WO2022119075A1 - 세포, 미세입자 동시 분리 장치 및 그 방법 - Google Patents

세포, 미세입자 동시 분리 장치 및 그 방법 Download PDF

Info

Publication number
WO2022119075A1
WO2022119075A1 PCT/KR2021/009784 KR2021009784W WO2022119075A1 WO 2022119075 A1 WO2022119075 A1 WO 2022119075A1 KR 2021009784 W KR2021009784 W KR 2021009784W WO 2022119075 A1 WO2022119075 A1 WO 2022119075A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
recovery
microfluidic device
separation
sample
Prior art date
Application number
PCT/KR2021/009784
Other languages
English (en)
French (fr)
Inventor
김민석
이승준
김종만
Original Assignee
재단법인대구경북과학기술원
주식회사 씨티셀즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원, 주식회사 씨티셀즈 filed Critical 재단법인대구경북과학기술원
Publication of WO2022119075A1 publication Critical patent/WO2022119075A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces

Definitions

  • the present disclosure relates to a microfluidic device, and more particularly, to a microfluidic device for separating a target material in a biological sample.
  • Circulating tumor cells refer to cancer cells that penetrate the blood vessels and circulate in the blood for metastasis in primary cancer, and are evaluated as a key factor in understanding and diagnosing metastasis.
  • the present disclosure has been made in accordance with the above-mentioned necessity, and an object of the present disclosure is to provide a microfluidic device for separating a target material in a biological sample.
  • a microfluidic device mounted on a rotational driving unit to induce a flow of a fluid by centrifugal force, a biological sample is accommodated therein, and A sample chamber in which the sample is separated into a first fluid layer including a first target material and a non-target material and a second fluid layer including a plurality of second target materials by centrifugal force; A first separation module that receives the first fluid layer from the chamber to form a binding body in which the fine particles and the non-target material are bound, and separates the binding body and the first target substance by a density difference, and the sample chamber and a second separation module that receives the second fluid layer and separates the plurality of second target materials by a density difference.
  • the sample chamber and the first separation module are connected through a first channel having a first valve
  • the sample chamber and the second separation module are connected through a second channel having a second valve
  • Each of the first valve and the second valve is melted when heated to open the first channel and the second channel, respectively, and the microfluidic device is mounted to the rotation driving unit and rotates while the first heating unit is rotated configured to apply heat to each of the member and the second heating member, so that each of the first and second fluid layers can be moved to the first separation module and the second separation module while the centrifugal force is maintained can do.
  • the sample may be blood
  • the first target material may be circulating tumor cells (CTCs)
  • the non-target material may be leukocytes
  • the fine particles may be particles that specifically bind to leukocytes.
  • the first separation module includes a first reaction chamber connected to the sample chamber and formed with the assembly, and a first reaction chamber connected to the first reaction chamber, and the assembly is based on the rotation center of the microfluidic device due to a difference in density. It may include a first separation chamber to be gathered in the lowermost layer.
  • the first separation module further includes four recovery chambers connected to the first separation chamber and positioned at different distances from the rotation center of the microfluidic device, wherein the rotation center of the four recovery chambers A first recovery chamber closest to the sieve is for recovering a single CTC, and a second recovery chamber located farther from the center of rotation than the first recovery chamber is for recovering a platelet-CTC complex, and is more than the second recovery chamber.
  • the third recovery chamber located far from the rotational center may be for recovering the leukocyte-CTC complex
  • the fourth recovery chamber located between the third recovery chamber and the lowermost layer may be for recovering the CTC cluster.
  • the sample is blood
  • the plurality of second target substances include at least a first exosome and a second exosome
  • the second separation module is the first exosome.
  • a first microparticle that specifically binds to and forms a first binder and a second microparticle that specifically binds to the second exosome to form a second binder are accommodated, wherein the first microparticle is 2
  • the specific gravity may be lower than that of fine particles.
  • the second separation module is connected to the sample chamber and connected to a second reaction chamber in which the first assembly and the second assembly are formed, and the second reaction chamber, and is connected to the first assembly by a difference in density. It may include a second separation chamber in which the second assembly is separated.
  • the second separation module further includes first and second recovery chambers connected to the second separation chamber, wherein the first recovery chamber is located closer to the rotation center than the second recovery chamber, and The first recovery chamber may be for recovering the first assembly, and the second recovery chamber may be for recovering the second assembly.
  • the sample is blood
  • the plurality of second target substances include at least a first exosome and a second exosome
  • the first exosome is the second exosome.
  • the specific gravity is lower than that
  • the second separation module is connected to a second separation chamber, the second separation chamber, and is connected to the first recovery chamber and the second separation chamber for recovering the first exosomes, It may include a second recovery chamber for recovering the second exo.
  • the second separation module further includes a residue removal chamber connected to the second separation chamber, wherein the second recovery chamber is located farther from the rotation center than the first recovery chamber, and the residue removal chamber The chamber may be located closer to the rotation center than the first recovery chamber.
  • a target material having high heterogeneity can be effectively separated through a method of binding fine particles to a non-target material, and different types of target materials can be separated reliably and quickly.
  • FIG. 1 is a perspective view showing a microfluidic device according to an embodiment of the present disclosure
  • FIG. 2 is a configuration diagram of the inside of a microfluidic device according to an embodiment of the present disclosure
  • 3 to 4 are views for explaining various embodiments of controlling the valve in a state of maintaining centrifugal force without stopping the rotation of the microfluidic device;
  • FIG. 5 is a diagram schematically illustrating an example of a recovery process of a first target material (CTC) of a microfluidic device according to an embodiment of the present disclosure
  • FIG. 6 is a diagram schematically illustrating an example of a recovery process of a second target material (exosomes) of a microfluidic device according to an embodiment of the present disclosure
  • FIG. 7 is a configuration diagram of the inside of a microfluidic device according to another embodiment of the present disclosure.
  • ordinal number such as “first” and “second” may be used to distinguish between elements. This ordinal number is used to distinguish the same or similar elements from each other, and the meaning of the term should not be construed as limited due to the use of the ordinal number. As an example, the use order or arrangement order of components combined with such an ordinal number should not be limited by the number. If necessary, each ordinal number may be used interchangeably.
  • microfluidic device wherein the microfluidic device is a device using microfluidics (microfluidics), and the microfluidics uses channels (channels; channels) having a size of 10 to 100 micrometers. It refers to the technology and science of systems that handle or manipulate small volumes (10-9 to 10-18 liters) of fluid. Microfluidics enables separation and detection with high resolution and sensitivity using very small amounts of samples and reagents in analysis, and provides various advantages such as low cost, rapid analysis, and small amount of residue in analytical equipment. .
  • the microfluidic device includes microfluidic structures such as a chamber capable of accommodating a fluid, a channel through which the fluid can flow, and a valve capable of regulating the flow of the fluid, the chamber and the channel and valves may be disposed in various combinations.
  • the target material in the sample can be separated while the fluid moves by the centrifugal force.
  • FIG. 1 is a perspective view of a microfluidic device 100 according to an embodiment of the present disclosure.
  • FIG. 2 is a configuration diagram of the inside of the microfluidic device 100 according to an embodiment of the present disclosure.
  • FIG. 2 shows only some areas for the sake of simplicity of the city.
  • the microfluidic device 100 may be connected to the rotation driving unit 200 and rotated.
  • the microfluidic device 100 may be formed in a rotatable disk shape.
  • the microfluidic device may be formed as a cylinder having a predetermined height.
  • a plurality of microfluidic structures may be provided inside the microfluidic device 100 .
  • the microfluidic device 100 connects a plurality of chambers A0 to A12 (hereinafter referred to as 'A') for accommodating the fluid and at least two of the plurality of chambers and provides a flow path for the fluid.
  • a channel (C1 ⁇ C12 (hereinafter referred to as 'C')) and a valve (V1 ⁇ V12 (hereinafter collectively referred to as 'V')) for controlling the flow of fluid by opening and closing the channel (C) may be provided.
  • 'A' A channel
  • V1 ⁇ V12 hereinafter collectively referred to as 'V'
  • the microfluidic device 100 is easy to mold, and the surface thereof may be made of a biologically inert elastomer, and a plastic material such as polycarbonate (PC) and polystyrene (PS), etc. It can be made of various materials. However, the present invention is not limited thereto, and any material having good chemical and biological stability and good optical transmittance and mechanical workability is sufficient.
  • the microfluidic device 100 may be made of a plate of several layers, and the microfluidic device 100 by forming an intaglio structure corresponding to the chamber (A) or the channel (C) on the surface where the plate and the plate contact each other and bonding them. ) A chamber (A) and a channel (C) may be formed therein.
  • the microfluidic device 100 may be made of two plates, where the two plates may be joined by various methods such as adhesion using an adhesive or double-sided adhesive tape, ultrasonic welding, and laser welding.
  • the valve V may include a phase transition material that is melted at a high temperature.
  • valve V may be provided at a point where the chamber A and the channel C meet or in the middle of the channel C, for example, the valve V is a dispenser (not shown) in the channel C and It may be formed by injecting a molten phase change material using the same tool and curing it.
  • the phase change material may be a wax that melts when heated, changes into a liquid state, and expands in volume.
  • waxes include, for example, paraffin wax, microcrystalline wax, synthetic wax. wax) or natural wax may be employed.
  • the phase change material may be a gel, and as such a gel, polyacrylamide, polyacrylates, polymethacrylates, or polyvinylamides may be employed.
  • polyacrylamide, polyacrylates, polymethacrylates, or polyvinylamides may be employed.
  • the phase change material may be a thermoplastic resin
  • the thermoplastic resin include cyclic olefin copolymer (COC), polymethylmethacrylate (PMMA), polycarbonate (PC), polystyrene (PS), polyoxymethylene (POM), perfluoralkoxy (PFA), PVC.
  • COC cyclic olefin copolymer
  • PMMA polymethylmethacrylate
  • PC polycarbonate
  • PS polystyrene
  • POM polyoxymethylene
  • PFA perfluoralkoxy
  • PVC polyvinylchloride
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEEK polyetheretherketone
  • PA polyamide
  • PSU polysulfone
  • PVDF polyvinylidene fluoride
  • the rotation driving unit 200 rotates the microfluidic device 100 together with the center of the microfluidic device 100 as a rotation axis.
  • the rotation driving unit 200 includes a rotation shaft 210 coupled to the rotation center of the microfluidic device 100 , a driving motor 220 for rotating the rotation shaft 210 , and driving of the driving motor 220 . It may include a controller (not shown) for controlling.
  • the rotation driving unit 200 is mounted in the center of the microfluidic device 100 to rotate the microfluidic device 100 at a high speed, and the rotation driving unit 200 is microfluidic so that it can be mounted on the microfluidic device 100 .
  • a mounting hole 121 may be formed in the central portion of the flow device 100 .
  • the fluid accommodated in the chamber (A) or the channel (C) may be pressed in a direction toward the outer periphery of the microfluidic device 100 by the centrifugal force generated by the rotation of the rotation driving unit 200 .
  • the microfluidic device 100 is suitable for specific uses in the field of biochemistry, such as centrifugation of a fluid sample, immune serum reaction, gene analysis, gene extraction, and gene amplification chamber (A), channel ( C) and the arrangement of the valve V may be determined. That is, the microfluidic device 100 according to the embodiment of the present disclosure is not limited to the arrangement shape of the chamber (A), the channel (C) and the valve (V) shown in FIG. can be designed
  • valve V During the rotation of the microfluidic device 100, heat is applied to a specific valve (V) to prevent the fluid from moving from one chamber to another chamber, or opening and closing the channel (C) in which the valve (V) is located. can be controlled.
  • the valve V may be configured as a normally open (NO) valve or a normally closed (NC) valve according to its operation and configuration method.
  • valve (V) when the valve (V) is configured as a normally open valve, the valve material is normally accommodated in a cured state in the receiving space connected to the channel (C) to open the channel (C), and the valve material is heated by the heating member. When melted by 210, it flows out from the receiving space to the channel (C) to close the channel (C).
  • valve (V) when the valve (V) is configured as a normally closed valve, the valve material is formed in a cured state in the middle of the channel (C) in normal times to close the channel (C), and then the valve material is applied to the heating member (210). When it is melted, the channel (C) is opened.
  • valve (V) is in a solid state at room temperature and is arranged to block the passage of the channel (C).
  • the heating member 210 may be attached to a position corresponding to the valve V on the upper surface of the microfluidic device 100 .
  • the heating member 210 may be made of a material having a high resistance to heat when power is supplied.
  • the microfluidic device 100 may further include a battery (not shown) for supplying power to the heating member 210 .
  • the specific valve V may be opened in a manner that heats the specific heating member 210 while the microfluidic device 100 rotates.
  • 3 illustrates a normally closed valve as an example, and this method may also be applied to a normally open valve.
  • V valve
  • an electromagnetic wave generator 410 may be disposed on the microfluidic device 100 .
  • the electromagnetic wave generator 410 may melt the valve V by irradiating laser light to a position P corresponding to the valve V.
  • the electromagnetic wave generator 410 may be positioned on the rotating member 400 to rotate according to the rotation of the rotating member 400 .
  • the rotating member 400 may rotate in synchronization with the rotation of the microfluidic device 100 . Therefore, since the microfluidic device 100 and the electromagnetic wave generator 410 can rotate together, the opening and closing control of a specific valve V can be controlled by adjusting the position of the electromagnetic wave generator 410 during the rotation of the microfluidic device 100 . do.
  • the microfluidic device 100 includes a plurality of separation modules including a first separation module M1 and a second separation module M2. It is possible to simultaneously recover different types of target materials individually from each separation module.
  • the microfluidic device 100 may use centrifugal force to separate substances according to weight, and in order to induce a weight difference between substances, a method of attaching fine particles to a specific substance may be used.
  • a method of attaching the fine particles to a material to be separated may be referred to as a positive method, and a method of attaching the fine particles to a material other than the separation object may be referred to as a negative method.
  • the first target material may be separated by a negative method
  • the second target material may be separated by a positive method.
  • a sample chamber A0 in which a sample is accommodated, a first separation module M1 for recovering a first target material from the sample, and a second separation module M2 for recovering a second target material from the sample is shown.
  • the sample chamber A0 is radially extended from the rotation center.
  • An injection hole (not shown) for injecting a sample may be provided in the sample chamber A0.
  • the sample may be centrifuged in the sample chamber A0 by rotation of the microfluidic device.
  • the first separation module M1 and the second separation module M2 may be located at different positions with respect to the sample chamber A0 and the rotation center.
  • the first separation module M1 may include a first reaction chamber A1 connected to the sample chamber A0 and a first separation chamber A2 connected to the first reaction chamber A1 .
  • the first reaction chamber A1 is connected to the sample chamber A0 through the first channel C1 .
  • a first valve V1 for controlling the flow of the fluid is provided in the first channel C1.
  • Fine particles are accommodated in the first reaction chamber A1.
  • the fine particles accommodated in the first reaction chamber A1 are particles that are not to be recovered, that is, particles that specifically bind to a non-target material. By allowing heavy fine particles to bind only to the non-target material, the non-target material may sink to the bottom in the first separation chamber A2 thereafter.
  • Fine particles include, for example, polystyrene particles, polymethyl methacrylate particles, latex particles, ABS (tert-polymer of acrylonitrile, butadiene and styrene) particles, cyclic olefin copolymer particles, melamine particles and their It may be selected from the group consisting of combinations, but is not limited thereto.
  • the diameter of the fine particles may be variously selected depending on the non-target material to be bound and the type of the fine particles to be used, and may be, for example, about 100 nm to 10 ⁇ m.
  • the fine particles may be magnetic particles or non-magnetic particles.
  • An injection hole for injecting fine particles may be provided in the first reaction chamber A1 .
  • the microfluidic device When the microfluidic device is dedicated to a specific use, the microfluidic device may be manufactured in a state in which fine particles suitable for the purpose are previously accommodated in the first reaction chamber A1.
  • the first separation chamber A2 is connected to the first reaction chamber A1 through the second channel C2 .
  • a second valve V2 for controlling the flow of the fluid is provided in the second channel C2.
  • the first separation chamber A2 is connected to the plurality of recovery chambers. Although the four recovery chambers A3, A4, A5, and A6 are illustrated in FIG. 2 as being connected, the number of recovery chambers may vary depending on the type of target material to be recovered.
  • the first recovery chamber A3 is connected to the first separation chamber A2 through the third channel C3 .
  • a third valve V3 for controlling the flow of the fluid is provided in the third channel C3.
  • the second recovery chamber A4 is connected to the first separation chamber A2 through the fourth channel C4.
  • a fourth valve V4 for controlling the flow of the fluid is provided in the fourth channel C4.
  • the third recovery chamber A5 is connected to the first separation chamber A2 through the fifth channel C5 .
  • a fifth valve V5 for controlling the flow of the fluid is provided in the fifth channel C5.
  • the fourth recovery chamber A6 is connected to the first separation chamber A2 through the sixth channel C6.
  • a sixth valve V6 for controlling the flow of the fluid is provided in the sixth channel C6.
  • the first to fourth recovery chambers A3 , A4 , A5 , and A6 are sequentially arranged in the circumferential direction from the rotation center. As it moves away from the center of rotation in the circumferential direction, a material with a high specific gravity is recovered.
  • the first and third recovery chambers A3 and A5 and the second and fourth recovery chambers A4 and A6 may be disposed to face each other with respect to the first separation chamber A2 .
  • the positions of the first to fourth recovery chambers A3, A4, A5, and A6 in the first separation chamber A2 are determined at what height of the first separation chamber A2 when the material to be recovered is centrifuged. is determined based on
  • the second separation module M2 may include a second reaction chamber A7 connected to the sample chamber A0 and a second separation chamber A8 connected to the second reaction chamber A7.
  • the second reaction chamber A7 is connected to the sample chamber A0 through the seventh channel C7.
  • a seventh valve V7 for controlling the flow of the fluid is provided in the seventh channel C7.
  • the first channel C1 and the seventh channel C7 may be determined depending on where the material separated from the sample chamber A0 is located. As shown in FIG. 2 , the seventh channel C7 is located closer to the center of rotation than the first channel C1 , so that the material located above has a relatively low density and moves to the seventh channel C7 . and the material having a relatively large density moves to the first channel C1.
  • Fine particles having different specific gravity are accommodated in the second reaction chamber A7.
  • the fine particles accommodated in the second reaction chamber A7 are a material to be recovered, that is, particles that specifically bind to target materials.
  • fine particles having different specific gravity are combined with different types of target materials, so that different target materials have different specific gravity. Accordingly, in the second separation chamber A8 thereafter, different types of target materials bound to fine particles having different specific gravity may be effectively separated due to a difference in density.
  • the fine particles accommodated in the second reaction chamber A7 are bound to one or more ligands that specifically bind to each target material, for example, polystyrene particles; It may be selected from the group consisting of polymethyl methacrylate particles, latex particles, ABS particles, cyclic olefin copolymer particles, melamine particles, and combinations thereof, but is not limited thereto.
  • the diameter of the fine particles may be variously selected depending on the target material to be bound and the type of the fine particles to be used, and may be, for example, about 100 nm to 10 ⁇ m.
  • the fine particles may be magnetic particles or non-magnetic particles.
  • An injection hole for injecting fine particles may be provided in the second reaction chamber A7 .
  • the microfluidic device When the microfluidic device is dedicated to a specific use, the microfluidic device may be manufactured in a state in which fine particles suitable for the purpose are previously accommodated in the second reaction chamber A7.
  • the second separation chamber A8 is connected to the second reaction chamber A7 through the eighth channel C8.
  • An eighth valve V8 for controlling the flow of the fluid is provided in the eighth channel C8.
  • the second separation chamber A8 is connected to the plurality of recovery chambers. Although the four recovery chambers A9, A10, A11, and A12 are illustrated in FIG. 2 as being connected, the number may vary depending on the type of target material to be recovered.
  • the fifth recovery chamber A9 is connected to the second separation chamber A8 through the ninth channel C9.
  • a ninth valve V9 for controlling the flow of the fluid is provided in the ninth channel C9.
  • the sixth recovery chamber A10 is connected to the second separation chamber A8 through the tenth channel C10.
  • a tenth valve V10 for controlling the flow of the fluid is provided in the tenth channel C10.
  • the seventh recovery chamber A11 is connected to the second separation chamber A8 through the eleventh channel C11.
  • An eleventh valve V11 for controlling the flow of a fluid is provided in the eleventh channel C11.
  • the eighth recovery chamber A12 is connected to the second separation chamber A8 through the twelfth channel C12.
  • a twelfth valve V12 for controlling the flow of a fluid is provided in the twelfth channel C12.
  • the fifth to eighth recovery chambers A9 , A10 , A11 , and A12 are sequentially arranged in the circumferential direction from the rotation center. As it moves away from the center of rotation in the circumferential direction, a material with a high specific gravity is recovered.
  • the fifth and seventh recovery chambers A9 and A11 and the sixth and fifth recovery chambers A10 and A12 may be disposed to face each other with respect to the second separation chamber A8 .
  • the positions of the fifth to eighth recovery chambers A9, A10, A11, and A12 in the second separation chamber A8 are determined at what height of the second separation chamber A8 when the material to be recovered is centrifuged. is determined based on
  • Each of the first to twelfth valves V1 - V12 may be individually heated, thereby opening the channel in which it is located.
  • the opening of the channel can be controlled without stopping the rotation of the microfluidic device, it is possible to prevent the problem of remixing the materials of the sample while the rotation is stopped.
  • the biological sample that can be used in the microfluidic device according to the present embodiment may be any biological sample as long as the first and second target substances are present.
  • it may be selected from the group consisting of a biopsy sample, a tissue sample, a cell suspension in which the isolated cells are suspended in a liquid medium, a cell culture, and combinations thereof.
  • the sample may be selected from the group consisting of blood, bone marrow fluid, saliva, tear fluid, urine, semen, mucosal fluid, and combinations thereof.
  • the first target material may be, for example, a circulating tumor cell (CTC), a cancer stem cell, or a cancer cell.
  • the first target substance is, for example, bladder cancer, breast cancer, cervical cancer, cholangiocarcinoma, colorectal cancer, endometrial cancer, esophageal cancer, stomach cancer, head and neck cancer, kidney cancer, liver cancer, lung cancer, nasopharyngeal cancer, ovarian cancer, pancreatic cancer, gallbladder cancer, Prostate cancer, thyroid cancer, osteosarcoma, rhabdomyosarcoma, synovial sarcoma, Kaposi's sarcoma, leiomyosarcoma, malignant fibrous histiocytoma, fibrosarcoma, adult T-cell leukemia, lymphoma, multiple myeloma, glioblastoma/astrocytoma, melanoma, mesothelioma and Will. It may be a cancer
  • the second target material may be exosomes, microvesicles, microRNA (miRNA), DNA, sub-micron sized lipid particle, and the like.
  • the biological sample is blood
  • the first target material is CTC
  • the second target material is an exosome.
  • the present disclosure is not limited to these specific materials.
  • the density gradient material is selected from substances whose density is smaller than that of red blood cells and higher than that of white blood cells and plasma.
  • the density gradient material may be selected, for example, from Ficoll, Percoll, polysaccharide, sodium chloride solution, and the like.
  • the leukocyte/CTC layer (L3) is a layer in which leukocytes and CTCs are mixed, also called buffy coat, where the material to be recovered is CTC (first target material), and the non-target material is leukocytes. And the exosomes (second target material) are mainly in the plasma layer (second fluid layer) (L4).
  • the first separation module (M1) accommodates fine particles that specifically bind to white blood cells, and removes the white blood cells/CTC layer (L3) from the sample chamber (A0). It forms an aggregate in which fine particles and white blood cells are combined, and the aggregate and CTC can be separated by the difference in density.
  • the first channel C1 is provided at a position corresponding to the white blood cell layer (first fluid layer) L3 in the sample chamber A0.
  • the first reaction chamber A1 receives the white blood cells/CTC layer L3 from the sample chamber A0 by opening the first valve V1 of the first channel C1, and only the white blood cells bind with heavy fine particles.
  • a shaking process may be performed by repeating forward/reverse rotation of the microfluidic device for a predetermined period of time.
  • Fine particles, leukocyte-fine particle complex, CTC cluster, leukocyte-CTC complex, platelet-CTC complex, and single CTC are present in the first reaction chamber (A1) after the reaction is completed, and these are removed.
  • the second valve V2 is opened to lower it to the first separation chamber A2 through the second channel C2.
  • the first separation chamber A2 accommodates the density gradient material, and the materials transferred from the first reaction chamber A1 may be separated using the density gradient.
  • the leukocyte-fine particle aggregate descending from the first reaction chamber (A1) is located at the bottom, that is, radially outermost with respect to the center of rotation, and above it, CTC cluster, leukocyte-CTC
  • the conjugate, the platelet-CTC conjugate, and the single CTC are sorted in the order of specific gravity and size.
  • the separated materials are introduced into the first to fourth recovery chambers A3, A4, A5, and A6.
  • the third valve V3 of the third channel C3 is opened to move a single CTC to the first recovery chamber A3 .
  • the fourth valve V4 of the fourth channel C4 is opened to move the platelet-CTC conjugate to the second recovery chamber A4 .
  • the fifth valve V5 of the fifth channel C5 is opened to move the leukocyte-CTC conjugate to the third recovery chamber A5 .
  • the sixth valve V6 of the sixth channel C6 is opened to move the CTC cluster to the fourth recovery chamber A6 .
  • the separated materials move to each recovery chamber, and the separation by type and size of CTC is completed.
  • a substance may be extracted from the recovery chambers using, for example, a pipette through an extraction port (not shown).
  • FIG. 5 shows only the components corresponding to the first separation module M1 of the microfluidic device 100 .
  • the sample chimer (A0) when blood is put into the sample chimer (A0) and centrifuged, it can be divided into RBC (red blood cells), DGM, Buffy coat (white blood cells and CTC mixed), and plasma (Plasma). After that, only the buffy coat is moved to the first reaction chamber (A1), and as shown, fine particles that bind only to white blood cells, white blood cells, and CTCs are mixed. After that, when it is lowered into the first separation chamber A2, the white blood cells, which are heavy by binding with the fine particles, sink to the bottom, and CTCs are present thereon.
  • RBC red blood cells
  • DGM red blood cells
  • Buffy coat white blood cells and CTC mixed
  • plasma Plasma
  • CTC cluster a single CTC but also a CTC cluster, a leukocyte-CTC complex, and a platelet-CTC complex may exist.
  • the CTC cluster, the leukocyte-CTC complex, the platelet-CTC complex, and the single CTC may be introduced into the first to fourth recovery chambers A3 to A6 and separated according to specific gravity.
  • the second separation module M2 receives the plasma layer L4 from the sample chamber A0 and receives two or more types of exosomes by density difference separate the Two or more types of exosomes are exosomes with different antibody expression, and may include exosomes secreted from cancer cells (cancer exosomes). Cancer can be diagnosed by isolating these cancer exosomes.
  • the second separation module (M2) may include a second reaction chamber (A7) for accommodating fine particles having different specific gravity that specifically bind to each of two or more types of exosomes. Since the exosomes each have a different lipid receptor expression, fine particles having different specific gravity can be accommodated using this, to which a ligand is attached to specifically bind to each exosome.
  • A7 second reaction chamber
  • the seventh channel C7 is provided at a position corresponding to the plasma layer (second fluid layer) L4 in the sample chamber A0 . Since the plasma layer (second fluid layer) L4 has a lower specific gravity than the white blood cell layer (first fluid layer) L3 and is located above it, the seventh channel C7 is located at the center of rotation rather than the first channel C1. located close
  • the second reaction chamber A7 receives the plasma layer L4 from the sample chamber A0 by opening the seventh valve V7 of the seventh channel C7, and has different types in the second reaction chamber A7.
  • exosomes combine with fine particles having different specific gravity to form an aggregate.
  • a first conjugate is formed in which the first cancer exosome and the first fine particle are combined
  • a second conjugate is formed in which the second cancer exosome and the second fine particle (the specific gravity is higher than that of the first fine particle) are combined
  • a third conjugate may be formed in which the third cancer exosome and the third fine particle (having a specific gravity higher than that of the second fine particle) are combined.
  • bonding may be promoted in the second reaction chamber 720 during the shaking process.
  • exosomes with different antibody expression are bound to each microparticle with different specific gravity, and other platelets, microvesicles, and various proteins are present, and these By opening the eighth valve V8, it is lowered into the second separation chamber A8 through the eighth channel C8.
  • the second separation chamber A8 accommodates a density gradient material having a density lower than that of platelets.
  • platelets sink to the bottom, and microparticles bound to exosomes are aligned in the density gradient layer according to specific gravity, and microvesicles and various proteins do not come down under the density gradient layer. to remove impurities.
  • the separated materials are introduced into the fifth to eighth recovery chambers A9, A10, A11, and A12.
  • the ninth valve (V9) of the ninth channel (C9) is opened to move the first cancer exosomes bound to the microparticles into the fifth recovery chamber (A9).
  • the tenth valve V10 of the tenth channel C10 is opened so that the second cancer exosome combined with the fine particles can move to the sixth recovery chamber A10.
  • the 11th valve (V11) of the 11th channel (C11) is opened, so that the exosomes CD63 combined with the fine particles can move to the 7th recovery chamber (A11).
  • the twelfth valve V12 of the twelfth channel C12 is opened so that the third cancer exosome combined with the fine particles can move to the eighth recovery chamber A12.
  • the separated materials are moved to each recovery chamber to complete the separation by type and size of cancer exosomes.
  • the material may be extracted from the recovery chambers using, for example, a pipette through an extraction port (not shown).
  • FIG. 6 shows only the components corresponding to the second separation module M2 of the microfluidic device 100 .
  • FIG. 7 is a diagram illustrating a partial region of the microfluidic device 100 according to another embodiment of the present disclosure.
  • the second reaction chamber A7 is omitted from the second separation module M2 side.
  • the sample chamber A0 is directly connected to the second separation chamber A13.
  • the plurality of second target materials may be separated from each other by their own density differences without bonding to the fine particles.
  • the second separation chamber A13 may include a plurality of recovery chambers A15 , A16 , A17 , A18 , and A19 .
  • the number of recovery chambers is not limited to that shown, and may consist of two or more recovery chambers.
  • the plurality of recovery chambers A15 , A16 , A17 , A18 , A19 are positioned circumferentially away from the center of rotation.
  • small exosomes, medium exosomes, and large exosomes may be sequentially separated according to the density of the exosomes.
  • small exosomes may migrate to the recovery chambers shown as A 15 and A16
  • intermediate exosomes may migrate to the recovery chambers shown as A17 and A18
  • large exosomes may migrate to the recovery chambers shown as A19.
  • the second separation chamber A8 is farther from the center of rotation than the plurality of recovery chambers 742 , 743 , 744 , 745 , 746 , a chamber A20 for recovering microvesicles and a chamber A20 for recovering platelets. It may include a chamber (A21) for.
  • the second separation chamber A13 may include a residue removal chamber A14 and may be located closer to the rotation center than the first recovery chamber A15 . Accordingly, a residue having a smaller density than the target materials may move to the residue removal chamber A14.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Centrifugal Separators (AREA)

Abstract

미세유동장치가 개시된다. 본 미세유동장치는 생물학적 시료가 수용되며, 그 내부에서 원심력에 의하여 시료가 제1 표적 물질 및 비표적 물질을 포함하는 제1 유체층과, 복수의 제2 표적 물질을 포함하는 제2 유체층으로 분리되는 시료 챔버, 미세 입자를 수용하며, 시료 챔버로부터 제1 유체층을 전달받아 미세 입자와 비표적 물질이 결합된 결합체를 형성하며 밀도차에 의해 결합체와 제1 표적 물질을 분리시키는 제1 분리 모듈 및 시료 챔버로부터 제2 유체층을 전달받아 밀도차에 의해 복수의 제2 표적 물질을 분리시키는 제2 분리 모듈을 포함한다.

Description

세포, 미세입자 동시 분리 장치 및 그 방법
본 개시는 미세유동장치에 관한 것으로서, 더욱 상세하게는 생물학적 시료 내의 표적 물질을 분리하기 위한 미세유동장치에 관한 것이다.
악성 종양과 관련한 사망은 대부분 최초로 종양이 발생한 지점으로부터 떨어진 조직 및 기관으로의 전이에 의한다. 따라서 전이를 조기에 발견하는 것은 암 환자의 생존 확률에 대한 중요한 결정 요소이며, 종양의 조기 발견 및 종양의 성장을 모니터링하는 것은 암 환자의 성공적인 치료에 매우 중요한 요소로 여겨진다.
순환종양세포(Circulating Tumor Cell; CTC)는 원발암에서 전이를 위해 인근 혈관을 뚫고 혈액에 돌아다니는 암세포를 말하며, 전이를 이해하고 진단하는데 핵심 주요 인자로 평가되고 있다.
CTC는 1 ppb 수준의 극 미량으로 존재하므로 높은 회수율과 높은 순도로 분리하는 것이 매우 중요하다.
종래엔 항체 기반, 필터, 미세 유체, 밀도, 등 다양한 분리 기술에 대한 국내외 연구가 활발히 이루어졌으나, CTC의 큰 이질성(Heterogeneity)으로 인해 대부분의 연구가 일부 CTC만을 분리할 수 있었다.
또한, 병원 현장에서 활용되기 위해서는 무엇보다 완전 자동화 기술이 중요하지만 완성도 높은 분리 장비 개발이 미비한 실정이었다.
본 개시는 상술한 필요성에 따른 것으로, 본 개시의 목적은 생물학적 시료 내의 표적 물질을 분리하기 위한 미세유동장치를 제공함에 있다.
본 개시는 상기와 같은 문제를 해결하기 위한 것으로서, 본 개시의 일 실시 예에 따른, 회전 구동부에 장착되어 원심력에 의하여 유체의 흐름을 유발하는 미세유동장치는, 생물학적 시료가 수용되며, 그 내부에서 원심력에 의하여 상기 시료가 제1 표적 물질 및 비표적 물질을 포함하는 제1 유체층과, 복수의 제2 표적 물질을 포함하는 제2 유체층으로 분리되는 시료 챔버, 미세 입자를 수용하며, 상기 시료 챔버로부터 상기 제1 유체층을 전달받아 상기 미세 입자와 상기 비표적 물질이 결합된 결합체를 형성하며 밀도 차에 의해 상기 결합체와 상기 제1 표적 물질을 분리시키는 제1 분리 모듈 및 상기 시료 챔버로부터 상기 제2 유체층을 전달받아 밀도 차에 의해 상기 복수의 제2 표적 물질을 분리시키는 제2 분리 모듈을 포함한다.
이 경우, 상기 시료 챔버와 상기 제1 분리 모듈은, 제1 밸브를 가진 제1 채널을 통해 연결되고, 상기 시료 챔버와 상기 제2 분리 모듈은, 제2 밸브를 가진 제2 채널을 통해 연결되며, 상기 제1 밸브 및 상기 제2 밸브 각각은, 가열되면 용융되어 상기 제1 채널 및 상기 제2 채널을 각각 개방하며, 상기 미세유동장치는, 상기 회전 구동부에 장착되어 회전하는 동안 상기 제1 가열 부재와 상기 제2 가열 부재 각각에 열을 가하도록 구성되어, 원심력이 유지되는 상태에서 상기 제1 유체층 및 상기 제2 유체층 각각이 제1 분리 모듈 및 상기 제2 분리 모듈로 이동될 수 있도록 할 수 있다.
한편, 상기 시료는 혈액이고, 상기 제1 표적 물질은 순환종양세포(CTC)이며, 상기 비표적 물질은 백혈구이며, 상기 미세 입자는 백혈구에 특이적으로 결합하는 입자일 수 있다.
이 경우, 상기 제1 분리 모듈은, 상기 시료 챔버와 연결되고 상기 결합체가 형성되는 제1 반응 챔버 및 상기 제1 반응 챔버와 연결되고 밀도 차에 의하여 상기 결합체가 상기 미세유동장치의 회전 중심을 기준으로 하여 최하층부에 모이게 되는 제1 분리 챔버를 포함할 수 있다.
이 경우, 상기 제1 분리 모듈은, 상기 제1 분리 챔버와 연결되어 있으며 상기 미세유동장치의 회전 중심에서 서로 다른 거리에 위치한 4개의 회수 챔버를 더 포함하며, 상기 4개의 회수 챔버 중 상기 회전 중심과 가장 가까운 제1 회수 챔버는 단일 CTC를 회수하기 위한 것이며, 상기 제1 회수 챔버보다 상기 회전 중심으로부터 멀리 위치한 제2 회수 챔버는 혈소판-CTC 결합체를 회수하기 위한 것이며, 상기 제2 회수 챔버보다 상기 회전 중심으로부터 멀리 위치한 제3 회수 챔버는 백혈구-CTC 결합체를 회수하기 위한 것이며, 상기 제3 회수 챔버와 상기 최하층부 사이에 위치한 제4 회수 챔버는 CTC 클러스터를 회수하기 위한 것일 수 있다.
한편, 본 개시의 다른 실시 예에 따르면, 상기 시료는 혈액이고, 상기 복수의 제2 표적 물질은 적어도 제1 엑소좀 및 제2 엑소좀을 포함하며, 상기 제2 분리 모듈은 상기 제1 엑소좀과 특이적으로 결합하여 제1 결합체를 형성하는 제1 미세 입자와 상기 제2 엑소좀과 특이적으로 결합하여 제2 결합체를 형성하는 제2 미세 입자를 수용하며, 상기 제1 미세 입자는 상기 제2 미세 입자보다 비중이 낮을 수 있다.
이 경우, 상기 제2 분리 모듈은, 상기 시료 챔버와 연결되고 상기 제1 결합체 및 상기 제2 결합체가 형성되는 제2 반응 챔버 및 상기 제2 반응 챔버와 연결되고 밀도 차에 의하여 상기 제1 결합체와 상기 제2 결합체가 분리되는 제2 분리 챔버를 포함할 수 있다.
이 경우, 상기 제2 분리 모듈은, 상기 제2 분리 챔버와 연결된 제1 및 제2 회수 챔버를 더 포함하며, 상기 제1 회수 챔버는 상기 제2 회수 챔버보다 회전 중심에 더 가까이 위치하고, 상기 제1 회수 챔버는 상기 제1 결합체를 회수하기 위한 것이며, 상기 제2 회수 챔버는 상기 제2 결합체를 회수하기 위한 것일 수 있다.
한편, 본 개시의 다른 실시 예에 따르면, 상기 시료는 혈액이고, 상기 복수의 제2 표적 물질은 적어도 제1 엑소좀 및 제2 엑소좀을 포함하며, 상기 제1 엑소좀이 상기 제2 엑소좀보다 비중이 낮으며, 상기 제2 분리 모듈은, 제2 분리 챔버, 상기 제2 분리 챔버와 연결되어 있으며 상기 제1 엑소좀을 회수하기 위한 제1 회수 챔버 및 상기 제2 분리 챔버와 연결되어 있으며 상기 제2 엑소좀을 회수하기 위한 제2 회수 챔버를 포함할 수 있다.
이 경우, 상기 제2 분리 모듈은, 상기 제2 분리 챔버에 연결된 잔여물 제거 챔버를 더 포함하고, 상기 제2 회수 챔버는 상기 제1 회수 챔버보다 상기 회전 중심으로부터 멀리 위치하며, 상기 잔여물 제거 챔버는 상기 제1 회수 챔버보다 상기 회전 중심에 가까이 위치할 수 있다.
본 개시가 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 미세유동장치에 따르면, 비표적물질에 미세 입자를 결합하는 방식을 통해 이질성이 큰 표적 물질을 효과적으로 분리해낼 수 있고, 서로 다른 종류의 표적 물질들을 신뢰성 있고 신속하게 분리할 수 있다.
본 개시의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당해 기술분야에 있어서의 통상의 지식을 가진 자가 명확하게 이해할 수 있을 것이다.
도 1은 본 개시의 실시 예에 따른 미세유동장치를 도시한 사시도,
도 2는 본 개시의 실시 예에 따른 미세유동장치의 내부에 대한 구성도,
도 3 내지 도 4는 미세유동장치의 회전을 멈추지 않고 원심력을 유지하는 상태에서 밸브를 제어하는 다양한 실시 예를 설명하기 위한 도면,
도 5는 본 개시의 일 실시 예에 따른 미세유동장치의 제1 표적 물질(CTC)의 회수 과정의 일 예를 모식화한 도면,
도 6은 본 개시의 일 실시 예에 따른 미세유동장치의 제2 표적 물질(엑소좀들)의 회수 과정의 일 예를 모식화한 도면,
도 7은 본 개시의 또 다른 실시 예에 따른 미세유동장치의 내부에 대한 구성도이다.
이하에서는 도면을 참조하여 본 개시의 구체적인 실시 예를 상세하게 설명한다. 다만, 본 개시의 사상은 제시되는 실시 예에 제한되지 아니하고, 본 개시의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 실시 예이나 본 개시 사상의 범위 내에 포함되는 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 개시의 사상 범위 내에 포함된다고 할 것이다.
본 개시에 사용된 용어들 중 일반적인 사전에 정의된 용어들은, 관련 기술의 문맥상 가지는 의미와 동일 또는 유사한 의미로 해석될 수 있으며, 본 개시에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 구체적인 용어 정의가 없으면 본 명세서의 전반적인 내용 및 당해 기술 분야의 통상적인 기술 상식을 토대로 해석될 수도 있다.
첨부된 각 도면에 기재된 동일한 참조 번호 또는 부호는 실질적으로 동일한 기능을 수행하는 부품 또는 구성요소를 나타낸다. 설명 및 이해의 편의를 위해서 서로 다른 실시 예들에서도 동일한 참조 번호 또는 부호를 사용하여 설명한다. 즉, 복수의 도면에서 동일한 참조 번호를 가지는 구성요소를 모두 도시되어 있다고 하더라도, 복수의 도면들이 하나의 실시 예를 의미하는 것은 아니다.
또한, 본 개시에서는 구성요소들 간의 구별을 위하여 "제1", "제2" 등과 같이 서수를 포함하는 용어가 사용될 수 있다. 이러한 서수는 동일 또는 유사한 구성요소들을 서로 구별하기 위하여 사용하는 것이며 이러한 서수 사용으로 인하여 용어의 의미가 한정 해석되어서는 안 된다. 일 예로, 이러한 서수와 결합된 구성요소는 그 숫자에 의해 사용 순서나 배치 순서 등이 제한되어서는 안 된다. 필요에 따라서는, 각 서수들은 서로 교체되어 사용될 수도 있다.
본 개시에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "구성되다" 등의 용어는 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 개시는 미세유동장치에 대한 것으로서, 미세유동장치는 미세유체역학(마이크로 유체역학; microfluidics)을 이용하는 장치로, 미세유체역학은 10 내지 100 마이크로 미터의 크기를 갖는 채널(통로; channels)을 이용하여 적은 양(10-9 내지 10-18 리터)의 유체를 처리하거나 조작하는 시스템 기술과 과학을 의미한다. 미세유체역학은 분석에 있어서 매우 적은 양의 시료와 시약을 이용하여 고 분해능과 감도로 분리 및 검출을 가능하게 하고, 저비용, 신속한 분석 및 분석 장비의 적은 양의 잔류물과 같은 다양한 장점을 제공한다.
미세유동장치는 유체를 수용할 수 있는 챔버(chamber)와, 유체가 흐를 수 있는 채널(channel)과, 유체의 흐름을 조절할 수 있는 밸브(valve)와 같은 미세유동 구조물들을 포함하며, 챔버, 채널 및 밸브는 다양한 조합으로 배치될 수 있다.
디스크 형상의 미세유동장치를 회전시키면 그 원심력에 의해 유체가 이동하면서 시료 내의 표적 물질을 분리할 수 있다.
도 1은 본 개시의 일 실시 예에 따른 미세유동장치(100)의 사시도이다. 그리고 도 2는 본 개시의 일 실시 예에 따른 미세유동장치(100)의 내부에 대한 구성도이다. 도 2는 도시의 간락화를 위해 일부 영역에 대해서만 도시하였다.
도 1을 참조하면, 미세유동장치(100)는 회전 구동부(200)에 연결되어 회전될 수 있다.
미세유동장치(100)는 회전 가능한 디스크 형상으로 형성될 수 있다. 예컨대, 미세유동장치는 소정의 높이를 갖는 원통으로 형성될 수 있다.
도 2를 참고하면, 미세유동장치(100)의 내부에는, 다수의 미세유동 구조물(챔버, 채널, 밸브)이 마련될 수 있다. 구체적으로, 미세유동장치(100)는 유체를 수용하기 위한 복수의 챔버(A0 ~ A12(이하 통칭하여 ‘A’))와 이들 복수의 챔버 중 적어도 두 개의 챔버를 연결하며 유체의 흐름 통로를 제공하는 채널(C1 ~ C12(이하 통칭하여 ‘C’))과, 채널(C)을 개폐하여 유체의 흐름을 제어하기 위한 밸브(V1 ~ V12(이하 통칭하여 ‘V’))를 구비할 수 있다.
미세유동장치(100)는, 성형이 용이하고, 그 표면이 생물학적으로 비활성인 탄성중합체(Elastomer)로 만들어질 수 있으며, 폴리카보네이트(Polycarbonate, PC) 및 폴리스티렌(Polystyrene, PS) 등의 플라스틱 소재 등 다양한 소재로 만들어질 수 있다. 다만, 이에 한정되는 것은 아니고 화학적 및 생물학적으로 안정성을 가지며, 광학적 투과성 및 기계적 가공성이 좋은 소재이면 족하다.
또한, 미세유동장치(100)는 여러 층의 판으로 이루어질 수 있으며, 판과 판이 서로 맞닿는 면에 챔버(A)나 채널(C) 등에 해당하는 음각 구조물을 형성하고 이들을 접합함으로써 미세유동장치(100) 내부에 챔버(A) 및 채널(C)을 형성할 수 있다.
예를 들어, 미세유동장치(100)는 두 개의 판으로 이루어질 수 있으며, 여기서, 두 개의 판은 접착제 또는 양면 접착테이프를 이용한 접착, 초음파 융착 및 레이저 융착 등 다양한 방법으로 접합될 수 있다.
밸브(V)는, 고온에서 용융되는 상전이 물질(phase transition material)을 포함할 수 있다.
또한, 밸브(V)는 챔버(A)와 채널(C)이 만나는 지점 또는 채널(C) 중도에 마련될 수 있으며, 예컨대, 밸브(V)는 채널(C) 내부에 디스펜서(미도시)와 같은 도구를 이용하여 용융된 상전이 물질을 주입하고, 이를 경화시켜 형성될 수 있다.
여기서, 상전이 물질은 가열되면 용융하여 액체 상태로 변하며 부피 팽창하는 왁스(wax)일 수 있으며, 이러한 왁스로는, 예컨대 파라핀 왁스(paraffin wax), 마이크로크리스탈린 왁스(microcrystalline wax), 합성 왁스(synthetic wax), 또는 천연 왁스(natural wax) 등이 채용될 수 있다.
또는, 상전이 물질은 겔(gel)일 수도 있으며, 이러한 겔로는, 폴리아크릴아미드(polyacrylamide), 폴리아크릴레이트(polyacrylates), 폴리메타크릴레이트(polymethacrylates), 또는 폴리비닐아미드(polyvinylamides) 등이 채용될 수 있다.
또는, 상전이 물질은 열가소성 수지일 수도 있으며, 이러한 열가소성 수지로는, COC(cyclic olefin copolymer), PMMA(polymethylmethacrylate), PC(polycarbonate), PS(polystyrene), POM(polyoxymethylene), PFA(perfluoralkoxy), PVC(polyvinylchloride), PP(polypropylene), PET(polyethylene terephthalate), PEEK(polyetheretherketone), PA(polyamide), PSU(polysulfone), 및 PVDF(polyvinylidene fluoride) 등이 채용될 수 있다.
회전 구동부(200)는 미세유동장치(100)의 중심을 회전축으로 하여 미세유동장치(100)를 함께 회전시킨다. 구체적으로, 회전 구동부(200)는 미세유동장치(100)의 회전 중심에 결합되는 회전축(210)과, 회전축(210)을 회전시키기 위한 구동 모터(220)와, 구동 모터(220)의 구동을 제어하기 위한 제어기(미도시)를 포함할 수 있다.
여기서, 회전 구동부(200)는 미세유동장치(100) 중앙부에 장착되어 미세유동장치(100)를 고속으로 회전시킬 수 있으며, 회전 구동부(200)가 미세유동장치(100)에 장착될 수 있도록 미세유동장치(100) 중앙부에 장착 통공(121)이 형성될 수 있다.
이에 따라, 회전 구동부(200)의 회전에 의해 발생되는 원심력에 의해 챔버(A) 또는 채널(C)에 수용된 유체가 미세유동장치(100)의 외주부를 향한 방향으로 가압 시킬 수 있다.
한편, 본 개시의 실시 예에 따른 미세유동장치(100)는 유체 시료의 원심 분리, 면역 혈청 반응, 유전자 분석, 유전자 추출 및 유전자 증폭 등 생화학 분야의 특정 용도에 적합하게 챔버(A), 채널(C) 및, 밸브(V)의 배치가 결정될 수 있다. 즉, 본 개시의 실시 예에 따른 미세유동장치(100)는 도 2에 도시된 챔버(A), 채널(C) 및 밸브(V)의 배치 형태에 한정되지 않으며, 그 용도에 따라 다양한 형태로 설계될 수 있다.
미세유동장치(100)의 회전 동안 유체가 어느 한 챔버에서 다른 챔버로 이동하거나, 혹은 이동하지 않도록 하기 위해 특정 밸브(V)에 열을 가하여 해당 밸브(V)가 위치한 채널(C)의 개폐가 제어될 수 있다. 밸브(V)는 그 동작 및 구성 방식에 따라 노멀 오픈(Normal Open: NO) 밸브 또는 노멀 클로즈(Normal Close: NC) 밸브로 구성될 수 있다.
구체적으로, 밸브(V)가 노멀 오픈 밸브로 구성될 경우 평상시에는 밸브 물질이 채널(C)과 연결된 수용 공간 내에 경화된 상태로 수용되어 채널(C)을 개방하고 있다가, 밸브 물질이 가열 부재(210)에 의해 용융되면 상기 수용 공간에서 채널(C)로 흘러나와 채널(C)을 폐쇄하게 된다. 그리고, 밸브(V)가 노멀 클로즈 밸브로 구성될 경우 평상시에는 밸브 물질이 채널(C) 중도에 경화된 상태로 형성되어 채널(C)을 폐쇄하고 있다가, 밸브 물질이 가열 부재(210)에 의해 용융되면 채널(C)을 개방하게 된다.
특히, 미세유동장치(100)의 회전을 멈추지 않고 밸브(V)의 온/오프를 정밀하게 제어하는 것이 중요하다. 왜냐하면 회전을 멈춘 동안 원심력에 의해 분리되었던 물질들이 다시 섞여버리게 되는 문제가 발생하기 때문이다.
이와 같이 원심력이 유지되는 상태에서 밸브(V)를 제어하는 방법을 위한 다양한 실시 예에 대해 도 3 내지 도 4를 참고하여 설명하도록 한다.
도 3을 참고하면, 밸브(V)는 상온에서 고체 상태이며 채널(C)의 통로를 막도록 배치되어 있다. 그리고 미세유동장치(100)의 상면에 밸브(V)와 대응되는 위치에 가열 부재(210)가 부착될 수 있다.
가열 부재(210)는 전력을 공급받으면 발열하는 저항이 높은 물질로 구성될 수 있다. 미세유동장치(100)는 가열 부재(210)에 전력을 공급하기 위한 배터리(미도시)를 더 포함할 수 있다.
본 실시 예에 따르면, 미세유동장치(100)가 회전하는 동안 특정 가열 부재(210)에 열을 가하는 방식으로 특정 밸브(V)가 개방될 수 있다. 도 3은 노멀 클로즈 밸브를 예시로 한 것으로 노멀 오픈 밸브에도 본 방식이 적용될 수 있다.
도 4는 원심력이 유지되는 상태에서 밸브(V)를 제어하는 방법을 위한 또 다른 실시 예를 설명하기 위한 도면이다.
도 4를 참조하면, 미세유동장치(100) 위에 전자기파 발생기(410)가 배치될 수 있다. 전자기파 발생기(410)는 밸브(V)에 대응되는 위치(P)에 레이저 광을 조사하여 밸브(V)를 용융시킬 수 있다.
전자기파 발생기(410)는 회전 부재(400)에 위치하여 회전 부재(400)의 회전에 따라 회전할 수 있다. 회전 부재(400)는 미세유동장치(100)의 회전에 동기화되어 회전할 수 있다. 따라서, 미세유동장치(100)와 전자기파 발생기(410)가 함께 회전할 수 있어, 미세유동장치(100)의 회전 동안 전자기파 발생기(410)의 위치를 조절함으로써 특정 밸브(V)의 개폐 제어가 가능하다.
도 2로 다시 돌아와, 본 개시의 일 실시 예에 따른 미세유동장치(100)의 내부 구조에 대해 설명하도록 한다.
도 2를 참고하면, 미세유동장치(100)는 제1 분리 모듈(M1)과 제2 분리 보듈(M2)을 포함한 복수의 분리 모듈을 포함한다. 각 분리 모듈에서 개별적으로 서로 다른 종류의 표적 물질을 동시에 회수하는 것이 가능하다.
본 실시 예에 따른 미세유동장치(100)는 원심력을 이용해 무게에 따라 물질들을 분리할 수 있고, 물질들 간의 무게 차이를 유발하기 위해, 미세입자를 특정 물질에 부착시키는 방식을 이용할 수 있다.
미세 입자를 분리 대상이 되는 물질에 부착하는 방식은 포지티브 방식이라 명명할 수 있고, 미세 입자를 분리 대상 이외의 물질에 부착하는 방식은 네거티브 방식이라 명명할 수 있다. 이하 설명할 실시 예에서, 제1 표적 물질은 네거티브 방식에 의해 분리되며, 제2 표적 물질은 포지티브 방식에 의해 분리될 수 있다.
도 2를 참조하면, 시료가 수용되는 시료 챔버(A0), 시료로부터 제1 표적 물질을 회수하기 위한 제1 분리 모듈(M1), 시료로부터 제2 표적 물질을 회수하기 위한 제2 분리 모듈(M2)이 도시되어 있다. 시료 챔버(A0)는 회전 중심으로부터 반경 방향으로 연장된 형태이다. 시료 챔버(A0)에는 시료를 주입하기 위한 주입구(미도시)가 마련될 수 있다. 미세유동장치의 회전에 의하여 시료 챔버(A0) 내에서 시료가 원심 분리될 수 있다.
제1 분리 모듈(M1)과 제2 분리 모듈(M2)은 시료 챔버(A0)와 회전 중심을 기준으로 하여 서로 다른 위치에 위치할 수 있다.
제1 분리 모듈(M1)은 시료 챔버(A0)와 연결된 제1 반응 챔버(A1) 및 제1 반응 챔버(A1)와 연결된 제1 분리 챔버(A2)를 포함할 수 있다.
제1 반응 챔버(A1)는 제1 채널(C1)을 통해 시료 챔버(A0)와 연결된다. 제1 채널(C1)에는 유체의 흐름을 제어하기 위한 제1 밸브(V1)가 마련된다.
제1 반응 챔버(A1)에는 미세 입자가 수용된다. 제1 반응 챔버(A1)에 수용되는 미세 입자는 회수 대상이 아닌 물질, 즉 비표적 물질에 특이적으로 결합하는 입자이다. 비표적 물질에만 무거운 미세 입자가 결합하게 하여 이후 제1 분리 챔버(A2)에서 비표적 물질이 가장 아래로 가라앉게 만들 수 있다.
제1 반응 챔버(A1)에 수용된 미세 입자에는 비표적 물질에 특이적으로 결합하는 리간드가 하나 이상 결합되어 있다. 미세 입자는 표적 물질과 밀도 차이를 유발할 수 있을 정도의 비중을 가질 수 있다. 미세 입자는 예를 들어, 폴리스티렌 입자, 폴리메틸메타아크릴레이트 입자, 라텍스 입자, ABS(아크릴로 니트릴, 부타디엔 및 스티렌의 테르트-폴리머)입자, 시클릭 올레핀 공중합체 입자, 멜아민 입자 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있으나, 이에 한정하지는 않는다. 미세 입자의 직경은 결합하고자 하는 비표적 물질, 사용하고자 하는 미세 입자의 종류에 따라 다양하게 선택될 수 있으며, 예를 들어, 100 nm 내지 10 ㎛ 정도일 수 있다. 미세 입자는 자성 입자 또는 비자성 입자일 수 있다.
제1 반응 챔버(A1)에는 미세 입자를 주입하기 위한 주입구가 마련될 수 있다. 미세유동장치가 특정 용도 전용인 경우에는 용도에 맞는 미세 입자가 미리 제1 반응 챔버(A1)에 수용된 상태에서 미세유동장치가 제조될 수도 있다.
제1 분리 챔버(A2)는 제2 채널(C2)을 통해 제1 반응 챔버(A1)와 연결된다. 제2 채널(C2)에는 유체의 흐름을 제어하기 위한 제2 밸브(V2)가 마련된다.
제1 분리 챔버(A2)는 복수의 회수 챔버와 연결된다. 도 2에선 4개의 회수 챔버(A3, A4, A5, A6)가 연결되는 것으로 도시하였으나, 회수 챔버의 개수는 회수하고자 하는 표적 물질의 종류에 따라 달라질 수 있다.
제1 회수 챔버(A3)는 제3 채널(C3)을 통해 제1 분리 챔버(A2)와 연결된다. 제3 채널(C3) 에는 유체의 흐름을 제어하기 위한 제3 밸브(V3)가 마련된다.
제2 회수 챔버(A4)는 제4 채널(C4)을 통해 제1 분리 챔버(A2)와 연결된다. 제4 채널(C4) 에는 유체의 흐름을 제어하기 위한 제4 밸브(V4)가 마련된다.
제3 회수 챔버(A5)는 제5 채널(C5)을 통해 제1 분리 챔버(A2)와 연결된다. 제5 채널(C5) 에는 유체의 흐름을 제어하기 위한 제5 밸브(V5)가 마련된다.
제4 회수 챔버(A6)는 제6 채널(C6)을 통해 제1 분리 챔버(A2)와 연결된다. 제6 채널(C6) 에는 유체의 흐름을 제어하기 위한 제6 밸브(V6)가 마련된다.
도 2에 도시된 바와 같이, 제1 내지 제4 회수 챔버(A3, A4, A5, A6)는 회전 중심으로부터 원주 방향으로 차례로 배치된다. 회전 중심에서 원주 방향으로 멀어질수록 비중이 높은 물질을 회수하게 된다. 이 경우, 공간 효율을 위해 제1 및 제3 회수 챔버(A3, A5)와 제2 및 제4 회수 챔버(A4, A6)는 제1 분리 챔버(A2)를 기준으로 마주보고 배치될 수 있다. 제1 분리 챔버(A2)에서의 제1 내지 제4 회수 챔버(A3, A4, A5, A6)의 위치는 회수하고자 하는 물질이 원심 분리되었을 때 제1 분리 챔버(A2)의 어떤 높이에 위치하는지에 기초하여 결정된다.
제2 분리 모듈(M2)은 시료 챔버(A0)와 연결된 제2 반응 챔버(A7) 및 제2 반응 챔버(A7)와 연결된 제2 분리 챔버(A8)를 포함할 수 있다.
제2 반응 챔버(A7)는 제7 채널(C7)을 통해 시료 챔버(A0)와 연결된다. 제7 채널(C7)에는 유체의 흐름을 제어하기 위한 제7 밸브(V7)가 마련된다. 제1 채널(C1)과 제7 채널(C7)는 시료 챔버(A0)에서 분리된 물질이 위치하는 곳에 따라 결정될 수 있다. 도 2에 도시된 것처럼, 제7 채널(C7)은 제1 채널(C1)보다 회전 중심에 더 가까이 위치되어 있어, 상대적으로 적은 밀도를 가져 위쪽에 위치하는 물질이 제7 채널(C7)로 이동하게 되고, 상대적으로 큰 밀도를 가지는 물질은 제1 채널(C1)로 이동하게 된다.
제2 반응 챔버(A7)에는 비중이 다른 미세 입자들이 수용된다. 제2 반응 챔버(A7)에 수용되는 미세 입자는 회수 대상인 물질, 즉, 표적 물질들에 특이적으로 결합하는 입자이다. 제2 반응 챔버(A7)에선 서로 다른 종류의 표적 물질들 각각에 서로 다른 비중을 가진 미세 입자들이 결합하여, 서로 다른 표적 물질들이 다른 비중을 갖게 한다. 따라서 이후 제2 분리 챔버(A8)에서는 서로 다른 비중을 가진 미세 입자에 결합된 서로 다른 종류의 표적 물질들이 밀도 차에 의해 효과적으로 분리될 수 있다.
제2 반응 챔버(A7)에 수용된 미세 입자는 제1 반응 챔버(A1)에 수용된 미세 입자와 마찬가지로 각각의 표적 물질에 특이적으로 결합하는 리간드가 하나 이상 결합되어 있으며, 예를 들어, 폴리스티렌 입자, 폴리메틸메타아크릴레이트 입자, 라텍스 입자, ABS 입자, 시클릭 올레핀 공중합체 입자, 멜아민 입자 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있으나, 이에 한정하지는 않는다. 미세 입자의 직경은 결합하고자 하는 표적 물질, 사용하고자 하는 미세 입자의 종류에 따라 다양하게 선택될 수 있으며, 예를 들어, 100 nm 내지 10 ㎛ 정도일 수 있다. 미세 입자는 자성 입자 또는 비자성입자일 수 있다.
제2 반응 챔버(A7)에는 미세 입자들을 주입하기 위한 주입구가 마련될 수 있다. 미세유동장치가 특정 용도 전용인 경우에는 용도에 맞는 미세 입자가 미리 제2 반응 챔버(A7)에 수용된 상태에서 미세유동장치가 제조될 수도 있다.
제2 분리 챔버(A8)는 제8 채널(C8)을 통해 제2 반응 챔버(A7)와 연결된다. 제8 채널(C8) 에는 유체의 흐름을 제어하기 위한 제8 밸브(V8)가 마련된다.
제2 분리 챔버(A8)는 복수의 회수 챔버와 연결된다. 도 2에선 4개의 회수 챔버(A9, A10, A11, A12)가 연결되는 것으로 도시하였으나, 개수는 회수하고자 하는 표적 물질의 종류에 따라 달라질 수 있다.
제5 회수 챔버(A9)는 제9 채널(C9)을 통해 제2 분리 챔버(A8)와 연결된다. 제9 채널(C9) 에는 유체의 흐름을 제어하기 위한 제9 밸브(V9)가 마련된다.
제6 회수 챔버(A10)는 제10 채널(C10)을 통해 제2 분리 챔버(A8)와 연결된다. 제10 채널(C10) 에는 유체의 흐름을 제어하기 위한 제10 밸브(V10)가 마련된다.
제7 회수 챔버(A11)는 제11 채널(C11)을 통해 제2 분리 챔버(A8)와 연결된다. 제11 채널(C11) 에는 유체의 흐름을 제어하기 위한 제11 밸브(V11)가 마련된다.
제8 회수 챔버(A12)는 제12 채널(C12)을 통해 제2 분리 챔버(A8)와 연결된다. 제12 채널(C12) 에는 유체의 흐름을 제어하기 위한 제12 밸브(V12)가 마련된다.
도 2에 도시된 바와 같이, 제5 내지 제8 회수 챔버(A9, A10, A11, A12)는 회전 중심으로부터 원주 방향으로 차례로 배치된다. 회전 중심에서 원주 방향으로 멀어질수록 비중이 높은 물질을 회수하게 된다. 이 경우, 공간 효율을 위해 제5 및 제7 회수 챔버(A9, A11)와 제6 및 제5 회수 챔버(A10, A12)는 제2 분리 챔버(A8)를 기준으로 마주보고 배치될 수 있다. 제2 분리 챔버(A8)에서의 제5 내지 제8 회수 챔버(A9, A10, A11, A12)의 위치는 회수하고자 하는 물질이 원심 분리되었을 때 제2 분리 챔버(A8)의 어떤 높이에 위치하는지에 기초하여 결정된다.
제1 내지 제12 밸브(V1 - V12) 각각은 개별적으로 가열될 수 있어, 그것이 위치한 채널을 개방할 수 있다. 특히, 미세유동장치가 회전을 멈추지 않고도 채널의 개방이 제어될 수 있으므로, 회전을 멈춘 동안 시료의 물질들이 다시 섞여버리는 문제를 방지할 수 있다.
이상에선 도 2를 참조하여 본 개시의 일 실시 예에 따른 미세유동장치의 구조를 설명하였으며, 이하에선 본 실시 예에 따른 미세유동장치에서의 시료의 분리 과정에 대해 좀 더 구체적으로 설명하도록 한다.
본 실시 예에 따른 미세유동장치에서 사용될 수 있는 생물학적 시료는 제1, 제2표적 물질이 존재할 수 있는 한 어떠한 생물학적 시료라도 무방하다. 예컨대, 생검시료, 조직시료, 분리된 세포를 액체 매질에 현탁시킨 세포 현탁물, 세포 배양물 및 이들의 조합으로 이루어진 군으로부터 선택되는 것일 수 있다. 시료는 혈액, 골수액, 타액, 누액, 뇨, 정액, 점막액 및 이들의 조합으로 이루어진 군으로부터 선택되는 것일 수 있다.
제1 표적 물질은 예를 들어 순환종양세포(CTC: circulating tumor cell), 암 줄기 세포(cancer stem cell) 또는 암 세포(cancer cell)일 수 있다. 제1 표적 물질은 예를 들어, 방광암, 유방암, 자궁경부암, 담관암종, 대장암, 자궁내막암, 식도암, 위암, 두경부암, 신장암, 간암, 폐암, 비인두암, 난소암, 췌장암, 담낭암, 전립선암, 갑상선암, 골육종, 횡문근육종, 활막육종, 카포시육종, 평활근육종, 악성 섬유성 조직구종, 섬유육종, 성인 T세포 백혈병, 림프종, 다발 골수종, 신경교아세포종/성상세포종, 흑색종, 중피종 및 윌름스 종양으로 이루어진 군으로부터 선택되는 암 또는 종양 세포일 수 있다.
제2 표적 물질은 엑소좀(exosomes), 마이크로베시클(microvesicles), 마이크로RNA(miRNA), DNA, 미세 지질 입자(sub-micron sized lipid particle) 등일 수 있다.
이하에선 생물학적 시료가 혈액이고, 제1 표적 물질은 CTC이고, 제2 표적 물질은 엑소좀인 경우를 가정하여 실시 예들을 설명하도록 하겠다. 다만, 본 개시가 이러한 특정한 물질에만 한정되는 것은 아니다.
먼저, 시료 챔버(A0)에 혈액 및 밀도구배물질(DGM: density gradient medium)을 주입한다. 밀도구배물질은 그 밀도가 적혈구보다는 작고 백혈구 및 혈장보다는 높은 물질에서 선택된다. 밀도구배물질은 예컨대 피콜(Ficoll), 퍼콜(Percoll), 다당류(polysaccharide), 염화나트륨 용액(NaCl Solution) 등에서 선택될 수 있다.
혈액과 밀도구배물질을 시료 챔버(A0)에 주입 후 원심 분리시키면 시료 챔버(A0)에서 가장 아래에 적혈구층(L1), 그 위에 밀도구배층(L2), 그 위에 백혈구/CTC층(제1 유체층)(L3), 그 위에 혈장층(제2 유체층)(L4)으로 나뉘게 된다. 백혈구/CTC층(L3)은 백혈구와 CTC가 섞여 있는 층으로서, Buffy coat라고도 불리우며, 여기서 회수하고자 하는 물질은 CTC(제1 표적 물질)이고, 비표적 물질은 백혈구이다. 그리고 엑소좀들(제2 표적 물질)은 주로 혈장층(제2 유체층)(L4)에 있다.
제1 표적 물질(CTC)의 회수 과정을 설명하자면, 제1 분리 모듈(M1)은, 백혈구와 특이적으로 결합하는 미세 입자를 수용하며, 시료 챔버(A0)로부터 백혈구/CTC층(L3)을 전달받아 미세 입자와 백혈구가 결합된 결합체를 형성하며 밀도 차에 의해 결합체와 CTC를 분리시킬 수 있다.
제1 채널(C1)은 시료 챔버(A0)에서 백혈구층(제1 유체층)(L3)과 대응하는 위치에 마련된다. 제1 반응 챔버(A1)는 제1 채널(C1)의 제1 밸브(V1)가 개방됨으로써 시료 챔버(A0)로부터 백혈구/CTC층(L3)을 전달받고, 백혈구만 무거운 미세 입자와 결합하게 된다. 결합을 용이하게 하기 위해 미세유동장치를 소정 시가 동안 정/역회전을 반복하여 쉐이킹(shaking)과정이 수행될 수 있다.
반응이 끝난 제1 반응 챔버(A1)에는 미세 입자, 백혈구-미세 입자 결합체, CTC 클러스터, 백혈구-CTC 결합체, 혈소판-CTC 결합체, 단일 CTC(결합된 상태가 아닌 CTC)가 존재하게 되고, 이들을 제2 밸브(V2)를 개방하여 제2 채널(C2)을 통해 제1 분리 챔버(A2)로 내려주게 된다.
제1 분리 챔버(A2)는 밀도구배물질을 수용하며, 밀도구배를 이용하여 제1 반응 챔버(A1)으로부터 전달된 물질들을 분리할 수 있다.
제1 분리 챔버(A2)에서는, 제1 반응 챔버(A1)로부터 내려온 백혈구-미세 입자 결합체가 가장 아래, 즉 회전 중심을 기준으로 하여 반경 방향으로 최외측에 위치하고 그 위로, CTC 클러스터, 백혈구-CTC 결합체, 혈소판-CTC 결합체, 단일 CTC가 비중과 크기의 순서대로 정렬하게 된다.
분리된 물질들은 제1 내지 제4 회수 챔버(A3, A4, A5, A6)로 유입되게 된다. 구체적으로, 제3 채널(C3)의 제3 밸브(V3)가 개방되어 제1 회수 챔버(A3)로 단일 CTC가 이동할 수 있다. 그리고 제4 채널(C4)의 제4 밸브(V4)가 개방되어 제2 회수 챔버(A4)로 혈소판-CTC 결합체가 이동할 수 있다. 그리고 제5 채널(C5)의 제5 밸브(V5)가 개방되어 제3 회수 챔버(A5)로 백혈구-CTC 결합체가 이동할 수 있다. 그리고 제6 채널(C6)의 제6 밸브(V6)가 개방되어 제4 회수 챔버(A6)로 CTC 클러스터가 이동할 수 있다. 이와 같이 분리된 물질들이 각 회수 챔버로 이동하게 되어 CTC 종류 별, 크기 별 분리가 완료된다. 추출구(미도시)를 통하여 예를 들어 피펫 등을 이용하여 회수 챔버들로부터 물질을 추출할 수 있다.
상술한 제1 표적 물질(CTC)의 회수 과정을 도 5에 모식적으로 나타내었다. 도 5에는 미세유동장치(100)의 제1 분리 모듈(M1)에 해당하는 구성들만 도시하였다.
도 5를 참고하면, 먼저, 시료 침버(A0)에 혈액을 넣고 원심분리를 하면 RBC(적혈구), DGM, Buffy coat(백혈구와 CTC 혼합되어 있음), 혈장(Plasma)로 나뉠 수 있다. 이후, Buffy coat만 제1 반응 챔버(A1)로 이동되고, 도시된 바와 같이, 백혈구와만 결합하는 미세입자와 백혈구, CTC가 혼합된다. 이후 이것을 제1 분리 챔버(A2)로 내려주면, 미세입자와 결합하여 무거워진 백혈구가 가장 밑에 가라 앉게 되고, 그 위에 CTC가 존재하게 된다. 도시되지 않았지만 단일 CTC뿐만 아니라 CTC 클러스터, 백혈구-CTC 결합체, 혈소판-CTC 결합체도 존재할 수 있다. CTC 클러스터, 백혈구-CTC 결합체, 혈소판-CTC 결합체, 단일 CTC는 비중에 따라 제1 내지 제4 회수 챔버(A3 ~ A6)로 유입되어 분리될 수 있다.
이상에선 제1 표적 물질의 분리에 대해 설명하였고, 이하에선 제2 표적 물질의 분리에 대해 설명하도록 한다.
복수의 제2 표적 물질(엑소좀들)의 회수 과정을 설명하자면, 제2 분리 모듈(M2)은, 시료 챔버(A0)로부터 혈장층(L4)을 전달받아 밀도 차에 의해 2 종류 이상의 엑소좀을 분리시킨다. 2 이상의 종류의 엑소좀은 항체 발현이 다른 엑소좀들로서, 암세포로부터 분비된 엑소좀(암 엑소좀)을 포함할 수 있다. 이러한 암 엑소좀을 분리함으로써 암을 진단할 수 있다.
제2 분리 모듈(M2)은 2 종류 이상의 엑소좀 각각에 특이적으로 결합하는 서로 다른 비중을 갖는 미세 입자들을 수용하는 제2 반응 챔버(A7)를 포함할 수 있다. 엑소좀들은 각각 지질 수용체 발현이 다르므로, 이를 이용하여, 각각의 엑소좀에 특이적으로 결합하도록 리간드를 부착시킨, 비중이 다른 미세 입자들이 수용될 수 있다.
제7 채널(C7)은 시료 챔버(A0)에서 혈장층(제2 유체층)(L4)과 대응하는 위치에 마련된다. 혈장층(제2 유체층)(L4)이 백혈구층(제1 유체층)(L3)보다 비중이 낮아서 위쪽에 위치하기 때문에, 제7 채널(C7)은 제1 채널(C1)보다 회전 중심에 가까이 위치한다.
제2 반응 챔버(A7)는 제7 채널(C7)의 제7 밸브(V7)가 개방됨으로써 시료 챔버(A0)로부터 혈장층(L4)을 전달받고, 제2 반응 챔버(A7) 안에서 서로 다른 종류의 엑소좀들이 서로 다른 비중을 가지는 미세 입자들과 결합하여 결합체를 형성한다. 예컨대, 제1 암 엑소좀과 제1 미세 입자가 결합한 제1 결합체가 형성되고, 제2 암 엑소좀과 제2 미세 입자(제1 미세 입자보다 비중이 높음)가 결합한 제2 결합체가 형성되고, 제3 암 엑소좀과 제3 미세 입자(제2 미세 입자보다 비중이 높음)가 결합한 제3 결합체가 형성될 수 있다. 제1 반응 챔버(A1)에서 설명한 것처럼 쉐이킹 과정 동안 제2 반응 챔버(720)에서도 결합이 촉진될 수 있다.
반응이 끝난 제2 반응 챔버(A7)에는 각 항체 발현이 다른 엑소좀이 비중이 다른 각 미세 입자에 결합되어 있고, 그 외 혈소판, 마이크로베시클(microvesicles), 여러 단백질들이 존재하게 되고, 이것들을 제8 밸브(V8)를 개방하여 제8 채널(C8)을 통해 제2 분리 챔버(A8)로 내려주게 된다.
제2 분리 챔버(A8)는 혈소판보다 밀도가 낮은 밀도구배물질을 수용한다. 제2 분리 챔버(A8)에서는 혈소판은 바닥으로 가라앉고 비중에 따라 밀도구배층에 엑소좀들과 결합한 미세입자들이 정렬을 하게 되고, 마이크로베시클 및 여러 단백질들은 밀도구배층 아래로 내려오지 못해 자연적으로 불순물이 제거되게 된다.
분리된 물질들은 제5 내지 제8 회수 챔버(A9, A10, A11, A12)로 유입되게 된다. 예컨대, 제9 채널(C9)의 제9 밸브(V9)가 개방되어 제5 회수 챔버(A9)로 미세 입자와 결합한 제1 암 엑소좀이 이동할 수 있다. 그리고 제10 채널(C10)의 제10 밸브(V10)가 개방되어 제6 회수 챔버(A10)로 미세 입자와 결합한 제2 암 엑소좀이 이동할 수 있다. 그리고 제11 채널(C11)의 제11 밸브(V11)가 개방되어 제7 회수 챔버(A11)로 미세 입자와 결합한 엑소좀(CD63)이 이동할 수 있다. 그리고 제12 채널(C12)의 제12 밸브(V12)가 개방되어 제8 회수 챔버(A12)로 미세 입자와 결합한 제3 암 엑소좀이 이동할 수 있다. 이와 같이 분리된 물질들은 각 회수 챔버로 이동하게 되어 암 엑소좀의 종류 별, 크기 별 분리가 완료된다. 추출구(미도시)를 통하여 예를 들어 피펫 등을 이용하여 회수 챔버들로부터 물질을 추출할 수 있다.
상술한 제2 표적 물질(엑소좀들)의 회수 과정을 도 6에 모식적으로 나타내었다. 도 6에는 미세유동장치(100)의 제2 분리 모듈(M2)에 해당하는 구성들만 도시하였다.
도 6을 참고하면, 먼저, 시료 침버(A0)에 혈액을 넣고 원심분리를 하면 RBC(적혈구), DGM, Buffy coat(백혈구와 CTC 혼합되어 있음), 혈장(Plasma)로 나뉠 수 있다. 이후, 혈장만 제2 반응 챔버(A7)로 이동되고, 도시된 바와 같이, 제2 반응 챔버(A7)에는 특성이 다른 다종의 엑소좀을 분리하기 위해 비중이 다른 미세 입자들이 존재하여, 특성이 다른 다종의 엑소좀 각각에 결합한다. 이후 이것을 제2 분리 챔버(A8)로 내려주면, 혈소판은 바닥으로 가라앉고 비중에 따라 밀도구배층에 엑소좀들과 결합한 미세입자들이 정렬을 하게 되고, 마이크로베시클 및 여러 단백질들은 밀도구배층 아래로 내려오지 못해 자연적으로 불순물이 제거되게 된다. 특성이 다른 엑소좀들은 비중에 따라 제5 내지 제8 회수 챔버(A9 ~ A12)로 유입되어 분리될 수 있다.
도 7은 본 개시의 또 다른 실시 예에 다른 미세유동장치(100)의 일부 영역을 도시한 도면이다.
도 2를 참고하여 설명한 실시 예와 비교하여, 도 7에 도시된 실시 예는 제2 분리 모듈(M2)쪽에 제2 반응 챔버(A7)가 생략된 형태이다.
도 7을 참고하면, 시료 챔버(A0)가 직접 제2 분리 챔버(A13)와 연결된 형태이다. 본 실시 예에선, 복수의 제2 표적 물질들은 미세 입자와 결합 없이, 자체적인 밀도 차이에 의해 서로 분리될 수 있다.
본 실시 예에 따른 제2 분리 챔버(A13)는 복수의 회수 챔버(A15, A16, A17, A18, A19)를 포함할 수 있다. 회수 챔버의 개수가 도시된 것에 제한되는 것은 아니고 2 이상의 회수 챔버로 구성될 수 있다. 복수의 회수 챔버(A15, A16, A17, A18, A19)는 회전 중심으로부터 원주 방향으로 멀어지는 형태로 위치된다.
복수의 제2 표적 물질들이 엑소좀들인 경우, 엑소좀의 밀도에 따라 순차적으로 작은 엑소좀, 중간 엑소좀, 큰 엑소좀이 분리될 수 있다. 예컨대, A 15 및 A16으로 도시된 회수 챔버로 작은 엑소좀이 이동하며, A17 및 A18로 도시된 회수 챔버로 중간 엑소좀에 이동하며, A19로 도시된 회수 챔버로 큰 엑소좀이 이동할 수 있다. 이 경우, 제2 분리 챔버(A8)는, 복수의 회수 챔버(742, 743, 744, 745, 746)보다 회전 중심으로부터 멀리 떨어져있는, 미세 소포체를 회수하기 위한 챔버(A20) 및 혈소판을 회수하기 위한 챔버(A21)를 포함할 수 있다.
또한 본 실시 예에 따른 제2 분리 챔버(A13)는 잔여물 제거 챔버(A14)를 포함할 수 있고, 첫 번째 회수 챔버(A15)보다 회전 중심에 가까이 위치할 수 있다. 따라서 표적 물질들보다 밀도가 작은 잔여물이 잔여물 제거 챔버(A14)로 이동할 수 있다.
도 7의 실시 예에 따르면, 도 2의 실시 예와 비교하여, 미세 입자에 결합된 엑소좀들만 회수되어 분석이 자칫 편향될 수 있는 문제를 해소할 수 있다.
본 개시에서 설명한 실시 예들에 따르면, CTC에 미세 입자를 결합시키는 종래의 방식(포지티브 방식)에서는 미세 입자에 결합되는 특정 CTC 만 검출 가능하였으나, CTC가 아닌 백혈구에 미세 입자를 결합시키는 본 실시 예에 따른 방식(네거티브 방식)에서는 CTC의 큰 이질성 (Heterogeneity)을 극복할 수 있다.
또한, 시료 챔버(A0)에서 혈장과 백혈구/CTC층(Buffy coat 층)이 분리되고 나면, 순환종양세포 및 엑소좀 분리 과정은 동시에 진행될 수 있어 신속한 검사가 가능하다.
이상에서는 본 개시의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 개시는 상술한 특정의 실시 예에 한정되지 아니하며, 청구 범위에 청구하는 본 개시의 요지를 벗어남이 없이 당해 개시가 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 개시의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.

Claims (10)

  1. 회전 구동부에 장착되어 원심력에 의하여 유체의 흐름을 유발하는 미세유동장치에 있어서,
    생물학적 시료가 수용되며, 그 내부에서 원심력에 의하여 상기 시료가 제1 표적 물질 및 비표적 물질을 포함하는 제1 유체층과, 복수의 제2 표적 물질을 포함하는 제2 유체층으로 분리되는 시료 챔버;
    미세 입자를 수용하며, 상기 시료 챔버로부터 상기 제1 유체층을 전달받아 상기 미세 입자와 상기 비표적 물질이 결합된 결합체를 형성하며 밀도차에 의해 상기 결합체와 상기 제1 표적 물질을 분리시키는 제1 분리 모듈; 및
    상기 시료 챔버로부터 상기 제2 유체층을 전달받아 밀도차에 의해 상기 복수의 제2 표적 물질을 분리시키는 제2 분리 모듈;을 포함하는 미세유동장치.
  2. 제1항에 있어서,
    상기 시료 챔버와 상기 제1 분리 모듈은, 제1 밸브를 가진 제1 채널을 통해 연결되고,
    상기 시료 챔버와 상기 제2 분리 모듈은, 제2 밸브를 가진 제2 채널을 통해 연결되며,
    상기 제1 밸브 및 상기 제2 밸브 각각은, 가열되면 용융되어 상기 제1 채널 및 상기 제2 채널을 각각 개방하며,
    상기 미세유동장치는,
    상기 회전 구동부에 장착되어 회전하는 동안 상기 제1 가열 부재와 상기 제2 가열 부재 각각에 열을 가하도록 구성되어, 원심력이 유지되는 상태에서 상기 제1 유체층 및 상기 제2 유체층 각각이 제1 분리 모듈 및 상기 제2 분리 모듈로 이동될 수 있도록 하는, 미세유동장치.
  3. 제1항에 있어서,
    상기 시료는 혈액이고,
    상기 제1 표적 물질은 순환종양세포(CTC)이며,
    상기 비표적 물질은 백혈구이며,
    상기 미세 입자는 백혈구에 특이적으로 결합하는 입자인 미세유동장치.
  4. 제3항에 있어서,
    상기 제1 분리 모듈은,
    상기 시료 챔버와 연결되고 상기 결합체가 형성되는 제1 반응 챔버; 및
    상기 제1 반응 챔버와 연결되고 밀도차에 의하여 상기 결합체가 상기 미세유동장치의 회전 중심을 기준으로 하여 최하층부에 모이게 되는 제1 분리 챔버;를 포함하는 미세유동장치.
  5. 제4항에 있어서,
    상기 제1 분리 모듈은,
    상기 제1 분리 챔버와 연결되어 있으며, 상기 미세유동장치의 회전 중심에서 서로 다른 거리에 위치한 4개의 회수 챔버를 더 포함하며,
    상기 4개의 회수 챔버 중 상기 회전 중심과 가장 가까운 제1 회수 챔버는 단일 CTC를 회수하기 위한 것이며, 상기 제1 회수 챔버보다 상기 회전 중심으로부터 멀리 위치한 제2 회수 챔버는 혈소판-CTC 결합체를 회수하기 위한 것이며, 상기 제2 회수 챔버보다 상기 회전 중심으로부터 멀리 위치한 제3 회수 챔버는 백혈구-CTC 결합체를 회수하기 위한 것이며, 상기 제3 회수 챔버와 상기 최하층부 사이에 위치한 제4 회수 챔버는 CTC 클러스터를 회수하기 위한 것인 미세유동장치.
  6. 제1항에 있어서,
    상기 시료는 혈액이고,
    상기 복수의 제2 표적 물질은 적어도 제1 엑소좀 및 제2 엑소좀을 포함하며,
    상기 제2 분리 모듈은 상기 제1 엑소좀과 특이적으로 결합하여 제1 결합체를 형성하는 제1 미세 입자와 상기 제2 엑소좀과 특이적으로 결합하여 제2 결합체를 형성하는 제2 미세 입자를 수용하며, 상기 제1 미세 입자는 상기 제2 미세 입자보다 비중이 낮은, 미세유동장치.
  7. 제6항에 있어서,
    상기 제2 분리 모듈은,
    상기 시료 챔버와 연결되고 상기 제1 결합체 및 상기 제2 결합체가 형성되는 제2 반응 챔버; 및
    상기 제2 반응 챔버와 연결되고 밀도차에 의하여 상기 제1 결합체와 상기 제2 결합체가 분리되는 제2 분리 챔버;를 포함하는 미세유동장치.
  8. 제7항에 있어서,
    상기 제2 분리 모듈은,
    상기 제2 분리 챔버와 연결된 제1 및 제2 회수 챔버를 더 포함하며, 상기 제1 회수 챔버는 상기 제2 회수 챔버보다 회전 중심에 더 가까이 위치하고,
    상기 제1 회수 챔버는 상기 제1 결합체를 회수하기 위한 것이며, 상기 제2 회수 챔버는 상기 제2 결합체를 회수하기 위한 것인 미세유동장치.
  9. 제1항에 있어서,
    상기 시료는 혈액이고,
    상기 복수의 제2 표적 물질은 적어도 제1 엑소좀 및 제2 엑소좀을 포함하며, 상기 제1 엑소좀이 상기 제2 엑소좀보다 비중이 낮으며,
    상기 제2 분리 모듈은,
    제2 분리 챔버;
    상기 제2 분리 챔버와 연결되어 있으며 상기 제1 엑소좀을 회수하기 위한 제1 회수 챔버; 및
    상기 제2 분리 챔버와 연결되어 있으며 상기 제2 엑소좀을 회수하기 위한 제2 회수 챔버;를 포함하는 미세유동장치.
  10. 제9항에 있어서,
    상기 제2 분리 모듈은, 상기 제2 분리 챔버에 연결된 잔여물 제거 챔버를 더 포함하고,
    상기 제2 회수 챔버는 상기 제1 회수 챔버보다 상기 회전 중심으로부터 멀리 위치하며, 상기 잔여물 제거 챔버는 상기 제1 회수 챔버보다 상기 회전 중심에 가까이 위치한 미세유동장치.
PCT/KR2021/009784 2020-12-01 2021-07-28 세포, 미세입자 동시 분리 장치 및 그 방법 WO2022119075A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0166048 2020-12-01
KR1020200166048A KR20220076995A (ko) 2020-12-01 2020-12-01 세포, 미세입자 동시 분리 장치 및 그 방법

Publications (1)

Publication Number Publication Date
WO2022119075A1 true WO2022119075A1 (ko) 2022-06-09

Family

ID=81853449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009784 WO2022119075A1 (ko) 2020-12-01 2021-07-28 세포, 미세입자 동시 분리 장치 및 그 방법

Country Status (2)

Country Link
KR (1) KR20220076995A (ko)
WO (1) WO2022119075A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030067686A (ko) * 2000-11-15 2003-08-14 파마네틱스 인코포레이티드 혈소판/백혈구 상호 작용 분석 및 이를 위한 시약
WO2003087827A2 (en) * 2001-04-11 2003-10-23 Burstein Technologies, Inc. Multi-parameter assays including analysis discs and methods relating thereto
KR100818290B1 (ko) * 2006-12-11 2008-03-31 삼성전자주식회사 성분 분리 장치 및 성분 분리 방법
KR100846516B1 (ko) * 2007-04-02 2008-07-17 삼성전자주식회사 원심력 기반의 미세유동장치 및 이를 포함하는미세유동시스템
KR20140071814A (ko) * 2012-12-04 2014-06-12 삼성전자주식회사 미세유동장치 및 이를 채용한 생물학적 시료 내의 표적 물질 농축방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030067686A (ko) * 2000-11-15 2003-08-14 파마네틱스 인코포레이티드 혈소판/백혈구 상호 작용 분석 및 이를 위한 시약
WO2003087827A2 (en) * 2001-04-11 2003-10-23 Burstein Technologies, Inc. Multi-parameter assays including analysis discs and methods relating thereto
KR100818290B1 (ko) * 2006-12-11 2008-03-31 삼성전자주식회사 성분 분리 장치 및 성분 분리 방법
KR100846516B1 (ko) * 2007-04-02 2008-07-17 삼성전자주식회사 원심력 기반의 미세유동장치 및 이를 포함하는미세유동시스템
KR20140071814A (ko) * 2012-12-04 2014-06-12 삼성전자주식회사 미세유동장치 및 이를 채용한 생물학적 시료 내의 표적 물질 농축방법

Also Published As

Publication number Publication date
KR20220076995A (ko) 2022-06-08

Similar Documents

Publication Publication Date Title
EP2737948B1 (en) Microfluidic apparatus and method of enriching target cells by using the same
KR101922128B1 (ko) 미세유동장치 및 이를 채용한 생물학적 시료 내의 표적 물질 농축방법
EP1897617B1 (en) Centrifugal force-based microfluidic device for protein detection and microfluidic system including the same
US7951333B2 (en) Centrifugal force-based microfluidic device for protein detection and microfluidic system including the same
KR20150044091A (ko) 시료분석장치, 시료분석방법, 및 밸브의 동적 작동 방법
EP2329276A2 (en) Centrifugal-based microfluid apparatus, method of fabricationg the same, and method of testing samples using the microfluidic apparatus
KR20100027390A (ko) 표적 분자 분리를 위한 미세유동 카트리지, 분리장치, 및 이를 이용한 표적 분자 분리 방법
WO2020101438A1 (ko) 미세 유동 장치 및 이를 이용한 표적 세포 분리 방법
WO2022119075A1 (ko) 세포, 미세입자 동시 분리 장치 및 그 방법
KR102285226B1 (ko) 미세 유동 장치 및 이를 이용한 표적 세포 분리 방법
JP2010133952A (ja) Mwp蓋分離
Woo et al. Continuous centrifugal microfluidics (CCM) isolates heterogeneous circulating tumor cells via full automation
KR20140136277A (ko) 미세유동장치
WO2018186676A1 (ko) 미세 유동 장치 및 표적 세포 분리 방법
TW201915172A (zh) 利用動態光圖形結合光介電泳力篩選、分離與純化出罕見細胞之方法
KR20140142624A (ko) 미세유동장치
CN118103140A (zh) 分离不同分析物类的分析物
KR20240073414A (ko) 원심력 기반의 태아세포 분리방법 및 이를 위한 장치
WO2022211429A1 (ko) 세포 분리 제어 장치
KR20240073428A (ko) 원심력 기반의 태아세포 분리방법 및 이를 위한 장치
Hung et al. Chia-Jung Liao, Chia-Hsun Hsieh 2, Tzu-Keng Chiu 3, Yu-Xian Zhu, Hung-Ming Wang 2
Lee et al. Recent advances and perspectives on capture and concentration of label-free rare cells for biomedical science and engineering research
WO2018222021A1 (en) Magnetophoresis biochip
TW201737984A (zh) 血液吸附分離材料、血液過濾裝置及其操作方法
Kirby Centrifugal magnetophoresis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900763

Country of ref document: EP

Kind code of ref document: A1