WO2022119217A1 - 이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법 - Google Patents

이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법 Download PDF

Info

Publication number
WO2022119217A1
WO2022119217A1 PCT/KR2021/017314 KR2021017314W WO2022119217A1 WO 2022119217 A1 WO2022119217 A1 WO 2022119217A1 KR 2021017314 W KR2021017314 W KR 2021017314W WO 2022119217 A1 WO2022119217 A1 WO 2022119217A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
secondary battery
conductive material
binder
less
Prior art date
Application number
PCT/KR2021/017314
Other languages
English (en)
French (fr)
Inventor
김정길
김태곤
김명수
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21900905.7A priority Critical patent/EP4228022A1/en
Priority to CN202180078564.5A priority patent/CN116670862A/zh
Priority to US18/037,674 priority patent/US20240014396A1/en
Priority to JP2023531089A priority patent/JP2023551228A/ja
Publication of WO2022119217A1 publication Critical patent/WO2022119217A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for a secondary battery, a secondary battery including the same, and a method for manufacturing the electrode, and more particularly, to an electrode for a secondary battery having improved elastic modulus and resistance reduction effect, a secondary battery including the same, and a method for manufacturing the electrode .
  • lithium secondary batteries with high energy density and voltage, long cycle life, and low self-discharge rate has been used and is widely used.
  • secondary batteries are of great interest not only as mobile devices such as mobile phones, digital cameras, notebooks, and wearable devices, but also as energy sources for power devices such as electric bicycles, electric vehicles, and hybrid electric vehicles.
  • Electrodes for secondary batteries are generally manufactured by a wet method.
  • a heat treatment process at a high temperature is essential, and there is a risk that the metal oxide may be damaged. Accordingly, the need for the development of electrodes manufactured by a dry method is increasing.
  • An object of the present invention is to provide an electrode for a secondary battery having improved elastic modulus and resistance reduction effect, a secondary battery including the same, and a method of manufacturing the electrode.
  • An electrode for a secondary battery includes an electrode current collector; and an electrode layer positioned on the electrode current collector, wherein the electrode layer includes an electrode composition in which an active material, a conductive material, and a binder are dry mixed, and the diameter of the pores (Macropore) formed in the conductive material is the binder equal to or greater than the size of
  • the diameter of the pores of the conductive material may be 30 nm or more and 1000 nm or less.
  • the particle size of the binder may be 30 nm or more and 1000 nm or less.
  • the specific surface area of the conductive material may be 1 m 2 /g or more and 100 m 2 /g or less.
  • the content of the conductive material may be 0.1 wt% or more and 10 wt% or less based on the total weight of the electrode composition.
  • the conductive material may include a three-dimensional porous carbon material, and the binder may include polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the active material may include lithium manganese oxide (LMO).
  • LMO lithium manganese oxide
  • the electrode composition may be prepared as a freestanding film, and the freestanding film may be attached to the electrode current collector.
  • the freestanding film may have an elastic modulus value of 30 MPa or more and 400 MPa or less.
  • a method for manufacturing an electrode for a secondary battery comprising: preparing a mixture by dry mixing a conductive material and a binder; After adding an active material to the mixture, preparing an electrode composition by applying a shear force; and manufacturing an electrode for a secondary battery by attaching the electrode composition to an electrode current collector, wherein a diameter of a macropore formed in the conductive material is equal to or greater than the size of the binder.
  • the diameter of the pores of the conductive material may be 30 nm or more and 1000 nm or less.
  • the primary particle size of the binder may be 30 nm or more and 1000 nm or less.
  • the specific surface area of the conductive material may be 1 m 2 /g or more and 100 m 2 /g or less.
  • the content of the conductive material may be 0.1 wt% or more and 10 wt% or less based on the total weight of the electrode composition.
  • the conductive material may include a three-dimensional porous carbon material, and the binder may include polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the active material may include lithium manganese oxide (LMO).
  • LMO lithium manganese oxide
  • the electrode composition may be prepared as a free-standing film and attached to the electrode current collector.
  • the freestanding film may have an elastic modulus value of 30 MPa or more and 400 MPa or less.
  • the secondary battery according to another embodiment of the present invention may include the above-described secondary battery electrode.
  • FIG. 1 is a flowchart of a method for manufacturing an electrode for a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a graph comparing the elastic modulus and initial discharge capacity according to the pore diameter of a conductive material of an electrode for a secondary battery in Examples and Comparative Examples of the present invention, respectively.
  • FIG. 3 is a graph comparing an elastic modulus and an initial discharge capacity according to a specific surface area of a conductive material of an electrode for a secondary battery in Examples and Comparative Examples of the present invention, respectively.
  • FIG. 4 is a graph comparing an elastic modulus and an initial discharge capacity according to a binder content of an electrode for a secondary battery in Examples and Comparative Examples of the present invention, respectively.
  • An electrode for a secondary battery includes an electrode current collector; and an electrode layer formed as a free standing film on the electrode current collector.
  • the electrode layer includes an electrode composition in which an active material, a conductive material, and a binder are mixed in a dry manner.
  • the electrode layer may be formed by a lamination process after a freestanding film is first prepared, and the freestanding film is attached on the electrode current collector.
  • the free-standing film may have an elastic modulus value of 30 MPa or more and 400 MPa or less.
  • the elastic modulus value is measured by a DMA (Dynamic Mechanical Analysis) device, and may be defined as a value measured for a freestanding film having a thickness of 400 ⁇ m at 25°C.
  • the freestanding film may be in a state in which the active material, the conductive material, and the binder included in the electrode composition are mixed with each other with high binding force, and the freestanding film may be easily stored in the form of a roll .
  • productivity may be improved, and it may be effective to improve flexibility of the electrode.
  • the elastic modulus value of the freestanding film is less than 30 MPa, there is a risk of damage during the cell manufacturing process, and cracks occur between the electrode active materials in the electrode during charging and discharging, so fairness and durability are reduced, and the manufacturing process It may not be easy to store.
  • the binder serves to improve adhesion between active material particles and adhesion between the active material and the current collector.
  • Specific examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile (polyacrylonitrile) ), carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM) , sulfonated-EPDM, styrene-butadiene rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
  • PTFE polytetrafluoroethylene
  • PVDF polyvin
  • the binder may include polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • the electrode composition including polytetrafluoroethylene (PTFE) as a binder, and the electrode composition is polytetrafluoroethylene (PTFE) fiberized It can be mixed by a physical mixing method according to
  • the electrode composition can be dry mixed without a separate solvent or additive, so that bridging between the active material particles or between the active material particles and the current collector is very effective.
  • the electrode composition can be dry mixed without a separate solvent or additive, so that bridging between the active material particles or between the active material particles and the current collector is very effective.
  • the content of the binder may be 0.1 wt% or more and 5 wt% or less based on the total weight of the electrode composition. More preferably, the content of the binder may be 1 wt% or more and 4 wt% or less based on the total weight of the electrode composition. For example, the content of the binder may be 2 wt% or more and 3 wt% or less based on the total weight of the electrode composition.
  • the binder is included in the content in the above-described range, so that fiberization of the binder can be maximized, and the bridging effect between particles inside the electrode composition is excellent, so that the elastic modulus is excellent.
  • the content of the binder when the content of the binder is less than 0.1% by weight, the bridging effect between the particles inside the electrode composition is insufficient, the tensile strength may also be greatly reduced.
  • the content of the binder when the content of the binder is more than 5% by weight, the binder acts as a resistance in the electrode including the electrode composition, there is a problem that it is difficult to expect high output.
  • the particle size of the binder may be 30 nm or more and 1000 nm or less. More preferably, the particle size of the binder may be 35 nm or more and 500 nm or less. For example, the particle size of the binder may be 40 nm or more and 400 nm or less.
  • the particle size of the binder is the size of the particles before fiberization of the binder proceeds, and this may be defined as the primary particle size.
  • the electrode for a secondary battery according to the present embodiment may include the binder having a size within the above-described range, and the binder may be effectively dispersed in the electrode composition.
  • the resistance reduction effect may be improved according to the improvement of the dispersibility of the binder.
  • electrode strength may also be improved.
  • the particle size of the binder is less than 30 nm, fiberization of the binder may be insufficiently progressed, and thus there is a problem in that the electrode strength is reduced.
  • the particle size of the binder is more than 1000 nm, it is necessary to have a relatively large shear force for fiberization of the binder in the electrode composition to proceed, so that a separate step is required in the manufacturing process, or process conditions There is this complicating problem.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it does not cause chemical change and has electronic conductivity.
  • Specific examples include carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon graphene, and carbon fiber; graphite such as natural graphite and artificial graphite; metal powders or metal fibers, such as copper, nickel, aluminum, and silver; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one or a mixture of two or more thereof may be used.
  • the conductive material may include a 3D porous carbon material.
  • the three-dimensional porous carbon material may also serve as a carrier of the binder.
  • PTFE polytetrafluoroethylene
  • the conductive material in the electrode composition may be used as a support for polytetrafluoroethylene (PTFE).
  • the diameter of the pores of the conductive material may be 30 nm or more and 1000 nm or less. More preferably, the diameter of the pores of the conductive material may be 35 nm or more and 800 nm or less. For example, the diameter of the pores of the conductive material may be 40 nm or more and 700 nm or less.
  • the electrode for a secondary battery according to the present embodiment includes the conductive material having a pore diameter within the above-described range, so that a difference between the diameter of the pore of the conductive material and the size of the binder may be relatively small. Accordingly, the conductive material may sufficiently serve as a carrier for the binder, and the binder may be effectively dispersed in the electrode composition. In addition, the resistance reduction effect may be improved according to the improvement of the dispersibility of the binder. In addition, since fiberization of the binder may be increased, electrode strength may also be improved.
  • the diameter of the pores of the conductive material is less than 30 nm, the dispersibility of the binder is lowered, the aggregation phenomenon of the binder itself may increase, and the effect of reducing the resistance may also be reduced.
  • the diameter of the pores of the conductive material is more than 1000 nm, it is difficult to manufacture the conductive material satisfying the diameter, the manufacturing process is complicated, there is a problem that the manufacturing cost also increases.
  • the specific surface area of the conductive material may be 1 m 2 /g or more and 100 m 2 /g or less. More preferably, the specific surface area of the conductive material may be 20 m 2 /g or more and 80 m 2 /g or less. For example, the specific surface area of the conductive material may be 30 m 2 /g or more and 70 m 2 /g or less.
  • the electrode for a secondary battery according to the present embodiment includes the conductive material having a specific surface area in the above-described range, and generation of internal gas due to a side reaction of an electrolyte when a battery cell including the electrode for a secondary battery is driven can be prevented. have.
  • the specific surface area of the conductive material exceeds 100 m 2 /g, there is a problem in that an internal gas is excessively generated due to a side reaction of an electrolyte when a battery cell including the electrode for a secondary battery is driven.
  • the specific surface area of the conductive material is less than 1 m 2 /g, the binding force between the active material and/or the binder in the electrode composition may decrease, thereby reducing battery performance.
  • the conductive material may be included in an amount of 0.1 wt% to 10 wt% based on the total weight of the electrode composition. More preferably, the conductive material may be included in an amount of 0.3 wt% to 9.5 wt% based on the total weight. For example, the conductive material may be included in an amount of 0.5 wt% to 9 wt% based on the total weight.
  • the conductive material is included in the content in the above-described range, so that fiberization of the binder can be maximized, and the bridging effect between particles inside the electrode composition is excellent, thereby providing an elastic modulus can be excellent.
  • the content of the conductive material is less than 0.1% by weight, the bridging effect between particles in the electrode composition is insufficient, the elastic modulus may also be greatly reduced.
  • the content of the conductive material is more than 10% by weight, the content of the active material or the binder in the electrode composition is relatively reduced, there is a problem in that the battery performance or the elastic modulus decreases.
  • the active material may be a positive electrode active material.
  • the active material may include lithium manganese oxide (LMO).
  • LMO lithium manganese oxide
  • the active material may be included in an amount of 85 wt% to 99 wt% based on the total weight of the electrode composition. More preferably, the active material may be included in an amount of 87 wt% to 98 wt% based on the total weight of the electrode composition. For example, the active material may be included in an amount of 89 wt% to 97 wt% based on the total weight of the electrode composition.
  • the above-described electrode for a secondary battery may be included as a positive electrode in a secondary battery according to another embodiment of the present invention. More specifically, the secondary battery according to another embodiment of the present invention may include an electrode assembly including the positive electrode, the negative electrode, and a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
  • the negative electrode may be manufactured by applying a negative electrode slurry containing a negative electrode active material, a polymer material, a conductive material, etc. to the negative electrode current collector, like the electrode for a secondary battery.
  • the negative electrode may also be prepared in such a way that the negative electrode slurry including the negative electrode active material is attached or applied on the negative electrode current collector, and the negative electrode slurry is further prepared by adding the conductive material and polymer material as described above together with the negative electrode active material.
  • anode active material a conventional anode active material for lithium secondary batteries in the art may be used, for example, lithium metal, lithium alloy, petroleum coke, activated carbon, graphite, silicon, tin, metal oxide, or Other materials such as carbons and the like may be used.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel surface. Carbon, nickel, titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. may be used.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and can be used without any particular limitation as long as it is normally used as a separator in a lithium secondary battery. Excellent is preferred.
  • examples of the electrolyte used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in the manufacture of lithium secondary batteries, and are limited to these. it is not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without any particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, triethyl, for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, triethyl
  • Phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imidazoli
  • One or more additives such as din, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 wt% to 5 wt% based on the total weight of the electrolyte.
  • FIG. 1 is a flowchart of a method for manufacturing an electrode for a secondary battery according to another embodiment of the present invention.
  • a pre-mixing step (S10) of mixing a conductive material and a binder to prepare a mixture in which the binder is uniformly dispersed, a shear force after adding an active material to the mixture Mixing step (S20) to prepare an electrode composition by adding It includes a manufacturing step (S40).
  • the conductive material and the binder may be dry mixed.
  • the diameter of the pores (Macropore) formed in the conductive material is the same as or larger than the size of the binder.
  • a premixing step of preparing a mixture in which a conductive material and a binder are dry mixed using a blender equipment of Waring is performed.
  • the premixing step (S10) is performed at 5000 rpm for 1 minute, so that only the mixing of the conductive material and the binder is induced.
  • an active material is added to the mixture prepared in the pre-mixing step (S10), and a mixing step (S20) of preparing an electrode composition is performed.
  • the active material is 97% by weight of lithium manganese oxide (LMO, Lithium Manganese Oxide), and the conductive material has a specific surface area of 50m 2 /g and a pore diameter of 50nm. It is a 2% by weight three-dimensional porous carbon material.
  • the binder is polytetrafluoroethylene (PTFE) of 1% by weight of 50 nm.
  • Example 1 the pore diameter of the conductive material was 100 nm. Except for this point, an electrode composition was prepared in the same manner as in Example 1.
  • Example 1 the specific surface area of the conductive material was 80 m 2 /g. Except for this point, an electrode composition was prepared in the same manner as in Example 1.
  • Example 1 the content of the binder is 10% by weight, and the content of the positive active material is 88% by weight. Except for this point, an electrode composition was prepared in the same manner as in Example 1.
  • Example 1 the specific surface area of the conductive material was 1000 m 2 /g. Except for this point, an electrode composition was prepared in the same manner as in Example 1.
  • Example 1 the pore diameter of the conductive material was 2 nm. Except for this point, an electrode composition was prepared in the same manner as in Example 1.
  • the electrode compositions prepared in Examples 1 to 5 and Comparative Example 1, respectively, were prepared using a roll mill equipment manufactured by Inoue Co., Ltd., a free-standing film having a length of 800 mm, a width of 500 mm, and a thickness of 400 ⁇ m.
  • Standing film manufacturing step (S30) was performed. After fixing both ends of each prepared freestanding film with a jig, the elastic modulus of the freestanding film was measured under the conditions of Frequency 1Hz and Strain 0.1% using DMA equipment from TA Instruments, and the results are shown in Table 1 shown in
  • Example 1 97 One 50 2 50 50 150 Example 2 97 One 50 2 50 100 105 Example 3 97 One 50 2 80 100 108 Example 4 88 10 50 2 50 50 325 Example 5 97 One 50 2 2000 50 140 Comparative Example 1 97 One 50 2 50 2 22
  • a coin half cell was prepared by using a lithium metal having a thickness of 200 ⁇ m as a negative electrode together with the positive electrode prepared in Experimental Example 1, respectively. Thereafter, the discharge capacity values of the first cycle after charging and discharging under 0.1C/0.1C conditions in the 3.0-4.3V voltage range were calculated for each of the prepared coin half cells, and the results are shown in Table 2.
  • FIG. 2 is a graph comparing the elastic modulus and initial discharge capacity according to the pore diameter of a conductive material of an electrode for a secondary battery in Examples and Comparative Examples of the present invention, respectively.
  • FIG. 2 is a graph comparing the elastic modulus and initial discharge capacity of Examples 1, 2, and Comparative Example 1 among the results shown in Tables 1 and 2, respectively.
  • Example 1, Example 2, and Comparative Example 1 the content of the positive electrode active material, the binder, and the conductive material is the same, and the specific surface area of the conductive material is also the same.
  • the pore diameter of the conductive material increases in the order of Comparative Example 1, Example 1, and Example 2.
  • the pore diameter of the conductive material is similar to or larger than the particle size of the binder, respectively, so that both the elastic modulus and the initial discharge capacity are excellent.
  • Example 1 it can be seen that the elastic modulus is slightly decreased compared to the case in which the pore diameter (50 nm) of the conductive material is similar to the particle size (50 nm) of the binder. This is because, as in Example 2, when the pore diameter (100 nm) of the conductive material is larger than the particle size of the binder, the dispersibility of the binder is reduced.
  • FIG. 3 is a graph comparing an elastic modulus and an initial discharge capacity according to a specific surface area of a conductive material of an electrode for a secondary battery, respectively, in Examples of the present invention.
  • FIG. 3 is a graph comparing the elastic modulus and initial discharge capacity of Examples 1, 3, and 5 among the results shown in Tables 1 and 2, respectively.
  • the content of the positive electrode active material, the binder, and the conductive material is the same, the pore diameters of the conductive materials are similar, but the specific surface areas of the conductive materials are different from each other.
  • Example 1, Example 2, and Comparative Example 5 the specific surface area of the conductive material gradually increases.
  • Example 5 when the specific surface area (2000 m 2 /g) of the conductive material is excessively large, the elastic modulus is excellent, but it can be seen that the initial discharge capacity is lowered as in Comparative Example 1. This is because, as in Example 5, if the specific surface area of the conductive material is too large, it is vulnerable to moisture, and thus side reactions within the electrode are increased.
  • FIG. 4 is a graph comparing an elastic modulus and an initial discharge capacity according to a binder content of an electrode for a secondary battery, respectively, in Examples of the present invention.
  • FIG. 4 is a graph comparing the elastic modulus and initial discharge capacity of Examples 1 and 4 among the results shown in Tables 1 and 2, respectively.
  • the particle sizes of the binders of Examples 1 and 4 are the same, the content of the conductive material, the specific surface area, and the pore diameter are the same, but the content of the positive electrode active material and the binder is different.
  • the content of the binder increases in the order of Examples 1 and 4, and the content of the positive electrode active material decreases.
  • Example 4 As in Example 4, as the binder content (10% by weight) increases, the elastic modulus increases, but it can be seen that the initial discharge capacity is decreased, but not as much as in Comparative Example 1. It can be seen that, as the content of the binder increases, fiberization of the binder proceeds relatively much and the elastic modulus increases, but the initial discharge capacity decreases because the binder itself acts as a resistance.
  • Example 1 although the elastic modulus is lower than that of Example 4, it can be seen that the initial discharge capacity is higher than that of Example 4. Accordingly, a preferable configuration in terms of both the elastic modulus and the initial discharge capacity is when the binder content is within the same range as in Example 1, and when this is satisfied, it can be confirmed that the elastic modulus and the initial discharge capacity are overall excellent. .
  • an electrode for a secondary battery and a secondary battery including the same by using a conductive material having a small specific surface area and a large pore diameter, an electrode for a secondary battery and a secondary battery including the same, the elastic modulus and resistance reduction effect of the electrode can be improved .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명의 일 실시예에 따른 이차전지용 전극은, 전극 집전체; 및 상기 전극 집전체 상에 위치하는 전극층을 포함하고, 상기 전극층은 활물질, 도전재, 바인더가 건식으로 혼합된 전극 조성물을 포함하고, 상기 도전재에 형성되어 있는 세공(Macropore)의 직경은 상기 바인더의 크기와 동일하거나 이보다 크다.

Description

이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법
관련 출원(들)과의 상호 인용
본 출원은 2020년 12월 04일자 한국 특허 출원 제10-2020-0168896호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 이차 전지용 전극, 이를 포함하는 이차 전지, 및 전극 제조 방법에 관한 것으로, 보다 구체적으로는 탄성 계수 및 저항 감소 효과가 향상된 이차 전지용 전극, 이를 포함하는 이차 전지, 및 전극 제조 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차 전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중 높은 에너지 밀도와 전압을 가지고, 사이클 수명이 길며, 자기방전률이 낮은 리튬 이차 전지가 사용화되어 널리 사용되고 있다.
특히, 이차 전지는 휴대폰, 디지털 카메라, 노트북, 웨어러블 디바이스 등의 모바일 기기뿐만 아니라, 전기 자전거, 전기 자동차, 하이브리드 전기 자동차 등의 동력 장치에 대한 에너지원으로도 많은 관심을 가지고 있다.
또한, 환경문제에 대한 관심이 커짐에 따라, 대기 오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로는 주로 니켈 수소금속 이차전지가 사용되고 있지만, 높은 에너지 밀도와 방전 전압의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.
기존의 이차 전지용 전극은 일반적으로 습식 방법으로 제조되었다. 그러나 습식 방법으로 전극을 제조하는 경우, 고온에서의 열처리 과정이 필수적으로 요구되어, 금속 산화물이 손상될 우려가 있었다. 이에 따라, 건식 방법으로 제조된 전극 개발에 대한 필요성이 높아지고 있다.
본 발명의 해결하고자 하는 과제는, 탄성 계수 및 저항 감소 효과가 향상된 이차 전지용 전극, 이를 포함하는 이차 전지, 및 전극 제조 방법을 제공하는 것이다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 이차전지용 전극은, 전극 집전체; 및 상기 전극 집전체 상에 위치하는 전극층을 포함하고, 상기 전극층은 활물질, 도전재, 바인더가 건식으로 혼합된 전극 조성물을 포함하고, 상기 도전재에 형성되어 있는 세공(Macropore)의 직경은 상기 바인더의 크기와 동일하거나 이보다 크다.
상기 도전재의 세공의 직경은 30nm 이상 1000nm 이하일 수 있다.
상기 바인더의 입자 크기는 30nm 이상 1000nm 이하일 수 있다.
상기 도전재의 비표면적은 1m2/g 이상 100m2/g 이하일 수 있다.
상기 도전재의 함량은 상기 전극 조성물의 전체 중량을 기준으로 0.1중량% 이상 10중량% 이하일 수 있다.
상기 도전재는 삼차원 다공성 탄소 소재를 포함하고, 상기 바인더는 폴리테트라플루오로에틸렌(PTFE, Polytetrafluoroethylene)를 포함할 수 있다.
상기 활물질은 리튬 망간 산화물(LMO, Lithium Manganese Oxide)을 포함할 수 있다.
상기 전극 조성물은 프리스탠딩 필름으로 제조되고, 상기 프리스탠딩 필름이 상기 전극 집전체 상에 부착될 수 있다.
상기 프리스탠딩 필름은 30 MPa 이상 400 MPa 이하의 탄성 계수 값을 가질 수 있다.
본 발명의 다른 일 실시예에 따른 이차전지용 전극 제조 방법은, 도전재 및 바인더를 건식으로 혼합하여 혼합물을 제조하는 단계; 상기 혼합물에 활물질을 추가한 후, 전단력을 가하여 전극 조성물을 제조하는 단계; 상기 전극 조성물을 전극 집전체 상에 부착하여 이차 전지용 전극을 제조하는 단계를 포함하고, 상기 도전재에 형성되어 있는 세공(Macropore)의 직경은 상기 바인더의 크기와 동일하거나 이보다 크다.
상기 도전재의 세공의 직경은 30nm 이상 1000nm 이하 일 수 있다.
상기 바인더의 1차 입자 크기는 30nm 이상 1000nm 이하 일 수 있다.
상기 도전재의 비표면적은 1m2/g 이상 100m2/g 이하 일 수 있다.
상기 도전재의 함량은 상기 전극 조성물의 전체 중량을 기준으로 0.1중량% 이상 10중량% 이하일 수 있다.
상기 도전재는 삼차원 다공성 탄소 소재를 포함하고, 상기 바인더는 폴리테트라플루오로에틸렌(PTFE, Polytetrafluoroethylene)를 포함할 수 있다.
상기 활물질은 리튬 망간 산화물(LMO, Lithium Manganese Oxide)을 포함할 수 있다.
상기 전극 조성물을 전극 집전체 상에 부착하여 이차 전지용 전극을 제조하는 단계에서, 상기 전극 조성물은 프리스탠딩 필름으로 제조되어, 상기 전극 집전체 상에 부착될 수 있다.
상기 프리스탠딩 필름은 30 MPa 이상 400 MPa 이하의 탄성 계수 값을 가질 수 있다. 본 발명의 다른 일 실시예에 따른 이차전지는 상술한 이차 전지용 전극을 포함할 수 있다.
도 1는 본 발명의 일 실시 예에 따른 이차 전지용 전극 제조 방법에 관한 순서도이다.
도 2는 본 발명의 실시예 및 비교예에서, 이차 전지용 전극의 도전재의 세공 직경에 따른 탄성 계수 및 초기 방전 용량을 각각 비교한 그래프이다.
도 3은 본 발명의 실시예 및 비교예에서, 이차 전지용 전극의 도전재의 비표면적에 따른 탄성 계수 및 초기 방전 용량을 각각 비교한 그래프이다.
도 4는 본 발명의 실시예 및 비교예에서, 이차 전지용 전극의 바인더의 함량에 따른 탄성 계수 및 초기 방전 용량을 각각 비교한 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
이하에서는, 본 발명의 일 실시예에 따른 이차전지용 전극에 대해 설명한다.
본 발명의 일 실시예에 따른 이차전지용 전극은, 전극 집전체; 및 상기 전극 집전체 상에 프리스탠딩 필름(free standing film)으로 형성된 전극층을 포함한다. 전극층은, 활물질, 도전재, 및 바인더가 건식으로 혼합되어 있는 전극 조성물을 포함한다.
상기 전극층은 프리스탠딩 필름이 먼저 제조되고, 상기 프리스탠딩 필름이 상기 전극 집전체 상에 부착된 후 라미네이션 공정에 의해 형성될 수 있다. 여기서, 상기 프리스탠딩 필름은 30 MPa 이상 400 MPa 이하의 탄성 계수 값을 가질 수 있다. 여기서, 탄성 계수 값은 DMA(Dynamic Mechanical Analysis) 장치로 측정되며, 25℃에서 400um 두께의 프리스탠딩 필름에 대해 측정한 값으로 정의될 수 있다.
이에 따라, 상기 프리스탠딩 필름은 상기 전극 조성물에 포함되는 활물질, 도전재, 및 바인더가 서로 높은 결착력으로 혼합된 상태일 수 있고, 상기 프리스탠딩 필름은 롤(roll) 형태로 용이하게 보관될 수 있다. 또한, 생산성이 향상되고, 전극의 유연성 개선에 효과적일 수 있다. 그러나, 상기 프리스탠딩 필름의 탄성 계수 값이 30 MPa 미만인 경우, 셀 제작 공정 중 파손의 위험이 있으며, 충방전 시 전극 내 전극 활물질 사이에 균열이 발생되므로, 공정성 및 내구성이 저하되어, 제조 공정 상 보관이 용이하지 않을 수 있다.
이하에서는, 본 발명의 일 실시예에 따른 이차 전지용 전극에 포함되는 각 구성 요소에 대해 상세히 설명하고자 한다.
상기 바인더는 활물질 입자들 간의 부착 및 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
일 예로, 상기 바인더는 폴리테트라플루오로에틸렌(PTFE)을 포함할 수 있다. 여기서, 폴리테트라플루오로에틸렌(PTFE)은 전단력이 가해짐에 따라 입자에서 섬유가 뽑아져 나오는 특징을 가진다. 즉, 본 발명의 일 실시예에 따른 이차 전지용 전극에서, 폴리테트라플루오로에틸렌(PTFE)을 바인더로 포함하는 전극 조성물에 강한 전단력이 가해져, 상기 전극 조성물은 폴리테트라플루오로에틸렌(PTFE)의 섬유화에 따른 물리적 혼합 방식에 의해 혼합될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 이차 전지용 전극은 상기 전극 조성물이 별도의 용매 또는 첨가제 없이 건식으로 혼합될 수 있어, 활물질 입자 사이의 브릿징 또는 활물질 입자와 집전체 사이의 브릿징에 매우 효과적이면서도, 기존의 혼합 방식에 따른 전극 로딩의 한계를 극복할 수 있으며, 건조로가 불필요하여 공정비를 절감할 수 있다.
또한, 상기 바인더의 함량은 상기 전극 조성물의 전체 중량을 기준으로 0.1중량% 이상 5중량% 이하일 수 있다. 보다 바람직하게는, 상기 바인더의 함량은 상기 전극 조성물의 전체 중량을 기준으로 1중량% 이상 4중량% 이하일 수 있다. 일 예로, 상기 바인더의 함량은 상기 전극 조성물의 전체 중량을 기준으로 2중량% 이상 3중량% 이하일 수 있다.
이에 따라, 본 실시예에 따른 이차 전지용 전극은 상기 바인더가 상술한 범위의 함량으로 포함되어, 바인더의 섬유화가 극대화될 수 있고, 전극 조성물 내부의 입자간 브릿징 효과가 우수하여 탄성 계수가 우수할 수 있다. 이와 더불어, 상기 바인더의 뭉침 현상을 방지하고, 분산성을 향상시킬 수 있어, 상기 전극 조성물을 포함하는 전극의 저항 감소 효과가 우수할 수 있다.
이와 달리, 상기 바인더의 함량이 0.1중량% 미만인 경우에는, 상기 전극 조성물 내부의 입자간 브릿징 효과가 불충분하여, 인장 강도 또한 크게 감소할 수 있다. 또한, 상기 바인더의 함량이 5중량% 초과인 경우에는, 상기 전극 조성물을 포함하는 전극에서 상기 바인더가 저항으로 작용되어, 높은 출력을 기대하기 어렵다는 문제가 있다.
또한, 상기 바인더의 입자 크기는 30nm 이상 1000nm 이하 일 수 있다. 보다 바람직하게는, 상기 바인더의 입자 크기는 35nm 이상 500nm 이하일 수 있다. 일 예로, 상기 바인더의 입자 크기는 40nm 이상 400nm 이하일 수 있다. 여기서, 상기 바인더의 입자 크기는, 상기 바인더의 섬유화가 진행되기 전인 입자의 크기이며, 이는 1차 입자 크기로도 정의될 수 있다.
이에 따라, 본 실시예에 따른 이차 전지용 전극은 상술한 범위의 크기를 가지는 상기 바인더가 포함되어, 상기 바인더가 상기 전극 조성물 내에서 효과적으로 분산되어 있을 수 있다. 이와 더불어, 상기 바인더의 분산성 향상에 따라 저항 감소 효과가 향상될 수 있다. 또한, 상기 바인더의 섬유화가 증대될 수 있어, 전극 강도 또한 향상될 수 있다.
이와 달리, 상기 바인더의 입자 크기가 30nm 미만인 경우에는, 상기 바인더의 섬유화가 불충분하게 진행될 수 있어, 전극 강도가 감소하는 문제가 있다. 또한, 상기 바인더의 입자 크기가 1000nm 초과인 경우에는, 상기 전극 조성물 내에서 상기 바인더의 섬유화가 진행되기 위한 전단력이 상대적으로 커야할 필요가 있어, 제조 공정 상 별도의 단계가 요구되거나, 공정상의 조건이 복잡해지는 문제가 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용 가능하다. 구체적인 예로는 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소 그래핀, 탄소섬유 등의 탄소계 물질; 천연 흑연이나 인조 흑연 등의 흑연; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
일 예로, 상기 도전재는 삼차원 다공성 탄소 소재(3D Porous carbon material)을 포함할 수 있다. 여기서, 삼차원 다공성 탄소 소재는 상기 바인더의 담지체로서의 역할 또한 수행할 수 있다. 일 예로, 상기 바인더로 폴리테트라플루오로에틸렌(PTFE)이 사용되는 경우, 전극 조성물 내에서 상기 도전재는 폴리테트라플루오로에틸렌(PTFE)의 담지체로 활용될 수 있다.
상기 도전재의 세공의 직경은 30nm 이상 1000nm 이하일 수 있다. 보다 바람직하게는, 상기 도전재의 세공의 직경은 35nm 이상 800nm 이하일 수 있다. 일 예로, 상기 도전재의 세공의 직경은 40nm 이상 700nm 이하일 수 있다.
이에 따라, 본 실시예에 따른 이차 전지용 전극은 상술한 범위의 세공의 직경을 가지는 상기 도전재가 포함되어, 상기 도전재의 세공의 직경과 상기 바인더의 크기의 차이가 상대적으로 작을 수 있다. 이에 따라, 상기 도전재는 상기 바인더에 대한 담지체의 역할을 충분히 수행할 수 있고, 상기 바인더가 상기 전극 조성물 내에서 효과적으로 분산되어 있을 수 있다. 이와 더불어, 상기 바인더의 분산성 향상에 따라 저항 감소 효과가 향상될 수 있다. 또한, 상기 바인더의 섬유화가 증대될 수 있어, 전극 강도 또한 향상될 수 있다.
이와 달리, 상기 도전재의 세공의 직경이 30nm 미만인 경우에는, 상기 바인더의 분산성이 저하되어, 상기 바인더 자체의 뭉침 현상이 증가할 수 있고, 저항 감소 효과 또한 저하될 수 있다. 또한, 상기 도전재의 세공의 직경이 1000nm 초과인 경우에는, 해당 직경을 만족하는 상기 도전재의 제조가 어려워 제조 공정이 복잡해지고, 제조 비용 또한 증가하는 문제가 있다.
또한, 상기 도전재의 비표면적은 1m2/g 이상 100m2/g 이하일 수 있다. 보다 바람직하게는, 상기 도전재의 비표면적은 20m2/g 이상 80m2/g 이하일 수 있다. 일 예로, 상기 도전재의 비표면적은 30m2/g 이상 70m2/g 이하일 수 있다.
이에 따라, 본 실시예에 따른 이차 전지용 전극은 상술한 범위의 비표면적을 가지는 상기 도전재가 포함되어, 상기 이차 전지용 전극을 포함하는 전지셀의 구동 시 전해액 부반응으로 인한 내부 가스 생성 발생을 방지할 수 있다. 이와 달리, 상기 도전재의 비표면적이 100m2/g 초과인 경우에는, 상기 이차 전지용 전극을 포함하는 전지셀의 구동 시 전해액 부반응으로 인한 내부 가스가 과도하게 발생되는 문제가 있다. 또한, 상기 도전재의 비표면적이 1m2/g 미만인 경우에는, 상기 전극 조성물 내에서 활물질 및/또는 바인더 사이의 결착력이 감소하여, 전지 성능이 감소할 수 있다.
또한, 상기 도전재는 전극 조성물의 전체 중량을 기준으로 0.1중량% 내지 10중량%로 포함될 수 있다. 보다 바람직하게는, 상기 도전재는 전체 중량을 기준으로 0.3중량% 내지 9.5중량%로 포함될 수 있다. 일 예로, 상기 도전재는 전체 중량을 기준으로 0.5중량% 내지 9중량%로 포함될 수 있다.
이에 따라, 본 실시예에 따른 이차 전지용 전극은 상기 도전재가 상술한 범위의 함량으로 포함되어, 상기 바인더의 섬유화를 극대화시킬 수 있고, 이에 따른 전극 조성물 내부의 입자간 브릿징 효과가 우수하여 탄성 계수가 우수할 수 있다. 이와 더불어, 상기 바인더의 뭉침 현상을 방지하고, 분산성을 향상시킬 수 있어, 상기 전극 조성물을 포함하는 전극의 저항 감소 효과가 우수할 수 있다.
이와 달리, 상기 도전재의 함량이 0.1중량% 미만인 경우에는, 상기 전극 조성물 내부의 입자간 브릿징 효과가 불충분하여, 탄성 계수 또한 크게 감소할 수 있다. 또한, 상기 도전재의 함량이 10중량% 초과인 경우에는, 상기 전극 조성물 내의 활물질 또는 바인더의 함량이 상대적으로 줄어들어, 전지 성능 또는 탄성 계수가 감소하는 문제가 있다.
상기 활물질은 양극 활물질일 수 있다. 상기 양극 활물질은, 일 예로, 리튬 전이금속 산화물로서, LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2(O<y<1), LiCo1-yMnyO2, LiNi1-yMnyO2(O<y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4(0<z<2), LiMn2-zCozO4(0<z<2) 및 이의 조합으로부터 선택될 수 있다.
일 예로, 상기 활물질은 리튬 망간 산화물(LMO, Lithium Manganese Oxide)을 포함할 수 있다. 여기서, 상기 활물질은 전극 조성물의 전체 중량을 기준으로 85중량% 내지 99중량%로 포함될 수 있다. 보다 바람직하게는, 상기 활물질은 전극 조성물의 전체 중량을 기준으로 87중량% 내지 98중량%로 포함될 수 있다. 일 예로, 상기 활물질은 전극 조성물의 전체 중량을 기준으로 89중량% 내지 97중량%로 포함될 수 있다.
상술한 이차 전지용 전극은 본 발명의 다른 일 실시예에 따른 이차 전지에서 양극으로 포함될 수 있다. 보다 구체적으로는, 본 발명의 다른 일 실시예에 따른 이차 전지는 상기 양극, 음극, 및 상기 양극과 상기 음극 사이에 개재된 분리막을 포함하는 전극 조립체와 전해질을 포함할 수 있다.
상기 음극은 상기 이차전지용 전극과 같이, 음극 활물질, 고분자 물질, 도전재 등이 포함된 음극 슬러리가 음극 집전체에 도포되어 제조될 수 있다.
상기 음극 또한, 음극 활물질을 포함하는 음극 슬러리가 음극 집전체 상에 부착 또는 도포되는 형태로 제조될 수 있고, 상기 음극 슬러리는 역시 음극 활물질과 함께, 상기에서 설명한 바와 같은 도전재 및 고분자 물질을 더 포함할 수 있다.
상기 음극 활물질은 당 업계에서 통상적인 리튬 이차 전지용 음극 활물질을 사용할 수 있으며, 일 예로, 리튬 금속, 리튬 합금, 석유 코크, 활성화 탄소(activated carbon), 그래파이트(graphite), 규소, 주석, 금속 산화물 또는 기타 탄소류 등과 같은 물질이 사용될 수 있다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다.
또한, 본 발명에서 사용되는 전해액으로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해액은 유기 용매 및 리튬염을 포함할 수 있다. 상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다.
상기 전해액에는 상기 구성 성분들 외에도 전지의 수명 특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해액 총 중량에 대하여 0.1중량% 내지 5 중량%로 포함될 수 있다.
도 1는 본 발명의 다른 일 실시 예에 따른 이차 전지용 전극 제조 방법에 관한 순서도이다.
도 1을 참조하면, 본 실시예에 따른 전극 제조 방법은, 도전재 및 바인더를 혼합하여, 상기 바인더가 균일 분산된 혼합물을 제조하는 프리 믹싱 단계(S10), 상기 혼합물에 활물질을 추가한 후 전단력을 가하여 전극 조성물을 제조하는 믹싱 단계(S20), 상기 전극 조성물을 사용하여 프리스탠딩 필름을 제조하는 단계(S30), 및 상기 프리스탠딩 필름을 전극 집전체 상에 부착한 후 라미네이션 공정을 통해 전극을 제조하는 단계(S40)를 포함한다.
프리 믹싱 단계(S10)는 도전재 및 바인더를 건식으로 혼합할 수 있다. 상기 도전재에 형성되어 있는 세공(Macropore)의 직경은 상기 바인더의 크기와 동일하거나 이보다 크다.
이하에서는, 보다 구체적인 실시예를 통해 본 발명의 내용을 설명하지만, 하기 실시예는 본 발명을 예시적으로 설명하기 위한 것이며, 본 발명의 권리 범위가 이에 한정되는 것은 아니다.
<실시예 1>
도전재 및 바인더를 Waring사의 블렌더(blender) 장비를 사용하여 건식으로 혼합한 혼합물을 제조하는 프리믹싱 단계를 수행한다. 이 때, 프리믹싱 단계(S10)는 5000rpm으로 1분동안 수행되어, 도전재 및 바인더의 혼합만이 유도된다. 이후, Irie Shokai 사의 Bench Kneader PBV-0.1L 장비를 사용하여, 상기 프리 믹싱 단계(S10)에서 제조된 상기 혼합물에 활물질을 추가하여, 전극 조성물을 제조하는 믹싱 단계(S20)를 수행한다.
여기서, 상기 활물질은 97중량%의 리튬 망간 산화물(LMO, Lithium Manganese Oxide)이고, 상기 도전재는 비표면적이 50m2/g이고, 세공 직경이 50nm인 2중량%의 삼차원 다공성 탄소 소재다. 또한, 상기 바인더는 50nm의 1중량%의 폴리테트라플루오로에틸렌(PTFE)이다.
<실시예 2>
상기 실시예 1에서, 상기 도전재의 세공 직경이 100nm이다. 이 점을 제외하고는 실시예 1과 동일하게 전극 조성물을 제조하였다.
<실시예 3>
상기 실시예 1에서, 상기 도전재의 비표면적이 80m2/g이다. 이 점을 제외하고는 실시예 1과 동일하게 전극 조성물을 제조하였다.
<비교예 4>
상기 실시예 1에서, 상기 바인더의 함량이 10중량%이고, 상기 양극 활물질의 함량이 88중량%이다. 이 점을 제외하고는 실시예 1과 동일하게 전극 조성물을 제조하였다.
<비교예 5>
상기 실시예 1에서, 상기 도전재의 비표면적이 1000m2/g이다. 이 점을 제외하고는 실시예 1과 동일하게 전극 조성물을 제조하였다.
<비교예 1>
상기 실시예 1에서, 상기 도전재의 세공 직경이 2nm이다. 이 점을 제외하고는 실시예 1과 동일하게 전극 조성물을 제조하였다.
<실험예 1 (탄성 계수 (Modulus) 측정)>
실시예 1 내지 5, 비교예 1에서 각각 제조된 상기 전극 조성물은 이노우에제작소 사의 롤밀(Roll Mill) 장비를 사용하여, 800mm의 길이 및 500mm의 폭, 400um의 두께를 가지는 프리스탠딩 필름을 제조하는 프리스탠딩 필름 제조 단계(S30)가 수행되었다. 제조된 각각의 프리스탠딩 필름에 대해 양쪽 끝을 지그로 고정한 후, TA Instruments 사의 DMA 장비를 사용하여 프리스탠딩 필름의 탄성 계수를 Frequency 1Hz, Strain 0.1%의 조건으로 각각 측정하였고, 그 결과를 표 1에 나타내었다.
조성 탄성 계수
(MPa, @25℃)
양극 활물질 (%) 바인더 도전재
함량 (%) 크기 (nm) 함량 (%) 비표면적 (m2/g) 세공 직경 (nm)
실시예 1 97 1 50 2 50 50 150
실시예 2 97 1 50 2 50 100 105
실시예 3 97 1 50 2 80 100 108
실시예 4 88 10 50 2 50 50 325
실시예 5 97 1 50 2 2000 50 140
비교예 1 97 1 50 2 50 2 22
<실험예 2 (방전 용량 측정)>
실시예 1 내지 5, 비교예 1에 대해, 실험예 1에서 각각 제조된 양극과 함께, 200um의 두께를 가지는 리튬 금속을 음극으로 하여, 코인 하프 셀을 제조하였다. 이후, 제조된 각각의 코인 하프 셀에 대해 3.0~4.3V 전압 범위에서 0.1C/0.1C 조건으로 충방전 후 첫번째 cycle의 방전 용량 값 계산하였고, 그 결과를 표 2에 나타내었다.
조성 초기 방전 용량
(mAh/g)
양극 활물질 (%) 바인더 도전재
함량 (%) 크기 (nm) 함량 (%) 비표면적 (m2/g) 세공 직경 (nm)
실시예 1 97 1 50 2 50 50 107.0
실시예 2 97 1 50 2 50 100 106.5
실시예 3 97 1 50 2 80 100 102.8
실시예 4 88 10 50 2 50 50 98.5
실시예 5 97 1 50 2 2000 50 101.4
비교예 1 97 1 50 2 50 2 95.7
<실험 결과 분석>
도 2는 본 발명의 실시예 및 비교예에서, 이차 전지용 전극의 도전재의 세공 직경에 따른 탄성 계수 및 초기 방전 용량을 각각 비교한 그래프이다. 특히, 도 2는 표 1 및 표 2에서 나타난 결과 중에서, 실시예 1, 실시예 2, 및 비교예 1의 탄성 계수 및 초기 방전 용량을 각각 비교한 그래프이다. 이 때, 실시예 1, 실시예 2, 및 비교예 1은 양극 활물질, 바인더, 및 도전재의 함량이 동일하고, 도전재의 비표면적 또한 동일하다. 다만, 도전재의 세공 직경이 비교예 1, 실시예 1, 및 실시예 2 순으로 증가한다.
도 2를 참조하면, 비교예 1과 같이 도전재의 세공 직경(2nm)이 바인더의 입자 크기(50nm)보다 작은 경우, 탄성 계수 및 초기 방전 용량이 모두 저하되는 것을 확인할 수 있다. 이는 도전재의 세공 직경이 바인더의 입자 크기보다 작아서, 도전재의 세공 내에 바인더를 담지하는 것이 불가능하기 때문이다.
이와 달리, 실시예 1 및 2의 경우, 도전재의 세공 직경이 각각 바인더의 입자 크기와 유사하거나 이보다 커서, 탄성 계수 및 초기 방전 용량이 모두 우수하게 나타나는 것을 확인할 수 있다.
다만, 실시예 1과 같이 도전재의 세공 직경(50nm)이 바인더의 입자 크기(50nm)와 유사한 경우에 비해, 탄성 계수가 약간 감소하는 것을 확인할 수 있다. 이는, 실시예 2와 같이 도전재의 세공 직경(100nm)이 바인더의 입자 크기보다 큰 경우, 바인더의 분산성이 저하되기 때문이다.
이에 따라, 도전재의 세공 직경이, 실시예 1 및 실시예 2와 같은 범위 내에 있는 경우, 탄성 계수 및 초기 방전 용량이 전반적으로 모두 우수한 것을 확인할 수 있다.
도 3은 본 발명의 실시예들에서, 이차 전지용 전극의 도전재의 비표면적에 따른 탄성 계수 및 초기 방전 용량을 각각 비교한 그래프이다. 특히, 도 3은 표 1 및 표 2에서 나타난 결과 중에서, 실시예 1, 실시예 3, 및 실시예 5의 탄성 계수 및 초기 방전 용량을 각각 비교한 그래프이다. 이 때, 실시예 1, 실시예 3, 및 실시예 5는 양극 활물질, 바인더, 및 도전재의 함량이 동일하고, 도전재의 세공 직경은 유사하되, 도전재의 비표면적이 서로 상이하다. 여기서, 실시예 1, 실시예 2, 및 비교예 5의 순서로, 도전재의 비표면적이 점차적으로 증가한다.
도 3을 참조하면, 실시예 5와 같이, 도전재의 비표면적(2000m2/g)이 지나치게 큰 경우에는, 탄성 계수는 우수한 반면, 비교예 1만큼은 아니나 초기 방전 용량이 저하되는 것을 확인할 수 있다. 이는 실시예 5와 같이, 도전재의 비표면적이 지나치게 크면, 수분에 취약하고, 이에 따른 전극 내 부반응이 증가되기 때문이다.
이와 달리, 실시예 1 및 실시예 3의 경우, 도전재의 비표면적이 지나치게 크기 않아, 탄성 계수 및 초기 방전 용량이 전반적으로 우수하게 나타나는 것을 확인할 수 있다. 이에 따라, 도전재의 비표면적이, 실시예 1 및 실시예 3과 같은 범위 내에 있는 경우, 탄성 계수 및 초기 방전 용량이 전반적으로 모두 우수한 것을 확인할 수 있다.
도 4는 본 발명의 실시예들에서, 이차 전지용 전극의 바인더의 함량에 따른 탄성 계수 및 초기 방전 용량을 각각 비교한 그래프이다. 특히, 도 4는 표 1 및 표 2에서 나타난 결과 중에서, 실시예 1 및 실시예 4의 탄성 계수 및 초기 방전 용량을 각각 비교한 그래프이다. 이 때, 실시예 1 및 실시예 4의 바인더의 입자 크기가 동일하고, 도전재의 함량, 비표면적, 및 세공 직경이 동일하되, 양극활물질 및 바인더의 함량이 상이하다. 여기서, 실시예 1 및 실시예 4의 순으로 바인더의 함량이 증가하고, 양극 활물질의 함량이 감소한다.
도 4를 참조하면, 실시예 4와 같이, 바인더의 함량(10 중량%)이 클수록, 탄성 계수가 증가하되, 비교예 1만큼은 아니나 초기 방전 용량이 감소하는 것을 확인할 수 있다. 이는, 바인더의 함량이 증가됨에 따라, 바인더의 섬유화가 상대적으로 많이 진행되어 탄성 계수가 증가하나, 바인더 자체가 저항으로 작용하여 초기 방전 용량이 감소하는 것을 확인할 수 있다.
이와 달리, 실시예 1의 경우, 탄성 계수가 실시예 4에 비해서 낮게 나타나지만, 초기 방전 용량이 실시예 4에 비해 높게 나타나는 것을 확인할 수 있다. 이에 따라, 탄성 계수 및 초기 방전 용량 측면에서 모두 바람직한 구성은 바인더의 함량이, 실시예 1과 같은 범위 내에 있는 경우이며, 이를 만족할 때, 탄성 계수 및 초기 방전 용량이 전반적으로 모두 우수한 것을 확인할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였으나, 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
본 발명의 실시예에 따르면, 비표면적이 작고, 세공의 직경이 큰 도전재를 사용하여, 이차 전지용 전극 및 이를 포함하는 이차 전지를 제조함으로써, 전극의 탄성 계수 및 저항 감소 효과가 향상될 수 있다.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.

Claims (19)

  1. 전극 집전체; 및
    상기 전극 집전체 상에 위치하는 전극층을 포함하고,
    상기 전극층은 활물질, 도전재, 바인더가 건식으로 혼합된 전극 조성물을 포함하고,
    상기 도전재에 형성되어 있는 세공(Macropore)의 직경은 상기 바인더의 크기와 동일하거나 이보다 큰 이차 전지용 전극.
  2. 제1항에서,
    상기 도전재의 세공의 직경은 30nm 이상 1000nm 이하인 이차 전지용 전극.
  3. 제1항에서,
    상기 바인더의 입자 크기는 30nm 이상 1000nm 이하인 이차 전지용 전극.
  4. 제2항에서,
    상기 도전재의 비표면적은 1m2/g 이상 100m2/g 이하인 이차 전지용 전극.
  5. 제1항에서,
    상기 도전재의 함량은 상기 전극 조성물의 전체 중량을 기준으로 0.1중량% 이상 10중량% 이하인 이차 전지용 전극.
  6. 제1항에서,
    상기 도전재는 삼차원 다공성 탄소 소재를 포함하고,
    상기 바인더는 폴리테트라플루오로에틸렌(PTFE, Polytetrafluoroethylene)를 포함하는 이차 전지용 전극.
  7. 제1항에서,
    상기 활물질은 리튬 망간 산화물(LMO, Lithium Manganese Oxide)을 포함하는 이차 전지용 전극.
  8. 제1항에서,
    상기 전극 조성물은 프리스탠딩 필름으로 제조되고,
    상기 프리스탠딩 필름이 상기 전극 집전체 상에 부착되는 이차 전지용 전극.
  9. 제8항에서,
    상기 프리스탠딩 필름은 30 MPa 이상 400 MPa 이하의 탄성 계수 값을 가지는 이차 전지용 전극.
  10. 도전재 및 바인더를 건식으로 혼합하여 혼합물을 제조하는 단계;
    상기 혼합물에 활물질을 추가한 후, 전단력을 가하여 전극 조성물을 제조하는 단계;
    상기 전극 조성물을 전극 집전체 상에 부착하여 이차 전지용 전극을 제조하는 단계를 포함하고,
    상기 도전재에 형성되어 있는 세공(Macropore)의 직경은 상기 바인더의 크기와 동일하거나 이보다 큰, 이차 전지용 전극 제조 방법.
  11. 제10항에서,
    상기 도전재의 세공의 직경은 30nm 이상 1000nm 이하인 이차 전지용 전극 제조 방법.
  12. 제10항에서,
    상기 바인더의 크기는 30nm 이상 1000nm 이하인 이차 전지용 전극 제조 방법.
  13. 제10항에서,
    상기 도전재의 비표면적은 1m2/g 이상 100m2/g 이하인 이차 전지용 전극 제조 방법.
  14. 제10항에서,
    상기 도전재의 함량은 상기 전극 조성물의 전체 중량을 기준으로 0.1중량% 이상 10중량% 이하인 이차 전지용 전극 제조 방법.
  15. 제10항에서,
    상기 도전재는 삼차원 다공성 탄소 소재를 포함하고,
    상기 바인더는 폴리테트라플루오로에틸렌(PTFE, Polytetrafluoroethylene)를 포함하는 이차 전지용 전극 제조 방법.
  16. 제10항에서,
    상기 활물질은 리튬 망간 산화물(LMO, Lithium Manganese Oxide)을 포함하는 이차 전지용 전극 제조 방법.
  17. 제10항에서,
    상기 전극 조성물을 전극 집전체 상에 부착하여 이차 전지용 전극을 제조하는 단계에서,
    상기 전극 조성물은 프리스탠딩 필름으로 제조되어, 상기 전극 집전체 상에 부착되는, 이차 전지용 전극 제조 방법.
  18. 제10항에서,
    상기 프리스탠딩 필름은 30 MPa 이상 400 MPa 이하의 탄성 계수 값을 가지는 이차 전지용 전극 제조 방법.
  19. 제1항의 이차 전지용 전극을 포함하는 이차 전지.
PCT/KR2021/017314 2020-12-04 2021-11-23 이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법 WO2022119217A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21900905.7A EP4228022A1 (en) 2020-12-04 2021-11-23 Electrode for secondadry battery, secondary battery comprising same, and electrode manufacturing method
CN202180078564.5A CN116670862A (zh) 2020-12-04 2021-11-23 用于二次电池的电极、包括其的二次电池、和制造电极的方法
US18/037,674 US20240014396A1 (en) 2020-12-04 2021-11-23 Electrode for Secondary Battery, Secondary Battery Including the Same, and Method of Manufacturing Electrode
JP2023531089A JP2023551228A (ja) 2020-12-04 2021-11-23 二次電池用電極、それを含む二次電池および電極製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0168896 2020-12-04
KR1020200168896A KR20220079280A (ko) 2020-12-04 2020-12-04 이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법

Publications (1)

Publication Number Publication Date
WO2022119217A1 true WO2022119217A1 (ko) 2022-06-09

Family

ID=81854176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017314 WO2022119217A1 (ko) 2020-12-04 2021-11-23 이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법

Country Status (6)

Country Link
US (1) US20240014396A1 (ko)
EP (1) EP4228022A1 (ko)
JP (1) JP2023551228A (ko)
KR (1) KR20220079280A (ko)
CN (1) CN116670862A (ko)
WO (1) WO2022119217A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275615A (ja) * 1997-03-31 1998-10-13 Sanyo Electric Co Ltd リチウムイオン二次電池用負極
JP2005285623A (ja) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2017059305A (ja) * 2015-09-14 2017-03-23 東洋紡株式会社 燃料電池用ガス拡散層
KR20190046867A (ko) * 2016-09-12 2019-05-07 헤레우스 배터리 테크놀로지 게엠베하 전기화학 전지의 전극용 첨가제 재료, 이중층 커패시터 및 이러한 전극의 제조방법.
JP2019151525A (ja) * 2018-03-02 2019-09-12 御国色素株式会社 多孔質炭素粒子、多孔質炭素粒子分散体及びこれらの製造方法
WO2019222110A1 (en) * 2018-05-14 2019-11-21 Maxwell Technologies, Inc. Compositions and methods for dry electrode films having reduced binder content

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275615A (ja) * 1997-03-31 1998-10-13 Sanyo Electric Co Ltd リチウムイオン二次電池用負極
JP2005285623A (ja) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2017059305A (ja) * 2015-09-14 2017-03-23 東洋紡株式会社 燃料電池用ガス拡散層
KR20190046867A (ko) * 2016-09-12 2019-05-07 헤레우스 배터리 테크놀로지 게엠베하 전기화학 전지의 전극용 첨가제 재료, 이중층 커패시터 및 이러한 전극의 제조방법.
JP2019151525A (ja) * 2018-03-02 2019-09-12 御国色素株式会社 多孔質炭素粒子、多孔質炭素粒子分散体及びこれらの製造方法
WO2019222110A1 (en) * 2018-05-14 2019-11-21 Maxwell Technologies, Inc. Compositions and methods for dry electrode films having reduced binder content

Also Published As

Publication number Publication date
KR20220079280A (ko) 2022-06-13
US20240014396A1 (en) 2024-01-11
EP4228022A1 (en) 2023-08-16
JP2023551228A (ja) 2023-12-07
CN116670862A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2019078544A1 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2019172661A1 (ko) 음극의 제조 방법
WO2019078690A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2018088735A1 (ko) 음극 및 상기 음극의 제조방법
WO2018164405A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2017082546A1 (ko) 분산성 향상 및 저항 감소를 위한 이차전지용 음극 슬러리 및 이를 포함하는 음극
WO2021107586A1 (ko) 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2018174616A1 (ko) 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019103311A1 (ko) 전고상 리튬-폴리머 이차전지용 양극 및 그의 제조방법, 이를 포함한 이차전지
WO2019093830A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019083332A2 (ko) 실리콘-탄소 복합체 및 이를 포함하는 리튬 이차전지
WO2018174619A1 (ko) 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2022086102A1 (ko) 이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법
WO2019050216A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2021125535A1 (ko) 고온 수명 특성 향상에 최적화된 양극 및 이를 포함하는 이차전지
WO2022092679A1 (ko) 전극 조립체 및 이를 포함하는 전지셀
WO2020149618A1 (ko) 음극 활물질의 제조 방법
WO2019059619A2 (ko) 리튬 이차전지용 전극의 설계 방법 및 이를 포함하는 리튬 이차전지용 전극의 제조방법
WO2019103498A1 (ko) 실리콘계 입자-고분자 복합체, 및 이를 포함하는 음극 활물질
WO2022092710A1 (ko) 리튬 이차전지용 음극 활물질, 음극 및 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021112607A1 (ko) 이차전지용 양극재의 제조방법
WO2018226070A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2017142261A1 (ko) 음극 제조방법 및 음극

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900905

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18037674

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202317035017

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021900905

Country of ref document: EP

Effective date: 20230509

WWE Wipo information: entry into national phase

Ref document number: 202180078564.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023531089

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE