,进气压力30MPa,等离子体发生器功率为750kW,轰击时长为15min,得到第一改性石墨膜。
(2)、如图2所示是第一改性石墨膜制备流程示意图,具体为首先将第一改性石墨膜放在过氧化氢和氨水混合溶液中羟基化,然后将石墨膜放入经水解后的偶联剂溶液中,静置24小时,接枝经水解后的偶联剂,然后用酒精浸泡冲洗石墨膜表面未接枝成功的官能团,得到第二改性石墨膜膜。其中,水解后的偶联剂是将乙醇、水、偶联剂按照15:5:0.1比例进行混合,恒温水浴中搅拌20小时,水浴温度80℃得到。
(3)、如图3所示为石墨膜或石墨烯膜/聚烯烃多层复合结构成型体制备流程示意图,将双组分聚烯烃作为聚合物基体,双组分聚烯烃包括为端羟基聚丁二烯和马来酸接枝聚丁二烯,且端羟基聚丁二烯和马来酸接枝聚丁二烯的质量比为3.5:1,注胶具体是指将含有0.6wt%抗氧化剂和1wt%偶联剂的双组分聚烯涂覆在第二改性石墨膜表面,胶膜厚控制在50μm,然后放入烘箱预固化处理,预固化温度为100℃,预固化时间为0.5小时,然后裁切并堆叠预固化处理后的石墨膜或石墨烯膜与聚烯烃组成的复合膜,得到石墨膜/聚烯烃多层复合结构成型体。
(4)、将石墨膜/聚烯烃多层复合结构成型体进行热压处理,温度100℃,固化2小时,沿着与多层复合结构成型体上下表面垂直的方向切割成厚度为2mm的导热垫片。
(5)、将步骤(4)中获得的导热垫片材料放入液氮中,冷却,用抛光机抛光处理。
本实施例重复做两次,石墨膜的质量分数为94.3%和94.9%,通过测试可知实施例1得到的两个样品具有超高热导率,分别为726.1W/(m·K)和688.6W/(m·K)。
实施例2
本实施例与实施例1导热垫片的制备步骤相同,不同的是在实施例2中,双组分聚烯烃包括为端羟基聚丁二烯和马来酸接枝聚丁二烯,且端羟基聚丁二烯和马来酸接枝聚丁二烯的比例为3.5:1,将含有0.6wt%抗氧化剂和1wt%偶联剂的双组分聚烯烃涂覆在第二改性石墨膜表面,膜厚控制在500μm,此实例2中石墨膜的质量分数为填料含量为33.7%。通过测试可知实施例2具有较高的热导率和优越的力学性能。
一、测试与表征:
图1为石墨烯片法向取向示意图,通过图1可以看出,沿石墨烯片法向取向度越高,热流通过效率越大。
图5为(a)图为实施例1制备得到的导热垫片样品示意图,(b)图实施例2制备得到的导热垫片样品示意图。
1、水滴角测试
如图4所示为第一改性石墨膜或石墨烯膜改性过程中水滴角的变化,将实施例1步骤(1)中的石墨膜也就是未进行等离子改性的石墨膜进行水滴角测试,得到水滴角值为106°,表明未改性的石墨膜为疏水材料,将石墨膜进行等离子改性后进行水滴角测试,得到水滴角值为19°,表明等离子轰击后的改性石墨膜变为亲水,是因为等离子改性使得石墨膜表面接枝含氧官能团,含氧基团亲水,将步骤(2)中接枝经水解后的偶联剂之后得到的第二改性石墨膜进行水滴角测试,得到水滴角值为129°,因为偶联剂基团疏水,第二改性石墨膜又变为疏水,说明了改性成功。
2、热导率测试
导热测试测试结果来自第三方检测数据,第三方检测机构为工业和信息化部电子第五研究所。
将实施例1的制备得到的两组导热垫片测试样品,两组导热垫片样品的填料质量分数分别为94.3%和94.93%。填料质量分数根据平均密度计算,其中石墨膜密度为1.82g/cm 3,聚合物为0.86g/cm 3,填料含量计算如公式1.1所示。
Figure PCTCN2020134609-appb-000001
x代表的含义是填料质量分数;
ρ 石墨代表的含义是石墨膜的密度;
ρ 聚合物代表的含义是聚丁二烯的密度;
ρ 平均代表的含义是复合材料的密度;
将实施例1得到的两种导热垫片样品送往工业和信息化部电子第五研究所进行检测,得到的检测结果如下表1所示:
表1实施例1得到的两种导热垫片样品检测结果
Figure PCTCN2020134609-appb-000002
从表1中可以看出,实施例1制备得到的导热垫片材料的热导性能极好,且总热阻非常小。
将实施例2的制备得到的导热垫片测试样品进行热导率测试,测试方法同上。
序号 检测项目 检测结果
1 密度,g/cm 3 1.05
2 比热容,J/(g*K) 1.39
3 热扩散系数,mm 2/s 50.1
4 导热系数,W/(m*K) 73.1
5 样品厚度,mm 2.0
3、力学性能测试
以填料含量为33.7%,即实施例2制备得到的的导热垫片为例,说明本申请制备得到的导热垫片的优异力学性能。首先是蠕变特性,图6是填料含量为33.7%导热垫片的蠕变特性曲线示意图,蠕变特性指的是在一定时间内施加恒定应力的情况下,应变的变化幅度,越小说明性能越好。实验中,对实施例2制备得到的的导热垫片样品施加10psi的压力,100s~600s之间,应变变化幅度<3%,说明材料自身的稳定性良好。
回弹性也是导热垫片的重要性能指标要求。如图7所示为填料含量为33.7%导热垫片的压缩回弹特性。图7为导热垫片压缩20%、30%、50%三种情况下的压缩回弹特性曲线,结果表明导热垫片具有优越的回弹性。
如图8所示为填料含量为33.7%导热垫片应力松弛特性曲线示意图,应力松弛测试方法是施加恒应变50%,压缩10分钟,跟蠕变特性不同之处在于蠕变是施加恒应力。从图8中可以看出复合材料可以在短时间内应力快速松弛抵达至一个稳定的值域。数据表明,瞬时应力为0.13MPa(约18.9psi),10分钟后的残余应力为0.075MPa(约10.9psi)。某导热垫片产品的指标是:压缩50%时,瞬时应力100psi,10分钟后的残余应力20psi。相比而言,本发明制备得到的导热垫片材料性能优越。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实 施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种具有高法向热导率、高弹性的导热垫片的制备方法,其特征在于,包括以下步骤:
    (1)利用石墨膜或石墨烯膜作为填料,经等离子改性,得到第一改性石墨膜或石墨烯膜;
    (2)对第一改性石墨膜或石墨烯膜进行羟基化,清洗至中性后接枝经水解后的偶联剂,得到第二改性石墨膜或石墨烯膜;
    (3)将含有偶联剂和抗氧化剂的双组分聚烯烃作为聚合物基体,在第二改性石墨膜或石墨烯膜表面涂覆所述含有偶联剂和抗氧化剂的双组分聚烯烃,然后进行预固化处理,采用层压工艺,堆叠预固化处理后的第二改性石墨膜或石墨烯膜与双组分聚烯烃组成的复合膜,得到石墨膜或石墨烯膜/聚烯烃多层复合结构成型体;
    (4)将石墨膜或石墨烯膜/聚烯烃多层复合结构成型体热压处理后,沿着与多层复合结构成型体上下表面垂直的方向切割成导热垫片。
  2. 根据权利要求1所述的具有高法向热导率、高弹性的导热垫片的制备方法,其特征在于,还包括步骤(5),将步骤(4)获得的导热垫片样品进行冷冻抛光处理。
  3. 根据权利要求1所述的具有高法向热导率、高弹性的导热垫片的制备方法,其特征在于,步骤(1)中,石墨膜或石墨烯膜的膜厚为17μm-30μm;等离子改性的方法为将石墨膜或石墨烯膜放入等离子体发生器中轰击,采用等离子轰击设备刻蚀石墨膜表面,使其表面接枝含氧官能团。
  4. 根据权利要求3所述的具有高法向热导率、高弹性的导热垫片的制备方法,其特征在于,等离子体氛围采用空气氛围、纯氧气氛围、惰性气体氛围或氧气/惰性气体混合气氛围,进气压力25-30MPa,等离子体发生器功率为500-750kW,轰击时长为10-30min。
  5. 根据权利要求1所述的具有高法向热导率、高弹性的导热垫片的制备方法,其特征在于,步骤(2)中,羟基化的方法是将第一改性石墨膜或石墨烯膜浸入过氧化氢和氨水混合溶液中,静置时间为10-12h;
    优选的,步骤(2)中,接枝经水解后的偶联剂的方法为,将羟基化的改性石墨膜或石墨烯膜浸入经水解后的偶联剂溶液中,静置3-4h。
  6. 根据权利要求1所述的具有高法向热导率、高弹性的导热垫片的制备方法,其特征在于,步骤(2)中,所述偶联剂选自硅烷偶联剂、钛酸脂偶联剂,优选为三异硬脂酸钛酸异丙酯、十二烷基三甲氧基硅烷、十六烷基三甲氧基硅烷。
  7. 根据权利要求6所述的具有高法向热导率、高弹性的导热垫片的制备方法,其特征在于,经水解后的偶联剂通过以下方法制备:将乙醇、水、偶联剂按照质量比为12-15:4-5:0.1-0.2比例进行混合,在水浴温度70-80℃条件下,恒温水浴中搅拌20-24h得到水解后的偶联剂。
  8. 根据权利要求1所述的具有高法向热导率、高弹性的导热垫片的制备方法,其特征在于,步骤(3)中,所述双组分聚烯烃中含有0.5~1wt%抗氧化剂和0.8~1.5wt%偶联剂,所述双组分聚烯烃包括为端羟基聚丁二烯和马来酸接枝聚丁二烯,且端羟基聚丁二烯和马来酸接枝聚丁二烯的质量比为(3~3.5):1;
    优选的,步骤(3)中,涂覆厚度为50μm-750μm;
    优选的,步骤(3)中,预固化处理的条件为在温度为100℃的条件下预固化0.5-1h。
  9. 根据权利要求1所述的具有高法向热导率、高弹性的导热垫片的制备方法,其特征在于,所述导热垫片中石墨膜或石墨烯膜的质量分数为17.1%~94.9%。
  10. 根据权利要求1所述的具有高法向热导率、高弹性的导热垫片的制备 方法,步骤(4)中,热压处理条件为温度为100-150℃,固化2-5h;
    优选的,步骤(4)中,所述导热垫片的厚度为0.3~3mm;
    优选的,步骤(4)中,当复合材料ShoreA硬度<60时,采用超声切割,当复合材料ShoreA硬度≥60时,采用线切割。
PCT/CN2020/134609 2020-12-08 2020-12-08 具有高法向热导率、高弹性的导热垫片的制备方法 WO2022120587A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/134609 WO2022120587A1 (zh) 2020-12-08 2020-12-08 具有高法向热导率、高弹性的导热垫片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/134609 WO2022120587A1 (zh) 2020-12-08 2020-12-08 具有高法向热导率、高弹性的导热垫片的制备方法

Publications (1)

Publication Number Publication Date
WO2022120587A1 true WO2022120587A1 (zh) 2022-06-16

Family

ID=81974063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134609 WO2022120587A1 (zh) 2020-12-08 2020-12-08 具有高法向热导率、高弹性的导热垫片的制备方法

Country Status (1)

Country Link
WO (1) WO2022120587A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115092921A (zh) * 2022-06-27 2022-09-23 常州富烯科技股份有限公司 一种石墨烯导热垫片及其制备方法
CN115092920A (zh) * 2022-06-27 2022-09-23 常州富烯科技股份有限公司 石墨烯导热垫片及其制备方法
CN115141487A (zh) * 2022-07-12 2022-10-04 常州富烯科技股份有限公司 石墨烯导热泡沫、石墨烯导热垫片、制备方法
CN115505267A (zh) * 2022-09-23 2022-12-23 山东大学 一种以高苯基含量甲基乙烯基苯基硅橡胶制备电子封装散热用硅橡胶垫片的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208881A (ja) * 2012-03-30 2013-10-10 Nippon Zeon Co Ltd グラフェン層含有多層フィルムとその製造方法、接着性グラフェン膜/金属箔積層体
WO2018040956A1 (zh) * 2016-08-29 2018-03-08 广东纳路纳米科技有限公司 一种化学接枝与涂布处理的pet/石墨烯透明导电膜的制备
CN108017911A (zh) * 2017-12-06 2018-05-11 中国科学院山西煤炭化学研究所 一种基于石墨/聚合物复合结构的导热连接材料及制备方法
CN108329679A (zh) * 2018-02-02 2018-07-27 江苏洛基木业有限公司 一种无溶剂石墨烯电热薄膜的制备方法
CN110117376A (zh) * 2018-02-06 2019-08-13 中国科学院深圳先进技术研究院 复合胶膜及其制备方法
CN110938226A (zh) * 2019-09-24 2020-03-31 上海大学 一种层状聚丙烯/石墨烯导热复合材料及其制备方法
CN112679765A (zh) * 2020-12-08 2021-04-20 中国科学院深圳先进技术研究院 一种具有高法向热导率、高弹性的导热垫片的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208881A (ja) * 2012-03-30 2013-10-10 Nippon Zeon Co Ltd グラフェン層含有多層フィルムとその製造方法、接着性グラフェン膜/金属箔積層体
WO2018040956A1 (zh) * 2016-08-29 2018-03-08 广东纳路纳米科技有限公司 一种化学接枝与涂布处理的pet/石墨烯透明导电膜的制备
CN108017911A (zh) * 2017-12-06 2018-05-11 中国科学院山西煤炭化学研究所 一种基于石墨/聚合物复合结构的导热连接材料及制备方法
CN108329679A (zh) * 2018-02-02 2018-07-27 江苏洛基木业有限公司 一种无溶剂石墨烯电热薄膜的制备方法
CN110117376A (zh) * 2018-02-06 2019-08-13 中国科学院深圳先进技术研究院 复合胶膜及其制备方法
CN110938226A (zh) * 2019-09-24 2020-03-31 上海大学 一种层状聚丙烯/石墨烯导热复合材料及其制备方法
CN112679765A (zh) * 2020-12-08 2021-04-20 中国科学院深圳先进技术研究院 一种具有高法向热导率、高弹性的导热垫片的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115092921A (zh) * 2022-06-27 2022-09-23 常州富烯科技股份有限公司 一种石墨烯导热垫片及其制备方法
CN115092920A (zh) * 2022-06-27 2022-09-23 常州富烯科技股份有限公司 石墨烯导热垫片及其制备方法
CN115092920B (zh) * 2022-06-27 2023-09-26 常州富烯科技股份有限公司 石墨烯导热垫片及其制备方法
CN115141487A (zh) * 2022-07-12 2022-10-04 常州富烯科技股份有限公司 石墨烯导热泡沫、石墨烯导热垫片、制备方法
CN115141487B (zh) * 2022-07-12 2023-11-21 常州富烯科技股份有限公司 石墨烯导热泡沫、石墨烯导热垫片、制备方法
CN115505267A (zh) * 2022-09-23 2022-12-23 山东大学 一种以高苯基含量甲基乙烯基苯基硅橡胶制备电子封装散热用硅橡胶垫片的方法
CN115505267B (zh) * 2022-09-23 2023-05-23 山东大学 一种以高苯基含量甲基乙烯基苯基硅橡胶制备电子封装散热用硅橡胶垫片的方法

Similar Documents

Publication Publication Date Title
WO2022120587A1 (zh) 具有高法向热导率、高弹性的导热垫片的制备方法
CN112679765B (zh) 一种具有高法向热导率、高弹性的导热垫片的制备方法
US11499080B2 (en) Thermal interface material, and preparation and application thereof
CN110951254A (zh) 氮化硼复合高导热绝缘高分子复合材料及其制备方法
JP5057263B2 (ja) 固体高分子形燃料電池用セパレータ材及びその製造方法
CN114854087B (zh) 一种具备双导热网络的聚酰亚胺复合材料及其制备方法
WO2022120691A1 (zh) 一种聚烯烃基石墨取向型热界面材料及其制备方法
CN110626030B (zh) 一种高导热聚酰亚胺多层复合薄膜及其制备方法
WO2022120700A1 (zh) 一种石墨取向型热界面材料的制备方法
KR20070007195A (ko) 수지 함침된 가요성 그래파이트 제품
CN109768296A (zh) 一种全钒液流电池双极板及其制备工艺
CN113290976A (zh) 一种高耐电压高导热铝基覆铜板
TWI298045B (en) Heat spreader for printed circuit boards
CN109627781B (zh) 一种有机硅石墨复合热界面材料及其制备方法和应用
CN110964219B (zh) 一种具有高热导率的纳米纤维素膜及其制备方法
CN115092920B (zh) 石墨烯导热垫片及其制备方法
CN116426251A (zh) 氟化石墨烯复合导热膜及其制备方法
CN114316868B (zh) 一种导热胶及其制备方法和用途
TW200920790A (en) Heat transfer elastic sheet and method for manufacturing the same
CN113276487A (zh) 高导热复合膜及其制备方法
CN113278406A (zh) 导热膜复合材料及其制备方法
CN116494612B (zh) 一种聚四氟乙烯基覆铜板的制备方法及应用
CN117777913B (zh) 一种丝印高导热耐高温散热胶
CN115948053B (zh) 一种3d导热骨架/聚酰亚胺导热复合材料及其制备方法
CN115010119B (zh) 一种石墨烯厚膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964532

Country of ref document: EP

Kind code of ref document: A1