WO2022119192A1 - 과산화수소 합성 및 재생 촉매 - Google Patents

과산화수소 합성 및 재생 촉매 Download PDF

Info

Publication number
WO2022119192A1
WO2022119192A1 PCT/KR2021/016939 KR2021016939W WO2022119192A1 WO 2022119192 A1 WO2022119192 A1 WO 2022119192A1 KR 2021016939 W KR2021016939 W KR 2021016939W WO 2022119192 A1 WO2022119192 A1 WO 2022119192A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carrier
palladium
hydrogen peroxide
magnesium
Prior art date
Application number
PCT/KR2021/016939
Other languages
English (en)
French (fr)
Inventor
강동군
김호동
최현아
유영산
서정민
Original Assignee
희성촉매 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성촉매 주식회사 filed Critical 희성촉매 주식회사
Priority to CN202180081469.0A priority Critical patent/CN116583347A/zh
Priority to US18/255,400 priority patent/US20240001345A1/en
Publication of WO2022119192A1 publication Critical patent/WO2022119192A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/022Preparation from organic compounds
    • C01B15/023Preparation from organic compounds by the alkyl-anthraquinone process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a catalyst for the production of hydrogen peroxide by the anthraquinone process and for regenerating a working solution.
  • Hydrogen peroxide (H 2 0 2 ) is a chemical product used in various fields such as brightening agents, disinfectants, pharmaceuticals, and oxidizing agents. Hydrogen peroxide is prepared by a direct synthesis method using hydrogen and oxygen and an anthraquinone method using a continuous hydrogenation and oxidation process from an anthraquinone-based compound. Briefly describe the anthraquinone method.
  • Hydrogen peroxide is prepared by repeatedly hydrogenating and oxidizing a working solution in which alkylanthraquinone (commonly referred to as 2-ethyl-anthraquinone, EAQ) is dissolved in an appropriate organic solvent. If such hydrogenation and oxidation are repeated, tetrahydroanthraquinone and the like are accumulated in the working solution as by-products, and coke is deposited on the catalyst, thereby reducing the production and regeneration efficiency of hydrogen peroxide.
  • alkylanthraquinone commonly referred to as 2-ethyl-anthraquinone, EAQ
  • tetrahydroanthraquinone and the like are accumulated in the working solution as by-products, and coke is deposited on the catalyst, thereby reducing the production and regeneration efficiency of hydrogen peroxide.
  • the technical object of the present invention is to prepare a catalyst having excellent catalytic activity used for hydrogen peroxide regeneration and synthesis reaction, and to overcome the problems of loss of active metal due to friction and catalyst deactivation, which are problems that occur during repeated use. To provide a cyclic palladium catalyst with improved durability and activity stability.
  • the present inventors have developed a catalyst in which the dispersion of palladium particles is improved by introducing magnesium and cerium while increasing the density of the active metal in the carrier by positioning the palladium active layer in a ring shape inside the carrier with a controlled pore structure.
  • coke is deposited inside the catalyst in the regeneration process, but when a cerium component is introduced, the residual coke inside the catalyst is completely removed and the loss of palladium dispersion is minimized, thereby securing a durable catalyst maintaining regeneration efficiency.
  • the active metal is located inside the carrier, thereby suppressing the loss of the active metal due to abrasion during the reaction, thereby improving the durability of the catalyst.
  • the present invention relates to a catalyst capable of improving the regeneration efficiency of a working solution while accelerating the hydrogenation step in a process for producing hydrogen peroxide by an anthraquinone method.
  • the present inventors have found that, if magnesium and cerium are supported on gamma alumina, calcined, impregnated with palladium and reduced, and the catalyst obtained is used for regeneration of the working solution, then regeneration conversion can be efficiently performed.
  • the inventors have found that the catalyst can be applied as a catalyst in the hydrogenation step in the anthraquinone production process.
  • the present invention relates to a catalyst applied to the hydrogenation step in the production of hydrogen peroxide by an anthraquinone method including a hydrogenation step or a catalyst for regenerating a working solution used for production of hydrogen peroxide by an anthraquinone method, wherein the palladium component is contained in gamma alumina particles
  • a catalyst in which the cyclic form is distributed and the magnesium and cerium components are uniformly distributed in the gamma alumina.
  • the catalyst according to the present invention has a ring shape with improved durability by palladium active metal positioned between 5-8 ⁇ m from the surface of the gamma alumina carrier, and the gamma alumina has a pore size of 6.0-9.0 nm and a pore size of 170-220 m It may have a pore volume of 3 /g.
  • palladium may be present in the gamma alumina support at an active density of 0.023-0.071 wt%/m 2
  • magnesium is uniformly present in the gamma alumina support at a density of 0.02-0.18 wt%/m 2
  • cerium is present in the gamma alumina support.
  • the chlorine component may be uniformly present on the gamma alumina carrier at a density of 0.004-0.03 wt%/m2.
  • the hydrogen peroxide regeneration and synthesis catalyst according to the present invention has a cyclic structure in which palladium, an active metal, is concentrated in a certain distribution in a gamma alumina carrier, and the gamma alumina carrier has internal pores controlled so that reactants and products can pass easily and high dispersion of palladium is induced through the introduction of magnesium and cerium in the carrier.
  • the catalyst according to the present invention suppresses aggregation of active metals and increases the number of palladium active sites to achieve maximization of reaction activity.
  • the palladium active metal can be preserved from the physical wear of the catalyst generated in the catalytic reaction using a fluidized bed reactor, so it has high durability.
  • FIG. 1 is a schematic diagram of a cyclic catalyst structure according to the present invention.
  • the present invention relates to a catalyst obtained by supporting magnesium and cerium on activated alumina, calcining to immobilize a metal, impregnating with palladium and reducing it, and using it in a regeneration process or a hydrogenation process of a working solution, an efficient regeneration conversion rate or The synthesis yield was confirmed.
  • the present inventors adjusted the dispersion degree of palladium by controlling the sintering temperature of activated alumina to control the pore structure of the carrier and the supported structure of palladium, which is the active material.
  • Activated alumina was used as the carrier, and boehmite (manufacturer: BASF, Germany, specific surface area 270 m 2 /g) was calcined at 750° C. and used.
  • boehmite manufactured by BASF, Germany, specific surface area 270 m 2 /g
  • Magnesium nitrate (Mg(NO 3 ) 2 6H 2 O) and cerium nitrate (Ce(NO 3 ) 3 6H 2 O) were used as precursors of magnesium and cerium, and palladic chloride (H 2 PdCl 4 ) as an active metal precursor. was used.
  • magnesium nitrate corresponding to 4.5% of the total weight of the catalyst and cerium nitrate corresponding to 0.25% were mixed with ionized water.
  • the prepared magnesium-cerium complex solution was impregnated into the carrier using a dry wetting method.
  • the magnesium-cerium-supported composition was heat treated at 550° C. in an air atmosphere for 2 hours to fix the metal.
  • 100 g of the magnesium-cerium-supported alumina composition was added to 200 ml of water, and the palladium precursor corresponding to 1.0% of the total weight of the catalyst, hydrogen peroxide equivalent to 1.0%, and HCl corresponding to 0.2% were added and stirred until 80° C. The temperature was raised and held at this temperature for 30 minutes.
  • the catalytic reduction process was carried out by adding a reducing agent to the magnesium-cerium-palladium-supported complex.
  • a reducing agent sodium formate (NaCOOH) was used.
  • NaCOOH sodium formate
  • the temperature was raised to 60° C. so that Na was ionized to generate sufficient hydrogen, and the temperature was maintained at this temperature for 1 hour.
  • magnesium and cerium were uniformly distributed inside the support, and palladium was mainly spaced apart from the outside of the support and showed a ring structure distributed to a thickness of 10 ⁇ m to 20 ⁇ m.
  • the Pd density of the finished catalyst was calculated to be 0.0556%/m 2 .
  • a catalyst was prepared in the same manner as in Example 1, except that the carrier used in Example 1 was sintered at 850°C.
  • the catalyst showed a ring structure in the same manner as in Example 1.
  • the Pd density of the prepared catalyst was calculated to be 0.0714%/m 2 .
  • Example 1 The carrier used in Example 1 was sintered at 1,000° C., and hydrogen peroxide was excluded when palladium was supported, and HCl was added in an increased amount to 0.4%. Similar to Example 1, the catalyst exhibited an egg-shell structure in which magnesium and cerium were uniformly distributed inside the carrier, and palladium was the catalyst. The Pd density of the finished catalyst was calculated to be 0.0233%/m 2 .
  • Example 1 The carrier used in Example 1 was sintered at 1,100° C., and hydrogen peroxide was excluded when palladium was supported, and HCl was added in an increased amount to 0.4%. In the catalyst, magnesium, cerium, and palladium were all uniformly distributed inside the carrier. The Pd density of the finished catalyst was calculated to be 0.0309%/m 2 .
  • Example 1 The carrier used in Example 1 was sintered at 850° C., and 0.4% of HCl was added when palladium was supported. Similar to Example 1, the catalyst exhibited an egg-shell structure in which magnesium and cerium were uniformly distributed inside the carrier, and palladium was the catalyst. The Pd density of the prepared catalyst was calculated to be 0.0097%/m 2 .
  • the carrier used in Example 1 was sintered at 850° C., and 0.75% of HCl was added when palladium was supported.
  • magnesium, cerium, and palladium were all uniformly distributed inside the carrier.
  • the Pd density of the prepared catalyst was calculated to be 0.0057%/m 2 .
  • the structure of the carrier alumina is determined by the firing temperature, and as the temperature increases, the specific surface area and physical strength decrease.
  • Al 2 O 3 shows a gamma phase and has a specific surface area of about 160-220 m 2 /g.
  • Al 2 O 3 shows theta phase and has a specific surface area of about 30-140 m 2 /g.
  • the alumina according to the present invention may have a pore size of 6.0-9.0 nm and a specific surface area of 170-222 m 3 /g.
  • Example 2 palladium was prepared in the form of a ring with a spacing of 5 to 8 ⁇ m from the outer shell of the catalyst. Referring to Table 2, the dispersion degree of palladium decreases as the calcination temperature of the carrier increases, and the palladium particle size increases.
  • the catalyst prepared using alpha Al 2 O 3 having a calcination temperature of 1,100° C. of the carrier was of a uniform type, and it was confirmed that the dispersion of palladium was very low due to the low specific surface area.
  • the density of palladium is 0.023-0.071 wt%/m2
  • the density of magnesium is 0.02-0.15 wt%/m2
  • the density of cerium is 0.001-0.008 wt%/m2
  • the density of chlorine is measured to be 0.005-0.03 wt%/m2.
  • a regeneration evaluation reaction was performed to measure the regeneration efficiency of the catalyst, and the reactor was evaluated using a stirred reaction system made of SUS material. A magnetic bar was put into a circular stirred reactor, and 10 g of a catalyst was added to 50 g of a working solution, a by-product generated during the hydrogenation reaction, to measure the regeneration efficiency. This was measured using LC. The results are summarized in Table 3 above.
  • the initial catalyst performance of Examples and Comparative Examples was the best in the cyclic palladium catalyst.
  • the cyclic palladium catalyst of Examples 1 and 2 it was confirmed that the initial performance of the catalyst and the performance after regeneration were excellent compared to the egg-shell of Comparative Example 1 and the uniform structure catalyst of Comparative Example 2. This is due to the high palladium dispersibility of the catalyst.
  • after applying a physical shock using a ball mill for 24 hours only catalysts of a certain size from which fine powder was removed were selected and reaction evaluation was performed. When a continuous impact is applied to the outside of the catalyst using ball milling, the particles on the surface of the catalyst are broken and lost due to an external physical impact, which is the same trend in the commercial process.
  • the cyclic palladium catalysts as in Examples 1 and 2 maintained performance similar to the initial performance as a result of ball milling the catalyst for 24 hours. This means that the cyclic palladium catalyst is advantageous for the loss of the palladium active material even if a part of the surface is lost. It was confirmed as a result of analysis of the Pd content in the catalyst indicating the loss of material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

본 발명은 마그네슘 및 세륨을 활성알루미나에 담지시키고, 소성하여 금속을 고정화한 후, 팔라듐을 함침하고 환원하여 얻어진 촉매에 관한 것이고, 안트라퀴논 방법에 의한 과산화수소의 제조에서 작동용액의 재생 공정 또는 수첨 공정에서 적용되어 효율적인 재생 전환율 또는 합성 수율을 달성한다.

Description

과산화수소 합성 및 재생 촉매
본 발명은 안트라퀴논 방법에 의한 과산화수소의 제조 및 작동용액을 재생하는 촉매에 관한 것이다.
과산화수소(H202)는 광택제, 소독제, 의약품, 산화제 등 다양한 분야에서 사용되고 있는 화학제품이다. 과산화수소는 수소와 산소를 이용한 직접 합성 방법 및 안트라퀴논(anthraquinone) 계열 화합물로부터 연속적인 수소첨가, 산화 공정을 이용한 안트라퀴논 방법으로 제조된다. 안트라퀴논 방법을 간략하게 서술한다.
Figure PCTKR2021016939-appb-img-000001
과산화수소는 알킬안트라퀴논(통상, 2-에틸-안트라퀴논, EAQ 이라 칭함)을 적당한 유기용매에 용해한 작동용액 (working solution)을 반복하여 수첨, 산화함으로써 제조한다. 이러한 수첨, 산화를 반복하면, 부산물로서 테트라히드로안트라퀴논 등이 작동용액 중에 축적되고, 촉매 상에 코크 침적이 일어나 과산화수소의 제조 및 재생 효율이 저하된다. 특히, 부산물인 테트라히드로안트라퀴논 (THAQ)을 안트라퀴논으로 재생할 때, 작동용액을 40~150℃의 온도에서 마그네슘을 활성알루미나에 담지(擔持)시키고, 소성 전에 암모니아 처리를 함으로써 얻어진 촉매를 이용하는 기술이 공지된다 (공개번호 10-2009-0006733).
여전히, 재생 효율을 개선하면서도, 과산화수소 제조에서 수첨 과정을 촉진할 수 있는 촉매의 개발이 요망되고 있었다. 특히 담체의 기공 구조를 제어하여 활성금속의 분산도 및 입자를 조절할 수 있는 고효율의 촉매 개발이 필요하다. 따라서 본 발명이 이루고자 하는 기술적 목적은 과산화수소 재생 및 합성 반응에 사용되는 우수한 촉매활성을 가지는 촉매를 제조하는 것이며, 반복 사용 시 발생하는 문제점인 마찰로 인한 활성금속의 손실 및 촉매 비활성화 문제를 극복하기 위해 내구성 및 활성 안정성이 개선된 고리형 팔라듐 촉매를 제공하는 것이다.
본 발명자들은 기공구조가 제어된 담체의 내부에 팔라듐 활성층을 고리형태로 위치시켜 활성금속의 담체 내 밀도를 높이면서 마그네슘 및 세륨의 도입으로 팔라듐 입자의 분산도를 향상된 촉매를 개발하였다. 또한 재생공정에 촉매 내부에 코크가 침적되나 세륨 성분이 도입하면 촉매 내부의 잔류 코크가 완전히 제거되고 팔라듐의 분산도 손실을 최소화하여 재생효율이 유지되는 내구성 촉매를 확보할 수 있다. 또한 제조된 촉매는 활성금속이 담체 내부에 위치해 있어 반응 중 마모에 의한 활성금속의 손실을 억제시켜 촉매의 내구성을 향상시킬 수 있다.
본 발명은 안트라퀴논 방법에 의한 과산화수소의 제조 공정 중 수소첨가 단계를 촉진하면서도, 작동용액 재생 효율을 개선할 수 있는 촉매에 관한 것이다.
본 발명자들은 마그네슘 및 세륨을 감마 알루미나에 담지시키고, 소성 후, 팔라듐을 함침하고 환원하여 얻어진 촉매를 작동용액의 재생에 사용하면, 효율적으로 재생 전화할 수 있다는 것을 알았다. 놀랍게도, 본 발명자들은 상기 촉매는 안트라퀴논 제조공정에서 수첨 단계에서 촉매로 적용될 수 있다는 것을 알았다.
본 발명은 수첨 단계를 포함하는 안트라퀴논 방법에 의한 과산화수소의 제조에서 수첨 단계에 적용하는 촉매 또는 안트라퀴논 방법에 의한 과산화수소의 제조에 사용하는 작동용액을 재생하는 촉매로서, 팔라듐 성분이 감마 알루미나 입자 내부에 고리형태로 분포되고 마그네슘 및 세륨 성분이 감마 알루미나에 균일하게 분포되는 촉매를 제공한다. 비제한적으로 본 발명에 의한 촉매는 감마 알루미나 담체 표면으로부터 5-8㎛ 사이에 팔라듐 활성금속이 위치하여 내구성이 개선된 고리형태이며, 상기 감마 알루미나는 6.0-9.0 nm의 기공크기 및 170-220 m3/g의 기공부피를 가질 수 있다. 또한 팔라듐은 상기 감마 알루미나 담체에 0.023-0.071 wt%/m2의 활성밀도로 존재할 수 있고, 마그네슘은 상기 감마 알루미나 담체 상에 0.02-0.18 wt%/m2의 밀도로 균일하게 존재하고, 세륨은 상기 감마 알루미나 담체 상에 0.001-0.008 wt%/m2의 밀도로 균일하게 존재한다. 또한 염소 성분은 상기 감마 알루미나 담체 상에 0.004-0.03 wt%/m2의 밀도로 균일하게 존재할 수 있다.
본 발명에 의한 과산화수소 재생 및 합성 촉매는 활성금속인 팔라듐이 감마 알루미나 담체 내 일정 분포로 집약된 고리형 구조를 가지고 있으며, 감마 알루미나 담체는 반응물과 생성물이 쉽게 통과할 수 있도록 제어된 내부기공을 가지고 있으며, 담체 내에 마그네슘 및 세륨의 도입을 통해 팔라듐의 고분산화가 유도된다. 본 발명에 따른 촉매는 활성금속의 응집을 억제하고 팔라듐 활성점 개수를 증가시켜 반응활성의 극대화를 달성한다. 또한 유동층 반응기를 이용한 촉매 반응에서 발생되는 촉매의 물리적 마모로부터 팔라듐 활성금속을 보존할 수 있어 높은 내구성을 가진다.
도 1은 본 발명에 의한 고리형 촉매 구조 개략도이다.
도 2는 고리형 구조를 확인하기 위한 SEM 및 EPMA 사진이다.
이하, 본 발명을 상세하게 설명한다.
본 발명은 마그네슘 및 세륨을 활성알루미나에 담지시키고, 소성하여 금속을 고정화한 후, 팔라듐을 함침하고 환원하여 얻어진 촉매에 관한 것이고, 이를 작동용액의 재생 공정 또는 수첨 공정에서 사용하면, 효율적인 재생 전환율 또는 합성 수율을 확인한 것이다. 본 발명자들은 활성알루미나의 소결 온도를 조절하여 담체의 기공 구조 및 활성 물질인 팔라듐의 담지 구조를 제어하여 팔라듐의 분산도를 조정하였다.
실시예 1
담체는 활성알루미나를 사용하였으며 보헤마이트 (제조사: 독일 BASF, 비표면적 270m2/g)를 750℃로 소성하여 사용하였다. 마그네슘과 세륨의 전구체로서 질산마그네슘(Mg(NO3)26H2O)과 질산세륨(Ce(NO3)36H2O)을 사용하였고, 활성금속 전구체로서 염화팔라듐산 (H2PdCl4)를 사용하였다.
먼저, 촉매 전체 중량 대비 4.5%에 해당하는 질산마그네슘과 0.25%에 해당하는 질산세륨을 이온수에 혼합하였다. 제조된 마그네슘-세륨 복합용액을 건식 습윤법을 이용하여 담체에 함침하였다. 마그네슘-세륨이 담지된 조성물을 공기분위기에서 550℃로 2시간 열처리 과정을 거쳐 금속을 고정시켰다. 이후 물 200ml에 마그네슘-세륨이 담지된 알루미나 조성물 100g을 첨가하고, 촉매 전체 중량 대비 1.0%에 해당하는 팔라듐 전구체와 1.0%에 해당하는 과산화수소 및 0.2%에 해당하는 HCl을 첨가하고 교반하면서 80℃까지 승온시키고, 이 온도에서 30분간 유지하였다.
촉매 환원 과정은 마그네슘-세륨-팔라듐이 담지된 복합체에 환원제를 투입하여 진행하였다. 환원제로는 개미산나트륨(NaCOOH)을 사용하였다. 환원 시 Na가 이온화되어 충분한 수소를 발생시킬 수 있도록 온도를 60℃까지 승온시키고, 이 온도에서 1시간을 유지하였다.
제조된 촉매에서 마그네슘과 세륨은 담체 내부에 균일하게 분포되었고, 팔라듐은 주로 담체 외곽에서 이격되어 10um 내지 20um 두께로 분포된 고리 (ring) 구조체를 보였다. 완성된 촉매의 Pd 밀도는 0.0556%/m2으로 계산되었다.
실시예 2
실시예1에서 사용되는 담체를 850℃ 소결 처리한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 촉매를 제조하였다. 해당 촉매는 실시예1과 동일하게 고리 구조체를 보였다. 제조된 촉매의 Pd 밀도는 0.0714%/m2으로 계산되었다.
실시예 3
실시예1에서 사용되는 담체를 1,000℃ 소결 처리하여 사용하였고, 팔라듐 담지 시 과산화수소를 제외하였으며, HCl을 0.4%로 증량하여 투입하였다. 해당 촉매는 실시예 1과 유사하게 마그네슘과 세륨은 담체 내부에 균일하게 분포되었고, 팔라듐은 촉매의 Egg-shell 구조체를 보였다. 완성 촉매의 Pd 밀도는 0.0233%/m2으로 계산되었다.
실시예 4
실시예1에서 사용되는 담체를 1,100℃ 소결 처리하여 사용하였고, 팔라듐 담지 시 과산화수소를 제외하였으며, HCl을 0.4%로 증량하여 투입하였다. 해당 촉매는 마그네슘과 세륨 및 팔라듐이 모두 담체 내부에 균일하게 분포하였다. 완성 촉매의 Pd 밀도는 0.0309%/m2으로 계산되었다.
비교예 1
실시예1에서 사용되는 담체를 850℃ 소결 처리하였고, 팔라듐 담지 시 HCl을 0.4% 투입하였다. 해당 촉매는 실시예 1과 유사하게 마그네슘과 세륨은 담체 내부에 균일하게 분포되었고, 팔라듐은 촉매의 Egg-shell 구조체를 보였다. 제조된 촉매의 Pd 밀도는 0.0097%/m2으로 계산되었다.
비교예 2
실시예1에서 사용되는 담체를 850℃ 소결 처리하였고, 팔라듐 담지 시 HCl을 0.75% 투입하였다. 해당 촉매는 마그네슘과 세륨 및 팔라듐이 모두 담체 내부에 균일하게 분포하였다. 제조된 촉매의 Pd 밀도는 0.0057%/m2으로 계산되었다.
성능 평가
실시예 및 비교예에서 소결 처리된 담체에 대한 물리적인 특성 및 기공 구조는 표1의 결과와 같다.
No. 담체 담체
열처리 온도
(℃)
담체 특성
결정상
(XRD)
비표면적
(m2/g)
기공부피
(cm3/g)
기공크기
(nm)
실시예 1 AlOOH 750 r-Al2O3 202 0.47 6.9
실시예 2 AlOOH 850 r-Al2O3 180 0.43 8.0
실시예 3 AlOOH 1,000 r-Al2O3+
Θ-Al2O3
131 0.41 8.9
실시예 4 AlOOH 1,100 a-Al2O3 33 0.21 19.8
비교예 1 AlOOH 850 Al2O3 180 0.49 8.0
비교예 2 AlOOH 850 Al2O3 180 0.49 8.0
담체 알루미나의 구조는 소성 온도에 의해 결정되며, 온도가 높아질수록 비표면적과 물리적인 강도는 감소한다. 450~900℃ 범위에서는 Al2O3는 감마 Phase를 보이며, 비표면적이 약 160-220m2/g이다. 900~1,100℃ 범위에서는 Al2O3는 쎄타 Phase를 보이며, 비표면적이 약 30-140m2/g이다. 본 발명에 의한 알루미나는 6.0-9.0 nm의 기공크기 및 170-222 m3/g의 비표면적을 가질 수 있다.표1의 담체를 사용하여 각각의 촉매를 제조하였을 때에 촉매의 구조와 Pd 분석 특성은 표2와 같다. 분산도 및 Pd 입자의 크기는 CO 화학 흡착 분석(Pulse method)을 통해 Pd에 흡착되는 CO의 양을 측정하여 계산하였다.
No. Pd 분산도(%) Pd 입자크기 (nm) Pd 분포 형태 담체 내 Pd 밀도
(중량 %/m2)
실시예 1 48.5 2.5 Ring 0.0556
실시예 2 34.5 3.2 Ring 0.0714
실시예 3 25.6 4.4 Egg-Shell 0.0233
실시예 4 18.4 6.2 uniform 0.0309
비교예 1 28.5 3.6 Egg-Shell 0.0097
비교예 2 26.3 4.3 uniform 0.0057
표 2를 살피면, 실시예 1,2에서는 팔라듐이 고리형태로 촉매의 외각에 5~8㎛의 이격을 두고 제조되었다. 표 2를 참고하면, 팔라듐의 분산도는 담체의 소성온도가 높아짐에 따라 감소하고, 팔라듐 입자 크기는 증가한다. 담체의 소성 온도가 1,100℃의 알파 Al2O3를 사용하여 제조한 촉매는 균일 형태 (Uniform type)이며, 낮은 비표면적으로 인하여 팔라듐의 분산도가 매우 낮아짐을 확인하였다. 한편, 실시예 1 내지 3의 촉매들에서 팔라듐의 밀도는 0.023-0.071 wt%/m2, 마그네슘의 밀도는 0.02-0.15 wt%/m2, 세륨의 밀도는 0.001-0.008 wt%/m2, 및 선택적으로 염소의 밀도는 0.005-0.03 wt%/m2로 측정된다.또한 촉매의 재생 효율을 측정하기 위해 재생 평가 반응을 실시하였으며, 반응기는 SUS 재질의 교반식 반응시스템을 사용하여 평가하였다. 원형 교반식 반응기에 마그네틱 바를 넣고, 수소화 반응 시 발생한 부산물 작동 용액 (Working solution) 50g에 촉매 10g을 투입하여 재생 효율을 측정하였다. 이를 LC를 이용하여 측정하였다. 결과를 위의 표3에 정리하였다.
No. 촉매활성 촉매 재생 후 활성 24시간 milling 후 Pd 함량(wt%) 24시간 milling 후 활성
실시예 1 56.3 50.7 0.942 54.6
실시예 2 51.8 41.6 0.938 49.7
실시예 3 43.5 35.2 0.905 41.0
실시예 4 22.5 16.4 0.918 19.9
비교예 1 50.7 38.2 0.897 48.1
비교예 2 49.1 36.8 0.922 46.5
실시예 및 비교예의 촉매 초기 성능은 고리형 팔라듐 촉매가 가장 우수하였다. 실시예 1,2의 고리형 팔라듐 촉매의 경우는 비교예 1의 Egg-shell, 비교예 2의 Uniform 구조체 촉매 대비하여 촉매의 초기 성능 및 재생 후 성능이 우수한 것으로 확인하였다. 이는 촉매의 높은 팔라듐 분산성에 기인한다. 또한 24시간 동안 Ball mill을 이용하여 물리적인 충격을 가한 뒤 미분을 제거한 일정 Size의 촉매만 선별하여 반응 평가를 진행하였다. Ball milling을 이용하여 촉매 외부에 지속적인 충격을 가할 때, 촉매는 외부의 물리적인 충격으로 인하여 표면의 입자가 깨져서 손실되는데, 이는 상업 공정에서도 동일한 경향이다. 결과적으로 24시간 동안 Ball milling한 촉매 평가 결과 실시예 1,2와 같은 고리형 팔라듐 촉매가 초기 성능과 유사한 성능을 유지하는 것이 확인되었다. 이는 고리형 팔라듐 촉매는 표면의 일부가 손실되더라도 팔라듐 활성물질의 손실에는 유리함을 의미하며, 팔라듐 활성층이 표면과 간격을 이루지 않는 Egg-shell이나 Uniform type의 경우에는 촉매 표면 입자의 손실은 곧 팔라듐 활성물질의 손실을 의미하는 것을 촉매 내 Pd 함량 분석 결과로 확인하였다.

Claims (8)

  1. 수첨 단계를 포함하는 안트라퀴논 방법에 의한 과산화수소의 제조에서 수첨 단계에 적용하는 촉매로서, 팔라듐 성분이 감마 알루미나 담체 표면으로부터 이격되어 고리형으로 분포되고 마그네슘 및 세륨 성분이 상기 감마 알루미나 담체 내부에 균일하게 분포되는 촉매.
  2. 안트라퀴논 방법에 의한 과산화수소의 제조에 사용하는 작동용액을 재생하는 촉매로서, 팔라듐 성분이 감마 알루미나 담체 표면으로부터 이격되어 고리형으로 분포되고 마그네슘 및 세륨 성분이 상기 감마 알루미나 담체 내부에 균일하게 분포되는 촉매.
  3. 제1항 또는 제2항에 있어서, 상기 알루미나는 6.0-9.0 nm의 기공크기 및 170-222 m3/g의 비표면적을 가지는 촉매.
  4. 제1항에 있어서, 상기 담체에 염소 성분이 더 포함된 것을 특징으로 하는 촉매.
  5. 제1항에 있어서, 상기 팔라듐은 상기 담체에 0.023-0.071 wt%/m2의 활성밀도로 존재하는 것을 특징으로 하는 촉매.
  6. 제1항에 있어서, 상기 마그네슘은 상기 담체에 0.02-0.15 wt%/m2의 밀도로 균일하게 존재하는 것을 특징으로 하는 촉매.
  7. 제1항에 있어서, 상기 세륨은 상기 감마 알루미나 담체 상에 0.001-0.008 wt%/m2의 밀도로 균일하게 존재하는 것을 특징으로 하는 촉매.
  8. 제4항에 있어서, 상기 염소 성분은 상기 담체에 0.005-0.03 wt%/m2의 밀도로 균일하게 존재하는 것을 특징으로 하는 촉매.
PCT/KR2021/016939 2020-12-04 2021-11-18 과산화수소 합성 및 재생 촉매 WO2022119192A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180081469.0A CN116583347A (zh) 2020-12-04 2021-11-18 过氧化氢合成以及再生催化剂
US18/255,400 US20240001345A1 (en) 2020-12-04 2021-11-18 Catalyst for hydrogen peroxide synthesis and regeneration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0167974 2020-12-04
KR1020200167974A KR102523337B1 (ko) 2020-12-04 2020-12-04 과산화수소 합성 및 재생 촉매

Publications (1)

Publication Number Publication Date
WO2022119192A1 true WO2022119192A1 (ko) 2022-06-09

Family

ID=81854094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016939 WO2022119192A1 (ko) 2020-12-04 2021-11-18 과산화수소 합성 및 재생 촉매

Country Status (4)

Country Link
US (1) US20240001345A1 (ko)
KR (1) KR102523337B1 (ko)
CN (1) CN116583347A (ko)
WO (1) WO2022119192A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511334A (ja) * 2002-12-20 2006-04-06 ハイドロカーボン テクノロジーズ インコーポレイテッド 使用済の担持された金属触媒の再生
KR100621946B1 (ko) * 2005-06-24 2006-09-08 희성엥겔하드주식회사 과산화수소를 이용한 귀금속 촉매 분산도 향상방법 및 이에따라 분산도가 향상된 촉매조성물
KR20090006733A (ko) * 2007-07-11 2009-01-15 미츠비시 가스 가가쿠 가부시키가이샤 과산화수소 제조에 사용하는 작동용액의 재생촉매의제조방법
CN101497040A (zh) * 2008-02-03 2009-08-05 中国科学院大连化学物理研究所 一种用于双氧水生产的整体催化剂及其制备和应用
CN102626618A (zh) * 2012-03-22 2012-08-08 陕西开达化工有限责任公司 蒽醌法生产双氧水用钯氧化铝催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521376B2 (en) * 2005-10-26 2009-04-21 International Business Machines Corporation Method of forming a semiconductor structure using a non-oxygen chalcogen passivation treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511334A (ja) * 2002-12-20 2006-04-06 ハイドロカーボン テクノロジーズ インコーポレイテッド 使用済の担持された金属触媒の再生
KR100621946B1 (ko) * 2005-06-24 2006-09-08 희성엥겔하드주식회사 과산화수소를 이용한 귀금속 촉매 분산도 향상방법 및 이에따라 분산도가 향상된 촉매조성물
KR20090006733A (ko) * 2007-07-11 2009-01-15 미츠비시 가스 가가쿠 가부시키가이샤 과산화수소 제조에 사용하는 작동용액의 재생촉매의제조방법
CN101497040A (zh) * 2008-02-03 2009-08-05 中国科学院大连化学物理研究所 一种用于双氧水生产的整体催化剂及其制备和应用
CN102626618A (zh) * 2012-03-22 2012-08-08 陕西开达化工有限责任公司 蒽醌法生产双氧水用钯氧化铝催化剂及其制备方法

Also Published As

Publication number Publication date
CN116583347A (zh) 2023-08-11
KR20220078821A (ko) 2022-06-13
KR102523337B1 (ko) 2023-04-18
US20240001345A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
SK279974B6 (sk) Katalyzátor na nosiči obsahujúci striebro a spôsob
CZ72996A3 (en) Catalyst and process for preparing support thereof
US2901441A (en) Preparation of an oxidation catalyst
WO2015084041A1 (ko) 스폰지형 담체를 이용한 탄화수소 탈수소화 촉매 제조방법
JP2645467B2 (ja) オキシ塩素化用触媒
JP3313164B2 (ja) エチレンオキシド製造用銀触媒およびその製造方法
WO2022119192A1 (ko) 과산화수소 합성 및 재생 촉매
CN1627989A (zh) 用于氧氯化的催化剂组合物
EP1002576B1 (en) Copper-based catalyst for the oxychlorination of the ethylene to 1,2-dichloroethane
KR20220103803A (ko) 탄화수소 전환 반응에 적합한 촉매, 그의 제조 방법 및 그의 용도
US9452419B2 (en) Carrier for ethylene oxide catalysts
WO2022103150A1 (ko) 과산화수소 합성용 작동용액의 재생 촉매
US3461140A (en) Production of ethylene oxide
WO2020256328A1 (ko) 과산화수소 합성 및 재생 촉매 및 이의 제조방법
CN107530688B (zh) 具有改进的银颗粒尺寸和分布密度的银催化剂
KR101767899B1 (ko) 아연이 도핑된 알루미나 탈수소 촉매의 제조방법
JP3233652B2 (ja) エチレンオキシド製造用銀触媒
US6464954B2 (en) Method for hydrogenating an anthraquinone compound
CN112675827A (zh) 一种氧化铝载体及由其制备的乙烯氧氯化催化剂
CN109384639B (zh) 丙烷脱氢催化剂及其制备方法以及丙烷脱氢制丙烯的方法
CN117085692A (zh) 一种甲醛与乙炔反应制备1,4-丁炔二醇的催化剂
CN118304877A (zh) 催化剂载体、乙烯氧氯化催化剂以及它们的制备方法和应用
JPS6138631A (ja) 芳香族アルコ−ル製造用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18255400

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180081469.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900880

Country of ref document: EP

Kind code of ref document: A1