WO2022116614A1 - 可在线换料熔盐堆及其换料方法 - Google Patents

可在线换料熔盐堆及其换料方法 Download PDF

Info

Publication number
WO2022116614A1
WO2022116614A1 PCT/CN2021/116591 CN2021116591W WO2022116614A1 WO 2022116614 A1 WO2022116614 A1 WO 2022116614A1 CN 2021116591 W CN2021116591 W CN 2021116591W WO 2022116614 A1 WO2022116614 A1 WO 2022116614A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
molten salt
refueling
coolant
vessel
Prior art date
Application number
PCT/CN2021/116591
Other languages
English (en)
French (fr)
Inventor
郑华
张辉
何国伟
魏淑虹
张勋
Original Assignee
中广核工程有限公司
深圳中广核工程设计有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011403541.0A external-priority patent/CN112635083B/zh
Application filed by 中广核工程有限公司, 深圳中广核工程设计有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核工程有限公司
Publication of WO2022116614A1 publication Critical patent/WO2022116614A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/44Fluid or fluent reactor fuel
    • G21C3/54Fused salt, oxide or hydroxide compositions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/33Supporting or hanging of elements in the bundle; Means forming part of the bundle for inserting it into, or removing it from, the core; Means for coupling adjacent bundles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of nuclear power, in particular to an online refueling molten salt reactor and a refueling method thereof.
  • the molten salt reactor is the only liquid-fueled reactor among the six fourth-generation nuclear energy systems that can be used for power generation, transmutation of nuclear waste, hydrogen production, and nuclear fuel production.
  • Molten salt reactor includes two technical directions. The first type is liquid fuel molten salt reactor, where fission material is dissolved in molten fluoride salt; the second type is solid fuel molten salt reactor, molten fluoride salt is only used as coolant, fuel Using coated particles, similar to the fuel of pebble bed HTR, solid fuel type molten salt reactors are often referred to as fluorinated salt cooled solid fuel high temperature reactors (FHRs).
  • FHRs fluorinated salt cooled solid fuel high temperature reactors
  • the liquid fuel molten salt reactor uses the liquid fusion of thorium or uranium dissolved in fluoride salts such as beryllium fluoride, sodium fluoride and lithium fluoride as fuel, and no special solid fuel components are required.
  • fluoride salts such as beryllium fluoride, sodium fluoride and lithium fluoride
  • the liquid fuel determines that its working principle is different from that of conventional solid fuel reactors: the fuel molten salt containing fission and convertible materials flows into the core with a core inlet temperature of more than 500 °C and reaches the criticality of the optimized design.
  • the molten fuel salt releases heat by fission reaction at the core, and is absorbed and taken away by itself, without the need for additional coolant, the temperature of the molten fuel salt at the core outlet can reach 700 ⁇ 800 °C (its boiling point temperature is about 1400 °C).
  • the high-temperature fuel molten salt flowing out of the core transfers heat to the secondary-side coolant molten salt through the primary-side heat exchanger, and then to the third-circuit through the secondary-side heat exchanger.
  • Rankine cycle which uses heated water vapor to drive a turbo-generator to generate electricity, and now consider using a secondary heat exchanger to heat helium or supercritical carbon dioxide for power generation or hydrogen production.
  • the high-temperature fuel molten salt of the entire core of the molten salt reactor is not only a heat transfer agent, but also a heat source for the nuclear reaction. It is a new nuclear reactor fuel utilization technology that is completely different from other solid fuels.
  • Chinese patent CN201810089818.3 discloses a small modularized fluidized pebble bed fluorine salt-cooled high temperature reactor, including a nuclear fuel operating system, a nuclear heat generation system, a nuclear heat transfer system and a nuclear heat utilization system.
  • the nuclear fuel operating system is used to store the nuclear fuel and load the nuclear fuel into the nuclear heat generation system and unload the nuclear fuel from the nuclear heat generation system.
  • the nuclear heat generation system controls the fission of the nuclear fuel and generates nuclear heat.
  • Nuclear heat utilization system nuclear heat utilization system utilizes nuclear heat for power generation or other heat utilization.
  • the nuclear fuel operating system feeds the fuel balls from the lower part of the core. The new fuel balls enter the core from the bottom by buoyancy.
  • Chinese patent 200880117773.0 discloses a nuclear reactor with a new concept of fuel elements, in particular a pool type nuclear reactor, comprising a main tank with a core containing a bundle of fuel assemblies and immersed in a main coolant, the main A coolant circulates between the core and at least one heat exchanger; the reactor is characterized in that the fuel assemblies extend along respective parallel longitudinal axes and have respective active portions and respective service portions, the active portions part disposed at the bottom end of the fuel assembly and submerged in the main coolant to form the core, the service part extending above the active part and emerging from the main coolant; the reactor is circular shaped core.
  • the structure of the fuel assembly in the above-mentioned patent is complex, and it needs to be shut down for refueling. Whether the fuel assembly has high temperature resistance, heat transfer characteristics and other properties is unknown.
  • Chinese patent 201480010226.8 discloses a practical molten salt fission reactor comprising a core, a pool of coolant liquid and a heat exchanger; the core includes an array of hollow tubes of molten salt containing fission isotopes.
  • the array of tubes is at least partially submerged in the pool of coolant liquid; the array of tubes includes a critical region in which the density of fissile isotopes is sufficient to initiate a self-sustaining fission reaction during operation of the reactor.
  • Heat transfer from the molten salt of the fission isotope to the tube is accomplished by any one or more of: natural convection of the molten salt; mechanical stirring of the molten salt; and oscillating molten salt flow within the tube.
  • the molten salt of the fission isotope is completely contained within the tube during reactor operation.
  • the fission fuel molten salt is loaded in the fuel pipe, but the fuel molten salt is relatively corrosive to the fuel pipe. Once leaked, it will contaminate the entire primary circuit coolant, which is unfavorable for the control of radioactive substances, and its fission gas collection and control are difficult.
  • the patent does not introduce the fuel loading scheme, and it is unknown whether it needs to be shut down for refueling.
  • the technical problem to be solved by the present invention is to provide an online refueling molten salt reactor based on TRISO fuel balls and a refueling method thereof.
  • a molten salt reactor capable of on-line refueling, comprising a closed protective vessel, a reactor vessel arranged in the protective vessel, and a reactor arranged in the reactor vessel a core, a support mechanism and a hoisting mechanism arranged in the protective container;
  • the support mechanism includes a plurality of support rails spaced in parallel and spanning over the reactor vessel; the core includes a plurality of fuel assemblies arranged along the length of the support rails, each of the fuel assemblies Comprising a fuel grid vertically immersed in coolant, TRISO fuel balls housed therein along the height of said fuel grid and immersed in coolant; top of said fuel grid exposed to coolant and suspended from said support rails superior;
  • the hoisting mechanism is located above the support mechanism, and is used for hoisting the fuel assembly and laterally moving the fuel assembly along the support rail.
  • the TRISO fuel spheres form a single row or multiple rows.
  • the reactor vessel is provided with a support structure supported at the bottom of the fuel grid.
  • the support rail includes at least two transverse rails arranged in parallel and spaced apart; the top of the fuel grid is fitted on at least two of the transverse rails.
  • the hoisting mechanism includes at least one beam located above the support mechanism, and a hoisting member that can be lifted and lowered on the beam.
  • the on-line refueling molten salt reactor further comprises at least one heat exchanger arranged in the reactor vessel;
  • the coolant in the reactor vessel enters the heat exchanger from the inlet at the upper end of the heat exchanger, and returns to the reactor vessel and the core from the outlet at the lower end of the heat exchanger after heat exchange to form a coolant circular loop.
  • the coolant is naturally circulated between the heat exchanger and the core along the coolant circulation loop under the action of the density difference caused by the temperature difference;
  • the coolant is forced to flow in the coolant circulation loop in a forced circulation manner.
  • the on-line refueling molten salt stack further includes at least one passive air cooling flow channel arranged in the surrounding wall of the protective container, and the outer wall surface of the protective container is provided with the passive air cooling channels respectively.
  • the air inlet and the air outlet communicated with the cooling channel.
  • the passive air cooling flow channel is bent in the surrounding wall of the protection container to form a connected input flow channel and an output flow channel, and the output flow channel is closer to the protection than the input flow channel the inner wall of the container;
  • the air inlet communicates with the input flow channel, and the air outlet communicates with the output flow channel.
  • the passive air cooling flow channel is bent and extended multiple times in the surrounding wall of the protective container.
  • the outer wall of the reactor vessel is provided with cooling fins.
  • the present invention also provides a refueling method for on-line refueling of the molten salt heap, comprising the following steps:
  • the hoisting mechanism lifts the spent fuel assembly so that the top of the fuel grid is separated from the support rail;
  • the hoisting mechanism moves the hoisted spent fuel assembly along the support rail to one end of the support rail;
  • the hoisting mechanism sequentially moves the fuel assemblies suspended on the support rails, fills the positions of spent fuel assemblies, and loads new fuel assemblies from the other end of the support rails.
  • one end of the support rail is used as the fuel assembly inlet end, and the opposite end is used as the fuel discharge end;
  • the fuel assembly entry ends of the two adjacent support rails are staggered.
  • the beneficial effects of the present invention are as follows: the TRISO fuel balls are loaded into the vertical fuel grid to form a single fuel assembly, and the supporting mechanism and the hoisting mechanism arranged above the fuel assembly are used to realize the arrangement of the fuel assemblies in the reactor vessel, and realize the molten salt reactor. In-line refueling and fine adjustment of axial enrichment of individual fuel assemblies, modular construction and extended power.
  • FIG. 1 is a schematic cross-sectional structure diagram of a molten salt reactor capable of online refueling according to an embodiment of the present invention
  • FIG. 2 is a top view of a fuel assembly on a support mechanism in a molten salt reactor capable of online refueling according to an embodiment of the present invention.
  • a molten salt reactor capable of online refueling includes a closed protective vessel 10 , a reactor vessel 20 arranged in the protective vessel 10 , a core arranged in the reactor vessel 20 , a The support mechanism 30 and the hoisting mechanism 40 in the container 10 are protected.
  • the reactor vessel 20 is contained by the protective vessel 10 and is located in a reactor building that can withstand low pressure (positive and negative pressure); an air filter and purification device is installed in the building to collect radionuclides such as fission gas.
  • the main loop is located in the reactor vessel (pool reactor) 20 .
  • the coolant is contained in the reactor vessel 20 to submerge the core in the reactor vessel 20 .
  • the core includes a plurality of fuel assemblies 50 , each fuel assembly 50 including a fuel grid 51 and a plurality of TRISO fuel spheres (isotropically clad fuel) 52 housed within the fuel grid 51 .
  • the entire fuel grid 51 may be a hollow or net-like cylindrical structure, the fuel grid 51 is vertically arranged in the reactor vessel 20 , and the TRISO fuel balls 52 are accommodated therein along the height of the fuel grid 51 and Immersion in the coolant removes heat from the TRISO fuel balls 52 by the flow of the coolant.
  • the TRISO fuel balls 52 form a single row or multiple rows in the height direction of the fuel grid 51 .
  • the coolant can be molten salt coolant, or liquid metal coolant such as metal lead-based, sodium, or other atmospheric liquid coolant compatible with TRISO fuel.
  • the support mechanism 30 is located above the reactor vessel 20 in the protective vessel 10 for suspending and positioning the fuel assembly 50 of the core.
  • the support mechanism 30 may include a plurality of support rails 31 spaced in parallel and spanning above the reactor vessel 20 , a plurality of fuel assemblies 50 are arranged along the length direction of the support rails 31 , and the fuel grids 51 of the fuel assemblies 50 are vertically immersed In the coolant, the TRISO fuel balls 52 housed in the fuel grid 51 are also immersed in the coolant.
  • the top of the fuel grid 51 exposes the coolant and is suspended from the support rail 31 .
  • the top of the fuel grid 51 and the support rail 31 may be provided with matching snap assemblies, positioning pin assemblies or concave-convex structures, so that the top of the fuel grid 51 is positioned on the support rail 31 and is not easily displaced.
  • a square core can be formed by arranging a plurality of fuel assemblies 50 in groups and suspended on a plurality of support rails 31 .
  • Each fuel assembly 50 can adjust the height accommodation of the TRISO fuel spheres 52 before loading according to requirements, thereby adjusting the fuel enrichment at different heights to adjust the core power distribution.
  • the TRISO fuel ball 52 can be used to retain fission gas, etc., and the molten salt coolant is used to retain the fission products that may be released.
  • the reactor building is a slightly negative pressure containment, and the ventilation system removes possible radioactive gases.
  • the support rail 31 includes at least two transverse rails 311 arranged in parallel and spaced apart; the top of the fuel grid 51 is matched and positioned on the transverse rails 311 .
  • the general outer circumference of the fuel grid 51 is smaller than the interval between two horizontally adjacent horizontal bars 311, which is convenient for lifting and refueling movement; the top of the fuel grid 51 is positioned above the two horizontal bars 311.
  • the reactor vessel 20 is provided with a support structure 21 , which is supported at the bottom of the fuel grid 51 .
  • the support structure 21 may be in the form of a support beam, a support mesh panel, or the like.
  • the hoisting mechanism 40 is located above the supporting mechanism 30 in the protective container 10 for hoisting the fuel assembly 50 and laterally moving the fuel assembly 50 along the supporting rail 31 .
  • the hoisting mechanism 40 includes at least one beam 41 located above the support mechanism 30 , and a hoisting member 42 that can be lifted and lowered on the beam 41 .
  • the lifting member 42 is used to cooperate with the top of the fuel grid 51 to lift or lower the fuel assembly 50 .
  • the hoisting member 42 can be a structural member such as a hook, which can be specifically set according to the top structure of the fuel grid 51 .
  • the molten salt reactor capable of online refueling of the present invention further includes a remote control terminal (not shown) for controlling the start and stop of the hoisting mechanism 40 .
  • the molten salt reactor capable of online refueling of the present invention further includes at least one heat exchanger 60 disposed in the reactor vessel 20 .
  • the coolant in the reactor vessel 20 enters the heat exchanger 60 from the inlet at the upper end of the heat exchanger 60, and exchanges heat with the medium passing through the heat exchanger 60 (the medium on the secondary side can be selected from molten salt, water, carbon dioxide, etc.) , and then return to the reactor vessel 20 and the core from the outlet at the lower end of the heat exchanger 60 to form a coolant circulation loop (as shown by the arrow in FIG. 1 ).
  • the coolant flows in the coolant circulation circuit in a natural circulation manner; or, a circulating pump can be provided at the inlet of the heat exchanger 60 to drive the cooling
  • the coolant enters the heat exchanger 60 to force the coolant to flow in the coolant circulation loop in a forced circulation manner.
  • the reactor vessel 20 is provided with two heat exchangers 60 located on opposite sides of the core.
  • the heat exchanger 60 can form a module with the reactor core, and the number of modules in the reactor vessel 20 can be expanded as required.
  • the molten salt reactor capable of online refueling of the present invention further includes at least one passive air cooling flow channel 70 disposed in the surrounding wall of the protective container 10 , and the outer wall surface of the protective container 10 is provided with a passive air cooling flow channel 70 connected to the outer wall surface of the protective container 10 respectively.
  • air inlet not shown
  • air outlet not shown. The air enters the passive air cooling channel 70 from the air inlet, flows along the passive air cooling channel 70, absorbs heat, and then rises up to be discharged from the passive air cooling channel 70 from the air outlet.
  • the passive air cooling flow channel 70 is bent in the surrounding wall of the protective container 10 to form a connected input flow channel 71 and an output flow channel 72 , and the output flow channel 72 is closer to the protective container 10 than the input flow channel 71 The inner wall surface or parallel to the inner wall surface.
  • the air inlet communicates with the input flow channel 71
  • the air outlet communicates with the output flow channel 72 .
  • the passive air cooling channel 70 is bent and extended multiple times in the surrounding wall of the protection container 10 , and may be bent and extended multiple times along the horizontal direction or the vertical direction.
  • the air inlet and air outlet may be located on opposite sides or on the same side of the enclosure, and the air outlet may be located at a height higher than where the air inlet is located.
  • the heat exchanger 60 and the passive air cooling channel 70 are installed. After the shutdown, the high temperature characteristics of the coolant are used, and passive cooling such as thermal radiation and convective heat transfer (large surface area and thin fins to enhance heat exchange) are used to export the heat after the accident. to the final heat sink - the atmosphere.
  • passive cooling such as thermal radiation and convective heat transfer (large surface area and thin fins to enhance heat exchange) are used to export the heat after the accident. to the final heat sink - the atmosphere.
  • heat dissipation fins may also be provided on the outer wall of the reactor vessel 20 to enhance the heat dissipation effect and achieve enhanced heat dissipation.
  • the cooling fins are preferably fins with a larger surface area.
  • the refueling method for on-line refueling of molten salt reactors of the present invention may include the following steps:
  • the hoisting mechanism 40 hoists the spent fuel assembly so that the top of the fuel grid 51 is separated from the support rail 31 .
  • the hoisting mechanism 40 moves the hoisted spent fuel assembly along the support rail 31 to one end of the support rail 31 .
  • the hoisting mechanism 40 sequentially moves the fuel assemblies 50 suspended on the support rail 31 , fills the position of the spent fuel assemblies, and loads the new fuel assemblies 50 from the other end of the support rail 31 .
  • one end of the support rail 31 is used as the fuel assembly inlet end, and the opposite end is used as the fuel discharge end.
  • a new fuel assembly 50 is moved from the fuel assembly entry end of the support rail 31 into the core.
  • the inlet ends of the fuel assemblies of two adjacent support rails 31 are arranged in a staggered manner, so as to achieve better core power flattening by utilizing different fuel enrichment degrees in the lateral and vertical directions.
  • each row of fuel assemblies is loaded with new fuel assemblies 50 from one end of the support rails 31 where it is located, and the spent fuel assemblies are taken out from the opposite end.
  • the old fuel assemblies 50 are moved to the spent fuel assembly side in turn, and the fuel assemblies 50 can be moved to adjacent positions only by lifting the hoisting mechanism 40 slightly, and the fuel assemblies 50 are always kept in the coolant.
  • the spent fuel assemblies After passing through the core, the spent fuel assemblies are moved to the periphery of the reactor vessel 20 for storage until the decay heat is reduced to a certain value, and then moved to an intermediate storage facility.
  • a batch of new fuel assemblies is pre-stored in the reactor vessel 20 (with a sufficient distance from the core to ensure minimal fission reactions), which supports intermittent non-stop refueling and long refueling cycle requirements.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

一种可在线换料熔盐堆及换料方法,可在线换料熔盐堆包括保护容器(10)、设置在保护容器(10)内的反应堆容器(20)、堆芯、支撑机构(30)及吊装机构(40);支撑机构(30)包括多根相平行间隔并横跨于反应堆容器上方的支撑轨(31);堆芯包括沿着支撑轨(31)的长度方向布置的多个燃料组件(50),每一燃料组件(50)包括燃料格栅(51)、沿着燃料格栅(51)的高度容置在其中的TRISO燃料球(52);燃料格栅(51)顶部悬挂在支撑轨(31)上;吊装机构(40)位于支撑机构(30)的上方。可在线换料熔盐堆,通过TRISO燃料球(52)装入竖向的燃料栅格(51)内部形成单个燃料组件(50),配合燃料组件(50)上方的支撑机构(30)和吊装机构(40)实现燃料组件(50)在反应堆容器(20)内的排设和移动,实现熔盐堆的可在线换料及燃料组件(50)轴向富集度精细调整,模块化建造及扩展功率。

Description

可在线换料熔盐堆及其换料方法 技术领域
本发明涉及核电技术领域,尤其涉及一种可在线换料熔盐堆及其换料方法。
背景技术
熔盐堆(MSR)是六种第四代核能系统中唯一的液体燃料反应堆,可以用于发电、嬗变核废物、制氢和生产核燃料等方面。熔盐堆包含两种技术方向,第一类是液态燃料熔盐堆,裂变材料溶解在熔融的氟化盐中;第二类是固态燃料熔盐堆,熔融氟化盐只是作为冷却剂,燃料采用涂层颗粒,类似于球床式HTR的燃料,固体燃料类型的熔盐堆通常被称为氟化盐冷却固态燃料高温堆(FHR)。
以液态燃料熔盐堆为例,其采用溶解在氟化铍、氟化钠和氟化锂等氟化盐中的钍或铀的液态融合物作燃料,无需专门制作固体燃料组件。液体燃料决定了其工作原理与常规固体燃料反应堆的工作原理有所不同:含有裂变和可转换材料的燃料熔盐,以500℃以上的堆芯入口温度,流入经过优化设计的堆芯从而达到临界,且仅在堆芯处达到临界,燃料熔盐在堆芯处发生裂变反应释放热量,并被自身吸收和带走,不需另外的冷却剂,燃料熔盐在堆芯出口处温度可达700~800℃(其沸点温度约1400℃)。堆芯流出的高温燃料熔盐通过一次侧热交换器将热量传给二次侧冷却剂熔盐,再通过二次侧热交换器传给三回路,三回路系统在过去研究中,主要考虑采用朗肯循环,用被加热的水蒸气推动汽轮发电机进行发电,现在考虑采用二回路换热器加热氦气或超临界二氧化碳进行发电或制氢。由此可见,熔盐堆整个堆芯的高温燃料熔盐,既是载热剂,又是核反应的热源,是完全不同于其它固体燃料的一种全新核反应堆燃料利用技术。
中国专利CN201810089818.3公开一种小型模块化流动球床氟盐冷却高温反应堆,包括核燃料操作系统、核热产生系统、核热传输系统和核热利用系统。其中,核燃料操作系统用于存储核燃料并将核燃料装入核热产生系统以及将核燃料从核热产生系统卸载,核热产生系统控制核燃料的裂变并产生核热,核热传输系统将核热传输至核热利用系统,核热利用系统利用核热进行发电或其它热利用。核燃料操作系统将燃料球从堆芯的下部送入,新燃料球利用浮力从底部进入堆芯,经过一段时间的燃烧后,利用浮力上升至顶部后离开堆芯。然而,上述专利存在以下问题:其一回路冷却剂为强迫循环,系统流程复杂,关键设备熔盐泵技术难度大、造价高且容易损坏,熔盐泵一旦损坏或一回路管道泄漏将导致堆芯活性区丧失冷却造成严重核事故。堆芯燃料分布具有不确定性,对于堆芯功率控制将产生不利影响。
中国专利200880117773.0公开一种具有新概念燃料元件的核反应堆,特别是池型核反应堆,其包括具有容纳堆芯的主箱,所述堆芯包括一捆燃料组件并浸没在主冷却剂中,所述主冷却剂在所述堆芯与至少一个热交换器之间循环;该反应堆的特征在于:所述燃料组件沿各自的平行纵向轴线延伸,并具有各自的活性部分和各自的服务部分,所述活性部分设置在所述燃料组件的底端并浸没在所述主冷却剂中以构成所述堆芯,所述服务部分在所述活性部分的上方延伸并从所述主冷却剂露出;反应堆为圆形堆芯。上述专利中燃料组件结构复杂,需要停堆换料。燃料组件是否具有耐高温性能、传热特性等性能不详。
中国专利201480010226.8公开一种实用熔盐裂变反应堆,包括堆芯、冷却剂液体的池和热交换器;堆芯包括含有裂变同位素的熔盐的中空管的阵列。管阵列至少部分地浸没在冷却剂液体的池中;管阵列包括临界区,在所述临界区中,在反应堆运行期间裂变同位素的密度足以引发自维持裂变反应。从裂变同位素的熔盐到管的热传递通过下列方式的任何一种或多种实现:所述熔盐的自然对流;所述熔盐的机械搅拌;和所述管内的振荡熔盐流动。所述裂变同位素的熔盐在反应堆运行期间被完全容纳在所述管内。该专利中,燃料管内装载裂变燃料熔盐,但燃料熔盐对燃料管的腐蚀性比较强,一旦泄漏将污染整个一回路冷却剂,对放射性物质控制不利,其裂变气体收集及控制困难。另外,该专利中对燃料装载方案未作介绍,是否需要停堆换料不详。
技术问题
本发明要解决的技术问题在于,提供一种基于TRISO燃料球的可在线换料熔盐堆及其换料方法。
技术解决方案
本发明解决其技术问题所采用的技术方案是:提供一种可在线换料熔盐堆,包括密闭的保护容器、设置在所述保护容器内的反应堆容器、设置在所述反应堆容器内的堆芯、设置在所述保护容器内的支撑机构及吊装机构;
所述支撑机构包括多根相平行间隔并横跨于所述反应堆容器上方的支撑轨;所述堆芯包括沿着所述支撑轨的长度方向布置的多个燃料组件,每一所述燃料组件包括竖向浸入冷却剂中的燃料格栅、沿着所述燃料格栅的高度容置在其中并浸入冷却剂的TRISO燃料球;所述燃料格栅顶部露出冷却剂并悬挂在所述支撑轨上;
所述吊装机构位于所述支撑机构的上方,用于吊起所述燃料组件并沿着所述支撑轨横向移动所述燃料组件。
优选地,在所述燃料格栅中,所述TRISO燃料球形成单列或者多列。
优选地,所述反应堆容器内设有支撑在所述燃料格栅底部的支撑结构。
优选地,所述支撑轨包括相平行间隔设置的至少两根横轨;所述燃料格栅的顶部配合在至少两根所述横轨上。
优选地,所述吊装机构包括至少一根位于所述支撑机构上方的横梁、可升降设置在所述横梁上的起吊件。
优选地,所述可在线换料熔盐堆还包括设置在所述反应堆容器内的至少一个换热器;
所述反应堆容器内的冷却剂从所述换热器上端的进口进入所述换热器,经热交换后从所述换热器下端的出口返回所述反应堆容器及堆芯,形成一个冷却剂循环回路。
优选地,冷却剂在温度差导致的密度差作用下,沿着冷却剂循环回路在所述换热器和堆芯之间自然循环;或者,所述换热器的进口处设有循环泵,以强迫循环方式驱使冷却剂在冷却剂循环回路中流动。
优选地,所述可在线换料熔盐堆还包括设置在所述保护容器的围壁内的至少一个非能动空气冷却流道,所述保护容器的外壁面设有分别与所述非能动空气冷却流道相连通的空气进口和空气出口。
优选地,所述非能动空气冷却流道在所述保护容器的围壁内弯折形成相接的输入流道和输出流道,所述输出流道较于所述输入流道靠近所述保护容器的内壁面;
所述空气进口与所述输入流道相连通,所述空气出口与所述输出流道相连通。
优选地,所述非能动空气冷却流道在所述保护容器的围壁内多次弯折延伸。
优选地,所述反应堆容器外壁设有散热翅片。
本发明还提供一种可在线换料熔盐堆的换料方法,包括以下步骤:
S1、在燃料组件形成乏燃料组件后,吊装机构将乏燃料组件吊起,使其燃料格栅的顶部脱离支撑轨;
S2、吊装机构将吊起的乏燃料组件沿着所述支撑轨移动至所述支撑轨的一端部;
S3、吊装机构依次移动所述支撑轨上悬挂的燃料组件,填补乏燃料组件的位置,并将新的燃料组件从所述支撑轨的另一端装入。
优选地,所述支撑轨的一端作为燃料组件进入端,相对另一端作为燃料排出端;
相邻的两个所述支撑轨的燃料组件进入端交错设置。
有益效果
本发明的有益效果:通过TRISO燃料球装入竖向的燃料栅格内部形成单个燃料组件,配合燃料组件上方设置的支撑机构和吊装机构实现燃料组件在反应堆容器内的排设,实现熔盐堆的可在线换料及单个燃料组件轴向富集度精细调整,模块化建造及扩展功率。
附图说明
图1是本发明一实施例的可在线换料熔盐堆的剖面结构示意图;
图2是本发明一实施例的可在线换料熔盐堆中燃料组件在支撑机构上的俯视图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
如图1所示,本发明一实施例的可在线换料熔盐堆,包括密闭的保护容器10、设置在保护容器10内的反应堆容器20、设置在反应堆容器20内的堆芯、设置在保护容器10内的支撑机构30及吊装机构40。
反应堆容器20由保护容器10包容,坐落于可承受低压(正压及负压)的反应堆厂房中;厂房内设有空气过滤净化装置收集裂变气体等放射性核素。主回路位于反应堆容器(池式堆)20中。
冷却剂装在反应堆容器20内,浸没反应堆容器20内的堆芯。堆芯包括多个燃料组件50,每一燃料组件50包括燃料格栅51以及容置在燃料格栅51内的多个TRISO燃料球(各向同性包覆燃料)52。
本发明中,燃料格栅51整体可为镂空或网状的筒体结构,燃料格栅51竖向布置在反应堆容器20内,TRISO燃料球52沿着燃料格栅51的高度容置在其中并浸入冷却剂内,通过冷却剂的流动带走TRISO燃料球52的热量。根据TRISO燃料球52的直径大小设置,在燃料格栅51的高度方向上,TRISO燃料球52形成单列或者多列。
冷却剂可以是熔盐冷却剂,还可以选择金属铅基、钠等液态金属冷却剂或其他与TRISO燃料相容的常压液态冷却剂。
支撑机构30在保护容器10内位于反应堆容器20的上方,用于悬挂定位堆芯的燃料组件50。该支撑机构30可包括多根相平行间隔并横跨于反应堆容器20上方的支撑轨31,多个燃料组件50沿着支撑轨31的长度方向布置,燃料组件50的燃料格栅51竖向浸入冷却剂中,也将容置在燃料格栅51中的TRISO燃料球52浸入冷却剂。燃料格栅51的顶部露出冷却剂并悬挂在支撑轨31上。
燃料格栅51的顶部和支撑轨31之间可设有相配合的卡扣组件、定位销组件或凹凸结构等,使燃料格栅51的顶部定位在支撑轨31上,不易移位。
通过多个燃料组件50分成多组排列并悬挂在多个支撑轨31上,可以形成方形堆芯。每一燃料组件50可根据需求在装载前调整TRISO燃料球52的高度容置,从而调整不同高度的燃料富集度以调节堆芯功率分布。
此外,利用TRISO燃料球52可以滞留裂变气体等,利用熔盐冷却剂滞留可能释放出来的裂变产物,反应堆厂房为微负压包容体,通风系统去除可能存在的放射性气体。
本实施例中,结合图1、2,支撑轨31包括相平行间隔设置的至少两根横轨311;燃料格栅51的顶部配合并定位在横轨311上。燃料格栅51的大体外周尺寸小于水平相邻间隔的两根横杆311之间的间隔,便于起吊及换料移动;燃料格栅51的顶部则配合定位在两根横杆311上方。
为了进一步固定燃料组件50,反应堆容器20内设有支撑结构21,支撑在燃料格栅51的底部。支撑结构21可以是支撑梁、支撑网板等结构形式。
吊装机构40在保护容器10内位于支撑机构30的上方,用于吊起燃料组件50并沿着支撑轨31横向移动燃料组件50。
作为选择,本实施例中,吊装机构40包括至少一根位于支撑机构30上方的横梁41、可升降设置在横梁41上的起吊件42。起吊件42用于与燃料格栅51的顶部配合以将燃料组件50提起或下放。起吊件42可以是吊钩等结构件,具体可根据燃料格栅51的顶部结构配合设置。
本发明的可在线换料熔盐堆还包括控制吊装机构40启停的远端控制终端(未图示)。
进一步地,本发明的可在线换料熔盐堆还包括设置在反应堆容器20内的至少一个换热器60。
反应堆容器20内的冷却剂从换热器60上端的进口进入换热器60,与通过换热器60的介质(该二次侧的介质可选择熔盐、水或二氧化碳等)进行热交换后,再从换热器60下端的出口返回反应堆容器20及堆芯,形成一个冷却剂循环回路(如图1中箭头所示)。
其中,根据冷却剂靠近和远离堆芯的温度差导致的密度差作用下,冷却剂以自然循环方式在冷却剂循环回路中流动;或者,换热器60的进口处可设置循环泵,驱动冷却剂进入换热器60,以强迫循环方式驱使冷却剂在冷却剂循环回路中流动。通过冷却剂沿着冷却剂循环回路的持续流动,对反应堆容器10内的堆芯进行冷却,实现一、二回路能量交换。
如图1所示,本实施例中,反应堆容器20内设有两个换热器60,位于堆芯的相对两侧。
换热器60可以与堆芯组成一个模块,反应堆容器20内可根据需要扩展模块的数量。
本发明的可在线换料熔盐堆还包括设置在保护容器10的围壁内的至少一个非能动空气冷却流道70,保护容器10的外壁面设有分别与非能动空气冷却流道70相连通的空气进口(未图示)和空气出口(未图示)。空气从空气进口进入非能动空气冷却流道70内,沿着非能动空气冷却流道70流动并吸收热量后升温再从空气出口排出非能动空气冷却流道70。
本实施例中,非能动空气冷却流道70在保护容器10的围壁内弯折形成相接的输入流道71和输出流道72,输出流道72较于输入流道71靠近保护容器10的内壁面或平行于内壁面。空气进口与输入流道71相连通,空气出口与输出流道72相连通。
在其他实施例中,非能动空气冷却流道70在保护容器10的围壁内多次弯折延伸,可以是沿水平方向或竖直方向等多次弯折延伸。空气进口和空气出口可以位于围壁的相对两侧或同一侧,并且空气出口的位置在高度上高于空气进口所在位置。
换热器60和非能动空气冷却流道70的设置,停堆后利用冷却剂高温特点,利用热辐射、对流传热(大表面积薄翅片强化换热)等非能动冷却将事故后热量导出至最终热阱-大气。
另外,还可以在反应堆容器20的外壁设置散热翅片,增强散热效果,实现强化散热。散热翅片优选具有较大表面积的翅片。
参考图1、2,本发明的可在线换料熔盐堆的换料方法,可包括以下步骤:
S1、在燃料组件50形成乏燃料组件后,吊装机构40将乏燃料组件吊起,使其燃料格栅51的顶部脱离支撑轨31。
S2、吊装机构40将吊起的乏燃料组件沿着支撑轨31移动至支撑轨31的一端部。
S3、吊装机构40依次移动支撑轨31上悬挂的燃料组件50,填补乏燃料组件的位置,并将新的燃料组件50从支撑轨31的另一端装入。
其中,将支撑轨31的一端作为燃料组件进入端,相对另一端作为燃料排出端。将乏燃料组件移动至支撑轨31的燃料排出端,脱离堆芯。新的燃料组件50从支撑轨31的燃料组件进入端移动进入堆芯中。
相邻的两个支撑轨31的燃料组件进入端交错设置,利用横向及竖向不同的燃料富集度实现更好的堆芯功率展平。
在堆芯中,通过多个支撑轨31排设形成的多排燃料组件中,每一排燃料组件从所在支撑轨31的一端装入新的燃料组件50,乏燃料组件从相对另一端取出,并依次将旧的燃料组件50向乏燃料组件侧移动,只需通过吊装机构40稍微提起燃料组件50就可移动到相邻位置,燃料组件50始终保持在冷却剂中。
穿过堆芯后,乏燃料组件移到反应堆容器20周边贮存,直到衰变热降低到一定值后,移到中间贮存设施。反应堆容器20内预先存放一批新的燃料组件(与堆芯保持足够距离以确保最小化裂变反应),支持间断性不停堆换料,满足长换料周期要求。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种可在线换料熔盐堆,其特征在于,包括密闭的保护容器、设置在所述保护容器内的反应堆容器、设置在所述反应堆容器内的堆芯、设置在所述保护容器内的支撑机构及吊装机构;
    所述支撑机构包括多根相平行间隔并横跨于所述反应堆容器上方的支撑轨;所述堆芯包括沿着所述支撑轨的长度方向布置的多个燃料组件,每一所述燃料组件包括竖向浸入冷却剂中的燃料格栅、沿着所述燃料格栅的高度容置在其中并浸入冷却剂的TRISO燃料球;所述燃料格栅顶部露出冷却剂并悬挂在所述支撑轨上;
    所述吊装机构位于所述支撑机构的上方,用于吊起所述燃料组件并沿着所述支撑轨横向移动所述燃料组件。
  2. 根据权利要求1所述的可在线换料熔盐堆,其特征在于,在所述燃料格栅中,所述TRISO燃料球形成单列或者多列。
  3. 根据权利要求1所述的可在线换料熔盐堆,其特征在于,所述反应堆容器内设有支撑在所述燃料格栅底部的支撑结构。
  4. 根据权利要求1所述的可在线换料熔盐堆,其特征在于,所述支撑轨包括相平行间隔设置的至少两根横轨;所述燃料格栅的顶部配合在至少两根所述横轨上。
  5. 根据权利要求1所述的可在线换料熔盐堆,其特征在于,所述吊装机构包括至少一根位于所述支撑机构上方的横梁、可升降设置在所述横梁上的起吊件。
  6. 根据权利要求1所述的可在线换料熔盐堆,其特征在于,所述可在线换料熔盐堆还包括设置在所述反应堆容器内的至少一个换热器;
    所述反应堆容器内的冷却剂从所述换热器上端的进口进入所述换热器,经热交换后从所述换热器下端的出口返回所述反应堆容器及堆芯,形成一个冷却剂循环回路。
  7. 根据权利要求6所述的可在线换料熔盐堆,其特征在于,冷却剂在温度差导致的密度差作用下,沿着冷却剂循环回路在所述换热器和堆芯之间自然循环;或者,所述换热器的进口处设有循环泵,以强迫循环方式驱使冷却剂在冷却剂循环回路中流动。
  8. 根据权利要求1所述的可在线换料熔盐堆,其特征在于,所述可在线换料熔盐堆还包括设置在所述保护容器的围壁内的至少一个非能动空气冷却流道,所述保护容器的外壁面设有分别与所述非能动空气冷却流道相连通的空气进口和空气出口。
  9. 根据权利要求8所述的可在线换料熔盐堆,其特征在于,所述非能动空气冷却流道在所述保护容器的围壁内弯折形成相接的输入流道和输出流道,所述输出流道较于所述输入流道靠近所述保护容器的内壁面或与壁面等距离平行并多次折弯;
    所述空气进口与所述输入流道相连通,所述空气出口与所述输出流道相连通。
  10. 根据权利要求8所述的可在线换料熔盐堆,其特征在于,所述非能动空气冷却流道在所述保护容器的围壁内多次弯折延伸。
  11. 根据权利要求1-10任一项所述的可在线换料熔盐堆,其特征在于,所述反应堆容器外壁设有散热翅片。
  12. 一种权利要求1-11任一项所述的可在线换料熔盐堆的换料方法,其特征在于,包括以下步骤:
    S1、在燃料组件形成乏燃料组件后,吊装机构将乏燃料组件吊起,使其燃料格栅的顶部脱离支撑轨;
    S2、吊装机构将吊起的乏燃料组件沿着所述支撑轨移动至所述支撑轨的一端部;
    S3、吊装机构依次移动所述支撑轨上悬挂的燃料组件,填补乏燃料组件的位置,并将新的燃料组件从所述支撑轨的另一端装入。
  13. 根据权利要求12所述的可在线换料熔盐堆的换料方法,其特征在于,所述支撑轨的一端作为燃料组件进入端,相对另一端作为燃料排出端;
    相邻的两个所述支撑轨的燃料组件进入端交错设置。
PCT/CN2021/116591 2020-12-04 2021-09-06 可在线换料熔盐堆及其换料方法 WO2022116614A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011403541.0A CN112635083B (zh) 2020-12-04 可在线换料熔盐堆及其换料方法
CN202011403541.0 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022116614A1 true WO2022116614A1 (zh) 2022-06-09

Family

ID=75308229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116591 WO2022116614A1 (zh) 2020-12-04 2021-09-06 可在线换料熔盐堆及其换料方法

Country Status (1)

Country Link
WO (1) WO2022116614A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB964841A (en) * 1962-02-14 1964-07-22 Atomic Energy Authority Uk Nuclear reactors cooled by liquid metal
EP1622168A1 (en) * 2004-07-28 2006-02-01 The European Atomic Energy Community (EURATOM), represented by the European Commission Integral nuclear reactor
CN101939793A (zh) * 2007-09-26 2011-01-05 德尔诺瓦维斯公司 具有新概念燃料元件的核反应堆,特别是池型核反应堆
US20180137944A1 (en) * 2016-11-15 2018-05-17 Terrapower, Llc Thermal management of molten fuel nuclear reactors
CN108369827A (zh) * 2015-12-06 2018-08-03 伊恩·理查德·斯科特 矩形核反应堆芯
CN109509562A (zh) * 2018-12-07 2019-03-22 中国科学院上海应用物理研究所 堆芯结构、熔盐球床堆和熔盐球床堆的燃料管理与堆芯装载方法
CN209496626U (zh) * 2018-12-07 2019-10-15 中国科学院上海应用物理研究所 堆芯结构及熔盐球床堆
CN112635083A (zh) * 2020-12-04 2021-04-09 中广核工程有限公司 可在线换料熔盐堆及其换料方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB964841A (en) * 1962-02-14 1964-07-22 Atomic Energy Authority Uk Nuclear reactors cooled by liquid metal
EP1622168A1 (en) * 2004-07-28 2006-02-01 The European Atomic Energy Community (EURATOM), represented by the European Commission Integral nuclear reactor
CN101939793A (zh) * 2007-09-26 2011-01-05 德尔诺瓦维斯公司 具有新概念燃料元件的核反应堆,特别是池型核反应堆
CN108369827A (zh) * 2015-12-06 2018-08-03 伊恩·理查德·斯科特 矩形核反应堆芯
US20180137944A1 (en) * 2016-11-15 2018-05-17 Terrapower, Llc Thermal management of molten fuel nuclear reactors
CN109509562A (zh) * 2018-12-07 2019-03-22 中国科学院上海应用物理研究所 堆芯结构、熔盐球床堆和熔盐球床堆的燃料管理与堆芯装载方法
CN209496626U (zh) * 2018-12-07 2019-10-15 中国科学院上海应用物理研究所 堆芯结构及熔盐球床堆
CN112635083A (zh) * 2020-12-04 2021-04-09 中广核工程有限公司 可在线换料熔盐堆及其换料方法

Also Published As

Publication number Publication date
CN112635083A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
Triplett et al. PRISM: a competitive small modular sodium-cooled reactor
US4508677A (en) Modular nuclear reactor for a land-based power plant and method for the fabrication, installation and operation thereof
US6259760B1 (en) Unitary, transportable, assembled nuclear steam supply system with life time fuel supply and method of operating same
US20090268860A1 (en) Process for accelerating the breeding and conversion of fissile fuel in nuclear reactors
KR20110044267A (ko) 혼합 산화물 연료조립체
JP2019513230A (ja) モジュール間燃料シャフリング
US20050069074A1 (en) Nuclear plant spent fuel low temperature reactor
US5021211A (en) Liquid metal cooled nuclear reactors with passive cooling system
WO2022039893A1 (en) Designs for fast spectrum molten chloride test reactors
Ohashi et al. A Small-sized HTGR system design for multiple heat applications for developing countries
US4795607A (en) High-temperature reactor
US20230106712A1 (en) Liquid metal cooled nuclear reactor incorporating a fully passive decay heat removal (dhr) system with a modular cold source
JPH02201290A (ja) 自律分散型高速増殖炉システム
WO2022116614A1 (zh) 可在线换料熔盐堆及其换料方法
CN112635083B (zh) 可在线换料熔盐堆及其换料方法
JP2006343321A (ja) 高速炉用燃料要素、高速炉および高速炉施設の建設方法
JP2016125971A (ja) 原子炉炉心及び燃料集合体装荷方法
Orlov et al. Heavy liquid metal cooled fast reactors: peculiarities and development status of the major projects
Proust et al. Status of the design and feasibility assessment of the European helium cooled ceramic breeder inside tubes test blanket
JP4341876B2 (ja) 固体冷却原子炉
Dong et al. Tests to Confirm Inherently Safe Commercial Nuclear Reactors
CN117174349A (zh) 镓金属冷却的兆瓦级小型模块化核反应堆
Narabayashi et al. PPROPOSAL OF A RENEWABLE ENERGY SYMBIOTIC SMR WITH A LOAD FOLLOW FUNCTION AND EXPECTATIONS FOR THE IAEA'S JSMETECHNICAL CODES AND STANDARDS
JP2023535731A (ja) 燃料補給および/または保管の中性子吸収棒
JPH05281380A (ja) 核燃料チャンネルおよびこれを利用した固有安全水冷却チューブ原子炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899650

Country of ref document: EP

Kind code of ref document: A1