WO2022119005A1 - 상하형 분리식 유압 경동주조장치 및 경동주조방법 - Google Patents

상하형 분리식 유압 경동주조장치 및 경동주조방법 Download PDF

Info

Publication number
WO2022119005A1
WO2022119005A1 PCT/KR2020/017496 KR2020017496W WO2022119005A1 WO 2022119005 A1 WO2022119005 A1 WO 2022119005A1 KR 2020017496 W KR2020017496 W KR 2020017496W WO 2022119005 A1 WO2022119005 A1 WO 2022119005A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
casting
molten metal
pressurized
piston
Prior art date
Application number
PCT/KR2020/017496
Other languages
English (en)
French (fr)
Inventor
이정석
박영진
박성기
서해수
Original Assignee
유진금속공업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유진금속공업(주) filed Critical 유진금속공업(주)
Priority to PCT/KR2020/017496 priority Critical patent/WO2022119005A1/ko
Publication of WO2022119005A1 publication Critical patent/WO2022119005A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/08Controlling, supervising, e.g. for safety reasons

Definitions

  • the present invention relates to a vertical separation type hydraulic tilt copper casting apparatus and a tilt copper casting method using the same, and more particularly, to a mold that is separated into an upper mold and a lower mold to form a pressurized part and pressurize the pressurized part with a hydraulic device to shrink the molten metal. It relates to a vertical separation type hydraulic hard copper casting device and a hard copper casting method that can manufacture castings with small quality deviations without the need for compensation.
  • the hard copper casting method which is a type of casting method using a permanent (semi-permanent) mold, is being applied to various industrial fields.
  • a mold design that reflects the shrinkage compensation is required in consideration of the shrinkage phenomenon during the phase change from liquid to solid when the molten metal is cooled.
  • a ladle for a gravity casting machine characterized in that it includes an oxide attachment plate for attaching oxides generated on the surface of the melt material when the melt material flows toward the melt material inlet by being inclined for the process, is disclosed.
  • the conventional hard copper casting method as described above increases the complexity of the mold design, the defect rate and quality deviation during repeated production are large, and the process automation is almost impossible due to the high dependence on work skill.
  • the problem to be solved by the present invention is, in order to solve the problems of the conventional hard copper casting method as described above, by including a pressurizing device for pressing the pressurized portion after the tilting process, there is no need for compensation in the cavity and the process can be automated. It is to provide an apparatus and a method for hard copper casting, and a mold for hard copper casting used therefor.
  • a mold for rigid copper casting including an upper mold and a lower mold
  • a predetermined cavity is formed therein, and one side of the cavity is pressed a tang is formed
  • An injection cup is coupled to one surface of the pressurized portion of the lower mold; After the molten metal is injected into the injection cup, the mold assembly in which the upper mold, the lower mold and the injection cup are combined is tilted to inject the molten metal in the injection cup into the cavity.
  • the pressing device may include: a pressing portion cover formed to receive an outer circumferential surface of the pressing portion of the rigid copper casting mold and fixed to the rigid copper casting mold to form a predetermined sealed space including the pressing portion; It is accommodated inside the pressurized portion cover, including a piston for pressing the pressurized portion in the enclosed space formed by fixing the pressurized portion cover to the mold for tilting casting; After injecting the molten metal into the cavity by driving the tilting device, the injection cup is removed, the pressurized metal cover is fixed to the mold for tilting casting to accommodate the pressurized portion, and then the pressurized portion is pressed with a piston.
  • the pressurizing device further includes a hydraulic device for applying pressure to the pressurized portion cover and the piston; It may be configured such that the pressure applied to the molten metal by the piston is greater than the pressure applied to the mold for hard copper casting by the pressurized portion cover.
  • the hydraulic device may be configured to be connected to the pressurized portion cover and the piston by a single hydraulic circuit, and the pressurized portion cover may be configured such that the area of the cross section perpendicular to the pressing direction is larger than that of the piston.
  • the pressurizing device may be configured such that an electromagnet is provided on one side of the pressurized portion cover, so that the pressurized portion cover and the mold for hard copper casting are brought into close contact during the pressing process of the pressurized portion by the piston.
  • the pressing device is provided with fastening parts corresponding to each other in the pressurized metal cover and the mold for hard copper casting, so that the pressurizing part cover and the mold for hard copper casting are fixedly coupled to each other in the pressing process of the pressurized part by the piston.
  • the pressurizing device has, (1) a piston cross-sectional area A, (2) an internal cross-sectional area B of the pressurized portion cover, and (3) a depth at which the piston is inserted into the pressurized portion. , (4) inner depth of the hot water part cover , (5) depth of press when, The condition may be configured to initiate pressurization of the cavity.
  • the injection cup coupling step of fixing the injection cup to the mold for rigid copper casting using the above-described rigid copper casting device, the injection cup coupling step of fixing the injection cup to the mold for rigid copper casting; a first molten metal injection step of injecting molten metal into the injection cup after the injection cup coupling step; after the first molten metal injection step, a second molten metal injection step of tilting the mold for hard copper casting and injecting the molten metal inside the injection cup into the cavity by gravity; After the second molten metal injection step, an injection cup separation step of separating the injection cup from the mold for hard copper casting; After the injection cup separation step, a pressurization preparation step of bringing the pressurized portion cover into close contact with the mold for hard copper casting to accommodate the pressurized portion; After the pressurization preparation step, a pressurizing step of pushing the piston to pressurize the molten metal in the hot water portion; a cooling step of cooling the molten metal during the pressing step; After the pressurizing and cooling steps, a depress
  • the pressing process can be performed immediately after the tilting process by forming the pressurized portion in the mold.
  • the casting process can be automated due to the low dependence on the skill level of the operation.
  • FIG. 1 is a cross-sectional view of a mold for hard copper casting according to an embodiment of the present invention.
  • FIG 2 is a cross-sectional view of a state in which the molten metal is injected into the cavity by tilting the mold for rigid copper casting according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a state in which the injection cup is removed from the mold for hard copper casting according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a state in which a pressing device is in close contact with a mold for hard copper casting according to an embodiment of the present invention.
  • FIG 5 is a cross-sectional view of a state in which the pressing device presses the molten metal in the hard copper casting apparatus according to the embodiment of the present invention.
  • FIG. 6 is a schematic diagram illustrating a hydraulic circuit of a hydraulic system according to an embodiment of the present invention.
  • FIG. 7 is a view showing the dimensions of a specific part of the rigid copper casting apparatus according to an embodiment of the present invention.
  • expressions such as “have,” “may have,” “includes,” or “may include” refer to the presence of a corresponding characteristic (eg, a numerical value, function, operation, or component such as a part). and does not exclude the presence of additional features.
  • expressions such as “A or B,” “at least one of A or/and B,” or “one or more of A or/and B” may include all possible combinations of the items listed together.
  • “A or B,” “at least one of A and B,” or “at least one of A or B” means (1) includes at least one A, (2) includes at least one B; Or (3) it may refer to all cases including both at least one A and at least one B.
  • first may be referred to as a second component, and similarly, the second component may also be renamed as a first component.
  • One component eg, a first component
  • another component eg, a second component
  • the certain element may be directly connected to the other element or may be connected through another element (eg, a third element).
  • a component eg, a first component
  • another component eg, a second component
  • a device configured to may mean that the device is “capable of” with other devices or parts.
  • a processor configured (or configured to perform) A, B, and C refers to a dedicated processor (eg, an embedded processor) for performing the corresponding operations, or by executing one or more software programs stored in a memory device.
  • a generic-purpose processor eg, a CPU or an application processor
  • a mold for hard copper casting including an upper mold and a lower mold
  • a predetermined cavity is formed therein, and a pressurized portion is formed on one side of the cavity
  • An injection cup is coupled to one surface of the pressurized portion of the lower mold; After the molten metal is injected into the injection cup, the mold assembly in which the upper mold, the lower mold and the injection cup are combined is tilted to inject the molten metal in the injection cup into the cavity.
  • the pressurized portion may be configured to include a flow path (inlet port) through which the molten metal is injected into the cavity, and the molten metal may flow into the cavity through the pressurized portion, and may be configured to accommodate a piston of a pressurizing device to be described later.
  • One or more pressing parts may be provided, and a number of pressing devices corresponding to the number of pressing parts may be required.
  • a neck may be formed between the pressing portion and the cavity to remove the molten metal located in the pressing portion from the casting after solidification of the molten metal.
  • a predetermined cooling water flow path may be formed in the mold for hard copper casting to cool the molten metal after injection of the molten metal is completed.
  • the internal volume of the injection cup (the volume of the fluid that can be accommodated) is larger than the cavity volume.
  • the volume of the pressurization portion is configured to be in the range of 10% to 20% of the cavity volume. If the volume of the pressurized part is too small, the molten metal is contracted to the lower part of the neck due to the contraction, which may result in defective casting. The amount of molten metal injected may be excessive and waste of cost (raw materials) may occur.
  • the pressing device may include: a pressing portion cover formed to receive an outer circumferential surface of the pressing portion of the rigid copper casting mold and fixed to the rigid copper casting mold to form a predetermined sealed space including the pressing portion; It is accommodated inside the pressurized portion cover, including a piston for pressing the pressurized portion in the enclosed space formed by fixing the pressurized portion cover to the mold for tilting casting; After injecting the molten metal into the cavity by driving the tilting device, the injection cup is removed, the pressurized metal cover is fixed to the mold for tilting casting to accommodate the pressurized portion, and then the pressurized portion is pressed with a piston.
  • the expression “formed to accommodate the outer circumferential surface of the pressing portion of the mold for hard copper casting” means that the molten metal in the cavity below the pressing portion does not leak to the outside of the pressurizing device or the mold during the pressurization process. can mean
  • the tilting device is a configuration that a person skilled in the art can easily configure with reference to the conventional tilting device and the specification of the present invention, the description of the speed of tilting the mold is omitted.
  • the sealed space means a configuration in which the molten metal does not leak to the outside of the pressurizing device or the mold, and does not mean the sealing of particles smaller than the particles of the molten metal, such as air or other gas.
  • gas components such as air may be included in the pressurized metal cover when the inside and outside of the pressurized metal cover are completely sealed (if the flow of gas is blocked). All gas components are located on the upper part of the hot metal, and the gas is not mixed into the molten metal.
  • the gas is also compressed under pressure, and since the piston uniformly compresses the inside of the pressurized portion under the cover of the pressurized portion, the effect of the gas can be neglected.
  • a vacuum forming means may be further provided in the pressurizing device in order to reduce the effect of gas.
  • It can be configured so that the inside of the pressurized metal cover is filled with molten metal during the pressurization process by closing the pressurized portion cover to the mold to block the inside and outside of the pressurized portion cover from air, and then removing the air inside the pressurized portion cover.
  • the pressurizing device further includes a hydraulic device for applying pressure to the pressurized portion cover and the piston; It may be configured such that the pressure applied to the molten metal by the piston is greater than the pressure applied to the mold for hard copper casting by the pressurized portion cover.
  • the pressurizing device may be provided with an actuator for closely contacting the pressurized portion cover and the mold for hard copper casting. As shown in FIGS. 3 and 4 , the actuator is operated to bring the hot metal part cover and the mold for hard copper casting into close contact. After being in close contact with each other, the hydraulic device operates to push the pressurized metal cover and the piston, thereby improving the sealing force between the pressurized metal cover and the mold for hard copper casting and simultaneously pressing the pressurized metal with the piston.
  • the molten metal may leak out of the pressurized metal cover due to the pressure of the molten metal in the pressurized portion caused by the piston. It may occur when the force between the die (pressure) is smaller than the force (pressure) between the piston and the molten metal. In order to prevent this phenomenon, it is preferable to control the pressure of the pressurized portion cover and the pressure of the piston as described above.
  • the hydraulic device may be configured to be connected to the pressurized portion cover and the piston by a single hydraulic circuit, and the pressurized portion cover may be configured such that the area of the cross section perpendicular to the pressing direction is larger than that of the piston.
  • the clamping force between the upper and lower molds can act as an important element of the casting process design. If the clamping force between the upper and lower molds does not increase in proportion to the increase in the pressing force by the piston, defects in the casting may occur due to the separation of the upper and lower molds.
  • the hydraulic circuit of the hydraulic system can be connected to the upper and lower molds. 6, it may be configured to apply the largest force to the upper and lower molds in a single hydraulic circuit, and then apply different magnitudes of force in the order of the pressurized portion cover and the piston. Such a pressure differential may occur according to Pascal's Principle.
  • P1, P2, P3, and P4 shown in FIG. 6 may mean a pipe cross-sectional area of the hydraulic circuit.
  • the force applied to the mold may be configured such that one of the upper and lower molds is placed as a fixed end and pressure is applied to the other (unfixed upper or lower mold) through a hydraulic device.
  • the pressurizing device may be configured such that an electromagnet is provided on one side of the pressurized portion cover, so that the pressurized portion cover and the mold for hard copper casting are brought into close contact during the pressing process of the pressurized portion by the piston.
  • the mold for hard copper casting can be configured to react with the magnetic material by adjusting the alloy composition ratio of the mold for hard copper casting (only the contact portion with the pressurized portion cover may be configured to be magnetic). It is also possible to assist the attachment of the metal part cover and the mold for hard copper casting through an electromagnet, or to seal the metal part cover and the mold for hard copper casting with an electromagnet if the strength of the electromagnet is strong.
  • the above configuration may be a large technology (opposite of appropriate technology). Since the cost of constructing equipment due to the provision of a hydraulic device, etc. may greatly increase, in a place where the number of castings is not large (R&D team, etc.), it may have an economic burden on the composition of the equipment. Therefore, there is a need for a configuration capable of forming a seal between the pressurized portion cover and the mold for hard copper casting without having a hydraulic device as described above.
  • the pressing device may be configured to include fastening parts corresponding to each other in the pressurized metal cover and the mold for hard copper casting, so as to fix the pressurized part cover and the mold for hard copper casting in a pressurizing process of the pressurized part by a piston.
  • the number and position of the fastening parts may be adjusted in consideration of the pressure applied to the molten metal.
  • the fastening part may include a mechanical element for fixedly coupling two or more members, such as a bolt-nut, a hook, a fitting shape, etc., which is a range that can be easily implemented by a person skilled in the art with reference to the description of the present invention, detailed description is omitted.
  • the pressurizing device has, (1) a piston cross-sectional area A, (2) an internal cross-sectional area B of the pressurized portion cover, and (3) a depth at which the piston is inserted into the pressurized portion. , (4) inner depth of the hot water part cover , (5) depth of press when, The condition may be configured to initiate pressurization of the cavity.
  • the volume of the pressurized portion cover excluding the volume of the piston is
  • A piston cross-sectional area
  • B internal cross-sectional area of the metal part cover
  • L1 the depth that the piston entered into the metal part
  • L2 the internal depth of the metal part cover
  • L3 the depth of the metal part
  • the injection cup coupling step of fixing the injection cup to the mold for rigid copper casting using the above-described rigid copper casting device, the injection cup coupling step of fixing the injection cup to the mold for rigid copper casting; a first molten metal injection step of injecting molten metal into the injection cup after the injection cup coupling step; after the first molten metal injection step, a second molten metal injection step of tilting the mold for hard copper casting and injecting the molten metal inside the injection cup into the cavity by gravity; After the second molten metal injection step, an injection cup separation step of separating the injection cup from the mold for hard copper casting; After the injection cup separation step, a pressurization preparation step of bringing the pressurized portion cover into close contact with the mold for hard copper casting to accommodate the pressurized portion; After the pressurization preparation step, a pressurizing step of pushing the piston to pressurize the molten metal in the hot water portion; a cooling step of cooling the molten metal during the pressing step; After the pressurizing and cooling steps, a depress
  • the cooling rate can be reduced by additionally forming a cooling water flow path compared to the conventional hard copper casting.
  • conventional hard copper casting because compensation by shrinkage has to be considered, there is a limit to the cooling rate, the complexity of the mold design is high, and the quality deviation of the casting is high when the casting is produced several times. can be resolved.
  • neck 13 injection cup

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

본 발명은 상하형 분리식 유압 경동주조장치 및 그를 이용한 경동주조방법에 관한 것으로, 더 상세하게는 상형 및 하형으로 분리된 금형에 압탕부를 형성하고, 압탕부를 유압장치로 가압시킴으로써 용탕의 수축에 의한 보상이 필요없이 품질편차가 작은 주조품을 제조할 수 있는 상하형 분리식 유압 경동주조장치 및 경동주조방법에 관한 것이다. 본 발명의 일 실시 예에 따르면, 경동주조용 금형을 소정의 속도로 기울여 캐비티 내부에 용탕을 주입시키는 경동장치 및; 상기 압탕부를 가압하는 가압장치를 포함하고; 상기 가압장치는: 상기 경동주조용 금형의 압탕부 외주면을 수용하도록 형성되고, 경동주조용 금형에 고정되어 압탕부를 포함한 소정의 밀폐공간을 형성시키는 압탕부커버; 상기 압탕부커버의 내측에 수용되며, 압탕부커버가 경동주조용 금형에 고정되어 형성된 밀폐공간의 내부에서 압탕부를 가압하는 피스톤을 포함하여; 상기 경동장치를 구동하여 캐비티에 용탕을 주입한 뒤 주입컵을 탈거하고, 압탕부를 수용하도록 압탕부커버를 경동주조용 금형에 고정시킨 뒤 피스톤으로 압탕부를 가압하도록 제어되되, 상기 압탕부커버 및 피스톤에 압력을 가하는 유압장치를 더 포함하고; 상기 압탕부커버가 경동주조용 금형에 가하는 압력보다 피스톤이 용탕에 가하는 압력의 크기보다 큰 것을 특징으로 하는, 상하형 분리식 유압 경동주조장치를 제공한다.

Description

상하형 분리식 유압 경동주조장치 및 경동주조방법
본 발명은 상하형 분리식 유압 경동주조장치 및 그를 이용한 경동주조방법에 관한 것으로, 더 상세하게는 상형 및 하형으로 분리된 금형에 압탕부를 형성하고, 압탕부를 유압장치로 가압시킴으로써 용탕의 수축에 의한 보상이 필요없이 품질편차가 작은 주조품을 제조할 수 있는 상하형 분리식 유압 경동주조장치 및 경동주조방법에 관한 것이다.
영구(반영구) 금형을 이용하는 주조 방법의 일종인 경동주조 방식은 다양한 산업분야에 응용되고 있다.
경동주조와 같은 저압주조 방식에서는, 용탕의 냉각 시 금속의 액상에서 고상으로의 상변화 과정에서의 수축 현상을 고려하여 수축 보상이 반영된 금형 설계가 요구된다.
국내공개실용신안공보 제20-2011-0001719호에는, "용융재 표면에 발생된 산화물을 제거하는 레이들로서, 금형틀에 구비된 용융재 주입구 측의 상기 레이들 양단에 각기 고정설치된 각 바(bar) 지지고리; 상기 각 바 지지고리에 양측이 각기 끼워져 지지되는 바; 상기 에 각기 끼워진 복수개의 산화물 부착판 지지고리; 및 상기 복수개의 산화물 부착판 지지고리의 하단에 고정설치되어, 상기 레이들이 주조공정을 위해 경사져서 상기 용융재가 상기 용융재 주입구 쪽으로 흐를 때 상기 용융재 표면에 발생된 산화물을 부착하는 산화물 부착판을 포함하는 것을 특징으로 하는 중력주조기용 레이들"이 개시되어 있다.
상기와 같은 종래의 경동주조 방식은, 금형 설계의 복잡성을 증가시키고, 불량률 및 반복 생산 시 품질 편차가 크며, 작업 숙련도에 대한 의존성이 높아 공정 자동화가 거의 불가능하다.
또한, 경동장치의 동작 중에(금형을 기울여 레이들에 있던 용융재를 주입하는 과정) 용탕의 부족분을 수작업으로 더 주입해야 하는 경우도 있으므로, 작업 시간, 소요 인력, 투입되는 용탕의 양 등에 있어서 개선이 필요한 부분이 많다.
본 발명이 해결하고자 하는 과제는, 전술한 바와 같은 종래 경동주조 방식의 문제점을 해결하기 위하여, 경동 과정 후 압탕부를 가압하는 가압장치를 포함함으로써 캐비티 내의 보상이 필요없고 공정의 자동화가 가능한 경동주조장치 및 경동주조 방법과, 그에 사용되는 경동주조용 금형을 제공하는 것이다.
본 발명은 종래 경동주조 방식의 문제점을 해결하기 위해, 상형 및 하형을 포함하는 경동주조용 금형에 있어서, 상기 상형 및 하형을 결합했을 때, 내부에 소정의 캐비티가 형성되되, 캐비티의 일측에는 압탕부가 형성되고; 상기 하형의 압탕부측 일면에는 주입컵이 결합되어; 상기 주입컵에 용탕을 주입한 뒤, 상형, 하형 및 주입컵이 결합된 금형결합체를 기울여 주입컵 내부에 있던 용탕을 캐비티 내부로 주입시키는, 경동주조용 금형을 제공한다.
또한, 상기와 같은 경동주조용 금형; 상기 경동주조용 금형을 소정의 속도로 기울여 캐비티 내부에 용탕을 주입시키는 경동장치 및; 상기 압탕부를 가압하는 가압장치를 포함하고; 상기 가압장치는, 상기 경동주조용 금형의 압탕부 외주면을 수용하도록 형성되고, 경동주조용 금형에 고정되어 압탕부를 포함한 소정의 밀폐공간을 형성시키는 압탕부커버; 상기 압탕부커버의 내측에 수용되며, 압탕부커버가 경동주조용 금형에 고정되어 형성된 밀폐공간의 내부에서 압탕부를 가압하는 피스톤을 포함하여; 상기 경동장치를 구동하여 캐비티에 용탕을 주입한 뒤 주입컵을 탈거하고, 압탕부를 수용하도록 압탕부커버를 경동주조용 금형에 고정시킨 뒤 피스톤으로 압탕부를 가압하는, 경동주조장치를 제공한다,
그리고, 상기 가압장치는, 상기 압탕부커버 및 피스톤에 압력을 가하는 유압장치를 더 포함하고; 상기 압탕부커버가 경동주조용 금형에 가하는 압력보다 피스톤이 용탕에 가하는 압력의 크기보다 크도록 구성될 수 있다.
아울러, 상기 유압장치는, 단일한 유압회로로 압탕부커버 및 피스톤과 연결되되, 압탕부커버가 피스톤보다 가압방향에 수직한 단면의 면적이 크도록 구성될 수 있다.
또한, 상기 가압장치는, 상기 압탕부커버 일측에 전자석이 구비되어, 피스톤에 의한 압탕부의 가압과정에서 압탕부커버 및 경동주조용 금형을 밀착시키도록 구성될 수 있다.
그리고, 상기 가압장치는, 상기 압탕부커버 및 경동주조용 금형에 서로 대응되는 체결부가 구비되어, 피스톤에 의한 압탕부의 가압과정에서 압탕부커버 및 경동주조용 금형을 고정결합시키도록 구성될 수 있다.
아울러, 상기 가압장치는, (1) 피스톤 단면적 A, (2) 압탕부커버 내부 단면적 B, (3) 피스톤이 압탕부 내로 삽입된 깊이
Figure PCTKR2020017496-appb-I000001
, (4) 압탕부커버 내부 깊이
Figure PCTKR2020017496-appb-I000002
, (5) 압탕부 깊이
Figure PCTKR2020017496-appb-I000003
일 때,
Figure PCTKR2020017496-appb-I000004
조건에서 캐비티의 가압이 시작되도록 구성될 수 있다.
또한, 경동주조방법에 있어서, 상기와 같은 경동주조장치를 이용하고, 경동주조용 금형에 주입컵을 고정시키는 주입컵결합단계; 상기 주입컵결합단계 후, 주입컵에 용탕을 주입하는 제1용탕주입단계; 상기 제1용탕주입단계 후, 경동주조용 금형을 기울여 주입컵 내부의 용탕을 중력에 의해 캐비티 내부로 주입시키는 제2용탕주입단계; 상기 제2용탕주입단계 후, 경동주조용 금형에서 주입컵을 분리하는 주입컵분리단계; 상기 주입컵분리단계 후, 압탕부를 수용하도록 압탕부커버를 경동주조용 금형과 밀착시키는 가압준비단계; 상기 가압준비단계 후, 피스톤을 밀어내어 압탕부 내 용탕을 가압하는 가압단계; 상기 가압단계 중, 용탕을 냉각시키는 냉각단계; 상기 가압단계 및 냉각단계 후, 가압장치를 경동주조용 금형으로부터 분리하는 가압해제단계 및; 상기 가압해제단계 후, 상형 및 하형을 분리하여 주조품을 경동주조용 금형으로부터 분리하는 주조품분리단계를 포함하는; 경동주조방법을 제공한다.
본 발명의 실시 예에 따르면, 금형에 압탕부를 형성하여 경동 과정 후 즉시 가압 과정을 수행할 수 있다.
또한, 유압장치를 이용하여 압탕부를 가압함으로써, 가압장치 및 금형 외부로 용탕이 새어나가지 않도록 방지할 수 있다.
그리고, 금형에 별도의 보상이 필요없으므로, 금형 설계의 복잡성을 줄일 수 있다.
아울러, 경동주조를 통해 주조된 주조품의 품질편차를 저감시킬 수 있다.
또한, 작업의 숙련도 의존성이 낮아 주조 과정을 자동화할 수 있다.
그리고, 용탕의 냉각시간을 단축시켜 주조제품의 시간당 생산량을 증가시킬 수 있다.
도 1 은 본 발명의 실시 예에 의한 경동주조용 금형의 단면도이다.
도 2 는 본 발명의 실시 예에 의한 경동주조용 금형을 경동시켜 캐비티 내에 용탕을 주입하는 상태의 단면도이다.
도 3 은 본 발명의 실시 예에 의한 경동주조용 금형에서 주입컵을 탈거한 상태의 단면도이다.
도 4 는 본 발명의 실시 예에 의한 경동주조용 금형에 가압장치를 밀착시킨 상태의 단면도이다.
도 5 는 본 발명의 실시 예에 의한 경동주조장치에서 가압장치가 용탕을 가압하는 상태의 단면도이다.
도 6 은 본 발명의 실시 예에 의한 유압장치의 유압회로를 도시한 개략도이다.
도 7 은 본 발명의 실시 예에 의한 경동주조장치의 특정 부분 치수를 표시한 도면이다.
이하, 본 문서의 다양한 실시예가 첨부된 도면을 참조하여 기재된다. 그러나, 이는 본 문서에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 문서의 실시예의 다양한 변경(modifications), 균등물 (equivalents), 및/또는 대체물(alternatives)을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.
본 문서에서, "가진다," "가질 수 있다," "포함한다," 또는 "포함할 수 있다" 등의 표현은 해당 특징(예: 수치, 기능, 동작, 또는 부품 등의 구성요소)의 존재를 가리키며, 추가적인 특징의 존재를 배제하지 않는다.
본 문서에서, "A 또는 B," "A 또는/및 B 중 적어도 하나," 또는 "A 또는/및 B 중 하나 또는 그 이상"등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다. 예를 들면, "A 또는 B," "A 및 B 중 적어도 하나," 또는 "A 또는 B 중 적어도 하나"는, (1) 적어도 하나의 A를 포함, (2) 적어도 하나의 B를 포함, 또는 (3) 적어도 하나의 A 및 적어도 하나의 B 모두를 포함하는 경우를 모두 지칭할 수 있다.
본 문서에서 사용된 "제 1," "제 2," "첫째," 또는 "둘째,"등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 뿐 해당 구성요소들을 한정하지 않는다. 예를 들면, 제 1 사용자 기기와 제 2 사용자 기기는, 순서 또는 중요도와 무관하게, 서로 다른 사용자 기기를 나타낼 수 있다. 예를 들면, 본 문서에 기재된 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 바꾸어 명명될 수 있다.
어떤 구성요소(예: 제 1 구성요소)가 다른 구성요소(예: 제 2 구성요소)에 "(기능적으로 또는 통신적으로) 연결되어(operatively or communicatively) coupled with/to)" 있다거나 "접속되어(connected to)" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되거나, 다른 구성요소(예: 제 3 구성요소)를 통하여 연결될 수 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소(예: 제 1 구성요소)가 다른 구성요소(예: 제 2 구성요소)에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 다른 구성요소(예: 제 3 구성요소)가 존재하지 않는 것으로 이해될수 있다.
본 문서에서 사용된 표현 "~하도록 구성된(또는 설정된)(configured to)"은 상황에 따라, 예를 들면, "~에 적합한(suitable for)," "~하는 능력을 가지는(having the capacity to)," "~하도록 설계된(designed to)," "~하도록 변경된(adapted to)," "~하도록 만들어진(made to)," 또는 "~를 할 수 있는(capable of)"과 바꾸어 사용될 수 있다. 용어 "~하도록 구성된(또는 설정된)"은 하드웨어적으로 "특별히 설계된(specifically designed to)" 것만을 반드시 의미하지 않을 수 있다. 대신, 어떤 상황에서는, "~하도록 구성된 장치"라는 표현은, 그 장치가 다른 장치 또는 부품들과 함께 "~할 수 있는" 것을 의미할 수 있다. 예를 들면, 문구 "A, B, 및 C를 수행하도록 구성된(또는 설정된) 프로세서"는 해당 동작을 수행하기 위한 전용 프로세서(예: 임베디드 프로세서), 또는 메모리 장치에 저장된 하나 이상의 소프트웨어 프로그램들을 실행함으로써, 해당 동작들을 수행할 수 있는 범용 프로세서(generic-purpose processor)(예: CPU 또는 application processor)를 의미할 수 있다.
본 문서에서 사용된 용어들은 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 다른 실시 예의 범위를 한정하려는 의도가 아닐 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 용어들은 본 문서에 기재된 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 본 문서에 사용된 용어들 중 일반적인 사전에 정의된 용어들은, 관련 기술의 문맥상 가지는 의미와 동일 또는 유사한 의미로 해석될 수 있으며, 본 문서에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 경우에 따라서, 본 문서에서 정의된 용어일지라도 본 문서의 실시 예들을 배제하도록 해석될 수 없다.
본 발명의 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.
본 발명의 실시 예에 따르면, 상형 및 하형을 포함하는 경동주조용 금형에 있어서, 상기 상형 및 하형을 결합했을 때, 내부에 소정의 캐비티가 형성되되, 캐비티의 일측에는 압탕부가 형성되고; 상기 하형의 압탕부측 일면에는 주입컵이 결합되어; 상기 주입컵에 용탕을 주입한 뒤, 상형, 하형 및 주입컵이 결합된 금형결합체를 기울여 주입컵 내부에 있던 용탕을 캐비티 내부로 주입시키는, 경동주조용 금형을 제공한다.
상기 압탕부는, 캐비티에 용탕이 주입되는 유로(주입구)를 포함하는 구성이며, 압탕부를 통해 캐비티로 용탕이 흘러들어가며, 후술하는 가압장치의 피스톤이 수용되도록 구성될 수 있다. 압탕부는 하나 이상 구비될 수 있으며, 압탕부의 개수에 대응하는 개수의 가압장치가 요구될 수 있다.
압탕부와 캐비티 사이에는 목부(neck)가 형성되어, 용탕의 응고 후 주조품으로부터 압탕부에 위치해있던 용탕을 제거하도록 구성될 수 있다.
상기 경동주조용 금형의 내부에는 소정의 냉각수 유로가 형성되어, 용탕의 주입 완료 후 용탕을 냉각시키도록 구성될 수 있다. 이 경우, 압탕부 부근에는 냉각수 유로를 구비하지 않거나, 압탕부 부근의 냉각수의 유량이 캐비티 주변보다 작도록 냉각수 유로를 구비하는 것이 바람직하다. 이러한 구성을 통해, 캐비티를 우선적으로 냉각시킨 뒤 압탕부가 냉각되도록 하여, 주조품의 품질 편차를 저감시킬 수 있다.
상기 주입컵의 내부 용적은(수용 가능한 유체의 부피), 캐비티 용적보다 크도록 구성되는 것이 바람직하다. "주입컵 용적<캐비티 용적+압탕부 용적"이 되도록 주입컵 용적을 구성함으로써, 경동 과정에서의 용탕 추가 주입을 생략할 수 있다. 용탕의 수축을 감안할 때, 압탕부 용적은 캐비티 용적의 10% 내지 20% 사이의 범위가 되도록 구성되는 것이 바람직하다. 압탕부의 용적이 과소한 경우에는 수축에 의해 용탕이 목부 아래쪽까지 수축되어 주조품 불량이 발생할 수 있으며, 압탕부의 용적이 과다한 경우에는 후술하는 가압장치의 동작이 정상적으로 이루어지지 않게 되며, 압탕부 내에 주입되는 용탕의 양이 과다하여 비용(원자재) 낭비가 발생할 수 있다.
또한, 상기와 같은 경동주조용 금형; 상기 경동주조용 금형을 소정의 속도로 기울여 캐비티 내부에 용탕을 주입시키는 경동장치 및; 상기 압탕부를 가압하는 가압장치를 포함하고; 상기 가압장치는, 상기 경동주조용 금형의 압탕부 외주면을 수용하도록 형성되고, 경동주조용 금형에 고정되어 압탕부를 포함한 소정의 밀폐공간을 형성시키는 압탕부커버; 상기 압탕부커버의 내측에 수용되며, 압탕부커버가 경동주조용 금형에 고정되어 형성된 밀폐공간의 내부에서 압탕부를 가압하는 피스톤을 포함하여; 상기 경동장치를 구동하여 캐비티에 용탕을 주입한 뒤 주입컵을 탈거하고, 압탕부를 수용하도록 압탕부커버를 경동주조용 금형에 고정시킨 뒤 피스톤으로 압탕부를 가압하는, 경동주조장치를 제공한다,
상기 기재에서 압탕부커버가 "경동주조용 금형의 압탕부 외주면을 수용하도록 형성"된다는 것은, 압탕부 이하 캐비티 내에 있던 용탕이 가압 과정에서 가압장치 또는 금형 외부로 누설되지 않도록 압탕부를 완전히 덮는 구성을 의미할 수 있다.
상기 경동장치는 통상의 기술자가 종래 경동장치와 본 발명의 명세서를 참조하여 용이하게 구성할 수 있는 구성이므로, 금형을 기울이는 속도에 대해서는 기재를 생략한다.
상기 밀폐공간은, 가압장치 또는 금형 외부로 용탕이 누설되지 않는 구성을 의미하며, 공기 기타 기체 등 용탕의 입자보다 작은 입자의 밀폐까지를 의미하는 것은 아니다.
상기와 같이 피스톤으로 압탕부를 가압하게 되면, 압탕부에 있던 용탕 중 일부가 압탕부 외부(금형 외부)로 빠져나오게 되며, 빠져나온 용탕은 압탕부커버 내부에 갇히게 된다. 이 상태에서 피스톤을 통해 가압을 지속하게 되면(피스톤을 더 깊숙히 삽입하게 되면), 압탕부커버 이하의 용탕이 피스톤이 받는 힘 만큼의 외력을 받아 압축력을 받게 되며, 이에 따라 캐비티와 동일한 형상의 주조품을 얻을 수 있다. 이러한 과정을 통해 수축에 의한 보상을 고려하지 않고도 품질 편차가 현저하게 낮은 주조품을 양산할 수 있게 된다.
피스톤을 이용한 가압 시, 압탕부커버의 내외부가 완전히 밀폐(기체의 유동까지 차단되는 경우)되면 압탕부커버 내에 공기 등 기체 성분이 포함될 수도 있으나, 경동주조 방식을 통해 캐비티 내에 용탕이 주입되었으므로 공기 등 기체 성분은 모두 압탕부의 상부에 위치하게 되며, 기체가 용탕 내부로 혼입되지 않는다. 또한, 가압 시에는 기체 또한 압력을 받아 압축되며, 피스톤이 압탕부커버 이하 압탕부 내부를 균일하게 압축하기 때문에 기체의 영향은 무시할 수 있다. 다만, 정밀가공이 필요한 경우 기체의 영향을 줄이기 위해서 가압장치에 진공형성수단이 더 구비될 수 있다. 압탕부커버를 금형에 밀착시켜 압탕부커버 내부와 외부를 공기와 차단시킨 뒤, 압탕부커버 내부의 공기를 제거함으로써, 가압 과정에서 압탕부커버 내부에 용탕이 가득차도록 구성할 수 있다.
그리고, 상기 가압장치는, 상기 압탕부커버 및 피스톤에 압력을 가하는 유압장치를 더 포함하고; 상기 압탕부커버가 경동주조용 금형에 가하는 압력보다 피스톤이 용탕에 가하는 압력의 크기보다 크도록 구성될 수 있다.
가압장치에는 압탕부커버와 경동주조용 금형을 밀착시키는 액츄에이터가 구비될 수 있다. 도 3 및 도 4에 도시된 바와 같이, 액츄에이터가 작동하여 압탕부커버와 경동주조용 금형을 밀착시킬 수 있다. 밀착된 이후에는 상기 유압장치가 동작하여 압탕부커버 및 피스톤을 밀어내면서 압탕부커버 및 경동주조용 금형 사이의 밀폐력을 향상시킴과 동시에 피스톤으로 압탕부를 가압할 수 있다.
압탕부커버와 경동주조용 금형 사이의 밀폐가 온전하지 못한 경우에는, 피스톤으로 인해 발생한 압탕부 내의 용탕의 압력에 의해 용탕이 압탕부커버 밖으로 새어나갈 수 있으며, 이러한 현상은 압탕부커버-경동주조용 금형 사이 힘(압력)이 피스톤-용탕 사이 힘(압력)보다 작을 때 발생할 수 있다. 이러한 현상을 방지하기 위하여, 상기와 같이 압탕부커버의 압력 및 피스톤의 압력을 제어하는 것이 바람직하다.
아울러, 상기 유압장치는, 단일한 유압회로로 압탕부커버 및 피스톤과 연결되되, 압탕부커버가 피스톤보다 가압방향에 수직한 단면의 면적이 크도록 구성될 수 있다.
압탕부커버를 가압하는 유압장치와, 피스톤을 가압하는 유압장치를 개별적으로 구비하여 각각을 제어하는 구성도 가능하나, 이 경우 장치의 구조가 복잡해지며 제어의 복잡성도 증가하고, 이에 따라 오작동 및 고장의 가능성도 증가할 수 있다. 따라서, 상기와 같이 단일한 유압회로를 통한 압탕부커버 및 피스톤의 가압 제어 구성이 바람직하다.
한편, 피스톤이 용탕을 가압하면서 상형 및 하형 사이의 형 체결력이 중요한 주조 공정 설계의 요소로서 작용할 수 있다. 피스톤에 의한 가압력 상승에 비례하여 상형 및 하형 사이의 형 체결력이 상승하지 않는 경우, 상형 및 하형의 분리 등으로 인한 주조품의 불량이 발생할 수 있다.
따라서, 상기와 같은 형 체결력 문제를 해결하기 위하여, 유압장치의 유압회로를 상형 및 하형에도 연결할 수 있다. 도 6에 도시된 바와 같이, 단일한 유압회로에서 상형 및 하형에 가장 큰 힘을 가하고, 그다음으로 압탕부커버, 피스톤 순으로 힘의 크기를 차등하여 가하도록 구성될 수 있다. 이러한 압력의 차등은, 파스칼의 원리(Pascal's Principle)에 의해 발생할 수 있다. 도 6에 도시된 P1, P2, P3, P4는 유압회로의 배관 단면적을 의미할 수 있다. 유압 입력단인 P1에서 압력을 가하면 P2, P3 및 P4에서는 유압이 출력되며, 유압으로 인한 힘의 크기는 P2, P3 및 P4(면적)에 비례하여(F=PA, F : 힘, P : 압력, A : 단면적) 압탕부커버, 피스톤 및 금형에 가해지게 된다.
금형(상형 및 하형)에 가해지는 힘은, 상형 또는 하형 중 어느 하나를 고정단으로 두고 다른 한 쪽(고정되지 않은 상형 또는 하형)에 유압장치를 통해 압력을 가하도록 구성될 수도 있다.
또한, 상기 가압장치는, 상기 압탕부커버 일측에 전자석이 구비되어, 피스톤에 의한 압탕부의 가압과정에서 압탕부커버 및 경동주조용 금형을 밀착시키도록 구성될 수 있다.
상기와 같은 구성에서, 경동주조용 금형의 합금 조성비를 조절하여(압탕부커버와의 접촉부위만 자성을 띠도록 구성할 수도 있다) 자성체와 반응하도록 구성할 수 있다. 전자석을 통해 압탕부커버 및 경동주조용 금형의 부착을 보조하거나, 전자석의 세기가 강한 경우에는 전자석으로 압탕부커버 및 경동주조용 금형을 밀폐시키는 구성도 가능하다.
유압장치 또는 전자석 등 경동주조용 금형과 압탕부커버 사이의 탈착이 용이한 구성으로 공정 자동화 및 생산시간 단축 등의 효과가 있으나, 제품 시험을 위한 시편을 만들거나 주조 시험 등 양산이 아닌 제품 개발 과정에서는 상기와 같은 구성은 거대기술(적정기술의 반대)일 수도 있다. 유압장치 등을 구비함으로 인한 설비 구성 비용이 크게 증가할 수 있으므로 주조 수량이 많지 않은 곳(연구개발팀 등)에서는 설비 구성에 경제적인 부담을 가질 수 있다. 따라서, 상기와 같은 유압장치 등을 구비하지 않고도 압탕부커버 및 경동주조용 금형 사이의 밀폐를 형성시킬 수 있는 구성이 필요하다.
상기 가압장치는, 상기 압탕부커버 및 경동주조용 금형에 서로 대응되는 체결부가 구비되어, 피스톤에 의한 압탕부의 가압과정에서 압탕부커버 및 경동주조용 금형을 고정결합시키도록 구성될 수 있다.
용탕이 받는 압력을 고려하여 상기 체결부의 개수 및 위치를 조절할 수 있다. 체결부에는 볼트-너트, 후크, 끼워맞춤 형상 등 두개 이상의 부재를 고정결합시키는 기계요소가 포함될 수 있으며, 이는 통상의 기술자가 본 발명의 설명을 참조하여 용이하게 실시할 수 있는 범위이므로, 상세한 기재는 생략한다.
상기와 같은 구성을 통해, 유압장치 등을 이용한 압탕부커버 및 경동주조용 금형 사이의 밀폐 형성 과정에 소요되는 시간보다는 더 많은 시간이 소요되나, 장치의 복잡성이 낮고 설비비용이 낮은 장치를 구성할 수 있다. 체결부와 유압장치, 전자석 등을 조합하여 구비하는 구성도 가능하다.
아울러, 상기 가압장치는, (1) 피스톤 단면적 A, (2) 압탕부커버 내부 단면적 B, (3) 피스톤이 압탕부 내로 삽입된 깊이
Figure PCTKR2020017496-appb-I000005
, (4) 압탕부커버 내부 깊이
Figure PCTKR2020017496-appb-I000006
, (5) 압탕부 깊이
Figure PCTKR2020017496-appb-I000007
일 때,
Figure PCTKR2020017496-appb-I000008
조건에서 캐비티의 가압이 시작되도록 구성될 수 있다.
도 7과 같은 가압장치의 구성에서, 피스톤의 용적을 제외한 압탕부 커버의 용적은
Figure PCTKR2020017496-appb-I000009
로 나타낼 수 있다. (A : 피스톤 단면적, B : 압탕부커버 내부 단면적, L1 : 피스톤이 압탕부 내로 진입한 깊이, L2 : 압탕부커버 내부 깊이, L3 : 압탕부 깊이)
한편, 피스톤이 압탕부 내부로 진입하여 밀어낸 용탕의 부피는
Figure PCTKR2020017496-appb-I000010
이므로, 피스톤에 의한 캐비티 내 용탕의 가압이 시작되려면
Figure PCTKR2020017496-appb-I000011
를 만족해야 한다.
*이 때, 압탕부의 깊이가 과도하게 깊은 경우 압탕부 내에 주입되는 용탕의 양이 많아져 손실이 발생할 수 있으며, 압탕부의 깊이가 과도하게 얕은 경우에는 피스톤과 목부 사이의 접촉이 발생하여 압축이 발생하지 않을 수도 있다. 따라서, 최적 조건은
Figure PCTKR2020017496-appb-I000012
일 수 있다. 식을 정리하면,
Figure PCTKR2020017496-appb-I000013
가 성립한다.
또한, 경동주조방법에 있어서, 상기와 같은 경동주조장치를 이용하고, 경동주조용 금형에 주입컵을 고정시키는 주입컵결합단계; 상기 주입컵결합단계 후, 주입컵에 용탕을 주입하는 제1용탕주입단계; 상기 제1용탕주입단계 후, 경동주조용 금형을 기울여 주입컵 내부의 용탕을 중력에 의해 캐비티 내부로 주입시키는 제2용탕주입단계; 상기 제2용탕주입단계 후, 경동주조용 금형에서 주입컵을 분리하는 주입컵분리단계; 상기 주입컵분리단계 후, 압탕부를 수용하도록 압탕부커버를 경동주조용 금형과 밀착시키는 가압준비단계; 상기 가압준비단계 후, 피스톤을 밀어내어 압탕부 내 용탕을 가압하는 가압단계; 상기 가압단계 중, 용탕을 냉각시키는 냉각단계; 상기 가압단계 및 냉각단계 후, 가압장치를 경동주조용 금형으로부터 분리하는 가압해제단계 및; 상기 가압해제단계 후, 상형 및 하형을 분리하여 주조품을 경동주조용 금형으로부터 분리하는 주조품분리단계를 포함하는; 경동주조방법을 제공한다.
상기와 같은 경동주조방법에 의하면, 종래 경동주조에 비해 냉각수 유로를 추가적으로 형성하여 냉각속도를 단축시킬 수 있다. 종래 경동주조에서는 수축에 의한 보상을 고려해야 하기 때문에 냉각속도에 한계가 있었으며, 금형 설계의 복잡성이 높으며, 주조품을 여러번 생산할 때 주조품의 품질 편차가 높았으나, 상기와 같은 가압식 경동주조방법에서는 전술한 문제점들이 해소될 수 있다.
(부호의 설명)
11 : 상형 12 : 하형
100 : 캐비티 101 : 압탕부
102 : 목부 13 : 주입컵
21 : 압탕부커버 22 : 피스톤
23 : 유압장치 M : 용탕

Claims (5)

  1. 상형 및 하형을 결합했을 때, 내부에 소정의 캐비티가 형성되되, 캐비티의 일측에는 압탕부가 형성되며, 상기 압탕부와 캐비티 사이에는 압탕부 및 캐비티의 단면적보다 작은 단면적을 가지는 목부(neck)가 형성되고; 상기 하형의 압탕부측 일면에는 주입컵이 결합되어; 상기 주입컵에 용탕을 주입한 뒤, 상형, 하형 및 주입컵이 결합된 금형결합체를 기울여 주입컵 내부에 있던 용탕을 캐비티 내부로 주입시키는, 경동주조용 금형;
    상기 경동주조용 금형을 소정의 속도로 기울여 캐비티 내부에 용탕을 주입시키는 경동장치 및;
    상기 압탕부를 가압하는 가압장치를 포함하고;
    상기 가압장치는:
    상기 경동주조용 금형의 압탕부 외주면을 수용하도록 형성되고, 경동주조용 금형에 고정되어 압탕부를 포함한 소정의 밀폐공간을 형성시키는 압탕부커버;
    상기 압탕부커버의 내측에 수용되며, 압탕부커버가 경동주조용 금형에 고정되어 형성된 밀폐공간의 내부에서 압탕부를 가압하는 피스톤을 포함하여;
    상기 경동장치를 구동하여 캐비티에 용탕을 주입한 뒤 주입컵을 탈거하고, 압탕부를 수용하도록 압탕부커버를 경동주조용 금형에 고정시킨 뒤 피스톤으로 압탕부를 가압하도록 제어되되,
    상기 압탕부커버 및 피스톤에 압력을 가하는 유압장치를 더 포함하고;
    상기 압탕부커버가 경동주조용 금형에 가하는 압력보다 피스톤이 용탕에 가하는 압력의 크기보다 큰 것을 특징으로 하는, 상하형 분리식 유압 경동주조장치
  2. 청구항 1항에 있어서,
    상기 유압장치는,
    단일한 유압회로로 압탕부커버 및 피스톤과 연결되되, 압탕부커버가 피스톤보다 가압방향에 수직한 단면의 면적이 큰 것을 특징으로 하는, 상하형 분리식 유압 경동주조장치
  3. 청구항 1항에 있어서,
    상기 가압장치는,
    상기 압탕부커버 일측에 전자석이 구비되어, 피스톤에 의한 압탕부의 가압과정에서 압탕부커버 및 경동주조용 금형을 밀착시키는, 상하형 분리식 유압 경동주조장치
  4. 청구항 1항에 있어서,
    상기 가압장치는,
    상기 압탕부커버 및 경동주조용 금형에 서로 대응되는 체결부가 구비되어, 피스톤에 의한 압탕부의 가압과정에서 압탕부커버 및 경동주조용 금형을 고정결합시키는, 상하형 분리식 유압 경동주조장치
  5. 경동주조방법에 있어서,
    청구항 1항 내지 4항 중 어느 한 항의 상하형 분리식 유압 경동주조장치를 이용하고,
    경동주조용 금형에 주입컵을 고정시키는 주입컵결합단계;
    상기 주입컵결합단계 후, 주입컵에 용탕을 주입하는 제1용탕주입단계;
    상기 제1용탕주입단계 후, 경동주조용 금형을 기울여 주입컵 내부의 용탕을 중력에 의해 캐비티 내부로 주입시키는 제2용탕주입단계;
    상기 제2용탕주입단계 후, 경동주조용 금형에서 주입컵을 분리하는 주입컵분리단계;
    상기 주입컵분리단계 후, 압탕부를 수용하도록 압탕부커버를 경동주조용 금형과 밀착시키는 가압준비단계;
    상기 가압준비단계 후, 피스톤을 밀어내어 압탕부 내 용탕을 가압하는 가압단계;
    상기 가압단계 중, 용탕을 냉각시키는 냉각단계;
    상기 가압단계 및 냉각단계 후, 가압장치를 경동주조용 금형으로부터 분리하는 가압해제단계;
    상기 가압해제단계 후, 상형 및 하형을 분리하여 주조품을 경동주조용 금형으로부터 분리하는 주조품분리단계 및;
    상기 주조품으로부터, 압탕부에 위치해 있던 용탕이 응고된 부분을 제거하는 단계를 포함하는; 경동주조방법
PCT/KR2020/017496 2020-12-02 2020-12-02 상하형 분리식 유압 경동주조장치 및 경동주조방법 WO2022119005A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/017496 WO2022119005A1 (ko) 2020-12-02 2020-12-02 상하형 분리식 유압 경동주조장치 및 경동주조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/017496 WO2022119005A1 (ko) 2020-12-02 2020-12-02 상하형 분리식 유압 경동주조장치 및 경동주조방법

Publications (1)

Publication Number Publication Date
WO2022119005A1 true WO2022119005A1 (ko) 2022-06-09

Family

ID=81854020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017496 WO2022119005A1 (ko) 2020-12-02 2020-12-02 상하형 분리식 유압 경동주조장치 및 경동주조방법

Country Status (1)

Country Link
WO (1) WO2022119005A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249512A (ja) * 1998-04-21 1998-09-22 Hiramoto Kogyosho:Kk 鋳造方法及び鋳造装置
KR20020054778A (ko) * 2000-12-28 2002-07-08 이계안 알루미늄 중력 주조 시스템
KR20040008957A (ko) * 2002-07-20 2004-01-31 현대자동차주식회사 용탕사출장치
JP2007083293A (ja) * 2005-09-26 2007-04-05 Aisin Takaoka Ltd 可傾鋳造装置
CN109128020A (zh) * 2017-06-27 2019-01-04 通用电气公司 用于制造多孔陶瓷立体光刻的树脂及其使用方法
KR20210032900A (ko) * 2020-09-01 2021-03-25 유진금속공업(주) 상하형 분리식 유압 경동주조장치 및 경동주조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249512A (ja) * 1998-04-21 1998-09-22 Hiramoto Kogyosho:Kk 鋳造方法及び鋳造装置
KR20020054778A (ko) * 2000-12-28 2002-07-08 이계안 알루미늄 중력 주조 시스템
KR20040008957A (ko) * 2002-07-20 2004-01-31 현대자동차주식회사 용탕사출장치
JP2007083293A (ja) * 2005-09-26 2007-04-05 Aisin Takaoka Ltd 可傾鋳造装置
CN109128020A (zh) * 2017-06-27 2019-01-04 通用电气公司 用于制造多孔陶瓷立体光刻的树脂及其使用方法
KR20210032900A (ko) * 2020-09-01 2021-03-25 유진금속공업(주) 상하형 분리식 유압 경동주조장치 및 경동주조방법

Similar Documents

Publication Publication Date Title
JPS61276762A (ja) 金属成品の製造方法
WO2022119005A1 (ko) 상하형 분리식 유압 경동주조장치 및 경동주조방법
WO2022119006A1 (ko) 진공 가압 경동주조장치 및 경동주조방법
WO2022119004A1 (ko) 경동주조장치 및 경동주조방법
KR102250794B1 (ko) 상하형 분리식 유압 경동주조장치 및 경동주조방법
KR102250796B1 (ko) 진공 가압 경동주조장치 및 경동주조방법
KR102194412B1 (ko) 경동주조장치 및 경동주조방법
WO2004022265A1 (en) Method and apparatus for producing investment castings in a vacuum
CN113275535B (zh) 一种提高金属基复合材料性能的成型压铸工艺
KR100260141B1 (ko) 알루미늄휠 주조장치
EP0356659B1 (en) Countergravity casting apparatus and process for casting thinwalled parts
CA2047545A1 (en) Vacuum-assisted, countergravity casting apparatus and method
JPH0220653A (ja) 真空反重力式注型方法及び装置
KR101069300B1 (ko) 금속 성형체 제조용 금형 및 이를 이용한 금속 성형체의 제조방법
US5131573A (en) Method and device for shrouding a stream of molten metal
CN206824645U (zh) 一种便于行车起吊作业的真空吸铸装置
JP2001225161A (ja) 重力金型鋳造法による軽合金鋳物製造用の減圧金型、減圧−及び加圧金型及び該減圧金型又は該減圧−及び加圧金型を使用する鋳造装置
CN218425472U (zh) 一种砂模铸造砂箱加高结构和可加高砂箱
KR101741109B1 (ko) 주형을 이용한 주물의 제조방법
CN212495200U (zh) 一种铸件模具的排气装置
CN212217038U (zh) 一种水龙头压铸加工装置
JPS628260B2 (ko)
JP3395089B2 (ja) 横型締、縦射出装置
CN201913237U (zh) 铁水包衬模具
CN113953446B (zh) 一种便于脱模的砂型铸造模具及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964353

Country of ref document: EP

Kind code of ref document: A1