WO2022118853A1 - Thermosetting resin composition and semiconductor device - Google Patents

Thermosetting resin composition and semiconductor device Download PDF

Info

Publication number
WO2022118853A1
WO2022118853A1 PCT/JP2021/043929 JP2021043929W WO2022118853A1 WO 2022118853 A1 WO2022118853 A1 WO 2022118853A1 JP 2021043929 W JP2021043929 W JP 2021043929W WO 2022118853 A1 WO2022118853 A1 WO 2022118853A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermosetting resin
semiconductor chip
bonding
wire
Prior art date
Application number
PCT/JP2021/043929
Other languages
French (fr)
Japanese (ja)
Inventor
稜 住田
咲子 鈴木
淳也 楠木
豊誠 高橋
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2022566942A priority Critical patent/JPWO2022118853A1/ja
Publication of WO2022118853A1 publication Critical patent/WO2022118853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a thermosetting resin composition and a semiconductor device manufactured by using the thermosetting resin composition. More specifically, the present invention relates to a semiconductor device in which an electrode pad of a semiconductor chip is electrically bonded by a bonding wire, and the semiconductor chip and the bonding wire are sealed with a cured product of a thermosetting resin composition. The present invention relates to a thermosetting resin composition used for protecting a joint portion between an electrode pad and a bonding wire.
  • Semiconductor devices are usually distributed in a state where semiconductor chips are sealed (packaged) with a resin together with bonding wires.
  • the electrode pad of the semiconductor chip and the electrode lead whose part is exposed from the resin package are electrically connected by a bonding wire. Therefore, by connecting the electrode leads as external terminals to the wiring of the mounting board, the electrical connection between the semiconductor chip and the mounting board is achieved.
  • gold wire is mainly used as the bonding wire for connecting the electrode pad and the electrode lead, but in recent years, in order to reduce the use of expensive gold, the use of copper wire, which is cheaper than gold wire, has been considered. ing.
  • a copper wire is used as a wire to be connected to an aluminum electrode pad, which has become the mainstream in recent years, when the infiltrated moisture enters the bonding interface between the electrode pad and the bonding wire, aluminum corrosion progresses in the vicinity of the bonding interface. It will be easier. Therefore, an electrical opening may occur between the pad and the wire.
  • the chlorine element in the sealing resin and the intermetallic compound formed at the bonding interface between the electrode pad and the bonding wire cause a corrosion reaction, the electrical resistance of the bonding portion increases and the bonding strength decreases. was there.
  • the present invention relates to a thermosetting resin composition for covering at least a part of a bonding wire and a bonding interface, which can improve the connection reliability between the bonding pad and the bonding wire, and the thermosetting resin composition. It is an object of the present invention to provide a semiconductor having excellent electrical reliability obtained by using an object.
  • the present inventor has found a mounting plate, a semiconductor chip mounted on the above-mentioned mounting plate and having a bonding pad, and the semiconductor chip and the previously described mounting plate bonded to the bonding pad. At least a part of the bonding wire in a semiconductor device including the semiconductor chip, the mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin sealant for sealing the bonding wire. , And the above-mentioned problems can be solved by coating the bonding layer with a resin, and the present invention has been completed.
  • a semiconductor device including the semiconductor chip, a mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin encapsulant for encapsulating the bonding wire.
  • a thermosetting resin composition used to cover at least a part of the bonding wire and the bonding pad.
  • the thermosetting resin composition contains a thermosetting resin, a curing agent, and a solvent.
  • a thermosetting resin composition having a viscosity measured by a rotational viscometer of 20 mPa ⁇ s or more of the thermosetting resin composition.
  • a semiconductor device including the semiconductor chip, a mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin encapsulant for encapsulating the bonding wire.
  • a thermosetting resin composition used to cover at least a part of the bonding wire and the bonding pad.
  • the thermosetting resin composition contains a thermosetting resin, an inorganic filler and a solvent.
  • a thermosetting resin composition in which the content of the inorganic filler is 40% by mass or more and 85% by mass or less with respect to the total solid content of the thermosetting resin composition.
  • Placement board and A semiconductor chip mounted on the above-mentioned mounting plate and having a bonding pad, A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate, A semiconductor chip, a mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin encapsulant for encapsulating the bonding wire are provided.
  • a semiconductor device is provided in which the wire coat material is a cured product of the thermosetting resin composition.
  • thermosetting resin composition capable of improving the connection reliability between a semiconductor chip and a bonding wire, and a highly reliable semiconductor device manufactured by using the thermosetting resin composition.
  • FIG. 3 is an enlarged cross-sectional view of a joint portion between a semiconductor chip and a bonding wire in the semiconductor device shown in FIG. 1 according to the present embodiment.
  • the thermosetting resin composition of the present invention is Placement board and A semiconductor chip mounted on the above-mentioned mounting plate and having a bonding pad, A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate, In a semiconductor device including the semiconductor chip, a mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin encapsulant for encapsulating the bonding wire.
  • the thermosetting resin composition contains a thermosetting resin, a curing agent, and a solvent.
  • the viscosity of the thermosetting resin composition measured by a rotational viscometer is 20 mPa ⁇ s or more.
  • the thermosetting resin composition of the present invention is Placement board and A semiconductor chip mounted on the above-mentioned mounting plate and having a bonding pad, A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate, In a semiconductor device including the semiconductor chip, a mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin encapsulant for encapsulating the bonding wire.
  • the thermosetting resin composition contains a thermosetting resin, an inorganic filler and a solvent. The content of the inorganic filler is 40% by mass or more and 85% by mass or less with respect to the total solid content of the thermosetting resin composition.
  • the semiconductor device is Placement board and A semiconductor chip with a bonding pad mounted on the above-mentioned mounting plate, A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate, The semiconductor chip, the mounting surface of the semiconductor chip of the above-mentioned mounting plate, and the resin encapsulant for encapsulating the bonding wire.
  • a wire coating material for covering a connection portion between the bonding wire and the bonding pad is provided.
  • the wire coat material is made of a cured product of the thermosetting resin composition.
  • the wire coating material in the present embodiment corresponds to the thermosetting resin composition of the present invention.
  • the semiconductor device 10 in the present embodiment corresponds to the semiconductor device of the present invention.
  • FIG. 1 is a cross-sectional view of the semiconductor device 10 according to the present embodiment.
  • the semiconductor device 10 includes a semiconductor chip 1, a circuit board 2, a connection pad 8, a resin encapsulant (encapsulating resin) 4, an external electrode terminal 6, and a bonding wire 7.
  • the semiconductor chip 1 is fixed on the connection pad 8 on the circuit board 2 via the die attach material 9.
  • the electrode pad (not shown) of the semiconductor chip 1 and the circuit board 2 are connected by a bonding wire 7.
  • the surface of the circuit board 2 on which the semiconductor chip 1 is mounted is sealed by the resin encapsulant 4.
  • the electrode pad on the circuit board 2 is internally bonded to the external electrode terminal 6 on the non-sealed surface side of the circuit board 2.
  • the type of the semiconductor chip 1 is not particularly limited, and any type of semiconductor chip can be used.
  • the semiconductor chip 1 is mounted on the circuit board 2 via the die attach layer 9 so that the back surface of the semiconductor chip 1 is in contact with the upper surface of the connection pad 8.
  • the bonding wire 7 is electrically connected to the semiconductor chip 1 via a bonding layer (bonding pad) 17 by a wire bonding method, and the semiconductor chip 1 and the bonding wire 7 are connected to each other.
  • the portion is covered with a resin coating material (wire coating material) 5.
  • FIG. 2 shows an enlarged view of the connection portion between the semiconductor chip 1 and the bonding wire 7 in FIG. 1. As shown in FIG.
  • the semiconductor chip 1 is provided with a barrier layer 18 and a bonding layer 17 on the upper surface thereof, and is electrically connected to one end of the bonding wire 7 via the bonding layer 17 and is a semiconductor chip.
  • the connection portion between 1 and the bonding wire 7 is covered with a wire coating material 5 made of a cured product of the thermosetting resin composition of the present embodiment, which will be described in detail below.
  • a part of the bonding layer 17 and the bonding wire 7 is covered with a wire coating material 5 made of a cured product of the thermosetting resin composition of the present embodiment. Therefore, even if water enters the inside of the resin package, the water can be blocked by the wire coating material 5, so that the bonding interface (bonding layer 17) between the semiconductor chip 1 and the bonding wire 7 comes into contact with the water. It can be prevented from corroding. Further, it is possible to suppress corrosion of the bonding interface (bonding layer 17) between the semiconductor chip 1 and the bonding wire 7 due to moisture and chlorine ions contained in the resin encapsulating body 4. Further, even if corrosion occurs, its spread can be suppressed.
  • the circuit board 2 included in the semiconductor device 10 of the present embodiment is used as a mounting plate for the semiconductor chip 1.
  • the circuit board 2 is provided with an external electrode terminal 6 on the back surface side thereof.
  • the circuit board 2 includes wiring on the upper surface and the inside of the circuit board 2.
  • the circuit board 2 is provided with a connection pad 8 on the upper surface of the circuit board 2 via wiring. As shown in FIG. 2, it is not necessary that the entire back surface of the connection pad 8 is connected to the wiring, and it is sufficient that a part of the connection pad 8 is connected to the wiring, but the entire back surface of the connection pad 8 is connected. It may be connected to the wiring. Further, the circuit board 2 is connected to the semiconductor chip 1 via the connection pad 8.
  • the type of the circuit board 2 used in the present embodiment is not particularly limited, and a circuit board in which copper wiring is patterned on an organic insulating base material such as a glass epoxy material, BT (bismaleimide triazine), resin, or polyimide is used. Can be done.
  • the bonding wire 7 is used to electrically connect the semiconductor chip 1 and the circuit board 2. Specifically, one end of the bonding wire 7 is electrically connected to the upper surface of the semiconductor chip 1 via the bonding layer 19, and the other end of the bonding wire 7 is electrically connected to the upper surface of the circuit board 2 via the wiring 11. Is connected. A wire bonding method is used for this electrical connection.
  • the type of wire bonding used in this embodiment is not particularly limited, and all types of wire bonding such as ball bonding and stitch bonding can be used.
  • any one of aluminum, silver, and copper may be used as the conductive material.
  • the bonding wire 7 may be pre-coated with metal.
  • the external electrode terminal 6 has a spherical shape and is provided on the back surface side (non-sealing surface side) of the circuit board 2.
  • One of the external electrode terminals 6 is connected to a wiring (not shown), whereby the electric power for driving the semiconductor chip 1 is transferred from the external electrode terminal 6 to the semiconductor chip 1 via the wiring and the bonding wire 7. Is supplied to.
  • a spherical terminal using a solder ball, a land-shaped terminal using gold, or the like is used as the external electrode terminal 6.
  • connection pad 8 is connected to the upper surface of the circuit board 2 via wiring.
  • the connection pad 8 on which the semiconductor chip 1 is loaded may be arranged around the semiconductor chip 1. desirable.
  • the resin encapsulant (encapsulating resin) 4 is used for encapsulating the semiconductor chip 1 on the circuit board 2, and as shown in FIG. 1, the semiconductor chip 1, the bonding wire 7, the connection pad 8, and the like are used. It is formed on the circuit board 2 so as to cover the entire bonding portion between the semiconductor chip 1 and the bonding wire 7, the bonding portion between the bonding wire 7 and the circuit board 2, and the insulating layer (not shown) covering the wiring. ..
  • the method for forming the resin encapsulant 4 is generally a transfer molding method or a compression molding method in which a press and a mold are used to apply pressure to form a resin, but the present embodiment is particularly limited to this. However, any kind of forming method can be used.
  • the resin encapsulant 4 is made of a material generally used in the art, and for example, a encapsulating resin composition containing an epoxy resin, a curing agent, a curing accelerator, and an inorganic filler is used. Can be made.
  • Examples of the epoxy resin to be blended in the sealing resin composition for producing the resin encapsulating body 4 include crystalline epoxy resins such as biphenyl type epoxy resin, bisphenol type epoxy resin, and stylben type epoxy resin; Novolak type epoxy resin such as type epoxy resin, cresol novolak type epoxy resin; polyfunctional epoxy resin such as triphenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin; phenol aralkyl type epoxy resin having phenylene skeleton, biphenylene skeleton Aralkyl type epoxy resin such as phenol aralkyl type epoxy resin; naphthol type epoxy resin such as dihydroxynaphthalene type epoxy resin and epoxy resin obtained by glycidyl etherification of dihydroxynaphthalene dimer; triglycidyl isocyanurate, monoallyldi Examples thereof include triazine nuclei-containing epoxy resins such as glycidyl isocyanurate; and bridged cyclic hydrocarbon compound-modified phenol-
  • the lower limit of the blending ratio of the entire epoxy resin is not particularly limited, but is preferably 3% by mass or more, and more preferably 5% by mass or more, based on the entire sealing resin composition.
  • the upper limit of the blending ratio of the entire epoxy resin is not particularly limited, but is preferably 15% by mass or less, more preferably 13% by mass or less, based on the entire epoxy resin composition.
  • the upper limit of the blending ratio of the entire epoxy resin is within the above range, there is little possibility of causing a decrease in moisture resistance reliability due to an increase in water absorption rate.
  • any of a heavy addition type curing agent, a catalytic type curing agent, and a condensation type curing agent is used. Can be done.
  • heavy addition type curing agent examples include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylerylene diamine (MXDA), diaminodiphenylmethane (DDM), and m-phenylenediamine (MPDA).
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • MXDA metaxylerylene diamine
  • DDM diaminodiphenylmethane
  • MPDA m-phenylenediamine
  • Aromatic polyamines such as diaminodiphenylsulfone (DDS), as well as polyamine compounds containing dicyandiamide (DICY), organic acid dihydraradide, etc .
  • Acid anhydrides including aromatic acid anhydrides such as acid anhydrides, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA); novolak type phenol resins, phenol polymers and the like.
  • Examples thereof include polyphenol compounds; polypeptide compounds such as polysulfide, thioester and thioether; isocyanate compounds such as isocyanate prepolymer and blocked isocyanate; and organic acids such as carboxylic acid-containing polyester resin.
  • catalytic curing agent examples include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole and 2-ethyl-4. -Imidazole compounds such as methylimidazole (EMI24); Lewis acids such as the BF3 complex and the like.
  • BDMA benzyldimethylamine
  • DMP-30 2,4,6-trisdimethylaminomethylphenol
  • -Imidazole compounds such as methylimidazole (EMI24)
  • Lewis acids such as the BF3 complex and the like.
  • condensation type curing agent examples include phenol resin-based curing agents such as novolak type phenol resin and resol type phenol resin; urea resin such as methylol group-containing urea resin; and melamine resin such as methylol group-containing melamine resin. Can be mentioned.
  • a phenol resin-based curing agent is preferable from the viewpoint of balance of flame resistance, moisture resistance, electrical characteristics, curability, storage stability and the like.
  • the phenol resin-based curing agent include novolak-type resins such as phenol novolac resin and cresol novolak resin; polyfunctional phenol resins such as triphenol methane-type phenol resin; terpene-modified phenol resin, dicyclopentadiene-modified phenol resin and the like.
  • Modified phenol resin phenol aralkyl resin having a phenylene skeleton and / or biphenylene skeleton, aralkyl-type resin such as phenylene and / or naphthol aralkyl resin having a biphenylene skeleton; bisphenol compounds such as bisphenol A and bisphenol F, which are mentioned.
  • One type may be used alone or two or more types may be used in combination. From the viewpoint of further improving high temperature storage characteristics and high temperature operation characteristics, a polyfunctional phenol resin such as a triphenol methane type phenol resin is preferable, and a triphenol methane type phenol resin is particularly preferable.
  • the lower limit of the blending ratio of the entire curing agent is not particularly limited, but is preferably 0.8% by mass or more, more preferably 1.5% by mass or more, based on the entire sealing resin composition. preferable. When the lower limit of the blending ratio is within the above range, sufficient fluidity can be obtained.
  • the upper limit of the blending ratio of the entire curing agent is not particularly limited, but is preferably 10% by mass or less, more preferably 8% by mass or less, based on the entire sealing resin composition. .. When the upper limit of the blending ratio is within the above range, there is little possibility of causing a decrease in moisture resistance reliability due to an increase in water absorption rate.
  • the blending ratio of the epoxy resin and the phenol resin-based curing agent is the number of epoxy groups (EP) of all epoxy resins and the number of phenolic hydroxyl groups of all phenol resin-based curing agents.
  • the equivalent ratio (EP) / (OH) with (OH) is preferably 0.8 or more and 1.3 or less. When the equivalent ratio is in this range, there is little possibility of causing deterioration of the curability of the epoxy resin composition for semiconductor encapsulation or deterioration of the physical properties of the cured resin.
  • the inorganic filler to be blended in the sealing resin composition for producing the resin encapsulating body 4 those generally used in the semiconductor encapsulating epoxy resin composition can be used, for example, melting. Examples thereof include silica, crystalline silica, talc, alumina, titanium white, silicon nitride and the like. The most preferably used is fused silica. These inorganic fillers may be used alone or in combination. Further, these inorganic fillers may be surface-treated with a coupling agent. The shape of the filler is preferably spherical as much as possible and has a broad particle size distribution in order to improve the fluidity.
  • the content ratio of the inorganic filler is not particularly limited, but the lower limit of the content ratio of the inorganic filler is preferably 82% by mass or more, preferably 85% by mass or more, based on the entire epoxy resin composition. More preferred. As long as the range does not fall below the above lower limit, low hygroscopicity and low thermal expansion are obtained, so that there is little possibility that the moisture resistance reliability will be insufficient.
  • the upper limit of the content ratio of the inorganic filler is preferably 92% by mass or less, more preferably 89% by mass or less, based on the entire epoxy resin composition. Within the range not exceeding the above upper limit value, there is little possibility that the fluidity is lowered and filling defects or the like occur during molding, or inconveniences such as wire flow in the semiconductor device due to high viscosity occur.
  • a curing accelerator may be further added to the sealing resin composition for producing the resin sealing body 4.
  • the curing accelerator may be any one that promotes the cross-linking reaction between the epoxy group of the epoxy resin and the functional group of the curing agent (for example, the phenolic hydroxyl group of the phenolic resin-based curing agent), and is generally used in an epoxy resin composition.
  • diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and their derivatives
  • organic phosphines such as triphenylphosphine and methyldiphenylphosphine
  • imidazole compounds such as 2-methylimidazole; tetra.
  • Tetra-substituted phosphonium-tetra-substituted borates such as phenylphosphonium and tetraphenylborate; adducts of phosphine compounds and quinone compounds may be mentioned, and these may be used alone or in combination of two or more. ..
  • the lower limit of the blending ratio of the curing accelerator is not particularly limited, but is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on the entire sealing resin composition. preferable. When the lower limit of the blending ratio of the curing accelerator is within the above range, there is little possibility of causing a decrease in curability.
  • the upper limit of the blending ratio of the curing accelerator is not particularly limited, but is preferably 1% by mass or less, more preferably 0.5% by mass or less, based on the entire sealing resin composition. .. When the upper limit of the blending ratio of the curing accelerator is within the above range, there is little possibility of causing a decrease in fluidity.
  • Wire coat material 5 The wire coating material 5 is used to cover the joint portion between the semiconductor chip 1 and the bonding wire 7.
  • the wire coating material 5 of the present invention will be specifically described below.
  • the wire coat material 5 is made from a cured product of a thermosetting resin composition containing a thermosetting resin, a curing agent, and a solvent.
  • thermosetting resin composition for wire coat material or “thermosetting resin composition”
  • thermosetting resin to be blended in the thermosetting resin composition for wire coat material of the present embodiment examples include phenol novolac resin, cresol novolak resin, bisphenol novolak resin, phenol-biphenyl novolak resin, biphenyl aralkyl type phenol resin, and allyl.
  • Novolac-type phenol resin such as novolak-type phenol resin and xylylene novolak-type phenol resin; reaction product of phenol compound and aldehyde compound such as novolak-type phenol resin, resol-type phenol resin, and cresol novolak resin; phenol aralkyl resin, etc.
  • the reaction product of the phenol compound and the dimethanol compound; hydroxystyrene resin; polyamide resin; polybenzoxazole resin; polyimide resin; and cyclic olefin resin can be used.
  • a phenol novolac resin from the viewpoint of heat resistance of the obtained thermosetting resin composition for wire coat material, it is preferable to use a phenol novolac resin, and in particular, it is preferable to use a phenol-biphenyl novolak resin.
  • thermosetting resin is, for example, 10% by mass or more and 95% by mass or less, preferably 20% by mass or more and 90% by mass or less, more preferably 30% by mass, based on the total solid content of the thermosetting resin composition. It is blended in an amount of 85% by mass or less.
  • thermosetting resin composition for a wire coat material of the present embodiment a compound having a group capable of reacting with the thermosetting resin by heat is used.
  • the curing agent include 1,2-benzenedimethanol, 1,3-benzenedimethanol, 1,4-benzenedimethanol (paraxylene glycol), 1,3,5-benzenetrimethanol, and 4,4-.
  • the content of the curing agent in the thermosetting resin composition for a wire coat material improves the toughness and chemical resistance at low temperature curing with respect to the entire solid content (excluding the inorganic filler) of the thermosetting resin composition.
  • it is preferably 0.1% by mass or more, more preferably 1% by mass or more, and further preferably 3% by mass or more.
  • the content of the curing agent in the thermosetting resin composition is 100% by mass when the solid content (excluding the inorganic filler) of the thermosetting resin composition is 100% by mass. It is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less.
  • thermosetting resin composition for wire coat material of the present embodiment examples include N-methylpyrrolidone, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, and N-ethyl-2-.
  • Pyrrolidone tetramethyluric acid, ethyl lactate, N, N-dimethylacetamide, dimethylsulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, dipropylene glycol monomethyl ether, methyl lactate, butyl lactate, methyl-1,3-butylene glycol Acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, ethyl pyruvate, methyl-3-methoxypropionate and the like can be used. Above all, it is preferable to use ⁇ -butyrolactone from the viewpoint of controlling the viscosity.
  • the solvent can be used in an amount suitable for keeping the viscosity of the thermosetting resin composition in a desired range, for example, with respect to the entire thermosetting resin composition, for example. It can be used in an amount of 10% by mass or more and 50% by mass or less.
  • thermosetting resin composition for a wire coating material of the present embodiment may contain an inorganic filler.
  • the inorganic filler By using the inorganic filler, the fluidity and thixotropy can be adjusted to desired values.
  • Examples of the inorganic filler that can be used include silica such as fused silica and crystalline silica, talc, alumina, titanium white, silicon nitride and the like. Above all, it is preferable to use a silica filler from the viewpoint of controlling thixotropy.
  • the average particle size of the inorganic filler is preferably 5.0 ⁇ m or less.
  • the average particle size refers to a volume-based median diameter (d50) measured by a laser diffraction method in accordance with ISO-13320 (2009) unless otherwise specified.
  • the average particle size of the inorganic filler is preferably 4.0 ⁇ m or less, more preferably 3.0 ⁇ m or less.
  • the average particle size is more than 5.0 ⁇ m, the inorganic filler tends to settle. Further, coarse particles are likely to be contained, the nozzle of the jet dispenser described below is worn, and the discharged resin composition is likely to be scattered outside the desired region.
  • the lower limit of the average particle size is not particularly limited.
  • the average particle size of the resin composition for a wire coat material tends to be high, so that it is preferably 0.5 ⁇ m or more, and more preferably 1.0 ⁇ m or more.
  • the average particle size of the inorganic filler used in the present invention is 0.5 ⁇ m or more and 5.0 ⁇ m or less, preferably 1.0 ⁇ m or more and 3.0 ⁇ m or less.
  • the content of the silica filler in the thermosetting resin composition for a wire coat material of the present embodiment is, for example, 0 to 50% by mass with respect to the total weight of the thermosetting resin composition. If the content is too high, the viscosity of the epoxy resin composition may be too high, making it difficult to apply in a jet dispenser. If the content of the inorganic filler is too high, voids may occur in the cured product.
  • thermosetting resin composition for a wire coat material of the present embodiment may contain an acid generator from the viewpoint of stably forming a cured film.
  • the acid generator is specifically a compound that generates an acid by absorbing thermal energy or light energy.
  • the acid generator preferably contains a sulfonium compound or a salt thereof (referred to as "component (e1)" in the present specification).
  • component (e1) is specifically a sulfonium salt having a sulfonium ion as a cation portion.
  • the anion portion of the component (e1) is specifically a sulfonic acid ion such as a borodate ion, an antimony ion, a phosphorus ion or a trifluoromethanesulfonic acid ion, and from the viewpoint of improving the reaction rate at a low temperature, from the viewpoint of improving the reaction rate at a low temperature. It is preferably a borohydride ion or an antimony ion, and more preferably a sulfide ion. These anions may have substituents.
  • the content of the component (e1) in the thermosetting resin composition is from the viewpoint of improving the curability at low temperature when the solid content (excluding the filler) of the thermosetting resin composition is 100% by mass. It is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.02% by mass or more. Further, from the viewpoint of suppressing a decrease in reliability, the content of the component (E) in the photosensitive resin composition is preferably 15% by mass or less when the total solid content of the photosensitive resin composition is 100% by mass. It is more preferably 10% by mass or less, still more preferably 8% by mass or less.
  • thermosetting resin composition for a wire coating material of the present embodiment may contain other additives such as a coupling agent, other inorganic fillers, stabilizers, and leveling agents, if desired.
  • the first thermosetting resin composition for a wire coat material has the above composition, so that the viscosity measured by a rotational viscometer is 20 mPa ⁇ s or more. This improves the fluidity and the dispensability of the thermosetting resin composition described below when applied.
  • the nozzle tip temperature is such that the thermosetting resin composition can be discharged at high speed from micropores having an inner diameter of several hundred ⁇ m. It is preferable that the viscosity is low. Further, it is preferable that the thermosetting resin composition after ejection has fluidity. Therefore, the thermosetting resin composition has a viscosity at 30 ° C. of 2000 mPa ⁇ s or less, preferably 1000 mPa ⁇ s or less, and more preferably 800 mPa ⁇ s or less. Further, from the viewpoint of handling, the viscosity is preferably 100 mPa ⁇ s or more.
  • the viscosity can be determined according to Japanese Industrial Standards JIS K6833. Specifically, the viscosity at 30 ° C. can be obtained by reading the value 1 minute after the start of measurement at a rotation speed of 1 rpm using an E-type viscometer. There are no particular restrictions on the equipment, rotor or measurement range used.
  • the first thermosetting resin composition for wire coating material has thixotropy property by having the above composition.
  • the fact that the thermosetting resin composition has thixotropic property means that when the thermosetting resin composition receives shear stress (when the shear rate is increased), the viscosity decreases, and when the shear stress is released (shearing). It means that it has viscoelastic properties in which the viscosity is restored and the flow is suppressed (when the speed is slowed down).
  • the thixotropic properties of the curable resin composition are the viscosity ⁇ 10 (Pa ⁇ s) of the thermosetting resin composition at a reference shear rate of 10 rpm and the viscosity ⁇ 20 (Pa) of the thermosetting resin composition at a shear rate of 20 rpm.
  • the thermosetting resin composition is extruded from the jet dispenser when the thermosetting resin composition is applied using the jet dispenser. When it is, it flows moderately, and after being extruded, the flow stops, so that outflow from a predetermined range is unlikely to occur (coating shape retention), and it becomes possible to apply the coating to a predetermined range.
  • Chloride ion (Cl ⁇ ) and sulfide ion (S 2- ) have the property of dissolving and corroding aluminum, silver, and copper. Of aluminum, silver, and copper, aluminum is most susceptible to corrosion by Cl- and S2- , with a corrosion concentration threshold of 100 ppm. In other words, if the concentration of Cl- and S2- is 100 ppm or less, none of aluminum, silver, and copper is corroded.
  • the wire coat material 5 is made from a cured product of a thermosetting resin composition containing a thermosetting resin, an inorganic filler, and a solvent.
  • a thermosetting resin composition containing a thermosetting resin, an inorganic filler, and a solvent.
  • the components to be blended in the thermosetting resin composition according to the second embodiment will be described.
  • thermosetting resin used in the thermosetting resin composition of the second embodiment the same resin as that in the above-mentioned first embodiment can be used.
  • the preferred embodiment of the thermosetting resin is the same as that of the first embodiment.
  • thermosetting resin is, for example, 10% by mass or more and 95% by mass or less, preferably 20% by mass or more and 90% by mass or less, based on the total solid content (excluding the inorganic filler) of the thermosetting resin composition. Preferably, it is blended in an amount of 30% by mass or more and 85% by mass or less.
  • the thermosetting resin composition for a wire coating material of the second embodiment contains an inorganic filler as an essential component.
  • the content of the inorganic filler is 40% by mass or more, preferably 50% by mass or more, and more preferably 60% by mass or more, based on the total solid content of the thermosetting resin composition of the present embodiment. Most preferably, it is 65% by mass or more.
  • the content of the inorganic filler is 85% by mass or less, preferably 80% by mass or less, based on the total solid content of the thermosetting resin composition of the present embodiment.
  • the inorganic filler examples include silica such as fused silica and crystalline silica, talc, alumina, titanium white, silicon nitride and the like. Above all, it is preferable to use silica from the viewpoint of controlling thixotropy. As the silica, fused spherical silica or fused crushed silica can be used, and among them, fused spherical silica is preferably used. Further, the shape of the inorganic filler is preferably spherical as much as possible from the viewpoint of being able to increase the content of the inorganic filler while suppressing an increase in the melt viscosity of the obtained thermosetting resin composition, and the particle size is preferable. The distribution is preferably broad.
  • the average particle size of the inorganic filler is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and most preferably 0.3 ⁇ m or more. By doing so, the sedimentation of the inorganic filler in the thermosetting resin composition can be effectively suppressed. In addition, it is possible to prevent the nozzle of the jet dispenser from being worn and the resin composition to be discharged from being easily scattered outside the desired region.
  • the average particle size is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and most preferably 3 ⁇ m or less. By doing so, the applicability by a jet dispenser or the like can be improved.
  • thermosetting resin composition of the second embodiment As the solvent used for the thermosetting resin composition of the second embodiment, the same solvent as that in the above-mentioned first embodiment can be used.
  • the preferred embodiment of the solvent is the same as that of the first embodiment.
  • the solvent can be used in an amount suitable for keeping the viscosity of the thermosetting resin composition in a desired range, for example, with respect to the entire thermosetting resin composition, for example. It can be used in an amount of 10% by mass or more and 70% by mass or less.
  • thermosetting resin composition of the second embodiment may contain a curing agent.
  • a curing agent the same curing agent as in the first embodiment described above can be used as the curing agent.
  • the preferred embodiment of the curing agent is the same as that of the first embodiment.
  • the content of the curing agent in the thermosetting resin composition for wire coat material is low temperature curing with respect to the entire solid content (excluding the inorganic filler) of the thermosetting resin composition. From the viewpoint of improving toughness and chemical resistance at the time, it is preferably 0.1% by mass or more, more preferably 1% by mass or more, and further preferably 3% by mass or more. Further, from the viewpoint of enhancing the chemical resistance of the cured film, the content of the curing agent in the thermosetting resin composition is 100% by mass when the solid content (excluding the inorganic filler) of the thermosetting resin composition is 100% by mass. It is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less.
  • thermosetting resin composition for a wire coating material of the second embodiment is, if desired, an acid generator, an adhesion aid, another inorganic filler, a stabilizer, and a surfactant, as in the first embodiment.
  • Other additives such as agents may be included.
  • thermocurable resin composition for a wire coat material of the second embodiment is prepared by using a dynamic viscoelastic measuring machine on a cured product obtained by heat-treating the thermocurable resin composition at 175 ° C. for 120 minutes.
  • the storage elastic modulus at 25 ° C. measured under the conditions of measurement temperature: 20 ° C. to 300 ° C., temperature rise rate: 5 ° C./min, frequency: 1 Hz, and tensile mode is 2 GPa or more and 20 GPa or less, preferably 3 GPa or more. It is 18 GPa or less.
  • the wire coat material obtained from the thermosetting resin composition for wire coat material has a storage elastic modulus in the above range, so that it can maintain sufficient rigidity at low temperature and is low at high temperature during sealing or operation. It is elastic and thus can maintain its softness and can relieve the thermal stresses generated in the bonding wires and connections at high temperatures.
  • thermosetting resin composition for wire coat material of the present embodiment the content of chloride ion measured by the following procedure is 0 in the cured product obtained by heat-treating the thermosetting resin composition at 175 ° C. for 120 minutes. It is 0.01 ppm or more and 10 ppm or less, preferably 0.01 ppm or more and 6 ppm or less. (procedure) 50 mL of pure water is added to 5 g of the cured product of the thermosetting resin composition, and hot water extraction is performed at 125 ° C. for 24 hours to obtain extracted water. By analyzing the obtained extracted water by an ion chromatograph, the ion concentration in the cured product of the thermosetting resin composition is measured.
  • the thermosetting resin composition for a wire coating material of the present embodiment having a chloride ion content in the above range can suppress corrosion of the bonding interface (bonding layer 19) between the semiconductor chip and the bonding wire due to chloride ions. ..
  • thermocurable resin composition for a wire coat material of the present embodiment is a cured product obtained by heat-treating the thermocurable resin composition at 175 ° C. for 120 minutes at a measured temperature using a dynamic viscoelasticity measuring machine. : 20 ° C to 300 ° C, heating rate: 5 ° C / min, frequency: 1Hz, glass transition temperature measured under the conditions of tension mode is 150 ° C or higher and 350 ° C or lower, preferably 180 ° C or higher and 300 ° C or lower. It is more preferably 200 ° C. or higher and 280 ° C. or lower.
  • the wire coat material obtained from the thermosetting resin composition for a wire coat material has excellent heat resistance by having a glass transition temperature in the above range.
  • thermosetting resin composition for a wire coat material of the present embodiment has a viscosity measured at 20 rpm and 25 ° C. using a Brookfield BH type rotational viscometer, which is preferably 20 mPa ⁇ s or more and 2000 mPa ⁇ s or less, preferably. , 100 mPa ⁇ s or more and 1800 mPa ⁇ s or less, more preferably 150 mPa ⁇ s or more and 1500 mPa ⁇ s or less
  • the thermosetting resin composition for a wire coat material of the present embodiment is intended to be applied by a jet dispenser.
  • the viscosity at the tip temperature of the nozzle is low so that the thermosetting resin composition can be discharged at high speed from the micropores having an inner diameter of several hundred ⁇ m. Further, it is preferable that the thermosetting resin composition after ejection has fluidity.
  • the thermosetting resin composition for a wire coating material of the present embodiment having a viscosity in the above range is excellent in applicability by a jet dispenser.
  • thermosetting resin composition for a wire coat material of the present embodiment has a thixotropic ratio represented by viscosity a / viscosity b of 0.1 or more and 3.0 or less, preferably 0.5 or more and 2.0 or less.
  • Viscosity a Viscosity measured at 10 rpm and 25 ° C. using a Brookfield BH type rotational viscometer.
  • Viscosity b Viscosity measured at 20 rpm and 25 ° C. using a Brookfield BH type rotational viscometer.
  • thermosetting resin composition for a wire coat material of the present embodiment has thixotropy property by having the above composition.
  • the fact that the thermosetting resin composition has thixotropic property means that when the thermosetting resin composition receives shear stress (when the shear rate is increased), the viscosity decreases, and when the shear stress is released (shearing). It means that it has viscoelastic properties in which the viscosity is restored and the flow is suppressed (when the speed is slowed down).
  • thermosetting resin composition When the thixotropy is in the range of 0.1 to 3.0, the thermosetting resin composition is extruded from the jet dispenser when the thermosetting resin composition is applied using the jet dispenser. When it is present, it flows moderately, and after being extruded, the flow stops, so that outflow from a predetermined range is unlikely to occur (coating shape retention), and it becomes possible to apply the coating to a predetermined range.
  • the semiconductor device of this embodiment is manufactured by the following method using the thermosetting resin composition for a wire coating material according to the first and second embodiments described above.
  • the joint portion between the semiconductor chip 1 and the bonding wire 7 is covered with the wire coating material 5 including the bonding layer 19.
  • solvent solvent
  • solvent solvent
  • Solvent 1 ⁇ -Butyrolactone (manufactured by Merck (AZ Electronic Materials))
  • Solvent 2 Propylene glycol monomethyl ether acetate (manufactured by Merck Performance Materials)
  • Solvent 3 2-Heptanone (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • (resin) -Resin 1 Phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., weight average molecular weight 54040)
  • Resin 2 Epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN201)
  • -Resin 3 Polynorbornene resin (manufactured by Promeras, Avatorel 2590)
  • -Resin 4 Bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER1256) (Hardener) -Curing agent 1: A mixture of tetra
  • -Curing agent 2 Linear epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER YX7105)
  • -Curing agent 3 2-Undecylmethylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., C11Z)
  • Coupling agent) -Coupling agent 1 3-methacryloxypropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-503P)
  • -Coupling agent 2 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403E)
  • -Coupling agent 3 3-mercapto-1,2,4-triazole (Huaihua Wangda Biotechnology Co., manufactured by Ltd.)
  • -Coupling agent 4 Triethoxysilylpropyl maleic acid (silica particles)
  • thermosetting resin composition For each Example and each Comparative Example, a thermosetting resin composition was prepared as follows. In each Example A and each Comparative Example A, each component in the blending amount shown in Table 1 shown in Table 1 was mixed with a solvent to prepare a varnish-like resin composition.
  • the thixotropic property of the resin composition was evaluated by determining the thixotropic coefficient (x 1 ) by the following procedure using a Brookfield BH type rotational viscometer.
  • the varnish-like resin composition obtained above was placed in a wide-mouthed light-shielding bottle (100 ml), and the liquid temperature was adjusted to 25 ° C. ⁇ 0.5 ° C. using a constant temperature water tank. Then, after stirring 40 times over 12 to 15 seconds using a glass rod, a predetermined rotor was installed, the mixture was allowed to stand for 5 minutes, and then the scale when rotated at 20 rpm for 3 minutes was read.
  • the viscosity ⁇ 20 was calculated by multiplying this scale by the coefficient of the conversion table. Similarly, it was calculated from the value of the viscosity ⁇ 10 measured at 25 ° C. and 10 rpm according to the following equation. The results are shown in Table 1.
  • x 1 ⁇ 10 / ⁇ 20
  • the surface condition of the tip immediately after application was imaged with a camera (manufactured by KEYENCE) attached to the jet dispenser. Based on the image of the photograph, the state where the surface area (3.5 mm x 3.5 mm) of the chip after coating is covered with the varnish-like resin composition by 10 to 30% is "low" contamination degree, more than 30-60%. The covered state was evaluated as "normal", and the state where the surface was covered more than 60% was evaluated as "high”. The area was calculated manually from the photographic image. The results are shown in Table 1. The lower the degree of contamination, the better the coatability. (3.3 Presence or absence of voids) The above varnish-like resin composition was applied onto the chips and cured by heating.
  • a tensile test (tensile speed: 0.05 mm / min) was performed on a test piece (width 10 mm ⁇ length 60 mm or more ⁇ thickness 0.005 to 0.01 mm) made of a resin film, at a temperature of 23 ° C. and a humidity of 55%. It was carried out in the atmosphere of.
  • the tensile test was performed using a tensile tester manufactured by Orientec (Tensilon RTC-1210A).
  • the tensile elongation was calculated from the results of the tensile test.
  • a semiconductor device was manufactured according to the method described in the above-mentioned "Method for manufacturing a semiconductor device".
  • the thermosetting resin composition for wire coating and the sealing resin were cured under a temperature condition of 175 ° C. or 220 ° C.
  • a DC voltage of 20 V was applied to the semiconductor device obtained at each curing temperature for 240 hours in an environment of a temperature of 130 ° C.
  • the results are shown in Table 1 as the number of defects out of 10 samples.
  • thermosetting resin composition for wire coating of Example A was excellent in applicability with a jet dispenser. Further, the semiconductor device produced by using the resin composition for wire coating of the example was excellent in reliability.
  • thermosetting resin composition For each Example and each Comparative Example, a thermosetting resin composition was prepared as follows. In each Example and each Comparative Example, each component in the blending amount shown in Table 2 shown in Table 2 was mixed with a solvent to prepare a varnish-like resin composition.
  • the thixotropic property of the resin composition was evaluated by the thixotropic ratio (x 1 ) by the following procedure using a rotational viscometer.
  • a viscosity measured at 10 rpm and 25 ° C. using a Brookfield BH type rotational viscometer is defined as viscosity a
  • the viscosity measured at 20 rpm and 25 ° C. using a Brookfield BH type rotational viscometer is defined as viscosity b
  • the following equation is used. Calculated according to. The results are shown in Table 2.
  • x 1 viscosity a / viscosity b
  • the storage elastic modulus and the glass transition temperature of the cured product of the resin composition obtained in each example were measured as follows. After applying the above-mentioned varnish-like resin composition to a 6-inch wafer, heat treatment was performed at 120 ° C. for 240 seconds to remove the solvent to obtain a resin film. Then, the resin film was heat-treated in an oven to be cured. In the heat treatment, the inside of the oven on which the wafer is placed is replaced with nitrogen at 30 ° C. for 30 minutes, the temperature is raised to 175 ° C. at a heating rate of 5 ° C./min, and then the temperature is maintained at the curing temperature for 120 minutes.
  • the temperature in the oven was lowered to 70 ° C. or lower at a temperature lowering rate of 5 ° C./min, and the wafer was taken out.
  • the resin film was peeled off from the wafer using hydrofluoric acid and dried under the conditions of 60 ° C. for 10 hours, and a test piece having a width of 4 mm, a length of 20 mm and a thickness of 10 ⁇ m was obtained from the obtained cured film. ..
  • a dynamic viscoelastic modulus measuring machine (DMA, manufactured by Hitachi High-Tech Science Co., Ltd., DMA7100) was used to start the temperature at 20 ° C., measure the temperature range at 20 to 300 ° C., and raise the temperature at 5 ° C./min. The measurement was carried out under the condition of a frequency of 1 Hz, and the storage elastic modulus (GPa) at Tg (° C.) and 25 ° C. was determined from the measurement results. The results are shown in Table 2. In Comparative Example B4, since the sample could not be prepared, it is indicated as "not measurable".
  • the chloride ion concentration of the cured product of the resin composition obtained in each example was measured as follows. First, the resin composition obtained above was cured in an oven at 175 ° C. for 120 minutes to obtain a cured product. 5 g of the obtained sample and 50 ml of pure water were placed in a pressure-resistant container made of Teflon (registered trademark), sealed, and treated at a temperature of 125 ° C., a relative humidity of 100% RH, and for 24 hours (hot water extraction). Next, after cooling to room temperature, the extracted water was centrifuged and filtered through a 20 ⁇ m filter, and the filtrate was used as the extracted water.
  • Teflon registered trademark
  • the obtained extracted water was analyzed by an ion chromatograph using an ion chromatograph (manufactured by Thermo Fisher Scientific Co., Ltd.), and the chlorine ion concentration in the extracted water was measured.
  • the results of the obtained chloride ion concentration are shown in Table 2.
  • the semiconductor device produced by using the resin composition of Example B as a wire coat material is excellent in reliability without the occurrence of peeling between each member in the semiconductor device and the occurrence of cracks in the wire coat material. there were.

Abstract

A thermosetting resin composition which is used for the purpose of covering at least a part of a bonding wire (7) and a bonding pad (17) in a semiconductor device (10) that is provided with: a stage plate (2); a semiconductor chip (1) which is mounted on the stage plate (2), while having the bonding pad (17); the bonding wire (7) which is bonded to the bonding pad (17) so as to connect the semiconductor chip (1) and the stage plate (2) to each other; and a resin sealing body (4) which seals the semiconductor chip (1), the mounting surface of the stage plate (2) for the semiconductor chip (1), and the bonding wire (7). This thermosetting resin composition contains a thermosetting resin, a curing agent and a solvent; and the viscosity of this thermosetting resin composition is 20 mPa·s or more as measured by a rotational viscometer.

Description

熱硬化性樹脂組成物および半導体装置Thermosetting resin compositions and semiconductor devices
 本発明は、熱硬化性樹脂組成物およびこれを用いて製造される半導体装置に関する。より詳細には、本発明は、半導体チップの電極パッドがボンディングワイヤで電気的に接合され、半導体チップとボンディングワイヤとが熱硬化性樹脂組成物の硬化物で封止されている半導体装置において、電極パッドとボンディングワイヤとの接合部を保護するために用いる熱硬化性樹脂組成物に関する。 The present invention relates to a thermosetting resin composition and a semiconductor device manufactured by using the thermosetting resin composition. More specifically, the present invention relates to a semiconductor device in which an electrode pad of a semiconductor chip is electrically bonded by a bonding wire, and the semiconductor chip and the bonding wire are sealed with a cured product of a thermosetting resin composition. The present invention relates to a thermosetting resin composition used for protecting a joint portion between an electrode pad and a bonding wire.
 半導体装置は、通常、半導体チップがボンディングワイヤとともに樹脂で封止(パッケージング)された状態で流通している。パッケージ内において、半導体チップの電極パッドと、樹脂パッケージから一部が露出する電極リードとが、ボンディングワイヤにより電気的に接続されている。したがって、実装基板の配線に対して電極リードを外部端子として接続することにより、半導体チップと実装基板との電気的な接続が達成される。 Semiconductor devices are usually distributed in a state where semiconductor chips are sealed (packaged) with a resin together with bonding wires. In the package, the electrode pad of the semiconductor chip and the electrode lead whose part is exposed from the resin package are electrically connected by a bonding wire. Therefore, by connecting the electrode leads as external terminals to the wiring of the mounting board, the electrical connection between the semiconductor chip and the mounting board is achieved.
 電極パッドと電極リードとを結ぶボンディングワイヤとして、従来は主に金ワイヤが用いられているが、高価な金の使用を減らすべく、近年では、金ワイヤよりも安価な銅ワイヤの使用が検討されている。近年主流のアルミニウム製の電極パッドに接続するワイヤとして銅ワイヤを用いた場合には、その浸入水分が電極パッドとボンディングワイヤとの接合界面に入り込むと、当該接合界面付近においてアルミニウムの腐食が進行しやすくなる。そのため、パッド-ワイヤ間において、電気的オープンが生じるおそれがある。また封止樹脂中の塩素元素と、電極パッドとボンディングワイヤとの接合界面に形成された金属間化合物が、腐食反応を起こすことにより、接合部の電気抵抗の増加や接合強度の低下を引き起こす場合があった。 Conventionally, gold wire is mainly used as the bonding wire for connecting the electrode pad and the electrode lead, but in recent years, in order to reduce the use of expensive gold, the use of copper wire, which is cheaper than gold wire, has been considered. ing. When a copper wire is used as a wire to be connected to an aluminum electrode pad, which has become the mainstream in recent years, when the infiltrated moisture enters the bonding interface between the electrode pad and the bonding wire, aluminum corrosion progresses in the vicinity of the bonding interface. It will be easier. Therefore, an electrical opening may occur between the pad and the wire. In addition, when the chlorine element in the sealing resin and the intermetallic compound formed at the bonding interface between the electrode pad and the bonding wire cause a corrosion reaction, the electrical resistance of the bonding portion increases and the bonding strength decreases. was there.
 パッド-ワイヤ間の接続信頼性を向上するための技術として、例えば、特許文献1では、ボンディングワイヤの合金化添加元素を適正化することで、ボンディングワイヤと電極との接合部の長期信頼性を向上させる方法が記載されている。 As a technique for improving the connection reliability between the pad and the wire, for example, in Patent Document 1, the long-term reliability of the bonding portion between the bonding wire and the electrode is improved by optimizing the alloying additive element of the bonding wire. How to improve is described.
 しかし、上記特許文献1では、ボンディングワイヤと電極との間の十分な接続信頼性を得るのは困難であった。本発明者らは、ボンディングワイヤとボンディングパッドとの間の接続信頼性を改善するために、これらの接合部をワイヤコート材で被覆する技術を検討した。ワイヤコート材で被覆する場合、ワイヤコート材として用いる樹脂組成物の組成を最適化して、良好な塗布性を維持しつつ、ボンディングワイヤとボンディングパッドとの間の接続信頼性を向上させることが重要な技術的課題であることを見出した。さらに、本発明者らは、熱履歴によりワイヤコート材等の剥離が生じる場合があることを見出した。 However, in the above-mentioned Patent Document 1, it is difficult to obtain sufficient connection reliability between the bonding wire and the electrode. The present inventors have studied a technique for coating these joints with a wire coating material in order to improve the connection reliability between the bonding wire and the bonding pad. When coating with a wire coating material, it is important to optimize the composition of the resin composition used as the wire coating material to improve the connection reliability between the bonding wire and the bonding pad while maintaining good coatability. It was found that it was a technical issue. Furthermore, the present inventors have found that the wire coat material or the like may be peeled off due to the thermal history.
特開2003-133362号公報Japanese Patent Application Laid-Open No. 2003-133362
 本発明は、ボンディングパッドとボンディングワイヤとの接続信頼性を向上させることができる、ボンディングワイヤの少なくとも一部と接合界面とを被覆するための熱硬化性樹脂組成物、およびこの熱硬化性樹脂組成物を使用して得られる、電気的信頼性に優れた半導体を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention relates to a thermosetting resin composition for covering at least a part of a bonding wire and a bonding interface, which can improve the connection reliability between the bonding pad and the bonding wire, and the thermosetting resin composition. It is an object of the present invention to provide a semiconductor having excellent electrical reliability obtained by using an object.
 本発明者は、鋭意検討した結果、載置板と、前記載置板上に搭載され、ボンディングパッドを有する、半導体チップと、前記ボンディングパッドに接合された、前記半導体チップと前記載置板とを接続するボンディングワイヤと、前記半導体チップ、前記載置板の前記半導体チップの搭載面、および前記ボンディングワイヤを封止する樹脂封止体と、を備える半導体装置において、前記ボンディングワイヤの少なくとも一部、および前記接合層を樹脂で被覆することにより、上記課題を解決できることを見出し本発明を完成させた。 As a result of diligent studies, the present inventor has found a mounting plate, a semiconductor chip mounted on the above-mentioned mounting plate and having a bonding pad, and the semiconductor chip and the previously described mounting plate bonded to the bonding pad. At least a part of the bonding wire in a semiconductor device including the semiconductor chip, the mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin sealant for sealing the bonding wire. , And the above-mentioned problems can be solved by coating the bonding layer with a resin, and the present invention has been completed.
 本発明によれば、
 載置板と、
 前記載置板上に搭載され、ボンディングパッドを有する、半導体チップと、
 前記ボンディングパッドに接合された、前記半導体チップと前記載置板とを接続するボンディングワイヤと、
 前記半導体チップ、前記載置板の前記半導体チップの搭載面、および前記ボンディングワイヤを封止する樹脂封止体と、を備える半導体装置において、
 前記ボンディングワイヤの少なくとも一部、および前記ボンディングパッドを被覆するために用いる熱硬化性樹脂組成物であって、
 当該熱硬化性樹脂組成物は、熱硬化性樹脂、硬化剤、および溶剤を含み、
 当該熱硬化性樹脂組成物の、回転粘度計で測定した粘度が、20mPa・s以上である、熱硬化性樹脂組成物が提供される。
According to the present invention
Placement board and
A semiconductor chip mounted on the above-mentioned mounting plate and having a bonding pad,
A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate,
In a semiconductor device including the semiconductor chip, a mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin encapsulant for encapsulating the bonding wire.
A thermosetting resin composition used to cover at least a part of the bonding wire and the bonding pad.
The thermosetting resin composition contains a thermosetting resin, a curing agent, and a solvent.
Provided is a thermosetting resin composition having a viscosity measured by a rotational viscometer of 20 mPa · s or more of the thermosetting resin composition.
 また本発明によれば、
 載置板と、
 前記載置板上に搭載され、ボンディングパッドを有する、半導体チップと、
 前記ボンディングパッドに接合された、前記半導体チップと前記載置板とを接続するボンディングワイヤと、
 前記半導体チップ、前記載置板の前記半導体チップの搭載面、および前記ボンディングワイヤを封止する樹脂封止体と、を備える半導体装置において、
 前記ボンディングワイヤの少なくとも一部、および前記ボンディングパッドを被覆するために用いる熱硬化性樹脂組成物であって、
 当該熱硬化性樹脂組成物は、熱硬化性樹脂、無機フィラーおよび溶剤を含み、
 前記無機フィラーの含有量が、当該熱硬化性樹脂組成物の固形分全体に対して、40質量%以上85質量%以下である、熱硬化性樹脂組成物が提供される。
Further, according to the present invention.
Placement board and
A semiconductor chip mounted on the above-mentioned mounting plate and having a bonding pad,
A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate,
In a semiconductor device including the semiconductor chip, a mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin encapsulant for encapsulating the bonding wire.
A thermosetting resin composition used to cover at least a part of the bonding wire and the bonding pad.
The thermosetting resin composition contains a thermosetting resin, an inorganic filler and a solvent.
Provided is a thermosetting resin composition in which the content of the inorganic filler is 40% by mass or more and 85% by mass or less with respect to the total solid content of the thermosetting resin composition.
 また本発明によれば、
 載置板と、
 前記載置板上に搭載され、ボンディングパッドを有する、半導体チップと、
 前記ボンディングパッドに接合された、前記半導体チップと前記載置板とを接続するボンディングワイヤと、
 前記半導体チップ、前記載置板の前記半導体チップの搭載面、および前記ボンディングワイヤを封止する樹脂封止体と、を備え、
 前記ワイヤコート材が、上記熱硬化性樹脂組成物の硬化物からなる、半導体装置が提供される。
Further, according to the present invention.
Placement board and
A semiconductor chip mounted on the above-mentioned mounting plate and having a bonding pad,
A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate,
A semiconductor chip, a mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin encapsulant for encapsulating the bonding wire are provided.
A semiconductor device is provided in which the wire coat material is a cured product of the thermosetting resin composition.
 本発明によれば、半導体チップとボンディングワイヤとの接続信頼性を改善することができる熱硬化性樹脂組成物、およびこれを用いて製造された信頼性に優れる半導体装置が提供される。 According to the present invention, there is provided a thermosetting resin composition capable of improving the connection reliability between a semiconductor chip and a bonding wire, and a highly reliable semiconductor device manufactured by using the thermosetting resin composition.
本実施形態に係る半導体装置の断面模式図である。It is sectional drawing of the semiconductor device which concerns on this embodiment. 本実施形態に係る図1に示す半導体装置における、半導体チップとボンディングワイヤとの接合部の断面拡大図である。FIG. 3 is an enlarged cross-sectional view of a joint portion between a semiconductor chip and a bonding wire in the semiconductor device shown in FIG. 1 according to the present embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、すべての図面はあくまで説明用のものである。図面中の各部材の形状や寸法比などは、必ずしも現実の物品と対応するものではない。本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、「a以上b以下」のことを表す。例えば、「5~90質量%」とは「5質量%以上90質量%以下」を意味する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all drawings, similar components are designated by the same reference numerals, and description thereof will be omitted as appropriate. All drawings are for illustration purposes only. The shape and dimensional ratio of each member in the drawing do not necessarily correspond to the actual article. In the present specification, the notation "a to b" in the description of the numerical range means "a or more and b or less" unless otherwise specified. For example, "5 to 90% by mass" means "5% by mass or more and 90% by mass or less".
 第一の実施形態において、本発明の熱硬化性樹脂組成物は、
 載置板と、
 前記載置板上に搭載され、ボンディングパッドを有する、半導体チップと、
 前記ボンディングパッドに接合された、前記半導体チップと前記載置板とを接続するボンディングワイヤと、
 前記半導体チップ、前記載置板の前記半導体チップの搭載面、および前記ボンディングワイヤを封止する樹脂封止体と、を備える半導体装置において、
 前記ボンディングワイヤの少なくとも一部、および前記ボンディングパッドを被覆するために用いる熱硬化性樹脂組成物であって、
 当該熱硬化性樹脂組成物は、熱硬化性樹脂、硬化剤、および溶剤を含み、
 当該熱硬化性樹脂組成物の、回転粘度計で測定した粘度が、20mPa・s以上である。
In the first embodiment, the thermosetting resin composition of the present invention is
Placement board and
A semiconductor chip mounted on the above-mentioned mounting plate and having a bonding pad,
A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate,
In a semiconductor device including the semiconductor chip, a mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin encapsulant for encapsulating the bonding wire.
A thermosetting resin composition used to cover at least a part of the bonding wire and the bonding pad.
The thermosetting resin composition contains a thermosetting resin, a curing agent, and a solvent.
The viscosity of the thermosetting resin composition measured by a rotational viscometer is 20 mPa · s or more.
 第二の実施形態において、本発明の熱硬化性樹脂組成物は、
 載置板と、
 前記載置板上に搭載され、ボンディングパッドを有する、半導体チップと、
 前記ボンディングパッドに接合された、前記半導体チップと前記載置板とを接続するボンディングワイヤと、
 前記半導体チップ、前記載置板の前記半導体チップの搭載面、および前記ボンディングワイヤを封止する樹脂封止体と、を備える半導体装置において、
 前記ボンディングワイヤの少なくとも一部、および前記ボンディングパッドを被覆するために用いる熱硬化性樹脂組成物であって、
 当該熱硬化性樹脂組成物は、熱硬化性樹脂、無機フィラーおよび溶剤を含み、
 前記無機フィラーの含有量が、当該熱硬化性樹脂組成物の固形分全体に対して、40質量%以上85質量%以下である。
In the second embodiment, the thermosetting resin composition of the present invention is
Placement board and
A semiconductor chip mounted on the above-mentioned mounting plate and having a bonding pad,
A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate,
In a semiconductor device including the semiconductor chip, a mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin encapsulant for encapsulating the bonding wire.
A thermosetting resin composition used to cover at least a part of the bonding wire and the bonding pad.
The thermosetting resin composition contains a thermosetting resin, an inorganic filler and a solvent.
The content of the inorganic filler is 40% by mass or more and 85% by mass or less with respect to the total solid content of the thermosetting resin composition.
 また、本実施形態に係る半導体装置は、
 載置板と、
 前記載置板上に搭載された、ボンディングパッドを有する半導体チップと、
 前記ボンディングパッドに接合された、前記半導体チップと前記載置板とを接続するボンディングワイヤと、
 前記半導体チップ、前記載置板の前記半導体チップの搭載面、および前記ボンディングワイヤを封止する樹脂封止体と、
 前記ボンディングワイヤと前記ボンディングパッドとの接続部を被覆するワイヤコート材と、を備え、
 前記ワイヤコート材が、上記熱硬化性樹脂組成物の硬化物からなる。
Further, the semiconductor device according to this embodiment is
Placement board and
A semiconductor chip with a bonding pad mounted on the above-mentioned mounting plate,
A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate,
The semiconductor chip, the mounting surface of the semiconductor chip of the above-mentioned mounting plate, and the resin encapsulant for encapsulating the bonding wire.
A wire coating material for covering a connection portion between the bonding wire and the bonding pad is provided.
The wire coat material is made of a cured product of the thermosetting resin composition.
 本実施形態におけるワイヤコート材が本発明の熱硬化性樹脂組成物に対応する。また、本実施形態における半導体装置10が本発明の半導体装置に対応する。 The wire coating material in the present embodiment corresponds to the thermosetting resin composition of the present invention. Further, the semiconductor device 10 in the present embodiment corresponds to the semiconductor device of the present invention.
(半導体装置10)
 図1は、本実施形態に係る半導体装置10の断面図である。図1に示すように、半導体装置10は、半導体チップ1、回路基板2、接続パッド8、樹脂封止体(封止樹脂)4、外部電極端子6、ボンディングワイヤ7を備える。半導体装置10において、回路基板2上の接続パッド8上にダイアタッチ材9を介して半導体チップ1が固定されている。半導体チップ1の電極パッド(図示せず)と回路基板2との間はボンディングワイヤ7によって接続されている。回路基板2の半導体チップ1が搭載された面は、樹脂封止体4によって封止されている。回路基板2上の電極パッドは、回路基板2の非封止面側の外部電極端子6と内部で接合されている。
(Semiconductor device 10)
FIG. 1 is a cross-sectional view of the semiconductor device 10 according to the present embodiment. As shown in FIG. 1, the semiconductor device 10 includes a semiconductor chip 1, a circuit board 2, a connection pad 8, a resin encapsulant (encapsulating resin) 4, an external electrode terminal 6, and a bonding wire 7. In the semiconductor device 10, the semiconductor chip 1 is fixed on the connection pad 8 on the circuit board 2 via the die attach material 9. The electrode pad (not shown) of the semiconductor chip 1 and the circuit board 2 are connected by a bonding wire 7. The surface of the circuit board 2 on which the semiconductor chip 1 is mounted is sealed by the resin encapsulant 4. The electrode pad on the circuit board 2 is internally bonded to the external electrode terminal 6 on the non-sealed surface side of the circuit board 2.
(半導体チップ1)
 半導体チップ1の種類は特に限定されず、あらゆる種類の半導体チップが用いられ得る。半導体チップ1は、半導体チップ1の裏面が接続パッド8の上面に接するように、ダイアタッチ層9を介して回路基板2上に搭載されている。半導体チップ1の上面において、ボンディングワイヤ7がワイヤボンディング法を用いて、接合層(ボンディングパッド)17を介して半導体チップ1に電気的に接続されており、半導体チップ1とボンディングワイヤ7との接続部分が、樹脂コート材(ワイヤコート材)5により被覆されている。ここで、図2は、図1における半導体チップ1とボンディングワイヤ7との接続部分における拡大図を示している。図2に示すように、半導体チップ1は、その上面に、バリア層18と、接合層17とを備え、接合層17を介してボンディングワイヤ7の一端に電気的に接続されており、半導体チップ1とボンディングワイヤ7との接続部分が、以下で詳述する本実施形態の熱硬化性樹脂組成物の硬化物よりなるワイヤコート材5により被覆されている。
(Semiconductor chip 1)
The type of the semiconductor chip 1 is not particularly limited, and any type of semiconductor chip can be used. The semiconductor chip 1 is mounted on the circuit board 2 via the die attach layer 9 so that the back surface of the semiconductor chip 1 is in contact with the upper surface of the connection pad 8. On the upper surface of the semiconductor chip 1, the bonding wire 7 is electrically connected to the semiconductor chip 1 via a bonding layer (bonding pad) 17 by a wire bonding method, and the semiconductor chip 1 and the bonding wire 7 are connected to each other. The portion is covered with a resin coating material (wire coating material) 5. Here, FIG. 2 shows an enlarged view of the connection portion between the semiconductor chip 1 and the bonding wire 7 in FIG. 1. As shown in FIG. 2, the semiconductor chip 1 is provided with a barrier layer 18 and a bonding layer 17 on the upper surface thereof, and is electrically connected to one end of the bonding wire 7 via the bonding layer 17 and is a semiconductor chip. The connection portion between 1 and the bonding wire 7 is covered with a wire coating material 5 made of a cured product of the thermosetting resin composition of the present embodiment, which will be described in detail below.
 この構成によれば、接合層17およびボンディングワイヤ7の一部が、本実施形態の熱硬化性樹脂組成物の硬化物よりなるワイヤコート材5により被覆されている。そのため、樹脂パッケージ内部に水分が侵入しても、その水分をこのワイヤコート材5により塞ぎ止めることができるため、半導体チップ1とボンディングワイヤ7との接合界面(接合層17)が水分と接触して腐食することを防止することができる。また樹脂封止体4に含まれる水分や塩素イオンによる半導体チップ1とボンディングワイヤ7との接合界面(接合層17)の腐食を抑制することができる。さらに腐食が生じたとしてもその広がりを抑制することができる。また樹脂封止体4に含まれる酸素により、ボンディングワイヤ7や接合層19が酸化するのを防止することができる。その結果、パッド-ワイヤ間の接続信頼性を向上することができ、信頼性に優れる半導体装置を得ることができる。 According to this configuration, a part of the bonding layer 17 and the bonding wire 7 is covered with a wire coating material 5 made of a cured product of the thermosetting resin composition of the present embodiment. Therefore, even if water enters the inside of the resin package, the water can be blocked by the wire coating material 5, so that the bonding interface (bonding layer 17) between the semiconductor chip 1 and the bonding wire 7 comes into contact with the water. It can be prevented from corroding. Further, it is possible to suppress corrosion of the bonding interface (bonding layer 17) between the semiconductor chip 1 and the bonding wire 7 due to moisture and chlorine ions contained in the resin encapsulating body 4. Further, even if corrosion occurs, its spread can be suppressed. Further, it is possible to prevent the bonding wire 7 and the bonding layer 19 from being oxidized by the oxygen contained in the resin encapsulating body 4. As a result, the connection reliability between the pad and the wire can be improved, and a semiconductor device having excellent reliability can be obtained.
(回路基板2)
 本実施形態の半導体装置10が備える回路基板2は、半導体チップ1の載置板として使用される。回路基板2は、その裏面側に外部電極端子6を備えている。また、回路基板2は、回路基板2の上面および内部に配線を備える。更に、回路基板2は、回路基板2の上面に配線を介して接続パッド8を備える。図2に示すように、接続パッド8の裏面の全体が配線に接続されている必要はなく、接続パッド8の一部が配線に接続されていればよいが、接続パッド8の裏面の全体が配線に接続されていてもよい。また、回路基板2は、接続パッド8を介して半導体チップ1に接続される。
(Circuit board 2)
The circuit board 2 included in the semiconductor device 10 of the present embodiment is used as a mounting plate for the semiconductor chip 1. The circuit board 2 is provided with an external electrode terminal 6 on the back surface side thereof. Further, the circuit board 2 includes wiring on the upper surface and the inside of the circuit board 2. Further, the circuit board 2 is provided with a connection pad 8 on the upper surface of the circuit board 2 via wiring. As shown in FIG. 2, it is not necessary that the entire back surface of the connection pad 8 is connected to the wiring, and it is sufficient that a part of the connection pad 8 is connected to the wiring, but the entire back surface of the connection pad 8 is connected. It may be connected to the wiring. Further, the circuit board 2 is connected to the semiconductor chip 1 via the connection pad 8.
 本実施形態にて用いられる回路基板2の種類は特に限定されず、ガラスエポキシ材、BT(ビスマレイミドトリアジン)、レジン、ポリイミド等の有機絶縁基材に銅配線をパターニングした回路基板等を用いることができる。 The type of the circuit board 2 used in the present embodiment is not particularly limited, and a circuit board in which copper wiring is patterned on an organic insulating base material such as a glass epoxy material, BT (bismaleimide triazine), resin, or polyimide is used. Can be done.
(ボンディングワイヤ7)
 ボンディングワイヤ7は、半導体チップ1と回路基板2とを電気的に接続するために用いられる。具体的には、ボンディングワイヤ7の一端が半導体チップ1の上面に接合層19を介して電気的に接続されており、ボンディングワイヤ7の他端が回路基板2の上面に配線11を介して電気的に接続されている。この電気的な接続には、ワイヤボンディング法が用いられている。なお、本実施形態にて用いられるワイヤボンディングの種類は特に限定されず、ボールボンディング、ステッチボンディング等のあらゆる種類のワイヤボンディングが用いられ得る。
(Bonding wire 7)
The bonding wire 7 is used to electrically connect the semiconductor chip 1 and the circuit board 2. Specifically, one end of the bonding wire 7 is electrically connected to the upper surface of the semiconductor chip 1 via the bonding layer 19, and the other end of the bonding wire 7 is electrically connected to the upper surface of the circuit board 2 via the wiring 11. Is connected. A wire bonding method is used for this electrical connection. The type of wire bonding used in this embodiment is not particularly limited, and all types of wire bonding such as ball bonding and stitch bonding can be used.
 本実施形態において用いられるボンディングワイヤ7は、アルミニウム、銀、および銅の何れかが導電材料として用いられていてもよい。ボンディングワイヤ7は、金属により予め被覆されていてもよい。 In the bonding wire 7 used in the present embodiment, any one of aluminum, silver, and copper may be used as the conductive material. The bonding wire 7 may be pre-coated with metal.
(外部電極端子6)
 外部電極端子6は、球形状をしており、回路基板2の裏面側(非封止面側)に設けられている。外部電極端子6の何れかが、配線(図示なし)に接続されており、これにより、半導体チップ1を駆動させるための電力が、外部電極端子6から配線およびボンディングワイヤ7を介して半導体チップ1に供給される。外部電極端子6としては、半田ボールを用いた球形状の端子、または、金を用いたランド形状の端子等が用いられる。
(External electrode terminal 6)
The external electrode terminal 6 has a spherical shape and is provided on the back surface side (non-sealing surface side) of the circuit board 2. One of the external electrode terminals 6 is connected to a wiring (not shown), whereby the electric power for driving the semiconductor chip 1 is transferred from the external electrode terminal 6 to the semiconductor chip 1 via the wiring and the bonding wire 7. Is supplied to. As the external electrode terminal 6, a spherical terminal using a solder ball, a land-shaped terminal using gold, or the like is used.
(接続パッド8)
 接続パッド8は、配線を介して回路基板2の上面に接続されている。一般に、半導体チップ1と回路基板2とがワイヤボンディング法を用いて電気的に接続される場合、半導体チップ1が積載されている接続パッド8は、半導体チップ1の周辺に配置されていることが望ましい。
(Connection pad 8)
The connection pad 8 is connected to the upper surface of the circuit board 2 via wiring. Generally, when the semiconductor chip 1 and the circuit board 2 are electrically connected by using a wire bonding method, the connection pad 8 on which the semiconductor chip 1 is loaded may be arranged around the semiconductor chip 1. desirable.
(樹脂封止体4)
 樹脂封止体(封止樹脂)4は、回路基板2上の半導体チップ1を封止するために用いられており、図1に示すように、半導体チップ1、ボンディングワイヤ7、接続パッド8、半導体チップ1とボンディングワイヤ7との接合部、ボンディングワイヤ7と回路基板2との接合部、および配線を被覆する絶縁層(図示なし)の全体を覆うように、回路基板2上に形成される。樹脂封止体4の形成方法は、プレスおよび金型を用い、圧力を印加して樹脂成形するトランスファーモールド方法やコンプレッションモールド方法等が一般的であるが、本実施形態においては特にこれに限定されず、あらゆる種類の形成方法が用いられ得る。
(Resin sealant 4)
The resin encapsulant (encapsulating resin) 4 is used for encapsulating the semiconductor chip 1 on the circuit board 2, and as shown in FIG. 1, the semiconductor chip 1, the bonding wire 7, the connection pad 8, and the like are used. It is formed on the circuit board 2 so as to cover the entire bonding portion between the semiconductor chip 1 and the bonding wire 7, the bonding portion between the bonding wire 7 and the circuit board 2, and the insulating layer (not shown) covering the wiring. .. The method for forming the resin encapsulant 4 is generally a transfer molding method or a compression molding method in which a press and a mold are used to apply pressure to form a resin, but the present embodiment is particularly limited to this. However, any kind of forming method can be used.
 樹脂封止体4は、当該分野で一般的に用いられる材料より構成され、例えば、エポキシ樹脂と、硬化剤と、硬化促進剤と、無機充填剤とを含む封止用樹脂組成物を用いて作製することができる。 The resin encapsulant 4 is made of a material generally used in the art, and for example, a encapsulating resin composition containing an epoxy resin, a curing agent, a curing accelerator, and an inorganic filler is used. Can be made.
 樹脂封止体4を作製するための封止用樹脂組成物に配合されるエポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂等の結晶性エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。 Examples of the epoxy resin to be blended in the sealing resin composition for producing the resin encapsulating body 4 include crystalline epoxy resins such as biphenyl type epoxy resin, bisphenol type epoxy resin, and stylben type epoxy resin; Novolak type epoxy resin such as type epoxy resin, cresol novolak type epoxy resin; polyfunctional epoxy resin such as triphenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin; phenol aralkyl type epoxy resin having phenylene skeleton, biphenylene skeleton Aralkyl type epoxy resin such as phenol aralkyl type epoxy resin; naphthol type epoxy resin such as dihydroxynaphthalene type epoxy resin and epoxy resin obtained by glycidyl etherification of dihydroxynaphthalene dimer; triglycidyl isocyanurate, monoallyldi Examples thereof include triazine nuclei-containing epoxy resins such as glycidyl isocyanurate; and bridged cyclic hydrocarbon compound-modified phenol-type epoxy resins such as dicyclopentadiene-modified phenol-type epoxy resins. It may be used together.
 エポキシ樹脂全体の配合割合の下限値としては特に限定されないが、封止用樹脂組成物全体に対して、3質量%以上であることが好ましく、5質量%以上であることがより好ましい。エポキシ樹脂全体の配合割合が上記範囲内であると、粘度上昇によるワイヤ切れを引き起こす恐れが少ない。また、エポキシ樹脂全体の配合割合の上限値としては特に限定されないが、エポキシ樹脂組成物全体に対して、15質量%以下であることが好ましく、13質量%以下であることがより好ましい。エポキシ樹脂全体の配合割合の上限値が上記範囲内であると、吸水率増加による耐湿信頼性の低下等を引き起こす虞が少ない。 The lower limit of the blending ratio of the entire epoxy resin is not particularly limited, but is preferably 3% by mass or more, and more preferably 5% by mass or more, based on the entire sealing resin composition. When the blending ratio of the entire epoxy resin is within the above range, there is little risk of causing wire breakage due to an increase in viscosity. The upper limit of the blending ratio of the entire epoxy resin is not particularly limited, but is preferably 15% by mass or less, more preferably 13% by mass or less, based on the entire epoxy resin composition. When the upper limit of the blending ratio of the entire epoxy resin is within the above range, there is little possibility of causing a decrease in moisture resistance reliability due to an increase in water absorption rate.
 樹脂封止体4を作製するための封止用樹脂組成物に配合される硬化剤としては、例えば重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤のいずれかを用いることができる。 As the curing agent to be blended in the sealing resin composition for producing the resin encapsulating body 4, for example, any of a heavy addition type curing agent, a catalytic type curing agent, and a condensation type curing agent is used. Can be done.
 重付加型の硬化剤としては、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、フェノールポリマーなどのポリフェノール化合物;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。 Examples of the heavy addition type curing agent include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylerylene diamine (MXDA), diaminodiphenylmethane (DDM), and m-phenylenediamine (MPDA). , Aromatic polyamines such as diaminodiphenylsulfone (DDS), as well as polyamine compounds containing dicyandiamide (DICY), organic acid dihydraradide, etc .; Acid anhydrides including aromatic acid anhydrides such as acid anhydrides, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA); novolak type phenol resins, phenol polymers and the like. Examples thereof include polyphenol compounds; polypeptide compounds such as polysulfide, thioester and thioether; isocyanate compounds such as isocyanate prepolymer and blocked isocyanate; and organic acids such as carboxylic acid-containing polyester resin.
 触媒型の硬化剤としては、例えば、ベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)などのイミダゾール化合物;BF3錯体などのルイス酸などが挙げられる。 Examples of the catalytic curing agent include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole and 2-ethyl-4. -Imidazole compounds such as methylimidazole (EMI24); Lewis acids such as the BF3 complex and the like.
 縮合型の硬化剤としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂等のフェノール樹脂系硬化剤;メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などが挙げられる。 Examples of the condensation type curing agent include phenol resin-based curing agents such as novolak type phenol resin and resol type phenol resin; urea resin such as methylol group-containing urea resin; and melamine resin such as methylol group-containing melamine resin. Can be mentioned.
 これらの中でも、耐燃性、耐湿性、電気特性、硬化性、保存安定性等のバランスの点からフェノール樹脂系硬化剤が好ましい。フェノール樹脂系硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂等のノボラック型樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。高温保管特性や高温動作特性をさらに向上させるという観点では、トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂が好ましく、トリフェノールメタン型フェノール樹脂が特に好ましい。 Among these, a phenol resin-based curing agent is preferable from the viewpoint of balance of flame resistance, moisture resistance, electrical characteristics, curability, storage stability and the like. Examples of the phenol resin-based curing agent include novolak-type resins such as phenol novolac resin and cresol novolak resin; polyfunctional phenol resins such as triphenol methane-type phenol resin; terpene-modified phenol resin, dicyclopentadiene-modified phenol resin and the like. Modified phenol resin; phenol aralkyl resin having a phenylene skeleton and / or biphenylene skeleton, aralkyl-type resin such as phenylene and / or naphthol aralkyl resin having a biphenylene skeleton; bisphenol compounds such as bisphenol A and bisphenol F, which are mentioned. One type may be used alone or two or more types may be used in combination. From the viewpoint of further improving high temperature storage characteristics and high temperature operation characteristics, a polyfunctional phenol resin such as a triphenol methane type phenol resin is preferable, and a triphenol methane type phenol resin is particularly preferable.
 硬化剤全体の配合割合の下限値については、特に限定されないが、封止用樹脂組成物全体に対して、0.8質量%以上であることが好ましく1.5質量%以上であることがより好ましい。配合割合の下限値が上記範囲内であると、充分な流動性を得ることができる。また、硬化剤全体の配合割合の上限値についても、特に限定されないが、封止用樹脂組成物全体に対して、10質量%以下であることが好ましく、8質量%以下であることがより好ましい。配合割合の上限値が上記範囲内であると、吸水率増加による耐湿信頼性の低下等を引き起こす恐れが少ない。 The lower limit of the blending ratio of the entire curing agent is not particularly limited, but is preferably 0.8% by mass or more, more preferably 1.5% by mass or more, based on the entire sealing resin composition. preferable. When the lower limit of the blending ratio is within the above range, sufficient fluidity can be obtained. Further, the upper limit of the blending ratio of the entire curing agent is not particularly limited, but is preferably 10% by mass or less, more preferably 8% by mass or less, based on the entire sealing resin composition. .. When the upper limit of the blending ratio is within the above range, there is little possibility of causing a decrease in moisture resistance reliability due to an increase in water absorption rate.
 また、硬化剤としてフェノール樹脂系硬化剤を用いる場合におけるエポキシ樹脂とフェノール樹脂系硬化剤との配合比率としては、全エポキシ樹脂のエポキシ基数(EP)と全フェノール樹脂系硬化剤のフェノール性水酸基数(OH)との当量比(EP)/(OH)が0.8以上、1.3以下であることが好ましい。当量比がこの範囲であると、半導体封止用エポキシ樹脂組成物の硬化性の低下又は樹脂硬化物の物性の低下等を引き起こす恐れが少ない。 When a phenol resin-based curing agent is used as the curing agent, the blending ratio of the epoxy resin and the phenol resin-based curing agent is the number of epoxy groups (EP) of all epoxy resins and the number of phenolic hydroxyl groups of all phenol resin-based curing agents. The equivalent ratio (EP) / (OH) with (OH) is preferably 0.8 or more and 1.3 or less. When the equivalent ratio is in this range, there is little possibility of causing deterioration of the curability of the epoxy resin composition for semiconductor encapsulation or deterioration of the physical properties of the cured resin.
 樹脂封止体4を作製するための封止用樹脂組成物に配合される無機充填材としては、一般に半導体封止用エポキシ樹脂組成物に使用されているものを用いることができ、例えば、溶融シリカ、結晶シリカ、タルク、アルミナ、チタンホワイト、窒化珪素等が挙げられる。最も好適に使用されるものとしては、溶融シリカである。これらの無機充填材は、単独でも混合して用いても差し支えない。また、これらの無機充填材は、カップリング剤により表面処理されていてもかまわない。充填材の形状としては、流動性改善のために、できるだけ真球状であり、かつ粒度分布がブロードであることが好ましい。 As the inorganic filler to be blended in the sealing resin composition for producing the resin encapsulating body 4, those generally used in the semiconductor encapsulating epoxy resin composition can be used, for example, melting. Examples thereof include silica, crystalline silica, talc, alumina, titanium white, silicon nitride and the like. The most preferably used is fused silica. These inorganic fillers may be used alone or in combination. Further, these inorganic fillers may be surface-treated with a coupling agent. The shape of the filler is preferably spherical as much as possible and has a broad particle size distribution in order to improve the fluidity.
 無機充填材の含有割合は特に限定されないが、無機充填材の含有割合の下限値は、エポキシ樹脂組成物全体に対して、82質量%以上であることが好ましく、85質量%以上であることがよりに好ましい。上記下限値を下回らない範囲であれば、低吸湿性、低熱膨張性が得られるため耐湿信頼性が不十分となる虞が少ない。また、無機充填材の含有割合の上限値は、エポキシ樹脂組成物全体に対して、92質量%以下であることが好ましく、89質量%以下であることがより好ましい。上記上限値を超えない範囲であれば、流動性が低下し成形時に充填不良等が生じたり、高粘度化による半導体装置内のワイヤ流れ等の不都合が生じたりする恐れが少ない。 The content ratio of the inorganic filler is not particularly limited, but the lower limit of the content ratio of the inorganic filler is preferably 82% by mass or more, preferably 85% by mass or more, based on the entire epoxy resin composition. More preferred. As long as the range does not fall below the above lower limit, low hygroscopicity and low thermal expansion are obtained, so that there is little possibility that the moisture resistance reliability will be insufficient. The upper limit of the content ratio of the inorganic filler is preferably 92% by mass or less, more preferably 89% by mass or less, based on the entire epoxy resin composition. Within the range not exceeding the above upper limit value, there is little possibility that the fluidity is lowered and filling defects or the like occur during molding, or inconveniences such as wire flow in the semiconductor device due to high viscosity occur.
 樹脂封止体4を作製するための封止用樹脂組成物には硬化促進剤をさらに配合してもよい。硬化促進剤は、エポキシ樹脂のエポキシ基と硬化剤の官能基(例えば、フェノール樹脂系硬化剤のフェノール性水酸基)との架橋反応を促進させるものであればよく、一般にエポキシ樹脂組成物に使用するものを用いることができる。例えば、1、8-ジアザビシクロ(5、4、0)ウンデセン-7等のジアザビシクロアルケン及びその誘導体;トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類;2-メチルイミダゾール等のイミダゾール化合物;テトラフェニルホスホニウム・テトラフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート;ホスフィン化合物とキノン化合物との付加物等が挙げられ、これらは1種類を単独で用いても2種以上を併用しても差し支えない。 A curing accelerator may be further added to the sealing resin composition for producing the resin sealing body 4. The curing accelerator may be any one that promotes the cross-linking reaction between the epoxy group of the epoxy resin and the functional group of the curing agent (for example, the phenolic hydroxyl group of the phenolic resin-based curing agent), and is generally used in an epoxy resin composition. Can be used. For example, diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and their derivatives; organic phosphines such as triphenylphosphine and methyldiphenylphosphine; imidazole compounds such as 2-methylimidazole; tetra. Tetra-substituted phosphonium-tetra-substituted borates such as phenylphosphonium and tetraphenylborate; adducts of phosphine compounds and quinone compounds may be mentioned, and these may be used alone or in combination of two or more. ..
 硬化促進剤の配合割合の下限値としては特に限定されないが、封止用樹脂組成物全体に対して、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。硬化促進剤の配合割合の下限値が上記範囲内であると、硬化性の低下を引き起こす恐れが少ない。また、硬化促進剤の配合割合の上限値としては特に限定されないが、封止樹脂組成物全体に対して、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。硬化促進剤の配合割合の上限値が上記範囲内であると、流動性の低下を引き起こす恐れが少ない。 The lower limit of the blending ratio of the curing accelerator is not particularly limited, but is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on the entire sealing resin composition. preferable. When the lower limit of the blending ratio of the curing accelerator is within the above range, there is little possibility of causing a decrease in curability. The upper limit of the blending ratio of the curing accelerator is not particularly limited, but is preferably 1% by mass or less, more preferably 0.5% by mass or less, based on the entire sealing resin composition. .. When the upper limit of the blending ratio of the curing accelerator is within the above range, there is little possibility of causing a decrease in fluidity.
(ワイヤコート材5)
 ワイヤコート材5は、半導体チップ1とボンディングワイヤ7との接合部を被覆するために用いられる。本発明のワイヤコート材5について、以下に具体的に説明する。
(Wire coat material 5)
The wire coating material 5 is used to cover the joint portion between the semiconductor chip 1 and the bonding wire 7. The wire coating material 5 of the present invention will be specifically described below.
 [第一の実施形態]
 第一の実施形態において、ワイヤコート材5は、熱硬化性樹脂、硬化剤、および溶剤を含む熱硬化性樹脂組成物の硬化物から作製される。以下、ワイヤコート材5を作製するための熱硬化性樹脂組成物(以下、「ワイヤコート材用熱硬化性樹脂組成物」または「熱硬化性樹脂組成物」と称する)に配合される成分について説明する。
[First Embodiment]
In the first embodiment, the wire coat material 5 is made from a cured product of a thermosetting resin composition containing a thermosetting resin, a curing agent, and a solvent. Hereinafter, the components to be blended in the thermosetting resin composition for producing the wire coat material 5 (hereinafter referred to as "thermosetting resin composition for wire coat material" or "thermosetting resin composition"). explain.
 <熱硬化性樹脂>
 本実施形態のワイヤコート材用熱硬化性樹脂組成物に配合される熱硬化性樹脂としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック樹脂、フェノール-ビフェニルノボラック樹脂、ビフェニルアラルキル型フェノール樹脂、アリル化ノボラック型フェノール樹脂、およびキシリレンノボラック型フェノール樹脂等のノボラック型フェノール樹脂;ノボラック型フェノール樹脂、レゾール型フェノール樹脂、およびクレゾールノボラック樹脂等のフェノール化合物とアルデヒド化合物との反応物;フェノールアラルキル樹脂等のフェノール化合物とジメタノール化合物との反応物;ヒドロキシスチレン樹脂;ポリアミド樹脂;ポリベンゾオキサゾール樹脂;ポリイミド樹脂;ならびに環状オレフィン樹脂を用いることができる。中でも、得られるワイヤコート材用熱硬化性樹脂組成物の耐熱性の観点から、フェノールノボラック樹脂を用いることが好ましく、特に、フェノール-ビフェニルノボラック樹脂を用いることが好ましい。
<Thermosetting resin>
Examples of the thermosetting resin to be blended in the thermosetting resin composition for wire coat material of the present embodiment include phenol novolac resin, cresol novolak resin, bisphenol novolak resin, phenol-biphenyl novolak resin, biphenyl aralkyl type phenol resin, and allyl. Novolac-type phenol resin such as novolak-type phenol resin and xylylene novolak-type phenol resin; reaction product of phenol compound and aldehyde compound such as novolak-type phenol resin, resol-type phenol resin, and cresol novolak resin; phenol aralkyl resin, etc. The reaction product of the phenol compound and the dimethanol compound; hydroxystyrene resin; polyamide resin; polybenzoxazole resin; polyimide resin; and cyclic olefin resin can be used. Above all, from the viewpoint of heat resistance of the obtained thermosetting resin composition for wire coat material, it is preferable to use a phenol novolac resin, and in particular, it is preferable to use a phenol-biphenyl novolak resin.
 熱硬化性樹脂は、熱硬化性樹脂組成物の固形分全体に対して、例えば、10質量%以上95質量%以下、好ましくは、20質量%以上90質量%以下、より好ましくは、30質量%以上85質量%以下の量で配合される。 The thermosetting resin is, for example, 10% by mass or more and 95% by mass or less, preferably 20% by mass or more and 90% by mass or less, more preferably 30% by mass, based on the total solid content of the thermosetting resin composition. It is blended in an amount of 85% by mass or less.
 <硬化剤>
 本実施形態のワイヤコート材用熱硬化性樹脂組成物に配合される硬化剤としては、熱硬化性樹脂と熱により反応可能な基を有する化合物が用いられる。硬化剤としては、たとえば、1,2-ベンゼンジメタノール、1,3-ベンゼンジメタノール、1,4-ベンゼンジメタノール(パラキシレングリコール)、1,3,5-ベンゼントリメタノール、4,4-ビフェニルジメタノール、2,6-ピリジンジメタノール、2,6-ビス(ヒドロキシメチル)-p-クレゾール、4,4'-メチレンビス(2,6-ジアルコキシメチルフェノール)などのメチロール基を有する化合物;フロログルシドなどのフェノール類;1,4-ビス(メトキシメチル)ベンゼン、1,3-ビス(メトキシメチル)ベンゼン、4,4'-ビス(メトキシメチル)ビフェニル、3,4'-ビス(メトキシメチル)ビフェニル、3,3'-ビス(メトキシメチル)ビフェニル、2,6-ナフタレンジカルボン酸メチル、4,4'-メチレンビス(2,6-ジメトキシメチルフェノール)などのアルコキシメチル基を有する化合物;ヘキサメチロールメラミン、ヘキサブタノールメラミン等から代表されるメチロールメラミン化合物;ヘキサメトキシメラミンなどのアルコキシメラミン化合物;テトラメトキシメチルグリコールウリルなどのアルコキシメチルグリコールウリル化合物;メチロールベンゾグアナミン化合物、ジメチロールエチレンウレアなどのメチロールウレア化合物;アルキル化尿素樹脂;ジシアノアニリン、ジシアノフェノール、シアノフェニルスルホン酸などのシアノ化合物;1,4-フェニレンジイソシアナート、3,3'-ジメチルジフェニルメタン-4,4'-ジイソシアナートなどのイソシアナート化合物;エチレングリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、イソシアヌル酸トリグリシジル、フェノキシ型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン系エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック樹脂型エポキシ樹脂などのエポキシ基含有化合物;N,N'-1,3-フェニレンジマレイミド、N,N'-メチレンジマレイミドなどのマレイミド化合物等が挙げられる。
<Curing agent>
As the curing agent to be blended in the thermosetting resin composition for a wire coat material of the present embodiment, a compound having a group capable of reacting with the thermosetting resin by heat is used. Examples of the curing agent include 1,2-benzenedimethanol, 1,3-benzenedimethanol, 1,4-benzenedimethanol (paraxylene glycol), 1,3,5-benzenetrimethanol, and 4,4-. Compounds having a methylol group such as biphenyldimethanol, 2,6-pyridinedimethanol, 2,6-bis (hydroxymethyl) -p-cresol, 4,4'-methylenebis (2,6-dialkoxymethylphenol); Phenols such as fluoroglucolside; 1,4-bis (methoxymethyl) benzene, 1,3-bis (methoxymethyl) benzene, 4,4'-bis (methoxymethyl) biphenyl, 3,4'-bis (methoxymethyl) Compounds having an alkoxymethyl group such as biphenyl, 3,3'-bis (methoxymethyl) biphenyl, methyl 2,6-naphthalenedicarboxylate, 4,4'-methylenebis (2,6-dimethoxymethylphenol); hexamethylol melamine. , Hexabutanol melamine and the like, methylol melamine compounds; hexamethoxymelamine and the like, alkoxy melamine compounds; tetramethoxymethyl glycol uryl and the like, alkoxymethylglycol uryl compounds; Urea resin; cyano compounds such as dicyanoaniline, dicyanophenol, cyanophenylsulfonic acid; isocyanato compounds such as 1,4-phenylenediisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisosyanate; Ethylene glycol diglycidyl ether, bisphenol A diglycidyl ether, triglycidyl isocyanurate, phenoxy type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, phenol novolac resin type epoxy resin Epoxy group-containing compounds such as N, N'-1,3-phenylenedi maleimide, N, N'-methylenedimaleimide and the like.
 また、ワイヤコート材用熱硬化性樹脂組成物中の硬化剤の含有量は、熱硬化性樹脂組成物の固形分全体(無機フィラーを除く)に対して、低温硬化時の靭性及び耐薬性向上の観点から、好ましくは0.1質量%以上であり、より好ましくは1質量%以上、さらに好ましくは3質量%以上である。
 また、硬化膜の耐薬性を高める観点から、熱硬化性樹脂組成物中の硬化剤の含有量は、熱硬化性樹脂組成物の固形分(無機フィラーを除く)を100質量%としたとき、好ましくは60質量%以下であり、より好ましくは50質量%以下、さらに好ましくは40質量%以下である。
Further, the content of the curing agent in the thermosetting resin composition for a wire coat material improves the toughness and chemical resistance at low temperature curing with respect to the entire solid content (excluding the inorganic filler) of the thermosetting resin composition. From the viewpoint of the above, it is preferably 0.1% by mass or more, more preferably 1% by mass or more, and further preferably 3% by mass or more.
Further, from the viewpoint of enhancing the chemical resistance of the cured film, the content of the curing agent in the thermosetting resin composition is 100% by mass when the solid content (excluding the inorganic filler) of the thermosetting resin composition is 100% by mass. It is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less.
 <溶剤>
 本実施形態のワイヤコート材用熱硬化性樹脂組成物に配合される用いられる溶剤としては、N-メチルピロリドン、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドン、テトラメチル尿酸、乳酸エチル、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールモノメチルエーテル、乳酸メチル、乳酸ブチル、メチル-1,3-ブチレングリコールアセテート、1,3-ブチレングリコール-3-モノメチルエーテル、ピルビン酸メチル、ピルビン酸エチルおよびメチル-3-メトキシプロピオネート等を用いることができる。中でも、γ-ブチロラクトンを用いることが、粘度の制御の観点から好ましい。
<Solvent>
Examples of the solvent used in the thermosetting resin composition for wire coat material of the present embodiment include N-methylpyrrolidone, γ-butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, and N-ethyl-2-. Pyrrolidone, tetramethyluric acid, ethyl lactate, N, N-dimethylacetamide, dimethylsulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, dipropylene glycol monomethyl ether, methyl lactate, butyl lactate, methyl-1,3-butylene glycol Acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, ethyl pyruvate, methyl-3-methoxypropionate and the like can be used. Above all, it is preferable to use γ-butyrolactone from the viewpoint of controlling the viscosity.
 第一の実施形態において、溶剤は、熱硬化性樹脂組成物の粘度を所望の範囲とするのに適切な量で使用することができ、例えば、熱硬化性樹脂組成物全体に対して、例えば、10質量%以上50質量%以下の量で使用できる。 In the first embodiment, the solvent can be used in an amount suitable for keeping the viscosity of the thermosetting resin composition in a desired range, for example, with respect to the entire thermosetting resin composition, for example. It can be used in an amount of 10% by mass or more and 50% by mass or less.
 <無機フィラー>
 本実施形態のワイヤコート材用熱硬化性樹脂組成物は、無機フィラーを含んでもよい。無機フィラーを用いることにより、流動性とチキソトロピー性を所望の値に調整することができる。
<Inorganic filler>
The thermosetting resin composition for a wire coating material of the present embodiment may contain an inorganic filler. By using the inorganic filler, the fluidity and thixotropy can be adjusted to desired values.
 用いることができる無機フィラーとしては、溶融シリカおよび結晶シリカ等のシリカ、タルク、アルミナ、チタンホワイト、窒化珪素等が挙げられる。中でも、チキソトロピー性の制御の観点から、シリカフィラーを用いることが好ましい。 Examples of the inorganic filler that can be used include silica such as fused silica and crystalline silica, talc, alumina, titanium white, silicon nitride and the like. Above all, it is preferable to use a silica filler from the viewpoint of controlling thixotropy.
 無機フィラーを用いる場合、この無機フィラーの平均粒径は、5.0μm以下であることが好ましい。本明細書において、平均粒径とは、特に断りのない限り、ISO-13320(2009)に準拠してレーザー回折法によって測定した体積基準のメジアン径(d50)を指す。無機フィラーの平均粒径は4.0μm以下であることが好ましく、3.0μm以下であることがより好ましい。平均粒径が5.0μm超であると、無機フィラーが沈降しやすくなる。さらに、粗粒が含有されやすくなり、以下で説明するジェットディスペンサのノズルが摩耗し、吐出される樹脂組成物が所望の領域外へ飛散しやすくなる。平均粒径の下限は特に限定されない。しかし、平均粒径が0.5μm未満であると、ワイヤコート材用樹脂組成物の粘度が高くなりやすいため、0.5μm以上であることが好ましく、1.0μm以上であることがより好ましい。ある態様において、本発明に用いられる無機フィラーの平均粒径は、0.5μm以上5.0μm以下、好ましくは、1.0μm以上3.0μm以下である。 When an inorganic filler is used, the average particle size of the inorganic filler is preferably 5.0 μm or less. In the present specification, the average particle size refers to a volume-based median diameter (d50) measured by a laser diffraction method in accordance with ISO-13320 (2009) unless otherwise specified. The average particle size of the inorganic filler is preferably 4.0 μm or less, more preferably 3.0 μm or less. When the average particle size is more than 5.0 μm, the inorganic filler tends to settle. Further, coarse particles are likely to be contained, the nozzle of the jet dispenser described below is worn, and the discharged resin composition is likely to be scattered outside the desired region. The lower limit of the average particle size is not particularly limited. However, when the average particle size is less than 0.5 μm, the viscosity of the resin composition for a wire coat material tends to be high, so that it is preferably 0.5 μm or more, and more preferably 1.0 μm or more. In some embodiments, the average particle size of the inorganic filler used in the present invention is 0.5 μm or more and 5.0 μm or less, preferably 1.0 μm or more and 3.0 μm or less.
 無機フィラーを用いる場合、本実施形態のワイヤコート材用熱硬化性樹脂組成物におけるシリカフィラーの含有量は、熱硬化性樹脂組成物の総重量に対し、例えば、0~50質量%である。含有量が高すぎると、エポキシ樹脂組成物の粘度が高くなりすぎ、ジェットディスペンサでの適用が困難になる場合がある。また無機フィラーの含有量が高すぎると、硬化物にボイドが生じる場合がある。 When an inorganic filler is used, the content of the silica filler in the thermosetting resin composition for a wire coat material of the present embodiment is, for example, 0 to 50% by mass with respect to the total weight of the thermosetting resin composition. If the content is too high, the viscosity of the epoxy resin composition may be too high, making it difficult to apply in a jet dispenser. If the content of the inorganic filler is too high, voids may occur in the cured product.
 <酸発生剤>
 本実施形態のワイヤコート材用熱硬化性樹脂組成物は、硬化膜を安定的に形成する観点から、酸発生剤を含んでもよい。酸発生剤は、具体的には、熱エネルギーまたは光エネルギーを吸収することにより酸を発生する化合物である。
<Acid generator>
The thermosetting resin composition for a wire coat material of the present embodiment may contain an acid generator from the viewpoint of stably forming a cured film. The acid generator is specifically a compound that generates an acid by absorbing thermal energy or light energy.
 低温での硬化性および耐薬性を向上する観点から、酸発生剤は、好ましくは、スルホニウム化合物またはその塩(本明細書中、「成分(e1)」と称する)を含む。
 成分(e1)は、具体的には、カチオン部としてスルホニウムイオンを有するスルホニウム塩である。このとき、成分(e1)のアニオン部は、具体的には、ホウ化物イオン、アンチモンイオン、リンイオンまたはトリフルオロメタンスルホン酸イオン等のスルホン酸イオンであり、低温での反応速度を向上する観点から、好ましくはホウ化物イオンまたはアンチモンイオンであり、より好ましくはホウ化物イオンである。これらのアニオンは置換基を有してもよい。
From the viewpoint of improving curability and chemical resistance at low temperatures, the acid generator preferably contains a sulfonium compound or a salt thereof (referred to as "component (e1)" in the present specification).
The component (e1) is specifically a sulfonium salt having a sulfonium ion as a cation portion. At this time, the anion portion of the component (e1) is specifically a sulfonic acid ion such as a borodate ion, an antimony ion, a phosphorus ion or a trifluoromethanesulfonic acid ion, and from the viewpoint of improving the reaction rate at a low temperature, from the viewpoint of improving the reaction rate at a low temperature. It is preferably a borohydride ion or an antimony ion, and more preferably a sulfide ion. These anions may have substituents.
 熱硬化性樹脂組成物中の成分(e1)の含有量は、熱硬化性樹脂組成物の固形分(フィラーを除く)を100質量%としたとき、低温での硬化性を向上する観点から、好ましくは0.005質量%以上であり、より好ましくは0.01質量%以上、さらに好ましくは0.02質量%以上である。
 また、信頼性低下を抑制する観点から、感光性樹脂組成物中の成分(E)の含有量は、感光性樹脂組成物の全固形分を100質量%としたとき、好ましくは15質量%以下であり、より好ましくは10質量%以下、さらに好ましくは8質量%以下である。
The content of the component (e1) in the thermosetting resin composition is from the viewpoint of improving the curability at low temperature when the solid content (excluding the filler) of the thermosetting resin composition is 100% by mass. It is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and further preferably 0.02% by mass or more.
Further, from the viewpoint of suppressing a decrease in reliability, the content of the component (E) in the photosensitive resin composition is preferably 15% by mass or less when the total solid content of the photosensitive resin composition is 100% by mass. It is more preferably 10% by mass or less, still more preferably 8% by mass or less.
 <他の添加剤>
 本実施形態のワイヤコート材用熱硬化性樹脂組成物は、所望であれば、カップリング剤、他の無機フィラー、安定剤、レベリング剤等の他の添加材を含んでもよい。
<Other additives>
The thermosetting resin composition for a wire coating material of the present embodiment may contain other additives such as a coupling agent, other inorganic fillers, stabilizers, and leveling agents, if desired.
(ワイヤコート材用熱硬化性樹脂組成物の特性)
 第一のワイヤコート材用熱硬化性樹脂組成物は、上記組成を有することにより、回転粘度計で測定した粘度が、20mPa・s以上である。これにより、以下で説明する熱硬化性樹脂組成物の適用時における流動性およびディスペンス性が向上する。
(Characteristics of Thermosetting Resin Composition for Wire Coat Material)
The first thermosetting resin composition for a wire coat material has the above composition, so that the viscosity measured by a rotational viscometer is 20 mPa · s or more. This improves the fluidity and the dispensability of the thermosetting resin composition described below when applied.
 第一のワイヤコート材用熱硬化性樹脂組成物は、ジェットディスペンサによる適用を意図しているため、内径数百μmの微細孔から熱硬化性樹脂組成物を高速で吐出できるよう、ノズル先端温度での粘度が低いことが好ましい。また、吐出後の熱硬化性樹脂組成物が流動性を有することが好ましい。このため、熱硬化性樹脂組成物は、30℃におけるその粘度が2000mPa・s以下であり、好ましくは1000mPa・s以下であり、より好ましくは800mPa・s以下である。また、取り扱いの観点から、粘度は100mPa・s以上であることが好ましい。本発明において、粘度は、日本工業規格JIS K6833に準じて求めることができる。具体的には、30℃における粘度は、E型粘度計を用いて、回転数1rpmで測定開始から1分後の値を読み取ることで、求めることができる。使用する機器やローターや測定レンジに特に制限はない。 Since the first thermosetting resin composition for wire coating material is intended to be applied by a jet dispenser, the nozzle tip temperature is such that the thermosetting resin composition can be discharged at high speed from micropores having an inner diameter of several hundred μm. It is preferable that the viscosity is low. Further, it is preferable that the thermosetting resin composition after ejection has fluidity. Therefore, the thermosetting resin composition has a viscosity at 30 ° C. of 2000 mPa · s or less, preferably 1000 mPa · s or less, and more preferably 800 mPa · s or less. Further, from the viewpoint of handling, the viscosity is preferably 100 mPa · s or more. In the present invention, the viscosity can be determined according to Japanese Industrial Standards JIS K6833. Specifically, the viscosity at 30 ° C. can be obtained by reading the value 1 minute after the start of measurement at a rotation speed of 1 rpm using an E-type viscometer. There are no particular restrictions on the equipment, rotor or measurement range used.
 第一のワイヤコート材用熱硬化性樹脂組成物は、上記組成を有することにより、チキソトロピー性を有する。ここで、熱硬化性樹脂組成物がチキソトロピー性を有するとは、熱硬化性樹脂組成物が剪断応力を受けると(剪断速度を速くすると)粘度が低下し、剪断応力が解除されると(剪断速度を遅くすると)粘度が回復し流動が抑制される粘弾性特性を有することをいう。 The first thermosetting resin composition for wire coating material has thixotropy property by having the above composition. Here, the fact that the thermosetting resin composition has thixotropic property means that when the thermosetting resin composition receives shear stress (when the shear rate is increased), the viscosity decreases, and when the shear stress is released (shearing). It means that it has viscoelastic properties in which the viscosity is restored and the flow is suppressed (when the speed is slowed down).
 硬化性樹脂組成物のチキソトロピー性は、基準となる剪断速度10rpmにおける熱硬化性樹脂組成物の粘度η10(Pa・s)と、剪断速度20rpmにおける熱硬化性樹脂組成物の粘度η20(Pa・s)との比(x=η10/η20)として表される、チキソトロピック係数を指標にすることができる。
 チキソトロピック係数が、0.8~2.0の範囲であれば、熱硬化性樹脂組成物を、ジェットディスペンサを使用して塗布したときに、熱硬化性樹脂組成物は、ジェットディスペンサから押出されているときは適度に流動し、押出された後は流動が止まるため、所定の範囲からの流出が生じ難く(塗布形状保持)、所定の範囲に塗付することが可能となる。
The thixotropic properties of the curable resin composition are the viscosity η 10 (Pa · s) of the thermosetting resin composition at a reference shear rate of 10 rpm and the viscosity η 20 (Pa) of the thermosetting resin composition at a shear rate of 20 rpm. The thixotropic coefficient, which is expressed as a ratio to s) (x 1 = η 10 / η 20 ), can be used as an index.
When the thixotropic coefficient is in the range of 0.8 to 2.0, the thermosetting resin composition is extruded from the jet dispenser when the thermosetting resin composition is applied using the jet dispenser. When it is, it flows moderately, and after being extruded, the flow stops, so that outflow from a predetermined range is unlikely to occur (coating shape retention), and it becomes possible to apply the coating to a predetermined range.
 ワイヤコート材用熱硬化性樹脂組成物中の塩化物イオン(Cl)および硫化物イオン(S2-)の含有濃度は、10ppm以下である。そのため、ワイヤコート材5で被覆されたボンディングワイヤを腐食することはない。なお、塩化物イオン(Cl)および硫化物イオン(S2-)は、アルミニウム、銀、および銅を溶解し、腐食させる性質がある。アルミニウム、銀、および銅の中では、アルミニウムがClおよびS2-によって最も腐食され易く、その腐食濃度閾値は100ppmである。換言すれば、ClおよびS2-の濃度が100ppm以下であれば、アルミニウム、銀、および銅の何れもが腐食されることはない。 The content concentration of chloride ion (Cl ) and sulfide ion (S 2- ) in the thermosetting resin composition for wire coat material is 10 ppm or less. Therefore, the bonding wire coated with the wire coating material 5 is not corroded. Chloride ion (Cl ) and sulfide ion (S 2- ) have the property of dissolving and corroding aluminum, silver, and copper. Of aluminum, silver, and copper, aluminum is most susceptible to corrosion by Cl- and S2- , with a corrosion concentration threshold of 100 ppm. In other words, if the concentration of Cl- and S2- is 100 ppm or less, none of aluminum, silver, and copper is corroded.
 [第二の実施形態]
 第二の実施形態において、ワイヤコート材5は、熱硬化性樹脂、無機フィラー、および溶剤を含む熱硬化性樹脂組成物の硬化物から作製される。以下、第二の実施形態に係る熱硬化性樹脂組成物に配合される成分について説明する。
[Second embodiment]
In the second embodiment, the wire coat material 5 is made from a cured product of a thermosetting resin composition containing a thermosetting resin, an inorganic filler, and a solvent. Hereinafter, the components to be blended in the thermosetting resin composition according to the second embodiment will be described.
 <熱硬化性樹脂>
 第二の実施形態の熱硬化性樹脂組成物に用いられる熱硬化性樹脂は、上述の第一の実施形態におけるものと同様の樹脂を用いることができる。熱硬化性樹脂の好ましい態様についても、第一の実施形態と同様である。
<Thermosetting resin>
As the thermosetting resin used in the thermosetting resin composition of the second embodiment, the same resin as that in the above-mentioned first embodiment can be used. The preferred embodiment of the thermosetting resin is the same as that of the first embodiment.
 熱硬化性樹脂は、熱硬化性樹脂組成物の固形分全体(無機フィラーを除く)に対して、例えば、10質量%以上95質量%以下、好ましくは、20質量%以上90質量%以下、より好ましくは、30質量%以上85質量%以下の量で配合される。 The thermosetting resin is, for example, 10% by mass or more and 95% by mass or less, preferably 20% by mass or more and 90% by mass or less, based on the total solid content (excluding the inorganic filler) of the thermosetting resin composition. Preferably, it is blended in an amount of 30% by mass or more and 85% by mass or less.
 <無機フィラー>
 第二の実施形態のワイヤコート材用熱硬化性樹脂組成物は、無機フィラーを必須成分として含む。無機フィラーの含有量は、本実施形態の熱硬化性樹脂組成物の全固形分に対して、40質量%以上であり、好ましくは、50質量%以上であり、より好ましくは60質量%以上であり、最も好ましくは65質量%以上である。上記配合量とすることにより、得られるワイヤコート材の熱収縮が抑制され、よって半導体チップ1と接続パッド8、半導体チップ1とバリア層18またはバリア層18と接合層19の間に剥離が生じることを抑制できる。
<Inorganic filler>
The thermosetting resin composition for a wire coating material of the second embodiment contains an inorganic filler as an essential component. The content of the inorganic filler is 40% by mass or more, preferably 50% by mass or more, and more preferably 60% by mass or more, based on the total solid content of the thermosetting resin composition of the present embodiment. Most preferably, it is 65% by mass or more. By setting the blending amount as described above, the heat shrinkage of the obtained wire coat material is suppressed, so that peeling occurs between the semiconductor chip 1 and the connection pad 8, the semiconductor chip 1 and the barrier layer 18, or the barrier layer 18 and the bonding layer 19. Can be suppressed.
 また、無機フィラーの含有量は、本実施形態の熱硬化性樹脂組成物の全固形分に対して、85質量%以下であり、好ましくは80質量%以下である。こうすることにより、ジェットディスペンサ等による塗布性が向上するとともに、ワイヤコート材にクラックが生じることを抑制できる。 The content of the inorganic filler is 85% by mass or less, preferably 80% by mass or less, based on the total solid content of the thermosetting resin composition of the present embodiment. By doing so, it is possible to improve the applicability by a jet dispenser or the like and suppress the occurrence of cracks in the wire coat material.
 用いることができる無機フィラーとしては、溶融シリカおよび結晶シリカ等のシリカ、タルク、アルミナ、チタンホワイト、窒化珪素等が挙げられる。中でも、チキソトロピー性の制御の観点から、シリカを用いることが好ましい。シリカとしては、溶融球状シリカ、または溶融破砕シリカを用いることができ、中でも、溶融球状シリカを用いることが好ましい。また無機フィラーの形状は、得られ熱硬化性樹脂組成物の溶融粘度の上昇を抑制しつつ、無機フィラーの含有量を高めることができる観点から、できるかぎり真球状であることが好ましく、かつ粒度分布がブロードであることが好ましい。 Examples of the inorganic filler that can be used include silica such as fused silica and crystalline silica, talc, alumina, titanium white, silicon nitride and the like. Above all, it is preferable to use silica from the viewpoint of controlling thixotropy. As the silica, fused spherical silica or fused crushed silica can be used, and among them, fused spherical silica is preferably used. Further, the shape of the inorganic filler is preferably spherical as much as possible from the viewpoint of being able to increase the content of the inorganic filler while suppressing an increase in the melt viscosity of the obtained thermosetting resin composition, and the particle size is preferable. The distribution is preferably broad.
 無機フィラーを用いる場合、この無機フィラーの平均粒径は、好ましくは0.01μm以上、より好ましくは0.1μm以上、最も好ましくは0.3μm以上である。こうすることにより、熱硬化性樹脂組成物中の無機フィラーの沈降を効果的に抑制できる。また、ジェットディスペンサのノズルが摩耗し、吐出される樹脂組成物が所望の領域外へ飛散しやすくなることを抑制できる。
 また、上記平均粒径は、好ましくは10μm以下、より好ましくは5μm以下、最も好ましくは3μm以下である。こうすることにより、ジェットディスペンサ等による塗布性を向上することができる。
When an inorganic filler is used, the average particle size of the inorganic filler is preferably 0.01 μm or more, more preferably 0.1 μm or more, and most preferably 0.3 μm or more. By doing so, the sedimentation of the inorganic filler in the thermosetting resin composition can be effectively suppressed. In addition, it is possible to prevent the nozzle of the jet dispenser from being worn and the resin composition to be discharged from being easily scattered outside the desired region.
The average particle size is preferably 10 μm or less, more preferably 5 μm or less, and most preferably 3 μm or less. By doing so, the applicability by a jet dispenser or the like can be improved.
 <溶剤>
 第二の実施形態の熱硬化性樹脂組成物に用いられる溶剤は、上述の第一の実施形態におけるものと同様の溶剤を用いることができる。溶剤の好ましい態様についても、第一の実施形態と同様である。
<Solvent>
As the solvent used for the thermosetting resin composition of the second embodiment, the same solvent as that in the above-mentioned first embodiment can be used. The preferred embodiment of the solvent is the same as that of the first embodiment.
 第二の実施形態において、溶剤は、熱硬化性樹脂組成物の粘度を所望の範囲とするのに適切な量で使用することができ、例えば、熱硬化性樹脂組成物全体に対して、例えば、10質量%以上70質量%以下の量で使用できる。 In the second embodiment, the solvent can be used in an amount suitable for keeping the viscosity of the thermosetting resin composition in a desired range, for example, with respect to the entire thermosetting resin composition, for example. It can be used in an amount of 10% by mass or more and 70% by mass or less.
 <硬化剤>
  第二の実施形態の熱硬化性樹脂組成物は硬化剤を含んでもよい。硬化剤が用いられる場合、この硬化剤は、上述の第一の実施形態におけるものと同様の硬化剤を用いることができる。硬化剤の好ましい態様についても、第一の実施形態と同様である。
<Curing agent>
The thermosetting resin composition of the second embodiment may contain a curing agent. When a curing agent is used, the same curing agent as in the first embodiment described above can be used as the curing agent. The preferred embodiment of the curing agent is the same as that of the first embodiment.
 また、硬化剤が用いられる場合、ワイヤコート材用熱硬化性樹脂組成物中の硬化剤の含有量は、熱硬化性樹脂組成物の固形分全体(無機フィラーを除く)に対して、低温硬化時の靭性及び耐薬性向上の観点から、好ましくは0.1質量%以上であり、より好ましくは1質量%以上、さらに好ましくは3質量%以上である。
 また、硬化膜の耐薬性を高める観点から、熱硬化性樹脂組成物中の硬化剤の含有量は、熱硬化性樹脂組成物の固形分(無機フィラーを除く)を100質量%としたとき、好ましくは60質量%以下であり、より好ましくは50質量%以下、さらに好ましくは40質量%以下である。
When a curing agent is used, the content of the curing agent in the thermosetting resin composition for wire coat material is low temperature curing with respect to the entire solid content (excluding the inorganic filler) of the thermosetting resin composition. From the viewpoint of improving toughness and chemical resistance at the time, it is preferably 0.1% by mass or more, more preferably 1% by mass or more, and further preferably 3% by mass or more.
Further, from the viewpoint of enhancing the chemical resistance of the cured film, the content of the curing agent in the thermosetting resin composition is 100% by mass when the solid content (excluding the inorganic filler) of the thermosetting resin composition is 100% by mass. It is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less.
 <他の添加剤>
 第二の実施形態のワイヤコート材用熱硬化性樹脂組成物は、所望であれば、第一の実施形態と同様に、酸発生剤、密着助剤、他の無機フィラー、安定剤、界面活性剤等の他の添加材を含んでもよい。
<Other additives>
The thermosetting resin composition for a wire coating material of the second embodiment is, if desired, an acid generator, an adhesion aid, another inorganic filler, a stabilizer, and a surfactant, as in the first embodiment. Other additives such as agents may be included.
(ワイヤコート材用熱硬化性樹脂組成物の特性)
 第二の実施形態のワイヤコート材用熱硬化性樹脂組成物は、当該熱硬化性樹脂組成物を175℃で120分加熱処理した硬化物に対して、動的粘弾性測定機を用いて、測定温度:20℃~300℃、昇温速度:5℃/分、周波数:1Hz、引っ張りモードの条件で測定した、25℃における貯蔵弾性率が、2GPa以上20GPa以下であり、好ましくは、3GPa以上18GPa以下である。ワイヤコート材用熱硬化性樹脂組成物より得られるワイヤコート材は、上記範囲の貯蔵弾性率を有することにより、低温時は十分な剛性を維持でき、封止時または作動時の高温下で低弾性であり、よって柔らかさを維持することができ、高温でボンディングワイヤおよび接続部で生じる熱応力を緩和することができる。
(Characteristics of Thermosetting Resin Composition for Wire Coat Material)
The thermocurable resin composition for a wire coat material of the second embodiment is prepared by using a dynamic viscoelastic measuring machine on a cured product obtained by heat-treating the thermocurable resin composition at 175 ° C. for 120 minutes. The storage elastic modulus at 25 ° C. measured under the conditions of measurement temperature: 20 ° C. to 300 ° C., temperature rise rate: 5 ° C./min, frequency: 1 Hz, and tensile mode is 2 GPa or more and 20 GPa or less, preferably 3 GPa or more. It is 18 GPa or less. The wire coat material obtained from the thermosetting resin composition for wire coat material has a storage elastic modulus in the above range, so that it can maintain sufficient rigidity at low temperature and is low at high temperature during sealing or operation. It is elastic and thus can maintain its softness and can relieve the thermal stresses generated in the bonding wires and connections at high temperatures.
 本実施形態のワイヤコート材用熱硬化性樹脂組成物は、当該熱硬化性樹脂組成物を175℃で120分加熱処理した硬化物において、下記手順で測定される塩素イオンの含有量が、0.01ppm以上10ppm以下であり、好ましくは、0.01ppm以上6ppm以下である。
 (手順)
 当該熱硬化性樹脂組成物の硬化物5gに対して50mLの純水を加え、125℃24時間熱水抽出し、抽出水を得る。得られた前記抽出水をイオンクロマトグラフにより分析することにより、当該熱硬化性樹脂組成物の硬化物中のイオン濃度を測定する。
 塩素イオン含有量が上記範囲である本実施形態のワイヤコート材用熱硬化性樹脂組成物は、塩素イオンによる半導体チップとボンディングワイヤとの接合界面(接合層19)の腐食を抑制することができる。
In the thermosetting resin composition for wire coat material of the present embodiment, the content of chloride ion measured by the following procedure is 0 in the cured product obtained by heat-treating the thermosetting resin composition at 175 ° C. for 120 minutes. It is 0.01 ppm or more and 10 ppm or less, preferably 0.01 ppm or more and 6 ppm or less.
(procedure)
50 mL of pure water is added to 5 g of the cured product of the thermosetting resin composition, and hot water extraction is performed at 125 ° C. for 24 hours to obtain extracted water. By analyzing the obtained extracted water by an ion chromatograph, the ion concentration in the cured product of the thermosetting resin composition is measured.
The thermosetting resin composition for a wire coating material of the present embodiment having a chloride ion content in the above range can suppress corrosion of the bonding interface (bonding layer 19) between the semiconductor chip and the bonding wire due to chloride ions. ..
 本実施形態のワイヤコート材用熱硬化性樹脂組成物は、当該熱硬化性樹脂組成物を175℃で120分加熱処理した硬化物に対して、動的粘弾性測定機を用いて、測定温度:20℃~300℃、昇温速度:5℃/分、周波数:1Hz、引っ張りモードの条件で測定したガラス転移温度が、150℃以上350℃以下であり、好ましくは、180℃以上300℃以下であり、より好ましくは、200℃以上280℃以下である。ワイヤコート材用熱硬化性樹脂組成物より得られるワイヤコート材は、上記範囲のガラス転移温度を有することにより、優れた耐熱性を有する。 The thermocurable resin composition for a wire coat material of the present embodiment is a cured product obtained by heat-treating the thermocurable resin composition at 175 ° C. for 120 minutes at a measured temperature using a dynamic viscoelasticity measuring machine. : 20 ° C to 300 ° C, heating rate: 5 ° C / min, frequency: 1Hz, glass transition temperature measured under the conditions of tension mode is 150 ° C or higher and 350 ° C or lower, preferably 180 ° C or higher and 300 ° C or lower. It is more preferably 200 ° C. or higher and 280 ° C. or lower. The wire coat material obtained from the thermosetting resin composition for a wire coat material has excellent heat resistance by having a glass transition temperature in the above range.
 本実施形態のワイヤコート材用熱硬化性樹脂組成物は、ブルックフィールドBH型回転粘度計を用い、20rpm、25℃で測定された粘度が、20mPa・s以上2000mPa・s以下であり、好ましくは、100mPa・s以上1800mPa・s以下であり、より好ましくは、150mPa・s以上1500mPa・s以下である 本実施形態のワイヤコート材用熱硬化性樹脂組成物は、ジェットディスペンサによる適用を意図しているため、内径数百μmの微細孔から熱硬化性樹脂組成物を高速で吐出できるよう、ノズル先端温度での粘度が低いことが好ましい。また、吐出後の熱硬化性樹脂組成物が流動性を有することが好ましい。上記範囲の粘度を有する本実施形態のワイヤコート材用熱硬化性樹脂組成物は、ジェットディスペンサによる塗布性に優れる。 The thermosetting resin composition for a wire coat material of the present embodiment has a viscosity measured at 20 rpm and 25 ° C. using a Brookfield BH type rotational viscometer, which is preferably 20 mPa · s or more and 2000 mPa · s or less, preferably. , 100 mPa · s or more and 1800 mPa · s or less, more preferably 150 mPa · s or more and 1500 mPa · s or less The thermosetting resin composition for a wire coat material of the present embodiment is intended to be applied by a jet dispenser. Therefore, it is preferable that the viscosity at the tip temperature of the nozzle is low so that the thermosetting resin composition can be discharged at high speed from the micropores having an inner diameter of several hundred μm. Further, it is preferable that the thermosetting resin composition after ejection has fluidity. The thermosetting resin composition for a wire coating material of the present embodiment having a viscosity in the above range is excellent in applicability by a jet dispenser.
 本実施形態のワイヤコート材用熱硬化性樹脂組成物は、粘度a/粘度bで表されるチキソ比が0.1以上3.0以下であり、好ましくは、0.5以上2.0以下である。
 粘度a:ブルックフィールドBH型回転粘度計を用い、10rpm、25℃で測定した粘度。
 粘度b:ブルックフィールドBH型回転粘度計を用い、20rpm、25℃で測定した粘度。
The thermosetting resin composition for a wire coat material of the present embodiment has a thixotropic ratio represented by viscosity a / viscosity b of 0.1 or more and 3.0 or less, preferably 0.5 or more and 2.0 or less. Is.
Viscosity a: Viscosity measured at 10 rpm and 25 ° C. using a Brookfield BH type rotational viscometer.
Viscosity b: Viscosity measured at 20 rpm and 25 ° C. using a Brookfield BH type rotational viscometer.
 本実施形態のワイヤコート材用熱硬化性樹脂組成物は、上記組成を有することにより、チキソトロピー性を有する。ここで、熱硬化性樹脂組成物がチキソトロピー性を有するとは、熱硬化性樹脂組成物が剪断応力を受けると(剪断速度を速くすると)粘度が低下し、剪断応力が解除されると(剪断速度を遅くすると)粘度が回復し流動が抑制される粘弾性特性を有することをいう。 The thermosetting resin composition for a wire coat material of the present embodiment has thixotropy property by having the above composition. Here, the fact that the thermosetting resin composition has thixotropic property means that when the thermosetting resin composition receives shear stress (when the shear rate is increased), the viscosity decreases, and when the shear stress is released (shearing). It means that it has viscoelastic properties in which the viscosity is restored and the flow is suppressed (when the speed is slowed down).
 チキソ比が、0.1~3.0の範囲であれば、熱硬化性樹脂組成物を、ジェットディスペンサを使用して塗布したときに、熱硬化性樹脂組成物は、ジェットディスペンサから押出されているときは適度に流動し、押出された後は流動が止まるため、所定の範囲からの流出が生じ難く(塗布形状保持)、所定の範囲に塗付することが可能となる。 When the thixotropy is in the range of 0.1 to 3.0, the thermosetting resin composition is extruded from the jet dispenser when the thermosetting resin composition is applied using the jet dispenser. When it is present, it flows moderately, and after being extruded, the flow stops, so that outflow from a predetermined range is unlikely to occur (coating shape retention), and it becomes possible to apply the coating to a predetermined range.
(半導体装置の製造方法)
 本実施形態の半導体装置は、上述の第一および第二の実施形態に係るワイヤコート材用熱硬化性樹脂組成物を使用して、以下方法にて作製される。
(1)ワイヤボンディング工程:まず、半導体チップ1の上面において、ボンディングワイヤ7を、例えばアルミニウムから成る接合層19を介して、半導体チップ1に接続する。その後、回路基板2の上面において、ボンディングワイヤ7を配線11を介して回路基板2に接続する。
(2)被覆工程:次に、ジェットディスペンサを用いて、半導体チップ1とボンディングワイヤ7との接合部に、上述のワイヤコート材用熱硬化性樹脂組成物を塗布する。このようにして、半導体チップ1とボンディングワイヤ7との接合部を接合層19を含めてワイヤコート材5により被覆する。
(3)封止工程:最後に、ワイヤコート材5を構成する樹脂とは異なる封止樹脂から成る樹脂封止体4により、半導体チップ1、回路基板2上の半導体チップが搭載された表面、ボンディングワイヤ7、半導体チップ1とボンディングワイヤ7との接合部、および、ボンディングワイヤ7と回路基板2との接合部を含めて半導体装置30の表面全体を覆う。
(Manufacturing method of semiconductor device)
The semiconductor device of this embodiment is manufactured by the following method using the thermosetting resin composition for a wire coating material according to the first and second embodiments described above.
(1) Wire bonding step: First, on the upper surface of the semiconductor chip 1, the bonding wire 7 is connected to the semiconductor chip 1 via, for example, a bonding layer 19 made of aluminum. Then, on the upper surface of the circuit board 2, the bonding wire 7 is connected to the circuit board 2 via the wiring 11.
(2) Coating step: Next, the thermosetting resin composition for a wire coating material described above is applied to the joint portion between the semiconductor chip 1 and the bonding wire 7 using a jet dispenser. In this way, the joint portion between the semiconductor chip 1 and the bonding wire 7 is covered with the wire coating material 5 including the bonding layer 19.
(3) Encapsulation step: Finally, a surface on which the semiconductor chip 1 and the semiconductor chip on the circuit board 2 are mounted by a resin encapsulant 4 made of a encapsulating resin different from the resin constituting the wire coating material 5. The entire surface of the semiconductor device 30 is covered including the bonding wire 7, the bonding portion between the semiconductor chip 1 and the bonding wire 7, and the bonding portion between the bonding wire 7 and the circuit board 2.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。
 実施例で使用した各原料成分の詳細を以下に示す。
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
Details of each raw material component used in the examples are shown below.
(溶剤)
・溶剤1:γ-ブチロラクトン(メルク(AZエレクトロニックマテリアルズ)社製)
・溶剤2:プロピレングリコールモノメチルエーテルアセテート(メルクパフォーマンスマテリアルズ社製)
・溶剤3:2-ヘプタノン(東京化成工業株式会社製)
(樹脂)
・樹脂1:フェノール樹脂(住友ベークライト株式会社製、重量平均分子量54040)
・樹脂2:エポキシ樹脂(日本化薬社製、EPPN201)
・樹脂3:ポリノルボルネン樹脂(プロメラス社製、Avatrel2590)
・樹脂4:ビスフェノールA型エポキシ樹脂(三菱化学社製、jER1256)
(硬化剤)
・硬化剤1:テトラキス(メトキシメチル)グリコールウリルと、メタノール、ホルムアルデヒドとの混合物(ダイトーケミックス社製、CROLIN-318)
・硬化剤2:直鎖型エポキシ樹脂(三菱化学社製、JER YX7105)
・硬化剤3:2-ウンデシルメチルイミダゾール(四国化成工業株式会社製、C11Z)
(カップリング剤)
・カップリング剤1:3-メタクリロキシプロピルメチルジメトキシシラン(信越化学工業株式会社製、KBM-503P)
・カップリング剤2:3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、KBM-403E)
・カップリング剤3:3-メルカプト-1,2,4-トリアゾール(Huaihua Wangda Biotechnology Co., Ltd社製)
・カップリング剤4:トリエトキシシリルプロピルマレインアミド酸
(シリカ粒子)
・シリカ粒子1:球状シリカ、(アドマテックス製、 SE-2100、粒径0.58um)
・シリカ粒子2:球状シリカ(アドマテックス製、 UF-320、粒径2.80um)
(酸発生剤)
・酸発生剤1:(4,8-ジーn-ブトキシ-1-ナフチル)スルホニウムテトラキスペンタフルオロフェニルボレート(熱酸発生剤、DSP五協フード&ケミカル株式会社製、ZK-1722)
・酸発生剤2:(4-アセトキシフェニル)ベンジル(メチル)スルホニウム=テトラキス(ペンタフルオロフェニル)ボレート熱酸発生剤(三新化学工業製、SI-B3A)
・酸発生剤3:光酸発生剤(サンアプロ株式会社製)
(界面活性剤)
・界面活性剤1:2-[N-ペルフルオロブチルスルホニル-N-メチルアミノ)エチル=アクリラート・ポリ(オキシアルキレングリコール)=モノアクリラート・ポリ(オキシアルキレングリコール)=ジアクリラートの共重合物(3M社製、FC-4432)
・界面活性剤2:パーフルオロアルキルポリマー(C4系)(DIC社製、R-41)
(solvent)
-Solvent 1: γ-Butyrolactone (manufactured by Merck (AZ Electronic Materials))
-Solvent 2: Propylene glycol monomethyl ether acetate (manufactured by Merck Performance Materials)
・ Solvent 3: 2-Heptanone (manufactured by Tokyo Chemical Industry Co., Ltd.)
(resin)
-Resin 1: Phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., weight average molecular weight 54040)
-Resin 2: Epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EPPN201)
-Resin 3: Polynorbornene resin (manufactured by Promeras, Avatorel 2590)
-Resin 4: Bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER1256)
(Hardener)
-Curing agent 1: A mixture of tetrakis (methoxymethyl) glycol uryl, methanol, and formaldehyde (CROLIN-318, manufactured by Daito Chemix).
-Curing agent 2: Linear epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER YX7105)
-Curing agent 3: 2-Undecylmethylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., C11Z)
(Coupling agent)
-Coupling agent 1: 3-methacryloxypropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-503P)
-Coupling agent 2: 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403E)
-Coupling agent 3: 3-mercapto-1,2,4-triazole (Huaihua Wangda Biotechnology Co., manufactured by Ltd.)
-Coupling agent 4: Triethoxysilylpropyl maleic acid (silica particles)
-Silica particles 1: Spherical silica, (manufactured by Admatex, SE-2100, particle size 0.58 um)
-Silica particles 2: Spherical silica (manufactured by Admatex, UF-320, particle size 2.80 um)
(Acid generator)
-Acid generator 1: (4,8-Zen-butoxy-1-naphthyl) Sulfonium tetrakispentafluorophenylborate (thermoacid generator, manufactured by DSP Gokyo Food & Chemical Co., Ltd., ZK-1722)
-Acid generator 2: (4-acetoxyphenyl) benzyl (methyl) sulfonium = tetrakis (pentafluorophenyl) borate thermoacid generator (manufactured by Sanshin Chemical Industry, SI-B3A)
-Acid generator 3: Photoacid generator (manufactured by Sun Appro Co., Ltd.)
(Surfactant)
Surfactant 1: 2- [N-perfluorobutylsulfonyl-N-methylamino) ethyl = acrylate poly (oxyalkylene glycol) = monoacryllate poly (oxyalkylene glycol) = diacryllate copolymer (3M) Made by FC-4432)
Surfactant 2: Perfluoroalkyl polymer (C4 series) (manufactured by DIC Corporation, R-41)
(実施例A1~A6、比較例A1)
(熱硬化性樹脂組成物の調製)
 各実施例および各比較例について、以下のように熱硬化性樹脂組成物を調製した。
 各実施例A、各比較例Aにおいて表1に示す表1に示す配合量の各成分を、溶剤に混合して、ワニス状の樹脂組成物を調製した。
(Examples A1 to A6, Comparative Example A1)
(Preparation of thermosetting resin composition)
For each Example and each Comparative Example, a thermosetting resin composition was prepared as follows.
In each Example A and each Comparative Example A, each component in the blending amount shown in Table 1 shown in Table 1 was mixed with a solvent to prepare a varnish-like resin composition.
(ワニス状樹脂組成物の物性)
 上記で得られたワニス状の樹脂組成物について、以下の物性を測定した。物性の測定結果および評価結果は、表1に示す。なお、表中、「-」は、測定未実施であることを示す。
(Physical characteristics of varnish-like resin composition)
The following physical properties of the varnish-like resin composition obtained above were measured. The measurement results and evaluation results of the physical properties are shown in Table 1. In the table, "-" indicates that the measurement has not been performed.
(1.粘度)
 ワニス状樹脂組成物の、25℃における粘度を、回転粘度計により測定した。結果を表1に示す。
(1. Viscosity)
The viscosity of the varnish-like resin composition at 25 ° C. was measured with a rotational viscometer. The results are shown in Table 1.
(2.チキソ性)
 樹脂組成物のチキソ性は、ブルックフィールドBH型回転粘度計を用いて、次の手順でチキソトロピック係数(x)を求めることにより評価した。広口型遮光瓶(100ml)に、上述で得たワニス状樹脂組成物を入れ、恒温水槽を用いて液温を25℃±0.5℃に調整した。ついで、ガラス棒を用いて12~15秒かけて40回撹拌した後、所定のローターを設置して、5分静置した後、20rpmで3分回転させたときの目盛りを読み取った。粘度η20は、この目盛りに換算表の係数をかけて算出した。同じく25℃、10rpmで測定した粘度η10の値から次式に従って計算した。結果を表1に示す。
 x=η10/η20
(2. Thixotropy)
The thixotropic property of the resin composition was evaluated by determining the thixotropic coefficient (x 1 ) by the following procedure using a Brookfield BH type rotational viscometer. The varnish-like resin composition obtained above was placed in a wide-mouthed light-shielding bottle (100 ml), and the liquid temperature was adjusted to 25 ° C. ± 0.5 ° C. using a constant temperature water tank. Then, after stirring 40 times over 12 to 15 seconds using a glass rod, a predetermined rotor was installed, the mixture was allowed to stand for 5 minutes, and then the scale when rotated at 20 rpm for 3 minutes was read. The viscosity η 20 was calculated by multiplying this scale by the coefficient of the conversion table. Similarly, it was calculated from the value of the viscosity η 10 measured at 25 ° C. and 10 rpm according to the following equation. The results are shown in Table 1.
x 1 = η 10 / η 20
(3.ジェットディスペンサでの塗布性)
 (3.1 ジェットディスペンサの吐出圧力)
 武蔵エンジニアリング製ジェットディスペンサの付属の外部コントローラMJET-3-CTRにて空気の供給圧を所定値に設定した。シリンジから、上記のワニス状樹脂組成物が吐出される最小圧力を、ジェットディスペンサの「吐出圧力」として測定した。結果を表1に示す。吐出圧力が小さいほど、ジェットディスペンサでの塗布性が良好であることを示す。また吐出時のシリンジ温度も併せて表1に記載した。
 (3.2 塗布時のチップ汚染性-濡れ広がり性)
 上記のワニス状樹脂組成物を、ジェットディスペンサを用いて、ボンディングワイヤに塗布した。塗布直後のチップの表面状態をジェットディスペンサ付属のカメラ(キーエンス社製)で撮像した。その写真の画像に基づいて、塗布後のチップの表面積(3.5mm x3.5mm)がワニス状樹脂組成物で10~30%覆われている状態を汚染度「低」、30超-60%覆われた状態を汚染度「普」、60%より多く表面が覆われている状態を汚染度「高」と評価した。面積は写真画像から手動計算により求めた。結果を表1に示す。汚染度が低いほど、塗布性が良好であることを示す。
 (3.3 ボイドの有無)
 チップ上に、上記のワニス状樹脂組成物を塗布し、加熱硬化した。硬化処理後、このチップの表面全体を、光学顕微鏡(キーエンス社製)を用いて100倍の倍率で俯瞰して観察した。硬化物の光学顕微鏡観察で表面が均一ではなく泡由来の空隙やフィラーと樹脂間の空隙が1つでも観察された場合は、ボイド「あり」、ボイドがまったく観察されない場合は、「なし」として、表1に結果を示す。
(3. Applicability with jet dispenser)
(3.1 Jet dispenser discharge pressure)
The air supply pressure was set to a predetermined value by the external controller MJET-3-CTR attached to the jet dispenser manufactured by Musashi Engineering. The minimum pressure at which the varnish-like resin composition was discharged from the syringe was measured as the "discharge pressure" of the jet dispenser. The results are shown in Table 1. The smaller the discharge pressure, the better the applicability with the jet dispenser. The syringe temperature at the time of discharge is also shown in Table 1.
(3.2 Chip contamination during application-wetting and spreading)
The above varnish-like resin composition was applied to the bonding wire using a jet dispenser. The surface condition of the tip immediately after application was imaged with a camera (manufactured by KEYENCE) attached to the jet dispenser. Based on the image of the photograph, the state where the surface area (3.5 mm x 3.5 mm) of the chip after coating is covered with the varnish-like resin composition by 10 to 30% is "low" contamination degree, more than 30-60%. The covered state was evaluated as "normal", and the state where the surface was covered more than 60% was evaluated as "high". The area was calculated manually from the photographic image. The results are shown in Table 1. The lower the degree of contamination, the better the coatability.
(3.3 Presence or absence of voids)
The above varnish-like resin composition was applied onto the chips and cured by heating. After the curing treatment, the entire surface of this chip was observed from a bird's-eye view using an optical microscope (manufactured by KEYENCE CORPORATION) at a magnification of 100 times. If the surface of the cured product is not uniform and even one void derived from bubbles or voids between the filler and the resin is observed, the void is "Yes", and if no void is observed, it is "None". , Table 1 shows the results.
(樹脂組成物の硬化物の物性)
 (伸び率)
 6インチウェハに、上述のワニス状樹脂組成物を塗布した後、120℃、240秒の条件下で熱処理を施すことにより脱溶媒を行って樹脂膜を得た。次いで、オーブン中で樹脂膜に対し熱処理を行い、硬化させた。当該熱処理は、上記ウェハが載置されたオーブン内を30℃、30分で窒素にて置換し、昇温速度5℃/minで各硬化温度(175℃、または220℃)まで昇温した後、その硬化温度にて120分間保持することにより行った。上記熱処理後、降温速度5℃/minでオーブン内の温度を70℃以下まで降温させ、上記ウェハを取り出した。次いで、フッ酸を用いて上記ウェハから樹脂膜を剥離して、60℃、10時間の条件下で乾燥した。このようにして、各実施例および各比較例のそれぞれについて、上述の各硬化温度により硬化させた樹脂膜を得た。
 次いで樹脂膜に対し、以下のようにして引張伸び率をそれぞれ測定した。
 まず、樹脂膜からなる試験片(幅10mm×長さ60mm以上×厚み0.005~0.01mm)に対して引張試験(引張速度:0.05mm/min)を、温度23℃、湿度55%の雰囲気中で実施した。引張試験は、オリエンテック社製引張試験機(テンシロンRTC-1210A)を用いて行った。次いで、当該引張試験の結果から、引張伸び率を算出した。ここでは、上記引張試験を試験回数n=5で行い、引張伸び率について5回の平均値を求め、これを測定値として示した。
(Physical characteristics of the cured product of the resin composition)
(Growth rate)
After applying the above-mentioned varnish-like resin composition to a 6-inch wafer, heat treatment was performed at 120 ° C. for 240 seconds to remove the solvent to obtain a resin film. Then, the resin film was heat-treated in an oven to be cured. In the heat treatment, the inside of the oven on which the wafer is placed is replaced with nitrogen at 30 ° C. for 30 minutes, and the temperature is raised to each curing temperature (175 ° C. or 220 ° C.) at a heating rate of 5 ° C./min. , By holding at the curing temperature for 120 minutes. After the heat treatment, the temperature in the oven was lowered to 70 ° C. or lower at a temperature lowering rate of 5 ° C./min, and the wafer was taken out. Then, the resin film was peeled off from the wafer using hydrofluoric acid, and dried under the conditions of 60 ° C. and 10 hours. In this way, for each of each Example and each Comparative Example, a resin film cured at each of the above-mentioned curing temperatures was obtained.
Next, the tensile elongation of the resin film was measured as follows.
First, a tensile test (tensile speed: 0.05 mm / min) was performed on a test piece (width 10 mm × length 60 mm or more × thickness 0.005 to 0.01 mm) made of a resin film, at a temperature of 23 ° C. and a humidity of 55%. It was carried out in the atmosphere of. The tensile test was performed using a tensile tester manufactured by Orientec (Tensilon RTC-1210A). Next, the tensile elongation was calculated from the results of the tensile test. Here, the above tensile test was performed with the number of tests n = 5, an average value of 5 times of tensile elongation was obtained, and this was shown as a measured value.
(半導体装置の信頼性評価)
 上述の「半導体装置の製造方法」に記載の方法にしたがって、半導体装置を作製した。半導体装置の作製の際、ワイヤコート用熱硬化性樹脂組成物と封止樹脂との硬化は、175℃または220℃の温度条件で実施した。各硬化温度で得られた半導体装置に、温度130℃の環境下で、20VのDC電圧を240時間印加した。測定開始から、40時間後、80時間後、120時間後、および240時間後の半導体装置の不良(リーク不良)の発生数を調べた。n=10。結果を、サンプル数10個のうちの不良発生数として、表1に示す。
(Reliability evaluation of semiconductor devices)
A semiconductor device was manufactured according to the method described in the above-mentioned "Method for manufacturing a semiconductor device". When the semiconductor device was manufactured, the thermosetting resin composition for wire coating and the sealing resin were cured under a temperature condition of 175 ° C. or 220 ° C. A DC voltage of 20 V was applied to the semiconductor device obtained at each curing temperature for 240 hours in an environment of a temperature of 130 ° C. The number of defects (leak defects) in the semiconductor device 40 hours, 80 hours, 120 hours, and 240 hours after the start of the measurement was investigated. n = 10. The results are shown in Table 1 as the number of defects out of 10 samples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例Aのワイヤコート用熱硬化性樹脂組成物は、ジェットディスペンサでの塗布性に優れていた。また実施例のワイヤコート用樹脂組成物を用いて作製した半導体装置は、信頼性に優れるものであった。 The thermosetting resin composition for wire coating of Example A was excellent in applicability with a jet dispenser. Further, the semiconductor device produced by using the resin composition for wire coating of the example was excellent in reliability.
(実施例B1~B3、比較例B1~B4)
(熱硬化性樹脂組成物の調製)
 各実施例および各比較例について、以下のように熱硬化性樹脂組成物を調製した。
 各実施例、各比較例において表2に示す表2に示す配合量の各成分を、溶剤に混合して、ワニス状の樹脂組成物を調製した。
(Examples B1 to B3, Comparative Examples B1 to B4)
(Preparation of thermosetting resin composition)
For each Example and each Comparative Example, a thermosetting resin composition was prepared as follows.
In each Example and each Comparative Example, each component in the blending amount shown in Table 2 shown in Table 2 was mixed with a solvent to prepare a varnish-like resin composition.
(ワニス状樹脂組成物の物性)
 上記で得られたワニス状の樹脂組成物について、以下の物性を測定した。物性の測定結果および評価結果は、表2に示す。
(Physical characteristics of varnish-like resin composition)
The following physical properties of the varnish-like resin composition obtained above were measured. The measurement results and evaluation results of the physical properties are shown in Table 2.
 (粘度)
 ワニス状樹脂組成物の、20rpm、25℃における粘度を、ブルックフィールドBH型回転粘度計により測定した。結果を表2に示す。
(viscosity)
The viscosity of the varnish-like resin composition at 20 rpm and 25 ° C. was measured with a Brookfield BH type rotational viscometer. The results are shown in Table 2.
 (チキソ性)
 樹脂組成物のチキソ性は、回転粘度計を用いて、次の手順でチキソ比(x)を評価した。ブルックフィールドBH型回転粘度計を用い、10rpm、25℃で測定した粘度を粘度aとし、ブルックフィールドBH型回転粘度計を用い、20rpm、25℃で測定した粘度を粘度bとしたとき、次式に従って計算した。結果を表2に示す。
 x=粘度a/粘度b
(Thixotropic)
The thixotropic property of the resin composition was evaluated by the thixotropic ratio (x 1 ) by the following procedure using a rotational viscometer. When the viscosity measured at 10 rpm and 25 ° C. using a Brookfield BH type rotational viscometer is defined as viscosity a and the viscosity measured at 20 rpm and 25 ° C. using a Brookfield BH type rotational viscometer is defined as viscosity b, the following equation is used. Calculated according to. The results are shown in Table 2.
x 1 = viscosity a / viscosity b
(樹脂組成物の硬化物の物性)
 (貯蔵弾性率、ガラス転移温度)
 各例で得られた樹脂組成物の硬化物の貯蔵弾性率およびガラス転移温度を以下のように測定した。
 6インチウェハに、上述のワニス状樹脂組成物を塗布した後、120℃、240秒の条件下で熱処理を施すことにより脱溶媒を行って樹脂膜を得た。次いで、オーブン中で樹脂膜に対し熱処理を行い、硬化させた。当該熱処理は、上記ウェハが載置されたオーブン内を30℃、30分で窒素にて置換し、昇温速度5℃/minで175℃まで昇温した後、その硬化温度にて120分間保持することにより行った。上記熱処理後、降温速度5℃/minでオーブン内の温度を70℃以下まで降温させ、上記ウェハを取り出した。次いで、フッ酸を用いて上記ウェハから樹脂膜を剥離して、60℃、10時間の条件下で乾燥し、得られた硬化膜から幅4mm×長さ20mm×厚み10μmの試験片を得た。
 各例の試験片に対し、動的粘弾性測定機(DMA、日立ハイテクサイエンス社製、DMA7100)を用いて、開始温度20℃、測定温度範囲20~300℃、昇温速度5℃/min、周波数1Hzの条件下で測定をおこない、測定結果より、Tg(℃)および25℃の貯蔵弾性率(GPa)を求めた。結果を表2に示す。なお、比較例B4においては、サンプルの作製ができなかったため、「測定不可」と示す。
(Physical characteristics of the cured product of the resin composition)
(Storage modulus, glass transition temperature)
The storage elastic modulus and the glass transition temperature of the cured product of the resin composition obtained in each example were measured as follows.
After applying the above-mentioned varnish-like resin composition to a 6-inch wafer, heat treatment was performed at 120 ° C. for 240 seconds to remove the solvent to obtain a resin film. Then, the resin film was heat-treated in an oven to be cured. In the heat treatment, the inside of the oven on which the wafer is placed is replaced with nitrogen at 30 ° C. for 30 minutes, the temperature is raised to 175 ° C. at a heating rate of 5 ° C./min, and then the temperature is maintained at the curing temperature for 120 minutes. I went by doing. After the heat treatment, the temperature in the oven was lowered to 70 ° C. or lower at a temperature lowering rate of 5 ° C./min, and the wafer was taken out. Next, the resin film was peeled off from the wafer using hydrofluoric acid and dried under the conditions of 60 ° C. for 10 hours, and a test piece having a width of 4 mm, a length of 20 mm and a thickness of 10 μm was obtained from the obtained cured film. ..
For the test piece of each example, a dynamic viscoelastic modulus measuring machine (DMA, manufactured by Hitachi High-Tech Science Co., Ltd., DMA7100) was used to start the temperature at 20 ° C., measure the temperature range at 20 to 300 ° C., and raise the temperature at 5 ° C./min. The measurement was carried out under the condition of a frequency of 1 Hz, and the storage elastic modulus (GPa) at Tg (° C.) and 25 ° C. was determined from the measurement results. The results are shown in Table 2. In Comparative Example B4, since the sample could not be prepared, it is indicated as "not measurable".
 (塩素イオン含有量)
各例で得られた樹脂組成物の硬化物の塩素イオン濃度を以下のようにして測定した。
 まず、上記で得られた樹脂組成物を、オーブンで175℃、120分の条件で硬化し硬化物を得た。得られた試料5gと純水50mlとを、テフロン(登録商標)製耐圧容器に入れて密閉し、温度125℃、相対湿度100%RH、24時間の処理(熱水抽出)を行なった。次に、室温まで冷却した後、抽出水を遠心分離し、20μmフィルターにてろ過し、ろ液を抽出水とした。得られた抽出水を、イオンクロマト装置(サーモフィッシャーサイエンティフィック社製)を用いたイオンクロマトグラフにより分析し、その抽出水中の塩素イオン濃度を測定した。得られた塩素イオン濃度の結果を表2に示す。
(Chloride ion content)
The chloride ion concentration of the cured product of the resin composition obtained in each example was measured as follows.
First, the resin composition obtained above was cured in an oven at 175 ° C. for 120 minutes to obtain a cured product. 5 g of the obtained sample and 50 ml of pure water were placed in a pressure-resistant container made of Teflon (registered trademark), sealed, and treated at a temperature of 125 ° C., a relative humidity of 100% RH, and for 24 hours (hot water extraction). Next, after cooling to room temperature, the extracted water was centrifuged and filtered through a 20 μm filter, and the filtrate was used as the extracted water. The obtained extracted water was analyzed by an ion chromatograph using an ion chromatograph (manufactured by Thermo Fisher Scientific Co., Ltd.), and the chlorine ion concentration in the extracted water was measured. The results of the obtained chloride ion concentration are shown in Table 2.
(ワイヤコート材の性能評価)
 (剥離の有無)
 上述の「半導体装置の製造方法」に記載の方法にしたがって、各例で得られた樹脂組成物をワイヤコート材として使用し、最大膜厚50μmでワイヤ接合部を被覆し、半導体装置を作製した。作製した半導体装置のワイヤ接合部で切断、研磨し、断面をSEMを用いて観察した。半導体チップ1と接続パッド8、半導体チップ1とバリア層18またはバリア層18と接合層19の間に剥離が1つでも観察された場合は、剥離「あり」、剥離がまったく観察されない場合は、「なし」として、表2に結果を示す。
(Performance evaluation of wire coat material)
(Presence / absence of peeling)
According to the method described in the above-mentioned "Method for manufacturing a semiconductor device", the resin composition obtained in each example was used as a wire coating material, and the wire bonding portion was coated with a maximum film thickness of 50 μm to prepare a semiconductor device. .. It was cut and polished at the wire bonding portion of the manufactured semiconductor device, and the cross section was observed using SEM. If even one peeling is observed between the semiconductor chip 1 and the connection pad 8, the semiconductor chip 1 and the barrier layer 18 or the barrier layer 18 and the bonding layer 19, there is peeling, and if no peeling is observed, the peeling is not observed. The results are shown in Table 2 as "None".
 (クラックの有無)
 上述の「半導体装置の製造方法」に記載の方法にしたがって、各例で得られた樹脂組成物をワイヤコート材を最大膜厚50μmでワイヤ接合部を被覆し、半導体装置を作製した。
 作製した半導体装置のワイヤ接合部で切断、研磨し、断面をSEMを用いて観察した。ワイヤコート材5の断面にクラックが1つでも観察された場合は、クラック「あり」、クラックがまったく観察されない場合は、「なし」として、表2に結果を示す。
(Presence / absence of crack)
According to the method described in the above-mentioned "Method for manufacturing a semiconductor device", the resin composition obtained in each example was coated with a wire coating material having a maximum film thickness of 50 μm to cover a wire bonding portion to prepare a semiconductor device.
It was cut and polished at the wire bonding portion of the manufactured semiconductor device, and the cross section was observed using SEM. Table 2 shows the results as "yes" when even one crack is observed in the cross section of the wire coat material 5, and "no" when no crack is observed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例Bの樹脂組成物をワイヤコート材として用いて作製した半導体装置は、半導体装置中の各部材間の剥離の発生や、ワイヤコート材中におけるクラックの発生がなく、信頼性に優れるものであった。 The semiconductor device produced by using the resin composition of Example B as a wire coat material is excellent in reliability without the occurrence of peeling between each member in the semiconductor device and the occurrence of cracks in the wire coat material. there were.
 この出願は、2020年12月3日に出願された日本出願特願2020-200772号および2021年3月29日に出願された日本出願特願2021-054709号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority on the basis of Japanese Application Japanese Patent Application No. 2020-200772 filed on December 3, 2020 and Japanese Application Japanese Patent Application No. 2021-05479 filed on March 29, 2021. , All of its disclosures are taken here.

Claims (20)

  1.  載置板と、
     前記載置板上に搭載され、ボンディングパッドを有する、半導体チップと、
     前記ボンディングパッドに接合された、前記半導体チップと前記載置板とを接続するボンディングワイヤと、
     前記半導体チップ、前記載置板の前記半導体チップの搭載面、および前記ボンディングワイヤを封止する樹脂封止体と、を備える半導体装置において、
     前記ボンディングワイヤの少なくとも一部、および前記ボンディングパッドを被覆するために用いる熱硬化性樹脂組成物であって、
     当該熱硬化性樹脂組成物は、熱硬化性樹脂、硬化剤、および溶剤を含み、
     当該熱硬化性樹脂組成物の、回転粘度計で測定した粘度が、20mPa・s以上である、熱硬化性樹脂組成物。
    Placement board and
    A semiconductor chip mounted on the above-mentioned mounting plate and having a bonding pad,
    A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate,
    In a semiconductor device including the semiconductor chip, a mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin encapsulant for encapsulating the bonding wire.
    A thermosetting resin composition used to cover at least a part of the bonding wire and the bonding pad.
    The thermosetting resin composition contains a thermosetting resin, a curing agent, and a solvent.
    A thermosetting resin composition having a viscosity measured by a rotational viscometer of 20 mPa · s or more.
  2.  ジェットディスペンサを用いて、前記ボンディングワイヤの少なくとも一部、および前記ボンディングパッドと前記ボンディングワイヤとの接合部に塗布される、請求項1に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1, which is applied to at least a part of the bonding wire and a joint portion between the bonding pad and the bonding wire using a jet dispenser.
  3.  前記熱硬化性樹脂が、当該熱硬化性樹脂組成物の固形分全体に対して、10質量%以上である、請求項1または2に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 1 or 2, wherein the thermosetting resin is 10% by mass or more based on the total solid content of the thermosetting resin composition.
  4.  塩化物イオンおよび硫化物イオンの濃度が、10ppm以下である、請求項1乃至3のいずれかに記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 3, wherein the concentrations of chloride ion and sulfide ion are 10 ppm or less.
  5.  前記熱硬化性樹脂が、ノボラック型エポキシ樹脂、フェノール化合物とアルデヒド化合物との反応物、フェノール化合物とジメタノール化合物との反応物、ヒドロキシスチレン樹脂、ポリアミド樹脂、ポリベンゾオキサゾール樹脂、ポリイミド樹脂、環状オレフィン樹脂から選択される少なくとも1つを含む、請求項1乃至4のいずれかに記載の熱硬化性樹脂組成物。 The thermosetting resin is a novolak type epoxy resin, a reaction product of a phenol compound and an aldehyde compound, a reaction product of a phenol compound and a dimethanol compound, a hydroxystyrene resin, a polyamide resin, a polybenzoxazole resin, a polyimide resin, and a cyclic olefin. The thermosetting resin composition according to any one of claims 1 to 4, which comprises at least one selected from resins.
  6.  前記溶剤が、N-メチルピロリドン、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドン、テトラメチル尿酸、乳酸エチル、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールモノメチルエーテル、乳酸メチル、乳酸ブチル、メチル-1,3-ブチレングリコールアセテート、1,3-ブチレングリコール-3-モノメチルエーテル、ピルビン酸メチル、ピルビン酸エチルおよびメチル-3-メトキシプロピオネートから選択される少なくとも1つを含む、請求項1乃至5のいずれかに記載の熱硬化性樹脂組成物。 The solvent is N-methylpyrrolidone, γ-butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, N-ethyl-2-pyrrolidone, tetramethyluric acid, ethyl lactate, N, N-dimethylacetamide, dimethylsulfoxide, diethylene glycol. Dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, dipropylene glycol monomethyl ether, methyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, pyruvate The thermosetting resin composition according to any one of claims 1 to 5, which comprises at least one selected from ethyl and methyl-3-methoxypropionate.
  7.  無機フィラーをさらに含む、請求項1乃至6のいずれかに記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 6, further comprising an inorganic filler.
  8.  載置板と、
     前記載置板上に搭載された、ボンディングパッドを有する半導体チップと、
     前記ボンディングパッドに接合された、前記半導体チップと前記載置板とを接続するボンディングワイヤと、
     前記半導体チップ、前記載置板の前記半導体チップの搭載面、および前記ボンディングワイヤを封止する樹脂封止体と、
     前記ボンディングワイヤと前記ボンディングパッドとの接続部を被覆するワイヤコート材と、を備え、
     前記ワイヤコート材が、請求項1乃至7のいずれかに記載の熱硬化性樹脂組成物の硬化物からなる、半導体装置。
    Placement board and
    A semiconductor chip with a bonding pad mounted on the above-mentioned mounting plate,
    A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate,
    The semiconductor chip, the mounting surface of the semiconductor chip of the above-mentioned mounting plate, and the resin encapsulant for encapsulating the bonding wire.
    A wire coating material for covering a connection portion between the bonding wire and the bonding pad is provided.
    A semiconductor device in which the wire coat material is a cured product of the thermosetting resin composition according to any one of claims 1 to 7.
  9.  載置板と、
     前記載置板上に搭載され、ボンディングパッドを有する、半導体チップと、
     前記ボンディングパッドに接合された、前記半導体チップと前記載置板とを接続するボンディングワイヤと、
     前記半導体チップ、前記載置板の前記半導体チップの搭載面、および前記ボンディングワイヤを封止する樹脂封止体と、を備える半導体装置において、
     前記ボンディングワイヤの少なくとも一部、および前記ボンディングパッドを被覆するために用いる熱硬化性樹脂組成物であって、
     当該熱硬化性樹脂組成物は、熱硬化性樹脂、無機フィラーおよび溶剤を含み、
     前記無機フィラーの含有量が、当該熱硬化性樹脂組成物の固形分全体に対して、40質量%以上85質量%以下である、熱硬化性樹脂組成物。
    Placement board and
    A semiconductor chip mounted on the above-mentioned mounting plate and having a bonding pad,
    A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate,
    In a semiconductor device including the semiconductor chip, a mounting surface of the semiconductor chip of the above-mentioned mounting plate, and a resin encapsulant for encapsulating the bonding wire.
    A thermosetting resin composition used to cover at least a part of the bonding wire and the bonding pad.
    The thermosetting resin composition contains a thermosetting resin, an inorganic filler and a solvent.
    A thermosetting resin composition in which the content of the inorganic filler is 40% by mass or more and 85% by mass or less with respect to the total solid content of the thermosetting resin composition.
  10.  前記無機フィラーのレーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径が0.01μm以上10μm以下である、請求項9に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 9, wherein the average particle size in the weight-based particle size distribution measured by the laser diffraction / scattering type particle size distribution measurement method of the inorganic filler is 0.01 μm or more and 10 μm or less.
  11.  請求項9または10に記載の熱硬化性樹脂組成物であって、
     当該熱硬化性樹脂組成物を175℃で120分加熱処理した硬化物に対して、動的粘弾性測定機を用いて、測定温度:20℃~300℃、昇温速度:5℃/分、周波数:1Hz、引っ張りモードの条件で測定した、25℃における貯蔵弾性率が、2GPa以上20GPa以下である、熱硬化性樹脂組成物。
    The thermosetting resin composition according to claim 9 or 10.
    The heat-curable resin composition was heat-treated at 175 ° C. for 120 minutes at a measurement temperature of 20 ° C. to 300 ° C., a heating rate of 5 ° C./min, using a dynamic viscoelastic modulus measuring machine. A thermosetting resin composition having a storage elastic modulus of 2 GPa or more and 20 GPa or less at 25 ° C. measured under the conditions of frequency: 1 Hz and tensile mode.
  12.  請求項9乃至11のいずれかに記載の熱硬化性樹脂組成物であって、
     当該熱硬化性樹脂組成物を175℃で120分加熱処理した硬化物において、下記手順で測定される塩素イオンの含有量が、0.01ppm以上10ppm以下である、熱硬化性樹脂組成物。
     (手順)
     前記熱硬化性樹脂組成物の硬化物5gに対して50mLの純水を加え、125℃24時間熱水抽出し、抽出水を得る。得られた前記抽出水をイオンクロマトグラフにより分析することにより、前記熱硬化性樹脂組成物の硬化物中のイオン濃度を測定する。
    The thermosetting resin composition according to any one of claims 9 to 11.
    A thermosetting resin composition in which the content of chlorine ions measured by the following procedure is 0.01 ppm or more and 10 ppm or less in a cured product obtained by heat-treating the thermosetting resin composition at 175 ° C. for 120 minutes.
    (procedure)
    50 mL of pure water is added to 5 g of the cured product of the thermosetting resin composition, and hot water extraction is performed at 125 ° C. for 24 hours to obtain extracted water. By analyzing the obtained extracted water by an ion chromatograph, the ion concentration in the cured product of the thermosetting resin composition is measured.
  13.  請求項9乃至12のいずれか一に記載の熱硬化性樹脂組成物であって、
     当該熱硬化性樹脂組成物を175℃で120分加熱処理した硬化物において、動的粘弾性測定機(DMA)を用いて、開始温度20℃、測定温度範囲20~300℃、昇温速度5℃/min、周波数1Hzの条件下で測定したガラス転移温度が、150℃以上350℃以下である、熱硬化性樹脂組成物。
    The thermosetting resin composition according to any one of claims 9 to 12.
    In the cured product obtained by heat-treating the thermosetting resin composition at 175 ° C. for 120 minutes, a start temperature of 20 ° C., a measurement temperature range of 20 to 300 ° C., and a temperature rise rate of 5 were used using a dynamic viscoelasticity measuring machine (DMA). A thermosetting resin composition having a glass transition temperature of 150 ° C. or higher and 350 ° C. or lower as measured under the conditions of ° C./min and a frequency of 1 Hz.
  14.  ブルックフィールドBH型回転粘度計を用い、20rpm、25℃で測定された粘度が、20mPa・s以上2000mPa・s以下である、請求項9乃至13のいずれかに記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 9 to 13, wherein the viscosity measured at 20 rpm and 25 ° C. using a Brookfield BH type rotational viscometer is 20 mPa · s or more and 2000 mPa · s or less.
  15.  粘度a/粘度bで表されるチキソ比が0.1以上3.0以下である、請求項9乃至14のいずれかに記載の熱硬化性樹脂組成物:
     粘度a:ブルックフィールドBH型回転粘度計を用い、10rpm、25℃で測定した粘度;
     粘度b:ブルックフィールドBH型回転粘度計を用い、20rpm、25℃で測定した粘度。
    The thermosetting resin composition according to any one of claims 9 to 14, wherein the thixotropic ratio represented by the viscosity a / viscosity b is 0.1 or more and 3.0 or less.
    Viscosity a: Viscosity measured at 10 rpm, 25 ° C. using a Brookfield BH type rotational viscometer;
    Viscosity b: Viscosity measured at 20 rpm and 25 ° C. using a Brookfield BH type rotational viscometer.
  16.  ジェットディスペンサを用いて、前記ボンディングワイヤと前記ボンディングパッドとの接続部を被覆するように塗布される、請求項9乃至15のいずれかに記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 9 to 15, which is applied so as to cover the connection portion between the bonding wire and the bonding pad using a jet dispenser.
  17.  前記無機フィラーが、シリカ、タルク、アルミナ、チタンホワイト、および窒化珪素から選択される少なくとも1つを含む、請求項9乃至17のいずれかに記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 9 to 17, wherein the inorganic filler contains at least one selected from silica, talc, alumina, titanium white, and silicon nitride.
  18.  前記熱硬化性樹脂が、ノボラック型フェノール樹脂、フェノール化合物とアルデヒド化合物との反応物、フェノール化合物とジメタノール化合物との反応物、ヒドロキシスチレン樹脂、ポリアミド樹脂、ポリベンゾオキサゾール樹脂、ポリイミド樹脂、環状オレフィン樹脂から選択される少なくとも1つを含む、請求項9乃至17のいずれかに記載の熱硬化性樹脂組成物。 The thermosetting resin is a novolak type phenol resin, a reaction product of a phenol compound and an aldehyde compound, a reaction product of a phenol compound and a dimethanol compound, a hydroxystyrene resin, a polyamide resin, a polybenzoxazole resin, a polyimide resin, and a cyclic olefin. The thermosetting resin composition according to any one of claims 9 to 17, which comprises at least one selected from resins.
  19.  前記溶剤が、N-メチルピロリドン、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドン、テトラメチル尿酸、乳酸エチル、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールモノメチルエーテル、乳酸メチル、乳酸ブチル、メチル-1,3-ブチレングリコールアセテート、1,3-ブチレングリコール-3-モノメチルエーテル、ピルビン酸メチル、ピルビン酸エチルおよびメチル-3-メトキシプロピオネートから選択される少なくとも1つを含む、請求項9乃至18のいずれかに記載の熱硬化性樹脂組成物。 The solvent is N-methylpyrrolidone, γ-butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, N-ethyl-2-pyrrolidone, tetramethyluric acid, ethyl lactate, N, N-dimethylacetamide, dimethylsulfoxide, diethylene glycol. Dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, dipropylene glycol monomethyl ether, methyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, pyruvate The thermosetting resin composition according to any one of claims 9 to 18, which comprises at least one selected from ethyl and methyl-3-methoxypropionate.
  20.  載置板と、
     前記載置板上に搭載された、ボンディングパッドを有する半導体チップと、
     前記ボンディングパッドに接合された、前記半導体チップと前記載置板とを接続するボンディングワイヤと、
     前記半導体チップ、前記載置板の前記半導体チップの搭載面、および前記ボンディングワイヤを封止する樹脂封止体と、
     前記ボンディングワイヤと前記ボンディングパッドとの接続部を被覆するワイヤコート材と、を備え、
     前記ワイヤコート材が、請求項9乃至19のいずれかに記載の熱硬化性樹脂組成物の硬化物からなる、半導体装置。
    Placement board and
    A semiconductor chip with a bonding pad mounted on the above-mentioned mounting plate,
    A bonding wire bonded to the bonding pad for connecting the semiconductor chip and the above-mentioned mounting plate,
    The semiconductor chip, the mounting surface of the semiconductor chip of the above-mentioned mounting plate, and the resin encapsulant for encapsulating the bonding wire.
    A wire coating material for covering a connection portion between the bonding wire and the bonding pad is provided.
    A semiconductor device in which the wire coat material is a cured product of the thermosetting resin composition according to any one of claims 9 to 19.
PCT/JP2021/043929 2020-12-03 2021-11-30 Thermosetting resin composition and semiconductor device WO2022118853A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022566942A JPWO2022118853A1 (en) 2020-12-03 2021-11-30

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020200772 2020-12-03
JP2020-200772 2020-12-03
JP2021-054709 2021-03-29
JP2021054709 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022118853A1 true WO2022118853A1 (en) 2022-06-09

Family

ID=81853234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043929 WO2022118853A1 (en) 2020-12-03 2021-11-30 Thermosetting resin composition and semiconductor device

Country Status (3)

Country Link
JP (1) JPWO2022118853A1 (en)
TW (1) TW202230550A (en)
WO (1) WO2022118853A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221842A (en) * 1990-12-25 1992-08-12 Fujitsu Ltd Semiconductor device and manufacture thereof
JP2004327557A (en) * 2003-04-22 2004-11-18 Matsushita Electric Works Ltd Method of manufacturing electronic part and semiconductor device
JP2018098442A (en) * 2016-12-16 2018-06-21 富士電機株式会社 Semiconductor device
WO2019031513A1 (en) * 2017-08-10 2019-02-14 日立化成株式会社 Semiconductor device and method for producing same
JP2020097661A (en) * 2018-12-17 2020-06-25 日立化成株式会社 Resin composition, and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221842A (en) * 1990-12-25 1992-08-12 Fujitsu Ltd Semiconductor device and manufacture thereof
JP2004327557A (en) * 2003-04-22 2004-11-18 Matsushita Electric Works Ltd Method of manufacturing electronic part and semiconductor device
JP2018098442A (en) * 2016-12-16 2018-06-21 富士電機株式会社 Semiconductor device
WO2019031513A1 (en) * 2017-08-10 2019-02-14 日立化成株式会社 Semiconductor device and method for producing same
JP2020097661A (en) * 2018-12-17 2020-06-25 日立化成株式会社 Resin composition, and semiconductor device

Also Published As

Publication number Publication date
TW202230550A (en) 2022-08-01
JPWO2022118853A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
KR102337127B1 (en) Liquid sealing material, and electronic component using same
KR20110066929A (en) Semiconductor device
WO2008018557A1 (en) Semiconductor package and method for manufacturing same, and sealing resin
CN111372994B (en) Film-like semiconductor sealing material
JP5114935B2 (en) Liquid resin composition for electronic components, and electronic component device using the same
JP6098372B2 (en) Semiconductor device
JP2009097014A (en) Liquid resin composition for sealing, electronic component device and wafer level chip size package
JP2009097013A (en) Liquid resin composition for sealing, electronic component device and wafer level chip-size package
JP2004210901A (en) Liquid epoxy resin composition and electronic component device
JP2009091510A (en) Liquid epoxy resin composition and semiconductor device using the composition
JP6233441B2 (en) Liquid epoxy resin composition and electronic component device
JP2015193851A (en) Liquid epoxy resin composition and electronic part device
JP2013209450A (en) Epoxy resin composition for sealing semiconductor
JP2009057575A (en) Liquid epoxy resin composition and electronic component device
JP2000299414A (en) Flip-chip type semiconductor device
WO2022118853A1 (en) Thermosetting resin composition and semiconductor device
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP5614022B2 (en) Epoxy resin composition, semiconductor sealing resin composition, and semiconductor device
JP2006188573A (en) Liquid epoxy resin composition, electronic component device using the composition and method for producing the same
JP2015054952A (en) Epoxy resin composition, electronic part device and production method of electronic part device
JP5708666B2 (en) Liquid epoxy resin composition and electronic component device
JP2000327884A (en) Underfill material for flip-chip semiconductor device
JP2016040393A (en) Liquid epoxy resin composition, and electronic component device
JP2015180760A (en) Liquid epoxy resin composition and electronic part device
JP2015110803A (en) Liquid epoxy resin composition and electronic part device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900606

Country of ref document: EP

Kind code of ref document: A1