WO2022117093A1 - Dcdc power converter - Google Patents

Dcdc power converter Download PDF

Info

Publication number
WO2022117093A1
WO2022117093A1 PCT/CN2021/135513 CN2021135513W WO2022117093A1 WO 2022117093 A1 WO2022117093 A1 WO 2022117093A1 CN 2021135513 W CN2021135513 W CN 2021135513W WO 2022117093 A1 WO2022117093 A1 WO 2022117093A1
Authority
WO
WIPO (PCT)
Prior art keywords
busbar
power converter
circuit board
printed circuit
housing
Prior art date
Application number
PCT/CN2021/135513
Other languages
French (fr)
Inventor
Cuiping LIANG
Yufeng BAI
Tianyuan DONG
Jianping Li
Original Assignee
Shanghai Valeo Automotive Electrical Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Valeo Automotive Electrical Systems Co., Ltd. filed Critical Shanghai Valeo Automotive Electrical Systems Co., Ltd.
Publication of WO2022117093A1 publication Critical patent/WO2022117093A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14329Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars

Definitions

  • the printed circuit board is installed in the housing and, since few electronic components are provided on the back of the printed circuit board, the busbar may be fixed on the back of the printed circuit board in a relatively large area, which increases the strength of fixation of the busbar and allows the busbar to be cooled through the housing, thereby improving the heat dissipation of the busbar.
  • the present invention improves the strength of fixation of the busbar, enhances the heat dissipation of the printed circuit board and of the busbar, and eliminates the need for an injection molding positioning, and plug-in structure outside the busbar, thereby reducing the busbar production cost.
  • FIG. 1 is a structural diagram of a DCDC power converter provided by a specific embodiment of the present invention.

Abstract

The present invention relates to the techsnical field of DCDC power converters, and discloses a DCDC power converter. The DCDC power converter comprises a housing assembly and a printed circuit board, the housing assembly comprising an upper cover plate and a housing, the upper cover plate being detachably mounted on the housing; the printed circuit board is installed in the housing assembly; the busbar is fixed on the back of the printed circuit board, and the side of the busbar away from the printed circuit board is the housing. The present invention improves the strength of fixation of the busbar, enhances the heat dissipation of the printed circuit board and of the busbar, and eliminates the need for an injection molding and positioning and plug-in structure outside the busbar, thereby reducing the busbar production cost.

Description

DCDC POWER CONVERTER TECHNICAL FIELD
The present invention relates to the technical field of DCDC power converters, in particular to a DCDC power converter.
BACKGROUND
A busbar is a component having a multi-layer laminated structure for electrically connecting power modules, which can connect electric power distribution locations of a plurality of circuits, the busbar may be used to greatly reduce the number of cable connections, thereby solving the difficult problem of high-density layout of electronic systems, and, having excellent characteristics such as anti-interference, a good high-frequency filtering effect, high reliability, saving of space, and simple and quick assembly, and the busbar has been widely used in DCDC power converters.
In the prior art, a busbar is installed vertically and in an in-line manner, which means that a stamped copper bar is injection-molded into a whole, and two positioning pins or positioning holes are provided on the injection-molded member, thereby allowing convenient assembly on a printed circuit board; in addition, the terminal part of the busbar is soldered on the upper surface of the printed circuit board by a selective wave soldering process, wherein the production process of the busbar is complicated and the production cost is high. Secondly, since the position of installation on the printed circuit board is limited and the busbar is fixed in a small position, the strength of installation of the busbar is low; furthermore, since the busbar is installed on the front side of the printed circuit board, the busbar may not be effectively cooled through the housing and reach an excessively high temperature during operation, consequently damaging the circuit.
In view of this background, there is an urgent need for a DCDC power converter to solve the above-mentioned problems.
SUMMARY OF THE INVENTION
Based on what has been mentioned above, an objective of the present invention is to provide a DCDC power converter, wherein the present invention improves the strength of fixation of the  busbar, allows the busbar to be cooled through the housing, thereby enhancing the heat dissipation of the printed circuit board and of the busbar, and eliminates the need for an injection molding positioning and plug-in structure outside the busbar, thereby reducing the busbar production cost.
In order to achieve the above-mentioned objective, the present invention adopts the following technical solutions:
a DCDC power converter comprising:
a housing assembly that comprises an upper cover plate and a housing, the upper cover plate being detachably mounted on the housing;
a printed circuit board installed in the housing assembly; and
a busbar fixed on the back of the printed circuit board to reduce the height of the busbar, the side of the busbar away from the printed circuit board being the housing.
As a preferred technical solution of a DCDC power converter, the busbar is flat, and the busbar is tiled on the back of the printed circuit board; or
the busbar is arched, both ends of the busbar being fixed on the back of the printed circuit board.
As a preferred technical solution of a DCDC power converter, the busbar is provided with a through hole in the center along the length direction; or
the busbar is provided with a cavity with an opening at one end in the center along the length direction.
As a preferred technical solution of a DCDC power converter, a heat dissipation medium is arranged between the housing and the busbar.
As a preferred technical solution of a DCDC power converter, the housing is recessed with a communicating groove, a position of the communicating groove matching a position of the busbar, the communicating groove being attached to the heat dissipation medium.
As a preferred technical solution of a DCDC power converter, the housing assembly further comprises a lower cover plate, a first water pipe, and a second water pipe, wherein the first water pipe and the second water pipe are respectively arranged in communication with the communicating groove, and the lower cover plate is airtightly installed on the opening of the communicating groove, the lower cover plate being used to seal the communicating groove; a water passage is formed between the lower cover plate and the communicating groove, wherein,  one of the first water pipe and the second water pipe is used for water intake to the water passage and the other is used for water discharge from the water passage.
As a preferred technical solution of a DCDC power converter, the lower cover plate is fixedly soldered on the opening of the communicating groove; or
the lower cover plate is detachably mounted on the opening of the communicating groove, and a sealing ring is arranged between the lower cover plate and the housing.
As a preferred technical solution of a DCDC power converter, the actual current/cross-sectional area is ≤ 10 A/mm 2, the cross-sectional area being the radial cross-sectional area of the busbar along the length direction.
As a preferred technical solution of a DCDC power converter, the outer surface of the busbar is provided with a soldered coating, and the busbar is soldered to the back of the printed circuit board by double-sided reflow soldering through the soldered coating.
As a preferred technical solution of a DCDC power converter, the heat dissipation medium is thermal grease or a thermally conductive insulating gasket.
The beneficial effects of the present invention are as follows:
The printed circuit board is installed in the housing and, since few electronic components are provided on the back of the printed circuit board, the busbar may be fixed on the back of the printed circuit board in a relatively large area, which increases the strength of fixation of the busbar and allows the busbar to be cooled through the housing, thereby improving the heat dissipation of the busbar. The present invention improves the strength of fixation of the busbar, enhances the heat dissipation of the printed circuit board and of the busbar, and eliminates the need for an injection molding positioning, and plug-in structure outside the busbar, thereby reducing the busbar production cost.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to describe more clearly technical solutions provided by embodiments of the present invention, the drawings used to illustrate embodiments of the present invention will be briefly described below, wherein, obviously, the drawings described below show only some embodiments of the present invention, and those of ordinary skill in the art, without creative work, can further obtain other drawings on the basis of the content of embodiments of the present invention and these drawings.
FIG. 1 is a structural diagram of a DCDC power converter provided by a specific embodiment of the present invention; and
FIG. 2 is an exploded view of the structure of a DCDC power converter provided by a specific embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in greater detail below in conjunction with the drawings and embodiments. It is understandable that the embodiments described herein are intended to explain the present invention, instead of limiting the scope of the present invention. In addition, it should be noted that, for ease of description, the drawings show only some, but not all, of the structures related to the present invention.
In the description of the present invention, unless otherwise specified or limited, terms "link" , "connection" , and "fixation" should be understood in a broad sense, wherein, for example, these terms can refer to fixed connection, detachable connection, or integrated connection; mechanical connection or electrical connection; direct connection or connection through an intermediate medium, connection inside two components or interaction between two components. Those of ordinary skill in the art can understand the specific meanings of the aforesaid terms in the present invention on the basis of actual circumstances.
In the present invention, unless otherwise expressly specified and defined, a first feature being "on the upper side" or "on the lower side" of a second feature may include the first feature being in direct contact with the second feature, or may include the first feature and the second feature being in contact with each other, not directly, but through another feature between them. In addition, a first feature being "on top of" , "over" , and "above" a second feature includes the first feature being directly above and obliquely above the second feature, or only indicates that the first feature has a horizontal height larger than that of the second feature. A first feature being "under" , "beneath" , and "below" a second feature includes the first feature being directly below and obliquely below the second feature, or only indicates that the first feature has a horizontal height smaller than that of the second feature.
In the description of the present invention, orientations or positional relationships indicated by terms such as "upper" , "lower" , "left" , and "right" are based on the orientations or positional relationships shown in the drawings, are only intended for convenience of description and  simplification of operations, instead of indicating or implying that the device or element referred to must have a specific orientation or be constructed and operated in a specific orientation, and therefore should not be understood as a limitation of the protection scope of the present invention. In addition, the terms "first" and "second" are only used for differentiation in description and have no special meanings.
In the prior art, the busbar production cost is high, and since a busbar is installed vertically and in an in-line manner on the front side of the printed circuit board, the strength of fixation of the busbar is low, and the busbar may not be effectively cooled through the housing, reaching an excessively high temperature during operation, which damages the circuit.
In order to solve the above-described problem, as shown in Fig. 1 and Fig. 2, this embodiment provides a DCDC power converter that comprises a housing assembly 1, a printed circuit board 2, and a busbar 21.
Specifically, the housing assembly 1 comprises an upper cover plate 11 and a housing 12, the upper cover plate 11 being detachably mounted on the housing 12; the printed circuit board 2 is installed in the housing assembly 1; the busbar 21 is fixed on the back of the printed circuit board 2, the side of the busbar 21 away from the printed circuit board 2 is the housing 12, and a heat dissipation medium is arranged between the housing 12 and the busbar 21. Since few electronic components are provided on the back of the printed circuit board 2, the busbar 21 can occupy a relatively large area and have both ends soldered on the back of the printed circuit board 2, which increases the strength of fixation of the busbar 21; in addition, a heat dissipation medium is provided between the housing 12 and the busbar 21. Heat generated during the operation of the busbar 21 may be transferred to the outside of the DCDC power converter through the heat dissipation medium and the housing 12, which improves the heat dissipation of the printed circuit board 2 and of the busbar 21; furthermore, no injection positioning and plug-in structure is needed outside the busbar 21, which reduces the production cost of the busbar 21. In this embodiment, the heat dissipation medium is preferably thermal grease or a thermally conductive insulating gasket.
Preferably, in this embodiment, the busbar 21 is flat, the busbar 21 being tiled on the back of the printed circuit board 2; or the busbar 21 is arched, both ends of the busbar 21 being fixed on the back of the printed circuit board 2. Moreover, the busbar 21 is provided with a through hole in the center along the length direction; or the busbar 21 is provided with a cavity with an  opening at one end in the center along the length direction, both of which can meet the requirements for use.
Preferably, since some parts on the back of the printed circuit board 2 are higher than the busbar 21, in order to allow room for higher parts and reduce the distance between the housing 12 and the busbar 21, the housing 12 is recessed with a communicating groove 121, a position of the communicating groove 121 matching a position of the busbar 21, the bottom wall of the communicating groove 121 being coated with a heat dissipation medium, to facilitate the transfer of heat generated by the busbar 11 to a water passage, while reducing the distance between the housing 12 and the busbar 21.
Further preferably, the housing assembly 1 further comprises a lower cover plate 13, a first water pipe 122, and a second water pipe 123, wherein the first water pipe 122 and the second water pipe 123 are respectively arranged in communication with the communicating groove 121, and the lower cover plate 13 is airtightly installed on the opening of the communicating groove 121, the lower cover plate 13 being used to seal the communicating groove 121; a water passage is formed between the lower cover plate 13 and the communicating groove 121, and of the first water pipe 122 and the second water pipe 123, one is used for water intake to the water passage and the other is used for water discharge from the water passage. The DCDC power converter is externally provided with a water pump, wherein water pumped by the water pump enters the communicating groove 121 through the first water pipe 122 and is discharged through the second water pipe 123, and a cooling water path is formed in the communicating groove 121 to improve the heat dissipation of the printed circuit board 2 and of the busbar 21. In this embodiment, preferably, the lower cover plate 13 is fixedly bonded or soldered to the opening of the communicating groove 121 to achieve sealed assembly between the lower cover plate 13 and the communicating groove 121. In another embodiment, the lower cover plate 13 may also be mounted on the opening of the communicating groove 121 by means of a detachable connection, for example, snap connection or fixation with screws, and a sealing ring is provided between the lower cover plate 13 and the communicating groove 121 to achieve a seal between the lower cover plate 13 and the communicating groove 121.
Further, in this embodiment, the length direction of the busbar 21 is the axial direction, and the effective radial cross-sectional area of the busbar 21 along the length direction needs to meet the requirement that the overcurrent per unit area (mm 2) should not exceed 10 A. The maximum  current bearable by the busbar 21 in the DCDC power converter in this embodiment is 210 A, and according to the formula: actual current/cross-sectional area ≤ 10 A/mm 2. In this embodiment, the effective cross-sectional area of the busbar 21 is not smaller than 21 mm 2. Further preferably, it is considered that if the busbar 21 is too high, stamping is difficult, if the busbar 21 is too wide, the water passage does not have a sufficient area for heat dissipation, and if the busbar 21 is too long, processing is difficult and the product has low dimensional stability, likely to fall off when vibrated. Therefore, in this embodiment, the length, width, and height of the busbar 21 are 25 mm, 7 mm, and 3 mm, respectively.
Preferably, in this embodiment, the outer surface of the busbar 21 is provided with a soldered coating, and the busbar 21 is soldered to the back of the printed circuit board 2 by double-sided reflow soldering through the soldered coating, which, compared with an assembly method provided in the prior art, improves the efficiency of assembly of the busbar 21. In this embodiment, the soldered coating is one or any combination of at least two of tin, zinc, silver, and nickel.
Note that what has been described above is only preferred embodiments of the present invention and technical principles applied thereto. Those of ordinary skill in the art will understand that the present invention is not limited to the specific embodiments described herein, and that those of ordinary skill in the art may make various obvious alterations, readjustments, and substitutions without departing from the protection scope of the present invention. Therefore, while the present invention has been explained particularly with the above-described embodiments, the present invention, instead of being limited to the above-described embodiments, may also include more other equivalent embodiments without departing from the concept of the present invention, and the scope of the present invention is determined by the scope of the appended claims.

Claims (10)

  1. A DCDC power converter, wherein it comprises:
    a housing assembly (1) comprising an upper cover (11) and a housing (12) , the upper cover (11) being detachably mounted on the housing (12) ;
    a printed circuit board (2) installed in the housing assembly (1) ; and
    a busbar (21) , the busbar (21) being fixed on the back of the printed circuit board (2) , wherein the side of the busbar (21) away from the printed circuit board (2) is the housing (12) .
  2. The DCDC power converter as claimed in claim 1, wherein the busbar (21) is flat, the busbar (21) being tiled on the back of the printed circuit board (2) ; or wherein
    the busbar (21) is arched, both ends of the busbar (21) being fixed on the back of the printed circuit board (2) .
  3. The DCDC power converter as claimed in claim 1, wherein the busbar (21) is provided with a through hole in the center along the length direction; or wherein
    the busbar (21) is provided with a cavity with an opening at one end in the center along the length direction.
  4. The DCDC power converter as claimed in claim 1, wherein a heat dissipation medium is provided between the housing (12) and the busbar (21) .
  5. The DCDC power converter as claimed in claim 4, wherein the housing (12) is recessed with a communicating groove (121) , a position of the communicating groove (121) matching a position of the busbar (21) , the communicating groove (121) being attached to the heat dissipation medium.
  6. The DCDC power converter as claimed in claim 5, wherein the housing assembly (1) further comprises a lower cover plate (13) , a first water pipe (122) , and a second water pipe (123) , wherein the first water pipe (122) and the second water pipe (123) are respectively arranged in communication with the communicating groove (121) , and the lower cover plate (13) is airtightly installed on the opening of the communicating groove (121) , the lower cover plate (13) being used to seal the communicating groove (121) ; and wherein a water passage is formed between the lower cover plate (13) and the communicating groove (121) , wherein, one of the first water pipe (122) and the second water pipe (123) is used for water intake to the water passage and the other is used for water discharge from the water passage.
  7. The DCDC power converter as claimed in claim 6, wherein the lower cover plate (13) is fixedly soldered on the opening of the communicating groove (121) ; or
    wherein the lower cover plate (13) is detachably mounted on the opening of the communicating groove (121) , and a sealing ring is arranged between the lower cover plate (13) and the housing (12) .
  8. The DCDC power converter as claimed in claim 1, wherein the actual current/cross-sectional area is ≤ 10 A/mm 2, the cross-sectional area being the radial cross-sectional area of the busbar (21) along the length direction.
  9. The DCDC power converter as claimed in claim 1, wherein the outer surface of the busbar (21) is provided with a soldered coating, and wherein the busbar (21) is soldered to the back of the printed circuit board (2) by double-sided reflow soldering through the soldered coating.
  10. The DCDC power converter as claimed in claim 4, wherein the heat dissipation medium is thermal grease or a thermally conductive insulating gasket.
PCT/CN2021/135513 2020-12-04 2021-12-03 Dcdc power converter WO2022117093A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022890018.7 2020-12-04
CN202022890018.7U CN213637490U (en) 2020-12-04 2020-12-04 DCDC power converter

Publications (1)

Publication Number Publication Date
WO2022117093A1 true WO2022117093A1 (en) 2022-06-09

Family

ID=76638493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135513 WO2022117093A1 (en) 2020-12-04 2021-12-03 Dcdc power converter

Country Status (2)

Country Link
CN (1) CN213637490U (en)
WO (1) WO2022117093A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140285970A1 (en) * 2011-10-28 2014-09-25 Hitachi Automotive Systems, Ltd. Electric Power Conversion System
US20180027646A1 (en) * 2015-01-16 2018-01-25 Autonetworks Technologies, Ltd. Circuit assembly, electrical junction box, and manufacturing method for circuit assembly
WO2019245148A1 (en) * 2018-06-20 2019-12-26 엘지이노텍 주식회사 Converter
JP2020022239A (en) * 2018-07-31 2020-02-06 三菱電機株式会社 Power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140285970A1 (en) * 2011-10-28 2014-09-25 Hitachi Automotive Systems, Ltd. Electric Power Conversion System
US20180027646A1 (en) * 2015-01-16 2018-01-25 Autonetworks Technologies, Ltd. Circuit assembly, electrical junction box, and manufacturing method for circuit assembly
WO2019245148A1 (en) * 2018-06-20 2019-12-26 엘지이노텍 주식회사 Converter
JP2020022239A (en) * 2018-07-31 2020-02-06 三菱電機株式会社 Power conversion device

Also Published As

Publication number Publication date
CN213637490U (en) 2021-07-06

Similar Documents

Publication Publication Date Title
US6313991B1 (en) Power electronics system with fully-integrated cooling
US6404628B1 (en) Integrated power electronics cooling housing
JP5217884B2 (en) Semiconductor device
CN112366924A (en) Power converter
US7265983B2 (en) Power unit comprising a heat sink, and assembly method
CN213485245U (en) Power part and have its controller
CN109874386B (en) Electronic component and power conversion device
WO2022222461A1 (en) Discrete device and power module package
WO2022117093A1 (en) Dcdc power converter
CN112888274A (en) Heat radiation structure and vehicle-mounted charger
CN113113401A (en) Semiconductor circuit and method for manufacturing semiconductor circuit
CN112423568A (en) Cooling device of power converter and power converter
CN210092811U (en) Laminated busbar and electrical product
CN218677134U (en) Intelligent power module and terminal equipment with same
US5699241A (en) Switching power source unit
US20240006280A1 (en) Intelligent power module and manufacturing method thereof
CN213602550U (en) Power converter
CN213603031U (en) Cooling device of power converter and power converter
CN114944384A (en) Module and manufacturing method thereof
CN210897256U (en) Power semiconductor device
CN111787731A (en) Control box, assembling method thereof and electric equipment
CN219575622U (en) Packaging structure, circuit board structure and electronic equipment
CN218549767U (en) High power density power conversion module
CN215301255U (en) Heat radiation structure and vehicle-mounted charger
CN219576843U (en) Power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21840781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21840781

Country of ref document: EP

Kind code of ref document: A1