KR100846516B1 - 원심력 기반의 미세유동장치 및 이를 포함하는미세유동시스템 - Google Patents

원심력 기반의 미세유동장치 및 이를 포함하는미세유동시스템 Download PDF

Info

Publication number
KR100846516B1
KR100846516B1 KR1020070032500A KR20070032500A KR100846516B1 KR 100846516 B1 KR100846516 B1 KR 100846516B1 KR 1020070032500 A KR1020070032500 A KR 1020070032500A KR 20070032500 A KR20070032500 A KR 20070032500A KR 100846516 B1 KR100846516 B1 KR 100846516B1
Authority
KR
South Korea
Prior art keywords
microfluidic device
valve
centrifugal force
platform
sample
Prior art date
Application number
KR1020070032500A
Other languages
English (en)
Inventor
조윤경
이범석
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020070032500A priority Critical patent/KR100846516B1/ko
Priority to US12/056,345 priority patent/US8191715B2/en
Priority to EP08153832.4A priority patent/EP1980322B1/en
Application granted granted Critical
Publication of KR100846516B1 publication Critical patent/KR100846516B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Abstract

입자를 포함하는 시료로부터 유체를 신속하게 분리하고, 분리된 유체를 정량 분배할 수 있는 원심력 기반의 미세유동장치 및 이를 포함하는 미세유동시스템이 개시된다. 본 발명에 따른 미세유동장치는 회전 가능한 플랫폼; 상기 플랫폼 일측에 배치된 시료 주입구; 일 단이 상기 시료 주입구와 연결되고, 상기 플랫폼의 바깥쪽으로 연장된 시료 이동부; 상기 시료 이동부의 바깥쪽 끝 부분에 연결되게 배치되고, 상기 플랫폼의 회전에 의해 상기 시료 이동부로부터 상대적으로 밀도가 높은 입자들이 모이도록 확장된 공간을 제공하는 입자 분리부; 바깥쪽 끝이 상기 입자 분리부와 연결되고, 안쪽 끝이 상기 입자 분리부보다 상기 플랫폼의 회전 중심에서 가깝게 배치된 배기구와 연결되게 배치되고, 그 깊이가 상기 입자 분리부보다 얕아서 상기 입자 분리부와의 경계에 단차가 존재하는 유체 분리 채널; 및 상기 유체 분리 채널과 연결되고, 각각 개별적으로 구동되며, 상기 유체 분리 채널 내의 분리된 유체 중 미리 정해진 부피의 유체를 상기 플랫폼의 회전에 의해 배출하도록 배치된 적어도 하나의 출구 밸브를 포함한다.
랩온어디스크, 미세유동장치, 원심분리, 정량 분배, 상전이형 밸브

Description

원심력 기반의 미세유동장치 및 이를 포함하는 미세유동시스템{Centrifugal force-based microfluidic device and microfluidic system including the same}
도 1은 본 발명에 따른 원심력 기반의 미세유동장치의 실시예를 보이는 평면도이다.
도 2는 상기 도 1의 실시예에서 Ⅱ-Ⅱ'의 수직 절단면을 보이는 단면도이다.
도 3a는 상기 도 1의 실시예에서 Ⅲ-Ⅲ'의 수직 절단면을 보이는 단면도이다.
도 3b는 상기 도 3a에 도시된 시료 이동부에 대한 변형예를 보이는 단면도이다.
도 4는 본 발명에 따른 원심력 기반의 미세유동장치의 다른 실시예를 보이는 평면도이다.
도 5는 본 발명에 따른 원심력 기반의 미세유동장치의 또 다른 실시예를 보이는 평면도이다.
도 6은 본 발명에 따른 원심력 기반의 미세유동장치의 또 다른 실시예를 보이는 평면도이다.
도 7은 본 발명에 따른 원심력 기반의 미세유동장치의 또 다른 실시예를 보이는 평면도이다.
도 8은 상기 도 1 및 도 4 내지 도 7의 미세유동장치에 채용될 수 있는 상전이형 열림 밸브를 도시한 평면도이다.
도 9는 상기 도 8의 상전이형 열림 밸브의 Ⅸ-Ⅸ' 단면을 보이는 단면도이다.
도 10은 상기 도 4 내지 도 7의 미세유동장치에 채용될 수 있는 상전이형 닫힘 밸브를 도시한 평면도이다.
도 11은 상기 도 10의 상전이형 닫힘 밸브의 작동 모습을 보이는 단면도이다.
도 12는 상기 도 8의 상전이형 열림 밸브의 작동 모습을 보이는 일련의 고속촬영 사진들이다.
도 13은 상기 도 10의 상전이형 닫힘 밸브의 작동 모습을 보이는 일련의 고속촬영 사진들이다.
도 14는 상기 상전이형 열림 및 닫힘 밸브에 사용된 밸브 물질에서 자성유체(발열입자 분산용액)의 부피 비와 밸브 반응 시간의 관계를 보이는 그래프이다.
도 15는 상기 상전이형 열림 및 닫힘 밸브의 구동 시에 외부에너지원으로 사용되는 레이저 광원의 파워와 밸브 반응시간의 관계를 보이는 그래프이다.
도 16은 본 발명에 따른 원심력 기반의 미세유동시스템의 실시예를 보이는 사시도이다.
도 17은 본 발명에 따른 원심력 기반의 미세유동시스템의 다른 실시예를 보이는 사시도이다.
* 도면의 주요 부분에 대한 부호의 설명 *
21: 플랫폼 211: 하판
212: 상판 30: 시료 챔버
31: 시료 주입구 40, 44: 시료 이동부
411, 412: 시료 이동부 바닥 42: 입자 분리부
421, 422: 단차부 50: 유체 분리 채널
51: 배기구 81, 82: 시험 유닛
101~104: 미세유동장치 130L, 130P: 외부에너지원
140: 회전구동부 150: 광검출부
221L, 221R: 채널 222L, 222R: 드레인 챔버
223: 밸브 플러그 225: 밸브 챔버
226: 밸브 채널 231, 232: 상전이형 열림 밸브
241, 242: 상전이형 닫힘 밸브
본 발명은 원심력 기반의 미세유동장치에 관한 것으로, 더 상세하게는 디스크 형상의 플랫폼 내에서 유체와 입자를 포함하는 시료로부터 원심력을 이용하여 소량의 유체를 빠르게 분리해 내고, 분리된 유체를 정량적으로 분배할 수 있도록 한 미세유동장치에 관한 것이다.
일반적으로 미세유동장치를 구성하는 미세유동 구조물에는 소량의 유체를 가두어 둘 수 있는 챔버와, 유체가 흐를 수 있는 채널, 유체의 흐름을 조절할 수 있는 밸브, 그리고 유체를 받아 소정의 기능을 수행할 수 있는 여러 가지 기능성 유닛 등이 포함될 수 있다. 기능성 유닛은 역시 상기의 챔버, 채널 또는 밸브 등의 기본 구조물을 포함하고, 이들의 결합을 통해 이루어질 수 있다. 소형의 칩(chip) 상에서 생화학적 반응을 포함한 시험을 수행할 수 있도록 칩 형태의 기판에 이러한 미세유동 구조물을 배치한 것을 일컬어 바이오 칩이라고 하고, 특히 여러 단계의 처리 및 조작을 하나의 칩에서 수행할 수 있도록 제작된 장치를 랩온어칩(lab-on-a chip)이라 한다.
미세유동장치 내에서 유체를 이송하기 위해서는 구동 압력이 필요한데, 구동 압력으로서 모세관압이 이용되기도 하고, 별도의 펌프에 의한 압력이 이용되기도 한다. 최근에는 콤팩트디스크 형상의 플랫폼에 미세유동 구조물들을 배치하고 원심력을 이용하여 유체를 구동하는 미세유동장치들이 제안되고 있다. 이를 일컬어 랩씨디(Lab CD) 또는 랩온어디스크(Lab-on a disk)라 하기도 한다. 그런데, 이 경우는 미세유동장치가 프레임에 고정되지 않고 회전하기 때문에 바닥에 고정된 채로 작동되는 랩온어칩과 여러 가지 면에서 다르다. 원심력을 이용한 원심분리 작업이 용이한 반면, 개별적인 밸브의 구동이나 국소적인 온도 조절 등은 어렵다.
한편, 이러한 미세유동장치가 주로 이용되는 생화학, 생물학 및 의학 등의 분야에서는 미세유동장치가 유체와 입자가 혼합된 시료, 예를 들면 혈액, 타액, 소변 등과 같은 생체 시료로부터 입자를 빠르게 분리해 내는 기능을 가질 것이 요구 된다. 이를 충족시키기 위해 미국특허 US 5,061,381호 등이 제안된 바 있다. 그러나 여전히 디스크형 플랫폼 내의 더 작은 영역에서 유체와 입자를 분리하는 기능을 수행할 것이 요구되고, 나아가 별도의 유닛을 이용한 미터링(metring) 단계를 거치지 않고도 분리된 유체를 정량적으로 분배하는 기능을 가질 것이 요구된다.
본 발명은 플랫폼 내에서 유체와 입자를 포함하는 시료로부터 원심력을 이용하여 유체와 입자를 분리함에 있어서, 소량의 유체를 빠르게 분리하고, 분리된 유체를 정량적으로 분배할 수 있는 원심력 기반의 미세유동장치 및 이를 포함하는 미세유동시스템을 제공하는 데 그 목적이 있다.
본 발명에 따른 원심력 기반의 미세유동장치는 회전 가능한 플랫폼; 상기 플랫폼 일측에 배치된 시료 주입구; 일 단이 상기 시료 주입구와 연결되고, 상기 플랫폼의 바깥쪽으로 연장된 시료 이동부; 상기 시료 이동부의 바깥쪽 끝 부분에 연결되게 배치되고, 상기 플랫폼의 회전에 의해 상기 시료 이동부로부터 상대적으로 밀도가 높은 입자들이 모이도록 확장된 공간을 제공하는 입자 분리부; 상기 입자 분리부와 연결되고, 안쪽 끝이 상기 입자 분리부보다 상기 플랫폼의 회전 중심에서 가깝게 배치된 배기구와 연결되게 배치되어 상기 플랫폼의 회전에 의해 시료 중의 유체가 유입되는 유체 분리 채널; 및 상기 유체 분리 채널과 연결되고, 각각 개별적으로 구동되며, 상기 유체 분리 채널 내의 분리된 유체 중 미리 정해진 부피의 유체를 상기 플랫폼의 회전에 의해 배출하도록 배치된 적어도 하나의 출구 밸브를 포함한다.
여기서, 상기 유체 분리 채널은 그 바깥쪽 끝이 상기 입자 분리부에 연결되고, 그 깊이가 상기 입자 분리부보다 얕아서 상기 입자 분리부와의 경계에 단차가 존재하는 것일 수 있다. 또한, 상기 입자 분리부는 상기 시료 이동부보다 깊이가 깊고, 상기 시료 이동부와의 경계에 단차가 존재하도록 형성된 것일 수 있다. 또한, 상기 유체 분리 채널은 상기 시료 이동부보다 깊이가 얕은 것일 수 있다.
상기 시료 이동부는 상기 플랫폼의 바깥쪽으로 갈수록 점차 그 깊이가 깊어지는 것일 수 있다.
한편, 본 발명에 따른 미세유동장치는 상기 시료 이동부의 반지름 방향 안쪽 끝 부분에 연결되게 배치되고, 상기 시료 주입구와 연결되어 상기 시료 주입구를 통해 주입되는 시료를 수용하는 시료 저장부를 더 포함할 수도 있다.
상기 적어도 하나의 출구 밸브는, 상기 유체 분리 채널의 출구를 닫게 배치된 밸브 플러그와, 상기 밸브 플러그의 초기 위치에 인접하게 마련된 적어도 하나의 드레인 챔버를 포함하고, 상기 밸브 플러그가 열에 의해 용융되면 상기 드레인 챔버로 이동하여 상기 출구를 여는 상전이형 열림 밸브(normally closed)일 수 있다. 이 경우, 상기 밸브 플러그는 상온에서 고체 상을 띠는 상전이 물질에 발열 입자가 분산된 밸브 물질을 포함하고, 상기 밸브 물질이 외부에너지원으로부터 조사된 전자기파로 인한 열에 의해 용융되는 것일 수 있다.
상기 상전이 물질은 왁스, 겔, 열가소성 수지로 이루어진 군으로부터 선택된 적어도 어느 하나일 수 있다. 상기 발열 입자는 직경이 1 nm 내지 100 ㎛ 인 것일 수 있고, 또한 상기 발열 입자는 외부로부터 전자기파를 흡수하여 열에너지로 변환하는 코어(core)와 상기 코어를 둘러싸는 쉘(shell)로 이루어진 것일 수 있다. 상기 발열 입자는 중합체 비드, 퀀텀 닷(quantum dot), 금 나노입자, 은 나노입자, 금속화합물 비드, 탄소입자 및 자성비드로 이루어진 군에서 선택된 적어도 어느 하나일 수도 있다.
또한 상기 미세유동장치는 상기 적어도 하나의 출구 밸브 중 상기 플랫폼의 가장 바깥쪽에 배치된 출구 밸브와 상기 입자 분리부 사이의 유체 분리 채널을 차단할 수 있는 닫힘 밸브(normally open valve)를 더 포함할 수 있다. 이 경우, 상기 닫힘 밸브는, 상기 유체 분리 채널과 연결된 밸브 챔버 및 초기 상태에 상기 밸브 챔버 내에 충전된 밸브 물질을 포함하고, 상기 밸브 물질이 열에 의해 용융 및 팽창되면서 상기 유체 분리 채널로 유입된 후 응고되어 상기 유체 분리 채널을 닫는, 상전이형 닫힘 밸브일 수 있다. 상기 밸브 물질은 상온에서 고체 상을 띠는 상전이 물질과 상기 상전이 물질에 분산된 발열 입자를 포함하고, 상기 발열입자는 외부에너지원으로부터 가해진 전자기파의 에너지를 흡수하여 열 에너지를 방출하는 것일 수 있다.
이 경우에도 상기 상전이 물질은 왁스, 겔, 열가소성 수지로 이루어진 군으로부터 선택된 적어도 어느 하나일 수 있다. 상기 발열 입자는 직경이 1 nm 내지 100 ㎛ 인 것일 수 있고, 또한 상기 발열 입자는 외부로부터 전자기파를 흡수하여 열에너지로 변환하는 코어(core)와 상기 코어를 둘러싸는 쉘(shell)로 이루어진 것일 수 있다. 상기 발열 입자는 중합체 비드, 퀀텀 닷(quantum dot), 금 나노입자, 은 나노입자, 금속화합물 비드, 탄소입자 및 자성비드로 이루어진 군에서 선택된 적어도 어느 하나일 수도 있다.
상기 시료 이동부는 그 안쪽 부분과 바깥쪽 부분을 잇는 축이 반지름 방향에 대하여 미리 정해진 기울기를 갖도록 배치된 것일 수 있고, 이때 상기 시료 이동부는 그 내부가 길이 방향으로 배치된 적어도 하나의 격벽으로 나뉘어 다수의 유로를 제공하는 것일 수도 있다.
본 발명에 따른 원심력 기반의 미세유동시스템은, 전술한 실시 형태들 중 어느 하나에 해당하는 따른 원심력 기반의 미세유동장치; 상기 미세유동장치를 지지하고 제어 가능하게 회전시키는 회전 구동부; 및 상기 미세유동장치 내에서 선택된 밸브를 개별적으로 구동하는 밸브 구동 유닛을 포함한다.
여기서, 상기 밸브 구동 유닛은 상기 밸브 내의 발열 입자의 발열을 유도할 수 있는 전자기파를 방출하는 외부에너지원; 및 상기 외부에너지원으로부터 조사된 전자기파가 상기 선택된 밸브에 대응되는 영역에 집중적으로 도달하도록 상기 외부에너지원의 위치 또는 방향을 조정하는 외부에너지원 조정수단을 포함할 수 있다. 이때, 상기 외부에너지원 조정수단은 상기 미세유동장치의 플랫폼을 향해 설치된 상기 외부에너지원을 상기 회전체의 반지름 방향으로 이동시키는 직선 이동수단을 포함할 수도 있고, 이와 달리 상기 외부에너지원 조정수단은 상기 미세유동장치의 플랫폼을 향해 설치된 상기 외부에너지원을 상기 플랫폼과 평행한 평면상에서 직교좌표에 따라 두 방향으로 이동시키는 평면 이동수단을 포함할 수도 있다.
이하 첨부된 도면을 참조하면서 본 발명의 실시예를 상세히 설명한다. 첨부 된 도면들에서 동일한 도면 부호는 동일한 구성 요소를 나타낸다. 도시된 챔버 및 채널 등의 구조물은 그 형상이 단순화되고, 그 크기의 비가 실제와 달리 확대되거나 축소된 것일 수 있다. 여기서 시료는 혈액, 타액, 소변 등의 생체시료를 포함하여 유체와 상기 유체보다 밀도가 높은 입자가 섞여있는 물질을 지칭한다. 또한, 여기서 플랫폼의 안쪽과 바깥쪽은 상기 플랫폼의 회전 중심으로부터 상대적으로 가까운 쪽과 먼 쪽을 각각 지칭한다.
도 1은 본 발명에 따른 원심력 기반의 미세유동장치의 실시예를 보이는 평면도이다. 본 실시예에 따르면, 원심력 기반의 미세유동장치(100)는 플랫폼(21)과 상기 플랫폼(21) 내에 유체가 수용될 수 있는 공간이나 흐를 수 있는 유로를 제공하는 구조물들(30,40,42,50,81,82,811,821, 등)을 포함한다.
상기 플랫폼(21)은 두께에 비해 상대적으로 면적이 넓고, 회전 가능한 디스크 형태일 수 있고, 회전 가능한 디스크형 베이스(미도시)의 일 부분에 장착될 수 있는 형태일 수도 있다. 이하에서는 상기 플랫폼(21)이 디스크 형상을 가진 경우를 기준으로 설명한다. 상기 플랫폼(21)은 성형이 용이하고, 그 표면이 생물학적으로 비활성인 아크릴, PDMS 등의 플라스틱 소재로 만들어질 수 있다. 다만, 이에 한정되는 것은 아니고, 화학적, 생물학적 안정성과 광학적 투명성 그리고 기계적 가공성을 가지는 소재이면 족하다. 상기 플랫폼(21)은 여러 층의 판으로 이루어질 수 있다. 판과 판이 서로 맞닿는 면에 챔버나 채널 등에 해당하는 음각 구조물을 만들고 이들을 접합함으로써 상기 플랫폼(21) 내부에 공간과 통로를 제공할 수 있다. 판과 판의 접합은 접착제나 양면 접착테이프를 이용한 접착이나 초음파 융착, 레이 저 용접 등 다양한 방법으로 이루어질 수 있다.
상기 미세유동장치(100)는 플랫폼(21)의 회전에 의해 입자가 포함된 시료를 유체와 입자로 원심분리할 수 있는 시료 이동부(40)를 포함한다. 상기 도 1에 도시된 시료 이동부(40)는 채널 형태를 띠고 있으나, 그 형상에는 제한이 없다. 다만, 길이 방향과 폭 방향 중 상대적으로 그 크기가 큰 길이 방향이 상기 플랫폼(21)의 안쪽(중심에서 가까운 쪽)부터 바깥쪽(중심에서 먼 쪽)으로 놓이도록 배치되는 것이 바람직하다. 상기 시료 이동부(40)의 크기에도 제한은 없다. 그 크기는 상기 플랫폼(21)의 크기와 두께 그리고, 원심분리하고자 하는 시료의 양과 섞여있는 입자의 크기 등에 따라 결정될 수 있다.
상기 시료 이동부(40)의 안쪽 끝 부분에는 외부로부터 시료를 주입할 수 있는 시료 주입구(31)가 마련된다. 한편 상기 미세유동장치(100)는 상기 시료 이동부(40)의 안쪽 끝 부분에 시료 저장부(30)를 더 구비할 수 있다. 상기 시료 저장부(30)는 상기 시료 주입구(31) 및 상기 시료 이동부(40)와 연결되고, 상기 시료 주입구(31)를 통해 주입되는 시료를 일차적으로 수용하였다가 상기 플랫폼(21)의 회전 시에 상기 시료 이동부(31)로 시료를 공급한다. 상기 시료 저장부(30)는 도시된 바와 같이 챔버 형상을 가질 수 있다.
상기 시료 이동부(40)의 바깥쪽 끝 부분에는 시료 중 원심력의 영향을 상대적으로 크게 받아 바깥쪽에 모인 입자들을 수용하고 가둘 수 있는 입자 분리부(42)가 마련된다. 상기 입자 분리부(42)는 시료에 포함된 입자들을 충분히 수용할 수 있도록 상기 시료 이동부(40)에 비해 상대적으로 폭과 깊이 중 적어도 어느 하나가 큰, 확대된 공간을 제공한다. 상기 도 1에 도시된 입자 분리부(42)는 상기 시료 이동부(40)보다 폭과 깊이가 모두 크다. 그러나, 반드시 이에 한정되는 것은 아니다.
상기 입자 분리부(42)의 일 부분에는 시료로부터 분리된 유체가 상기 시료 이동부(40) 내의 시료 수위와 대략 동일한 수위까지 채워질 수 있도록 상기 플랫폼(21)의 안쪽으로 연장된 유체 분리 채널(50)이 연결된다. 상기 유체 분리 채널(50)의 안쪽 끝에는 배기구(51)가 마련되어, 상기 유체 분리 채널(50)은 시료가 상기 시료 주입구(31)로부터 상기 시료 이동부(40) 및 입자 분리부(42)로 들어올 수 있도록 배기하는 배기 채널로서의 역할도 수행한다. 상기 배기구(51)는 유체가 누출되는 것을 방지하기 위해 상기 시료 이동부(40)의 안쪽 끝보다 더 안쪽에(상기 플랫폼(21)의 중심에 더 가깝게) 배치될 수 있다.
상기 유체 분리 채널(50)은 상기 입자 분리부(42)보다 그 깊이가 얕은 것이 바람직하다. 이점으로 인해 시료 중 일부가 상기 유체 분리 채널(50) 내의 어떤 수위까지 채워지려고 할 때, 상기 입자 분리부(42) 내의 입자가 진입하지 못하게 된다. 시료 중 밀도가 높은 입자들은 회전에 의한 원심력과 지구 중력의 영향을 받아 상기 입자 분리부(42)의 바깥쪽 그리고 바닥 쪽에 모여 갇히게 된다. 따라서, 상기 유체 분리 채널(50)에는 상기 시료로부터 분리된 유체가 채워지게 된다. 상기 유체 분리 채널(50)의 폭과 깊이는 분리하여 사용하고자 하는 유체의 양에 따라 결정될 수 있으며, 특히 그 깊이는 상기 시료 이동부(40)와 상기 입자 분리부(42)의 용량과 상기 입자 분리부(42)의 깊이 및 주로 적용되는 시료 중 입자의 부피 비 등에 따라서 상기 입자 분리부(42)로부터 입자가 상기 유체 분리 채널(50)로 넘쳐 들어 가지 않을 범위 내에서 결정되는 것이 바람직하다.
보이콧 효과(boycott effect)(US 5,588,946 참고)를 통해 알려진 바와 같이, 입자가 섞인 시료의 원심분리 시에 회전 반지름 바깥쪽으로 이동하려는 입자와 안쪽으로 이동하려는 유체 상호 간의 방해 작용에 의해 원심분리에 소요되는 시간이 길어지고, 유체와 입자의 이동 경로를 서로 분리함으로써 원심분리 시간을 단축할 수 있다. 그런데, 본 발명에 따르면 상기 유체 분리 채널(50)에 유체가 채워질 때, 그 유체는 입자의 이동에 따른 방해를 받지 않는다. 따라서, 상기 시료 이동부(40) 내에서는 미처 원심분리가 이루어지기 전이라도 상기 유체 분리 채널(50)은 시료로부터 분리된 유체만으로 채워지게 된다.
상기 유체 분리 채널(50)의 중간(상기 배기구(51)와 상기 입자 분리부(42)에 연결된 바깥쪽 끝 부분의 사이) 부분에는 적어도 하나의 출구 밸브가 배치된다. 상기 도 1의 실시예에 따른 미세유동장치(100)는 두 개의 출구 밸브(231, 232)를 구비하고 있다. 출구 밸브(231, 232)가 둘 이상인 경우 상기 출구 밸브(231, 232)들은 각각 개별적으로 구동되고, 바람직하게는 상기 플랫폼(21)의 중심에 가까운 쪽에 배치된 것부터 구동될 수 있다. 상기 두 개의 출구 밸브를 각각 제1 출구 밸브(231)와 제2 출구 밸브(232)라 할 때, 상기 미세유동장체(100)에서 제1 출구 밸브(231)를 열고 상기 플랫폼(21)을 회전시키면, 상기 제1 출구 밸브(231)보다 안쪽에 채워져 있던 유체(V1)가 제1 분배 채널(811)을 통해 제1 시험 유닛(81)로 배출되고, 다시 상기 제2 출구 밸브(232)를 열고 상기 플랫폼(21)을 회전시키면, 상기 제2 출구 밸브(232) 안쪽에 채워져 있던 유체(V2)가 제2 분배 채널(821)을 통해 배 출되어 제2 시험 유닛(82)으로 이송된다. 이와 같은 구성을 통해 본 발명에 따른 미세유동장치(100)는 입자가 포함된 시료로부터 필요한 양의 유체를 빠르게 분리하고, 분리된 유체를 미리 정해진 일정한 부피로 나누어 분배할 수 있다.
여기서, 정량 분배된 유체를 수용하는 상기 시험 유닛(82)은 상기 미세유동장치(100)의 용도에 따라 다양하게 마련될 수 있다. 상기 도 1에는 상기 제1 및 제2 시험 유닛(81, 82)이 단순하게 챔버 형상으로 도시되었으나, 상기 시료로부터 분리되어 정량 분배된 유체를 이용하는 것으로서 상기 디스크형 플랫폼(21) 내에 마련될 수 있는 것이면 어떤 유닛이라도 상기 시험 유닛(81, 82)에 해당할 수 있다.
도 2는 상기 도 1의 실시예에서 Ⅱ-Ⅱ'의 수직 절단면을 보이는 단면도이다. 상기 유체 분리 채널(50)의 깊이(D2)는 상기 입자 분리부(42)의 깊이(D3)보다 얕고(D3>D2), 상기 유체 분리 채널(50)와 상기 입자 분리부(42)와의 경계에는 그 깊이가 불연속적으로 변함으로써 형성된 단차(422)가 존재할 수 있다. 이와 마찬가지로, 상기 시료 이동부(40)의 깊이(D1) 역시 상기 입자 분리부(42)의 깊이(D3)보다 얕을 수 있으며(D3>D1), 상기 시료 이동부(40)와 상기 입자 분리부(42)의 경계에도 단차(421)가 존재할 수 있다. 상기 단차들(421, 422)에 의해 일단 분리된 입자들이 상기 유체 분리 채널(50)로 진입하는 것을 막을 수 있고, 상기 시료 이동부(40) 쪽으로 역류하는 것도 줄일 수 있다. 한편, 상기 유체 분리 채널(50)의 깊이(D2)는 상기 시료 이동부(40)의 깊이(D1)보다 얕을 수 있다.
도 3a는 상기 도 1의 실시예에서 Ⅲ-Ⅲ'의 수직 절단면을 보이는 단면도이다. 상기 플랫폼(21)은 상판(212)과 하판(211)으로 구성되고, 상기 하판(211)의 상 면이 음각되어 상기 시료 이동부(40)의 공간을 제공하고 있다. 이때, 상기 시료 이동부(40)는 플랫폼(21)의 안쪽부터 바깥쪽까지 그 깊이가 일정한 것일 수 있다. 즉, 상기 시료 이동부(40)의 바닥(411)이 그 전체에 걸쳐서 평평하게 형성될 수 있다.
한편, 도 3b는 상기 도 3a에 도시된 시료 이동부에 대한 변형예를 보이는 단면도이다. 상기 도 3b의 변형예에 따르면, 상기 시료 이동부(40)는 그 깊이가 바깥쪽으로 갈수록 깊어지는 것일 수 있다. 즉, 상기 시료 이동부(40)의 바닥(412)이 상기 플랫폼(21)의 바깥쪽으로 갈수록 낮아지는 경사를 이루도록 형성될 수 있다. 시료를 원심분리할 때, 상대적으로 무거운 입자들은 원심력과 함께 중력의 영향을 받아 대체로 상기 시료 이동부(40)의 바닥(412)을 따라 바깥쪽으로 이동하게 된다. 이때, 도시된 바와 같이 경사진 바닥(412)이 바깥쪽으로 모여드는 입자들과 안쪽으로 이동하는 유체의 상호 간섭을 줄여서 더 짧은 시간 안에 시료의 이동 및 원심분리가 이루어지도록 하는 데에 기여할 수 있다.
도 4는 본 발명에 따른 원심력 기반의 미세유동장치의 다른 실시예를 보이는 평면도이다. 상기 도 1의 실시예에 따른 상기의 미세유동장치(100)와 비교하여, 본 실시예에 따른 미세유동장치(101)는 시료로부터 유체가 분리된 후에 작동되어, 상기 입자 분리부(42)로부터 상기 유체 분리 채널(50)로의 추가적인 유체 유입을 차단할 수 있는 닫힘 밸브(normally open valve)(241)를 더 구비할 수 있다. 상기 닫힘 밸브(241)는 상기 유체 분리 채널(50)의 바깥쪽 부분에, 좀 더 구체적으로는, 상기 입자 분리부(42)와 연결된 상기 유체 분리 채널(50)의 바깥쪽 끝 부분과 상기 다수의 출구 밸브(231, 232) 중 가장 반지름 바깥쪽에 배치된 출구 밸브, 여기서는 제2 출구 밸브(232)의 사이에 배치된다. 상기 닫힘 밸브(241)의 방식 및 형태에는 특별한 제한이 없다. 플랫폼(21) 내에 설치되어 상기한 기능을 수행할 수 있는 밸브이면 족하다.
도 5는 본 발명에 따른 원심력 기반의 미세유동장치의 또 다른 실시예를 보이는 평면도이다. 상기 도 4의 실시예에 따른 상기의 미세유동장치(101)와 비교하여, 본 실시예에 따른 미세유동장치(102)는 각각 하나씩인 시료 이동부(40)와 입자 분리부(42)에 대응하여 두 개의 유체 분리 채널(50, 52)을 갖는다. 플랫폼(21) 내에 공간만 충분하다면 두 개 이상의 유체 분리 채널이 마련될 수도 있음은 물론이다. 상기 도 4의 실시예에 비해 추가된 유체 분리 채널을 제2 유체 분리 채널(52)이라 칭하기로 한다. 상기 제2 유체 분리 채널(52) 역시 안쪽 끝에 배기구(53)를 가지고, 제3 및 제4 출구 밸브(233, 234) 및 제2 닫힘 밸브(242)를 가질 수 있다. 상기 제3 및 제4 출구 밸브(233, 234)는 각각 제3 및 제4 분배 채널(831, 841)을 통해 제3 및 제4 시험 유닛(83, 84)으로 연결된다.
도 6은 본 발명에 따른 원심력 기반의 미세유동장치의 또 다른 실시예를 보이는 평면도이다. 상기 도 5의 실시예에 따른 상기의 미세유동장치(102)와 비교하여, 본 실시예에 따른 미세유동장치(103)는 시료 이동부(44)가 반지름 방향에 대하여 소정의 경사각(θ)만큼 기울어지게 배치되어 있다. 상기와 같이 시료 이동부(44)가 기울어진 구조는 상기 미세유동장치(103) 내에서 시료를 원심분리할 때 상대적으로 밀도가 높은 입자들이 바깥쪽으로 이동하는 경로와 상대적으로 밀도가 낮은 유체가 안쪽으로 이동하는 경로를 분리하여, 입자와 유체의 상호 간섭을 줄임으로써 원심분리 속도를 향상킬 수 있다. 입자들은 주로 상기 시료 이동부(44)의 오른쪽 벽면(도 6 참조)을 타고 상기 입자 분리부(42) 쪽으로 이동하게 된다. 상기 시료 이동부(44)의 경사각(θ)은 원심분리하고자 하는 시료에 포함된 입자의 크기 및 유체의 점도 등에 따라 달리 정해질 수 있다.
도 7은 본 발명에 따른 원심력 기반의 미세유동장치의 또 다른 실시예를 보이는 평면도이다. 상기 도 6의 실시예에 따른 상기의 미세유동장치(103)와 비교하여, 본 실시예에 따른 미세유동장치(104)는 상기 시료 이동부(45) 내에 적어도 하나의 격벽을 구비하여, 상기 시료 이동부(45)가 다수의 서브 채널들(451, 452, 453)로 나뉘어져 있다. 상기 도 6의 실시예에서와 마찬가지로 입자들은 각 서브 채널들(451, 452, 453)의 오른쪽 벽면을 타고 상기 입자 분리부(42) 쪽으로 이동하게 된다. 입자의 크기가 상기 서브 채널들(451, 452, 453)의 폭에 비해 충분히 작다면 다수의 서브 채널들로 인해 입자와 유체의 분리가 도 6과 같이 시료 이동부(44)가 하나의 채널로 이루어진 경우보다 더 효과적으로 이루어질 수 있다.
도 8은 상기 도 1 및 도 4 내지 도 7의 미세유동장치에 채용될 수 있는 상전이형 열림 밸브를 도시한 평면도이고, 도 9는 상기 도 8의 상전이형 열림 밸브의 Ⅸ-Ⅸ' 단면을 보이는 단면도이다. 상기 제1 출구 밸브(231) 및 제2 내지 제4 출구 밸브(232~234)로서 채용될 수 있는 상전이형 열림 밸브를 예로 들어 설명한다.
상전이형 열림 밸브(231)는 상온에서 고체 상태인 밸브 물질로 만들어진 밸브 플러그(223)를 포함한다. 상기 밸브 물질로는 상온에서 고체 상태인 상전이 물 질에 발열 입자가 분산되어 있는 재료를 사용할 수 있다. 상기 고체 상태의 상기 밸브 플러그(223)가 배치된 초기 위치에 인접한 상기 채널(221L, 221R)의 상류 및 하류에는 그 폭 또는 깊이가 확장되어 여유 공간을 제공하는 한 쌍의 드레인 챔버(222L, 222R)가 배치된다. 다만, 상기 도 8에 도시된 형태는 열림 밸브(231)가 채널 중간에 배치된 일반적인 형태를 나타낸 것이고, 상기 도 1 및 도 4 내지 도 7에서와 같이, 챔버 구조물 또는 다른 채널 구조물의 측면에 출구 밸브로 적용되는 때는 상기 한 쌍의 드레인 챔버(222L, 222R) 중 어느 하나, 예를 들면 상기 도 8에서 왼쪽의 드레인 챔버(222L)는 상기 챔버 구조물 또는 다른 채널 구조물의 일부분으로, 예를 들면 상기 유체 분리 채널(50)의 일부분으로 대체될 수 있다.
상기 밸브 플러그(223)는 상온에서 개구부(223A)를 중심으로 채널(221L, 221R)의 소정 부분을 빈틈없이 막아 입구(I) 측으로부터 유입되는 유체(F)의 흐름을 차단한다. 상기 밸브 플러그(223)는 고온에서 용융되어 상기 채널(221L, 221R)의 상, 하류 측에 인접하게 배치된 상기 드레인 챔버(222L, 222R)로 이동하여, 유체(F)의 유로를 개방한 채로 다시 응고된다. 상기 개구부(223A)는 미세유동장치 제작시에 용융된 밸브 물질을 투입하여 밸브 플러그를 형성할 수 있는 주입구 역할도 수행한다.
상기 밸브 플러그(223)에 열을 가하기 위해서 상기 미세유동장치 외부에는 외부에너지원(도 16의 130L 및 도 17의 130P 참고)이 배치되고, 상기 외부에너지원(130L)이 상기 밸브 플러그(223)의 초기 위치 즉, 상기 개구부(223A)와 그 주변을 포함하는 영역에 전자기파를 조사한다. 이때, 상기 외부에너지원(130L)은 예를 들면, 레이저 빔을 조사하는 레이저 광원일 수 있고, 그 경우 적어도 하나의 레이저 다이오드(laser diode)를 포함할 수 있다. 상기 레이저 광원은 펄스 레이저를 조사하는 경우 1 mJ/pulse 이상의 에너지를 갖는 펄스 레이저를, 연속파동 레이저를 조사하는 경우 10 mW 이상의 출력을 갖는 연속파동 레이저를 조사할 수 있다.
아래에서 도 12 내지 도 15을 참조하여 설명한 실험에서는 808 ㎚ 파장의 레이저를 조사하는 레이저 광원을 사용하였으나, 반드시 이 파장의 레이저 빔을 조사하는 것에 한정되는 것은 아니며, 400 내지 1300 ㎚의 파장을 갖는 레이저를 조사하는 레이저 광원이면, 상기 미세유동시스템의 외부에너지원(130L)으로 채용될 수 있다.
전술한 채널(222L, 222R)은 디스크형 플랫폼(21)을 이루는 상판(212) 또는 하판(211) 내면에 형성된 입체 패턴에 의해 제공될 수 있다. 상기 상판(212)은 외부에너지원에서 조사된 전자기파가 상기 밸브 플러그(223)에 입사할 수 있도록 투과시키고, 외부에서 유체(F)의 흐름을 관측할 수 있도록 할 수 있는, 광학적으로 투명한 재료로 만들어진 것이 바람직하다. 그 예로서, 유리 또는 투명 플라스틱 소재는 광학적 투명성이 우수하고, 제조 비용이 저렴하다는 면에서 유리하다.
상기 밸브 플러그(223)에 분산된 발열 입자는 대략 수천 마이크로미터(㎛) 정도의 폭을 갖는 채널(221L, 222R) 내에서 자유롭게 유동 가능하도록 1 nm 내지 100 ㎛ 의 직경을 갖는 것일 수 있다. 상기 발열 입자는 레이저가 조사되면 그 복사 에너지에 의해 온도가 급격히 상승하여 발열하는 성질을 가지며, 왁스에 고르게 분산되는 성질을 갖는다. 이러한 성질을 갖도록 상기 발열 입자는 금속 성분을 포 함하는 코어(core)와, 소수성(疏水性)을 띤 쉘(shell)을 포함하는 구조를 가질 수 있다. 예컨대, 상기 발열 입자는 강자성 물질인 Fe로 이루어진 코어와, 상기 Fe에 결합되어 Fe를 감싸는 복수의 계면활성성분(surfactant)으로 이루어진 쉘을 구비한 구조를 가질 수 있다. 통상적으로, 상기 발열 입자들은 캐리어 오일(carrrier oil)에 분산된 상태로 보관된다. 소수성 표면구조를 갖는 상기 발열 입자가 고르게 분산될 수 있도록 캐리어 오일도 소수성인 것이 바람직하다. 왁스에 상기 발열 입자들이 분산된 캐리어 오일을 부어 혼합함으로써 상기 밸브 플러그(83)의 소재를 제조할 수 있다. 상기 발열 입자의 입자 형태는 상기 예로써 든 형태에 한정되는 것은 아니며, 중합체 비드, 퀀텀 닷(quantum dots), 금 나노입자(Au nanoparticles), 은 나노입자(Ag nanoparticles), 금속화합물 비드(beads with metal composition), 탄소입자(carbon particles) 또는 자성비드(magnetic bead)일 수도 있다. 상기 탄소입자에는 흑연(graphite)입자도 포함된다.
상기 밸브 플러그(223)를 이루는 상전이 물질은 왁스(wax)일 수 있다. 상기 발열 입자들이 흡수한 전자기파의 에너지를 열에너지의 형태로 주위에 전달하면 왁스는 이로 인해 용융되어 유동성을 가지게 되며, 이로써 플러그(223)가 붕괴되고 유체(F)의 유로가 개방된다. 상기 플러그(223)를 구성하는 왁스는 적당한 녹는점을 가지는 것이 바람직하다. 녹는점이 너무 높으면 레이저 조사를 시작한 후 용융될 때까지 시간이 오래 소요되어 개방 시점의 정밀한 제어가 어려워지고, 반대로 녹는점이 너무 낮으면 레이저가 조사되지 않은 상태에서 부분적으로 용융되어 유체(F)이 누출될 수도 있기 때문이다. 상기 왁스로는, 예컨대 파라핀 왁스(paraffin wax), 마이크로크리스탈린 왁스(microcrystalline wax), 합성 왁스(synthetic wax), 또는 천연 왁스(natural wax) 등이 채용될 수 있다.
한편, 상기 상전이 물질은 겔(gel) 또는 열가소성 수지일 수도 있다. 상기 겔로는, 폴리아크릴아미드(polyacrylamide), 폴리아크릴레이트(polyacrylates), 폴리메타크릴레이트(polymethacrylates), 또는 폴리비닐아미드(polyvinylamides) 등이 채용될 수 있다. 또한, 상기 열가소성 수지로는, COC, PMMA, PC, PS, POM, PFA, PVC, PP, PET, PEEK, PA, PSU, 또는 PVDF 등이 채용될 수 있다.
도 10은 상기 도 4 내지 도 7의 미세유동장치에 채용될 수 있는 상전이형 닫힘 밸브를 도시한 평면도이고, 도 11은 상기 도 10의 상전이형 닫힘 밸브의 작동 모습을 보이는 단면도이다.
전술한 바와 같이, 상기 도 4 내지 도 7의 실시예에서 상기 닫힘 밸브(241, 242)로는 다양한 밸브가 채용될 수 있다. 여기서는 채용될 수 있는 닫힘 밸브의 일 예로서 상전이형 닫힘 밸브(241)에 대하여 설명한다. 상전이형 닫힘 밸브(241)는 입구(I)와 출구(O)를 가지는 채널(여기서는 상기 도 4의 유체 분리 채널(50))과 상기 채널(50)의 일 부분에 연결된 밸브 챔버(225), 그리고 상온인 초기에는 고체 상태로서 상기 밸브 챔버(225) 내에 충전되어 있다가 가열되면 용융 및 팽창되면서 상기 채널(50)로 유입되고 다시 응고되면서 상기 채널(50)을 통한 유체의 흐름을 차단하는 밸브 물질(V)을 포함한다.
상기 상전이형 닫힘 밸브(241) 역시 전술한 상전이형 열림 밸브(231)와 마찬가지로, 미세유동장치(101~104))의 플랫폼(21)를 이루는 상판(212) 또는 하판(211) 내면에 형성된 입체 패턴에 의해 제공될 수 있다. 다만, 상기 밸브 챔버(225)는 상기 채널(50)의 깊이보다는 깊고, 상기 상전이형 열림 밸브(231)의 드레인 챔버(222L, 222R)보다 얕은 깊이, 예컨대 1mm 정도의 깊이를 갖도록 형성될 수 있다. 상기 상판(212)은 외부에너지원(미도시)에서 조사된 전자기파를 투과시킬 수 있고, 외부에서 유체 샘플(L)을 관측할 수 있도록 할 수 있는, 광학적으로 투명한 재료로 만들어진 것이 바람직하다. 아울러, 상기 상판(212)은 상기 전자기파(예를 들면, 레이저 빔)가 상기 밸브 플러그에 더 잘 입사할 수 있도록 생기 밸브 챔버(225)에 대응되는 개구부(225A)를 가질 수도 있다. 상기 개구부(225A)는 미세유동장치(101~104)의 제작시 용융된 밸브 물질(V)을 투입하는 주입구 역할도 수행할 수 있다.
상기 밸브 물질(V)을 이루는 상전이 물질(P)과 발열 입자(M)에 관한 사항은 앞서 열림 밸브(231)의 예를 통해 설명한 바와 같다. 또한, 상기 밸브 물질(V)에 전자기파를 제공하는 외부에너지원(도 16 및 도 17의 130P, 130L 참고)에 관한 사항도 앞서 설명한 바와 같다. 상전이 물질(P)과 발열 입자(M)를 포함하는 밸브 물질(V)에 레이저 빔이 조사되면 상기 발열 입자(M)가 에너지를 흡수하여 상기 상전이 물질(P)을 가열시킨다. 이로 인해 상기 밸브 물질(V)은 용융되면서 부피가 팽창하고, 연결된 통로(226)를 통해 상기 채널(50)로 유입된다. 상기 채널(50) 내에서 유체(F)와 접촉하면서 다시 응고된 밸브 물질(V)은 밸브 플러그를 이루며 상기 채널(50)을 통한 유체 샘플(F)의 흐름을 차단한다.
전술한 밸브 유닛의 반응 시간을 측정한 실험의 결과는 다음과 같다. 실험을 위한 테스트 칩에서 작동 유체의 압력은 46kPa로 유지하였다. 압력 유지를 위해 시린지 펌프(Havard PHD2000, USA)와 압력 센서(MPX 5500DP, Freescale semiconductor Inc., AZ, USA)를 사용하였다. 상기 밸브 유닛에 전자기파를 조사하는 외부에너지원으로는 방출파장이 808nm이고, 출력이 1.5W인 레이저 광원을 사용하였다. 밸브 유닛의 반응 시간에 관한 데이터는 고속촬영 장치(Fastcam-1024, Photron, CA, USA)의 결과물 분석을 통해 얻었다. 상기 밸브 물질로는 발열입자인 평균 직경 10nm의 자성비드가 캐리어 오일에 분산된 이른바 자성유체(ferrofluid)와 파라핀 왁스가 1 대 1의 비율로 혼합된, 즉 자성유체의 부피비가 50%인 이른바 자성 왁스를 사용하였다.
도 12는 상기 도 8의 상전이형 열림 밸브의 작동 모습을 보이는 일련의 고속촬영 사진들이다. 상기 상전이형 열림 밸브의 밸브 플러그에 레이저 빔을 조사하기 시작한 때로부터 상기 밸브 플러그가 용융되어 채널이 열릴 때까지의 반응 시간은 0.012초였다.
도 13은 상기 도 10의 상전이형 닫힘 밸브의 작동 모습을 보이는 일련의 고속촬영 사진들이다. 상기 상전이형 닫힘 밸브의 밸브 물질에 레이저 빔을 조사하기 시작한 때로부터 상기 밸브 물질이 용융 및 팽창되어 채널을 닫을 때까지의 반응 시간은 0.444초였다. 종래의 왁스 밸브의 반응 시간이 2 내지 10초였던 점에 비교하면 월등히 빠른 반응임을 알 수 있다.
도 14는 상기 상전이형 열림 및 닫힘 밸브에 사용된 밸브 물질에서 자성유체(발열입자 분산용액)의 부피 비와 밸브 반응 시간의 관계를 보이는 그래프이다. 상기 상전이형 열림 밸브 및 상전이형 닫힘 밸브에는 발열 입자로서 이른바 자성비드가 사용될 수 있다. 자성 비드(magnetic beads)는 통상적으로 유성 매질에 분산된 현탁액의 형태로 제공된다. 이러한 현탁액을 흔히 자성유체(magnetic fluid)라 부른다. 파라핀 왁스 등의 상전이 물질과 상기 자성유체를 혼합하여 전술한 밸브 물질을 만들 수 있는데, 대체로 자성유체의 부피비(volume fraction)가 커지면서 반응 시간이 짧아지는 추이를 보인다. 그러나, 이와 별개로 자성유체의 부피비가 70% 이상으로 커지면 밸브 플러그의 최대 허용압력(maximum hold-up pressure)이 낮아지는 경향이 있다. 따라서, 상기 밸브 유닛에서 밸브 플러그에 포함될 자성유체의 부피비는 반응 시간에 대한 요구와 최대 허용압력에 대한 요구의 절충에 의해 정해질 수 있다.
도 15는 상기 상전이형 열림 및 닫힘 밸브의 구동 시에 외부에너지원으로 사용되는 레이저 광원의 파워와 밸브 반응시간의 관계를 보이는 그래프이다. 출력이 높아질수록 반응 시간이 짧아지는 추이를 보인다. 그런데, 레이저 광원의 출력이 1.5W에 근접하면 반응 시간의 변화가 완만해지고, (그래프에 표시되지는 않았으나) 1.5W를 넘어서면 소정의 최소 반응으로 수렴한다. 파라핀 왁스를 통한 열 전도율의 제약이 따르기 때문이다. 상기 실험에서는 이와 같은 이유로 출력이 1.5W인 레이저 광원을 사용하였다. 그러나, 본 발명의 외부에너지원이 여기에 한정되는 것은 아니다.
도 16은 본 발명에 따른 원심력 기반의 미세유동시스템의 실시예를 보이는 사시도이다. 본 발명의 일 실시예에 따른 미세유동시스템은 전술한 본 발명의 미세 유동장치(100~104)를 포함한다. 여기서는 상기 도 1의 미세유동장치(100)를 포함하는 시스템을 예로 들어 설명한다. 본 실시예에 따른 미세유동시스템은 전술한 개별 구동 방식의 출구 밸브(231, 232 등)에 소정의 전자기파를 조사하여 에너지를 공급하는 외부에너지원(130L)을 포함한다. 상기 외부에너지원(130L)은 마이크로웨이브, 적외선, 가시광선, 자외선 및 X-선 등 다양한 파장의 전자기파 중에서 선택된 소정 파장대의 전자기파를 조사할 수 있는 장치일 수 있다. 또한, 이러한 전자기파를 근거리의 표적에 집중적으로 조사할 수 있는 장치이면 더 바람직하다. 상기 외부에너지원(130L)의 파장은 상기 밸브 물질에 포함된 발열 입자에 의해 흡수가 잘 되는 범위인 것이 바람직하다. 따라서, 상기 외부에너지원(130L)에서 전자기파를 발생시키는 소자는 발열 입자(M)의 소재 및 표면 조건에 따라 적절히 선택될 수 있다. 상기 외부에너지원(130L)은 예를 들면, 레이저 빔을 조사하는 레이저 광원일 수 있고, 그 경우 적어도 하나의 레이저 다이오드(laser diode)를 포함할 수 있다. 레이저 빔의 파장과 출력 등 세부적인 사항은 주 사용 대상인 미세유동장치(100)의 상전이형 밸브에 포함된 발열 입자의 종류에 따라서 정해질 수 있다.
상기 미세유동시스템은 상기 외부에너지원(130L)의 위치 또는 방향을 조정하여, 이로부터 조사된 전자기파가 상기 미세유동장치(100) 중의 원하는 영역에, 구체적으로는 상기 미세유동장치(100)에 포함된 적어도 하나의 출구 밸브(231,232) 중 선택된 어느 하나에 해당하는 영역에 집중적으로 도달할 수 있도록 하는 외부에너지원 조정수단(미도시)를 포함한다. 상기 도 12의 미세유동시스템에서 외부에너지원 조정수단(미도시)은 미세유동장치(100)의 플랫폼(21)을 향해 설치된 상기 외 부에너지원(130L)을 그 위에 표시된 화살표 방향, 즉 플랫폼(21)의 반지름 방향으로 움직일 수 있다. 상기 외부에너지원(130L)을 직선 이동시키는 메커니즘은 다양하게 제공될 수 있으며, 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이므로 본 명세서에서는 그에 대한 설명을 생략한다.
한편, 상기 미세유동시스템은 상기 플랫폼(21)을 구동하는 회전 구동부(140)를 포함한다. 도면에 도시된 회전 구동부(140)는 상기 플랫폼(21)을 안착시키고, 회전력을 전달하기 위한 일 부분이고, 도면에 도시되지는 않았지만, 상기 플랫폼(21)을 원하는 속도로 또는 원하는 각도만큼 회전시킬 수 있는 모터 및 그와 관련된 부품들을 포함할 수 있다. 상기 외부에너지원 조정수단(미도시)과 마찬가지로 상기 회전 구동부(140)에 대한 구체적인 구성의 예는 본 명세서에서 생략하기로 한다. 상기 도 12의 미세유동시스템에서 상기 외부에너지원(130L)은 상기 외부에너지원 조정수단(미도시)과 상기 회전 구동부(140)의 도움으로 전자기파를 상기 미세유동장치(100) 중의 선택된 영역에 집중적으로 조사할 수 있다.
한편, 본 발명에 따른 미세유동시스템은 상기 미세유동장치(100)를 이용한 원심분리의 결과 및 상기 미세유동장치(100)에 포함 가능한 다른 기능성 유닛들을 이용한 다양한 실험의 결과를 광학적으로 관측할 수 있는 광검출부(150)를 더 구비할 수 있다. 예를 들어, 상기 광검출부(150)는 분리 및 정량 분배된 혈청이 제1 시험 유닛(도 1 참조)(81)으로 이송되었을 때, 상기 혈청과 상기 제1 시험 유닛(81) 내에 미리 주입되어 있던 시약(예를 들면, 혈청 내에 특정 항체 또는 항원이 존재하는지 여부를 형광 발현을 통해 알려주는 시약)과의 반응을 광학적으로 검출할 수 있도록 하는 것일 수 있다.
도 17은 본 발명에 따른 원심력 기반의 미세유동시스템의 다른 실시예를 보이는 사시도이다. 본 실시예에 따른 미세유동시스템에서, 미세유동장치(100)와 회전 구동부(140) 및 외부에너지원(130P) 자체에 관한 사항은 앞서 설명한 도 16의 실시예와 같다. 다만, 본 실시예에 따른 미세유동시스템의 경우, 외부에너지원 조정수단(미도시)은 플랫폼(21)을 향해 설치된 상기 외부에너지원(130P)을 상기 플랫폼(21)과 평행한 평면상에서 서로 직교하는 두 방향(예를 들면, 도면상의 x축과 y축 방향, 화살표 참조)으로 이동시켜 상기 플랫폼(21) 상의 목표 지점에 전자기파가 도달하도록 하는 평면 이동수단을 포함할 수 있다.
또한, 도면에 도시되지는 않았으나, 외부에너지 조정수단은 상기 플랫폼(21) 위쪽의 어느 한 지점에 그 위치가 고정된 외부에너지원의 방향을 변화시켜 방출된 전자기파가 목표 지점에 도달하도록 구성될 수도 있다.
이상에서 본 발명에 따른 바람직한 실시예가 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 보호범위는 첨부된 특허청구범위에 의해서 정해져야 할 것이다.
본 발명에 따른 원심력 기반의 미세유동장치 및 이를 포함하는 미세유동시스템은 디스크 형상의 플랫폼 내에서 유체와 입자를 포함하는 시료로부터 원심력을 이용하여 유체와 입자를 빠르게 분리하고, 미터링을 위한 별도의 이송 동작 필요 없이 분리된 유체를 정량적으로 분배할 수 있다.

Claims (25)

  1. 회전 가능한 플랫폼;
    상기 플랫폼 일측에 배치된 시료 주입구;
    일 단이 상기 시료 주입구와 연결되고, 상기 플랫폼의 바깥쪽으로 연장된 시료 이동부;
    상기 시료 이동부의 바깥쪽 끝 부분에 연결되게 배치되고, 상기 플랫폼의 회전에 의해 상기 시료 이동부로부터 상대적으로 밀도가 높은 입자들이 모이도록 확장된 공간을 제공하는 입자 분리부;
    상기 입자 분리부와 연결되고, 안쪽 끝이 상기 입자 분리부보다 상기 플랫폼의 회전 중심에서 가깝게 배치된 배기구와 연결되게 배치되어 상기 플랫폼의 회전에 의해 시료 중의 유체가 유입되는 유체 분리 채널; 및
    상기 유체 분리 채널과 연결되고, 각각 개별적으로 구동되며, 상기 유체 분리 채널 내의 분리된 유체 중 미리 정해진 부피의 유체를 상기 플랫폼의 회전에 의해 배출하도록 배치된 적어도 하나의 출구 밸브를 포함하는 원심력 기반의 미세유동장치.
  2. 제1항에 있어서,
    상기 유체 분리 채널은 그 바깥쪽 끝이 상기 입자 분리부와 연결되고, 그 깊이가 상기 입자 분리부보다 얕아서 상기 입자 분리부와의 경계에 단차가 존재하는 것을 특징으로 하는 원심력 기반의 미세유동장치.
  3. 제1항에 있어서,
    상기 입자 분리부는 상기 시료 이동부보다 깊이가 깊고, 상기 시료 이동부와의 경계에 단차가 존재하도록 형성된 것을 특징으로 하는 원심력 기반의 미세유동장치.
  4. 제3항에 있어서,
    상기 유체 분리 채널은 상기 시료 이동부보다 깊이가 얕은 것을 특징으로 하는 원심력 기반의 미세유동장치.
  5. 제1항에 있어서,
    상기 시료 이동부는 상기 플랫폼의 바깥쪽으로 갈수록 점차 그 깊이가 깊어지는 것을 특징으로 하는 원심력 기반의 미세유동장치.
  6. 제1항에 있어서,
    상기 시료 이동부의 반지름 방향 안쪽 끝 부분에 연결되게 배치되고, 상기 시료 주입구와 연결되어 상기 시료 주입구를 통해 주입되는 시료를 수용하는 시료 저장부를 더 포함하는 것을 특징으로 하는 원심력 기반의 미세유동장치.
  7. 제1항에 있어서,
    상기 적어도 하나의 출구 밸브는, 상기 유체 분리 채널의 출구를 닫게 배치된 밸브 플러그와, 상기 밸브 플러그의 초기 위치에 인접하게 마련된 적어도 하나의 드레인 챔버를 포함하고, 상기 밸브 플러그가 열에 의해 용융되면 상기 드레인 챔버로 이동하여 상기 출구를 여는 상전이형 열림 밸브(normally closed)인 것을 특징으로 하는 원심력 기반의 미세유동장치.
  8. 제7항에 있어서,
    상기 밸브 플러그는 상온에서 고체 상을 띠는 상전이 물질에 발열 입자가 분산된 밸브 물질을 포함하고, 상기 밸브 물질이 외부에너지원으로부터 조사된 전자기파로 인한 열에 의해 용융되는 것을 특징으로 하는 원심력 기반의 미세유동장치.
  9. 제8항에 있어서,
    상기 상전이 물질은 왁스, 겔, 열가소성 수지로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 원심력 기반의 미세유동장치.
  10. 제8항에 있어서,
    상기 발열 입자는 직경이 1 nm 내지 100 ㎛ 인 것을 특징으로 하는 원심력 기반의 미세유동장치.
  11. 제8항에 있어서,
    상기 발열 입자는 외부로부터 전자기파를 흡수하여 열에너지로 변환하는 코어(core)와 상기 코어를 둘러싸는 쉘(shell)로 이루어진 것을 특징으로 하는 원심력 기반의 미세유동장치.
  12. 제8항에 있어서,
    상기 발열 입자는 중합체 비드, 퀀텀 닷(quantum dot), 금 나노입자, 은 나노입자, 금속화합물 비드, 탄소입자 및 자성비드로 이루어진 군에서 선택된 적어도 어느 하나인 것을 특징으로 하는 원심력 기반의 미세유동장치.
  13. 제1항에 있어서,
    상기 미세유동장치는 상기 적어도 하나의 출구 밸브 중 상기 플랫폼의 가장 바깥쪽에 배치된 출구 밸브와 상기 입자 분리부 사이의 유체 분리 채널을 차단할 수 있는 닫힘 밸브(normally open valve)를 더 포함하는 것을 특징으로 하는 원심력 기반의 미세유동장치.
  14. 제13항에 있어서,
    상기 닫힘 밸브는, 상기 유체 분리 채널과 연결된 밸브 챔버 및 초기 상태에 상기 밸브 챔버 내에 충전된 밸브 물질을 포함하고, 상기 밸브 물질이 열에 의해 용융 및 팽창되면서 상기 유체 분리 채널로 유입된 후 응고되어 상기 유체 분리 채 널을 닫는, 상전이형 닫힘 밸브인 것을 특징으로 하는 원심력 기반의 미세유동장치.
  15. 제14항에 있어서,
    상기 밸브 물질은 상온에서 고체 상을 띠는 상전이 물질과 상기 상전이 물질에 분산된 발열 입자를 포함하고, 상기 발열입자는 외부에너지원으로부터 가해진 전자기파의 에너지를 흡수하여 열 에너지를 방출하는 것을 특징으로 하는 원심력 기반의 미세유동장치.
  16. 제15항에 있어서,
    상기 상전이 물질은 왁스, 겔, 열가소성 수지로 이루어진 군으로부터 선택된 적어도 어느 하나인 것을 특징으로 하는 원심력 기반의 미세유동장치.
  17. 제15항에 있어서,
    상기 발열 입자는 직경이 1 nm 내지 100 ㎛ 인 것을 특징으로 하는 원심력 기반의 미세유동장치.
  18. 제15항에 있어서,
    상기 발열 입자는 외부로부터 전자기파를 흡수하여 열에너지로 변환하는 코어(core)와 상기 코어를 둘러싸는 쉘(shell)로 이루어진 것을 특징으로 하는 원심 력 기반의 미세유동장치.
  19. 제15항에 있어서,
    상기 발열 입자는 중합체 비드, 퀀텀 닷(quantum dot), 금 나노입자, 은 나노입자, 금속화합물 비드, 탄소입자 및 자성비드로 이루어진 군에서 선택된 적어도 어느 하나인 것을 특징으로 하는 원심력 기반의 미세유동장치.
  20. 제1항에 있어서,
    상기 시료 이동부는 그 안쪽 부분과 바깥쪽 부분을 잇는 축이 반지름 방향에 대하여 미리 정해진 기울기를 갖도록 배치된 것을 특징으로 하는 원심력 기반의 미세유동장치.
  21. 제20항에 있어서,
    상기 시료 이동부는 그 내부가 길이 방향으로 배치된 적어도 하나의 격벽으로 나뉘어 다수의 유로를 제공하는 것을 특징으로 하는 원심력 기반의 미세유동장치.
  22. 제1항 내지 제21항 중 어느 한 항에 따른 원심력 기반의 미세유동장치;
    상기 미세유동장치를 지지하고 제어 가능하게 회전시키는 회전 구동부;
    상기 미세유동장치 내에서 선택된 밸브를 개별적으로 구동하는 밸브 구동 유 닛을 포함하는 원심력 기반의 미세유동시스템.
  23. 제22항에 있어서,
    상기 밸브 구동 유닛은,
    상기 밸브 내의 발열 입자의 발열을 유도할 수 있는 전자기파를 방출하는 외부에너지원; 및
    상기 외부에너지원으로부터 조사된 전자기파가 상기 선택된 밸브에 대응되는 영역에 집중적으로 도달하도록 상기 외부에너지원의 위치 또는 방향을 조정하는 외부에너지원 조정수단을 포함하는 것을 특징으로 하는 원심력 기반의 미세유동시스템.
  24. 제23항에 있어서,
    상기 외부에너지원 조정수단은 상기 미세유동장치의 플랫폼을 향해 설치된 상기 외부에너지원을 상기 회전체의 반지름 방향으로 이동시키는 직선 이동수단을 포함하는 것을 특징으로 하는 원심력 기반의 미세유동시스템.
  25. 제23항에 있어서,
    상기 외부에너지원 조정수단은 상기 미세유동장치의 플랫폼을 향해 설치된 상기 외부에너지원을 상기 플랫폼과 평행한 평면상에서 직교좌표에 따라 두 방향으로 이동시키는 평면 이동수단을 포함하는 것을 특징으로 하는 원심력 기반의 미세 유동시스템.
KR1020070032500A 2007-04-02 2007-04-02 원심력 기반의 미세유동장치 및 이를 포함하는미세유동시스템 KR100846516B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020070032500A KR100846516B1 (ko) 2007-04-02 2007-04-02 원심력 기반의 미세유동장치 및 이를 포함하는미세유동시스템
US12/056,345 US8191715B2 (en) 2007-04-02 2008-03-27 Centrifugal force-based microfluidic device and microfluidic system including the same
EP08153832.4A EP1980322B1 (en) 2007-04-02 2008-03-31 Centrifugal force-based microfluidic device and microfluidic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070032500A KR100846516B1 (ko) 2007-04-02 2007-04-02 원심력 기반의 미세유동장치 및 이를 포함하는미세유동시스템

Publications (1)

Publication Number Publication Date
KR100846516B1 true KR100846516B1 (ko) 2008-07-17

Family

ID=39824629

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070032500A KR100846516B1 (ko) 2007-04-02 2007-04-02 원심력 기반의 미세유동장치 및 이를 포함하는미세유동시스템

Country Status (1)

Country Link
KR (1) KR100846516B1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100997144B1 (ko) 2008-09-23 2010-11-30 삼성전자주식회사 미세유동장치
KR101120136B1 (ko) * 2010-03-10 2012-03-22 주식회사 넥스비보 원심력을 이용한 미소입자 처리 장치
WO2019098561A1 (ko) * 2017-11-20 2019-05-23 주식회사 엘지화학 회전식 디스크 시스템을 활용한 중금속 정성 및 정량 분석 디바이스 및 분석 방법
WO2022119075A1 (ko) * 2020-12-01 2022-06-09 재단법인대구경북과학기술원 세포, 미세입자 동시 분리 장치 및 그 방법
CN114618600A (zh) * 2022-02-25 2022-06-14 南昌大学 微流控离心盘
US11635445B2 (en) 2017-11-20 2023-04-25 Lg Chem, Ltd. Device and method for qualitative and quantitative analysis of heavy metals utilizing rotary disc system
KR102543483B1 (ko) * 2023-03-20 2023-06-19 주식회사 디앤샤인 이미징 기반의 유해남세균 측정을 위한 침지형 센서장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048734A (en) 1995-09-15 2000-04-11 The Regents Of The University Of Michigan Thermal microvalves in a fluid flow method
KR20040003004A (ko) * 2001-05-25 2004-01-07 가부시키가이샤 히타치세이사쿠쇼 핵산 정제 장치 및 핵산 정제 방법
KR20060034390A (ko) * 2004-10-19 2006-04-24 한국과학기술연구원 미소 유체 공급유로 설계방법 및 이를 이용한 생체물질 측정 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048734A (en) 1995-09-15 2000-04-11 The Regents Of The University Of Michigan Thermal microvalves in a fluid flow method
KR20040003004A (ko) * 2001-05-25 2004-01-07 가부시키가이샤 히타치세이사쿠쇼 핵산 정제 장치 및 핵산 정제 방법
KR20060034390A (ko) * 2004-10-19 2006-04-24 한국과학기술연구원 미소 유체 공급유로 설계방법 및 이를 이용한 생체물질 측정 장치

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100997144B1 (ko) 2008-09-23 2010-11-30 삼성전자주식회사 미세유동장치
KR101120136B1 (ko) * 2010-03-10 2012-03-22 주식회사 넥스비보 원심력을 이용한 미소입자 처리 장치
WO2019098561A1 (ko) * 2017-11-20 2019-05-23 주식회사 엘지화학 회전식 디스크 시스템을 활용한 중금속 정성 및 정량 분석 디바이스 및 분석 방법
US11635445B2 (en) 2017-11-20 2023-04-25 Lg Chem, Ltd. Device and method for qualitative and quantitative analysis of heavy metals utilizing rotary disc system
US11828768B2 (en) 2017-11-20 2023-11-28 Lg Chem, Ltd. Device and method for qualitative and quantitative analysis of heavy metals utilizing rotary disc system
US11835535B2 (en) 2017-11-20 2023-12-05 Lg Chem, Ltd. Device and method for qualitative and quantitative analysis of heavy metals utilizing rotary disc system
US11835536B2 (en) 2017-11-20 2023-12-05 Lg Chem, Ltd. Device and method for qualitative and quantitative analysis of heavy metals utilizing rotary disc system
WO2022119075A1 (ko) * 2020-12-01 2022-06-09 재단법인대구경북과학기술원 세포, 미세입자 동시 분리 장치 및 그 방법
CN114618600A (zh) * 2022-02-25 2022-06-14 南昌大学 微流控离心盘
KR102543483B1 (ko) * 2023-03-20 2023-06-19 주식회사 디앤샤인 이미징 기반의 유해남세균 측정을 위한 침지형 센서장치

Similar Documents

Publication Publication Date Title
KR100858091B1 (ko) 시료 분배 구조를 갖는 원심력 기반의 미세유동장치 및이를 포함하는 미세유동시스템
EP1980322B1 (en) Centrifugal force-based microfluidic device and microfluidic system
KR101228308B1 (ko) 미세유동 칩을 이용한 디스크형 미세유동장치 및 생체물질마이크로어레이 칩을 이용한 디스크형 미세유동장치
KR101305976B1 (ko) 연속희석을 위한 원심력 기반의 미세유동장치 및 이를포함하는 미세유동시스템
KR100883658B1 (ko) 원심력 기반의 미세유동장치 및 이를 포함하는미세유동시스템
KR100846516B1 (ko) 원심력 기반의 미세유동장치 및 이를 포함하는미세유동시스템
KR101130698B1 (ko) 밸브 유닛과 이를 구비한 미세유동장치 및 밸브 유닛의 구동방법
KR101335727B1 (ko) 원심력 기반의 혈액 검사용 디스크형 미세유동장치
KR101335726B1 (ko) 면역혈청 검사 및 생화학 검사를 동시에 수행하는 디스크형미세유동장치
KR101343034B1 (ko) 원심력 기반의 단백질 검출용 미세유동 장치 및 이를포함하는 미세유동 시스템
KR20080022029A (ko) 열 활성 유닛을 구비한 원심력 기반의 미세유동 장치, 이를포함하는 미세유동 시스템 및 상기 미세유동 시스템의구동방법
US8834812B2 (en) Microfluidic device
KR20080097763A (ko) 미세유동 시스템 및,이의 제조방법
EP2486979A2 (en) Microfluidic device
KR20080022025A (ko) 원심력 기반의 핵산 추출용 미세유동 장치 및 상기미세유동 장치를 포함한 미세유동 시스템
KR20150027939A (ko) 미세유동장치
KR20080071786A (ko) 세포배양 및 세포기반 시험을 위한 원심력 기반의미세유동장치 및 이를 포함하는 미세유동시스템
KR20120023411A (ko) 미세유동장치 및 이를 이용한 시료검사장치
KR101391736B1 (ko) 미세유동 밸브, 상기 미세유동 밸브의 제조 방법 및 상기미세유동 밸브를 포함하는 미세유동 장치
KR102424845B1 (ko) 미세 유동 장치

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130627

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140627

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150629

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170629

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190627

Year of fee payment: 12