WO2022118971A1 - 半導体装置を製造する方法 - Google Patents

半導体装置を製造する方法 Download PDF

Info

Publication number
WO2022118971A1
WO2022118971A1 PCT/JP2021/044561 JP2021044561W WO2022118971A1 WO 2022118971 A1 WO2022118971 A1 WO 2022118971A1 JP 2021044561 W JP2021044561 W JP 2021044561W WO 2022118971 A1 WO2022118971 A1 WO 2022118971A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
resin film
carrier
layer
protective layer
Prior art date
Application number
PCT/JP2021/044561
Other languages
English (en)
French (fr)
Inventor
省吾 祖父江
紗瑛子 小川
大助 池田
奎佑 大河原
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to CN202180081462.9A priority Critical patent/CN116547800A/zh
Priority to US18/255,367 priority patent/US20240006192A1/en
Priority to KR1020237019189A priority patent/KR20230113759A/ko
Priority to JP2022567012A priority patent/JPWO2022118971A1/ja
Publication of WO2022118971A1 publication Critical patent/WO2022118971A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Definitions

  • the present disclosure provides a method of manufacturing a semiconductor device.
  • a method of manufacturing a semiconductor device such as a fan-out package may include steps such as processing a semiconductor chip and forming a rewiring layer (RDL), in which the semiconductor chip tentatively attaches to a carrier. It may be done in a fixed state.
  • RDL rewiring layer
  • the present disclosure includes temporarily fixing a semiconductor chip to a carrier, and provides a method for efficiently manufacturing a semiconductor device.
  • the method comprises a carrier and a temporary fixed laminate comprising a sealing structure provided on the main surface of the carrier and including a plurality of semiconductor chips and a sealing portion for sealing the plurality of semiconductor chips. It includes forming and removing the carrier from the temporary fixed laminate.
  • the semiconductor chip has a chip main body portion having a first surface and a second surface on the opposite side thereof, and a connection terminal provided on the first surface.
  • the sealing portion covers the second surface of the plurality of semiconductor chips, and seals the plurality of semiconductor chips together with the integrated protective layer adjacent to the carrier in the temporary fixed laminate and the protective layer. It has an encapsulant layer.
  • the protective layer is a cured curable resin film.
  • a semiconductor device can be efficiently manufactured by a method including temporarily fixing a semiconductor chip to a carrier.
  • One aspect of the present disclosure also has the advantage that soot is less likely to occur on the surface of the sealing portion separated from the carrier.
  • FIG. 1 It is sectional drawing which shows one Embodiment of the film material which has a curable resin film. It is sectional drawing which shows one Embodiment of a semiconductor device.
  • (A), (b), (c) and (d) are process charts showing an embodiment of a method for manufacturing a semiconductor device.
  • (A), (b), (c) and (d) are process charts showing an embodiment of a method for manufacturing a semiconductor device.
  • (A), (b), (c) and (d) are process charts showing an embodiment of a method for manufacturing a semiconductor device.
  • (A), (b), (c) and (d) are process charts showing an embodiment of a method for manufacturing a semiconductor device.
  • (A), (b), (c), (d) and (e) are process charts showing an embodiment of a method for manufacturing a semiconductor device.
  • (A), (b), (c), (d) and (e) are process charts showing an embodiment of a method for manufacturing a semiconductor device. It is an ultraviolet-visible absorption spectrum of a curable resin film.
  • FIG. 1 is a cross-sectional view showing an embodiment of a film material having a curable resin film.
  • the film material 5 shown in FIG. 1 includes a support film 3A, a curable resin film 22 provided on the support film 3A, and a protective film 3B covering the surface of the curable resin film 22 opposite to the support film 3A. And have.
  • the curable resin film 22 may have tackiness.
  • the curable resin film 22 may have a tack property such that it can be attached to a glass substrate in an environment of 25 ° C.
  • the tackable curable resin film 22 can be bonded to a carrier described later at room temperature or relatively low temperature conditions. Further, the semiconductor chip can be arranged at a predetermined position on the curable resin film 22 at a relatively low temperature.
  • the 90 degree peel strength between the curable resin film 22 and the glass substrate is 10 N / m or more and 20 N / at 25 ° C. It may be m or more, 30 N / m or more, 40 N / m or more, or 200 N / m or less.
  • the "temperature condition of 25 ° C.” means a condition in which the temperature of the curable resin film 22 and the glass substrate is 25 ° C.
  • the curable resin film 22 bonded to the glass substrate is cured and then the cured curable resin film 22 is irradiated with incoherent light from the glass substrate side, the curable resin film 22 and the glass substrate are subjected to each other.
  • the adhesive strength between them may be 5 MPa or less.
  • the curable resin film 22 can be a film having low light transmission.
  • the transmittance of the curable resin film 22 with respect to light having a wavelength of 355 nm after curing is 50% or less, 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less. It may be 15% or less, 10% or less, 5% or less, or 3% or less, or 0% or more. Since the curable resin film 22 having low light transmission efficiently absorbs light, it can be easily separated from the carrier by irradiation with light.
  • the transmittance here means the ratio of the intensity of transmitted light to the intensity of incident light when light having a predetermined wavelength is incident on the curable resin film 22 from one main surface side.
  • the transmittance of the curable resin film 22 before curing to light at a wavelength of 355 nm is 50% or less, 45% or less, 40% or less, 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10 % Or less, 5% or less, 3% or less, or 0% or more.
  • the shear viscosity of the curable resin film 22 may be 5000 Pa ⁇ s or more, 6000 Pa ⁇ s or more, 7000 Pa ⁇ s or more, or 8000 Pa ⁇ s or more at 100 ° C., 100,000 Pa ⁇ s or less, 90,000 Pa ⁇ s or less, or It may be 80,000 Pa ⁇ s or less.
  • the shear viscosity of the curable resin film 22 is within this range, it is particularly easy to obtain a sufficient effect of holding the adherend.
  • the storage elastic modulus of the curable resin film 22 after curing may be 300 MPa or more, 400 MPa or more or 500 MPa or more at 25 ° C., or 6000 MPa or less, 5500 MPa or less or 5000 MPa or less.
  • the storage elastic modulus of the curable resin film 22 after curing may be 0.1 MPa or more, 0.5 MPa or more, or 1.0 MPa or more at 250 ° C., 200 MPa or less, 190 MPa or less, 180 MPa or less, 170 MPa or less, It may be 160 MPa or less, 150 MPa or less, 140 MPa or less, 130 MPa or less, or 120 MPa or less. When the storage elastic modulus of the curable resin film 22 after curing is within these ranges, a sufficient effect of protecting the semiconductor element can be obtained.
  • the curable resin film 22 may contain a light absorber.
  • a curable resin film containing a light absorber can easily have sufficiently low light transmittance.
  • the light absorber may be a material that absorbs incoherent light and generates heat.
  • the light absorber may be a black pigment or dye. Specific examples of the light absorber include carbon black, aluminum, nickel, and titanium oxide.
  • the content of the light absorber can be, for example, within a range in which the transmittance of the curable resin film 22 with respect to light having a wavelength of 355 nm after curing is 20% or less.
  • the content of the light absorber may be 0.1% by mass or more or 1% by mass or more based on the mass of the curable resin film 22, and is 30% by mass or less, 25% by mass or less, It may be 20% by mass or less, 15% by mass or less, 10% by mass or less, or 5% by mass or less.
  • the curable resin film 22 may contain a thermoplastic resin.
  • the curable resin film 22 containing a thermoplastic resin having a low glass transition temperature tends to form a semiconductor device in which warpage is suppressed.
  • the glass transition temperature of the thermoplastic resin may be ⁇ 40 ° C. or higher and 40 ° C. or lower or 30 ° C. or lower, or ⁇ 30 ° C. or higher and 40 ° C. or lower or 30 ° C. or lower.
  • the glass transition temperature of the thermoplastic resin is 40 ° C. or lower or 30 ° C. or lower
  • the curable resin film tends to have appropriate flexibility and adhesiveness to the adherend.
  • the glass transition temperature of the thermoplastic resin film is ⁇ 40 ° C. or higher or ⁇ 30 ° C. or higher, the uncured curable resin film tends to have appropriate tackiness and handleability.
  • the thermoplastic resin may have a reactive group.
  • the reactive group of the thermoplastic resin may be, for example, an epoxy group. Since the epoxy group is relatively difficult to proceed with the cross-linking reaction, the gelation of the varnish for forming the thermosetting resin film and the unintentional increase in the degree of curing of the curable resin film are caused to the adherend. There is a tendency to suppress a decrease in adhesive strength.
  • the thermoplastic resin may be a (meth) acrylic copolymer or a (meth) acrylic copolymer having a reactive group.
  • (meth) acrylic is used as a term to mean acrylic or methacrylic. Other similar terms are interpreted in the same way.
  • the (meth) acrylic copolymer is a copolymer containing a (meth) acrylic monomer having a (meth) acryloyl group as a monomer unit.
  • the (meth) acrylic copolymer forms a homopolymer having a glass transition temperature of 50 ° C. or higher, and a (meth) acrylic monomer forming a homopolymer having a glass transition temperature of 0 ° C. or lower.
  • a copolymer containing a (meth) acrylic monomer having an epoxy group as a monomer unit may be used.
  • the glass transition temperature of homopolymers formed by (meth) acrylic monomers with epoxy groups is not limited.
  • the (meth) acrylic monomer forming a homopolymer having a glass transition temperature of 50 ° C. or higher and the (meth) acrylic monomer forming a homopolymer having a glass transition temperature of 0 ° C. or lower are monomers having no epoxy group. There can be.
  • the weight average molecular weight of the thermoplastic resin may be 200,000 or more and 1,000,000 or less.
  • the weight average molecular weight here can be a standard polystyrene equivalent value measured by gel permeation chromatography.
  • the curable resin film tends to be stably formed, and the curable resin film tends to have appropriate strength, flexibility and tackiness. Tend. Further, the curable resin film tends to have excellent handleability and heat resistance. Further, when the weight average molecular weight of the thermoplastic resin is 1,000,000 or less, appropriate fluidity can be easily obtained.
  • the content of the thermoplastic resin may be 10 to 80% by mass based on the mass of the curable resin film 22.
  • the content of the thermoplastic resin is 10% by mass or more, the handleability of the curable resin film at a high temperature tends to be improved.
  • the content of the thermoplastic resin is 80% by mass or less, the curable resin film after curing tends to have a moderately large elastic modulus, whereby high reliability can be easily obtained.
  • the curable resin film 22 may further contain a curable resin which is a compound having a reactive group.
  • the curable resin may be an epoxy resin having two or more epoxy groups, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin. Can be mentioned. Two or more kinds of epoxy resins selected from these may be used together. The molecular weight of the curable resin may be 3000 or less.
  • the curable resin film 22 containing a curable resin has curability and tends to have an appropriate tack property.
  • the content of the curable resin may be 1% by mass or more and 50% by mass or less, or 40% by mass or less based on the mass of the curable resin film 22, and 5% by mass or more and 50% by mass or less or. It may be 40% by mass or less.
  • the content of the curable resin is within these ranges, the semiconductor device is particularly likely to be stably and efficiently manufactured.
  • the content of the curable resin is 1% by mass or more or 5% by mass or more, the adhesive strength of the curable resin film to the semiconductor chip is improved, and as a result, the reliability of the manufactured semiconductor device tends to be improved. It is in.
  • the content of the curable resin is 50% by mass or less or 40% by mass, the excessive flow of the curable resin film tends to be more suppressed.
  • the curable resin film 22 may further contain a silica filler.
  • the content of the silica filler may be 1 to 60% by mass or 5 to 60% by mass based on the mass of the curable resin film 22.
  • the protective layer formed by curing the curable resin film 22 containing the silica filler can be particularly easily engraved on the surface thereof by irradiation with a laser beam.
  • the content of the silica filler is 60% by weight or less, the curable resin film after curing tends to have an appropriate storage elastic modulus, and particularly good adhesiveness is likely to be exhibited.
  • the curable resin film 22 may further contain a reactive group of a thermoplastic resin, a reactive group of a curable resin, or a curing agent that reacts with both of them.
  • the curing agent may be, for example, a phenol resin.
  • the curable resin film 22 may further contain a curing accelerator that accelerates the reaction of the curing agent.
  • the curing accelerator may be an imidazole compound.
  • the curable resin film 22 does not have to contain substantially a silicone compound having a polysiloxane chain.
  • a curable resin film containing no silicone compound tends to have good adhesiveness to a semiconductor chip after curing.
  • the content of the silicone compound may be less than 1.0 part by mass, less than 0.9 part by mass, or less than 0.8 part by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the thickness of the curable resin film 22 may be, for example, 10 to 400 ⁇ m.
  • the support film 3A and the protective film 3B may be a thermoplastic resin film such as a polyethylene terephthalate film.
  • the thickness of the support film 3A and the protective film 3B may be 10 to 150 ⁇ m.
  • a varnish containing a curable resin composition containing the above-mentioned components constituting the curable resin film 22 and a solvent is applied to the support film 3A, and a solvent is applied from the coating film on the support film 3A. It can be obtained by a method including forming a curable resin film 22 by removing the film 22 and laminating a protective film 3B on a surface of the curable resin film 22 opposite to the support film 3A.
  • the film material and the curable resin film exemplified above form a temporary fixed laminate having a carrier and a sealing structure provided on the main surface of the carrier, and remove the carrier from the temporary fixed laminate. It can be used to manufacture a semiconductor device by a method including the above.
  • FIG. 2 is a cross-sectional view schematically showing an example of a semiconductor device that can be manufactured by using the curable resin film 22.
  • the semiconductor device 1 shown in FIG. 2 is a device having a fan-out package (FO-PKG) structure, and includes a semiconductor chip 10, a sealing portion 15 for sealing the semiconductor chip 10, a rewiring layer 13, and solder. It is equipped with a ball 14.
  • the semiconductor chip 10 has a chip main body portion 10a having a first surface S1 and a second surface S2 on the opposite side thereof, and a connection terminal 10b provided on the first surface S1.
  • the rewiring layer 13 is a layer for widening the terminal pitch of the connection terminals 10b, and includes, for example, an insulating layer 13a including polyimide and the like, and wiring 13b such as copper wiring.
  • the terminal pitch of the connection terminal 10b is widened by the pitch conversion by the rewiring layer 13.
  • the solder ball 14 is connected to a terminal whose terminal pitch is widened by the rewiring layer 13.
  • the sealing portion 15 has a sealing material layer 11 that covers a portion of the surface of the semiconductor chip 10 other than the second surface S2, and a protective layer 12 that covers the second surface S2, and is on the rewiring layer 13.
  • the semiconductor chip 10 is sealed with.
  • the protective layer 12 can be a cured product of the curable resin film 22 according to the above-described embodiment.
  • the surface S3 of the encapsulant layer 11 opposite to the rewiring layer 13 forms a flat surface together with the second surface S2 of the semiconductor chip 10, and the protective layer 12 extends so as to cover the entire flat surface. is doing.
  • the protective layer 12 can be a permanent film constituting the semiconductor device without being removed after the semiconductor device is manufactured.
  • FIGS. 3, 4 and 5 are process diagrams showing an example of a method for manufacturing the semiconductor device 1.
  • the methods shown in FIGS. 3 to 5 are to form a temporary fixed laminated body 45 (FIG. 3 (d)) including the carrier 2 and the sealing structure 40 provided on the main surface of the carrier 2. This includes removing the carrier 2 from the fixed laminate 45.
  • the temporary fixed laminate 45 has the curable resin film 22 and the carrier 2 bonded to each other, and the curable resin film 22 on the opposite side to the carrier 2.
  • a plurality of semiconductor chips 10 are arranged on the surface so that the second surface S2 is in contact with the curable resin film 22, and the curable resin film 22 is cured to protect the curable resin film.
  • the layer 12 is formed and a plurality of semiconductor chips 10 are fixed on the protective layer 12, and the encapsulant layer 11 is formed on the protective layer 12 and the semiconductor chip 10, whereby the protective layer 12 and the encapsulant are formed. It can be formed by a method including forming a sealing portion 15 having a layer 11.
  • the protective film 3B may be peeled off from the film material 5 exemplified in FIG. 1, the exposed curable resin film 22 may be attached to the carrier 2, and then the support film 3A may be peeled off from the curable resin film 22.
  • the curable resin film 22 and the carrier 2 may be bonded together under temperature conditions of 20 to 120 ° C.
  • the "temperature condition of 20 to 120 ° C.” means a condition in which the temperature of the curable resin film 22 and the carrier 2 is within the range of 20 to 120 ° C. This temperature condition may be 40 to 100 ° C.
  • the laminate of the curable resin film 22 and the carrier 2 may be pressed for bonding, and the pressure for that may be, for example, 0.01 to 1 MPa.
  • the carrier 2 may have a support substrate 20 and a light absorption layer 21 provided on the main surface of the support substrate 20.
  • the carrier 2 is arranged so that the light absorption layer 21 is adjacent to the curable resin film 22 or the protective layer 12 which is a cured product thereof.
  • the support substrate 20 is a plate-like body that transmits the incoherent light L described later, and may be, for example, an inorganic glass substrate or a transparent resin substrate.
  • the thickness of the support substrate 20 may be, for example, 0.1 to 2.0 mm.
  • the light absorption layer 21 is a layer containing a conductor that absorbs incoherent light L and generates heat.
  • the transmittance of the light absorption layer 21 with respect to light having a wavelength of 355 nm may be 5% or less, 3.1% or less, 3.0% or less, 2.5% or less, or 1.5% or less, and may be 0% or more. May be.
  • Examples of the conductor constituting the light absorption layer 21 include metals, metal oxides, and conductive carbon materials.
  • the metal may be a single metal such as chromium, copper, titanium, silver, platinum or gold, or may be an alloy such as nickel-chromium, stainless steel or copper-zinc.
  • Examples of metal oxides include indium tin oxide (ITO), zinc oxide, and niobium oxide. These may be used individually by 1 type or in combination of 2 or more type.
  • the conductor may be chromium, titanium, or a conductive carbon material.
  • the light absorption layer 21 may be a single layer or a metal layer composed of a plurality of layers.
  • the light absorbing layer 21 has thallium (Ta), platinum (Pt), nickel (Ni), titanium (Ti), tungsten (W), chromium (Cr), and the like. It may contain at least one metal selected from the group consisting of copper (Cu), aluminum (Al), silver (Ag) and gold (Au).
  • the light absorption layer 21 may be composed of two layers, a first layer and a second layer, and may be laminated in the order of the first layer and the second layer from the support substrate 20 side.
  • first layer has a high light absorption property
  • second layer has a high coefficient of thermal expansion and a high elastic modulus
  • the second layer may contain at least one metal selected from the group consisting of copper (Cu), aluminum (Al), silver (Ag) and gold (Au).
  • the first layer may contain at least one metal selected from the group consisting of titanium (Ti), tungsten (W) and chromium (Cr), and the second layer may be from copper (Cu) and aluminum (Al). It may contain at least one metal selected from the group.
  • the metal layer as the light absorption layer 21 may be a layer formed by physical vapor deposition (PVD) such as vacuum vapor deposition and sputtering, or chemical vapor deposition (CVD) such as plasma chemical vapor deposition, or electrolytic plating. Alternatively, it may be a plating layer formed by electroless plating.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • electrolytic plating Alternatively, it may be a plating layer formed by electroless plating.
  • the light absorption layer 21 may be a layer containing conductive particles that absorb light to generate heat and a binder resin in which the conductive particles are dispersed.
  • the conductive particles may be particles containing the above-mentioned conductor.
  • the light absorption layer 21 can be a layer containing conductive particles and a curable resin composition.
  • the curable resin composition constituting the light absorption layer 21 can contain the same components as the curable resin composition constituting the curable resin film 22.
  • the curable resin composition constituting the light absorption layer 21 may be the same as or different from the curable resin composition constituting the curable resin film 22.
  • the content of the conductive particles in the light absorption layer 21 is 10 to 90 mass with respect to the total amount of the components other than the conductive particles in the light absorption layer 21, that is, 100 parts by mass of the binder resin or the curable resin composition. It may be a part. From the viewpoint of transmittance, the content of the conductive particles may be 20 parts by mass or more, or 30 parts by mass or more.
  • the light absorbing layer containing the conductive particles and the binder resin for example, a varnish containing the conductive particles, the binder resin and the organic solvent is applied on the support member or the curable resin layer, and the organic solvent is applied from the coating film. It can be formed by methods including removal.
  • the light absorption layer 21 prepared in advance may be laminated on the support substrate 20.
  • the thickness of the light absorption layer 21 may be 1 to 5000 nm or 100 to 3000 nm from the viewpoint of light peelability. Further, when the thickness of the light absorption layer 21 is 50 to 300 nm, the light absorption layer 21 tends to have a sufficiently low transmittance. When the light absorption layer 21 is a single layer or a metal layer composed of a plurality of layers, the thickness of the light absorption layer 21 (or the metal layer) is 75 nm or more, 90 nm or more, or 100 nm or more from the viewpoint of good peelability. It may be present, and may be 1000 nm or less.
  • the thickness of the light absorption layer 21 is 100 nm or more, 125 nm or more, 150 nm or more, or 200 nm or more from the viewpoint of good peelability. It may be 1000 nm or less. Even if the light absorption layer 21 is a metal layer containing a metal having a relatively low light absorption property (for example, Cu or Ni) or a metal layer containing a metal having a relatively low coefficient of thermal expansion (for example, Ti), the thickness thereof. The larger the value, the better the peelability tends to be obtained.
  • a plurality of semiconductor chips 10 are arranged at predetermined positions on the curable resin film 22 bonded to the carrier 2 in a direction in which the second surface S2 is in contact with the curable resin film 22, that is, in a face-up direction.
  • the semiconductor chip 10 may be placed on the curable resin film 22 while heating the curable resin film 22, the semiconductor chip 10, or both of them.
  • the heating temperature may be, for example, 20 to 120 ° C. or 60 to 100 ° C.
  • the semiconductor chip 10 placed on the curable resin film 22 may be pressurized, and the pressure for that may be 0.01 to 1.0 MPa or 0.1 to 0.2 MPa.
  • the pressurization time may be, for example, 0.01 to 10 seconds or 0.1 to 2 seconds.
  • the curable resin film 22 is cured by at least one of heat and light, and an integral protective layer covering the second surface S2 of all the plurality of semiconductor chips 10. 12 (cured curable resin film) is formed.
  • the semiconductor chip 10 is fixed to the carrier 2 via the formed protective layer 12.
  • the adhesive strength between the protective layer 12 and the carrier 2 at this point may be 1 MPa or more.
  • a sealing material layer 11 for collectively sealing a plurality of semiconductor chips 10 is formed on the protective layer 12.
  • the encapsulant layer 11 can be formed by using an encapsulant commonly used for encapsulating a semiconductor chip.
  • the encapsulant may be a thermosetting resin composition containing an epoxy resin.
  • the semiconductor chip 10 is included in the sealing portion 15 composed of the sealing material layer 11 and the protective layer 12.
  • the encapsulant layer 11 is formed by a usual method such as a compression molding method. Since the semiconductor chip 10 is fixed to the protective layer 12, the position of the semiconductor chip 10 is unlikely to shift while the encapsulant layer 11 is formed.
  • a part of the encapsulant layer 11 is removed by polishing from the side opposite to the protective layer 12, and the connection terminal 10b is exposed.
  • the rewiring layer 13 having the wiring 13b connected to the exposed connection terminal 10b and the insulating layer 13a is formed on the encapsulant layer 11, and the encapsulant layer 11 of the rewiring layer 13 is formed.
  • the sealing structure 40 including the protective layer 12 and the plurality of semiconductor chips 10 is divided on the dicing tape 50 to form the individualized semiconductor device 1, and the semiconductor device 1 is divided into the dicing tape. It may further include picking up from 50.
  • the sealing structure having the semiconductor chip 10 and the sealing material layer 11 and not provided with the protective layer 12 is not supported by a carrier or the like, the interface between the semiconductor chip 10 and the sealing material layer 11 is peeled off, etc. May cause damage such as cracking.
  • the protective layer 12 damage to the sealing structure separated from the carrier during the manufacturing process can be suppressed.
  • the protective layer 12 can be polished, the rewiring layer 13 can be formed, and the solder balls can be formed by ordinary methods.
  • the incoherent light L for separating the protective layer 12 from the carrier 2 is light that is not coherent, and is an electromagnetic wave having properties such as no interference fringes, low coherence, and low directivity. Incoherent light tends to be attenuated as the optical path length becomes longer. Laser light is generally coherent light, whereas light such as sunlight and fluorescent light is incoherent light. Incoherent light can also be said to be light excluding laser light. Since the irradiation area of the incoherent light is generally primarily wider than that of the coherent light (that is, laser light), it is possible to reduce the number of irradiations. By using incoherent light, soot is less likely to occur on the surface of the protective layer 12 exposed by peeling of the carrier 2 as compared with the case of using laser light. However, the surface of the exposed protective layer 12 may be cleaned if necessary.
  • the incoherent light L may contain infrared rays.
  • the incoherent light L may be pulsed light.
  • the light source of the incoherent light L is not particularly limited, but may be a xenon lamp.
  • a xenon lamp is a lamp that utilizes light emission by application / discharge in an arc tube filled with xenon gas.
  • the irradiation conditions of the xenon lamp include the applied voltage, pulse width, irradiation time, irradiation distance (distance between the light source and the temporary fixing material layer), irradiation energy, etc., and these can be arbitrarily set according to the number of irradiations, etc. can. From the viewpoint of reducing damage to the semiconductor chip 10, irradiation conditions may be set so that the carrier 2 can be separated by one irradiation.
  • a laser beam for example, a green laser
  • necessary information such as a product name may be engraved on the surface of the protective layer 12 opposite to the semiconductor chip 10.
  • the surface of the exposed protective layer 12 may be cleaned if necessary.
  • the dicing tape 50 is attached to the protective layer 12, and the sealing portion including the plurality of semiconductor chips 10 and the protective layer 12 is included.
  • the sealing structure 40 including 15, the rewiring layer 13, and the solder ball 14 is cut at a predetermined position S to form a plurality of semiconductor devices 1, and the semiconductor device 1 is cut from the dicing tape 50. It may include picking up.
  • FIGS. 6 to 8 are process diagrams showing another example of the method for manufacturing the semiconductor device 1.
  • the methods shown in FIGS. 6 to 8 are to form a temporary fixed laminated body 45 (FIG. 7 (e)) including the carrier 2 and the sealing structure 40 provided on the main surface of the carrier 2. This includes removing the carrier 2 from the fixed laminate 45.
  • the temporary fixing laminate 45 has a carrier 30 and a temporary fixing layer 32 provided on the carrier 30.
  • the material 35 is prepared, and a plurality of semiconductor chips 10 having a chip main body portion 10a having a first surface S1 and a second surface S2 on the opposite side thereof and a connection terminal 10b provided on the second surface S2 are prepared.
  • Temporary fixed laminate 45 (FIG. 6 (c)), which has a sealing material layer 11 that collectively seals on 35, and the second surface S2 of a plurality of semiconductor chips 10 is exposed from the sealing material layer 11. )) Is formed, the curable resin film 22 covering the second surface S2 and the encapsulant layer 11 is provided, the curable resin film 22 and the carrier 2 are bonded together, and the temporary fixed laminate 45 is formed. It can be formed by a method further including removing the temporary fixing material 35 from the above in this order.
  • the carrier 30 constituting the temporary fixing material 35 may be, for example, a glass substrate.
  • the adhesive layer 32 constituting the temporary fixing material 35 may be, for example, a release sheet having an adhesive force at room temperature and having an adhesive force decreasing by heating.
  • the plurality of semiconductor chips 10 are adhered to each other in the direction in which the first surface S1 and the connection terminal 10b are located on the adhesive layer 32 side of the temporary fixing material 35, that is, in the face-down direction. Arranged on layer 32.
  • the encapsulant layer 11 for encapsulating the semiconductor chip 10 is formed.
  • the encapsulant layer 11 is formed so that the second surface S2 of the semiconductor chip 10 is exposed from the encapsulant layer 11.
  • the encapsulant layer 11 in which the entire semiconductor chip 10 including the second surface S2 is embedded is formed, and then a part of the encapsulant layer 11 is removed by polishing from the side opposite to the temporary fixing material 35, whereby the encapsulant layer 11 is formed.
  • a flat surface on which the second surface S2 of the semiconductor chip 10 is exposed may be formed.
  • the temporary fixing laminate 45 at this stage is composed of a temporary fixing material 35, a plurality of semiconductor chips 10, and a sealing material layer 11.
  • a curable resin film 22 covering the second surface S2 of the semiconductor chip 10 and the encapsulant layer 11 is provided, and the curing is performed as shown in FIG. 7A.
  • the sex resin film 22 and the carrier 2 are bonded together.
  • the carrier 2 has a support substrate 20 and a light absorption layer 21, and the light absorption layer 21 is oriented so as to be adjacent to the curable resin film 22 (or the protective layer 12), and the carrier 2 and the curable resin film 22 are attached to each other. Can be matched.
  • the bonding conditions can be the same as the conditions in the method illustrated in FIG.
  • the curable resin film 22 bonded to the carrier 2 may be cured to form an integral protective layer 12 (cured curable resin film) that covers the second surface S2 of all of the plurality of semiconductor chips 10. ..
  • the protective layer 12 and the sealing material layer 11 form a sealing portion 15 for sealing the semiconductor chip 10 on the temporary fixing material 35.
  • the sealing structure 40 has a semiconductor chip 10 and a sealing portion 15.
  • the temporary fixing laminate 45 at this stage is composed of the temporary fixing material 35, the sealing structure 40, and the carrier 2.
  • the temporary fixing material 35 is removed from the temporary fixing laminate 45.
  • the adhesive layer 32 may be heated to separate the sealing structure 40 from the adhesive layer 32 whose adhesive strength has been reduced by heating.
  • the rewiring layer 13 is formed on the exposed first surface S1.
  • the rewiring layer 13 has an insulating layer 13a and wirings 13b such as copper wiring provided in the insulating layer 13a.
  • a solder ball 14 is provided on the rewiring layer 13.
  • the carrier 2 is removed from the temporary fixed laminated body 45 composed of the carrier 2 and the sealing structure 40.
  • the method for removing the carrier 2 can be a method including irradiating the temporary fixed laminate 45 with incoherent light from the carrier 2 side, similar to the method exemplified in FIG.
  • the remaining sealing structure 40 is formed by attaching the dicing tape 50 to the protective layer 12 and a plurality of semiconductor chips 10 as shown in FIGS. 8 (b) to 8 (e). ,
  • the sealing structure 40 including the sealing portion 15, the rewiring layer 13, and the solder ball 14 is cut at a predetermined position S to form a plurality of semiconductor devices 1, and the semiconductor device 1 is diced with a dicing tape 50. Divided by methods including picking up from. By dividing the sealing structure 40, a semiconductor device 1 that has been made into individual pieces can be obtained.
  • the cured resin film has a function of fixing the semiconductor chip during various steps such as forming a sealing material layer, thinning the semiconductor chip, and forming a rewiring layer, and sealing the semiconductor chip. It is used both for its function as a material that constitutes a part of the sealing part to be stopped. Therefore, the method according to the present disclosure can greatly simplify the manufacturing process as compared with the case where different materials are used properly for each function.
  • Each varnish was applied to the support film and the coating film was dried to form 20 ⁇ m-thick curable resin films 1 to 7 on the support film.
  • a protective film was placed on each curable resin film to obtain a film material composed of a support film, any of the curable resin films 1 to 7, and a protective film.
  • Storage elastic modulus A plurality of curable resin films were laminated to prepare a laminated film having a thickness of about 240 ⁇ m.
  • the curable resin film was cured by heating the laminated film at 130 ° C. for 20 minutes followed by heating at 170 ° C. for 2 hours.
  • the dynamic viscoelasticity of the obtained cured product was measured in the range of ⁇ 80 to 300 ° C. under the following conditions using a dynamic viscoelasticity measuring device (Rheogel-E4000 manufactured by UBM). Sample size: 4 mm x 30 mm
  • Tension mode frequency 10Hz
  • Temperature rise rate 3 ° C./min From the obtained measurement results, the storage elastic modulus of the curable resin film after curing at 25 ° C. or 250 ° C. was determined. Table 2 shows the measurement results of shear viscosity and storage elastic modulus.
  • Tackiness (90 degree peel strength)
  • the curable resin film was attached to the mirror wafer or the glass substrate in an environment of 25 ° C. or while heating at 70 ° C. A pressure of 0.2 MPa was applied to the curable resin film for bonding.
  • the curable resin film attached to the mirror wafer or the glass substrate was allowed to stand for 2 hours after the support tape (Oji Tape) was attached onto the curable resin film.
  • the 90-degree peel strength was measured by a peeling test in which the curable resin film was peeled off in the direction of 90 degrees with respect to the main surface of the mirror wafer or the glass substrate.
  • the peeling speed was 50 mm / sec. The measurement results are shown in Table 3.
  • FIG. 9 is an ultraviolet-visible absorption spectrum of the curable resin films of Examples 1 and 2, and is shown here as a relative value based on the transmittance for light having a wavelength of 600 nm.
  • FIG. 9 also shows the ultraviolet-visible absorption spectrum of the glass substrate.
  • the curable resin film of Example 1 showed a transmittance (relative value) of 1.01% with respect to light having a wavelength of 355 nm.
  • the curable resin film of Example 2 showed a transmittance of 4.76% (relative value) with respect to light having a wavelength of 355 nm.
  • peeling test A carrier having a glass substrate and a light absorption layer provided on the glass substrate was prepared.
  • the light absorption layer had a Ti layer (thickness: 50 ⁇ m) and a Cu layer (thickness: 200 ⁇ m), and had a laminated structure in which these were laminated in this order from the glass substrate side.
  • the protective film was peeled off from the film material of the curable resin film 1 or 2, the exposed curable resin film was placed on the light absorbing layer of the carrier, and the curable resin film and the carrier were bonded together by a vacuum laminator.
  • the conditions of the vacuum laminator were set to a temperature of 90 ° C., a pressure of 0.5 MPa, and a pressurization time of 60 seconds.
  • a semiconductor chip for testing was placed on a curable resin film bonded to the carrier. Subsequently, the curable resin film was cured by heating at 130 ° C. for 20 minutes and then at 170 ° C. for 2 hours, whereby the semiconductor chip was fixed on the protective layer which is a cured product of the curable resin film.
  • a sealing material containing an epoxy resin was used on the protective layer to form a sealing material layer for sealing the semiconductor ship at 150 ° C. for 300 seconds.
  • the formed encapsulant layer was further cured by heating at 150 ° C. for 6 hours.
  • a temporary fixed laminate for evaluation which was composed of a carrier, a semiconductor chip, a protective layer, and a sealing material layer, was obtained.
  • the evaluation laminate was irradiated with pulsed light (incoherent light) having a width of 300 ⁇ m from the glass substrate side with a xenon lamp having a voltage of 750 V.
  • pulsed light incoherent light
  • the carriers spontaneously peeled from the protective layer after irradiation with the pulsed light without requiring stress. No soot was found on the surface of the exposed protective layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

キャリア、及び、該キャリアの主面上に設けられ、複数の半導体チップと複数の半導体チップを封止する封止部とを含む封止構造体、を備える仮固定積層体を形成することと、仮固定積層体から前記キャリアを除去することと、を含む、半導体装置を製造する方法が開示される。半導体チップが、第1面及び第2面を有するチップ本体部と、第1面上に設けられた接続端子とを有する。封止部が第2面を覆い、仮固定積層体においてキャリアに隣接する一体的な保護層を有する。保護層が、硬化した硬化性樹脂フィルムである。仮固定積層体に対してインコヒーレント光を照射することにより、保護層とキャリアとを分離し、それによって仮固定積層体からキャリアが除去される。

Description

半導体装置を製造する方法
 本開示は、半導体装置を製造する方法を提供する。
 ファンアウトパッケージ等の半導体装置の製造方法は、半導体チップの加工、及び、再配線層(RDL)の形成のような工程を含むことがあり、これらの工程は、半導体チップがキャリアに対して仮固定された状態で行われることがある。
特開2003-306653号公報
 本開示は、半導体チップをキャリアに対して仮固定することを含み、半導体装置を効率的に製造する方法を提供する。
 本開示の一側面は、半導体チップを備える半導体装置を製造する方法に関する。当該方法は、キャリア、及び、該キャリアの主面上に設けられ、複数の半導体チップと前記複数の半導体チップを封止する封止部とを含む封止構造体、を備える仮固定積層体を形成することと、前記仮固定積層体から前記キャリアを除去することとを含む。前記半導体チップは、第1面及びその逆側の第2面を有するチップ本体部と、前記第1面上に設けられた接続端子とを有する。前記封止部は、前記複数の半導体チップの前記第2面を覆い、前記仮固定積層体において前記キャリアに隣接する一体的な保護層と、前記保護層とともに前記複数の半導体チップを封止する封止材層とを有する。前記保護層は、硬化した硬化性樹脂フィルムである。前記仮固定積層体に対してインコヒーレント光を照射することにより、前記保護層と前記キャリアとが分離され、それによって前記仮固定積層体から前記キャリアが除去される。
 本開示の一側面によれば、半導体チップをキャリアに対して仮固定することを含む方法によって、半導体装置を効率的に製造することができる。本開示の一側面は、キャリアから分離した封止部の表面においてススが発生し難いという利点も有する。
硬化性樹脂フィルムを有するフィルム材の一実施形態を示す断面図である。 半導体装置の一実施形態を示す断面図である。 (a)、(b)、(c)及び(d)は、半導体装置を製造する方法の一実施形態を示す工程図である。 (a)、(b)、(c)及び(d)は、半導体装置を製造する方法の一実施形態を示す工程図である。 (a)、(b)、(c)及び(d)は、半導体装置を製造する方法の一実施形態を示す工程図である。 (a)、(b)、(c)及び(d)は、半導体装置を製造する方法の一実施形態を示す工程図である。 (a)、(b)、(c)、(d)及び(e)は、半導体装置を製造する方法の一実施形態を示す工程図である。 (a)、(b)、(c)、(d)及び(e)は、半導体装置を製造する方法の一実施形態を示す工程図である。 硬化性樹脂フィルムの紫外可視吸収スペクトルである。
 以下、必要により図面を参照しながら本開示のいくつかの実施形態について詳細に説明する。ただし、本開示は以下の実施形態に限られるものではない。以下の説明では、同一又は相当部分には同一の符号を付し、重複する説明は省略することがある。上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。図面の寸法比率は図示の比率に限られるものではない。「~」で表される数値範囲は、上限値及び下限値を含む範囲を意味する。
 図1は、硬化性樹脂フィルムを有するフィルム材の一実施形態を示す断面図である。図1に示されるフィルム材5は、支持フィルム3Aと、支持フィルム3A上に設けられた硬化性樹脂フィルム22と、硬化性樹脂フィルム22の支持フィルム3Aとは反対側の面を覆う保護フィルム3Bとを有する。
 硬化性樹脂フィルム22はタック性を有していてもよい。硬化性樹脂フィルム22が25℃の環境下でガラス基板に貼り合わせられる程度のタック性を有していてもよい。タック性を有する硬化性樹脂フィルム22は、室温、又は比較的低温の温度条件で後述のキャリアと貼り合わせることができる。また、硬化性樹脂フィルム22上の所定の位置に半導体チップを比較的低温で配置することができる。
 硬化性樹脂フィルム22が25℃の温度条件でガラス基板に貼り合わせられたときに、硬化性樹脂フィルム22とガラス基板との間の90度ピール強度が、25℃において10N/m以上、20N/m以上、30N/m以上又は40N/m以上であってもよく、200N/m以下であってもよい。「25℃の温度条件」は、硬化性樹脂フィルム22及びガラス基板の温度が25℃となる条件を意味する。
 ガラス基板に貼り合わせられた硬化性樹脂フィルム22を硬化し、次いで硬化した硬化性樹脂フィルム22に対してガラス基板側からインコヒーレント光を照射したときに、硬化性樹脂フィルム22とガラス基板との間の接着強度が5MPa以下であってもよい。
 硬化性樹脂フィルム22は、光透過性の低いフィルムであることができる。具体的には、硬化性樹脂フィルム22の硬化後の波長355nmの光に対する透過率が50%以下、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下、5%以下、又は3%以下であってもよく、0%以上であってもよい。光透過性の低い硬化性樹脂フィルム22は、光を効率的に吸収するため、光の照射によって容易にキャリアから分離することができる。ここでの透過率は、硬化性樹脂フィルム22に対して一方の主面側から所定の波長を有する光を入射させたときに、入射光の強度に対する透過光の強度の割合を意味する。硬化前の硬化性樹脂フィルム22の波長355nmの光に対する透過率が50%以下、45%以下、40%以下、35%以下、30%以下、25%以下、20%以下、15%以下、10%以下、5%以下、又は3%以下であってもよく、0%以上であってもよい。
 硬化性樹脂フィルム22のずり粘度が、100℃において5000Pa・s以上、6000Pa・s以上、7000Pa・s以上、又は8000Pa・s以上であってもよく、100000Pa・s以下、90000Pa・s以下、又は80000Pa・s以下であってもよい。硬化性樹脂フィルム22のずり粘度がこの範囲内にあると、被着体を保持する十分な効果が特に得られ易い。
 硬化性樹脂フィルム22の硬化後の貯蔵弾性率が、25℃において300MPa以上、400MPa以上又は500MPa以上であってもよく、6000MPa以下、5500MPa以下又は5000MPa以下であってもよい。硬化性樹脂フィルム22の硬化後の貯蔵弾性率が、250℃において0.1MPa以上、0.5MPa以上、又は1.0MPa以上であってもよく、200MPa以下、190MPa以下、180MPa以下、170MPa以下、160MPa以下、150MPa以下、140MPa以下、130MPa以下、又は120MPa以下であってもよい。硬化性樹脂フィルム22の硬化後の貯蔵弾性率がこれらの範囲内にあると、半導体素子を保護する十分な効果が得られる。
 硬化性樹脂フィルム22は、光吸収剤を含んでいてもよい。光吸収剤を含む硬化性樹脂フィルムは十分に低い光透過性を容易に有することができる。光吸収剤は、インコヒーレント光を吸収して発熱する材料であってもよい。光吸収剤は、黒色の顔料又は染料であってもよい。光吸収剤の具体例としては、カーボンブラック、アルミニウム、ニッケル、及び酸化チタンが挙げられる。
 光吸収剤の含有量は、例えば、硬化性樹脂フィルム22の硬化後の波長355nmの光に対する透過率が20%以下となるような範囲内であることができる。具体的には、光吸収剤の含有量が、硬化性樹脂フィルム22の質量を基準として0.1質量%以上又は1質量%以上であってもよく、30質量%以下、25質量%以下、20質量%以下、15質量%以下、10質量%以下、又は5質量%以下であってもよい。
 硬化性樹脂フィルム22は、熱可塑性樹脂を含んでいてもよい。低いガラス転移温度を有する熱可塑性樹脂を含む硬化性樹脂フィルム22は、反りの抑制された半導体装置を形成し易い。係る観点から、熱可塑性樹脂のガラス転移温度が-40℃以上で40℃以下又は30℃以下であってもよく、-30℃以上で40℃以下又は30℃以下であってもよい。熱可塑性樹脂のガラス転移温度が40℃以下又は30℃以下であると、硬化性樹脂フィルムが、適度な柔軟性及び被着体への貼り付き性を有し易い傾向にある。熱可塑性樹脂フィルムのガラス転移温度が-40℃以上又は-30℃以上であると、未硬化の硬化性樹脂フィルムが適度なタック性及び取り扱い性を有し易い傾向がある。
 熱可塑性樹脂は、反応性基を有していてもよい。熱可塑性樹脂の反応性基は、例えばエポキシ基であってもよい。エポキシ基は橋かけ反応を比較的進行させ難いため、熱硬化性樹脂フィルムを形成するためのワニスのゲル化、及び、硬化性樹脂フィルムの意図的でない硬化度の上昇に起因する被着体に対する接着力の低下を抑制できる傾向にある。
 熱可塑性樹脂は、(メタ)アクリル共重合体であってもよく、反応性基を有する(メタ)アクリル共重合体であってもよい。本明細書において、「(メタ)アクリル」は、アクリル又はメタクリルを意味する用語として用いられる。他の類似の用語も同様に解釈される。
 (メタ)アクリル共重合体は、(メタ)アクリロイル基を有する(メタ)アクリルモノマーをモノマー単位として含む共重合体である。(メタ)アクリル共重合体が、50℃以上のガラス転移温度を有するホモポリマーを形成する(メタ)アクリルモノマーと、0℃以下のガラス転移温度を有するホモポリマーを形成する(メタ)アクリルモノマーと、エポキシ基を有する(メタ)アクリルモノマーとをモノマー単位として含む共重合体であってもよい。エポキシ基を有する(メタ)アクリルモノマーによって形成されるホモポリマーのガラス転移温度は制限されない。50℃以上のガラス転移温度を有するホモポリマーを形成する(メタ)アクリルモノマー、及び、0℃以下のガラス転移温度を有するホモポリマーを形成する(メタ)アクリルモノマーは、エポキシ基を有しないモノマーであることができる。
 熱可塑性樹脂の重量平均分子量は、200,000以上1,000,000以下であってもよい。ここでの重量平均分子量は、ゲル浸透クロマトグラフィーによって測定される、標準ポリスチレン換算値であることができる。熱可塑性樹脂の重量平均分子量がこのような範囲にあると、硬化性樹脂フィルムが安定して形成され易い傾向、及び、硬化性樹脂フィルムが適度な強度、可撓性及びタック性を有し易い傾向がある。更に、硬化性樹脂フィルムが優れたハンドリング性及び耐熱性を有し易い傾向もある。また、熱可塑性樹脂の重量平均分子量が1,000,000以下であると、適度な流動性が得られ易い。
 熱可塑性樹脂の含有量は、硬化性樹脂フィルム22の質量を基準として、10~80質量%であってもよい。熱可塑性樹脂の含有量が10質量%以上であると、硬化性樹脂フィルムの高温での取り扱い性が向上する傾向がある。熱可塑性樹脂の含有量が80質量%以下であると、硬化後の硬化性樹脂フィルムが適度に大きい弾性率を有し易く、それにより高い信頼性が得られ易い。
 硬化性樹脂フィルム22は、反応性基を有する化合物である硬化性樹脂を更に含んでいてもよい。硬化性樹脂は、2以上のエポキシ基を有するエポキシ樹脂であってもよく、その例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、及びクレゾールノボラック型エポキシ樹脂が挙げられる。これらから選ばれる2種以上のエポキシ樹脂を併用してもよい。硬化性樹脂の分子量は3000以下であってもよい。硬化性樹脂を含む硬化性樹脂フィルム22は、硬化性を有するとともに、適度なタック性を有し易い。
 硬化性樹脂の含有量は、硬化性樹脂フィルム22の質量を基準として、1質量%以上で50質量%以下、又は40質量%以下であってもよく、5質量%以上で50質量%以下又は40質量%以下であってもよい。硬化性樹脂の含有量がこれらの範囲内であると、半導体装置が特に安定的かつ効率的に製造され易い。硬化性樹脂の含有量が1質量%以上又は5質量%以上であると、硬化性樹脂フィルムの半導体チップとの接着力が向上し、その結果、製造される半導体装置の信頼性が向上する傾向にある。硬化性樹脂の含有量が50質量%以下又は40質量%であると、硬化性樹脂フィルムの過度の流動をより抑制できる傾向にある。
 硬化性樹脂フィルム22は、シリカフィラーを更に含んでいてもよい。シリカフィラーの含有量は、硬化性樹脂フィルム22の質量を基準として、1~60質量%、又は5~60質量%であってもよい。シリカフィラーを含む硬化性樹脂フィルム22が硬化することによって形成される保護層は、その表面にレーザ光の照射によって特に容易に刻印することができる。シリカフィラーの含有量が60重量%以下であると、硬化後の硬化性樹脂フィルムが適度な貯蔵弾性率を有し易く、また、特に良好な接着性が発揮され易い。
 硬化性樹脂フィルム22は、熱可塑性樹脂の反応性基、硬化性樹脂の反応性基、又はこれらの両方と反応する硬化剤を更に含んでいてもよい。硬化剤は、例えばフェノール樹脂であってもよい。硬化性樹脂フィルム22が硬化剤を含む場合、硬化剤の反応を促進する硬化促進剤を更に含んでいてもよい。例えば硬化剤がフェノール樹脂である場合、硬化促進剤がイミダゾール化合物であってもよい。
 硬化性樹脂フィルム22が、ポリシロキサン鎖を有するシリコーン化合物を実質的に含まなくてもよい。シリコーン化合物を含まない硬化性樹脂フィルムは、硬化後に半導体チップに対する良好な接着性を有し易い。具体的には、シリコーン化合物の含有量が、熱可塑性樹脂100質量部に対して1.0質量部未満、0.9質量部未満、又は0.8質量部未満であってもよい。
 硬化性樹脂フィルム22の厚さは、例えば10~400μmであってもよい。
 支持フィルム3A及び保護フィルム3Bは、例えばポリエチレンテレフタレートフィルムのような熱可塑性樹脂フィルムであってもよい。支持フィルム3A及び保護フィルム3Bの厚さは、10~150μmであってもよい。
 フィルム材5は、例えば、硬化性樹脂フィルム22を構成する上述の成分を含む硬化性樹脂組成物と溶剤とを含むワニスを支持フィルム3Aに塗布することと、支持フィルム3A上の塗膜から溶剤を除去することにより硬化性樹脂フィルム22を形成することと、硬化性樹脂フィルム22の支持フィルム3Aとは反対側の面上に保護フィルム3Bを積層することとを含む方法によって得ることができる。
 以上例示されたフィルム材及び硬化性樹脂フィルムは、キャリア、及びキャリアの主面上に設けられた封止構造体を備える仮固定積層体を形成することと、仮固定積層体からキャリアを除去することとを含む方法によって半導体装置を製造するために用いることができる。
 図2は、硬化性樹脂フィルム22を用いて製造することのできる半導体装置の一例を模式的に示す断面図である。図2に示される半導体装置1は、ファンアウトパーケージ(FO-PKG)構造を有する装置であり、半導体チップ10と、半導体チップ10を封止する封止部15と、再配線層13と、半田ボール14とを備える。半導体チップ10は、第1面S1及びその逆側の第2面S2を有するチップ本体部10aと、第1面S1上に設けられた接続端子10bとを有する。再配線層13は、接続端子10bの端子ピッチを広げるための層であり、例えばポリイミド等を含む絶縁層13a、及び銅配線等の配線13bを含む。接続端子10bの端子ピッチが再配線層13によるピッチ変換によって広げられる。半田ボール14は、再配線層13によって端子ピッチが広げられた端子に接続される。
 封止部15は、半導体チップ10の表面のうち第2面S2以外の部分を覆う封止材層11と、第2面S2を覆う保護層12とを有しており、再配線層13上で半導体チップ10を封止している。保護層12は、上述の実施形態に係る硬化性樹脂フィルム22の硬化物であることができる。封止材層11の再配線層13とは反対側の面S3は、半導体チップ10の第2面S2とともに平坦面を形成しており、この平坦面全体を覆うように保護層12が延在している。保護層12は、半導体装置の製造後、除去されることなく半導体装置を構成する永久膜であることができる。
 図3、図4及び図5は、半導体装置1を製造する方法の一例を示す工程図である。図3~5に示される方法は、キャリア2、及びキャリア2の主面上に設けられた封止構造体40を備える仮固定積層体45(図3(d))を形成することと、仮固定積層体45からキャリア2を除去することとを含む。仮固定積層体45は、図3(a)~(d)に示されるように、硬化性樹脂フィルム22とキャリア2とを貼り合わせることと、硬化性樹脂フィルム22のキャリア2とは反対側の面上に、複数の半導体チップ10を、第2面S2が硬化性樹脂フィルム22に接する向きで配置することと、硬化性樹脂フィルム22を硬化することにより、硬化した硬化性樹脂フィルムである保護層12を形成し、保護層12上に複数の半導体チップ10を固定することと、封止材層11を保護層12上及び半導体チップ10上に形成し、それにより保護層12及び封止材層11を有する封止部15を形成することとを含む方法によって形成することができる。
 図1に例示されるフィルム材5から保護フィルム3Bを剥離し、露出した硬化性樹脂フィルム22をキャリア2に貼り合わせ、その後、支持フィルム3Aを硬化性樹脂フィルム22から剥離してもよい。硬化性樹脂フィルム22とキャリア2とを20~120℃の温度条件で貼り合わせてもよい。「20~120℃の温度条件」は、硬化性樹脂フィルム22及びキャリア2の温度が20~120℃の範囲内となるような条件を意味する。この温度条件は、40~100℃であってもよい。貼り合わせるために硬化性樹脂フィルム22とキャリア2との積層体を加圧してもよく、そのための圧力は例えば0.01~1MPaであってもよい。
 キャリア2は、支持基板20と、支持基板20の主面上に設けられた光吸収層21とを有していてもよい。この場合、キャリア2は光吸収層21が硬化性樹脂フィルム22又はその硬化物である保護層12に隣接する向きで配置される。
 支持基板20は、後述のインコヒーレント光Lを透過する板状体であり、例えば、無機ガラス基板、又は透明樹脂基板であってもよい。支持基板20の厚みは、例えば、0.1~2.0mmであってもよい。
 光吸収層21は、インコヒーレント光Lを吸収して熱を発生する導電体を含む層である。光吸収層21の波長355nmの光に対する透過率が5%以下、3.1%以下、3.0%以下、2.5%以下、又は1.5%以下であってもよく、0%以上であってもよい。
 光吸収層21を構成する導電体の例としては、金属、金属酸化物、及び導電性カーボン材料が挙げられる。金属は、クロム、銅、チタン、銀、白金、金等の単体金属であってもよいし、ニッケル-クロム、ステンレス鋼、銅-亜鉛等の合金であってもよい。金属酸化物の例としては、酸化インジウムスズ(ITO)、酸化亜鉛、及び酸化ニオブが挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いてもよい。導電体は、クロム、チタン、又は導電性カーボン材料であってよい。
 光吸収層21は、単層又は複数の層からなる金属層であってもよい。光吸収層21が単層の金属層である場合、光吸収層21が、タリウム(Ta)、白金(Pt)、ニッケル(Ni)、チタン(Ti)、タングステン(W)、クロム(Cr)、銅(Cu)、アルミニウム(Al)、銀(Ag)及び金(Au)からなる群より選ばれる少なくとも1種の金属を含んでいてもよい。
 光吸収層21が、第一層及び第二層の2層から構成され、支持基板20側から第一層及び第二層の順に積層されていてもよい。この場合、例えば、第一層が高い光吸収性を有し、第二層が高い熱膨張係数及び高い弾性率を有していると、特に良好な剥離性が得られ易い。この観点から、例えば、第一層がタリウム(Ta)、白金(Pt)、ニッケル(Ni)、チタン(Ti)、タングステン(W)及びクロム(Cr)からなる群より選ばれる少なくとも1種の金属を含んでいてもよく、第二層が銅(Cu)、アルミニウム(Al)、銀(Ag)及び金(Au)からなる群より選ばれる少なくとも1種の金属を含んでいてもよい。第一層がチタン(Ti)、タングステン(W)及びクロム(Cr)からなる群より選ばれる少なくとも1種の金属を含んでいてもよく、第二層が銅(Cu)及びアルミニウム(Al)からなる群より選ばれる少なくとも1種の金属を含んでいてもよい。
 光吸収層21としての金属層は、真空蒸着及びスパッタリング等の物理気相成長(PVD)、プラズマ化学蒸着等の化学気相成長(CVD)によって形成された層であってもよいし、電解めっき又は無電解めっきによって形成されためっき層であってもよい。
 光吸収層21は、光を吸収して熱を発生する導電性粒子と、導電性粒子が分散したバインダー樹脂とを含有する層であってもよい。導電性粒子は、上述の導電体を含む粒子であってもよい。例えば、光吸収層21は、導電性粒子及び硬化性樹脂組成物を含む層であることができる。光吸収層21を構成する硬化性樹脂組成物は、硬化性樹脂フィルム22を構成する硬化性樹脂組成物と同様の成分を含むことができる。光吸収層21を構成する硬化性樹脂組成物は、硬化性樹脂フィルム22を構成する硬化性樹脂組成物と同じでも異なっていてもよい。光吸収層21における導電性粒子の含有量は、光吸収層21の導電性粒子以外の成分の総量、すなわち、バインダー樹脂又は硬化性樹脂組成物の質量100質量部に対して、10~90質量部であってよい。透過率の観点から、導電性粒子の含有量は、20質量部以上、又は30質量部以上であってもよい。
 導電性粒子及びバインダー樹脂を含む光吸収層は、例えば、導電性粒子、バインダー樹脂及び有機溶剤を含有するワニスを支持部材上又は硬化性樹脂層上に塗布することと、塗膜から有機溶剤を除去することとを含む方法によって形成することができる。予め作製された光吸収層21を支持基板20上に積層してもよい。
 光吸収層21の厚みは、軽剥離性の観点から、1~5000nm又は100~3000nmであってよい。また、光吸収層21の厚みが50~300nmであると、光吸収層21が十分に低い透過率を有し易い。光吸収層21が単層又は複数の層からなる金属層である場合、光吸収層21(又は金属層)の厚みは、良好な剥離性の観点から、75nm以上、90nm以上、又は100nm以上であってもよく、1000nm以下であってもよい。特に光吸収層21が単層の金属層である場合、光吸収層21(又は金属層)の厚みは、良好な剥離性の観点から、100nm以上、125nm以上、150nm以上又は200nm以上であってもよく、1000nm以下であってもよい。光吸収層21が、光吸収性が比較的低い金属(例えばCu、Ni)を含む金属層、又は、熱膨張係数が比較的低い金属(例えばTi)を含む金属層であっても、その厚みが大きいと、より良好な剥離性が得られ易い傾向がある。
 キャリア2に貼り合わせされた硬化性樹脂フィルム22上の所定の位置に、複数の半導体チップ10が、第2面S2が硬化性樹脂フィルム22に接する向き、すなわちフェイスアップの向きで配置される。硬化性樹脂フィルム22、半導体チップ10、又はこれらの両方を加熱しながら、半導体チップ10を硬化性樹脂フィルム22上に配置してもよい。加熱温度は、例えば20~120℃、又は60~100℃であってもよい。硬化性樹脂フィルム22上に置かれた半導体チップ10を加圧してもよく、そのための圧力は0.01~1.0MPa又は0.1~0.2MPaであってもよい。加圧時間は例えば0.01~10秒又は0.1~2秒であってもよい。
 続いて、図3(c)に示されるように、硬化性樹脂フィルム22を熱又は光のうち少なくとも一方によって硬化させて、複数の半導体チップ10全ての第2面S2を覆う一体的な保護層12(硬化した硬化性樹脂フィルム)を形成する。形成された保護層12を介して半導体チップ10がキャリア2に対して固定される。この時点の保護層12とキャリア2との間の接着強度が1MPa以上であってもよい。
 図3(d)に示されるように、保護層12上で複数の半導体チップ10を一括して封止する封止材層11が形成される。封止材層11は、半導体チップを封止するために通常用いられる封止材を用いて形成することができる。封止材がエポキシ樹脂を含む熱硬化性樹脂組成物であってもよい。半導体チップ10は、封止材層11及び保護層12によって構成された封止部15内に包含される。封止材層11は、圧縮成形法等の通常の方法によって形成される。半導体チップ10が保護層12に対して固定されているため、封止材層11が形成される間、半導体チップ10の位置ずれが生じ難い。
 半導体装置を製造する方法の一実施形態は、図4及び図5に示されるように、封止材層11の一部を保護層12とは反対側から研磨によって除去し、接続端子10bを露出させることと、露出した接続端子10bと接続される配線13bと絶縁層13aとを有する再配線層13を封止材層11上に形成することと、再配線層13の封止材層11とは反対側の面上に、配線13bに接続される半田ボール14を設けることと、保護層12に対してキャリア2側からインコヒーレント光Lを照射し、それにより保護層12をキャリア2から分離することと、保護層12及び複数の半導体チップ10を含む封止構造体40をダイシングテープ50上で分割して、個片化された半導体装置1を形成することと、半導体装置1をダイシングテープ50からピックアップすることとを更に含んでもよい。半導体チップ10及び封止材層11を有し、保護層12が設けられていない封止構造体は、キャリア等に支持されていない場合、半導体チップ10と封止材層11との界面剥離等に起因して割れるなどの損傷を生じる可能性がある。しかし、保護層12が設けられることにより、製造工程中にキャリアから分離された封止構造体の損傷が抑制され得る。
 保護層12の研磨、再配線層13の形成、及び半田ボールの形成は、通常の方法によって行うことができる。
 保護層12をキャリア2から分離するためのインコヒーレント光Lは、コヒーレントでない光であり、干渉縞が発生しない、可干渉性が低い、指向性が低いといった性質を有する電磁波である。インコヒーレント光は、光路長が長くなるほど、減衰する傾向を有する。レーザー光は、一般にコヒーレント光であるのに対して、太陽光、蛍光灯の光等の光は、インコヒーレント光である。インコヒーレント光は、レーザー光を除く光ということもできる。インコヒーレント光の照射面積は、一般にコヒーレント光(すなわち、レーザー光)よりも圧倒的に広いため、照射回数を少なくすることが可能である。インコヒーレント光を用いることにより、レーザー光を用いる場合と比較して、キャリア2の剥離によって露出した保護層12の表面にススが発生し難い。ただし、露出した保護層12の表面を、必要によりクリーニングしてもよい。
 インコヒーレント光Lは、赤外線を含んでいてもよい。インコヒーレント光Lは、パルス光であってもよい。インコヒーレント光Lの光源は、特に制限されないが、キセノンランプであってよい。キセノンランプは、キセノンガスを封入した発光管での印加・放電による発光を利用したランプである。
 キセノンランプの照射条件は、印加電圧、パルス幅、照射時間、照射距離(光源と仮固定材層との距離)、照射エネルギー等を含み、照射回数等に応じてこれらを任意に設定することができる。半導体チップ10のダメージを低減する観点から、1回の照射でキャリア2を分離できる照射条件を設定してもよい。
 レーザ光(例えばグリーンレーザ)の照射により、保護層12の半導体チップ10とは反対側の表面に製品名等の必要な情報を刻印してもよい。露出した保護層12の表面を、必要によりクリーニングしてもよい。
 個片化された半導体装置1を形成する工程は、図5に示されるように、保護層12にダイシングテープ50を貼り合わせることと、複数の半導体チップ10と、保護層12を含む封止部15と、再配線層13と、半田ボール14とを含む封止構造体40を所定の箇所Sで切断し、それにより複数の半導体装置1を形成することと、半導体装置1をダイシングテープ50からピックアップすることとを含んでもよい。
 図6、図7及び図8は、半導体装置1を製造する方法の他の一例を示す工程図である。図6~8に示される方法は、キャリア2、及びキャリア2の主面上に設けられた封止構造体40を備える仮固定積層体45(図7(e))を形成することと、仮固定積層体45からキャリア2を除去することとを含む。仮固定積層体45は、図6(a)~(d)、及び図7(a)~(c)に示されるように、キャリア30及びキャリア30上に設けられた粘着層32を有する仮固定材35を準備することと、第1面S1及びその逆側の第2面S2を有するチップ本体部10aと第2面S2上に設けられた接続端子10bとを有する複数の半導体チップ10を準備することと、仮固定材35、仮固定材35上に第1面S1が仮固定材35側に向く向きで仮固定された複数の半導体チップ10、及び、複数の半導体チップ10を仮固定材35上で一括して封止する封止材層11を有し、封止材層11から複数の半導体チップ10の第2面S2が露出している、仮固定積層体45(図6(c))を形成することと、第2面S2及び封止材層11を覆う硬化性樹脂フィルム22を設けることと、硬化性樹脂フィルム22とキャリア2とを貼り合わせることと、仮固定積層体45から仮固定材35を除去することとをこの順に更に含む方法によって形成することができる。
 仮固定材35を構成するキャリア30は、例えばガラス基板であってもよい。仮固定材35を構成する粘着層32は、例えば常温では粘着力を有し、加熱により粘着力が低下する剥離シートであってもよい。
 図6(b)に示されるように、複数の半導体チップ10が、第1面S1及び接続端子10bが仮固定材35の粘着層32側に位置する向きで、すなわちフェイスダウンの向きで、粘着層32上に配置される。その後、図6(c)に示されように、半導体チップ10を封止する封止材層11が形成される。封止材層11は、半導体チップ10の第2面S2が封止材層11から露出するように形成される。第2面S2を含む半導体チップ10の全体が埋設される封止材層11を形成し、次いで封止材層11の一部を仮固定材35とは反対側から研磨によって除去し、それにより半導体チップ10の第2面S2が露出する平坦面を形成してもよい。この段階の仮固定積層体45は、仮固定材35、複数の半導体チップ10、及び封止材層11から構成される。
 続いて、図6(d)に示されるように、半導体チップ10の第2面S2及び封止材層11を覆う硬化性樹脂フィルム22が設けられ、図7(a)に示されるように硬化性樹脂フィルム22とキャリア2とが貼り合わせられる。キャリア2は支持基板20及び光吸収層21を有しており、光吸収層21が硬化性樹脂フィルム22(又は保護層12)に隣接する向きで、キャリア2と硬化性樹脂フィルム22とが貼り合わせられる。貼り合わせの条件は、図3に例示される方法における条件と同様であることができる。キャリア2に貼り合わせられた硬化性樹脂フィルム22を硬化して、複数の半導体チップ10全ての第2面S2を覆う一体的な保護層12(硬化した硬化性樹脂フィルム)を形成してもよい。保護層12及び封止材層11は、仮固定材35上で半導体チップ10を封止する封止部15を構成する。封止構造体40は、半導体チップ10及び封止部15を有する。この段階の仮固定積層体45は、仮固定材35、封止構造体40、及びキャリア2から構成される。
 図7(b)に示されるように、仮固定積層体45から仮固定材35が除去される。例えば、粘着層32を加熱し、加熱により粘着力の低下した粘着層32から封止構造体40を分離してもよい。
 仮固定材35の除去により、半導体チップ10の第1面S1が露出する。露出した第1面S1上に再配線層13が形成される。再配線層13は、絶縁層13aと、絶縁層13a中に設けられた銅配線等の配線13bとを有する。再配線層13上に半田ボール14が設けられる。
 キャリア2、及び封止構造体40から構成される仮固定積層体45から、図8(a)に示されるようにキャリア2が除去される。キャリア2を除去する方法は、図4に例示される方法と同様に、仮固定積層体45に対してキャリア2側からインコヒーレント光を照射することを含む方法であることができる。保護層12が設けられることにより、キャリア2が除去された後、半導体チップ10と封止材層11との界面剥離等に起因する封止構造体の損傷が抑制され得る。
 キャリア2が除去された後、残った封止構造体40が、図8(b)~(e)に示されるように、保護層12にダイシングテープ50を貼り合わせることと、複数の半導体チップ10、封止部15、再配線層13及び半田ボール14を含む封止構造体40を所定の箇所Sで切断し、それにより複数の半導体装置1を形成することと、半導体装置1をダイシングテープ50からピックアップすることとを含む方法により分割される。封止構造体40の分割により、個片化された半導体装置1が得られる。
 以上例示された方法において、硬化樹脂フィルムを、封止材層の形成、半導体チップの薄化、再配線層の形成等の各種の工程の間、半導体チップを固定する機能と、半導体チップを封止する封止部の一部を構成する材料としての機能との両方のために用いられる。そのため、本開示に係る方法は、それぞれの機能のために異なる材料を使い分ける場合と比較して、製造工程を大幅に簡略化することができる。
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
1.原料
 以下の原料を準備した。
熱可塑性樹脂
・エポキシ基を有するアクリルポリマー(ガラス転移温度:12℃、重量平均分子量:80万)
エポキシ樹脂
・ビスフェノールF型液状エポキシ樹脂:YDF-8170C(商品名、日鉄ケミカル&マテリアル株式会社)
・クレゾールノボラック型エポキシ樹脂:N-500P-10(商品名、DIC株式会社)
硬化剤
・フェノール樹脂:PSM-4326(商品名、群栄化学工業株式会社)
・フェノール樹脂:MEH-7800M(商品名、明和化成株式会社)
シリカフィラー
・SC2050-HLG(商品名、アドマテックス株式会社)
・R972(商品名、日本アエロジル株式会社)
光吸収剤
・カーボンブラック:FP-Black(商品名、山陽色素株式会社、30質量%のカーボンブラックを含む分散液)
カップリング剤
・(3-メルカプトプロピル)トリメトキシシラン:A-189(商品名、モメンティブ社)
・3-ウレイドプロピルトリエトキシシラン:A-1160(商品名、モメンティブ社)
・ウレイドプロピルトリアルコキシシラン:Z-6119(商品名、ダウ・ケミカル日本社)
硬化促進剤
・1-シアノエチル-2-フェニルイミダゾール:2PZ-CN(商品名、四国化成工業株式会社)
2.硬化性樹脂フィルムの作製
 表1に示す配合比で各原料を含み、溶剤としてシクロヘキサノンを含む、硬化性樹脂フィルム1~7を形成するための樹脂ワニスを調製した。樹脂ワニスにおける溶剤以外の成分の合計濃度は、ワニスの質量を基準として40質量%であった。
Figure JPOXMLDOC01-appb-T000001
 各ワニスを支持フィルムに塗布し、塗膜を乾燥することにより、支持フィルム上に厚さの20μm硬化性樹脂フィルム1~7を形成した。各硬化性樹脂フィルム上に保護フィルムを載せて、支持フィルムと、硬化性樹脂フィルム1~7のいずれかと、保護フィルムとから構成されるフィルム材を得た。
3.硬化性樹脂フィルムの評価
ずり粘度
 複数の硬化性樹脂フィルムを積層して、厚さ1280μmの積層フィルムを試験片として準備した。試験片の動的粘弾性を、ずり粘度測定装置(ティー・エー・インスツルメンツ社製、ARES-G2)を用いて、以下の条件で35~130℃の範囲で測定した。
荷重:100g
周波数:1Hz
ひずみ量:5%
 得られた測定結果から硬化性樹脂フィルムの100℃におけるずり粘度を測定した。
貯蔵弾性率
 複数の硬化性樹脂フィルムを積層して、厚さ約240μmの積層フィルムを準備した。積層フィルムを130℃で20分とそれに続く170℃で2時間の加熱することにより、硬化性樹脂フィルムを硬化させた。得られた硬化物の動的粘弾性を、動的粘弾性測定装置(ユービーエム社製Rheogel-E4000)を用いて、以下の条件で-80~300℃の範囲で測定した。
サンプルサイズ:4mm×30mm
引張モード
周波数:10Hz
昇温速度:3℃/分
 得られた測定結果から、硬化後の硬化性樹脂フィルムの25℃又は250℃における貯蔵弾性率を求めた。表2にずり粘度及び貯蔵弾性率の測定結果が示される。
Figure JPOXMLDOC01-appb-T000002
タック性(90度ピール強度)
 硬化性樹脂フィルムをミラーウエハ、又はガラス基板に対して25℃の環境下で、又は、70℃に加熱しながら貼り合わせた。貼り合わせのために0.2MPaの圧力を硬化性樹脂フィルムに対して加えた。ミラーウエハ又はガラス基板に貼り合わせされた硬化性樹脂フィルムを、その上にサポートテープ(Oji Tape)を貼り付けてから2時間静置した。次いで、硬化性樹脂フィルムを、ミラーウエハ又はガラス基板の主面に対して90度の方向に引き剥がす剥離試験により、90度ピール強度を測定した。引き剥がしの速度は50mm/秒であった。測定結果が表3に示される。硬化性樹脂フィルムをミラーウエハ又はガラス基板に貼り合わせるための温度(貼り合わせ温度)が25℃である場合について、測定を2回実施した。表3に2回の測定値が示される。貼り合わせ温度が25℃である場合、測定値のばらつきがやや大きいが、10N/mを下回ることはなかった。実施例4に関して、硬化性樹脂フィルムをガラス基板に70℃で貼り合わせた場合、密着力が強すぎたために、硬化性樹脂フィルムを剥離することができず、90度ピール強度を測定できなかった。
Figure JPOXMLDOC01-appb-T000003
光透過率
 実施例1~7の硬化性樹脂フィルム1~7の硬化後の紫外可視吸収を測定した。図9は実施例1及び2の硬化性樹脂フィルムの紫外可視吸収スペクトルであり、ここでは波長600nmの光に対する透過率を基準とする相対値で示されている。図9には、ガラス基板の紫外可視吸収スペクトルも示される。実施例1の硬化性樹脂フィルムは、波長355nmの光に対して1.01%の透過率(相対値)を示した。実施例2の硬化性樹脂フィルムは、波長355nmの光に対して4.76%(相対値)の透過率を示した。
剥離試験
 ガラス基板と、ガラス基板上に設けられた光吸収層とを有するキャリアを準備した。光吸収層は、Ti層(厚み:50μm)及びCu層(厚み:200μm)を有し、これらがガラス基板側からこの順に積層されている積層構成を有していた。硬化性樹脂フィルム1又は2のフィルム材から保護フィルムを剥がし、露出した硬化性樹脂フィルムを、キャリアの光吸収層に載せ、硬化性樹脂フィルムとキャリアとを真空ラミネータによって貼り合わせた。真空ラミネータの条件は、温度90℃、圧力0.5MPa、加圧時間60秒に設定した。キャリアに貼り合わせられた硬化性樹脂フィルム上に、試験用の半導体チップを配置した。続いて130℃で20分間の加熱とそれに続く170℃で2時間の加熱により硬化性樹脂フィルムを硬化させ、それにより半導体チップを硬化性樹脂フィルムの硬化物である保護層上に固定した。保護層上に、エポキシ樹脂を含む封止材を用いて、半導体シップを封止する封止材層を150℃で300秒の条件で形成した。形成された封止材層を150℃で6時間の加熱により更に硬化させた。これにより、キャリア、半導体チップ、保護層及び封止材層から構成される評価用の仮固定積層体を得た。
 評価用積層体に対して、ガラス基板側から、電圧750Vのキセノンランプにより、幅300μmのパルス光(インコヒーレント光)を照射した。硬化性樹脂フィルム1又は2のいずれの場合も、パルス光の照射後、応力を必要とすることなく、キャリアが保護層から自然に剥離した。露出した保護層の表面にススの発生も認められなかった。
 ガラス基板側から、周波数60kHz、出力202mWのエキシマレーザー光を照射した。硬化性樹脂フィルム1又は2のいずれの場合も、エキシマレーザー光の照射後、応力を必要とすることなく、キャリアが保護層から自然に剥離した。ただし、露出した保護層の表面にススの発生が認められた。
 1…半導体装置、2…キャリア、3A…支持フィルム、3B…保護フィルム、10…半導体チップ、10a…チップ本体部、10b…接続端子、11…封止材層、12…保護層(硬化した硬化性樹脂フィルム)、13…再配線層、14…半田ボール、15…封止部、20…支持基板、21…光吸収層、22…硬化性樹脂フィルム、30…キャリア、32…粘着層、35…仮固定材、40…封止構造体、45…仮固定積層体、50…ダイシングテープ、L…インコヒーレント光、S1…第1面、S2…第2面。

 

Claims (17)

  1.  半導体チップを備える半導体装置を製造する方法であって、当該方法が、
     キャリア、及び、該キャリアの主面上に設けられ、複数の半導体チップと前記複数の半導体チップを封止する封止部とを含む封止構造体、を備える仮固定積層体を形成することと、
     前記仮固定積層体から前記キャリアを除去することと、
    を含み、
     前記半導体チップが、第1面及びその逆側の第2面を有するチップ本体部と、前記第1面上に設けられた接続端子と、を有し、
     前記封止部が、前記複数の半導体チップの前記第2面を覆い、前記仮固定積層体において前記キャリアに隣接する一体的な保護層と、前記保護層とともに前記複数の半導体チップを封止する封止材層と、を有し、
     前記保護層が、硬化した硬化性樹脂フィルムであり、
     前記仮固定積層体に対してインコヒーレント光を照射することにより、前記保護層と前記キャリアとが分離され、それによって前記仮固定積層体から前記キャリアが除去される、方法。
  2.  前記インコヒーレント光の光源がキセノンランプである、請求項1に記載の方法。
  3.  前記保護層が前記半導体装置に設けられる永久膜である、請求項1又は2に記載の方法。
  4.  当該方法が、レーザ光の照射によって前記保護層の表面に刻印することを更に含む、請求項1~3のいずれか一項に記載の方法。
  5.  前記キャリアが、前記インコヒーレント光を透過する支持基板と、該支持基板上に設けられた、前記インコヒーレント光を吸収して熱を発生する導電体を含む光吸収層と、を有し、
     前記仮固定積層体において前記光吸収層が前記保護層に隣接する、
    請求項1~4のいずれか一項に記載の方法。
  6.  前記仮固定積層体が、
     前記キャリアと前記硬化性樹脂フィルムとを貼り合わせることと、
     前記硬化性樹脂フィルムの前記キャリアとは反対側の面上に、前記複数の半導体チップを、前記第2面が前記硬化性樹脂フィルムに接する向きで配置することと、
     前記硬化性樹脂フィルムを硬化することにより、前記複数の半導体チップを、硬化した前記硬化性樹脂フィルムである前記保護層上に固定することと、
     前記封止材層を前記保護層上に形成し、それにより前記保護層及び前記封止材層を有する前記封止部を形成することと、
    をこの順に更に含む方法によって形成される、請求項1~5のいずれか一項に記載の方法。
  7.  前記仮固定積層体が、
     仮固定材、該仮固定材上に前記第1面が前記仮固定材側に向く向きで仮固定された前記複数の半導体チップ、及び、前記複数の半導体チップを前記仮固定材上で封止する前記封止材層を有し、前記封止材層から前記複数の半導体チップの前記第2面が露出している、仮固定積層体を形成することと、
     前記第2面及び前記封止材層を覆う前記硬化性樹脂フィルムを設けることと、
     前記硬化性樹脂フィルムと前記キャリアとを貼り合わせることと、
     前記硬化性樹脂フィルムを硬化して、前記保護層を形成することと、
     前記仮固定積層体から前記仮固定材を除去することと、
    をこの順に更に含む方法によって形成される、請求項1~5のいずれか一項に記載の方法。
  8.  前記硬化性樹脂フィルムがタック性を有する、請求項1~7のいずれか一項に記載の方法。
  9.  前記硬化性樹脂フィルムが、25℃の温度条件でガラス基板に貼り合わせられたときに、前記硬化性樹脂フィルムと前記ガラス基板との間の90度ピール強度が、25℃において10N/m以上である、請求項8に記載の方法。
  10.  前記硬化性樹脂フィルムが、波長355nmの光に対して50%以下の透過率を示す、請求項1~9のいずれか一項に記載の方法。
  11.  前記硬化性樹脂フィルムが熱可塑性樹脂を含み、前記熱可塑性樹脂のガラス転移温度が-40℃以上40℃以下である、請求項1~10のいずれか一項に記載の方法。
  12.  前記硬化性樹脂フィルムがシリカフィラーを含む、請求項1~11のいずれか一項に記載の方法。
  13.  前記硬化性樹脂フィルムが、ポリシロキサン鎖を有するシリコーン化合物を実質的に含まない、請求項1~12のいずれか一項に記載の方法。
  14.  前記硬化性樹脂フィルムのずり粘度が、100℃において5000~100000Pa・sである、請求項1~13のいずれか一項に記載の方法。
  15.  前記硬化性樹脂フィルムの硬化後の貯蔵弾性率が、25℃において300~6000MPaで、250℃において0.1~200MPaである、請求項1~14のいずれか一項に記載の方法。
  16.  当該方法が、前記仮固定積層体から前記キャリアが除去された後、前記封止構造体を分割することにより、個片化された半導体装置を形成することを更に含む、請求項1~11のいずれか一項に記載の方法。
  17.  当該方法が、前記複数の半導体チップと前記保護層を含む封止部とを備える前記封止構造体を分割することにより、個片化された前記半導体装置が形成される、請求項16に記載の方法。
PCT/JP2021/044561 2020-12-04 2021-12-03 半導体装置を製造する方法 WO2022118971A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180081462.9A CN116547800A (zh) 2020-12-04 2021-12-03 制造半导体装置的方法
US18/255,367 US20240006192A1 (en) 2020-12-04 2021-12-03 Method for manufacturing semiconductor device
KR1020237019189A KR20230113759A (ko) 2020-12-04 2021-12-03 반도체 장치를 제조하는 방법
JP2022567012A JPWO2022118971A1 (ja) 2020-12-04 2021-12-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020045336 2020-12-04
JPPCT/JP2020/045336 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118971A1 true WO2022118971A1 (ja) 2022-06-09

Family

ID=81853336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044561 WO2022118971A1 (ja) 2020-12-04 2021-12-03 半導体装置を製造する方法

Country Status (6)

Country Link
US (1) US20240006192A1 (ja)
JP (1) JPWO2022118971A1 (ja)
KR (1) KR20230113759A (ja)
CN (1) CN116547800A (ja)
TW (1) TW202230613A (ja)
WO (1) WO2022118971A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222164A (ja) * 2005-02-08 2006-08-24 Shinko Electric Ind Co Ltd 半導体装置及びその製造方法
JP2013074184A (ja) * 2011-09-28 2013-04-22 Nitto Denko Corp 半導体装置の製造方法
JP2016139754A (ja) * 2015-01-29 2016-08-04 日立化成株式会社 半導体装置の製造方法
JP2018009138A (ja) * 2016-07-05 2018-01-18 日立化成株式会社 仮固定用樹脂組成物、仮固定用樹脂フィルム及び仮固定用樹脂フィルムシート
JP2020105276A (ja) * 2018-12-26 2020-07-09 東京応化工業株式会社 接着剤組成物、積層体、積層体の製造方法、及び電子部品の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853247B2 (ja) 2002-04-16 2006-12-06 日東電工株式会社 電子部品用加熱剥離型粘着シートおよび電子部品の加工方法並びに電子部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222164A (ja) * 2005-02-08 2006-08-24 Shinko Electric Ind Co Ltd 半導体装置及びその製造方法
JP2013074184A (ja) * 2011-09-28 2013-04-22 Nitto Denko Corp 半導体装置の製造方法
JP2016139754A (ja) * 2015-01-29 2016-08-04 日立化成株式会社 半導体装置の製造方法
JP2018009138A (ja) * 2016-07-05 2018-01-18 日立化成株式会社 仮固定用樹脂組成物、仮固定用樹脂フィルム及び仮固定用樹脂フィルムシート
JP2020105276A (ja) * 2018-12-26 2020-07-09 東京応化工業株式会社 接着剤組成物、積層体、積層体の製造方法、及び電子部品の製造方法

Also Published As

Publication number Publication date
CN116547800A (zh) 2023-08-04
KR20230113759A (ko) 2023-08-01
US20240006192A1 (en) 2024-01-04
JPWO2022118971A1 (ja) 2022-06-09
TW202230613A (zh) 2022-08-01

Similar Documents

Publication Publication Date Title
JP4872587B2 (ja) 封止フィルム、及びこれを用いた半導体装置
JP5569126B2 (ja) 接着剤組成物、接着剤シート及び半導体装置の製造方法
JP2012124466A (ja) 半導体装置用接着フィルム、及び、半導体装置
JP2010287836A (ja) 半導体加工用接着フィルム積層体
JP2005060584A (ja) 封止用フィルム
KR20110019408A (ko) 열경화형 다이본드 필름
JP2016119493A (ja) ダイボンドフィルム、ダイシング・ダイボンドフィルム、ダイボンドフィルムの製造方法、及び、ダイボンドフィルムを有する半導体装置
WO2017047183A1 (ja) 半導体裏面用フィルム
JP2006269887A (ja) 半導体用接着フィルム及びこれを用いた半導体装置
JP2011140617A (ja) アンダーフィル形成用接着剤組成物、アンダーフィル形成用接着剤シート及び半導体装置の製造方法
JP2013004872A (ja) 半導体装置の製造方法、フィルム状接着剤及び接着剤シート
JP4893640B2 (ja) 半導体用接着フィルム及びこれを用いた半導体装置
WO2021065517A1 (ja) 半導体用接着剤、半導体用接着剤シート、及び半導体装置の製造方法
JP2007059787A (ja) 半導体用接着フィルム及びこれを用いた半導体装置
JP5397243B2 (ja) 半導体装置の製造方法及び回路部材接続用接着シート
JP3617639B2 (ja) 半導体加工用シート、並びに、それを用いた半導体装置の製造方法及び半導体装置
JP2006206787A (ja) ダイシングシート機能付きダイアタッチフィルム及びそれを用いた半導体装置の製造方法及び半導体装置。
WO2022118971A1 (ja) 半導体装置を製造する方法
WO2013089142A1 (ja) 半導体装置の製造方法
JP2007073647A (ja) ダイシングシート機能付きダイアタッチフィルム及びそれを用いた半導体装置の製造方法及び半導体装置。
KR20210068018A (ko) 가스 배리어성 적층체
WO2022118969A1 (ja) 硬化性樹脂フィルム、半導体装置製造用フィルム材、半導体装置製造用硬化性樹脂組成物、及び、半導体装置を製造する方法
JP5375351B2 (ja) 半導体回路部材の製造方法
WO2022118929A1 (ja) 半導体装置の製造方法
WO2022118925A1 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022567012

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18255367

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180081462.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237019189

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900720

Country of ref document: EP

Kind code of ref document: A1