WO2022118647A1 - 光周波数コム装置および計測装置 - Google Patents

光周波数コム装置および計測装置 Download PDF

Info

Publication number
WO2022118647A1
WO2022118647A1 PCT/JP2021/041937 JP2021041937W WO2022118647A1 WO 2022118647 A1 WO2022118647 A1 WO 2022118647A1 JP 2021041937 W JP2021041937 W JP 2021041937W WO 2022118647 A1 WO2022118647 A1 WO 2022118647A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
optical
frequency comb
mirror
optical frequency
Prior art date
Application number
PCT/JP2021/041937
Other languages
English (en)
French (fr)
Inventor
將 中村
安寿 稲田
ヨン チェルマン
バート クイケン
キャスパー ヴァン ガッセ
アルトゥール ヘルマンス
Original Assignee
パナソニックホールディングス株式会社
ユニフェルジテイト・ヘント
アイメック・ヴェーゼットウェー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックホールディングス株式会社, ユニフェルジテイト・ヘント, アイメック・ヴェーゼットウェー filed Critical パナソニックホールディングス株式会社
Priority to EP21900402.5A priority Critical patent/EP4258495A1/en
Priority to JP2022566825A priority patent/JPWO2022118647A1/ja
Priority to CN202180043013.5A priority patent/CN115769447A/zh
Publication of WO2022118647A1 publication Critical patent/WO2022118647A1/ja
Priority to US18/084,936 priority patent/US20230121678A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • G02F2/004Transferring the modulation of modulated light, i.e. transferring the information from one optical carrier of a first wavelength to a second optical carrier of a second wavelength, e.g. all-optical wavelength converter
    • G02F2/008Opto-electronic wavelength conversion, i.e. involving photo-electric conversion of the first optical carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/56Frequency comb synthesizer

Definitions

  • This disclosure relates to an optical frequency comb device and a measuring device.
  • the characteristics related to the optical frequency of the object can be investigated.
  • spectroscopy has been performed using a light source having a fluctuating intensity and a diffraction grating or a prism. Therefore, the accuracy of the obtained frequency spectrum is limited.
  • the optical frequency comb means a comb-shaped frequency spectrum formed from a plurality of discrete equidistant longitudinal modes.
  • a laser beam having an optical frequency comb is referred to as "optical frequency comb laser beam” or simply "optical frequency comb”.
  • Non-Patent Documents 1 to 3 disclose an optical frequency comb device that generates an optical frequency comb.
  • the present disclosure provides an optical frequency comb device that can change the frequency with high accuracy.
  • the optical frequency comb device is provided at an optical waveguide, a first mirror provided at the first position of the optical waveguide, and a second position of the optical waveguide different from the first position.
  • the second mirror provided, the gain medium and saturable absorber provided between the first mirror and the second mirror, and the repeating frequency and carrier of the optical frequency comb output from the end of the optical waveguide. It includes a control unit that fixes one of the envelope offset frequencies and changes the other.
  • the radiofrequency comb device has an optical waveguide, a first mirror provided at a first position of the optical waveguide, and a second position of the optical waveguide different from the first position.
  • a second mirror provided at two positions, a gain medium and a saturable absorber provided between the first mirror and the second mirror, and a signal generator that supplies a high frequency signal to the saturable absorber.
  • the signal generator changes the repetition frequency of the optical frequency comb output from the end of the optical waveguide by changing the frequency of the high frequency signal.
  • the measuring device includes an optical frequency comb device according to the above aspect, an emitting unit that emits the optical frequency comb toward an object, and reflected light of the optical frequency comb by the object. It includes an incident light detection unit and a calculation unit that calculates the distance to the object or the speed of the object based on the detection result by the light detection unit.
  • the frequency can be changed with high accuracy.
  • FIG. 1A is a diagram schematically showing a time change of an electric field of an optical frequency comb laser beam.
  • FIG. 1B is a diagram schematically showing a frequency spectrum of an optical frequency comb laser beam.
  • FIG. 2A is a top view schematically showing an optical frequency comb laser light source composed of a resonator including a gain medium integrated on a semiconductor substrate.
  • FIG. 2B is a cross-sectional view schematically showing an optical frequency comb laser light source at the position shown by the line IIB-IIB in FIG. 2A.
  • FIG. 2C is a cross-sectional view schematically showing a light propagation path in the cross section shown in FIG. 2B.
  • FIG. 3 is a diagram showing the principle of distance measurement in FMCW.
  • FIG. 3 is a diagram showing the principle of distance measurement in FMCW.
  • FIG. 4 is a diagram showing an optical frequency comb on the frequency axis before and after modulating the carrier envelope offset frequency.
  • FIG. 5 is a diagram showing an optical frequency comb on the frequency axis before and after modulation of the repetition frequency.
  • FIG. 6 is a diagram schematically showing an example of the optical frequency comb device according to the first embodiment.
  • FIG. 7 is a diagram schematically showing an example of the optical frequency comb device according to the second embodiment.
  • FIG. 8 is a diagram schematically showing an example of the optical frequency comb device according to the third embodiment.
  • FIG. 9 is a diagram schematically showing an example of an optical frequency comb device according to a modified example of the embodiment.
  • FIG. 10 is a diagram schematically showing the configuration of the measuring device according to the fourth embodiment.
  • FIG. 11 is a diagram schematically showing a configuration of a detection unit of the measuring device according to the fourth embodiment.
  • the optical frequency comb device is provided at an optical waveguide, a first mirror provided at the first position of the optical waveguide, and a second position of the optical waveguide different from the first position.
  • the second mirror provided, the gain medium and saturable absorber provided between the first mirror and the second mirror, and the repeating frequency and carrier of the optical frequency comb output from the end of the optical waveguide. It includes a control unit that fixes one of the envelope offset frequencies and changes the other.
  • both the repetition frequency and the carrier envelope offset frequency do not change at the same time, so that the frequency of the optical frequency comb can be changed accurately to a desired frequency.
  • frequency modulation can be performed.
  • control unit may include a current source for supplying a current to the gain medium and a signal generator for supplying a high frequency signal to the saturable absorber.
  • the current source may change the carrier envelope offset frequency by changing the magnitude of the current
  • the signal generator may fix the frequency of the high frequency signal.
  • the current source may fix the magnitude of the current
  • the signal generator may change the repetition frequency by changing the frequency of the high frequency signal.
  • the radio frequency comb device further includes a phase modulator provided between the first mirror and the second mirror, and the control unit further comprises the phase.
  • the voltage source includes a voltage source that supplies a voltage to the modulator, the voltage source changes the carrier envelope offset frequency by changing the magnitude of the voltage, and the signal generator fixes the frequency of the high frequency signal. You may.
  • the carrier envelope offset frequency it is possible to easily change a plurality of modes (that is, frequency components) of the optical frequency comb. Further, since the repetition frequency can be fixed, each mode can be easily separated in the detector. Therefore, the distance measurement based on the FMCW can be easily performed.
  • the optical frequency comb device further comprises a semiconductor substrate, and the optical waveguide, the first mirror, the second mirror, the gain medium, and the saturable absorber are the same. It may be integrated on a semiconductor substrate.
  • the frequency of the optical frequency comb is accurately changed to a desired frequency by the control unit. be able to.
  • control unit may be integrated on the semiconductor substrate.
  • the radiofrequency comb device has an optical waveguide, a first mirror provided at a first position of the optical waveguide, and a second position of the optical waveguide different from the first position.
  • a second mirror provided at two positions, a gain medium and a saturable absorber provided between the first mirror and the second mirror, and a signal generator that supplies a high frequency signal to the saturable absorber.
  • the signal generator changes the repetition frequency of the optical frequency comb output from the end of the optical waveguide by changing the frequency of the high frequency signal.
  • the optical frequency comb device may further include a current source for supplying a current to the gain medium, and the current source may fix the magnitude of the current.
  • both the repetition frequency and the carrier envelope offset frequency do not change at the same time, so that the frequency of the optical frequency comb can be changed accurately to a desired frequency.
  • the measuring device includes an optical frequency comb device according to each of the above embodiments, an emitting unit that emits the optical frequency comb toward an object, and reflection of the optical frequency comb by the object. It includes a light detection unit on which light is incident and a calculation unit that calculates the distance to the object or the speed of the object based on the detection result by the light detection unit.
  • one of the carrier envelope offset frequency and the repetition frequency can be fixed and the other can be changed, so that distance measurement based on FMCW can be easily performed.
  • the optical frequency comb is incident on the light detection unit, and the calculation unit receives a beat signal generated by interference between the reflected light and the optical frequency comb in the light detection unit. Based on this, the distance or the speed may be calculated.
  • the photodetector may include a demultiplexer that separates incident light for each frequency, and a plurality of photodetectors that receive the separated light for each frequency.
  • WDM Wavelength Division Multiplexing
  • the emitting unit may emit the optical frequency comb in a different direction for each frequency.
  • each figure is a schematic diagram and is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, substantially the same configuration is designated by the same reference numeral, and duplicate description will be omitted or simplified.
  • the terms “upper” and “lower” do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute spatial recognition, but are based on the stacking order in the laminated configuration. It is used as a term defined by the relative positional relationship. Also, the terms “upper” and “lower” are used not only when the two components are spaced apart from each other and another component exists between the two components, but also when the two components are present. It also applies when the two components are placed in close contact with each other and touch each other.
  • ordinal numbers such as “first” and “second” do not mean the number or order of constituent elements unless otherwise specified, and avoid confusion of the same kind of constituent elements and distinguish them. It is used for the purpose of
  • FIG. 1A is a diagram schematically showing an example of a time change of an electric field of an optical frequency comb laser beam.
  • the horizontal axis represents time and the vertical axis represents the electric field of laser light.
  • the optical frequency comb laser beam is formed from an optical pulse train generated in a repetition period Trep .
  • the repetition period Trep is, for example, 100 ps or more and 100 ns or less.
  • the full width at half maximum of each optical pulse is represented by ⁇ t.
  • the full width at half maximum ⁇ t of each optical pulse is, for example, 10 fs or more and 1 ps or less.
  • the optical frequency comb laser source includes a laser resonator that emits an optical frequency comb laser beam by inputting excitation light or injecting charge.
  • the details of the laser resonator will be described later.
  • the group velocity vg in which the envelope of the optical pulse propagates and the phase velocity vg in which the wave in the optical pulse propagates may be different. Due to the difference between the group velocity vg and the phase velocity vp , when two adjacent optical pulses are overlapped so that the envelopes match, the phase of the wave in these optical pulses shifts by ⁇ . ⁇ is smaller than 2 ⁇ .
  • FIG. 1B is a diagram schematically showing a frequency spectrum of an optical frequency comb laser beam.
  • the horizontal axis represents the frequency and the vertical axis represents the intensity of the laser beam.
  • the optical frequency comb laser light has a comb-like frequency spectrum formed from a plurality of discrete evenly spaced lines.
  • the frequencies of the plurality of discrete equidistant lines correspond to the resonant frequencies of the longitudinal mode in the laser cavity.
  • the repetition frequency frep is, for example, 10 MHz or more and 10 GHz or less.
  • the repetition period Trep becomes 1 ns and the repetition frequency f.
  • the rep is 1 GHz.
  • the full width at half maximum ⁇ f of the optical frequency comb is, for example, 1 THz or more and 100 THz or less.
  • the frequency of the equidistant lines closest to the zero frequency, assuming that the equidistant lines exist up to near the zero frequency, is called the carrier envelope offset frequency.
  • the carrier envelope offset frequency f CEO is lower than the repeat frequency f rep .
  • optical frequency comb device (Optical frequency comb device) Next, with reference to FIGS. 2A and 2B, a type of optical frequency comb device integrated on a semiconductor substrate, that is, an on-chip optical frequency comb device will be briefly described.
  • the optical frequency comb device is also referred to as an optical frequency comb laser light source.
  • FIG. 2A is a top view schematically showing an optical frequency comb laser light source having a resonator including a gain medium integrated on a semiconductor substrate.
  • FIG. 2B is a cross-sectional view schematically showing an optical frequency comb laser light source at the position shown by the line IIB-IIB in FIG. 2A.
  • the X-axis, Y-axis, and Z-axis that are orthogonal to each other are schematically shown, but for convenience of explanation, the orientation during use is not limited.
  • the n-doped layers 13d1, the p-doped layers 13d2 and 13d3, the low refractive index layer 14b, and the protective layer 16 are not shaded to represent a cross section.
  • the optical frequency comb laser light source 10 includes a resonator 13, a semiconductor substrate 14, and a protective layer 16.
  • the surface of the semiconductor substrate 14 in the illustrated example is parallel to the XY plane.
  • the semiconductor substrate 14 has a laminated structure in which, for example, a high refractive index layer 14a such as Si and a low refractive index layer 14b such as SiO 2 are laminated in this order in the Z-axis direction.
  • the refractive index of the high refractive index layer 14a is higher than that of the low refractive index layer 14b.
  • the semiconductor substrate 14 does not have to include the high refractive index layer 14a.
  • the protective layer 16 is formed by using, for example, an inorganic insulating material such as SiO 2 or an organic insulating material such as BCB (benzocyclobutene).
  • the protective layer 16 is provided so as to cover the upper surface of the low refractive index layer 14b.
  • the resonator 13 is an example of a laser resonator having a predetermined optical path length.
  • the resonator 13 includes a semiconductor layer 13s, an intermediate layer 13i, an optical waveguide 13w, and mirrors 13m1 and 13m2.
  • the resonator 13 includes an n-doped layer 13d1 and p-doped layers 13d2 and 13d3.
  • the resonator 13 includes a gain medium 13 g and a saturable absorber 13sa.
  • a part of the semiconductor layer 13s functions as a gain medium 13g and a saturable absorber 13sa, respectively.
  • the planar view shape of the semiconductor layer 13s in the resonator 13 is represented by a dotted line.
  • the semiconductor layer 13s is formed with a taper at both ends.
  • the tip of the taper overlaps the intermediate layer 13i in top view.
  • the intermediate layer 13i is also tapered at both ends.
  • the tip of the taper overlaps the optical waveguide 13w in top view.
  • the light passing through the semiconductor layer 13s is efficiently propagated to the optical waveguide 13w via the intermediate layer 13i. That is, in the optical frequency comb laser light source 10, each of the optical waveguide 13w, the intermediate layer 13i, and the semiconductor layer 13s functions as a path through which light passes.
  • the optical waveguide 13w in the resonator 13 is embedded in the low refractive index layer 14b in the semiconductor substrate 14.
  • the optical waveguide 13w may be provided on the low refractive index layer 14b.
  • the optical waveguide 13w can be formed, for example, from at least one high refractive index material selected from the group consisting of SiN and Si.
  • the refractive index of the optical waveguide 13w is higher than the refractive index of the low refractive index layer 14b and the refractive index of the protective layer 16 in the semiconductor substrate 14. Thereby, the light can propagate in the optical waveguide 13w by total reflection.
  • the intermediate layer 13i is provided between the optical waveguide 13w and the semiconductor layer 13s.
  • the intermediate layer 13i is made of, for example, a—Si (amorphous silicon).
  • the refractive index of the intermediate layer 13i is higher than that of the optical waveguide 13w and lower than that of the semiconductor layer 13s.
  • the intermediate layer 13i may be formed of other semiconductors as long as the optical waveguide 13w ⁇ intermediate layer 13i ⁇ semiconductor layer 13s is satisfied with respect to the refractive index.
  • the intermediate layer 13i is not provided, since the difference in the refractive index between the refractive index of the semiconductor layer 13s and the optical waveguide 13w is large, light is emitted from the semiconductor layer 13s having a large refractive index to the optical waveguide 13w having a small refractive index. It becomes difficult to propagate. Therefore, the loss during propagation of light between the semiconductor layer 13s and the optical waveguide 13w becomes large.
  • the intermediate layer 13i the difference in refractive index between the layers can be reduced. Therefore, by providing the intermediate layer 13i, as shown in FIG. 2C, light can be propagated from the semiconductor layer 13s to the optical waveguide 13w with low loss. Note that FIG.
  • FIG. 2C is a cross-sectional view schematically showing the light propagation path in the cross section shown in FIG. 2B.
  • the intermediate layer 13i may be omitted when the difference in the refractive index between the refractive index of the semiconductor layer 13s and the optical waveguide 13w is relatively small.
  • the first portion 13w1 close to the mirror 13m1 and the second portion 13w2 close to the mirror 13m2 function as light propagation paths.
  • the first portion 13w1 is a portion of the optical waveguide 13w between the gain medium 13g and the saturable absorber 13sa and the mirror 13m1.
  • the second portion 13w2 is a portion of the optical waveguide 13w between the gain medium 13g and the saturable absorber 13sa and the mirror 13m2.
  • the mirror 13m1 is provided at the first position of the optical waveguide 13w. Specifically, the mirror 13m1 is provided at the end of the optical waveguide 13w.
  • the mirror 13m1 can be formed, for example, from a distributed Bragg reflector. In a distributed Bragg reflector, light is reflected by Bragg reflection due to the periodic structure of the index of refraction.
  • the mirror 13m1 reflects the light propagating through the optical waveguide 13w.
  • the mirror 13m1 may be formed of, for example, metal as long as it has a reflective function. Further, the mirror 13m1 may be a reflective element formed of a semiconductor such as a loop mirror. The same applies to the mirror 13m2.
  • the mirror 13m2 is provided at a second position different from the first position of the optical waveguide 13w. Specifically, the mirror 13m2 is provided at the end of the optical waveguide 13w on the opposite side of the mirror 13m1.
  • the mirror 13m2 has a lower reflectance than the mirror 13m1. Specifically, the reflectance of the mirror 13m1 is substantially equal to 100%, whereas the reflectance of the mirror 13m2 is, for example, 70% or more and 90% or less.
  • the mirror 13m2 reflects most of the light propagating through the optical waveguide 13w, but allows some of it to pass through as it is. The light transmitted through the mirror 13 m2 becomes the optical frequency comb laser light 5.
  • the semiconductor layer 13s is sandwiched between the n-doped layer 13d1 and the p-doped layers 13d2 and 13d3.
  • the arrangement relationship between the n-doping layer 13d1 and the p-doping layers 13d2 and 13d3 may be reversed.
  • the semiconductor layer 13s, the n-doped layer 13d1, and the p-doped layers 13d2 and 13d3 are embedded in the protective layer 16.
  • the lower surface of the n-doped layer 13d1 may be in contact with the surface of the semiconductor substrate 14.
  • the n-doped layer 13d1 may be in contact with the intermediate layer 13i.
  • the semiconductor layer 13s can be formed from, for example, a group III-V semiconductor material.
  • Group III-V semiconductor materials may include, for example, at least one material selected from the group consisting of ZnSe, InGaAlP, InGaAs, GaInAsP, GaInAsSb, InP, GaN, GaAs, InGaAs, AlGaAs, AlInGaN.
  • the semiconductor layer 13s includes a gain medium 13 g and a saturable absorber 13sa.
  • the gain medium 13g and the saturable absorber 13sa are provided between the mirror 13m1 and the mirror 13m2.
  • the gain medium 13g and the saturable absorber 13sa are provided on the light propagation path between the mirror 13m1 and the mirror 13m2.
  • the gain medium 13g is a part of the semiconductor layer 13s and is a portion sandwiched between the n-doping layer 13d1 and the p-doping layer 13d2.
  • the saturable absorber 13sa is a part of the semiconductor layer 13s and is a portion sandwiched between the n-doped layer 13d1 and the p-doped layer 13d3.
  • the n-doped layer 13d1 is an n-type semiconductor layer.
  • the n-doped layer 13d1 is formed by doping a semiconductor material of the same group III-V as the semiconductor layer 13s with an n-type impurity.
  • a tetravalent element such as Si or a hexavalent element such as selenium (Se) can be used.
  • the p-doped layers 13d2 and 13d3 are p-type semiconductor layers.
  • the p-doped layers 13d2 and 13d3 are formed by doping the same III-V semiconductor material as the semiconductor layer 13s with a p-type impurity.
  • a p-type impurity for example, a divalent element such as zinc (Zn) can be used.
  • the p-doped layer 13d2 and the p-doped layer 13d3 have, for example, the same composition.
  • the p-doping layer 13d2 and the p-doping layer 13d3 are separated from each other. Different electrodes (not shown) are attached to each of the p-doped layers 13d2 and 13d3. A current is injected into the p-doped layer 13d2 via the electrodes. A reverse bias voltage is applied to the p-doped layer 13d3 with the n-doped layer 13d1. By applying this voltage, a part of the semiconductor layer 13s that comes into contact with the p-doped layer 13d3 functions as the saturable absorber 13sa.
  • the saturable absorber 13sa may be formed by using carbon nanotubes.
  • the saturable absorber 13sa may be integrated with the mirrors 13m1 and 13m2.
  • an electrode (not shown) is attached to the n-doping layer 13d1.
  • a part of the semiconductor layer 13s charged with charge from the electrodes attached to each of the n-doped layer 13d1 and the p-doped layer 13d2 functions as a gain medium 13g in which light is induced and emitted.
  • This stimulated emission light is repeatedly reflected between the mirror 13m1 and the mirror 13m2 via the intermediate layer 13i and the optical waveguide 13w. That is, the stimulated emission light is amplified by passing through the gain medium 13 g many times.
  • the amplified light becomes a mode-synchronized optical pulse train by the saturable absorber 13sa.
  • the optical path length of the resonator 13 is the optical path length between the mirror 13m1 and the mirror 13m2.
  • FIG. 3 is a diagram showing the principle of distance measurement in FMCW.
  • the horizontal axis represents time and the vertical axis represents the frequency of the laser beam.
  • the laser light emitted from the CW light source is frequency-modulated in time.
  • the frequency modulation of ⁇ F is performed during the time width T.
  • the frequency modulation here is linear modulation. That is, the rate of change in frequency is constant.
  • the frequency-modulated laser beam When used to measure the distance to an object, the frequency-modulated laser beam is split into two, one of which is used as reference light (solid line in FIG. 3) and the other of which is used as measurement light to irradiate the object.
  • the reflected light (long wavy line in FIG. 3) reflected and returned by the object is detected by the light receiver.
  • there is a frequency difference ⁇ f between the reference light and the measurement light that is, the reflected light.
  • the distance to the object can be measured by multiplying the frequency difference ⁇ f by cT / 2 ⁇ F. That is, the distance is expressed by the following equation (1).
  • the distance measuring method based on this FMCW is applied to the optical frequency comb device.
  • the optical frequency comb has two frequency parameters, the repetition frequency frep and the carrier envelope offset frequency f CEO . Therefore, if either one can be modulated, the distance can be measured in the same manner as the FMCW.
  • FIG. 4 is a diagram showing an optical frequency comb on the frequency axis before and after modulating the carrier envelope offset frequency f CEO .
  • (a) in FIG. 4 represents an optical frequency comb before modulation
  • (b) represents an optical frequency comb after modulation.
  • the horizontal axis represents the frequency of light
  • the vertical axis represents the intensity of light.
  • the carrier envelope offset frequency before modulation is f CEO + ⁇ f CEO at a certain time.
  • FIG. 5 is a diagram showing an optical frequency comb on the frequency axis before and after modulation of the repetition frequency prep .
  • (A) of FIG. 5 represents an optical frequency comb before modulation
  • (b) represents an optical frequency comb after modulation.
  • the horizontal axis represents the frequency of light
  • the vertical axis represents the intensity of light.
  • the repetition frequency before modulation is f rep + ⁇ f rep at a certain time.
  • EOM electro-optic modulation
  • modulation of the resonator length by temperature adjustment there are EOM (electro-optic modulation), modulation of the resonator length by temperature adjustment, and the like.
  • EOM electro-optic modulation
  • the repetition frequency rep and carrier envelope offset Both the frequency f and the CEO change. Therefore, it is difficult to make the optical frequency comb device function as an FMCW.
  • a modulation unit that modulates one of the repetition frequency f rep and the carrier envelope offset frequency f CEO and fixes the other is incorporated in the optical frequency comb device.
  • a specific configuration of the optical frequency comb device according to the embodiment of the present disclosure will be described.
  • FIG. 6 is a diagram schematically showing the optical frequency comb device 10A according to the present embodiment.
  • the basic structure of the optical frequency comb device 10A is the same as that of the optical frequency comb laser light source 10 shown in FIGS. 2A and 2B.
  • the differences from the optical frequency comb laser light source 10 shown in FIGS. 2A and 2B will be mainly described, and the description of the common points will be omitted or simplified.
  • the modulation unit 21A is an example of a control unit, and includes a modulation current source 17m and a fixed RF signal generator 18.
  • the modulated current source 17m is connected to a gain medium 13g, and supplies a current whose magnitude is modulated (hereinafter referred to as a modulation current) to the gain medium 13g.
  • the modulation current source 17m is connected to the p-doping layer 13d2 and the n-doping layer 13d1, and the modulation current flows from the p-doping layer 13d2 to the n-doping layer 13d1.
  • the modulation current is supplied to the gain medium 13g sandwiched between the p-doping layer 13d2 and the n-doping layer 13d1.
  • the fixed RF signal generator 18 is connected to the saturable absorber 13sa, and supplies a high frequency signal having a fixed frequency (hereinafter referred to as a fixed RF signal) to the saturable absorber 13sa.
  • a fixed RF signal a high frequency signal having a fixed frequency
  • the fixed RF signal generator 18 is connected to the p-doped layer 13d3 and the n-doped layer 13d1, and a high-frequency voltage signal having a fixed frequency is fixed between the p-doped layer 13d3 and the n-doped layer 13d1. It is supplied as an RF signal.
  • the fixed RF signal is supplied to the saturable absorber 13sa sandwiched between the p-doped layer 13d3 and the n-doped layer 13d1.
  • the modulation current source 17m modulates the carrier envelope offset frequency by modulating the magnitude of the current supplied to the gain medium 13g. At this time, the magnitude of the current is modulated, so that not only the carrier envelope offset frequency but also the repetition frequency is modulated.
  • the fixed RF signal generator 18 fixes the repeating frequency by fixing the frequency of the high frequency signal. This is because the saturable absorber 13sa acts as a shutter and controls the pulse interval in the resonator by the fixed RF signal.
  • the optical frequency comb device 10A in which only the carrier envelope offset frequency is modulated is realized, so that the distance can be measured based on the FMCW. More specifically, the optical frequency comb device 10A can simultaneously measure distances at multiple points. The specific measurement of the distance will be described later.
  • FIG. 7 is a diagram schematically showing the optical frequency comb device 10B according to the present embodiment.
  • the basic structure of the optical frequency comb device 10B is the same as that of the optical frequency comb laser light source 10 shown in FIGS. 2A and 2B.
  • the differences from the optical frequency comb laser light source 10 shown in FIGS. 2A and 2B will be mainly described, and the description of the common points will be omitted or simplified.
  • the difference is that the optical frequency comb device 10B is newly provided with the phase modulator 20 and the modulation unit 21B.
  • the phase modulator 20 is inserted in the optical waveguide 13w.
  • the phase modulator 20 is provided between the mirror 13m1 and the mirror 13m2.
  • two phase modulators 20 are inserted in each of the first portion 13w1 and the second portion 13w2.
  • the modulation unit 21B is an example of a control unit, and includes a fixed current source 17, a fixed RF signal generator 18, and a modulation voltage source of 19 m.
  • the fixed current source 17 is connected to a gain medium 13 g, and supplies a current having a fixed size (hereinafter referred to as a fixed current) to the gain medium 13 g.
  • the fixed current source 17 is connected to the p-doped layer 13d2 and the n-doped layer 13d1, and a fixed current flows from the p-doped layer 13d2 to the n-doped layer 13d1.
  • a fixed current is supplied to the gain medium 13g sandwiched between the p-doping layer 13d2 and the n-doping layer 13d1.
  • the fixed RF signal generator 18 is connected to the saturable absorber 13sa and supplies an RF signal to the saturable absorber 13sa.
  • the specific connection of the fixed RF signal generator 18 is the same as that of the first embodiment.
  • the modulation voltage source 19m is connected to the phase modulator 20 and supplies a voltage to the phase modulator 20.
  • the fixed current source 17 fixes the carrier envelope offset frequency by fixing the magnitude of the current supplied to the gain medium 13 g. Further, the fixed RF signal generator 18 fixes the repetition frequency by fixing the frequency of the RF signal. Therefore, frequency modulation does not occur as it is.
  • the modulated voltage source 19m modulates the carrier envelope offset frequency by modulating the magnitude of the voltage. Specifically, the refractive index of the phase modulator 20 is changed by the supplied voltage. Since the phase modulator 20 exists in the optical waveguide 13w, the phase of the optical frequency comb is modulated. This modulates the carrier envelope offset frequency of the optical frequency comb. At this time, not only the carrier envelope offset frequency but also the repetition frequency can be modulated, but the repetition frequency is fixed because the frequency of the RF signal is fixed.
  • the optical frequency comb device 10B in which only the carrier envelope offset frequency is modulated is realized, so that the distance can be measured at the same time based on the FMCW.
  • the optical frequency comb device 10B may be provided with a temperature adjusting mechanism such as a heater instead of the phase modulator 20.
  • the temperature adjusting mechanism can change the temperature of the optical waveguide 13w according to the voltage.
  • the refractive index of the optical waveguide 13w changes as it expands or contracts due to its temperature change. That is, the temperature adjusting mechanism can change the refractive index of the optical waveguide 13w, similarly to the phase modulator 20. Therefore, the same as above can be achieved by connecting the modulated voltage source 19 m to the temperature adjusting mechanism and supplying a voltage whose magnitude is modulated.
  • the temperature adjusting mechanism may not be arranged in the optical waveguide 13w as long as heat can be applied to the optical waveguide 13w.
  • the optical frequency comb device 10B can be used in applications where a constant intensity is required for the optical frequency comb, and the versatility can be enhanced.
  • FIG. 8 is a diagram schematically showing the optical frequency comb device 10C according to the present embodiment.
  • the basic structure of the optical frequency comb device 10C is the same as that of the optical frequency comb laser light source 10 shown in FIGS. 2A and 2B.
  • the differences from the optical frequency comb laser light source 10 shown in FIGS. 2A and 2B will be mainly described, and the description of the common points will be omitted or simplified.
  • the difference is that the optical frequency comb device 10C is newly provided with a modulation unit 21C.
  • the modulation unit 21C is an example of a control unit, and includes a fixed current source 17 and a modulation RF signal generator 18m.
  • the fixed current source 17 is connected to the gain medium 13 g, and supplies a fixed current to the gain medium 13 g.
  • the specific connection of the fixed current source 17 is the same as that of the second embodiment.
  • the modulated RF signal generator 18m is connected to the saturable absorber 13sa, and supplies a frequency-modulated RF signal (hereinafter referred to as a modulated RF signal) to the saturable absorber 13sa.
  • a modulated RF signal a frequency-modulated RF signal
  • the modulated RF signal generator 18m is connected to the p-doped layer 13d3 and the n-doped layer 13d1, and a frequency-modulated high-frequency voltage signal is transmitted between the p-doped layer 13d3 and the n-doped layer 13d1. It is supplied as a modulated RF signal.
  • the modulated RF signal is supplied to the saturable absorber 13sa sandwiched between the p-doped layer 13d3 and the n-doped layer 13d1.
  • the fixed current source 17 fixes the carrier envelope offset frequency by fixing the magnitude of the current supplied to the gain medium 13 g.
  • the modulated RF signal generator 18m modulates the frequency repeatedly by modulating the frequency of the RF signal.
  • the optical frequency comb device 10C in which only the repetition frequency is modulated is realized, so that the distance can be measured based on the FMCW.
  • the modulation of the magnitude of the current, the frequency of the RF signal, and the magnitude of the voltage is repeatedly performed by linear modulation as in the case shown in FIG.
  • the frequency difference in the nth mode is ⁇ f CEO , which is a value independent of n. Therefore, by detecting a plurality of modes separately by a wavelength division multiplexing method or the like, distance measurement based on FMCW can be executed for each mode. That is, it is possible to measure distances and / or velocities at multiple points at the same time.
  • Detection by the wavelength division multiplexing method can be realized by, for example, a demultiplexer that separates incident light for each frequency, and a plurality of receivers that receive the separated light for each frequency.
  • the frequency difference in the nth mode is n ⁇ ⁇ f rep , which is a value depending on n. Therefore, it is possible to distinguish each mode without receiving light by dividing the mode.
  • the modulation ranges of the plurality of modes included in the optical frequency comb are performed within a range in which they do not overlap each other.
  • the fixed current source 17, the modulated current source 17 m, the fixed RF signal generator 18, the modulated RF signal generator 18 m, and the modulated voltage source 19 m each contain an electron including at least one such as a resistor, an inductor, a capacitor, a transformer, a diode, and a transistor. It is realized by a circuit.
  • the electronic circuit may be realized by an integrated IC (Integrated Circuit) element.
  • the optical waveguide 13w, the mirrors 13m1 and 13m2, the gain medium 13g, and the saturable absorber 13sa are integrated on the same semiconductor substrate 14. That is, the optical frequency comb devices 10A, 10B, and 10C are so-called on-chip optical frequency comb devices. As a result, the optical frequency comb devices 10A, 10B and 10C can be miniaturized.
  • the modulation units 21A, 21B, and 21C are configured separately from the semiconductor substrate 14, but the present invention is not limited to this.
  • the modulation unit 21A may also be integrated on the semiconductor substrate 14.
  • FIG. 9 is a diagram schematically showing an optical frequency comb device 10D according to a modified example of the embodiment.
  • FIG. 9 shows a modification of the optical frequency comb device 10A shown in FIG. 6, but in the optical frequency comb device 10B or 10C shown in FIG. 7 or FIG. 8, the modulation unit 21B or 21C is integrated on the semiconductor substrate 14. May be.
  • FIG. 10 is a diagram schematically showing the configuration of the measuring device 100 according to the fourth embodiment.
  • the measuring device 100 shown in FIG. 10 measures the distance to the object 101 and / or the moving speed of the object 101.
  • the measuring device 100 includes an optical frequency comb device 10A, couplers 111 and 112, a circulator 113, an emitting unit 120, a detector 130, and a signal processing circuit 140.
  • the measuring device 100 may include an optical frequency comb device 10B, 10C, or 10D instead of the optical frequency comb device 10A.
  • the couplers 111 and 112 and the circulator 113 are connected to an optical fiber that guides the optical frequency comb laser light 5 emitted from the optical frequency comb device 10A.
  • the optical fiber is configured to connect the output unit 15 to the output unit 120 of the optical frequency comb device 10A, the circulator 113 to the detector 130, and the coupler 111 to the coupler 112, respectively.
  • the output unit 15 is provided at the end of the optical waveguide 13w. Specifically, the output unit 15 is located outside the mirror 13m2, and outputs the optical frequency comb laser light 5 that has passed through the mirror 13m2 to the outside.
  • the output unit 15 includes, for example, a coupling unit for an optical fiber. Specifically, the output unit 15 is a grating coupler, but the output unit 15 is not limited to this.
  • the output unit 15 may output by edge coupling.
  • the coupler 111 branches the optical frequency comb laser light 5 into the measurement light 5a and the reference light 5b.
  • the coupler 111 is an element that branches light at a predetermined intensity ratio, and the frequency and wavelength of light do not change even after the branching. That is, both the measurement light 5a and the reference light 5b are optical frequency combs having the same carrier envelope offset frequency and repetition frequency.
  • the intensity ratio of the measurement light 5a and the reference light 5b is, for example, 9: 1, but may be 1: 1.
  • the measurement light 5a is emitted from the emission unit 120 toward the object 101 through the circulator 113.
  • the reference light 5b enters the detector 130 through the coupler 112.
  • the emission unit 120 is an optical element that emits the measurement light 5a toward the object 101.
  • the emitting unit 120 is, for example, a prism or a diffraction grating.
  • the emission unit 120 emits the measurement light 5a in different directions for each frequency.
  • a plurality of solid arrows extending from the emission unit 120 toward the object 101 represent the light of each frequency component included in the measurement light 5a.
  • Each light is reflected by different parts of the object 101.
  • the reflected light 5c generated by this reflection returns to the emitting unit 120 and is guided toward the coupler 112 by the circulator 113.
  • the circulator 113 is an optical element for limiting the traveling direction of the light, and suppresses the reflected light 5c guided from the emitting unit 120 from returning to the coupler 111.
  • the coupler 112 combines the reference light 5b and the reflected light 5c and causes them to enter the detector 130.
  • the binding ratio is, for example, 1: 1 but is not limited to this.
  • the detector 130 is an example of a photodetector, in which the reference light 5b and the reflected light 5c are incident, and an electric signal corresponding to the intensity of the incident light is generated and output.
  • a beat signal is generated by the interference between the reference light 5b and the reflected light 5c.
  • the detector 130 outputs an electrical signal representing the time waveform of the beat signal.
  • the detector 130 is, for example, a photoelectric conversion element such as a photodiode.
  • the signal processing circuit 140 is an example of a calculation unit, and calculates the distance to the object 101 and / or the speed of the object 101 based on the detection result by the detector 130. Specifically, the signal processing circuit 140 calculates the distance and / or speed based on the beat signal. The method of calculating the distance by the signal processing circuit 140 is as described with reference to FIG. The distance can also be calculated based on a general FMCW method.
  • both the reference light 5b and the reflected light 5c are optical frequency combs, and therefore, by calculating for each frequency, the distance to the portion irradiated with the light of the corresponding frequency and / or The moving speed of the relevant part can be calculated.
  • This makes it possible to simultaneously measure the distance and / or velocity of the object 101 to a plurality of parts. That is, the measuring device 100 enables simultaneous multi-point measurement based on FMCW.
  • the detector 130 may include a demultiplexer 131 that separates incident light for each frequency, and a plurality of receivers 132 that receive the separated light for each frequency.
  • the plurality of receivers 132 are one-to-one associated with the plurality of frequencies to be separated. In this way, by separating and receiving signals for each frequency, it is possible to receive light of each frequency component with high accuracy, and it is possible to improve the accuracy of distance measurement and speed measurement.
  • optical frequency comb device and the measuring device have been described above based on the embodiments, the present disclosure is not limited to these embodiments. As long as the gist of the present disclosure is not deviated, various modifications that can be conceived by those skilled in the art are applied to the present embodiment, and a form constructed by combining components in different embodiments is also included in the scope of the present disclosure. Will be.
  • the modulation unit may not include a modulation current source or a fixed current source. That is, the gain medium may be stimulated and emitted by optical excitation instead of electrical excitation.
  • the modulation unit may include a laser light source instead of the modulation current source or the fixed current source.
  • the laser light source irradiates the gain medium with the laser light as the excitation light for the gain medium.
  • the laser light source can modulate the carrier envelope offset frequency f CEO by modulating the intensity of the laser beam. Further, the laser light source can fix the carrier envelope offset frequency f CEO by fixing the intensity of the laser light source.
  • the modulation unit may switch between a fixed frequency and a frequency to be modulated among the repetition frequency f rep and the carrier envelope offset frequency f CEO . That is, the fixed frequency and the modulated frequency do not always have to be the same, and the modulation unit may switch between the fixed frequency and the modulated frequency depending on the situation.
  • the modulation unit fixes the repetition frequency f rep and modulates the carrier envelope offset frequency f CEO , and the modulation unit modulates the repetition frequency f rep and sets the carrier envelope offset frequency f CEO . It may include a second mode of fixation and two modes of operation including. The modulation unit may switch from the first mode to the second mode and from the second mode to the first mode.
  • the frequency change performed by the control unit does not have to be frequency modulation.
  • the control unit may change either the repetition frequency or the carrier envelope offset frequency between two predetermined values.
  • the present disclosure can be used as an optical frequency comb device that can change the frequency with high accuracy, and can be used, for example, as an object detection, analysis, and distance measuring device.
  • Optical frequency comb laser light 5a Measurement light 5b Reference light 5c Reflected light 10
  • Optical frequency comb Laser light source 10A, 10B, 10C, 10D Optical frequency comb device 13 Resonator 13d1 n Dope layer 13d2, 13d3 p Dope layer 13i Intermediate layer 13g Gain medium 13m1 , 13m2 Mirror 13s Semiconductor layer 13sa Saturable absorber 13w Optical waveguide 13w1 First part 13w2 Second part 14 Semiconductor substrate 14a High refractive index layer 14b Low refractive index layer 15 Output unit 16 Protective layer 17 Fixed current source 17m Modulation current source 18 Fixed RF signal generator 18m Modulation RF signal generator 19m Modulation voltage source 20 Phase modulator 21A, 21B, 21C Modulator 100 Measuring device 101 Object 111, 112 Coupler 113 Circulator 120 Ejector 130 Detector 131 Demultiplexer 132 Receiver 140 signal processing circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

光周波数コム装置(10A)は、光導波路(13w)と、光導波路(13w)の第1位置に設けられたミラー(13m1)と、光導波路(13w)の、第1位置とは異なる第2位置に設けられたミラー(13m2)と、ミラー(13m1)とミラー(13m2)との間に設けられたゲイン媒質(13g)および可飽和吸収体(13sa)と、光導波路(13w)の端部から出力される光周波数コムの繰り返し周波数およびキャリアエンベロープオフセット周波数の一方を固定し、かつ、他方を変化させる制御部と、を備える。

Description

光周波数コム装置および計測装置
 本開示は、光周波数コム装置および計測装置に関する。
 対象物に光を照射し、対象物を透過した光または対象物によって反射された光の周波数スペクトルを得ることにより、対象物の光周波数に関する特性を調べることができる。従来、高い周波数である光の周波数スペクトルを得るために、強度が揺らいだ光源と回折格子またはプリズムなどとを用いて分光をしていた。そのため、得られる周波数スペクトルの精度が制限されていた。
 しかし、光周波数コム技術により、精密に光の周波数スペクトルを得ることが可能になりつつある。光周波数コムとは、複数の離散的な等間隔の縦モードから形成された櫛状の周波数スペクトルを意味する。本明細書では、光周波数コムを有するレーザ光を「光周波数コムレーザ光」または単に「光周波数コム」と称する。非特許文献1から3には、光周波数コムを発生させる光周波数コム装置が開示されている。
A. L. Gaeta et al., "Photonic-chip-based frequency combs", Nature Photonics, 2019, Vol. 13, pp. 158-169 J. Riemensberger et al., "Massively parallel coherent laser ranging using a soliton microcomb", Nature, 2020, Vol. 581, pp. 161-170 Z. Wang et al., "A III-V-on-Si ultra-dense comb laser", Light: Science & Applications, 2017, Vol. 6, e16260
 光周波数コムを様々な用途に適用するため、精度良く周波数を変化できることが求められている。
 本開示は、精度良く周波数を変化させることができる光周波数コム装置などを提供する。
 本開示の一態様に係る光周波数コム装置は、光導波路と、前記光導波路の第1位置に設けられた第1ミラーと、前記光導波路の、前記第1位置とは異なる第2位置に設けられた第2ミラーと、前記第1ミラーと前記第2ミラーとの間に設けられたゲイン媒質および可飽和吸収体と、前記光導波路の端部から出力される光周波数コムの繰り返し周波数およびキャリアエンベロープオフセット周波数の一方を固定し、かつ、他方を変化させる制御部と、を備える。
 また、本開示の別の一態様に係る光周波数コム装置は、光導波路と、前記光導波路の第1位置に設けられた第1ミラーと、前記光導波路の、前記第1位置とは異なる第2位置に設けられた第2ミラーと、前記第1ミラーと前記第2ミラーとの間に設けられたゲイン媒質および可飽和吸収体と、前記可飽和吸収体に高周波信号を供給する信号発生器と、を備え、前記信号発生器は、前記高周波信号の周波数を変化させることで、前記光導波路の端部から出力される光周波数コムの繰り返し周波数を変化させる。
 本開示の一態様に係る計測装置は、上記一態様に係る光周波数コム装置と、前記光周波数コムを対象物に向けて出射する出射部と、前記対象物による前記光周波数コムの反射光が入射する光検出部と、前記光検出部による検出結果に基づいて、前記対象物までの距離または前記対象物の速度を算出する演算部と、を備える。
 本開示の一態様に係る光周波数コム装置などによれば、精度良く周波数を変化させることができる。
図1Aは、光周波数コムレーザ光の電界の時間変化を模式的に示す図である。 図1Bは、光周波数コムレーザ光の周波数スペクトルを模式的に示す図である。 図2Aは、半導体基板上に集積されたゲイン媒質を含む共振器からなる光周波数コムレーザ光源を模式的に示す上面図である。 図2Bは、図2AのIIB-IIB線に示す位置での光周波数コムレーザ光源を模式的に示す断面図である。 図2Cは、図2Bに示す断面における光の伝搬経路を模式的に示す断面図である。 図3は、FMCWにおける距離測定の原理を示す図である。 図4は、キャリアエンベロープオフセット周波数を変調する前後における周波数軸上での光周波数コムを示す図である。 図5は、繰り返し周波数を変調する前後における周波数軸上での光周波数コムを示す図である。 図6は、実施の形態1に係る光周波数コム装置の一例を模式的に示す図である。 図7は、実施の形態2に係る光周波数コム装置の一例を模式的に示す図である。 図8は、実施の形態3に係る光周波数コム装置の一例を模式的に示す図である。 図9は、実施の形態の変形例に係る光周波数コム装置の一例を模式的に示す図である。 図10は、実施の形態4に係る計測装置の構成を模式的に示す図である。 図11は、実施の形態4に係る計測装置の検出部の構成を模式的に示す図である。
 (本開示の概要)
 本開示の一態様に係る光周波数コム装置は、光導波路と、前記光導波路の第1位置に設けられた第1ミラーと、前記光導波路の、前記第1位置とは異なる第2位置に設けられた第2ミラーと、前記第1ミラーと前記第2ミラーとの間に設けられたゲイン媒質および可飽和吸収体と、前記光導波路の端部から出力される光周波数コムの繰り返し周波数およびキャリアエンベロープオフセット周波数の一方を固定し、かつ、他方を変化させる制御部と、を備える。
 これにより、繰り返し周波数およびキャリアエンベロープオフセット周波数の両方が同時に変化しないので、光周波数コムの周波数を所望の周波数に精度良く変化させることができる。なお、周波数の変化の一例として、周波数変調を行うことができる。
 また、例えば、前記制御部は、前記ゲイン媒質に電流を供給する電流源と、前記可飽和吸収体に高周波信号を供給する信号発生器と、を含んでもよい。
 これにより、ゲイン媒質に供給する電流の大きさによってキャリアエンベロープオフセット周波数の固定または変化が可能になる。また、可飽和吸収体に供給する高周波信号の周波数によって繰り返し周波数の固定または変化が可能になる。
 また、例えば、前記電流源は、前記電流の大きさを変化させることで、前記キャリアエンベロープオフセット周波数を変化させ、前記信号発生器は、前記高周波信号の周波数を固定してもよい。
 これにより、キャリアエンベロープオフセット周波数を変化させることで、光周波数コムの複数のモード(すなわち、周波数成分)の変化を容易に行うことができる。また、繰り返し周波数を固定することができるので、検出器において各モードの分離を容易に行うことができる。このため、FMCW(Frequency-modulated Continuous-wave)に基づいた距離計測を容易に行うことができる。
 また、例えば、前記電流源は、前記電流の大きさを固定し、前記信号発生器は、前記高周波信号の周波数を変化させることで、前記繰り返し周波数を変化させてもよい。
 これにより、繰り返し周波数を変化させた場合であっても、FMCWに基づいた距離計測を行うことができる。
 また、例えば、本開示の一態様に係る光周波数コム装置は、さらに、前記第1ミラーと前記第2ミラーとの間に設けられた位相変調器を備え、前記制御部は、さらに、前記位相変調器に電圧を供給する電圧源を含み、前記電圧源は、前記電圧の大きさを変化させることで、前記キャリアエンベロープオフセット周波数を変化させ、前記信号発生器は、前記高周波信号の周波数を固定してもよい。
 これにより、キャリアエンベロープオフセット周波数を変化させることで、光周波数コムの複数のモード(すなわち、周波数成分)の変化を容易に行うことができる。また、繰り返し周波数を固定することができるので、検出器において各モードの分離を容易に行うことができる。このため、FMCWに基づいた距離計測を容易に行うことができる。
 また、例えば、本開示の一態様に係る光周波数コム装置は、さらに、半導体基板を備え、前記光導波路、前記第1ミラー、前記第2ミラー、前記ゲイン媒質および前記可飽和吸収体は、前記半導体基板に集積されていてもよい。
 これにより、光周波数コム装置を小型化することができる。また、CWレーザ光源と、CWレーザ光源から出射されるレーザ光を共振させて光周波数コムを発生させるマイクロ共振器とを備える場合に比べて、周波数の変化を容易に行うことができる。つまり、CWレーザ光源からのレーザ光の周波数の変化を行う場合でも、理論上は、繰り返し周波数またはキャリアエンベロープオフセット周波数が変化された光周波数コムを得ることができる。しかしながら、CWレーザ光源のレーザ光の周波数の変化を行いながら、CWレーザ光源とマイクロ共振器との共振を取り続けることは難しく、周波数の変化の精度を維持することができない。これに対して、本開示の一態様に係る光周波数コム装置のように、ゲイン媒質を含むオンチップ光周波数コム装置では、制御部によって、光周波数コムの周波数を所望の周波数に精度良く変化させることができる。
 また、例えば、前記制御部は、前記半導体基板に集積されていてもよい。
 これにより、光周波数コム装置の更なる小型化が実現できる。
 また、本開示の別の一態様に係る光周波数コム装置は、光導波路と、前記光導波路の第1位置に設けられた第1ミラーと、前記光導波路の、前記第1位置とは異なる第2位置に設けられた第2ミラーと、前記第1ミラーと前記第2ミラーとの間に設けられたゲイン媒質および可飽和吸収体と、前記可飽和吸収体に高周波信号を供給する信号発生器と、を備え、前記信号発生器は、前記高周波信号の周波数を変化させることで、前記光導波路の端部から出力される光周波数コムの繰り返し周波数を変化させる。
 これにより、高周波信号の周波数の変化に応じて、繰り返し周波数を精度良く変化させることができる。
 また、例えば、本開示の別の一態様に係る光周波数コム装置は、前記ゲイン媒質に電流を供給する電流源をさらに備え、前記電流源は、前記電流の大きさを固定してもよい。
 これにより、繰り返し周波数およびキャリアエンベロープオフセット周波数の両方が同時に変化しないので、光周波数コムの周波数を所望の周波数に精度良く変化させることができる。
 また、本開示の一態様に係る計測装置は、上記各態様に係る光周波数コム装置と、前記光周波数コムを対象物に向けて出射する出射部と、前記対象物による前記光周波数コムの反射光が入射する光検出部と、前記光検出部による検出結果に基づいて、前記対象物までの距離または前記対象物の速度を算出する演算部と、を備える。
 これにより、キャリアエンベロープオフセット周波数および繰り返し周波数の一方を固定し、他方を変化させることができるので、FMCWに基づく距離計測を容易に行うことができる。
 また、例えば、前記光検出部には、さらに、前記光周波数コムが入射し、前記演算部は、前記反射光と前記光周波数コムとが前記光検出部で干渉することで発生するビート信号に基づいて、前記距離または前記速度を算出してもよい。
 これにより、ビート信号を利用することで、距離だけでなく、速度を容易に算出することができる。
 また、例えば、前記光検出部は、入射する光を周波数毎に分離するデマルチプレクサと、分離された周波数毎の光を受光する複数の受光器と、を含んでもよい。
 これにより、波長分割多重(WDM:Wavelength Division Multiplexing)方式などによる検出を行うことができる。複数のモードを分けて検出できるので、各モードの変調範囲を広く確保することができる。
 また、例えば、前記出射部は、前記光周波数コムを周波数毎に異なる方向に出射させてもよい。
 これにより、同時に多地点の距離および/または速度を計測することができる。
 以下では、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略または簡略化する。
 また、本明細書において、平行または一致などの要素間の関係性を示す用語、および、矩形などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 また、本明細書において、「上方」および「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)および下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」および「下方」という用語は、2つの構成要素が互いに間隔を空けて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。
 また、本明細書において、「第1」、「第2」などの序数詞は、特に断りの無い限り、構成要素の数又は順序を意味するものではなく、同種の構成要素の混同を避け、区別する目的で用いられている。
 (光周波数コム)
 まず、図1Aおよび図1Bを参照して、光周波数コム(すなわち、光周波数コムレーザ光)の電界の時間変化および周波数スペクトルを説明する。
 図1Aは、光周波数コムレーザ光の電界の時間変化の例を模式的に示す図である。図1Aにおいて、横軸は時間を表し、縦軸はレーザ光の電界を表している。
 図1Aに示すように、光周波数コムレーザ光は、繰り返し周期Trepで発生する光パルス列から形成されている。繰り返し周期Trepは、例えば100ps以上100ns以下である。各光パルスの半値全幅はΔtによって表される。各光パルスの半値全幅Δtは、例えば10fs以上1ps以下である。
 光周波数コムレーザ光源は、励起光の入力または電荷注入によって光周波数コムレーザ光を発するレーザ共振器を含む。レーザ共振器の詳細については後述する。レーザ共振器では、光パルスの包絡線が伝搬する群速度vと、光パルス内の波が伝搬する位相速度vとが異なる場合がある。群速度vと位相速度vとの違いに起因して、隣接する2つの光パルスを包絡線が一致するように重ねると、これらの光パルス内の波の位相はΔφだけシフトする。Δφは2πよりも小さい。光パルス列の繰り返し周期は、レーザ共振器の周回長(round-trip length)をLとして、Trep=L/vによって表される。
 図1Bは、光周波数コムレーザ光の周波数スペクトルを模式的に示す図である。図1Bにおいて、横軸は周波数を表し、縦軸はレーザ光の強度を表している。
 図1Bに示すように、光周波数コムレーザ光は、複数の離散的な等間隔線から形成された櫛状の周波数スペクトルを有する。複数の離散的な等間隔線の周波数は、レーザ共振器における縦モードの共振周波数に相当する。光周波数コムにおける隣接する2つの等間隔線の間隔に相当する繰り返し周波数は、frep=1/Trepによって表される。繰り返し周波数frepは、例えば10MHz以上10GHz以下である。レーザ共振器の光路長Lは30cmであり、かつ、群速度vが真空中の光速(=3×10m/s)にほぼ等しい場合、繰り返し周期Trepは1nsになり、繰り返し周波数frepは1GHzになる。
 光周波数コムの半値全幅をΔfとした場合、Δf=1/Δtである。光周波数コムの半値全幅Δfは、例えば1THz以上100THz以下である。等間隔線がゼロ周波数付近まで存在すると仮定した場合における、ゼロ周波数に最も近い等間隔線の周波数は、キャリアエンベロープオフセット周波数と呼ばれる。キャリアエンベロープオフセット周波数は、fCEO=(Δφ/(2π))frepによって表される。キャリアエンベロープオフセット周波数fCEOは、繰り返し周波数frepよりも低い。キャリアエンベロープオフセット周波数fCEOを0番目のモード周波数とすると、光周波数コムにおけるn番目のモード周波数fは、f=fCEO+nfrepによって表される。図1Aに示す光周波数コムレーザ光の電界E(t)は、n番目のモード周波数fでの電界の振幅および位相をそれぞれEおよびφとして、E(t)=ΣnEexp[-i(2πft+φ)]によって表される。
 (光周波数コム装置)
 次に、図2Aおよび図2Bを参照して、半導体基板上に集積するタイプの光周波数コム装置、すなわち、オンチップ光周波数コム装置に関して簡単に説明する。光周波数コム装置は、光周波数コムレーザ光源とも称される。
 図2Aは、半導体基板上に集積されたゲイン媒質を含む共振器を有する光周波数コムレーザ光源を模式的に示す上面図である。図2Bは、図2AのIIB-IIB線に示す位置での光周波数コムレーザ光源を模式的に示す断面図である。参考のために、互いに直交するX軸、Y軸およびZ軸が模式的に示されているが、説明の便宜上であり、使用時における向きを制限するわけではない。また、図2Bでは、nドープ層13d1、pドープ層13d2および13d3、低屈折率層14bならびに保護層16には、断面を表す網掛けを付けていない。
 図2Aおよび図2Bに示すように、光周波数コムレーザ光源10は、共振器13と、半導体基板14と、保護層16とを備える。図示されている例における半導体基板14の表面は、XY平面に平行である。図2Bに示すように、半導体基板14は、例えば、Siなどの高屈折率層14aと、SiOなどの低屈折率層14bとがこの順にZ軸方向に積層された積層構造を有する。高屈折率層14aの屈折率は、低屈折率層14bの屈折率より高い。半導体基板14は、高屈折率層14aを含んでいなくてもよい。保護層16は、例えば、SiOなどの無機の絶縁性材料、または、BCB(ベンゾシクロブテン)などの有機の絶縁性材料を用いて形成されている。保護層16は、低屈折率層14bの上面を覆うように設けられている。
 共振器13は、所定の光路長を有するレーザ共振器の一例である。図2Aに示すように、共振器13は、半導体層13sと、中間層13iと、光導波路13wと、ミラー13m1および13m2と、を含む。また、図2Bに示すように、共振器13は、nドープ層13d1と、pドープ層13d2および13d3と、を含む。また、共振器13は、ゲイン媒質13gおよび可飽和吸収体13saを含む。半導体層13sの一部がそれぞれ、ゲイン媒質13gおよび可飽和吸収体13saとして機能する。
 図2Aでは、共振器13における半導体層13sの平面視形状が点線によって表されている。半導体層13sは、両端にテーパが形成されている。テーパの先端は、上面視において、中間層13iに重なっている。また、中間層13iも両端にテーパが形成されている。テーパの先端は、上面視において、光導波路13wに重なっている。これにより、半導体層13sを通過する光が、中間層13iを経由して光導波路13wに効率良く伝搬される。つまり、光周波数コムレーザ光源10では、光導波路13w、中間層13iおよび半導体層13sの各々が、光を通過させる経路として機能する。
 図2Bに示すように、共振器13における光導波路13wは、半導体基板14における低屈折率層14bに埋め込まれている。光導波路13wは、低屈折率層14b上に設けられていてもよい。光導波路13wは、例えば、SiN、およびSiからなる群から選択される少なくとも1つの高屈折率材料から形成され得る。光導波路13wの屈折率は、半導体基板14における低屈折率層14bの屈折率および保護層16の屈折率よりも高い。これにより、光は、全反射によって光導波路13w内を伝搬することができる。
 中間層13iは、光導波路13wと半導体層13sとの間に設けられている。中間層13iは、例えばa-Si(アモルファスシリコン)で形成されている。中間層13iの屈折率は、光導波路13wの屈折率より高く、半導体層13sの屈折率より低い。なお、中間層13iは、屈折率に関して、光導波路13w<中間層13i<半導体層13sを満たす限り、その他の半導体から形成されてもよい。仮に、中間層13iが設けられていない場合、半導体層13sの屈折率と光導波路13wとの屈折率差が大きいため、屈折率が大きい半導体層13sから屈折率が小さい光導波路13wに、光が伝搬されにくくなる。このため、半導体層13sと光導波路13wとの間で光の伝搬時のロスが大きくなる。中間層13iが設けられていることにより、各層間の屈折率差を小さくすることができる。このため、中間層13iが設けられていることで、図2Cに示すように、半導体層13sから光導波路13wに光を低ロスで伝搬させることができる。なお、図2Cは、図2Bに示す断面における光の伝搬経路を模式的に示す断面図である。中間層13iは、半導体層13sの屈折率と光導波路13wとの屈折率差が比較的小さい場合、省略することもできる。
 図2Cに示されるように、光導波路13wのうち、ミラー13m1に近い第1部分13w1と、ミラー13m2に近い第2部分13w2とが、光の伝搬経路として機能する。第1部分13w1は、光導波路13wのうち、ゲイン媒質13gおよび可飽和吸収体13saとミラー13m1との間の部分である。第2部分13w2は、光導波路13wのうち、ゲイン媒質13gおよび可飽和吸収体13saとミラー13m2との間の部分である。
 ミラー13m1は、光導波路13wの第1位置に設けられている。具体的には、ミラー13m1は、光導波路13wの端部に設けられている。ミラー13m1は、例えば分布ブラッグ反射器から形成され得る。分布ブラッグ反射器では、屈折率の周期構造に起因するブラッグ反射によって光が反射される。ミラー13m1は、光導波路13wを伝搬してきた光を反射する。ミラー13m1は、反射機能があれば例えば金属から形成されていてもよい。また、ミラー13m1は、ループミラーのような半導体で形成された反射素子でもよい。ミラー13m2についても同様である。ミラー13m2は、光導波路13wの第1位置とは異なる第2位置に設けられている。具体的には、ミラー13m2は、光導波路13wにおいてミラー13m1とは反対側の端部に設けられている。
 ミラー13m2は、ミラー13m1よりも反射率が低い。具体的には、ミラー13m1の反射率は実質的に100%に等しいのに対して、ミラー13m2の反射率は例えば70%以上90%以下である。ミラー13m2は、光導波路13wを伝搬してきた光の大部分を反射するものの、一部はそのまま透過させる。ミラー13m2を透過した光が、光周波数コムレーザ光5になる。
 図2Bに示すように、半導体層13sは、nドープ層13d1とpドープ層13d2および13d3とによって挟まれている。nドープ層13d1とpドープ層13d2および13d3との配置関係は逆であってもよい。
 半導体層13s、nドープ層13d1ならびにpドープ層13d2および13d3は、保護層16に埋め込まれている。なお、nドープ層13d1の下面は、半導体基板14の表面に接触していてもよい。nドープ層13d1は、中間層13iに接触していてもよい。
 半導体層13sは、例えばIII-V族の半導体材料から形成され得る。III-V族の半導体材料は、例えば、ZnSe、InGaAlP、InGaAs、GaInAsP、GaInAsSb、InP、GaN、GaAs、InGaAs、AlGaAs、AlInGaNからなる群から選択される少なくとも1つの材料を含み得る。
 半導体層13sは、ゲイン媒質13gおよび可飽和吸収体13saを含む。ゲイン媒質13gおよび可飽和吸収体13saは、ミラー13m1とミラー13m2との間に設けられている。具体的には、ゲイン媒質13gおよび可飽和吸収体13saは、ミラー13m1とミラー13m2との間における光の伝搬経路上に設けられている。
 ゲイン媒質13gは、半導体層13sの一部であって、nドープ層13d1とpドープ層13d2とに挟まれた部分である。可飽和吸収体13saは、半導体層13sの一部であって、nドープ層13d1とpドープ層13d3とに挟まれた部分である。
 nドープ層13d1は、n型の半導体層である。nドープ層13d1は、半導体層13sと同じIII-V属の半導体材料にn型不純物をドープすることで形成される。n型不純物としては、例えば、Siなどの4価の元素、または、セレン(Se)などの6価の元素などを用いることができる。
 pドープ層13d2および13d3は、p型の半導体層である。pドープ層13d2および13d3は、半導体層13sと同じIII-V属半導体材料にp型不純物をドープすることで形成される。p型不純物としては、例えば、亜鉛(Zn)などの2価の元素を用いることができる。pドープ層13d2とpドープ層13d3とは、例えば同じ組成を有する。
 pドープ層13d2とpドープ層13d3とは、互いに分離されている。pドープ層13d2および13d3の各々には、互いに異なる電極(不図示)が取り付けられる。pドープ層13d2には、電極を介して電流が注入される。pドープ層13d3には、nドープ層13d1との間で逆バイアス電圧が印加される。この電圧印加によって、半導体層13sの一部であって、pドープ層13d3に接触する部分が、可飽和吸収体13saとして機能する。なお、可飽和吸収体13saは、カーボンナノチューブを用いて形成されていてもよい。可飽和吸収体13saは、ミラー13m1および13m2と一体化されていてもよい。
 pドープ層13d2と同様に、nドープ層13d1にも、不図示の電極が取り付けられている。nドープ層13d1およびpドープ層13d2の各々に取り付けられた電極から電荷注入された半導体層13sの一部は、光が誘導放出されるゲイン媒質13gとして機能する。この誘導放出された光は、中間層13iと光導波路13wを介してミラー13m1とミラー13m2との間で繰り返し反射される。つまり、誘導放出された光は、ゲイン媒質13gを何回も通過することによって増幅される。増幅された光は、可飽和吸収体13saによってモード同期された光パルス列になる。共振器13の光路長、すなわち、共振器長に屈折率を乗じたものに対応した波長のみが増幅される。これにより、共振器13から光周波数コムレーザ光5が発せられる。なお、共振器13の光路長は、ミラー13m1とミラー13m2との間の光路長である。
 (FMCW)
 実施の形態に係る光周波数コム装置は、FMCWに利用可能である。以下では、図3を用いて、FMCWの原理を説明する。図3は、FMCWにおける距離測定の原理を示す図である。図3において、横軸は時間を表し、縦軸はレーザ光の周波数を表している。
 FMCWでは、CW光源から出射されるレーザ光を時間的に周波数変調する。図3の場合、時間幅Tの間にΔFの周波数変調を行っている。ここでの周波数変調は、リニア変調である。つまり、周波数の変化の割合は一定である。
 対象物までの距離の測定に利用する場合、周波数変調したレーザ光を2つに分岐し、片方を参照光(図3における実線)として、そして他方を測定光として対象物に照射する。対象物によって反射されて返ってきた反射光(図3における長波線)を受光器で検出する。このとき、参照光と測定光(すなわち、反射光)とでは、周波数差Δfがある。これは測定光が対象物まで行き来する時間差に由来する。したがって、周波数差Δfに対して、cT/2ΔFをかけることで、対象物までの距離を測定することができる。つまり、距離は、以下の式(1)で表される。
 (1) 距離=Δf×c×T/(2×ΔF)
 ここで、cは光速を表す。例えば、T=40μs、ΔF=4GHzとしてΔf=4MHzだったとすると、対象物までの距離は、上記式(1)により6mと計算することができる。
 (光周波数コムにおける周波数変調の2つの方法)
 本開示に係る計測装置では、このFMCWに基づく測距方式を光周波数コム装置に適用する。
 既述の通り、光周波数コムには、繰り返し周波数frepおよびキャリアエンベロープオフセット周波数fCEOという2つの周波数パラメータが存在する。したがって、どちらか片方を変調することができれば、FMCWと同様に測距することが可能である。
 まず、キャリアエンベロープオフセット周波数fCEOのみを変調する場合について、図4を用いて説明する。図4は、キャリアエンベロープオフセット周波数fCEOを変調する前後における周波数軸上での光周波数コムを示す図である。具体的には、図4の(a)が変調前の光周波数コムを表し、(b)が変調後の光周波数コムを表している。(a)および(b)の各々において横軸は光の周波数を表し、縦軸は光の強度を表している。
 変調前のキャリアエンベロープオフセット周波数の値をfCEOとした場合、ある時刻では、キャリアエンベロープオフセット周波数は、fCEO+δfCEOという値になっている。これに伴って、n番目のモード周波数fは、f=(fCEO+δfCEO)+nfrepと表すことができる。そして、1つ1つのモード(具体的には、各周波数成分の光)を、CW光源からのレーザ光とみなすことで、多数のFMCWを同時に行うことができる。
 次に、繰り返し周波数frepのみを変調する場合について、図5を用いて説明する。図5は、繰り返し周波数frepを変調する前後における周波数軸上での光周波数コムを示す図である。図5の(a)が変調前の光周波数コムを表し、(b)が変調後の光周波数コムを表している。(a)および(b)の各々において横軸は光の周波数を表し、縦軸は光の強度を表している。
 変調前の繰り返し周波数の値をfrepとした場合、ある時刻では、繰り返し周波数は、frep+δfrepという値になっている。これに伴って、n番目のモード周波数fは、f=fCEO+n(frep+δfrep)と表すことができる。この場合も図4の場合と同様に、1つ1つのモードを、CW光源からのレーザ光として見なすことで、多数のFMCWを同時に行うことができる。
 なお、周波数の変調を行う手法として、EOM(電気光学変調)、および、温度調整による共振器長の変調などがある。しかしながら、ゲイン媒質を内蔵しているオンチップ光周波数コム装置において、ゲイン媒質に印加する電流量を変調し、あるいは、温度調整で共振器長を変調したとしても、繰り返し周波数frepとキャリアエンベロープオフセット周波数fCEOとの両方が変化してしまう。このため、光周波数コム装置をFMCWとして機能させることが難しい。
 このため、本開示では、繰り返し周波数frepとキャリアエンベロープオフセット周波数fCEOとのうち、いずれか一方を変調し、かつ、他方を固定する変調部を光周波数コム装置に組み込む。以下では、本開示の実施の形態に係る光周波数コム装置の具体的な構成について説明する。
 (実施の形態1)
 まず、図6を参照して、本開示の実施の形態1に係る光周波数コム装置の構成例を説明する。図6は、本実施の形態に係る光周波数コム装置10Aを模式的に示す図である。光周波数コム装置10Aの基本的な構造は、図2Aおよび図2Bに示した光周波数コムレーザ光源10と同じである。以下では、図2Aおよび図2Bに示した光周波数コムレーザ光源10との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図6に示すように、相違点として、光周波数コム装置10Aは、変調部21Aを新たに備える。変調部21Aは、制御部の一例であり、変調電流源17mと、固定RF信号発生器18と、を備えている。
 変調電流源17mは、ゲイン媒質13gに繋がれており、ゲイン媒質13gに、大きさが変調された電流(以下、変調電流と記載する)を供給する。具体的には、変調電流源17mは、pドープ層13d2とnドープ層13d1とに接続され、pドープ層13d2からnドープ層13d1に変調電流が流れる。これにより、pドープ層13d2とnドープ層13d1とに挟まれたゲイン媒質13gに変調電流が供給される。
 固定RF信号発生器18は、可飽和吸収体13saに繋がれており、可飽和吸収体13saに、周波数が固定の高周波信号(以下、固定RF信号と記載する)を供給する。具体的には、固定RF信号発生器18は、pドープ層13d3とnドープ層13d1とに接続され、pドープ層13d3とnドープ層13d1との間に、周波数が固定の高周波電圧信号を固定RF信号として供給する。これにより、pドープ層13d3とnドープ層13d1とに挟まれた可飽和吸収体13saに固定RF信号が供給される。
 変調電流源17mは、ゲイン媒質13gに供給する電流の大きさを変調させることで、キャリアエンベロープオフセット周波数を変調させる。このとき、電流の大きさが変調されることにより、キャリアエンベロープオフセット周波数だけでなく、繰り返し周波数も変調されてしまう。
 これに対して、固定RF信号発生器18は、高周波信号の周波数を固定することで、繰り返し周波数を固定する。これは、固定RF信号によって、可飽和吸収体13saがシャッターとしての役割を持ち、共振器内のパルス間隔を制御することに由来する。
 以上により、結果としてキャリアエンベロープオフセット周波数のみを変調した光周波数コム装置10Aが実現されるので、FMCWに基づいた距離の測定を行うことができる。より具体的には、光周波数コム装置10Aは、多地点の距離の測定を同時に行うことができる。具体的な距離の測定については後で説明する。
 (実施の形態2)
 次に、図7を参照して、本開示の実施の形態2に係る光周波数コム装置の構成例を説明する。図7は、本実施の形態に係る光周波数コム装置10Bを模式的に示す図である。光周波数コム装置10Bの基本的な構造は、図2Aおよび図2Bに示した光周波数コムレーザ光源10と同じである。以下では、図2Aおよび図2Bに示した光周波数コムレーザ光源10との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図7に示すように、相違点として、光周波数コム装置10Bは、位相変調器20と、変調部21Bと、を新たに備える。
 位相変調器20は、光導波路13wに挿入されている。位相変調器20は、ミラー13m1とミラー13m2との間に設けられている。本実施の形態では、2つの位相変調器20が、第1部分13w1および第2部分13w2の各々に挿入されている。
 変調部21Bは、制御部の一例であり、固定電流源17と、固定RF信号発生器18と、変調電圧源19mと、を備えている。
 固定電流源17は、ゲイン媒質13gに繋がれており、ゲイン媒質13gに、大きさが固定の電流(以下、固定電流と記載する)を供給する。具体的には、固定電流源17は、pドープ層13d2とnドープ層13d1とに接続され、pドープ層13d2からnドープ層13d1に固定電流が流れる。これにより、pドープ層13d2とnドープ層13d1とに挟まれたゲイン媒質13gに固定電流が供給される。
 固定RF信号発生器18は、可飽和吸収体13saに繋がれており、可飽和吸収体13saにRF信号を供給する。固定RF信号発生器18の具体的な接続は、実施の形態1と同じである。変調電圧源19mは、位相変調器20に繋がれており、位相変調器20に電圧を供給する。
 固定電流源17は、ゲイン媒質13gに供給する電流の大きさを固定することで、キャリアエンベロープオフセット周波数を固定する。また、固定RF信号発生器18は、RF信号の周波数を固定することで、繰り返し周波数を固定する。したがって、このままでは周波数変調は起きない。
 これに対して、変調電圧源19mは、電圧の大きさを変調させることで、キャリアエンベロープオフセット周波数を変調させる。具体的には、位相変調器20は、供給される電圧によってその屈折率が変更される。位相変調器20が光導波路13w内に存在するため、光周波数コムの位相が変調される。これにより、光周波数コムのキャリアエンベロープオフセット周波数が変調される。このとき、キャリアエンベロープオフセット周波数だけでなく、繰り返し周波数も変調されうるが、RF信号の周波数が固定されていることによって、繰り返し周波数は固定される。
 以上により、結果としてキャリアエンベロープオフセット周波数のみを変調した光周波数コム装置10Bが実現されるので、FMCWに基づいた距離の測定を同時に行うことができる。
 なお、光周波数コム装置10Bは、位相変調器20の代わりに、ヒーターのような温度調整機構を備えてもよい。温度調整機構は、電圧に応じて光導波路13wの温度を変更することができる。光導波路13wは、その温度変化によって膨張または収縮することで、屈折率が変化する。つまり、温度調整機構は、位相変調器20と同様に、光導波路13wの屈折率を変化させることができる。したがって、温度調整機構に変調電圧源19mが接続され、大きさが変調された電圧が供給されることで、上記と同じことができる。なお、温度調整機構は、光導波路13wに熱を加えることができればよく、光導波路13w内に配置されていなくてもよい。
 本実施の形態では、ゲイン媒質13gに供給する電流が固定されるので、光周波数コムの強度が変調されにくくなる。このため、光周波数コム装置10Bを、光周波数コムに対して一定強度が必要とされる用途にも用いることができ、汎用性を高めることができる。
 (実施の形態3)
 次に、図8を参照して、本開示の実施の形態3に係る光周波数コム装置の構成例を説明する。図8は、本実施の形態に係る光周波数コム装置10Cを模式的に示す図である。光周波数コム装置10Cの基本的な構造は、図2Aおよび図2Bに示した光周波数コムレーザ光源10と同じである。以下では、図2Aおよび図2Bに示した光周波数コムレーザ光源10との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図8に示すように、相違点として、光周波数コム装置10Cは、変調部21Cを新たに備える。変調部21Cは、制御部の一例であり、固定電流源17と、変調RF信号発生器18mと、を備えている。
 固定電流源17は、ゲイン媒質13gに繋がれており、ゲイン媒質13gに固定電流を供給する。固定電流源17の具体的な接続は、実施の形態2と同じである。
 変調RF信号発生器18mは、可飽和吸収体13saに繋がれており、可飽和吸収体13saに、周波数が変調されたRF信号(以下、変調RF信号と記載する)を供給する。具体的には、変調RF信号発生器18mは、pドープ層13d3とnドープ層13d1とに接続され、pドープ層13d3とnドープ層13d1との間に、周波数が変調された高周波電圧信号を変調RF信号として供給する。これにより、pドープ層13d3とnドープ層13d1とに挟まれた可飽和吸収体13saに変調RF信号が供給される。
 固定電流源17は、ゲイン媒質13gに供給する電流の大きさを固定することで、キャリアエンベロープオフセット周波数を固定する。一方で、変調RF信号発生器18mは、RF信号の周波数を変調することで、繰り返し周波数を変調させる。
 以上により、結果として繰り返し周波数のみを変調した光周波数コム装置10Cが実現されるので、FMCWに基づいた距離の測定を行うことができる。
 なお、上述した各実施の形態において、電流の大きさ、RF信号の周波数、および、電圧の大きさの変調は、図3に示した場合と同様に、リニア変調で繰り返し行われる。キャリアエンベロープオフセット周波数を変調させる場合、n番目のモードでの周波数差は、δfCEOであり、nに依存しない値になる。このため、波長分割多重方式などによって複数のモードを分けて検出することにより、モード毎にFMCWに基づく距離測定が実行可能である。つまり、同時に多地点の距離および/または速度を計測することができる。このように、複数のモードを分けて検出する場合には、各モードの変調範囲の重なりを考慮する必要がないので、変調範囲を広く確保することができる。波長分割多重方式による検出は、例えば、入射する光を周波数毎に分離するデマルチプレクサと、分離された周波数毎の光を受光する複数の受光器と、により実現され得る。
 一方、繰り返し周波数を変調させる場合、n番目のモードでの周波数差は、n×δfrepであり、nに依存した値になる。このため、モードを分けて受光しなくても、各モードを区別することが可能である。なお、この場合は、光周波数コムに含まれる複数のモードの各々の変調範囲が、互いに重ならない範囲内で行われる。
 固定電流源17、変調電流源17m、固定RF信号発生器18、変調RF信号発生器18mおよび変調電圧源19mはそれぞれ、抵抗、インダクタ、キャパシタ、トランス、ダイオード、トランジスタなどの少なくとも1つを含む電子回路で実現される。電子回路は、集積化されたIC(Integrated Circuit)素子で実現されてもよい。
 各実施の形態では、光導波路13w、ミラー13m1および13m2、ゲイン媒質13gならびに可飽和吸収体13saが、同一の半導体基板14に集積されている。すなわち、光周波数コム装置10A、10Bおよび10Cは、いわゆるオンチップ光周波数コム装置である。これにより、光周波数コム装置10A、10Bおよび10Cの小型化が実現される。
 このとき、各実施の形態では、変調部21A、21Bおよび21Cがそれぞれ、半導体基板14とは別体で構成されているが、これに限らない。例えば、図9に示されるように、変調部21Aも半導体基板14に集積されていてもよい。図9は、実施の形態の変形例に係る光周波数コム装置10Dを模式的に示す図である。図9では、図6に示した光周波数コム装置10Aの変形例であるが、図7または図8に示した光周波数コム装置10Bまたは10Cにおいて、変調部21Bまたは21Cが半導体基板14に集積されていてもよい。
 (実施の形態4)
 続いて、光周波数コム装置を備える計測装置について、図10を用いて説明する。
 図10は、実施の形態4に係る計測装置100の構成を模式的に示す図である。図10に示す計測装置100は、対象物101までの距離、および/または、対象物101の移動速度を計測する。計測装置100は、光周波数コム装置10Aと、カプラ111および112と、サーキュレータ113と、出射部120と、検出器130と、信号処理回路140と、を備える。なお、計測装置100は、光周波数コム装置10Aの代わりに、光周波数コム装置10B、10Cまたは10Dを備えてもよい。
 カプラ111および112ならびにサーキュレータ113は、光周波数コム装置10Aから出射される光周波数コムレーザ光5を導光する光ファイバーに接続されている。光ファイバーは、光周波数コム装置10Aの出力部15から出射部120まで、サーキュレータ113から検出器130まで、および、カプラ111からカプラ112まで、をそれぞれ繋ぐように構成されている。
 なお、出力部15は、図6に示すように、光導波路13wの端部に設けられている。具体的には、出力部15は、ミラー13m2の外側に位置しており、ミラー13m2を通過した光周波数コムレーザ光5を外部に出力する。出力部15は、例えば、光ファイバーに対する結合部を含んでいる。具体的には、出力部15は、グレーティングカプラであるが、これに限定されない。出力部15は、エッジカプリングによる出力でもよい。
 カプラ111は、光周波数コムレーザ光5を測定光5aと参照光5bとに分岐させる。なお、カプラ111は、光を所定の強度比で分岐させる素子であり、光の周波数および波長などは分岐後も変化しない。つまり、測定光5aと参照光5bとはいずれも、同じキャリアエンベロープオフセット周波数および繰り返し周波数を有する光周波数コムである。測定光5aと参照光5bとの強度比は、例えば、9:1であるが、1:1であってもよい。測定光5aは、サーキュレータ113を通って出射部120から対象物101に向けて出射される。参照光5bは、カプラ112を通って検出器130に入射する。
 出射部120は、測定光5aを対象物101に向けて出射する光学素子である。出射部120は、例えばプリズムまたは回折格子である。出射部120は、測定光5aを周波数毎に異なる方向に出射させる。図10では、出射部120から対象物101に向けて延びる複数の実線の矢印が、測定光5aに含まれる各周波数成分の光を表している。各光は、対象物101の異なる部位によって反射される。この反射によって発生する反射光5cは、出射部120に戻り、サーキュレータ113によってカプラ112に向けて導光される。なお、サーキュレータ113は、光の進行方向を制限するための光学素子であり、出射部120から導光された反射光5cがカプラ111に戻るのを抑制する。
 カプラ112は、参照光5bと反射光5cとを結合し、検出器130に入射させる。結合比は、例えば1:1であるが、これに限定されない。
 検出器130は、光検出部の一例であり、参照光5bと反射光5cとが入射し、入射した光の強度に応じた電気信号を生成して出力する。検出器130では、参照光5bと反射光5cとが干渉することでビート信号が発生する。検出器130は、ビート信号の時間波形を表す電気信号を出力する。なお、検出器130は、例えば、フォトダイオードなどの光電変換素子である。
 信号処理回路140は、演算部の一例であり、検出器130による検出結果に基づいて、対象物101までの距離、および/または、対象物101の速度を算出する。具体的には、信号処理回路140は、ビート信号に基づいて距離および/または速度を算出する。信号処理回路140による距離の算出方法は、図3を用いて説明した通りである。また、距離についても、一般的なFMCWの手法に基づいて算出することができる。
 本実施の形態では、参照光5bおよび反射光5cのいずれも、光周波数コムであるので、周波数毎に演算することで、対応する周波数の光が照射された部位までの距離、および/または、当該部位の移動速度を算出することができる。これにより、対象物101の複数の部位までの距離および/または速度を同時に計測することができる。つまり、計測装置100は、FMCWに基づく多点同時測定が可能になる。
 なお、検出器130は、図11に示すように、入射する光を周波数毎に分離するデマルチプレクサ131と、分離された周波数毎の光を受光する複数の受光器132と、を含んでもよい。複数の受光器132は、分離される複数の周波数に一対一で対応付けられている。このように、周波数毎に信号を分離して受光することで、各周波数成分の光を精度良く受光することができ、距離計測および速度計測の精度を高めることができる。
 (他の実施の形態)
 以上、1つまたは複数の態様に係る光周波数コム装置および計測装置について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、および、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
 例えば、変調部は、変調電流源または固定電流源を備えなくてもよい。つまり、ゲイン媒質に対して、電気的な励起ではなく、光学的な励起によって誘導放出を行わせてもよい。例えば、変調部は、変調電流源または固定電流源の代わりに、レーザ光源を備えてもよい。レーザ光源は、ゲイン媒質に対する励起光として、レーザ光をゲイン媒質に照射する。レーザ光源は、レーザ光の強度を変調させることで、キャリアエンベロープオフセット周波数fCEOを変調させることができる。また、レーザ光源は、レーザ光源の強度を固定することにより、キャリアエンベロープオフセット周波数fCEOを固定することができる。
 また、例えば、変調部は、繰り返し周波数frepおよびキャリアエンベロープオフセット周波数fCEOのうち、固定する周波数と変調する周波数とを切り替えてもよい。つまり、固定する周波数および変調する周波数は常に同じでなくてもよく、変調部は、状況に応じて、固定する周波数および変調する周波数を切り替えてもよい。
 具体的には、変調部は、繰り返し周波数frepを固定し、かつ、キャリアエンベロープオフセット周波数fCEOを変調する第1モードと、繰り返し周波数frepを変調し、かつ、キャリアエンベロープオフセット周波数fCEOを固定する第2モードと、を含む2つの動作モードを含んでもよい。変調部は、第1モードから第2モードへの切り替え、および、第2モードから第1モードへの切り替えを行ってもよい。
 また、例えば、制御部が行う周波数の変化は、周波数の変調でなくてもよい。例えば、制御部は、繰り返し周波数およびキャリアエンベロープオフセット周波数のいずれか一方を、2つの所定値の間で変化させてもよい。
 また、上記の各実施の形態は、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、精度良く周波数を変化させることができる光周波数コム装置などとして利用でき、例えば、対象物の検出、分析および測距装置などに利用することができる。
5 光周波数コムレーザ光
5a 測定光
5b 参照光
5c 反射光
10 光周波数コムレーザ光源
10A、10B、10C、10D 光周波数コム装置
13 共振器
13d1 nドープ層
13d2、13d3 pドープ層
13i 中間層
13g ゲイン媒質
13m1、13m2 ミラー
13s 半導体層
13sa 可飽和吸収体
13w 光導波路
13w1 第1部分
13w2 第2部分
14 半導体基板
14a 高屈折率層
14b 低屈折率層
15 出力部
16 保護層
17 固定電流源
17m 変調電流源
18 固定RF信号発生器
18m 変調RF信号発生器
19m 変調電圧源
20 位相変調器
21A、21B、21C 変調部
100 計測装置
101 対象物
111、112 カプラ
113 サーキュレータ
120 出射部
130 検出器
131 デマルチプレクサ
132 受光器
140 信号処理回路

Claims (13)

  1.  光導波路と、
     前記光導波路の第1位置に設けられた第1ミラーと、
     前記光導波路の、前記第1位置とは異なる第2位置に設けられた第2ミラーと、
     前記第1ミラーと前記第2ミラーとの間に設けられたゲイン媒質および可飽和吸収体と、
     前記光導波路の端部から出力される光周波数コムの繰り返し周波数およびキャリアエンベロープオフセット周波数の一方を固定し、かつ、他方を変化させる制御部と、を備える、
     光周波数コム装置。
  2.  前記制御部は、
     前記ゲイン媒質に電流を供給する電流源と、
     前記可飽和吸収体に高周波信号を供給する信号発生器と、を含む、
     請求項1に記載の光周波数コム装置。
  3.  前記電流源は、前記電流の大きさを変化させることで、前記キャリアエンベロープオフセット周波数を変化させ、
     前記信号発生器は、前記高周波信号の周波数を固定する、
     請求項2に記載の光周波数コム装置。
  4.  前記電流源は、前記電流の大きさを固定し、
     前記信号発生器は、前記高周波信号の周波数を変化させることで、前記繰り返し周波数を変化させる、
     請求項2に記載の光周波数コム装置。
  5.  さらに、前記第1ミラーと前記第2ミラーとの間に設けられた位相変調器を備え、
     前記制御部は、さらに、前記位相変調器に電圧を供給する電圧源を含み、
     前記電圧源は、前記電圧の大きさを変化させることで、前記キャリアエンベロープオフセット周波数を変化させ、
     前記信号発生器は、前記高周波信号の周波数を固定する、
     請求項2に記載の光周波数コム装置。
  6.  さらに、半導体基板を備え、
     前記光導波路、前記第1ミラー、前記第2ミラー、前記ゲイン媒質および前記可飽和吸収体は、前記半導体基板に集積されている、
     請求項1から5のいずれか1項に記載の光周波数コム装置。
  7.  前記制御部は、前記半導体基板に集積されている、
     請求項6に記載の光周波数コム装置。
  8.  光導波路と、
     前記光導波路の第1位置に設けられた第1ミラーと、
     前記光導波路の、前記第1位置とは異なる第2位置に設けられた第2ミラーと、
     前記第1ミラーと前記第2ミラーとの間に設けられたゲイン媒質および可飽和吸収体と、
     前記可飽和吸収体に高周波信号を供給する信号発生器と、を備え、
     前記信号発生器は、前記高周波信号の周波数を変化させることで、前記光導波路の端部から出力される光周波数コムの繰り返し周波数を変化させる、
     光周波数コム装置。
  9.  前記ゲイン媒質に電流を供給する電流源をさらに備え、
     前記電流源は、前記電流の大きさを固定する、
     請求項8に記載の光周波数コム装置。
  10.  請求項1から9のいずれか1項に記載の光周波数コム装置と、
     前記光周波数コムを対象物に向けて出射する出射部と、
     前記対象物による前記光周波数コムの反射光が入射する光検出部と、
     前記光検出部による検出結果に基づいて、前記対象物までの距離または前記対象物の速度を算出する演算部と、を備える、
     計測装置。
  11.  前記光検出部には、さらに、前記光周波数コムが入射し、
     前記演算部は、前記反射光と前記光周波数コムとが前記光検出部で干渉することで発生するビート信号に基づいて、前記距離または前記速度を算出する、
     請求項10に記載の計測装置。
  12.  前記光検出部は、
     入射する光を周波数毎に分離するデマルチプレクサと、
     分離された周波数毎の光を受光する複数の受光器と、を含む、
     請求項10または11に記載の計測装置。
  13.  前記出射部は、前記光周波数コムを周波数毎に異なる方向に出射させる、
     請求項10から12のいずれか1項に記載の計測装置。
PCT/JP2021/041937 2020-12-04 2021-11-15 光周波数コム装置および計測装置 WO2022118647A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21900402.5A EP4258495A1 (en) 2020-12-04 2021-11-15 Optical frequency comb device and measurement device
JP2022566825A JPWO2022118647A1 (ja) 2020-12-04 2021-11-15
CN202180043013.5A CN115769447A (zh) 2020-12-04 2021-11-15 光频梳装置及计测装置
US18/084,936 US20230121678A1 (en) 2020-12-04 2022-12-20 Optical frequency comb device and measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020202218 2020-12-04
JP2020-202218 2020-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/084,936 Continuation US20230121678A1 (en) 2020-12-04 2022-12-20 Optical frequency comb device and measurement device

Publications (1)

Publication Number Publication Date
WO2022118647A1 true WO2022118647A1 (ja) 2022-06-09

Family

ID=81853163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041937 WO2022118647A1 (ja) 2020-12-04 2021-11-15 光周波数コム装置および計測装置

Country Status (5)

Country Link
US (1) US20230121678A1 (ja)
EP (1) EP4258495A1 (ja)
JP (1) JPWO2022118647A1 (ja)
CN (1) CN115769447A (ja)
WO (1) WO2022118647A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4354218A1 (en) * 2022-10-12 2024-04-17 Honeywell International Inc. System and method for generating optical frequency combs using an optical waveguide including chirped bragg gratings

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116773677B (zh) * 2023-08-25 2023-11-07 西南交通大学 基于群速度的宽频梳状阵列激励方法、装置、设备及介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168845A (ja) * 1999-12-10 2001-06-22 Oki Electric Ind Co Ltd 光多重分離装置
JP2003069138A (ja) * 2001-08-30 2003-03-07 Oki Electric Ind Co Ltd モード同期半導体レーザ
JP2006351571A (ja) * 2005-06-13 2006-12-28 Oki Electric Ind Co Ltd モード同期半導体レーザ及びその製造方法
US20070071060A1 (en) * 2005-07-27 2007-03-29 Menlo Systems Gmbh Interferometer, in particular for determining and stabilizing the relative phase of short pulses
JP2008034657A (ja) * 2006-07-28 2008-02-14 Oki Electric Ind Co Ltd キャリア抑圧光パルス列発生方法及びこの方法を実現するモード同期半導体レーザ
US20140185635A1 (en) * 2011-09-14 2014-07-03 Jonathan A. COX Methods and apparatus for broadband frequency comb stabilization
JP2017527121A (ja) * 2014-09-08 2017-09-14 オクラロ テクノロジー リミテッド モノリシック集積された波長可変半導体レーザー
US20190058304A1 (en) * 2017-08-18 2019-02-21 Nokia Solutions And Networks Oy Mode-locked semiconductor laser capable of changing output-comb frequency spacing
EP3609028A1 (en) * 2018-08-10 2020-02-12 Technische Universität Wien Laser assembly, spectrometer and method for operating a laser

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168845A (ja) * 1999-12-10 2001-06-22 Oki Electric Ind Co Ltd 光多重分離装置
JP2003069138A (ja) * 2001-08-30 2003-03-07 Oki Electric Ind Co Ltd モード同期半導体レーザ
JP2006351571A (ja) * 2005-06-13 2006-12-28 Oki Electric Ind Co Ltd モード同期半導体レーザ及びその製造方法
US20070071060A1 (en) * 2005-07-27 2007-03-29 Menlo Systems Gmbh Interferometer, in particular for determining and stabilizing the relative phase of short pulses
JP2008034657A (ja) * 2006-07-28 2008-02-14 Oki Electric Ind Co Ltd キャリア抑圧光パルス列発生方法及びこの方法を実現するモード同期半導体レーザ
US20140185635A1 (en) * 2011-09-14 2014-07-03 Jonathan A. COX Methods and apparatus for broadband frequency comb stabilization
JP2017527121A (ja) * 2014-09-08 2017-09-14 オクラロ テクノロジー リミテッド モノリシック集積された波長可変半導体レーザー
US20190058304A1 (en) * 2017-08-18 2019-02-21 Nokia Solutions And Networks Oy Mode-locked semiconductor laser capable of changing output-comb frequency spacing
EP3609028A1 (en) * 2018-08-10 2020-02-12 Technische Universität Wien Laser assembly, spectrometer and method for operating a laser

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. L. GAETA ET AL.: "Photonic-chip-based frequency combs", NATURE PHOTONICS, vol. 13, 2019, pages 158 - 169, XP036707022, DOI: 10.1038/s41566-019-0358-x
J. RIEMENSBERGER ET AL.: "Massively parallel coherent laser ranging using a soliton microcomb", NATURE, vol. 581, 2020, pages 161 - 170
Z. WANG ET AL.: "A III-V-on-Si ultra-dense comb laser", LIGHT: SCIENCE & APPLICATIONS, vol. 6, 2017, pages e16260, XP055735614, DOI: 10.1038/lsa.2016.260

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4354218A1 (en) * 2022-10-12 2024-04-17 Honeywell International Inc. System and method for generating optical frequency combs using an optical waveguide including chirped bragg gratings

Also Published As

Publication number Publication date
CN115769447A (zh) 2023-03-07
JPWO2022118647A1 (ja) 2022-06-09
EP4258495A1 (en) 2023-10-11
US20230121678A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
JP7248370B2 (ja) 小型微小共振器周波数コム
WO2022118647A1 (ja) 光周波数コム装置および計測装置
Stanze et al. Compact cw terahertz spectrometer pumped at 1.5 μm wavelength
US9236711B2 (en) Method of manufacturing frequency tunable terahertz transceiver
US8405031B2 (en) Terahertz wave generator
AU2007302314B2 (en) Method and device for generating a synthetic wavelength
US20110274127A1 (en) Pulse laser, optical frequency stabilized laser, measurement method, and measurement apparatus
WO2021261240A1 (ja) デュアル光周波数コム発生装置および計測装置
US9400214B1 (en) Terahertz frequency domain spectrometer with a single photoconductive element for terahertz signal generation and detection
JP6238058B2 (ja) テラヘルツ分光システム
JP2005017644A (ja) 高周波電気信号制御装置及びセンシングシステム
US20220260486A1 (en) Chirped laser dispersion spectrometer and method
JP5736247B2 (ja) 距離計測方法および装置
Poulton Integrated LIDAR with optical phased arrays in silicon photonics
JP6485624B2 (ja) 計測装置
JP7019950B2 (ja) レーザレーダ装置
JP5000277B2 (ja) テラヘルツ電磁波発生装置およびテラヘルツ電磁波検出装置
US11204513B2 (en) Integrated frequency referencing system
JP5168684B2 (ja) 時間分解分光システム,時間分解分光方法及びテラヘルツ波発生システム
Surkamp et al. Continuous wave THz system based on dual wavelength monolithic Y-branch laser diode
US9677996B2 (en) Optical sensor arrangement including different scan times through a frequency interval for first and second light sources
EP2735862B1 (en) Optical sensor arrangement and method for measuring an observable
Butler Wavelength Swept Photonic Crystal Laser
JP2017142152A (ja) 計測装置
JP2014202660A (ja) 時間領域分光装置、時間領域分光法およびイメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566825

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021900402

Country of ref document: EP

Effective date: 20230704