WO2022117002A1 - 电子设备间的无线充电方法、存储介质及其电子设备 - Google Patents

电子设备间的无线充电方法、存储介质及其电子设备 Download PDF

Info

Publication number
WO2022117002A1
WO2022117002A1 PCT/CN2021/134823 CN2021134823W WO2022117002A1 WO 2022117002 A1 WO2022117002 A1 WO 2022117002A1 CN 2021134823 W CN2021134823 W CN 2021134823W WO 2022117002 A1 WO2022117002 A1 WO 2022117002A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
mobile phone
wireless charging
wireless
watch
Prior art date
Application number
PCT/CN2021/134823
Other languages
English (en)
French (fr)
Inventor
董晓杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022117002A1 publication Critical patent/WO2022117002A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power

Definitions

  • the present invention relates to the technical field of wireless charging, in particular to a wireless charging method between electronic devices, a storage medium and an electronic device thereof.
  • Wireless reverse charging refers to electronic devices such as mobile phones that can only receive electromagnetic waves for wireless charging, and can send electromagnetic waves through wireless coils to charge other electronic devices that support wireless charging, generally for emergency use. Similar to the principle of wireless charging technology, the essence of wireless reverse charging can be understood as the process of transferring energy through inductive coupling between the charging device and the powered device.
  • An electronic device with a wireless reverse charging function generally does not enable the wireless reverse charging function during normal use.
  • the wireless reverse charging function is generally controlled to be turned on or off by setting a wireless reverse charging switch on the electronic device.
  • the electronic device 100 has a wireless reverse charging function and can provide power to the outside, while the electronic device 200 is a device to be charged.
  • the wireless reverse charging of the electronic device 100 needs to be used
  • the charging function is to charge the electronic device 200 in an emergency, generally three steps are required to enable the wireless reverse charging function of the electronic device 100 .
  • the first step is to unlock the screen of the electronic device 100 and find the battery function menu from the settings menu of the electronic device 100; as shown in Figure 1b, the second step is to find the wireless reverse charging under the battery function menu function and click to open; as shown in FIG. 1c , the third step is to put the electronic device 200 into the charging area of the electronic device 100 in time for charging.
  • the method reminds users how to turn on the wireless reverse function, which leads to many users not even knowing that the device they are using has the wireless reverse charging function or how to turn on the function, which will inevitably lead to the wireless reverse charging function being a mere formality. Provide real convenience to users.
  • Embodiments of the present application provide a wireless charging method between electronic devices, a storage medium, and an electronic device thereof.
  • a wireless charging method between electronic devices of the present application is fast, simple and easy to operate, thereby effectively solving the problem of cumbersome opening steps existing in the prior art, and improving the user experience.
  • an embodiment of the present application provides a wireless charging method between electronic devices, the method comprising: a first electronic device collecting a Bluetooth signal sent by a second electronic device that has established a Bluetooth connection with the first electronic device; The first electronic device judges whether the relative movement or relative position between the first electronic device and the second electronic device satisfies the wireless charging space condition based on the collected Bluetooth signal; the first electronic device judges according to the judgment As a result, it is determined whether to wirelessly charge the second electronic device.
  • the first electronic device is a mobile phone 100
  • the second electronic device is a watch 200
  • a Bluetooth connection is established between the mobile phone 100 and the watch 200 .
  • the mobile phone 100 continuously collects the Bluetooth signal sent by the watch 200 , and the mobile phone 100 can determine whether the relative movement or relative position between the mobile phone 100 and the watch 200 satisfies the wireless charging space condition based on the collected Bluetooth signal of the watch 200 .
  • the mobile phone 100 determines whether to wirelessly charge the watch 200 based on the above judgment result.
  • the mobile phone 100 is generally a device that receives electrical energy, and the ability of the mobile phone 100 to wirelessly charge the watch 200 is called a wireless reverse charging function.
  • the first electronic device determines whether to wirelessly charge the second electronic device according to the judgment result, including: the first electronic device In the case that it is determined that the relative movement or relative position between the first electronic device and the second electronic device satisfies the wireless charging space condition, and the power of the first electronic device itself satisfies the wireless charging power supply condition, Wirelessly charge the second electronic device.
  • the mobile phone 100 determines that the relative movement or relative position between the mobile phone 100 and the watch 200 satisfies the wireless charging space condition based on the collected Bluetooth signal of the watch 200, the mobile phone 100 further confirms that its own power meets the wireless charging power supply condition, the mobile phone 100 wirelessly charges the watch 200. It can be understood that the mobile phone 100 can provide wireless reverse charging to other electronic devices under the condition that its own power is sufficient for use, that is, the mobile phone 100 can wirelessly charge the watch 200 when its own power is sufficient.
  • the first electronic device wirelessly charges the second electronic device in the following manner: the first electronic device prompts the user to charge the second electronic device The device is placed in the charging area of the first electronic device, and wirelessly charges the second electronic device when it is detected that the second electronic device is located in the charging area.
  • the mobile phone 100 determines to wirelessly charge the watch 200
  • the mobile phone 100 will directly enable the wireless reverse charging function.
  • the mobile phone 100 may prompt the user to put the watch 200 in the charging area of the mobile phone 100.
  • the mobile phone 100 detects that the watch 200 is located in the charging area of the mobile phone 100. Wirelessly charge the watch 200 in the case of its charging area.
  • the first electronic device determines whether to wirelessly charge the second electronic device according to the judgment result, further comprising: the first electronic device When the device determines that the relative movement or relative position between the first electronic device and the second electronic device satisfies the wireless charging space condition, and the power of the first electronic device satisfies the wireless charging power supply condition , sending prompt information to the user, wherein the prompt information is used to prompt the user to confirm whether to wirelessly charge the second electronic device; the first electronic device is in the case that the user confirms the wireless charging of the second electronic device , prompt the user to put the second electronic device into the charging area of the first electronic device, and when it is detected that the second electronic device is located in the charging area, send the second electronic device to the charging area.
  • Wireless charging the first electronic device determines whether to wirelessly charge the second electronic device according to the judgment result, further comprising: the first electronic device When the device determines that the relative movement or relative position between the first electronic device and the second electronic device satisfies the wireless charging space condition, and the power of the first
  • the mobile phone 100 determines to wirelessly charge the watch 200
  • the mobile phone 100 sends a prompt message to the user or a turn-on confirmation notification described in the following embodiments
  • the prompt message is used to prompt the user to confirm whether to turn on the wireless reverse charging function to
  • the watch 200 is wirelessly charged. If the user confirms to enable the wireless reverse charging function, the mobile phone 100 enables the wireless reverse charging function again, and prompts the user to put the watch 200 into the charging area of the mobile phone 100 .
  • the mobile phone 100 wirelessly charges the watch 200 when it detects that the watch 200 is located in its charging area.
  • the wireless charging power supply condition in the above-mentioned method includes: the remaining power of the first electronic device is greater than or equal to a preset power threshold.
  • the mobile phone 100 when it judges whether its own power satisfies the wireless charging power supply conditions, it can compare the detected residual power with a preset power threshold. If the current power remaining of the mobile phone 100 is greater than or equal to the preset power threshold, Then the mobile phone 100 can determine that its own power satisfies the wireless charging power supply conditions.
  • the first electronic device determines the relative movement between the first electronic device and the second electronic device based on the collected Bluetooth signal Or whether the relative position satisfies the wireless charging space conditions, including: the first electronic device judges the relative movement between the first electronic device and the second electronic device by analyzing the waveform characteristics of the collected Bluetooth signal Or whether the relative position meets the wireless charging space conditions.
  • the mobile phone 100 can determine whether the relative movement or relative position between the mobile phone 100 and the watch 200 satisfies the wireless reverse charging space condition by analyzing the waveform characteristics of the collected Bluetooth signals.
  • the waveform characteristics in the above-mentioned method include range, mean value, frequency, peak-to-valley value, and number of cycles.
  • the waveform feature satisfies at least one of the following judgment conditions, the relative movement or relative position between the first electronic device and the second electronic device satisfies the wireless charging space condition: the extremely poor The calculation result is within the preset range threshold value range; the calculation result of the mean value is within the preset mean value threshold value range; the calculation result of the frequency is within the preset frequency threshold value range; the difference between the peak and valley values The calculation result is greater than or equal to the preset difference lower threshold, or the difference calculation result of the peak-to-valley value is less than or equal to the preset difference upper threshold; and the calculation result of the number of cycles is greater than or equal to the preset Cycle count lower threshold.
  • the mobile phone 100 mainly calculates the range, mean, frequency, peak-to-valley value and number of cycles in the waveform characteristics of the Bluetooth signal, and compares these characteristics with Compare the corresponding threshold range or upper threshold and lower threshold. If these waveform characteristics of the Bluetooth signal meet the corresponding judgment conditions, for example, the calculation results of range, mean and frequency are within the corresponding range of range threshold and mean threshold respectively.
  • the calculated result of the difference between the peak and valley values is greater than or equal to the preset lower threshold of the difference, and the calculated result of the number of cycles is greater than or equal to the preset lower threshold of the number of cycles, indicating that the Bluetooth signal collected by the mobile phone 100 The judgment condition is satisfied, thus indicating that the relative movement or relative position between the mobile phone 100 and the watch 200 satisfies the wireless charging space condition.
  • an embodiment of the present application provides a wireless charging method between electronic devices, the method comprising: a second electronic device collecting a Bluetooth signal sent by a first electronic device that has established a Bluetooth connection with the second electronic device; The second electronic device determines whether the relative movement or relative position between the first electronic device and the second electronic device satisfies the wireless charging space condition based on the collected Bluetooth signal; In the case of wireless charging space conditions, a wireless charging request is sent to the first electronic device, wherein the wireless charging request is used to request the first electronic device to wirelessly charge the second electronic device.
  • the first electronic device is a mobile phone 100
  • the second electronic device is a watch 200
  • a Bluetooth connection is established between the mobile phone 100 and the watch 200 .
  • the watch 200 continuously collects the Bluetooth signal sent by the mobile phone 100 , and the watch 200 can determine whether the relative movement or relative position between the mobile phone 100 and the watch 200 satisfies the wireless charging space condition based on the collected Bluetooth signal of the mobile phone 100 .
  • the watch 200 sends a wireless charging request to the mobile phone 100 after judging that the relative movement or relative position between the mobile phone 100 and the watch 200 satisfies the wireless charging space condition, requesting the mobile phone 100 to enable the wireless reverse charging function to wirelessly charge the watch 200 .
  • the above method further includes: the second electronic device receives a prompt instruction from the first electronic device; the second electronic device responds to the received prompt The instruction prompts the user to put the second electronic device into the charging area of the first electronic device.
  • the mobile phone 100 sends a prompt instruction to the watch 200, indicating that the wireless reverse charging function of the watch 200 has been enabled.
  • the watch 200 prompts the user to put the watch 200 into the charging area of the mobile phone 100 for charging.
  • the second electronic device determines the relative motion between the first electronic device and the second electronic device based on the collected Bluetooth signal Or whether the relative position satisfies the wireless charging space condition, including: the second electronic device judges the relative movement between the first electronic device and the second electronic device by analyzing the waveform characteristics of the collected Bluetooth signal Or whether the relative position meets the wireless charging space conditions.
  • the waveform characteristics in the above method include range, mean value, frequency, peak-to-valley value, and number of cycles.
  • the waveform feature satisfies at least one of the following judgment conditions, the relative motion or relative position between the first electronic device and the second electronic device satisfies the wireless charging space condition: the calculation of the range The result is within the preset range threshold value; the calculation result of the mean value is within the preset mean value threshold value range; the calculation result of the frequency is within the preset frequency threshold value range; the difference between the peak and valley values is calculated The result is greater than or equal to the preset difference lower threshold, or the calculation result of the difference between the peak and valley values is less than or equal to the preset difference upper threshold; and, the calculation result of the number of cycles is greater than or equal to the preset cycle Number lower threshold.
  • the watch 200 mainly calculates the range, mean, frequency, peak-to-valley value and number of cycles in the waveform characteristics of the Bluetooth signal, and compares these characteristics with Compare the corresponding threshold range or upper threshold and lower threshold. If these waveform characteristics of the Bluetooth signal meet the corresponding judgment conditions, for example, the calculation results of range, mean and frequency are within the corresponding range of range threshold and mean threshold respectively.
  • the calculation result of the difference between the peak and valley values is greater than or equal to the preset lower threshold of the difference, and the calculation result of the number of cycles is greater than or equal to the preset lower threshold of the number of cycles, indicating that the Bluetooth signal collected by the watch 200 The judgment condition is satisfied, thus indicating that the relative movement or relative position between the mobile phone 100 and the watch 200 satisfies the wireless charging space condition.
  • embodiments of the present application provide a computer-readable storage medium, where instructions are stored on the storage medium, and when the instructions are executed on a computer, the instructions cause the computer to execute the above method for wireless charging between electronic devices.
  • an embodiment of the present application provides an electronic device, the electronic device includes: one or more processors; one or more memories; the one or more memories store one or more programs, when all the When the one or more programs are executed by the one or more processors, the electronic device causes the electronic device to execute the above method for wireless charging between electronic devices.
  • an embodiment of the present application provides a computer program product, including a computer program/instruction, when the computer program/instruction is executed by a processor, the above-mentioned wireless charging method between electronic devices is implemented.
  • FIG. 1a is a schematic diagram showing exemplary steps and application scenarios of enabling the wireless reverse charging function in the prior art.
  • FIG. 1b is a schematic diagram showing exemplary steps and application scenarios of enabling the wireless reverse charging function in the prior art.
  • FIG. 1c is a schematic diagram showing exemplary steps and application scenarios of enabling the wireless reverse charging function in the prior art.
  • FIG. 2 is a schematic diagram of a notification interface according to an embodiment of the present application.
  • FIG. 3 a is a schematic diagram of an exemplary action interface for enabling a wireless reverse charging function according to an embodiment of the present application.
  • FIG. 3b is a schematic diagram of an exemplary action interface for enabling a wireless reverse charging function according to an embodiment of the present application.
  • FIG. 3c is a schematic diagram of an exemplary action interface for enabling a wireless reverse charging function according to an embodiment of the present application.
  • FIG. 4a shows a schematic block diagram of the structure of a mobile phone 100 according to an embodiment of the present application.
  • FIG. 4b shows a schematic block diagram of the structure of a wristwatch 200 according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a wireless charging method between electronic devices according to an embodiment of the present application.
  • FIG. 6a shows a schematic diagram of a notification interface of the mobile phone 100 according to the embodiment of the present application.
  • FIG. 6b shows a schematic diagram of a notification interface of the mobile phone 100 according to the embodiment of the present application.
  • FIG. 6c shows a schematic diagram of a notification interface of the mobile phone 100 according to the embodiment of the present application.
  • FIG. 6d shows a schematic diagram of a notification interface of the mobile phone 100 according to the embodiment of the present application.
  • FIG. 6e shows a schematic diagram of a notification interface of the watch 200 according to the embodiment of the present application.
  • FIG. 7 is an understanding schematic diagram of some related concepts in the waveform characteristics of the Bluetooth signal according to the embodiment of the present application.
  • FIG. 8a shows a schematic diagram of a waveform change according to an embodiment of the present application.
  • FIG. 8b is a schematic diagram of another waveform change according to the embodiment of the present application.
  • FIG. 8c is a schematic diagram of another waveform change according to the embodiment of the present application.
  • FIG. 8d is a schematic diagram of another waveform change according to the embodiment of the present application.
  • FIG. 8e is a schematic diagram of another waveform change according to the embodiment of the present application.
  • FIG. 9a is a schematic diagram of another waveform change according to an embodiment of the present application.
  • FIG. 9b is a schematic diagram of another waveform change according to the embodiment of the present application.
  • FIG. 9c is a schematic diagram of another waveform change according to the embodiment of the present application.
  • FIG. 9d is a schematic diagram of another waveform change according to the embodiment of the present application.
  • FIG. 9e is a schematic diagram of another waveform change according to the embodiment of the present application.
  • FIG. 10a shows a schematic diagram of a placement manner of the watch 200 in the charging area of the mobile phone 100 according to the embodiment of the present application.
  • FIG. 10b is a schematic diagram showing another placement manner of the watch 200 in the charging area of the mobile phone 100 in the embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another wireless charging method between electronic devices according to an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of another implementation of a wireless charging method between electronic devices according to an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of the process of detecting and judging whether the Bluetooth waveform meets the requirements in the process shown in FIG. 12 .
  • FIG. 14 is another schematic flowchart of the process of detecting and judging whether the Bluetooth waveform meets the requirements in the process shown in FIG. 12 .
  • FIG. 15 is a block diagram of a software structure of a mobile phone 100 provided by an embodiment of the present application.
  • the electronic device 100 has a wireless reverse charging function (for example, the electronic device 100 has both a wireless charging receiving coil and a wireless charging transmitting coil), and the electronic device 100 can be charged when the power is sufficient.
  • Wirelessly charge other electronic devices with wireless charging receiving coils the electronic device 200 has a wireless charging receiving coil, which can receive power output from the electronic device 100 inductively coupled to it.
  • the wireless reverse charging function of the electronic device 100 can be turned on, the electronic device 200 can be placed in the charging area on the electronic device 100, and the electronic device 200 can be wirelessly charged. Reverse charging.
  • the present application proposes a wireless charging method between electronic devices. Whether the relative movement or relative position between them satisfies the wireless charging space conditions; if it is determined that the wireless charging space conditions are met, and the electronic device 100 satisfies the wireless charging power supply conditions, quickly turn on the wireless reverse charging function of the electronic device 100 Charge the device to be charged.
  • the wireless charging method between electronic devices of the present application is fast, simple, and easy to operate, thereby effectively solving the problem in the prior art that the opening steps are cumbersome and the user experience is poor.
  • the solution of the present application is described in detail by taking the electronic device 100 providing the wireless reverse charging function to charge the electronic device 200 as an example.
  • the electronic device 100 to be powered may have other forms of power supply capability similar to the above-mentioned wireless reverse charging function, which is not limited here.
  • waveform characteristics of the Bluetooth signal mentioned in this application include, but are not limited to, range, mean, frequency, peak-to-valley, and number of cycles.
  • the electronic device 100 with a wireless charging function includes, but is not limited to, a laptop computer, a desktop computer, a tablet computer, a smart phone, a wearable device, a head-mounted display, a mobile email device, a portable Game consoles, portable music players, reader devices, televisions in which one or more processors are embedded or coupled, car audio devices, or other electronic devices with Bluetooth communication and wireless reverse charging capabilities.
  • the electronic device 100 is used as a mobile phone for description.
  • the electronic device 200 includes, but is not limited to, smart wearable devices such as watches, wristbands, finger rings, and ear clips, and electronic devices with Bluetooth communication functions and wireless charging functions, such as smart phones, mini stereos, and head-mounted displays. In the following, for the convenience of description, the electronic device 200 is used as a watch for description.
  • the mobile phone 100 can prompt the user to understand the wireless reverse charging function and its enabling method.
  • Reverse charging function If the user wants to know about this function, he can further show the user how to quickly turn on the wireless reverse charging function. As shown in Figure 2, the user can click the "Learn” button to view an example action of quickly turning on the wireless reverse charging function. If the user does not want to know or use the wireless reverse charging function, they can ignore the notification (the "ignore" button as shown in Figure 2).
  • Figures 3a-3c show some example action interfaces for enabling the wireless reverse charging function according to an embodiment of the present application.
  • the user can click the arrow to turn right or left (the way 1 shown in Figure 3a, Figure 3b, Figure 3c) To turn the page to view, you can also swipe left or right on the screen to turn the page to view (the method shown in Figure 3a, Figure 3b, Figure 3c 2). It can be understood that the user may turn off the notification after viewing the example action of turning on the wireless reverse charging function, which is not limited herein.
  • the above example actions include but are not limited to bringing the mobile phone 100 close to the watch 200 and shaking the mobile phone 100 (as shown in FIG.
  • Actions such as “please keep the watch close to the mobile phone and shake it”) shown in 3b to make the distance between the mobile phone 100 and the watch 200 move relatively in a “near-far-near-far-near” pattern, and put the watch 200 in the The action of the charging area on the back of the mobile phone 100 (“please place the watch on the charging area on the back of the mobile phone” as shown in FIG. 3c ).
  • FIG. 4a shows a schematic structural diagram of a mobile phone 100 according to an embodiment of the present application.
  • the mobile phone 100 may include an antenna 1, an antenna 2, a processor 110, a memory 120, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, Wireless reverse charging management module 143, mobile communication module 150, wireless communication module 160, audio module 170, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, etc.
  • USB universal serial bus
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the mobile phone 100 .
  • the mobile phone 100 may include more or less components than shown, or some components may be combined, or some components may be separated, or different component arrangements.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the wireless communication function of the mobile phone 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modulation and demodulation processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in handset 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 of the mobile phone 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the mobile phone 100 can communicate with the network and other devices through wireless communication technology.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G etc. applied on the mobile phone 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the wireless communication module 160 can provide applications on the mobile phone 100 including wireless local area networks (WLAN), such as wireless fidelity (Wi-Fi), Bluetooth (Bluetooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives the Bluetooth signal via the antenna 2 , filters the received Bluetooth signal, and sends the processed signal to the processor 110 .
  • the wireless communication module 160 can also receive the data signal to be sent from the processor 110, frequency-modulate and amplify it, and convert it to a Bluetooth signal for transmission through the antenna 2 or to electromagnetic wave radiation for other devices to receive.
  • the wireless communication module 160 includes a Bluetooth chip, which has the function of sending and receiving Bluetooth signals.
  • the Bluetooth signal collected by the Bluetooth chip is sent to the processor 110 for filtering, waveform analysis, etc. to determine whether the relative movement or relative position between the mobile phone 100 and the watch 200 satisfies the wireless charging space condition.
  • the processor 110 confirms whether the relative motion between the mobile phone 100 and the watch 200 conforms to the wireless charging space condition through the waveform analysis result of the Bluetooth signal collected by the Bluetooth chip, and then the processor 110 supplies power to the mobile phone 100 based on the waveform analysis result.
  • the management module 141 sends an enabling instruction, and the power management module 141 controls the wireless reverse charging management module 143 to enable the wireless reverse charging function according to the enabling instruction.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (neural-network processing unit, NPU), etc. Wherein, different processing units can be independent devices, or can be integrated into one or more processors.
  • the controller can generate operation control signals according to instruction operation codes and timing signals to complete the control of fetching and executing instructions.
  • the processor 110 can control the wireless communication module 160 through the controller to collect the Bluetooth signal and send the filtered Bluetooth signal to the processor 110 for waveform analysis, so as to determine whether the relative motion or relative position between the mobile phone 100 and the watch 200 is satisfactory Wireless charging space conditions; in other embodiments, bluetooth signals can also be collected through a bluetooth chip, filtered and processed, and then sent to the processor 110 for waveform analysis and to determine the relative movement or relative position between the mobile phone 100 and the watch 200 Whether it meets the wireless charging space conditions is not limited here.
  • a memory 120 may also be provided in the processor 110 for storing instructions and data.
  • the memory 120 in the processor 110 is a cache memory.
  • the memory 120 may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory 120 . Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the memory 120 stores an analysis operation instruction on the waveform characteristics of the Bluetooth signal
  • the processor 110 or the corresponding processing unit invokes the instruction to analyze the waveform characteristics of the Bluetooth signal to determine whether the relative motion or relative position between the mobile phone 100 and the watch 200 is If the wireless charging space condition is satisfied, if satisfied, the processor 110 or the corresponding processing unit can send an on command to enable the wireless reverse charging function to the power management module 141 of the mobile phone 100, and the power management module 141 controls the wireless reverse charging according to the on command.
  • the charging management module 143 enables the wireless reverse charging function.
  • the processor 110 may include one or more interfaces.
  • the USB interface 130 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the mobile phone 100, and can also be used to transmit data between the mobile phone 100 and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other electronic devices.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through the wireless charging receiving coil of the mobile phone 100 . While the charging management module 140 charges the battery 142 , it can also supply power to the mobile phone 100 through the power management module 141 .
  • the power management module 141 is used for connecting the processor 110 , the charging management module 140 , the battery 142 and the wireless reverse charging module 143 .
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the wireless reverse charging management module 143, the wireless communication module 160, the camera 193 and the display screen 194.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, remaining battery capacity, battery cycle times, and battery health status (electric leakage, impedance). In some other embodiments, the power management module 141 may also be provided in the processor 110 .
  • the wireless reverse charging management module 143 can control the on-off of the circuit where the transmitting coil of the mobile phone 100 is located (ie, the wireless reverse charging function is turned on or off), that is, when the transmitting coil of the mobile phone 100 is turned on ( That is, when the wireless reverse charging function is turned on), the transmitting coil of the mobile phone 100 outputs electric energy to perform wireless reverse charging.
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the processor 110 sends a control command to the wireless reverse charging management module 143 through the power management module 141 based on data such as the remaining power level monitored by the power management module 141 and the analysis result of the waveform characteristics of the Bluetooth signal, so as to realize Control the wireless reverse charging function on or off. For example, when the processor 110 confirms that the power of the mobile phone 100 is sufficient, and judges that the relative motion between the mobile phone 100 and another device to be charged (such as the watch 200 ) conforms to the wireless charging space condition by analyzing the characteristics of the Bluetooth signal waveform, it means that the power on at this time is satisfied. For the condition of the wireless reverse charging function, the processor 110 sends an instruction to enable the wireless reverse charging function to the power management module 141, and the power management module 141 controls the wireless reverse charging management module 143 to enable the wireless reverse charging function according to the instruction.
  • the sensor module 180 may include a pressure sensor, a gyro sensor, a distance sensor, a touch sensor, a temperature sensor, etc., for collecting various environmental data, as well as distance data and the like.
  • the display screen 194 of the mobile phone 100, the application processor and the like realize the display function.
  • Display screen 194 is used to display images, videos, and the like.
  • Display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED diode AMOLED
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), MiniLED, MicroLED, Micro-OLED, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • the handset 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the mobile phone 100 can display notification information to the user through the above-mentioned display function and the display screen 194, for example, a confirmation notification provided to the user about "do you need to know how to turn on the wireless reverse charging function", or a prompt message "wireless reverse charging” displayed to the user. Notifications such as “Charging is turned on” for users to choose or know.
  • FIG. 4b shows a schematic structural diagram of the watch 200 according to an embodiment of the present application.
  • the watch 200 may include a touch display screen 201 , a processor 202 , a Bluetooth chip 203 , a sensor module 204 , an Infrared Spectroscopy (IR) 205 , and an Inertial Measurement Unit (IMU) 206 , memory 207, communication module 208, battery 209, etc.
  • IR Infrared Spectroscopy
  • IMU Inertial Measurement Unit
  • the touch display screen 201 can be used as a touch panel on the one hand, so as to collect the user's touch operation on it, and drive a corresponding connection device according to a preset program.
  • the touch display screen 201 can be used to display prompt information provided to the user and various menus on the watch 200 .
  • the touch screen 201 displays confirmation notification information provided to the user, such as "Whether the wireless reverse charging function is enabled", etc., or displayed prompt information to the user, such as "The wireless reverse charging function is enabled” and the like.
  • the processor 202 includes a plurality of processing units, and can run the Bluetooth signal waveform feature analysis algorithm provided by some embodiments of the present application to confirm whether the Bluetooth signal waveform feature meets the conditions for enabling the wireless reverse charging function of the mobile phone 100. If the conditions of the wireless reverse charging function are met, the processor 202 can send an instruction to enable the wireless reverse charging function to the mobile phone 100 through the communication module 209, and control the wireless reverse charging function to be enabled through the processor 110 and the power management module 141 of the mobile phone 100. .
  • the bluetooth chip 203 has the function of sending and receiving bluetooth signals, and the bluetooth signal collected by the bluetooth chip is sent to the processor 202 for filtering processing, waveform analysis, etc., to determine whether the relative movement or relative position between the mobile phone 100 and the watch 200 satisfies the wireless charging space condition. For example, if the processor 202 determines that the relative motion between the mobile phone 100 and the watch 200 conforms to the wireless charging space condition by analyzing the waveform of the Bluetooth signal collected by the Bluetooth chip, the processor 202 can communicate with the wireless communication module 160 of the mobile phone 100 Send a turn-on request to the processor 110 of the mobile phone 100. After receiving the turn-on request, the processor 110 sends a turn-on command to the power management module 141. The power management module 141 controls the wireless reverse charging management module 143 to turn on the wireless reverse charging function according to the turn-on command. .
  • the sensor module 204 may include a pressure sensor, a gyroscope sensor, a distance sensor, a touch sensor, a temperature sensor, etc., for collecting various environmental data, as well as distance data and the like.
  • the infrared spectrum detection unit 205 is configured to detect the wearing state of the watch 200 according to the different reflection values of infrared light by different substances in the human body or the environment, for example, whether the watch 200 is worn.
  • the inertial measurement unit 206 is used to measure the three-axis attitude angle (or angular rate) and acceleration data, so as to detect the wearing position information of the watch 200 on the wrist and the like. For example, it is detected whether the wristwatch 200 is worn on the wrist.
  • the memory 207 is used to store software programs and data, and the processor 202 executes various functional applications and data processing of the watch 200 by running the software programs, algorithm instructions, and data stored in the memory 207 .
  • the memory 207 may store an operation instruction for analyzing the waveform characteristics of the Bluetooth signal, and the processor 202 or a corresponding processing unit invokes the instruction to analyze the waveform characteristics of the Bluetooth signal to determine the relationship between the mobile phone 100 and the watch 200 Whether the relative movement or relative position between them satisfies the wireless charging space conditions.
  • the communication module 208 can be used to make the watch 200 communicate with other electronic devices and connect to the network through other electronic devices.
  • the watch 200 can establish a connection with the mobile phone 100 through the communication module 208,
  • the analysis result of analyzing the waveform characteristics of the Bluetooth signal is sent to the mobile phone 100 .
  • the above-mentioned Bluetooth chip 203 can also be set in the communication module 208, and the Bluetooth signal collected by the Bluetooth chip or other Bluetooth modules can also be sent to the processor 110 of the mobile phone 100 through the communication unit 208 for analysis. No restrictions.
  • the battery 209 is used to receive the power input of the charging cable, or to receive the power input provided by the transmitter coil.
  • the battery 209 can be placed in the charging area of the mobile phone 100 to receive the mobile phone 100 through the wireless reverse charging function (that is, turn on the transmitter in the mobile phone 100).
  • the power input provided by the circuit in which the coil is located is used to receive the power input of the charging cable, or to receive the power input provided by the transmitter coil.
  • the above-mentioned schematic structure does not constitute a specific limitation on the electronic device 200 .
  • the electronic device 200 may include more or less components than shown, or combine some components, or separate some components, or arrange different components.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • FIG. 5 shows a schematic flowchart of a wireless charging method between electronic devices according to this embodiment.
  • the steps shown in FIG. 5 are implemented in the mobile phone 100 as an example.
  • the steps of confirming, analyzing, and judging are performed by the processor 110 of the mobile phone 100 by running software programs or algorithm instructions; involving Power collection, Bluetooth signal collection, etc. of the mobile phone 100 are performed by corresponding detection elements or detection modules in the mobile phone 100 , and the specific execution process is described in detail below.
  • the wireless charging method between electronic devices implemented by the mobile phone 100 includes the following steps:
  • the mobile phone 100 determines whether the collected Bluetooth signal meets the conditions for enabling wireless reverse charging. If it matches, go to step 502; if not, go back to step 501.
  • the mobile phone 100 collects the Bluetooth signal of the watch 200, and performs filtering processing and waveform analysis on the collected Bluetooth signal.
  • the mobile phone 100 analyzes the waveform characteristics of the Bluetooth signal. When the waveform characteristics of the Bluetooth signal meet the corresponding waveform characteristic threshold judgment conditions, it indicates that the relative movement or relative position between the mobile phone 100 and the watch 200 is consistent with the wireless reverse charging. Spatial conditions (for example, when the user operates the mobile phone 100 or the watch 200 according to the example actions shown in FIGS. 3 a to 3 c ), then it is determined that the Bluetooth signal collected by the mobile phone 100 at this time meets the conditions for enabling wireless reverse charging.
  • the mobile phone 100 can collect the Bluetooth signal through the wireless communication module 160, and the processor 110 can perform filtering processing and waveform analysis on the collected Bluetooth signal. In other embodiments, the mobile phone 100 can also collect Bluetooth signals through a Bluetooth chip, and perform filtering processing and waveform analysis on the collected Bluetooth signals through the processor 110, which is not limited herein.
  • the mobile phone 100 and the watch 200 when the mobile phone 100 and the watch 200 are connected via Bluetooth for the first time, the user can be prompted to understand the wireless reverse charging function and how to enable it. It can be understood that the mobile phone 100 and the watch 200 are mutually trusted devices after the first Bluetooth connection, and within a certain distance, the mobile phone 100 and the watch 200 can automatically complete the Bluetooth connection. After the mobile phone 100 establishes a Bluetooth connection with the watch 200, the mobile phone 100 can acquire the Bluetooth signal sent by the watch 200, and analyze the Bluetooth waveform of the Bluetooth signal.
  • the above-mentioned waveform characteristics of the Bluetooth signal include, but are not limited to, range, mean, frequency, peak-to-valley, and number of cycles.
  • the analysis of the specific waveform characteristics of the Bluetooth signal and the threshold judgment conditions for the specific waveform characteristics will be introduced in detail below, and will not be repeated here.
  • the mobile phone 100 detects whether its own power satisfies the wireless charging power supply conditions. If not, go to step 503, if so, go to step 504.
  • the mobile phone 100 can monitor the battery power level of the mobile phone 100 through the power management module 141. Therefore, the mobile phone 100 can monitor the battery power level of the mobile phone 100 by comparing the current power level (expressed as a percentage) with the set power level threshold. For comparison, for example, setting the remaining power threshold to 50%, if the remaining power is less than or equal to 50%, the mobile phone 100 does not meet the power supply conditions for wireless charging; if the remaining power is greater than 50%, the mobile phone 100 meets the power supply conditions for wireless charging.
  • the battery remaining threshold may be set to any value such as 40%, 30%, 25%, etc., which is not limited herein.
  • the mobile phone 100 can also use other methods of measuring the remaining power to set a threshold as a condition for judging the remaining power to determine whether the mobile phone 100 meets the wireless charging power supply conditions, which is not limited here.
  • the mobile phone 100 reminds the user that the wireless reverse charging function cannot be turned on due to insufficient power.
  • a notification may be displayed on the display screen 194 to inform the user.
  • the mobile phone 100 may also send a turn-on notification to the watch 200, and display the notification through the watch 200 interface to inform the user. 6a).
  • the manner in which the mobile phone 100 reminds the user may also be in other forms, and the notification content may also be diversified, which is not limited herein. It can be understood that after seeing the notification displayed by the mobile phone 100, if the user wants to continue to use the wireless reverse charging function, he can also turn on the wireless reverse charging function switch (such as Figure 1b), which is not limited here.
  • the mobile phone 100 enables the wireless reverse charging function.
  • the processor 110 of the mobile phone 100 may directly issue a power-on command to the power management module 141, and the power management module 141 controls the wireless reverse charging management module 143 to enable the wireless reverse charging function according to the power-on command.
  • the mobile phone 100 may display a confirmation notification to the user, and the user confirms whether to enable the wireless reverse charging function.
  • the mobile phone 100 sends an enabling instruction to the power management module 141,
  • the power management module 141 controls the wireless reverse charging management module 143 to enable the wireless reverse charging function according to the enabling instruction. There is no restriction here.
  • the manner in which the mobile phone 100 enables the wireless reverse charging function may include the following two forms:
  • the mobile phone 100 directly enables the wireless reverse charging function. There is no need to notify the user for confirmation when the mobile phone 100 directly enables the wireless reverse charging function.
  • the interface of the mobile phone 100 may display an enabling notification to inform the user and prompt the user to put the watch 200 into the mobile phone 100 .
  • charging area For example, the mobile phone 100 displays through the display screen 194 “the wireless reverse charging function is enabled, please put the device to be charged into the charging area as soon as possible” (as shown in FIG.
  • the mobile phone 100 displays through the display screen 194 “wireless reverse charging The charging function has been turned on, and the device to be charged will be automatically turned off if it is not placed within 5s” and the 5s countdown will start (as shown in Figure 6c).
  • the mobile phone 100 reminds the user through the display screen 194 to confirm whether to enable the wireless reverse charging function. For example, the mobile phone 100 displays "Please confirm whether to enable the wireless reverse charging function" through the display screen 194, click “OK” to enable it, and click “Cancel” to prevent it from being enabled (as shown in FIG. 6d). After the user clicks "OK" to enable the wireless reverse charging function, the mobile phone 100 further displays an enable notification through the display screen 194 to inform the user, and the contents of the enable notification refer to the above-mentioned FIG. 6b or 6c.
  • the mobile phone 100 can also send the above notification information to the watch 200, and display the enable notification through the watch 200 interface to inform the user (as shown in FIG. 6e), which is not limited here.
  • the mobile phone 100 or the watch 200 can also prompt the user to perform corresponding operations through other reminder methods, such as voice reminder, vibration plus voice reminder, interface display plus vibration reminder, etc., which is not limited here. .
  • step 505 The mobile phone 100 detects and determines whether the watch 200 is located in the charging area of the mobile phone 100 . If the watch 200 is located in the charging area of the mobile phone 100, step 506 is performed; if the watch 200 is not placed in the charging area of the mobile phone 100, step 507 is performed.
  • the mobile phone 100 can detect whether the watch 200 is located in the charging area of the mobile phone 100 by detecting whether there is a wireless charging receiving coil in its charging area.
  • the charging area of the mobile phone 100 is provided with a charging coil, and the mobile phone 100 outputs power to the watch 200 for charging through capacitive coupling between the charging coil and the receiving coil in the watch 200 . Therefore, the mobile phone 100 can detect whether the watch 200 is located in the charging area of the mobile phone 100 by detecting whether there is a receiving coil in the charging area thereof.
  • the mobile phone 100 can also detect whether the charging area is placed in the watch 200 in other ways, which is not limited herein.
  • the watch 200 can be charged by placing the watch 200 in the charging area of the mobile phone 100 .
  • other electronic devices to be charged can also be placed in the charging area of the mobile phone 100 for charging, which is not limited herein.
  • the relative movement or relative position between the mobile phone 100 and the watch 200 satisfies the enabling conditions of the wireless reverse charging function, and the mobile phone is caused.
  • the wireless reverse charging function was turned on by mistake.
  • the detection duration can be set on the mobile phone 100.
  • the watch 200 It must be placed in the charging area of the mobile phone 100 for charging; if the set detection time is exceeded, the mobile phone 100 will turn off the wireless reverse charging function.
  • the setting of the detection duration can be set based on statistical data, for example, the detection duration is set to 5s.
  • the mobile phone 100 can also record this false turn-on situation in a system log and report it to the mobile phone system or server to record the false turn-on.
  • the relevant data in the process for example, the analysis results of the waveform characteristics of the Bluetooth signal, etc.
  • the accuracy of turning on the reverse charging function is not limited here.
  • the mobile phone 100 charges the watch 200.
  • the mobile phone 100 detects that a receiving coil is capacitively coupled with the charging coil of the mobile phone 100 in its charging area, it indicates that the charging area of the mobile phone 100 has been placed in the watch 200 , then the processor 110 of the mobile phone 100 passes the power management module 141 And the wireless reverse charging management module 143 keeps the wireless reverse charging function turned on to charge the watch 200 . It can be understood that the mobile phone 100 can also detect whether there is a receiving coil capacitively coupled with it in the charging area within the set detection time period. If the watch 200 is placed in the charging area of the mobile phone 100 within the detection period, the mobile phone 100 keeps the wireless reverse direction. The charging function is turned on to charge the watch 200; if the watch 200 is not placed in the charging area of the mobile phone 100 within the detection time period, the mobile phone 100 turns off the wireless reverse charging function to save power consumption.
  • the wireless reverse charging function can also be kept enabled to wirelessly charge other devices to be charged located in the charging area of the mobile phone 100 , There is no restriction here.
  • the mobile phone 100 reminds the user to put the watch 200 into the charging area.
  • the mobile phone 100 When the mobile phone 100 detects that there is no receiving coil capacitively coupled with it in the charging area, it indicates that the charging area of the mobile phone 100 is not placed in the watch 200 or other devices to be charged, and the mobile phone 100 can display a notification to remind the user to put the watch 200 into the charging area. area, the notification content is shown in Figure 6a above.
  • steps 501 and 502 and 503 are not limited here. In other embodiments, the steps 502 and 503 may be implemented first, and then the step 501 may be implemented.
  • FIG. 7 is an comprehension schematic diagram of some related concepts in the above-mentioned Bluetooth signal waveform characteristics.
  • the above-mentioned Bluetooth signal waveform characteristics will be described in detail below with reference to FIG. 7 .
  • the mobile phone 100 keeps collecting the Bluetooth signal. called the sampling period.
  • the stability of the Bluetooth signal collected by the mobile phone 100 may be poor. Therefore, before the mobile phone 100 analyzes the waveform characteristics of the Bluetooth signal , you can first determine whether the mean value of the Bluetooth signal waveform is greater than or equal to the minimum value of the received signal strength (Received Signal Strength Indication, RSSI), that is, when RSSI min ⁇ the mean value, and further analyze the characteristics of the Bluetooth signal waveform.
  • RSSI Received Signal Strength Indication
  • the collected Bluetooth signal may contain some interference noise. Therefore, the collected Bluetooth signal needs to be processed by noise reduction filtering, and then the characteristic analysis of the filtered Bluetooth signal waveform is performed.
  • the basic parameters of the waveform characteristics of the Bluetooth signal generally include amplitude and frequency.
  • the amplitude refers to the maximum displacement of the vibration of the sampling point on the signal wave in one cycle, and the amplitude between the amplitude can represent the strength of the signal. Therefore, in the analysis of general signal characteristics, the unit of the amplitude can also use the signal strength unit dB. .
  • Frequency is the number of cycles per unit time, and frequency is the inverse of the cycle. Based on the amplitude and frequency, other waveform characteristics of the Bluetooth signal can be further calculated. Refer to the following examples for the calculation process of other waveform characteristics of Bluetooth signals.
  • Range Indicates the difference between the maximum value and the minimum value of the bluetooth signal waveform amplitude during the entire sampling period. Referring to Figure 4, the calculation formula is:
  • x max is the maximum value of the waveform amplitude of the Bluetooth signal
  • x min is the minimum value of the waveform amplitude of the Bluetooth signal. It can be understood that the bluetooth signal is the strongest where the amplitude is the largest, and the bluetooth signal is the weakest where the amplitude is the smallest.
  • Mean Indicates the average value of the signal strength of each sampling point in the Bluetooth signal waveform.
  • the calculation formula is:
  • n is the number of sampling points of the Bluetooth signal
  • x i is the value of the sampling point
  • Period the vibration period of each sampling point. One period is equal to the time required for each sampling point to vibrate from a certain peak or trough to the next peak or trough. Referring to Figure 4, the calculation formula is:
  • frequency is the reciprocal of the period and is calculated as:
  • Peak-to-valley value In the Bluetooth signal waveform, the sampling point with the amplitude greater than the amplitude of the left and right adjacent sampling points is the peak, and the amplitude at the peak is the peak; the sampling point with the amplitude less than the amplitude of the left and right adjacent sampling points is the trough, and the amplitude at the trough is the valley value.
  • the number of cycles can be determined by the number of peaks or valleys in the Bluetooth signal waveform throughout the sampling period. Referring to Figure 7, the number of peaks or valleys in the sampling period is 11, so the number of periods is 11.
  • waveform features may also be added on the basis of the above-mentioned waveform features for analysis, which is not limited herein.
  • the analysis of the above waveform characteristics is mainly used to determine whether the relative movement or relative position between the mobile phone 100 and the watch 200 satisfies the enabling condition of the wireless reverse charging function. Therefore, the above-mentioned waveform characteristics of the Bluetooth signal that satisfy the condition for enabling the wireless reverse charging function need to satisfy a certain threshold range.
  • the threshold range of the waveform characteristics of the above-mentioned Bluetooth signal includes but is not limited to: the threshold range of the extreme difference, the threshold range of the mean, the threshold range of the frequency, the upper threshold or lower threshold of the peak-to-valley difference, and the lower threshold of the number of cycles, etc.
  • the setting of the above threshold range is set based on the statistical results of experimental data, and is not limited here.
  • any one of the waveform characteristics of the Bluetooth signal collected by the mobile phone 100 within the sampling period does not meet its corresponding threshold range, it indicates that the Bluetooth signal collected by the mobile phone 100 does not meet the conditions for enabling the wireless reverse charging function; If the waveform characteristics of the Bluetooth signals collected by the mobile phone 100 in the sampling period all meet the threshold judgment conditions of the corresponding characteristics, it indicates that the Bluetooth signals collected by the mobile phone 100 meet the conditions for enabling the wireless reverse charging function.
  • FIGS. 8 a to 8 e show waveform changes of the Bluetooth signal during various relative movements between the mobile phone 100 and the watch 200 .
  • the amplitude threshold range is set to [-45dB, -20dB], correspondingly, the range upper threshold is 25dB (that is, the range R ⁇ 25dB), and the average threshold range is [-45dB, -20dB] (that is, -45dB ⁇ average ⁇ ⁇ -20dB)
  • the frequency threshold range is [1Hz, 5Hz] (ie 1Hz ⁇ frequency F ⁇ 5Hz)
  • the lower threshold of the difference between the continuous wave peak and the trough (peak-valley value) is set to 8dB (ie the peak and valley of the continuous wave peak and trough) value difference ⁇ 8dB)
  • the lower threshold of the number of cycles is set to 3 (that is, the number of cycles ⁇ 3).
  • the waveform analysis results obtained based on the above-mentioned waveform characteristics of the Bluetooth signal include
  • the watch 200 does not move, the mobile phone 100 is brought close to the watch 200 and the mobile phone 100 is shaken.
  • the waveform of the Bluetooth signal between the mobile phone 100 and the watch 200 is shown in FIG. 8a.
  • the waveform characteristics of the Bluetooth signal collected by the mobile phone 100 conform to the threshold ranges of the above waveform characteristics, indicating that the relative motion between the mobile phone 100 and the watch 200 satisfies the conditions for enabling the wireless reverse charging function.
  • the watch 200 does not move, and the mobile phone 100 is shaken when the mobile phone 100 is not close to the watch 200 .
  • the waveform of the Bluetooth signal between the mobile phone 100 and the watch 200 is shown in FIG. 8b.
  • the mean value of the waveform characteristics of the Bluetooth signal collected by the mobile phone 100 is lower than the threshold range of the mean value [-45dB, -20dB], indicating that the relative movement between the mobile phone 100 and the watch 200 does not satisfy the wireless reverse charging function. condition.
  • the mobile phone 100 and the watch 200 are attached to each other without shaking the mobile phone 100 or the watch 200 .
  • the mobile phone 100 and the watch 200 are stacked together in a bag.
  • the waveform of the Bluetooth signal between the mobile phone 100 and the watch 200 is shown in FIG. 8c.
  • the range in the waveform characteristics of the Bluetooth signal collected by the mobile phone 100 exceeds the range upper threshold of 25dB, indicating that the relative motion between the mobile phone 100 and the watch 200 does not meet the conditions for enabling the wireless reverse charging function.
  • the mobile phone 100 is not moved, the watch 200 is brought close to the mobile phone 100 and the watch 200 is shaken.
  • the waveform of the Bluetooth signal between the mobile phone 100 and the watch 200 is shown in FIG. 8d.
  • the waveform characteristics of the Bluetooth signal collected by the mobile phone 100 conform to the threshold ranges of the above waveform characteristics, indicating that the relative motion between the mobile phone 100 and the watch 200 satisfies the conditions for enabling the wireless reverse charging function.
  • the relative movement between the mobile phone 100 and the watch 200 may include other situations, which are not limited herein.
  • FIGS. 9 a to 9 e show the waveform change diagrams of the Bluetooth signal under various relative positions between the mobile phone 100 and the watch 200 .
  • the amplitude threshold range is set to [-45dB, -35dB], correspondingly, the range upper threshold is 10dB (that is, the range R ⁇ 10dB), and the average threshold range is [-45dB, -35dB] (that is, -45dB ⁇ average ⁇ ⁇ -35dB)
  • the frequency threshold range is [1Hz, 5Hz] (ie 1Hz ⁇ frequency F ⁇ 5Hz)
  • the upper threshold of the difference between the continuous wave peak and the trough (peak-valley value) is set to 4dB (ie the peak and valley of the continuous wave peak and trough) value difference ⁇ 4dB)
  • the lower threshold of the number of cycles is set to 3 (that is, the number of cycles ⁇ 3).
  • the watch 200 is placed horizontally in the charging area of the mobile phone 100 (as shown in FIG. 10a ).
  • the waveform of the Bluetooth signal between the mobile phone 100 and the watch 200 is shown in FIG. 9a.
  • the waveform characteristics of the Bluetooth signal collected by the mobile phone 100 meet the threshold ranges of the above waveform characteristics, indicating that the relative position between the mobile phone 100 and the watch 200 satisfies the conditions for enabling the wireless reverse charging function.
  • the watch 200 is placed vertically in the charging area of the mobile phone 100 (as shown in FIG. 10b ).
  • the waveform of the Bluetooth signal between the mobile phone 100 and the watch 200 is shown in FIG. 9b .
  • the waveform characteristics of the Bluetooth signal collected by the mobile phone 100 meet the threshold ranges of the above waveform characteristics, indicating that the relative position between the mobile phone 100 and the watch 200 satisfies the conditions for enabling the wireless reverse charging function.
  • the waveform of the Bluetooth signal between the mobile phone 100 and the watch 200 is shown in FIG. 9c.
  • the average value of the waveform characteristics of the Bluetooth signal collected by the mobile phone 100 is -50dB, which is lower than the above-mentioned average threshold range [-45dB, -35dB], indicating that the relative position between the mobile phone 100 and the watch 200 does not satisfy the wireless anti-reflection function. Turn on condition to charging function.
  • the waveform of the Bluetooth signal between the mobile phone 100 and the watch 200 is shown in FIG. 9d.
  • the average value of the waveform characteristics of the Bluetooth signal collected by the mobile phone 100 is -50dB, which is lower than the above-mentioned average threshold range [-45dB, -35dB], indicating that the relative position between the mobile phone 100 and the watch 200 does not satisfy the wireless anti-reflection function. Turn on condition to charging function.
  • the mobile phone 100 and the watch 200 are stacked in a bag.
  • the waveform of the Bluetooth signal between the mobile phone 100 and the watch 200 is shown in FIG. 9e.
  • the average value of the waveform characteristics of the Bluetooth signal collected by the mobile phone 100 is -50dB, indicating that the relative position between the mobile phone 100 and the watch 200 does not meet the conditions for enabling the wireless reverse charging function.
  • the watch 200 may be placed in the charging area of the mobile phone 100 for a certain moment, but the watch 200 will soon leave due to the force.
  • the charging area of the mobile phone 100 due to the effect of gravity, when the mobile phone 100 and the watch 200 are stacked in the bag, the watch 200 may be placed in the charging area of the mobile phone 100 for a certain moment, but the watch 200 will soon leave due to the force.
  • the charging area of the mobile phone 100 is stacked in a bag.
  • the above-mentioned waveform characteristics of the Bluetooth signal are exemplary characteristics in this embodiment, and other waveform characteristics may also be used in other embodiments, or other waveform characteristics (such as standard difference, variance, etc.), and reasonably set the threshold range for the corresponding waveform characteristics based on the experimental values, so as to judge whether the relative movement or relative position between the mobile phone 100 and the watch 200 satisfies the wireless charging space opening, which is not limited here. .
  • This embodiment uses the mobile phone 100 as the main body of a wireless charging method between electronic devices.
  • the following will introduce another wireless charging method between electronic devices using the watch 200 as the main body with another embodiment in conjunction with the accompanying drawings.
  • FIG. 11 shows a schematic flowchart of another wireless charging method between electronic devices according to this embodiment.
  • the steps shown in FIG. 11 are implemented by taking the interaction between the watch 200 and the mobile phone 100 as an example.
  • the specific execution process please refer to the detailed description below.
  • the wireless charging method between electronic devices in this embodiment includes the following steps:
  • the watch 200 determines whether the collected Bluetooth signal of the mobile phone 100 meets the conditions for enabling wireless reverse charging. If yes, go to step 1102; if not, go back to go to step 1101.
  • step 501 in the first embodiment The difference between this step and step 501 in the first embodiment is that in this step, the Bluetooth signal of the watch 100 is collected by the watch 200, and filtering processing and waveform analysis are performed.
  • the process of collecting the Bluetooth signal, performing filtering processing and waveform analysis by the watch 200 is the same as the process of collecting the Bluetooth signal, performing filtering processing and waveform analysis by the mobile phone 100 in step 501 in the first embodiment, and will not be repeated here.
  • the watch 200 sends a turn-on request to turn on the wireless reverse charging function to the mobile phone 100 .
  • the watch 200 can communicate with the mobile phone 100 through the communication module 208 , and send or send information or the like to the mobile phone 100 .
  • the watch 200 determines whether the collected Bluetooth signal meets the conditions for enabling wireless reverse charging, the watch 200 sends an enabling request for enabling the wireless reverse charging function to the mobile phone 100 to request the mobile phone 100 to enable the wireless reverse charging function.
  • the mobile phone 100 detects whether its own power satisfies the wireless charging power supply conditions. If not, go to step 1104; if so, go to step 1105.
  • the mobile phone 100 After receiving the turn-on request sent by the watch 200, the mobile phone 100 firstly detects whether its own power satisfies the wireless charging power supply conditions.
  • the process for the mobile phone 100 to detect whether its own power satisfies the wireless charging power supply condition is the same as that of step 502 in the first embodiment, and details are not repeated here.
  • the mobile phone 100 feeds back the information of insufficient power to the watch 200.
  • the wireless communication module 160 can feed back the insufficient power information to the watch 200.
  • the watch 200 After the watch 200 receives the information, it can display a notification on the touch screen 201 to inform the user. shown in Figure 6a. It can be understood that when the mobile phone 100 feeds back the low battery information to the watch 200, it can also display a notification to the user through its display screen 194, which is not limited here.
  • the mobile phone 100 enables the wireless reverse charging function.
  • the watch 200 feeds back the information that the wireless reverse charging function is turned on.
  • the mobile phone 100 When the mobile phone 100 detects that its own power satisfies the wireless charging power supply conditions, it enables the wireless reverse charging function, and feeds back information on enabling the wireless reverse charging function to the watch 200 . After the watch 200 receives the information, it can display a notification on the touch screen 201 to inform the user.
  • the display content is shown in FIG. 6b and FIG. It can be understood that the mobile phone 100 can also display a notification to the user through its display screen 194 when feeding back information on enabling the wireless reverse charging function to the watch 200 , which is not limited here.
  • Steps 1107 to 1109 are the same as steps 505 to 507 in the first embodiment, and are not repeated here.
  • steps 1102-1104 may be implemented first, and then step 1101 may be implemented.
  • the devices that collect Bluetooth signals and analyze the waveform characteristics of the Bluetooth signals may be the same devices, for example, the Bluetooth signals are collected by the wireless communication module 160 or the Bluetooth chip of the mobile phone 100 and processed by the processor. 110 analyzes the Bluetooth signal waveform characteristics, or collects the Bluetooth signal through the Bluetooth chip 203 of the watch 200 and analyzes the Bluetooth signal waveform characteristics through the processor 202; in other embodiments, the device for collecting the Bluetooth signal and analyzing the Bluetooth signal waveform characteristics may also be Different devices, for example, collect the Bluetooth signal through the Bluetooth chip 203 of the watch 200 and send it to the processor 110 of the mobile phone 100 to analyze the waveform characteristics of the Bluetooth signal. There is no limitation here. From the perspective of the difficulty of implementing the technical solution, it is preferable that the devices that collect the Bluetooth signal and analyze the waveform characteristics of the Bluetooth signal are the same device.
  • the wireless charging method between electronic devices of the present application by analyzing the waveform characteristics of the Bluetooth signal between the mobile phone 100 and the watch 200, it is determined whether the relative movement or relative position between the mobile phone 100 and the watch 200 satisfies the wireless charging space conditions, and when the mobile phone 100 satisfies the wireless charging power supply conditions, it is determined that the mobile phone 100 satisfies the wireless reverse charging function enabling conditions, thereby realizing the rapid activation of the wireless reverse charging function of the mobile phone 100, the wireless charging method between electronic devices of the present application The judgment is accurate and the operation is convenient, which can greatly improve the user experience.
  • the present application can also continuously update the situation where the wireless reverse charging function is turned on due to the misjudgment by collecting the corresponding data in the case of misjudgment, so as to avoid the occurrence of multiple misjudgments and improve the accuracy of turning on the wireless reverse charging function. , which is beneficial to improve the user experience; at the same time, the application can set whether to enable the wireless reverse charging function to interact with the user by confirming the activation of the notification by the user, which can meet the usage habits of different users and help improve the user experience.
  • FIG. 12 is a schematic flowchart of another implementation process of the wireless charging method between electronic devices according to an embodiment of the present application. As shown in FIG. 12 , the overall process of enabling the wireless reverse charging function of the mobile phone 100 by detecting the Bluetooth signal waveform between the watch 200 and the mobile phone 100 is as follows:
  • the mobile phone 100 detects the Bluetooth waveform of the Bluetooth signal.
  • the mobile phone 100 determines whether the Bluetooth waveform meets the requirements. If the Bluetooth waveform does not meet the requirements, execute process 1203; if the Bluetooth waveform meets the requirements, execute process 1204.
  • the mobile phone 100 enables the wireless reverse charging function.
  • the mobile phone 100 detects whether a device to be charged is located in the charging area for wireless charging. If the device to be charged is being charged in the charging area of the mobile phone 100, the process 1206 is executed; if the charging area of the mobile phone 100 does not detect that the device to be charged is being charged, the process 1207 is executed. It can be understood that the above-mentioned device to be charged may be the watch 200 or other electronic devices that need to be charged, which is not limited herein.
  • the mobile phone 100 continues to wirelessly charge the device to be charged.
  • the mobile phone 100 turns off the wireless reverse charging function.
  • the mobile phone 100 extracts the Bluetooth waveform within a period of time.
  • the mobile phone 100 judges whether the mobile phone 100 and the watch 200 are close to each other based on the RSSI min of the Bluetooth waveform ⁇ the mean value.
  • the mobile phone 100 determines the conditions based on the waveform characteristics of the Bluetooth waveform: (min ⁇ range ⁇ max ), RSSI min ⁇ average ⁇ RSSImax , T1 ⁇ frequency ⁇ T2, N ⁇ cycle number, and detects specific actions to identify the user's charging intention .
  • the mobile phone 100 turns on the wireless charging switch, and the watch 200 prompts the user to confirm charging.
  • the watch 200 may also directly prompt the user to put the watch 200 into the charging area of the mobile phone 100 for charging.
  • the watch 200 may also directly prompt the user to put the watch 200 into the charging area of the mobile phone 100 for charging.
  • the mobile phone 100 extracts the Bluetooth waveform within a period of time.
  • the mobile phone 100 determines whether the mobile phone 100 and the watch 200 are close to each other based on the RSSI min of the Bluetooth waveform ⁇ the mean value.
  • the mobile phone 100 determines the conditions based on the waveform characteristics of the Bluetooth waveform: (min ⁇ range ⁇ max), RSSI min ⁇ mean ⁇ RSSI max , T1 ⁇ frequency ⁇ T2, N ⁇ cycle number, identify whether the watch 200 is in the charging state of the mobile phone 100 area.
  • the mobile phone 100 turns on the wireless charging switch, and the watch 200 prompts the user to confirm charging.
  • step 501 in the above-mentioned first embodiment, and details are not repeated here.
  • step 501 in the above-mentioned first embodiment, and details are not repeated here.
  • step 504 in the foregoing embodiment 1, which will not be repeated here.
  • the watch 200 may also directly prompt the user to put the watch 200 into the charging area of the mobile phone 100 for charging.
  • the software system of the mobile phone 100 may adopt a layered architecture, an event-driven architecture, a microkernel architecture, a microservice architecture, or a cloud architecture.
  • the embodiments of the present invention take an Android system with a layered architecture as an example to illustrate the software structure of the mobile phone 100 as an example.
  • FIG. 15 is a block diagram of the software structure of the mobile phone 100 according to the embodiment of the present invention.
  • the layered architecture divides the software into several layers, and each layer has a clear role and division of labor. Layers communicate with each other through software interfaces.
  • the Android system is divided into four layers, which are, from top to bottom, an application layer, an application framework layer, an Android runtime (Android runtime) and a system library, and a kernel layer.
  • the application layer can include a series of application packages.
  • the application package can include applications such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, short message and so on.
  • the application framework layer provides an application programming interface (application programming interface, API) and a programming framework for applications in the application layer.
  • the application framework layer includes some predefined functions.
  • the application framework layer may include window managers, content providers, view systems, telephony managers, resource managers, notification managers, and the like.
  • a window manager is used to manage window programs.
  • the window manager can get the size of the display screen, determine whether there is a status bar, lock the screen, take screenshots, etc.
  • Content providers are used to store and retrieve data and make these data accessible to applications.
  • the data may include video, images, audio, calls made and received, browsing history and bookmarks, phone book, etc.
  • the view system includes visual controls, such as controls for displaying text, controls for displaying pictures, and so on. View systems can be used to build applications.
  • a display interface can consist of one or more views.
  • the display interface including the short message notification icon may include a view for displaying text and a view for displaying pictures.
  • the phone manager is used to provide the communication function of the mobile phone 100 .
  • the management of call status including connecting, hanging up, etc.).
  • the resource manager provides various resources for the application, such as localization strings, icons, pictures, layout files, video files and so on.
  • the notification manager enables applications to display notification information in the status bar, which can be used to convey notification-type messages, and can disappear after a brief pause without user interaction.
  • the notification manager is used to notify download completion, message reminders, etc.
  • the notification manager can also display notifications in the status bar at the top of the system in the form of graphs or scroll bar text, such as notifications of applications running in the background, and notifications that appear on the screen in the form of dialog windows. For example, text information is prompted in the status bar, a prompt sound is issued, the electronic device vibrates, and the indicator light flashes.
  • a notification is displayed to the user through the notification manager of the application framework layer of the mobile phone 100.
  • the notification for enabling the wireless reverse charging function is a notification type notification.
  • the activation confirmation notification of the reverse charging function is a notification in the form of a dialog window, which requires the user to click "Confirm" or "Cancel" to process.
  • Android Runtime includes core libraries and a virtual machine. Android runtime is responsible for scheduling and management of the Android system.
  • the core library consists of two parts: one is the function functions that the java language needs to call, and the other is the core library of Android.
  • the application layer and the application framework layer run in virtual machines.
  • the virtual machine executes the java files of the application layer and the application framework layer as binary files.
  • the virtual machine is used to perform functions such as object lifecycle management, stack management, thread management, safety and exception management, and garbage collection.
  • a system library can include multiple functional modules. For example: surface manager (surface manager), media library (Media Libraries), 3D graphics processing library (eg: OpenGL ES), 2D graphics engine (eg: SGL), etc.
  • surface manager surface manager
  • media library Media Libraries
  • 3D graphics processing library eg: OpenGL ES
  • 2D graphics engine eg: SGL
  • the Surface Manager is used to manage the display subsystem and provides a fusion of 2D and 3D layers for multiple applications.
  • the media library supports playback and recording of a variety of commonly used audio and video formats, as well as still image files.
  • the media library can support a variety of audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • the 3D graphics processing library is used to realize 3D graphics drawing, image rendering, compositing and layer processing, etc.
  • 2D graphics engine is a drawing engine for 2D drawing.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer contains at least display drivers, camera drivers, audio drivers, and sensor drivers.
  • the present disclosure also relates to apparatuses for performing operations in text.
  • This apparatus may be specially constructed for the required purposes or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer.
  • a computer program may be stored on a computer readable medium, such as, but not limited to, any type of disk, including floppy disks, optical disks, CD-ROMs, magneto-optical disks, read only memory (ROM), random access memory (RAM) , EPROM, EEPROM, magnetic or optical cards, application specific integrated circuits (ASICs), or any type of medium suitable for storing electronic instructions, and each may be coupled to a computer system bus.
  • the computers referred to in the specification may include a single processor or may be architectures employing multiple processors for increased computing power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Telephone Function (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电子设备间的无线充电方法、存储介质及其电子设备。其中,该方法包括:第一电子设备采集与第一电子设备建立了蓝牙连接的第二电子设备发送的蓝牙信号;第一电子设备基于采集到的蓝牙信号,判断第一电子设备与第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件;第一电子设备根据判断的结果,确定是否向第二电子设备进行无线充电。或者,该方法包括:第二电子设备采集与第二电子设备建立了蓝牙连接的第一电子设备发送的蓝牙信号;第二电子设备基于采集到的蓝牙信号,判断第一电子设备与第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件;第二电子设备在判断出满足无线充电空间条件的情况下,向第一电子设备发送无线充电请求,用于请求第一电子设备对第二电子设备进行无线充电。该方法通过对蓝牙信号进行波形特征分析,确定两个设备之间的相对运动或者相对位置是否满足无线充电空间条件,快捷、简单、易操作,利于提高用户体验。

Description

电子设备间的无线充电方法、存储介质及其电子设备
本申请要求于2020年12月02日提交中国专利局、申请号为202011406002.2、申请名称为“电子设备间的无线充电方法、存储介质及其电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线充电技术领域,具体涉及一种电子设备间的无线充电方法、存储介质及其电子设备。
背景技术
无线反向充电指的是手机等原本只能接收无线充电电磁波的电子设备,可以通过无线线圈发出电磁波给其他支持无线充电的电子设备充电,一般作为应急使用。与无线充电技术原理相同,无线反向充电的本质可以理解为通过充电设备与用电设备之间以电感耦合传送能量的过程。
具有无线反向充电功能的电子设备在正常使用过程中一般不会开启无线反向充电功能,现有技术一般通过在电子设备上设置无线反向充电开关来控制开启或关闭无线反向充电功能。例如,在如图1a-图1c所示的场景中,电子设备100具有无线反向充电功能,可以向外提供电能,而电子设备200是待充电设备,当需要使用电子设备100的无线反向充电功能为电子设备200应急充电时,一般需要经过三个步骤开启电子设备100的无线反向充电功能。如图1a所示,第一步是解锁电子设备100的屏幕,从电子设备100的设置菜单中找到电池功能菜单;如图1b所示,第二步是在电池功能菜单下找到无线反向充电功能并点击开启;如图1c所示,第三步是将电子设备200及时放入电子设备100的充电区域进行充电。
由于用户使用无线反向充电功能一般是出于应急目的,而上述开启无线反向充电功能的三个步骤则过于繁琐,而导致用户的使用体验不好,并且当前大部分电子设备也没有相应的方式提醒用户如何开启无线反向功能,这更导致了许多用户甚至不知道自己使用的设备具有无线反向充电功能或者不知道如何开启该功能,这必然导致无线反向充电功能流于形式而无法给用户提供真正的便利。
发明内容
本申请实施例提供了一种电子设备间的无线充电方法、存储介质及其电子设备,通过采集第一电子设备和第二电子设备之间的蓝牙信号并对采集到的蓝牙信号进行波形特征分析,确定第一电子设备和第二电子设备之间的相对运动或者相对位置是否满足无线充电空间条件;在确定满足无线充电空间条件的情况下,并且第一电子设备满足无线充电供电条件的情况下,快速开启第一电子设备的无线反向充电功能为待充电设备进行无线充电。本申请的电子设备间的无线充电方法快捷、简单、易操作,从而有效地解决现有技术存在的开启步骤繁琐的问题,提高了用户的使用体验。
第一方面,本申请实施例提供了一种电子设备间的无线充电方法,该方法包括:第一电子设备采集与所述第一电子设备建立了蓝牙连接的第二电子设备发送的蓝牙信号;第一电子设备基于采集到的所 述蓝牙信号,判断所述第一电子设备与所述第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件;第一电子设备根据所述判断的结果,确定是否向所述第二电子设备进行无线充电。
例如,第一电子设备是手机100,第二电子设备是手表200,手机100与手表200之间建立了蓝牙连接。手机100不断采集手表200发送的蓝牙信号,手机100可以基于采集的手表200的蓝牙信号判断手机100与手表200之间的相对运动或相对位置是否满足无线充电空间条件。手机100基于上述判断结果,来确定是否向手表200进行无线充电。可以理解,手机100作为终端设备一般是接收电能的设备,手机100具有的向手表200进行无线充电的能力称之为无线反向充电功能。
在上述第一方面的一种可能的实现中,上述方法中所述第一电子设备根据所述判断的结果,确定是否向所述第二电子设备进行无线充电,包括:所述第一电子设备在判断出所述第一电子设备与所述第二电子设备之间的相对运动或相对位置满足所述无线充电空间条件,并且所述第一电子设备自身电量满足无线充电供电条件的情况下,向所述第二电子设备进行无线充电。
例如,手机100基于采集的手表200的蓝牙信号判断手机100与手表200之间的相对运动或相对位置满足无线充电空间条件时,手机100在进一步确认自身电量满足无线充电供电条件的情况下,手机100向手表200进行无线充电。可以理解,手机100可在保证自身电量足够使用的情况下,向其他电子设备提供无线反向充电,也就是说,手机100可以在自身电量充足的情况下向手表200进行无线充电。
在上述第一方面的一种可能的实现中,上述方法中所述第一电子设备通过以下方式向所述第二电子设备进行无线充电:所述第一电子设备提示用户将所述第二电子设备放入所述第一电子设备的充电区域,并在检测到所述第二电子设备位于所述充电区域的情况下,向所述第二电子设备进行无线充电。
例如,手机100确定向手表200进行无线充电的时候,手机100会直接开启无线反向充电功能,这时手机100可以提示用户将手表200放入手机100的充电区域,手机100检测到手表200位于其充电区域的情况下向手表200进行无线充电。
在上述第一方面的一种可能的实现中,上述方法中所述第一电子设备根据所述判断的结果,确定是否向所述第二电子设备进行无线充电,还包括:所述第一电子设备在判断出所述第一电子设备与所述第二电子设备之间的相对运动或相对位置满足所述无线充电空间条件,并且所述第一电子设备自身电量满足无线充电供电条件的情况下,向用户发送提示信息,其中所述提示信息用于提示用户确认是否对所述第二电子设备进行无线充电;所述第一电子设备在用户确认对所述第二电子设备进行无线充电的情况下,提示用户将所述第二电子设备放入所述第一电子设备的充电区域,并在检测到所述第二电子设备位于所述充电区域的情况下,向所述第二电子设备进行无线充电。
例如,手机100确定向手表200进行无线充电的时候,手机100向用户发送提示信息或者下文实施例中所描述的开启确认通知,该提示信息用于提示用户确认是否开启无线反向充电功能以对手表200进行无线充电。如果用户确认开启无线反向充电功能,则手机100再开启无线反向充电功能,并且提示用户将手表200放入手机100的充电区域。手机100检测到手表200位于其充电区域的情况下向手表200进行无线充电。
在上述第一方面的一种可能的实现中,上述方法中所述无线充电供电条件包括:所述第一电子设备的电量余量大于或等于预设电量阈值。
例如,手机100在判断自身电量是否满足无线充电供电条件时,可以通过将检测到的自身电量余量与预设电量阈值相比较,如果手机100当前的电量余量大于或等于预设电量阈值,则手机100可以判断自身电量满足无线充电供电条件。
在上述第一方面的一种可能的实现中,上述方法中所述第一电子设备基于采集到的所述蓝牙信号,判断所述第一电子设备与所述第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件,包括:所述第一电子设备通过对采集的所述蓝牙信号进行波形特征分析,判断所述第一电子设备与所述第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件。
例如,手机100通过对采集到的蓝牙信号的波形特征进行分析,以判断手机100与手表200之间的相对运动或相对位置是否满足无线反向充电空间条件。
在上述第一方面的一种可能的实现中,上述方法中所述波形特征包括极差、均值、频率、峰谷值及周期数。在所述波形特征满足下列判断条件中的至少一项的情况下,所述第一电子设备与所述第二电子设备之间的相对运动或相对位置满足无线充电空间条件:所述极差的计算结果在预设的极差阈值范围内;所述均值的计算结果在预设的均值阈值范围内;所述频率的计算结果在预设的频率阈值范围内;所述峰谷值的差值计算结果大于或等于预设的差值下限阈值,或者所述峰谷值的差值计算结果小于或等于预设的差值上限阈值;以及,所述周期数的计算结果大于或等于预设的周期数下限阈值。
例如,在手机100对采集到的蓝牙信号的波形特征进行分析的过程中,主要计算该蓝牙信号波形特征中的极差、均值、频率、峰谷值和周期数等特征,并将这些特征与相应的阈值范围或者上限阈值、下限阈值进行比较,如果该蓝牙信号的这些波形特征满足相应的判断条件,例如,极差、均值、频率的计算结果分别在相应的极差阈值范围、均值阈值范围和频率阈值范围内,峰谷值的差值计算结果大于或等于预设的差值下限阈值,周期数的计算结果大于或等于预设的周期数下限阈值,则表明手机100采集到的蓝牙信号满足判断条件,因而表明手机100与手表200之间的相对运动或相对位置满足无线充电空间条件。
第二方面,本申请实施例提供了一种电子设备间的无线充电方法,该方法包括:第二电子设备采集与所述第二电子设备建立了蓝牙连接的第一电子设备发送的蓝牙信号;第二电子设备基于采集到的所述蓝牙信号,判断所述第一电子设备与所述第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件;第二电子设备在判断出满足无线充电空间条件的情况下,向所述第一电子设备发送无线充电请求,其中,所述无线充电请求用于请求第一电子设备对所述第二电子设备进行无线充电。
例如,第一电子设备是手机100,第二电子设备是手表200,手机100与手表200之间建立了蓝牙连接。手表200不断采集手机100发送的蓝牙信号,手表200可以基于采集到的手机100的蓝牙信号判断手机100与手表200之间的相对运动或相对位置是否满足无线充电空间条件。手表200在判断出手机100与手表200之间的相对运动或相对位置满足无线充电空间条件的情况下,向手机100发送无线充电请求,请求手机100开启无线反向充电功能向手表200进行无线充电。
在上述第二方面的一种可能的实现中,上述方法还包括:所述第二电子设备从所述第一电子设备接收到提示指令;所述第二电子设备响应于接收到的所述提示指令,提示用户将所述第二电子设备放入所述第一电子设备的充电区域。
例如,手机100开启无线反向充电功能后向手表200发送提示指令,提示手表200无线反向充电功能已开启。手表200接收到该提示指令后,提示用户将手表200放入手机100的充电区域进行充电。
在上述第二方面的一种可能的实现中,上述方法中所述第二电子设备基于采集到的所述蓝牙信号,判断所述第一电子设备与所述第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件,包括:所述第二电子设备通过对采集的所述蓝牙信号进行波形特征分析,判断所述第一电子设备与所述第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件。
在上述第二方面的一种可能的实现中,上述方法中所述波形特征包括极差、均值、频率、峰谷值及周期数。在所述波形特征满足下列判断条件中至少一项的情况下,所述第一电子设备与所述第二电子设备之间的相对运动或相对位置满足无线充电空间条件:所述极差的计算结果在预设的极差阈值范围内;所述均值的计算结果在预设的均值阈值范围内;所述频率的计算结果在预设的频率阈值范围内;所述峰谷值的差值计算结果大于或等于预设的差值下限阈值,或者所述峰谷值的差值计算结果小于或等于预设的差值上限阈值;以及,所述周期数的计算结果大于或等于预设的周期数下限阈值。
例如,在手表200对采集到的蓝牙信号的波形特征进行分析的过程中,主要计算该蓝牙信号波形特征中的极差、均值、频率、峰谷值和周期数等特征,并将这些特征与相应的阈值范围或者上限阈值、下限阈值进行比较,如果该蓝牙信号的这些波形特征满足相应的判断条件,例如,极差、均值、频率的计算结果分别在相应的极差阈值范围、均值阈值范围和频率阈值范围内,峰谷值的差值计算结果大于或等于预设的差值下限阈值,周期数的计算结果大于或等于预设的周期数下限阈值,则表明手表200采集到的蓝牙信号满足判断条件,因而表明手机100与手表200之间的相对运动或相对位置满足无线充电空间条件。
第三方面,本申请实施例提供了一种计算机可读存储介质,所述存储介质上存储有指令,所述指令在计算机上执行时使所述计算机执行上述电子设备间的无线充电方法。
第四方面,本申请实施例提供了一种电子设备,该电子设备包括:一个或多个处理器;一个或多个存储器;所述一个或多个存储器存储有一个或多个程序,当所述一个或者多个程序被所述一个或多个处理器执行时,使得所述电子设备执行上述电子设备间的无线充电方法。
第五方面,本申请实施例提供了一种计算机程序产品,包括计算机程序/指令,该计算机程序/指令被处理器执行时实现上述电子设备间的无线充电方法。
附图说明
图1a所示为现有技术中开启无线反向充电功能的示例性步骤及应用场景示意图。
图1b所示为现有技术中开启无线反向充电功能的示例性步骤及应用场景示意图。
图1c所示为现有技术中开启无线反向充电功能的示例性步骤及应用场景示意图。
图2所示为本申请实施例的一种通知界面示意图。
图3a所示为本申请实施例的一种开启无线反向充电功能的示例动作界面示意图。
图3b所示为本申请实施例的一种开启无线反向充电功能的示例动作界面示意图。
图3c所示为本申请实施例的一种开启无线反向充电功能的示例动作界面示意图。
图4a所示为本申请实施例的一种手机100的结构示意框图。
图4b所示为本申请实施例的一种手表200的结构示意框图。
图5所示为本申请实施例的一种电子设备间的无线充电方法的示意性流程图。
图6a所示为本申请实施例的手机100的一种通知界面示意图。
图6b所示为本申请实施例的手机100的一种通知界面示意图。
图6c所示为本申请实施例的手机100的一种通知界面示意图。
图6d所示为本申请实施例的手机100的一种通知界面示意图。
图6e所示为本申请实施例的手表200的一种通知界面示意图。
图7所示为本申请实施例的蓝牙信号波形特征中部分相关概念的理解性示意图。
图8a所示为本申请实施例的一种波形变化示意图。
图8b所示为本申请实施例的另一种波形变化示意图。
图8c所示为本申请实施例的另一种波形变化示意图。
图8d所示为本申请实施例的另一种波形变化示意图。
图8e所示为本申请实施例的另一种波形变化示意图。
图9a所示为本申请实施例的另一种波形变化示意图。
图9b所示为本申请实施例的另一种波形变化示意图。
图9c所示为本申请实施例的另一种波形变化示意图。
图9d所示为本申请实施例的另一种波形变化示意图。
图9e所示为本申请实施例的另一种波形变化示意图。
图10a所示为本申请实施例中手表200放入手机100的充电区域的一种放置方式示意图。
图10b所示为本申请实施例中手表200放入手机100的充电区域的另一种放置方式示意图。
图11所示为本申请实施例的另一种电子设备间的无线充电方法的示意性流程图。
图12所示为本申请实施例的一种电子设备间的无线充电方法的另一种实施流程示意图。
图13所示为图12所示流程中检测并判断蓝牙波形是否满足要求过程的一种流程示意图。
图14所示为图12所示流程中检测并判断蓝牙波形是否满足要求过程的另一种流程示意图。
图15所示为本申请实施例提供的一种手机100的软件结构框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面通过结合附图和具体实施例,对本申请的技术方案做进一步地详细描述。
如上所示,在上述图1所示的场景中,电子设备100具有无线反向充电功能(例如,电子设备100同时具有无线充电接收线圈和无线充电发射线圈),电子设备100在电量充足时能够为其他具有无线充电接收线圈的电子设备进行无线充电;电子设备200具有无线充电接收线圈,能够接收与其电感耦合连接的电子设备100输出的电能。当电子设备200的电量较低、而电子设备100的电量充足时,可以开启电子设备100的无线反向充电功能,将电子设备200放入电子设备100上的充电区域,对电子设备200进行无线反向充电。如上所述,现有技术中,当需要使用电子设备100的无线反向充电功能为电子设备200应急充电时,需要通过上述较为繁琐的三个步骤开启电子设备100的无线反向充电功能,并且用户有可能不熟悉或不清楚电子设备100的无线反向充电功能的开启位置和开启步骤,而导致无法快速使用电子设备100的无线反向充电功能,因而导致用户体验较差。
为解决上述问题,本申请提出了一种电子设备间的无线充电方法,通过采集电子设备100和电子设备200之间的蓝牙信号并对蓝牙信号的波形进行分析,确定电子设备100和电子设备200之间的相对运动或者相对位置是否满足无线充电空间条件;在确定满足无线充电空间条件的情况下,并且电子设备100满足无线充电供电条件的情况下,快速开启电子设备100的无线反向充电功能为待充电设备充电。本申请的电子设备间的无线充电方法快捷、简单、易操作,从而有效地解决现有技术中存在的开启步骤繁琐导致用户使用体验差的问题。
为便于理解,下面以电子设备100提供无线反向充电功能向电子设备200进行充电为例,详细介绍本申请方案,在另一些实施例中,本申请方案还可以用于其他电子设备之间进行无线充电的场景,其 中供电的电子设备100可以具有与上述无线反向充电功能类似的其他形式的供电能力,在此不做限制。
可以理解,本申请中所提及的蓝牙信号的波形特征包括但不限于极差、均值、频率、峰谷值及周期数等。
可以理解,本申请实施例中,具有无线充电功能的电子设备100包括但不限于膝上型计算机、台式计算机、平板计算机、智能手机、可穿戴设备、头戴式显示器、移动电子邮件设备、便携式游戏机、便携式音乐播放器、阅读器设备、其中嵌入或耦接有一个或多个处理器的电视机、车载音响设备或具有蓝牙通信功能及无线反向充电功能的其他电子设备。下文为了便于描述,以电子设备100为手机进行说明。
电子设备200包括但不限于手表、手环、指环以及耳夹等智能可穿戴设备、智能手机、迷你音响、头戴式显示器等具有蓝牙通信功能和无线充电功能的电子设备。下文为了便于描述,以电子设备200为手表进行说明。
在本申请的技术方案中,当手机100与手表200首次蓝牙连接时,手机100可以提示用户了解无线反向充电功能及其开启方法,例如手机100的屏幕上显示通知“是否需要了解如何开启无线反向充电功能”。如果用户想了解该功能,则可以进一步向用户展示如何快速开启无线反向充电功能,如图2所示,用户可以通过点击“了解”按钮查看快速开启无线反向充电功能的示例动作。如果用户不想了解或使用无线反向充电功能,则可以忽略通知(如图2所示的“忽略”按钮)。
图3a-3c根据本申请实施例示出了开启无线反向充电功能的部分示例动作界面,用户可以通过点击向右或向左翻转箭头(如图3a、图3b、图3c所示的方式①)进行翻页查看,也可以通过在屏幕上向左或向右滑动进行翻页查看(如图3a、图3b、图3c所示的方式②)。可以理解,用户可以在查看开启无线反向充电功能的示例动作之后关闭通知,在此不做限制。上述示例动作包括但不限于将手机100靠近手表200并摇晃手机100(如图3a所示的“请将手机贴近手表摇一摇”)、或将手表200靠近手机100并摇晃手表200(如图3b所示的“请将手表贴近手机摇一摇”)等使手机100和手表200之间的距离以“近-远-近-远-近”规律相对运动的动作,以及将手表200放入手机100背面的充电区域(如图3c所示的“请将手表放置在手机背面的充电区域”)的动作。
图4a根据本申请实施例示出了手机100的一种结构示意图。
如图4a所示,手机100可以包括天线1、天线2、处理器110、存储器120、通用串行总线(universal serial bus、USB)接口130、充电管理模块140、电源管理模块141、电池142、无线反向充电管理模块143、移动通信模块150、无线通信模块160、音频模块170、传感器模块180、按键190、马达191、指示器192、摄像头193、显示屏194等。
可以理解的是,本发明实施例示意的结构并不构成对手机100的具体限定。在本申请另一些实施例中,手机100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件、软件或软件和硬件的组合实现。
其中,手机100的无线通信功能可以通过天线1、天线2、移动通信模块150、无线通信模块160、调制解调处理器以及基带处理器等实现。天线1和天线2用于发射和接收电磁波信号。手机100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。在一些实施例中,手机100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得手机100可以通过无线通信技术与网络以及其他设备通信。
移动通信模块150可以提供应用在手机100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通 信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在手机100上的包括无线局域网(wireless local area networks、WLAN)、如无线保真(wireless fidelity、Wi-Fi)网络)、蓝牙(Bluetooth、BT)、全球导航卫星系统(global navigation satellite system、GNSS)、调频(frequency modulation、FM)、近距离无线通信技术(near field communication、NFC)、红外技术(infrared、IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收蓝牙信号,将接收到的蓝牙信号进行滤波处理,并将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的数据信号,对其进行调频、放大,经天线2转为蓝牙信号发射出去或转为电磁波辐射出去,以供别的设备接收。
在一些实施例中,无线通信模块160包括蓝牙芯片,该蓝牙芯片具有收发蓝牙信号的功能。由蓝牙芯片采集的蓝牙信号发送给处理器110进行滤波处理、波形分析等,以判断手机100与手表200之间的相对运动或相对位置是否满足无线充电空间条件。例如,处理器110通过对蓝牙芯片采集到的蓝牙信号的波形分析结果确认手机100与手表200之间的相对运动是否符合无线充电空间条件,处理器110再基于该波形分析结果向手机100的电源管理模块141发送开启指令,电源管理模块141根据该开启指令控制无线反向充电管理模块143开启无线反向充电功能。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。例如,处理器110可以通过控制器控制无线通信模块160采集蓝牙信号并将滤波处理后蓝牙信号发送至处理器110进行波形分析,以判断手机100与手表200之间的相对运动或相对位置是否满足无线充电空间条件;在另一些实施例中,也可以通过蓝牙芯片采集蓝牙信号,并进行滤波处理后,发送给处理器110进行波形分析并判断手机100与手表200之间的相对运动或相对位置是否符合无线充电空间条件,在此不做限制。
处理器110中还可以设置存储器120,用于存储指令和数据。在一些实施例中,处理器110中的存储器120为高速缓冲存储器。存储器120可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器120中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。例如,存储器120中存储有对蓝牙信号波形特征的分析运算指令,处理器110或相应的处理单元调用该指令分析蓝牙信号波形特征,以判断手机100与手表200之间的相对运动或相对位置是否满足无线充电空间条件,若满足,则处理器110或相应的处理单元可以向手机100的电源管理模块141发送开启无线反向充电功能的开启指令,电源管理模块141根据该开启指令控制无线反向充电管理模块143开启无线反向充电功能。
在一些实施例中,处理器110可以包括一个或多个接口。其中,USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口、Micro USB接口、USB Type C接口等。USB接口130可以用于连接充电器为手机100充电,也可以用于手机100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过手机100的无线充电接收线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为手机100供电。
电源管理模块141用于连接处理器110、充电管理模块140、电池142与无线反向充电模块143。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110、内部存储器121、无线反向充电管理模块143、无线通信模块160、摄像头193和显示屏194等供电。电源管理模块141还可以用于监测电池容量、电量余量、电池循环次数、电池健康状态(漏电、阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。
此外,在一些实施例中,无线反向充电管理模块143可以控制手机100的发射线圈所在电路的通断(即无线反向充电功能的开启或关闭),即手机100的发射线圈接通时(即无线反向充电功能开启时),手机100的发射线圈对外输出电能进行无线反向充电。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
在一些实施例中,处理器110基于电源管理模块141监测的电量余量、以及对蓝牙信号波形特征的分析结果等数据,通过电源管理模块141向无线反向充电管理模块143发出控制指令,实现控制无线反向充电功能的开启或关闭。例如,当处理器110确认手机100电量充足、并且通过分析蓝牙信号波形特征判断手机100与另一待充电设备(例如手表200)之间的相对运动符合无线充电空间条件时,表示此时满足开启无线反向充电功能的条件,处理器110向的电源管理模块141发送打开无线反向充电功能的指令,电源管理模块141根据该指令控制无线反向充电管理模块143打开无线反向充电功能。
传感器模块180可以包括压力传感器、陀螺仪传感器、距离传感器、触摸传感器、温度传感器等等,用于采集各种环境数据,以及距离数据等。
手机100显示屏194、以及应用处理器等实现显示功能。显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),MiniLED,MicroLED,Micro-OLED,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,手机100可以包括1个或N个显示屏194,N为大于1的正整数。手机100可以通过上述显示功能及显示屏194向用户显示通知信息,例如,提供给用户的关于“是否需要了解如何开启无线反向充电功能”等确认通知,或显示给用户的提示信息“无线反向充电功能已开启”等通知,以供用户选择或知晓。
图4b根据本申请实施例示出了手表200的一种结构示意图。
如图4b所示,手表200可以包括触摸显示屏201、处理器202、蓝牙芯片203、传感器模块204、红外光谱检测单元(Infrared Spectroscopy,IR)205、惯性测量单元(Inertial measurement unit,IMU)206、存储器207、通信模块208、电池209等。
其中,触摸显示屏201一方面可以作为触控面板,以采集用户在其上的触摸操作,并根据预先设定的程式驱动响应的连接装置。触摸显示屏201另一方面可以用于显示提供给用户的提示信息以及手表200上的各种菜单。例如,触摸显示屏201显示提供给用户的确认通知信息如“无线反向充电功能是否开启”等,或显示给用户的提示信息如“无线反向充电功能已开启”等等。
处理器202包括多个处理单元,可以运行本申请一些实施例提供的蓝牙信号波形特征分析算法,以确认蓝牙信号波形特征是否满足开启手机100的无线反向充电功能的条件,如果满足开启手机100的无线反向充电功能的条件,则处理器202可以通过通信模块209向手机100发送开启无线反向充电功能的指令,通过手机100的处理器110以及电源管理模块141控制开启无线反向充电功能。
蓝牙芯片203具有收发蓝牙信号的功能,由蓝牙芯片采集的蓝牙信号发送给处理器202进行滤波处理、波形分析等,以判断手机100与手表200之间的相对运动或相对位置是否满足无线充电空间条件。例如,处理器202通过对蓝牙芯片采集到的蓝牙信号的波形分析结果确定手机100与手表200之间的相对运动符合无线充电空间条件,则处理器202可以通过与手机100的无线通信模块160通信向手机100的处理器110发送开启请求,处理器110收到开启请求后向电源管理模块141发送开启指令,电源管理模块141根据该开启指令控制无线反向充电管理模块143开启无线反向充电功能。
传感器模块204可以包括压力传感器、陀螺仪传感器、距离传感器、触摸传感器、温度传感器等等,用于采集各种环境数据,以及距离数据等。
红外光谱检测单元205用于根据人体或环境中不同物质对红外光的反射值不同来检测手表200的佩戴状态,例如,手表200是否佩戴的状态。
惯性测量单元206用于测量三轴姿态角(或角速率)以及加速度数据,以此检测出手表200在手腕上的佩戴部位信息等。例如,检测出手表200是否佩戴在手腕上。
存储器207用于存储软件程序以及数据,处理器202通过运行存储在存储器207的软件程序、算法指令以及数据等,执行手表200的各种功能应用以及数据处理。例如,在本申请的一些实施例中,存储器207可以存储对蓝牙信号波形特征的分析运算指令,处理器202或相应的处理单元调用该指令分析蓝牙信号波形特征,以判断手机100与手表200之间的相对运动或相对位置是否满足无线充电空间条件。
通信模块208可以用来使手表200和其他电子设备进行通信,并通过其他电子设备连接网络,例如,在本申请的一些实施例中,手表200可以通过通信模块208与手机100建立连接,将其分析蓝牙信号波形特征的分析结果发送给手机100。在一些实施例中,也可以将上述蓝牙芯片203设置在通信模块208中,通过蓝牙芯片或其他蓝牙模块采集的蓝牙信号也可以通过通信单元208发送给手机100的处理器110进行分析,在此不做限制。
电池209用于接收充电线的电量输入,或接收发射线圈提供的电量输入,例如,电池209放入手机100的充电区域可以接收手机100通过无线反向充电功能(即接通手机100内的发射线圈所在电路)提供的电量输入。
可以理解的是,上述示意性结构亦不构成对电子设备200的具体限定。在本申请另一些实施例中,电子设备200可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件、软件或软件和硬件的组合实现。
下面将基于图3a-3c所示的场景和图4a-4b所示的结构,结合具体附图详细介绍本申请的无线反向充电开启方案。
实施例一
本实施例将结合附图详细介绍本申请方案的一种电子设备间的无线充电方法。
图5根据本实施例示出了一种电子设备间的无线充电方法的示意性流程图。本实施例以图5所示的步骤在手机100中实施为例,对于其中的各步骤,确认、分析、判断等步骤由手机100的处理器110通过运行软件程序或算法指令等来执行;涉及手机100的电量采集、蓝牙信号采集等由手机100中相应的检测元件或检测模块进行,具体执行过程参见下文详细描述。
如图5所示,由手机100实施的电子设备间的无线充电方法包括以下步骤:
501:手机100判断采集到的蓝牙信号是否符合无线反向充电开启条件。若符合,则继续执行步骤502;若不符合,则返回执行本步骤501。
手机100采集手表200的蓝牙信号,并对采集到的蓝牙信号进行滤波处理及波形分析。手机100通过对蓝牙信号的波形特征进行分析,当该蓝牙信号的波形特征满足相应的波形特征阈值判断条件时,表明手机100与手表200之间的相对运动或相对位置符合无线反向充电开启的空间条件(例如用户按照图3a-图3c所示的示例动作操作手机100或手表200的情况下),则判断此时手机100采集的蓝牙信号符合无线反向充电开启条件。其中,手机100可以通过无线通信模块160采集蓝牙信号,通过处理器110对采集到的蓝牙信号进行滤波处理及波形分析。在另一些实施例中,手机100也可以通过蓝牙芯片采集蓝牙信号、通过处理器110对采集到的蓝牙信号进行滤波处理及波形分析,在此不做限制。
此外,可以理解,如上述图2以及图3a-图3c所示及相关描述,手机100与手表200首次蓝牙连接时,可以提示用户了解无线反向充电功能及开启方法。可以理解,手机100与手表200首次蓝牙连接之后互为可信任设备,在一定距离范围内,手机100与手表200能够自动完成蓝牙连接。在手机100与手表200建立蓝牙连接之后,手机100可以获取手表200发送的蓝牙信号,并对该蓝牙信号的蓝牙波形进行分析。
此外,可以理解,上述蓝牙信号的波形特征包括但不限于极差、均值、频率、峰谷值及周期数。关于蓝牙信号的具体波形特征分析以及对具体波形特征的阈值判断条件将在下文详细介绍,在此不再赘述。
502:手机100检测自身电量是否满足无线充电供电条件。若不满足,则执行步骤503,若满足,则执行步骤504。
例如,在一些实施例中,手机100可以通过电源管理模块141能够监测手机100的电池电量余量,因此,手机100可以通过对当前的电量余量(百分数表示)与设置的电量余量阈值进行比较,例如设置电量余量阈值为50%,若电量余量小于或等于50%,则手机100不满足无线充电供电条件;若电量余量大于50%,则手机100满足无线充电供电条件。
在另一些实施例中,电量余量阈值可以设置为40%、30%、25%等任意数值,在此不做限制。另外,手机100还可以采用其他衡量电量余量的方式设置阈值作为判断电量余量的条件,来判断手机100是否满足无线充电供电条件,在此不做限制。
503:手机100提醒用户电量不足无法开启无线反向充电功能。
在一些实施例中,当手机100检测到自身电量不满足无线充电供电条件时,可以通过显示屏194显示通知告知用户。而在另外一些实施例中,手机100也可以将开启通知发送给手表200,通过手表200界面显示通知以告知用户,通知内容例如“手机电量不足,暂时无法开启无线反向充电功能”(如图6a所示)。在一些实施例中,手机100提醒用户的方式也可以是其他形式,通知内容也可以是多样化的,在此不做限制。可以理解,用户看到手机100显示的通知后,如果想继续使用无线反向充电功能,也可 以通过手机100的设置-电池界面(如图1a所示),开启无线反向充电功能开关(如图1b所示),在此不做限制。
504:手机100开启无线反向充电功能。
例如,在一些实施例中,手机100的处理器110可以直接通过向电源管理模块141发出开启指令,电源管理模块141根据该开启指令控制无线反向充电管理模块143开启无线反向充电功能。而在另一些实施例中,手机100可以向用户显示确认通知,由用户确认是否开启无线反向充电功能,在用户确认开启无线反向充电功能的情况下,向电源管理模块141发出开启指令,电源管理模块141根据该开启指令控制无线反向充电管理模块143开启无线反向充电功能。在此不做限制。
作为示例,手机100开启无线反向充电功能的方式可以包括以下两种形式:
(1)手机100直接开启无线反向充电功能。手机100直接开启无线反向充电功能的过程中无需通知用户确认,手机100的无线反向充电功能开启后,手机100界面可以显示开启通知以告知用户,并提示用户将手表200放入手机100的充电区域。例如,手机100通过显示屏194显示“无线反向充电功能已开启,请尽快将待充电设备放入充电区域”(如图6b所示),或者,手机100通过显示屏194显示“无线反向充电功能已开启,5s内未放入待充电设备将自动关闭”并开始5s倒计时(如图6c所示)。
(2)手机100通过显示屏194提醒用户确认是否开启无线反向充电功能。例如,手机100通过显示屏194显示“请确认是否开启无线反向充电功能”,点击“确认”进行开启,点击“取消”阻止开启(如图6d所示)。当用户点击“确认”开启无线反向充电功能后,手机100通过显示屏194进一步显示开启通知以告知用户,开启通知内容参考上述图6b或6c所示。
在另一些实施例中,手机100也可以将上述通知信息发送给手表200,通过手表200界面显示开启通知以告知用户(如图6e所示),在此不做限制。
可以理解,在另一些实施例中,手机100或手表200也可以通过其他提醒方式提示用户进行相应的操作,例如语音提醒、振动加语音提醒、界面显示加振动提醒等方式,在此不做限制。
505:手机100检测并判断手表200是否位于手机100的充电区域。若手表200位于手机100的充电区域,则执行步骤506;若手表200未放入手机100的充电区域,则执行步骤507。
可以理解,手机100可以通过检测其充电区域是否有无线充电接收线圈来检测手表200是否位于手机100的充电区域。例如,手机100的充电区域设置有充电线圈,手机100通过充电线圈与手表200内的接收线圈之间电容耦合,向手表200输出电量进行充电。因此,手机100可以通过检测其充电区域是否有接收线圈来检测手表200是否位于手机100的充电区域。在另一些实施例中,手机100也可以通过其他方式检测充电区域是否放入手表200,在此不做限制。
可以理解,手机100开启无线反向充电功能之后,将手表200放入手机100的充电区域即可对手表200进行充电。在一些实施例中,在手机100开启无线反向充电功能之后也可以将其他待充电电子设备放入手机100的充电区域进行充电,在此不做限制。
可以理解,在一些偶然的情形下,例如用户误操作情形下、或者用户无意间的动作导致手机100与手表200之间的相对运动或相对位置满足无线反向充电功能的开启条件,而造成手机100误开启无线反向充电功能。为了避免上述偶然情形下无线反向充电功能长时间开启(无线反向充电功能长时间开启会增加手机100的功耗),手机100上可以设置检测时长,在设定的检测时长内,手表200须放入手机100的充电区域内进行充电;若超过设定的检测时长,手机100则关闭无线反向充电功能。上述检测时长的设置可以基于统计数据进行设定,例如,设定检测时长为5s。
可以理解,当超过设定的检测时长手机100关闭无线反向充电功能时,手机100还可以将这种误开启的情形以系统日志等方式进行记录并上报手机系统或服务器,记录此次误开启过程中的相关数据(例如,对蓝牙信号的波形特征分析结果等数据),以便积累更多的数据资料作为统计资料,以统计概率较高的误判情形进行规避,以此提高手机100的无线反向充电功能开启的准确率,在此不做限制。
506:手机100为手表200充电。
具体地,当手机100在检测到其充电区域内有接收线圈与手机100的充电线圈电容耦合时,表明手机100的充电区域已放入手表200,则手机100的处理器110通过电源管理模块141和无线反向充电管理模块143保持无线反向充电功能开启,为手表200充电。可以理解,手机100也可以在设置的检测时长内检测其充电区域内是否有接收线圈与之电容耦合,若手表200在检测时长内放入手机100的充电区域内,则手机100保持无线反向充电功能开启,为手表200充电;若手表200未在检测时长内放入手机100的充电区域内,则手机100关闭无线反向充电功能,以节省功耗。
在另一些实施例中,手机100在检测时长内检测到其他待充电设备的接收线圈,也可以保持开启无线反向充电功能,为位于手机100的充电区域内的其他待充电设备进行无线充电,在此不做限制。
507:手机100提醒用户将手表200放入充电区域。
当手机100在检测到其充电区域内没有接收线圈与之电容耦合时,表明手机100的充电区域未放入手表200或其他待充电设备,则手机100可以显示通知提醒用户将手表200放入充电区域,通知内容参照上述图6a所示。
可以理解,上述步骤501与步骤502、503的实施顺序在此不做限制,在另一些实施例中,可以先实施步骤502、503,再实施步骤501。
下面结合附图详细介绍上述步骤501中对蓝牙信号的具体波形分析过程,以及波形特征的阈值判断条件。
图7为上述蓝牙信号波形特征中部分相关概念理解性示意图,下面结合图7就上述蓝牙信号波形特征进行详细介绍。
可以理解,用户按照上述图3a-图3c所示的示例动作操作手机100或手表200的过程中,手机100保持采集蓝牙信号,为了便于理解,下文将上述过程中手机100采集蓝牙信号的时间段称之为采样周期。
可以理解,用户按照上述图3a-图3c所示的示例动作操作手机100或手表200的过程中,可能会导致手机100采集的蓝牙信号稳定性较差,因此在手机100分析蓝牙信号波形特征之前,可以先判断蓝牙信号波形的均值是否大于或等于接收信号强度(Received Signal Strength Indication,RSSI)的最小值,即RSSI min≤均值的情况下,进一步分析蓝牙信号波形特征。
可以理解,手机100与手表200之间的距离越小,RSSI越大;反之,RSSI越小。
可以理解,由于各种干扰因素的存在,采集的蓝牙信号可能包含一些干扰噪声,因此,对采集的蓝牙信号需要经过降噪滤波处理,再对滤波后的蓝牙信号波形进行特征分析。
蓝牙信号的波形特征基础参数一般包括波幅和频率。其中,波幅是指在一个周期内,信号波上采样点振动的最大位移,介于波幅的大小可以表征信号强度大小,因此,在一般信号特征分析中,波幅的单位也可以采用信号强度单位dB。频率就是单位时间内的周期数,频率是周期的倒数。基于波幅和频率,可以进一步计算蓝牙信号的其他波形特征。蓝牙信号的其他波形特征计算过程参考以下示例。
极差:表示整个采样周期内,蓝牙信号波形波幅的最大值与最小值之间的差距,参考图4所示,其计算公式为:
R=x max-x min     (1)
其中,x max为蓝牙信号波形波幅的最大值,x min为蓝牙信号波形波幅的最小值。可以理解,波幅最大处蓝牙信号最强,波幅最小处蓝牙信号最弱。
均值:表示蓝牙信号波形中各采样点信号强度的平均值,其计算公式为:
Figure PCTCN2021134823-appb-000001
其中,n是蓝牙信号的采样点数量,x i是采样点的值。
周期:每个采样点的振动周期,一个周期等于每个采样点由某个波峰或波谷处振动至下一个波峰或波谷所需要的时长,参考图4所示,其计算公式为:
Figure PCTCN2021134823-appb-000002
其中,
Figure PCTCN2021134823-appb-000003
Figure PCTCN2021134823-appb-000004
分别是整个采样周期内蓝牙信号波形中第i个波峰和第i-1个波峰对应的时间戳。
频率:如上所述,频率是周期的倒数,其计算公式为:
Figure PCTCN2021134823-appb-000005
峰谷值:蓝牙信号波形中,波幅大于左右相邻采样点波幅的采样点为波峰,波峰处的波幅为峰值;波幅小于左右相邻采样点波幅的采样点为波谷,波谷处的波幅为谷值。参考图7所示的波峰与波谷。
周期数,即周期的数量,可以通过整个采样周期内蓝牙信号波形中波峰或波谷的数量确定。参考图7所示,采样周期内的波峰或波谷的数量为11,因此周期数的是11。
在另一些实施例中,也可以在上述波形特征的基础上增加其他波形特征进行分析,在此不做限制。
上述波形特征的分析主要用于判断手机100与手表200之间的相对运动或相对位置是否满足无线反向充电功能的开启条件。因此,满足无线反向充电功能开启条件的蓝牙信号的上述波形特征需满足一定的阈值范围。
上述蓝牙信号的波形特征的阈值范围包括但不限于:极差的阈值范围、均值的阈值范围、频率的阈值范围、峰谷值差值的上限阈值或下限阈值、以及周期数的下限阈值等。上述阈值范围的设置基于实验数据统计结果进行设定,在此不做限制。在本实施例中,若采样周期内手机100采集的蓝牙信号的波形特征中任一项不满足其对应的阈值范围,则表明手机100采集到的蓝牙信号不满足无线反向充电功能开启条件;若采样周期内手机100采集的蓝牙信号的波形特征全部满足相应特征的阈值判断条件,则表明手机100采集的蓝牙信号满足无线反向充电功能开启条件。
作为示例,图8a-8e示出了手机100与手表200之间的各种相对运动过程中蓝牙信号的波形变化图。如果设置波幅阈值范围为[-45dB,-20dB],相应地,极差上限阈值为25dB(即极差R≥25dB)、均值阈值范围为[-45dB,-20dB](即-45dB≥均值μ≥-20dB)、频率阈值范围为[1Hz,5Hz](即1Hz≥频率F≥5Hz)、连续波峰与波谷(峰谷值)的差值下限阈值设置为8dB(即连续波峰与波谷的峰谷值差值≥8dB)、周期数下限阈值设置为3(即周期数≥3)。如图8a-8e所示,基于上述蓝牙信号的波形特征得到波形分析结果包括以下几种情形:
(1)手表200不动,将手机100贴近手表200并摇晃手机100。此种情形下,手机100与手表200之间的蓝牙信号波形如图8a所示。此种情形下,手机100采集到的蓝牙信号的波形特征符合上述各波形特征的阈值范围,表明手机100与手表200之间的相对运动满足无线反向充电功能开启条件。
(2)手表200不动,在手机100未贴近手表200的情形下摇晃手机100。此种情形下,手机100与手表200之间的蓝牙信号波形如图8b所示。此种情形下,手机100采集到的蓝牙信号的波形特征中 均值低于均值的阈值范围[-45dB,-20dB],表明手机100与手表200之间的相对运动不满足无线反向充电功能开启条件。
(3)手机100与手表200相互贴进,未摇晃手机100或手表200。例如,将手机100与手表200叠在一起放包里,此种情形下,手机100与手表200之间的蓝牙信号波形如图8c所示。此种情形下,手机100采集到的蓝牙信号的波形特征中极差超过了上述极差上限阈值25dB,表明手机100与手表200之间的相对运动不满足无线反向充电功能开启条件。
(4)手机100不动,将手表200贴近手机100并摇晃手表200。此种情形下,手机100与手表200之间的蓝牙信号波形如图8d所示。此种情形下,手机100采集到的蓝牙信号的波形特征符合上述各波形特征的阈值范围,表明手机100与手表200之间的相对运动满足无线反向充电功能开启条件。
(5)在上述(1)和(4)描述的情形下,当摇晃手机100或摇晃手表200的次数太少时,手机100与手表200之间的蓝牙信号波形如图8e所示。此种情形下,手机100采集到的蓝牙信号的波形特征中周期数少于上述周期数下限阈值3,表明与手表200之间的相对运动不满足无线反向充电功能开启条件。
在另一些实施例中,手机100与手表200之间的相对运动可以包含其他情形,在此不做限制。
作为示例,图9a-9e示出了手机100与手表200之间的各种相对位置情形下蓝牙信号的波形变化图。如果设置波幅阈值范围为[-45dB,-35dB],相应地,极差上限阈值为10dB(即极差R≥10dB)、均值阈值范围为[-45dB,-35dB](即-45dB≥均值μ≥-35dB)、频率阈值范围为[1Hz,5Hz](即1Hz≥频率F≥5Hz)、连续波峰与波谷(峰谷值)的差值上限阈值设置为4dB(即连续波峰与波谷的峰谷值差值≤4dB)、周期数下限阈值设置为3(即周期数≥3)。如图9a-9e所示,基于上述蓝牙信号的波形特征得到波形分析结果包括以下几种情形:
(1)手表200横向放置在手机100的充电区域(如图10a所示)。此种情形下,手机100与手表200之间的蓝牙信号波形如图9a所示。此种情形下,手机100采集到的蓝牙信号的波形特征符合上述各波形特征的阈值范围,表明手机100与手表200之间的相对位置满足无线反向充电功能开启条件。
(2)手表200竖向放置在手机100的充电区域(如图10b所示),此种情形下,手机100与手表200之间的蓝牙信号波形如图9b所示。此种情形下,手机100采集到的蓝牙信号的波形特征符合上述各波形特征的阈值范围,表明手机100与手表200之间的相对位置满足无线反向充电功能开启条件。
(3)用户手持手机100、佩戴手表200不动的情形下,手机100与手表200之间的蓝牙信号波形如图9c所示。此种情形下,手机100采集到的蓝牙信号的波形特征中均值为-50dB,低于上述均值阈值范围[-45dB,-35dB],表明手机100与手表200之间的相对位置不满足无线反向充电功能开启条件。
(4)用户手持手机100、佩戴手表200并摆动手臂的情况下,手机100与手表200之间的蓝牙信号波形如图9d所示。此种情形下,手机100采集到的蓝牙信号的波形特征中均值为-50dB,低于上述均值阈值范围[-45dB,-35dB],表明手机100与手表200之间的相对位置不满足无线反向充电功能开启条件。
(5)手机100和手表200叠放在包里,此种情形下,手机100与手表200之间的蓝牙信号波形如图9e所示。此种情形下,手机100采集到的蓝牙信号的波形特征中均值为-50dB,表明手机100与手表200之间的相对位置不满足无线反向充电功能开启条件。可以理解,此种情形下,由于重力作用,手机100和手表200叠放在包里时可能会导致某个瞬时手表200置于手机100的充电区域,但很快由于力的作用手表200会离开手机100的充电区域。
可以理解,上述蓝牙信号的波形特征是本实施例中的示例性特征,在另一些实施例中也可以采用其他波形特征,或在本实施例的上述波形特征基础上增加其他波形特征(例如标准差、方差等),并对相应的波形特征基于实验值合理设定阈值范围,以用于判断手机100与手表200之间的相对运动或相对位置是否满足无线充电空间开启,在此不做限制。
本实施例以手机100为实施主体的一种电子设备间的无线充电方法,下面将以另一实施例结合附图介绍以手表200为实施主体的另一种电子设备间的无线充电方法。
实施例二
本实施例将结合附图详细介绍本申请方案的另一种电子设备间的无线充电方法。
图11根据本实施例示出了另一种电子设备间的无线充电方法的示意性流程图。本实施例以图11所示的步骤以手表200与手机100交互实施为例。具体执行过程参见下文详细描述。
如图11所示,本实施例的电子设备间的无线充电方法包括以下步骤:
1101:手表200判断采集到的手机100的蓝牙信号是否符合无线反向充电开启条件。若符合,则执行步骤1102;若不符合,则返回执行步骤1101。
本步骤与实施例一中的步骤501的不同之处在于,本步骤通过手表200采集手表100的蓝牙信号、进行滤波处理及波形分析。手表200采集蓝牙信号、进行滤波处理及波形分析的过程与实施例一中的步骤501中手机100采集蓝牙信号、进行滤波处理及波形分析的过程相同,在此不再赘述。
1102:手表200向手机100发送开启无线反向充电功能的开启请求。
可以理解,手表200可以通过通信模块208与手机100通信,并向手机100发送或信息等。当手表200判断采集的蓝牙信号是否符合无线反向充电开启条件时,手表200向手机100发送开启无线反向充电功能的开启请求,用于请求手机100开启无线反向充电功能。
1103:手机100检测自身电量是否满足无线充电供电条件。若不满足,则执行步骤1104;若满足,则执行步骤1105。
手机100接收到手表200发来的开启请求后,先检测自身电量是否满足无线充电供电条件。手机100检测自身电量是否满足无线充电供电条件的过程与实施例一中的步骤502相同,在此不再赘述。
1104:手机100向手表200反馈电量不足信息。
当手机100检测自身电量不满足无线充电供电条件时,可以通过无线通信模块160向手表200反馈电量不足信息,手表200接收到该信息之后,可以通过触摸显示屏201显示通知告知用户,显示内容参考图6a所示。可以理解,手机100在向手表200反馈电量不足信息时,也可以通过其显示屏194向用户显示告知通知,在此不做限制。
1105:手机100开启无线反向充电功能。
1106:手表200反馈无线反向充电功能开启信息。
当手机100检测自身电量满足无线充电供电条件时,开启无线反向充电功能,并向手表200反馈无线反向充电功能开启信息。手表200接收到该信息之后,可以通过触摸显示屏201显示通知告知用户,显示内容参考图6b及图6c所示,提示用户将手表200放入手机100的充电区域。可以理解,手机100也可以在向手表200反馈无线反向充电功能开启信息时,也可以通过其显示屏194向用户显示告知通知,在此不做限制。
1107~1109与实施例一中的步骤505~507相同,在此不再赘述。
可以理解,上述步骤1101与步骤1102-1104的实施顺序在此不做限制,在另一些实施例中,可以 先实施步骤1102-1104,再实施步骤1101。
可以理解,在上述实施例一和实施例二中,采集蓝牙信号、分析蓝牙信号波形特征的设备可以是相同的设备,例如通过手机100的无线通信模块160或蓝牙芯片采集蓝牙信号并通过处理器110分析蓝牙信号波形特征、或通过手表200的蓝牙芯片203采集蓝牙信号并通过处理器202分析蓝牙信号波形特征;在另一些实施例中,采集蓝牙信号、分析蓝牙信号波形特征的设备也可以是不同的设备,例如通过手表200的蓝牙芯片203采集蓝牙信号发送给手机100的处理器110进行蓝牙信号波形特征分析。在此不做限制,从技术方案实施的难易程度角度来看,优选采集蓝牙信号、分析蓝牙信号波形特征的设备为相同的设备。
在本申请的实施例一和实施例二中,通过对手机100与手表200之间的蓝牙信号的波形特征进行分析,判断手机100与手表200之间的相对运动或相对位置是否满足无线充电空间条件,并在手机100满足无线充电供电条件的情况下,确定手机100满足无线反向充电功能开启条件,进而实现快速启用手机100的无线反向充电功能,本申请的电子设备间的无线充电方法判断准确、操作方便,能够大大提高用户体验。此外,本申请还可以通过采集误判情形下的相应数据实现不断更新误判导致开启无线反向充电功能的情形,以避免误判情形的多次发生从而提高开启无线反向充电功能的准确率,利于提高用户体验;同时,本申请可以设置是否通过用户确认开启通知以开启无线反向充电功能与用户进行交互,可以满足不同用户的使用习惯,利于提高用户体验。
实施例三
下面结合附图介绍本申请方案的一种电子设备间的无线充电方法的另一种实施过程。
图12根据本申请实施例示出了电子设备间的无线充电方法的另一种实施过程的示意性流程图。如图12所示,通过检测手表200与手机100之间的蓝牙信号波形来开启手机100的无线反向充电功能的整体流程如下:
1201:手机100检测蓝牙信号的蓝牙波形。
1202:手机100判断蓝牙波形是否满足要求。如果蓝牙波形不满足要求,则执行流程1203;如果蓝牙波形满足要求,则执行流程1204。
1203:手机100保持无线反向充电功能关闭。返回执行1201。
1204:手机100开启无线反向充电功能。
1205:手机100检测是否有待充电设备位于充电区域进行无线充电。如果手机100的充电区域有待充电设备在充电,则执行流程1206;如果手机100的充电区域未检测到待充电设备在充电,则执行流程1207。可以理解,上述待充电设备可以是手表200,也可以是其他需要充电的电子设备,在此不做限制。
1206:手机100继续向待充电设备进行无线充电。
1207:手机100关闭无线反向充电功能。
其中,上述流程1203的实施过程可以参考上述实施例一中步骤501中的相关描述,在此不再赘述。上述流程1204至1207的实施过程可以参考上述实施例一中步骤504至步骤507中的相关描述,在此不再赘述。
在一些实施例中,在上述流程1201至1202的实施过程中,具体的检测并判断蓝牙波形是否满足要求的过程如图13所示,包括以下步骤:
1301:手机100提取一段时间内的蓝牙波形。
1302:手机100基于蓝牙波形的RSSI min≤均值,判断手机100与手表200是否接近。
1303:手机100基于蓝牙波形的波形特征判断条件:(min<极差<max)、RSSI min≤均值≤RSSI max、T1≤频率≤T2、N<周期数,检测特定动作以识别用户的充电意图。
1304:手机100打开无线充电开关,手表200提示用户确认充电。
可以理解,上述流程1301至1303的实施过程可以参考上述实施例一中步骤501中的相关描述,在此不再赘述。可以理解,上述流程1303的实施过程中所描述的特定动作可以参考图3a-3b及相关描述中,对手机100与手表200之间相对运动的描述,在此不再赘述。上述流程1304的实施过程,可以参考上述实施例一中步骤504及相关描述,在此不再赘述。在另一些实施例中,上述流程1304的实施过程中,手表200也可以直接提示用户将手表200放入手机100的充电区域进行充电,具体参考上述实施例一中步骤504及相关描述,在此不再赘述。
在另一些实施例中,在上述流程1201至1202的实施过程中,具体的检测并判断蓝牙波形是否满足要求的过程如图14所示,包括以下步骤:
1401:手机100提取一段时间内的蓝牙波形。
1402:手机100基于蓝牙波形的RSSI min≤均值,判断手机100与手表200是否接近。
1403:手机100基于蓝牙波形的波形特征判断条件:(min<极差<max)、RSSI min≤均值≤RSSI max、T1≤频率≤T2、N<周期数,识别手表200是否位于手机100的充电区域。
1404:手机100打开无线充电开关,手表200提示用户确认充电。
可以理解,上述流程1401至1403的实施过程可以参考上述实施例一中步骤501中的相关描述,在此不再赘述。可以理解,上述流程1403的实施过程中判断手表200是否位于手机100的充电区域可以参考图3c、图10a-10b及相关描述中,对手机100与手表200之间相对位置的描述,在此不再赘述。上述流程1404的实施过程,可以参考上述实施例一中步骤504及相关描述,在此不再赘述。在另一些实施例中,上述流程1404的实施过程中,手表200也可以直接提示用户将手表200放入手机100的充电区域进行充电,具体参考上述实施例一中步骤504及相关描述,在此不再赘述。
上述手机100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本发明实施例以分层架构的Android系统为例,示例性说明手机100的软件结构。
图15是本发明实施例的手机100的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)和系统库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图15所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图15所示,应用程序框架层可以包括窗口管理器,内容提供器,视图系统,电话管理器,资源管理器,通知管理器等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
电话管理器用于提供手机100的通信功能。例如通话状态的管理(包括接通,挂断等)。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。在本申请实施例中,通过手机100的应用程序框架层的通知管理器向用户显示通知,例如无线反向充电功能的开启通知属于告知类型的通知,用户已阅即可,可以不处理;无线反向充电功能的开启确认通知属于对话窗口形式的通知,需要用户点击“确认”或“取消”来进行处理。
Android Runtime包括核心库和虚拟机。Android runtime负责安卓系统的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是安卓的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
系统库可以包括多个功能模块。例如:表面管理器(surface manager),媒体库(Media Libraries),三维图形处理库(例如:OpenGL ES),2D图形引擎(例如:SGL)等。
表面管理器用于对显示子系统进行管理,并且为多个应用程序提供了2D和3D图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现三维图形绘图,图像渲染,合成和图层处理等。
2D图形引擎是2D绘图的绘图引擎。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动。
在说明书对“一个实施例”或“实施例”的引用意指结合实施例所描述的具体特征、结构或特性被包括在根据本申请公开的至少一个范例实施方案或技术中。说明书中的各个地方的短语“在一个实施例中”的出现不一定全部指代同一个实施例。
本申请公开还涉及用于执行文本中的操作装置。该装置可以专门处于所要求的目的而构造或者其可以包括被存储在计算机中的计算机程序选择性地激活或者重新配置的通用计算机。这样的计算机程序可以被存储在计算机可读介质中,诸如,但不限于任何类型的盘,包括软盘、光盘、CD-ROM、磁光盘、只读存储器(ROM)、随机存取存储器(RAM)、EPROM、EEPROM、磁或光卡、专用集成电路(ASIC)或者适于存储电子指令的任何类型的介质,并且每个可以被耦合到计算机系统总线。此外,说明书中所提到的计算机可以包括单个处理器或者可以是采用针对增加的计算能力的多个处理器涉及的架构。
本文所提出的过程和显示器固有地不涉及任何具体计算机或其他装置。各种通用系统也可以与根据本文中的教导的程序一起使用,或者构造更多专用装置以执行一个或多个方法步骤可以证明是方便的。 在一下描述中讨论了用于各种这些系统的结构。另外,可以使用足以实现本申请公开的技术和实施方案的任何具体编程语言。各种编程语言可以被用于实施本公开,如本文所讨论的。
另外,在本说明书所使用的语言已经主要被选择用于可读性和指导性的目的并且可能未被选择为描绘或限制所公开的主题。因此,本申请公开旨在说明而非限制本文所讨论的概念的范围。

Claims (15)

  1. 一种电子设备间的无线充电方法,其特征在于,包括:
    第一电子设备采集与所述第一电子设备建立了蓝牙连接的第二电子设备发送的蓝牙信号;
    第一电子设备基于采集到的所述蓝牙信号,判断所述第一电子设备与所述第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件;
    第一电子设备根据所述判断的结果,确定是否向所述第二电子设备进行无线充电。
  2. 根据权利要求1所述的方法,其特征在于,所述第一电子设备根据所述判断的结果,确定是否向所述第二电子设备进行无线充电,包括:
    所述第一电子设备在判断出所述第一电子设备与所述第二电子设备之间的相对运动或相对位置满足所述无线充电空间条件,并且所述第一电子设备自身电量满足无线充电供电条件的情况下,向所述第二电子设备进行无线充电。
  3. 根据权利要求2所述的方法,其特征在于,所述第一电子设备通过以下方式向所述第二电子设备进行无线充电:
    所述第一电子设备提示用户将所述第二电子设备放入所述第一电子设备的充电区域,并在检测到所述第二电子设备位于所述充电区域的情况下,向所述第二电子设备进行无线充电。
  4. 根据权利要求3所述的方法,其特征在于,所述第一电子设备根据所述判断的结果,确定是否向所述第二电子设备进行无线充电,还包括:
    所述第一电子设备在判断出所述第一电子设备与所述第二电子设备之间的相对运动或相对位置满足所述无线充电空间条件,并且所述第一电子设备自身电量满足无线充电供电条件的情况下,向用户发送提示信息,其中所述提示信息用于提示用户确认是否对所述第二电子设备进行无线充电;
    所述第一电子设备在用户确认对所述第二电子设备进行无线充电的情况下,提示用户将所述第二电子设备放入所述第一电子设备的充电区域,并在检测到所述第二电子设备位于所述充电区域的情况下,向所述第二电子设备进行无线充电。
  5. 根据权利要求3或4中任一项所述的方法,其特征在于,所述无线充电供电条件包括:
    所述第一电子设备的电量余量大于或等于预设电量阈值。
  6. 根据权利要求1所述的方法,其特征在于,所述第一电子设备基于采集到的所述蓝牙信号,判断所述第一电子设备与所述第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件,包括:
    所述第一电子设备通过对采集的所述蓝牙信号进行波形特征分析,判断所述第一电子设备与所述第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件。
  7. 根据权利要求6所述的方法,其特征在于,所述波形特征包括极差、均值、频率、峰谷值及周期数。
  8. 根据权利要求7所述的方法,其特征在于,在所述波形特征满足下列判断条件中的至少一项的情况下,所述第一电子设备与所述第二电子设备之间的相对运动或相对位置满足无线充电空间条件:
    所述极差的计算结果在预设的极差阈值范围内;
    所述均值的计算结果在预设的均值阈值范围内;
    所述频率的计算结果在预设的频率阈值范围内;
    所述峰谷值的差值计算结果大于或等于预设的差值下限阈值,或者所述峰谷值的差值计算结果小于或等于预设的差值上限阈值;以及,
    所述周期数的计算结果大于或等于预设的周期数下限阈值。
  9. 一种电子设备间的无线充电方法,其特征在于,包括:
    第二电子设备采集与所述第二电子设备建立了蓝牙连接的第一电子设备发送的蓝牙信号;
    第二电子设备基于采集到的所述蓝牙信号,判断所述第一电子设备与所述第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件;
    第二电子设备在判断出满足无线充电空间条件的情况下,向所述第一电子设备发送无线充电请求,其中,所述无线充电请求用于请求第一电子设备对所述第二电子设备进行无线充电。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    所述第二电子设备从所述第一电子设备接收到提示指令;
    所述第二电子设备响应于接收到的所述提示指令,提示用户将所述第二电子设备放入所述第一电子设备的充电区域。
  11. 根据权利要求9所述的方法,其特征在于,所述第二电子设备基于采集到的所述蓝牙信号,判断所述第一电子设备与所述第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件,包括:
    所述第二电子设备通过对采集的所述蓝牙信号进行波形特征分析,判断所述第一电子设备与所述第二电子设备之间的相对运动或相对位置是否满足无线充电空间条件。
  12. 根据权利要求11所述的方法,其特征在于,所述波形特征包括极差、均值、频率、峰谷值及周期数。
  13. 根据权利要求12所述的方法,其特征在于,在所述波形特征满足下列判断条件中至少一项的情况下,所述第一电子设备与所述第二电子设备之间的相对运动或相对位置满足无线充电空间条件:
    所述极差的计算结果在预设的极差阈值范围内;
    所述均值的计算结果在预设的均值阈值范围内;
    所述频率的计算结果在预设的频率阈值范围内;
    所述峰谷值的差值计算结果大于或等于预设的差值下限阈值,或者所述峰谷值的差值计算结果小于或等于预设的差值上限阈值;以及,
    所述周期数的计算结果大于或等于预设的周期数下限阈值。
  14. 一种计算机可读存储介质,其特征在于,所述存储介质上存储有指令,所述指令在计算机上执行时使所述计算机执行权利要求1至13中任一项所述的电子设备间的无线充电方法。
  15. 一种电子设备,其特征在于,包括:一个或多个处理器;一个或多个存储器;
    所述一个或多个存储器存储有一个或多个程序,当所述一个或者多个程序被所述一个或多个处理器执行时,使得所述电子设备执行权利要求1至13中任一项所述的电子设备间的无线充电方法。
PCT/CN2021/134823 2020-12-02 2021-12-01 电子设备间的无线充电方法、存储介质及其电子设备 WO2022117002A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011406002.2 2020-12-02
CN202011406002.2A CN114583852A (zh) 2020-12-02 2020-12-02 电子设备间的无线充电方法、存储介质及其电子设备

Publications (1)

Publication Number Publication Date
WO2022117002A1 true WO2022117002A1 (zh) 2022-06-09

Family

ID=81768169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134823 WO2022117002A1 (zh) 2020-12-02 2021-12-01 电子设备间的无线充电方法、存储介质及其电子设备

Country Status (2)

Country Link
CN (1) CN114583852A (zh)
WO (1) WO2022117002A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115065128B (zh) * 2022-07-26 2023-01-17 荣耀终端有限公司 电子设备及充电控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071552A (zh) * 2015-08-10 2015-11-18 惠州Tcl移动通信有限公司 无线充电方法、系统、装置、能量发射设备及接收设备
CN106787264A (zh) * 2016-11-29 2017-05-31 北京小米移动软件有限公司 无线充电控制方法及装置
CN107769332A (zh) * 2017-11-22 2018-03-06 联想(北京)有限公司 可充电设备及其充电方法、充电装置
US10153657B1 (en) * 2018-03-07 2018-12-11 David Koifman Retrofit wireless solar charger apparatus and methods
CN108988513A (zh) * 2018-08-14 2018-12-11 Oppo广东移动通信有限公司 无线充电对准方法、装置、存储介质及电子设备
CN111293749A (zh) * 2020-02-28 2020-06-16 Oppo广东移动通信有限公司 充电方法、充电装置、终端设备、移动电源及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071552A (zh) * 2015-08-10 2015-11-18 惠州Tcl移动通信有限公司 无线充电方法、系统、装置、能量发射设备及接收设备
CN106787264A (zh) * 2016-11-29 2017-05-31 北京小米移动软件有限公司 无线充电控制方法及装置
CN107769332A (zh) * 2017-11-22 2018-03-06 联想(北京)有限公司 可充电设备及其充电方法、充电装置
US10153657B1 (en) * 2018-03-07 2018-12-11 David Koifman Retrofit wireless solar charger apparatus and methods
CN108988513A (zh) * 2018-08-14 2018-12-11 Oppo广东移动通信有限公司 无线充电对准方法、装置、存储介质及电子设备
CN111293749A (zh) * 2020-02-28 2020-06-16 Oppo广东移动通信有限公司 充电方法、充电装置、终端设备、移动电源及存储介质

Also Published As

Publication number Publication date
CN114583852A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2021052263A1 (zh) 语音助手显示方法及装置
KR102470275B1 (ko) 음성 제어 방법 및 전자 장치
WO2020182065A1 (zh) 快捷功能启动的方法及电子设备
WO2020177585A1 (zh) 一种手势处理方法及设备
WO2021213164A1 (zh) 应用界面交互方法、电子设备和计算机可读存储介质
US10664010B2 (en) Electronic device and operating method thereof
CN109445572A (zh) 全屏显示视频中快速调出小窗口的方法、图形用户接口及终端
WO2021036770A1 (zh) 一种分屏处理方法及终端设备
EP3040819A1 (en) Electronic device having curved bottom and operation method therefor
WO2021063237A1 (zh) 电子设备的控制方法及电子设备
JP7397861B2 (ja) スタイラスペン検出方法、システムおよび関連装置
WO2021037223A1 (zh) 一种触控方法与电子设备
WO2020073288A1 (zh) 一种触发电子设备执行功能的方法及电子设备
WO2021078032A1 (zh) 用户界面的显示方法及电子设备
WO2021000943A1 (zh) 一种指纹开关的管理方法及装置
WO2020238759A1 (zh) 一种界面显示方法和电子设备
WO2021175272A1 (zh) 一种应用信息的显示方法及相关设备
CN114827972B (zh) 与手写笔建立连接的方法和电子设备
CN110058729B (zh) 调节触摸检测的灵敏度的方法和电子设备
WO2022117002A1 (zh) 电子设备间的无线充电方法、存储介质及其电子设备
CN113220176B (zh) 基于微件的显示方法、装置、电子设备及可读存储介质
WO2022127130A1 (zh) 一种添加操作序列的方法、电子设备和系统
WO2022028290A1 (zh) 基于指向操作的设备之间的交互方法及电子设备
WO2023130931A1 (zh) 服务异常提醒方法、电子设备及存储介质
KR20150051587A (ko) 곡면 바닥을 포함하는 전자 장치 및 그 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900028

Country of ref document: EP

Kind code of ref document: A1