WO2022116382A1 - 一种人胰高血糖素样肽-1受体激活剂及其应用 - Google Patents

一种人胰高血糖素样肽-1受体激活剂及其应用 Download PDF

Info

Publication number
WO2022116382A1
WO2022116382A1 PCT/CN2021/073260 CN2021073260W WO2022116382A1 WO 2022116382 A1 WO2022116382 A1 WO 2022116382A1 CN 2021073260 W CN2021073260 W CN 2021073260W WO 2022116382 A1 WO2022116382 A1 WO 2022116382A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
human glucagon
receptor activator
insulin
receptor
Prior art date
Application number
PCT/CN2021/073260
Other languages
English (en)
French (fr)
Inventor
李尹雄
熊月
方霁
Original Assignee
中国科学院广州生物医药与健康研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州生物医药与健康研究院 filed Critical 中国科学院广州生物医药与健康研究院
Publication of WO2022116382A1 publication Critical patent/WO2022116382A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin

Definitions

  • the application belongs to the technical field of biomedicine, and in particular relates to a novel human glucagon-like peptide-1 receptor activator and its application.
  • Diabetes mellitus is a chronic, progressive, non-communicable disease characterized by rising levels of glucose (blood sugar) in the blood, which occurs either because the pancreas does not produce enough insulin to regulate blood sugar, or because the body cannot effectively use what it secretes of insulin. Diabetes is a huge burden on both the healthcare system and society.
  • type 2 diabetes mellitus is a relatively common progressive disease, which is mainly characterized by persistent blood sugar rise and progressive ⁇ -cell function decline. The ratio is about 95%.
  • type 2 diabetes it is found that many patients are already in a metabolic disorder state of obesity (overweight), hypertension or hyperlipidemia when they are first diagnosed.
  • Previous treatment results showed that only 40% of patients with type 2 diabetes achieved glycemic control goals after standard treatment (eg, the use of metformin, sulfonylurea, and insulin).
  • many antidiabetic drugs can cause adverse effects such as hypoglycemia or weight gain in patients.
  • scholars from all over the world have made continuous efforts to actively explore new therapeutic drugs, so that patients with type 2 diabetes can achieve the best balance of hypoglycemic, weight loss, blood pressure and lipid regulation.
  • the global diabetes treatment drugs mainly include insulin, DPP-4 inhibitors, GLP-1R agonists, SGLT-2 inhibitors, and ⁇ -glucosidase inhibitors.
  • Glucagon-like peptide-1 belongs to the incretin family, and its secretion is regulated by feeding activities and has a blood glucose concentration-dependent hypoglycemic effect.
  • Glucagon-like peptide-1 receptor (GLP-1R) is one of the most effective therapeutic targets for type 2 diabetes.
  • GLP-1 receptor agonists GLP-1RAs
  • GLP-1RAs GLP-1 receptor agonists
  • GLP-1RAs are potent, long-acting, mild in adverse reactions, and well tolerated by patients, GLP-1RAs may become a promising drug for the treatment of type 2 diabetes. In the past decade, many GLP-1RAs have been successfully developed and used to treat type 2 diabetes.
  • GLP-1R is a member of the B cluster subfamily (B1) of G protein-coupled receptors (GPCRs) and is typically characterized by a relatively large extracellular domain (ECD) and a seven-span ⁇ -helix bundle.
  • ECD extracellular domain
  • TMD Membrane core domain
  • GLP-1 C-terminal domain binds to the "affinity trap" formed by GLP-1R extracellular domain (ECD), thereby ensuring the formation of GLP-1 N-terminal domain (nGLP-1) and receptor core domain (TMD) The "pocket" interaction.
  • the present application provides a novel human glucagon-like peptide-1 receptor activator and its application.
  • the present application provides a human glucagon-like peptide-1 receptor activator
  • the human glucagon-like peptide-1 receptor activator comprises a compound represented by formula I, and its pharmaceutically acceptable The accepted salt or its derivative modified molecule;
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently selected from any one of H, C1-C4 alkyl group, mercapto group, phosphoric acid group, vinyl group or acetyl group.
  • the main skeleton of the compound represented by formula I is 3,5,7-trihydroxy-2-(4-methoxybenzene)-8-(3-methylbutene-2-ene)benzopyran-4 hydrogen .
  • the compounds of formula I include 8-prenyl flavonoids, icariin and modified derivatives of related chemical functional groups.
  • the modification forms include but are not limited to the following ways: modification of the spatial relationship of benzene ring or methoxybenzene and benzopyran, group modification of benzene ring or methoxybenzene, group modification of benzopyran, and the like.
  • the present application finds for the first time that the compound represented by formula I or a pharmaceutically acceptable salt thereof can be used as a novel human glucagon-like peptide-1 receptor activator. It can regulate the lipid metabolism of islet cells under lipotoxic conditions that mimic obesity and type II diabetes. In addition, it can also reverse the increase of triglyceride and cholesterol levels in islet cells, inhibit the expression of lipogenic genes, inhibit the activity of acetyl-CoA synthase, improve glucose-induced insulin synthesis, and increase the production of pancreatic cells in a type II diabetes-like state. survival rate. And the present study found that these beneficial effects on adipogenesis, insulin release and cell survival depended on promoting phosphorylation of downstream AKT by activating GLP-1R. Furthermore, under lipotoxic conditions, it inhibited the expression of insulin-regulated genes PDX1 and GLP-1R in INS-1 cells.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are each independently selected from any one of H, methyl, ethyl or propyl kind.
  • R 1 , R 2 , R 3 are H, and R 4 , R 5 , and R 6 are methyl.
  • the human glucagon-like peptide-1 receptor activator is Icaritin or a pharmaceutically acceptable salt thereof.
  • Epimedium also known as Xianlingpi, is the dried leaf of the perennial herb Epimedium of the Berberi family. It is warm in nature, pungent and sweet. It belongs to the liver and kidney meridians. The effect of relieving asthma is commonly used in the treatment of kidney-yang deficiency, impotence, frequent urination, weakness of muscles and bones, weakness of waist and knees, rheumatic arthralgia, and numbness of limbs. Epimedium was first recorded in the "Shen Nong's Materia Medica", and it is believed that it has the effect of "maintaining genital impotence, preventing pain in the stem, facilitating urination, replenishing energy, and strengthening will".
  • Epimedium “Compendium of Materia Medica” claims that it has the effect of “replenishing essence and qi, strengthening muscles and bones, nourishing waist and knees, and strengthening mental strength”. "Compendium of Materia Medica” records that it has the effect of “replenishing the gate of life, benefiting essence and qi, strengthening muscles and bones, and facilitating urination”.
  • the main chemical components of Epimedium are flavonoids, in addition to phenolic glycosides, polysaccharides, and trace elements. After research, Epimedium can enhance the secretion function of the endocrine system such as the hypothalamus-pituitary-gonadal axis, the adrenal cortex axis, and the thymus axis.
  • the human glucagon-like peptide-1 receptor activator promotes phosphorylation of the AKT/GSK3 ⁇ signaling pathway and inhibits degradation of the nuclear transcription factor PDX1.
  • the human glucagon-like peptide-1 receptor activator increases the expression of insulin function-related genes including Pdx1, Ins, or Glp1r.
  • the human glucagon-like peptide-1 receptor activator increases insulin secretion stimulated by high glucose in islet cells.
  • the human glucagon-like peptide-1 receptor activator inhibits palmitate-induced elevation of triglyceride levels in islet cells.
  • the human glucagon-like peptide-1 receptor activator alleviates insulin resistance caused by a high-fat diet, particularly palm oil.
  • the human glucagon-like peptide-1 receptor activator alleviates elevated serum insulin, triglyceride, or cholesterol levels caused by a high-fat diet.
  • the human glucagon-like peptide-1 receptor activator alleviates abnormal islet cell proliferation caused by a high-fat diet.
  • the human glucagon-like peptide-1 receptor activator further includes pharmaceutically acceptable excipients.
  • the adjuvant includes any one or a combination of at least two of excipients, diluents, carriers, flavoring agents, binders or fillers.
  • the carrier comprises liposomes, micelles, dendrimers, microspheres or microcapsules.
  • human glucagon-like peptide-1 receptor activator or pharmaceutically acceptable salts, esters and solvates thereof described in this application can be loaded on commonly used pharmaceutical carriers to achieve better biocompatibility and targeting Sex, biosafety, and efficacy of administration.
  • the human glucagon-like peptide-1 receptor activator or its pharmaceutically acceptable salts, esters and solvates can be prepared into any pharmaceutical dosage form according to actual needs, and each dosage form can be prepared according to the Prepared by conventional methods in the field of pharmacy.
  • the route of administration of the human glucagon-like peptide-1 receptor activator can be selected from oral administration, sublingual administration, intravenous injection, intraperitoneal injection, intramuscular injection, subcutaneous injection or Either way of transdermal administration.
  • the present application provides the use of the above-mentioned human glucagon-like peptide-1 receptor activator in the preparation of an AKT/GSK3 ⁇ signaling pathway activator.
  • the present application provides an application of the above-mentioned human glucagon-like peptide-1 receptor activator in the preparation of a medicament for treating abnormal proliferation of pancreatic islet cells.
  • the present application provides the use of the above-mentioned human glucagon-like peptide-1 receptor activator in the preparation of a medicine for alleviating the elevated triglyceride and/or cholesterol content caused by a high-fat diet .
  • the present application provides the use of the above-mentioned human glucagon-like peptide-1 receptor activator in the preparation of a medicament for relieving insulin resistance caused by a high-fat diet.
  • the present application provides the use of the above-mentioned human glucagon-like peptide-1 receptor activator in the preparation of a medicament for the treatment of type II diabetes.
  • This application finds for the first time that the compound represented by formula I or a pharmaceutically acceptable salt thereof can improve the metabolism of glucose and lipids in tissue cells of the whole body, especially has a promoting effect on the metabolic regulation signal pathway of hepatocytes, pancreatic islet cells and adipocytes, etc. Oxidative degradation of lipid molecules, inhibiting the expression of lipogenic genes, inhibiting acetyl-CoA synthase activity, reducing triglyceride synthesis, removing internal triglycerides and cholesterol accumulated in hepatocytes, islet cells and adipocytes, and reversing fat Liver, lipohepatitis and fatty pancreas.
  • pancreatic and duodenal homeobox-1 Pancreatic and duodenal homeobox-1, PDX1
  • GLP-1R pancreatic and duodenal homeobox-1
  • Fig. 1 is the result of molecular docking between icariin (ICT) and GLP-1R N-terminal extracellular domain;
  • Figure 2 is a graph showing the inhibitory effect of icariin (ICT) on the elevated triglyceride (TGs) content in INS-1E cells caused by palmitate (PA) treatment;
  • ICT icariin
  • Figure 3 is a graph showing the results of the inhibitory effect of icariin (ICT) on the elevated triglyceride (TGs) content in ⁇ -TC6 cells caused by palmitate (PA) treatment;
  • ICT icariin
  • Figure 4 is a graph showing the results of the inhibitory effect of icariin (ICT) on the decrease of insulin secretion under high glucose stimulation in INS-1E cells induced by palmitate (PA) treatment;
  • ICT icariin
  • Figure 5 is a graph showing the effect of icariin (ICT) on the expression of Pdx1 gene
  • Figure 6 is a graph showing the effect of icariin (ICT) on Ins gene expression
  • Figure 7 is a graph showing the effect of icariin (ICT) on Glp1r gene expression
  • Figure 8 is a graph showing the effect of icariin (ICT) on the AKT/GSK3 ⁇ signaling pathway
  • Fig. 9 is the result graph of glucose tolerance test (GTT).
  • Figure 10 is a graph of insulin tolerance test (ITT) results
  • Figure 11 is a graph showing the effect of icariin (ICT) on the increase of serum insulin (C-peptide) content caused by high-fat diet;
  • Figure 12 is a graph showing the effect of icariin (ICT) on the increase of triglyceride content caused by high-fat diet;
  • Figure 13 is a graph showing the effect of icariin (ICT) on the increase in cholesterol content caused by a high-fat diet
  • Figure 14 is the stained sections of the pancreatic islets of mice in each group (a, b, c, and d represent the control group, the high-fat group, the low-dose medication group, and the high-dose medication group in turn);
  • Figure 15 is a graph showing the effect of icariin (ICT) on Pdx1 gene expression at animal levels
  • Figure 16 is a graph showing the effect of icariin (ICT) on Ins gene expression at animal levels
  • Figure 17 is a graph of the effect of icariin (ICT) on Glp1r gene expression at animal levels;
  • Figure 18 is a graph showing the effect of icariin (ICT) at animal level on the AKT/GSK3 ⁇ signaling pathway.
  • ICT icariin
  • mice Male 8-week-old C57BL/6J mice were purchased from Weitong Lihua Laboratory Animal Technology Co., Ltd. All operations on mice were carried out in a sterile laminar flow room, and all mice were free to eat and drink food and water for 12 hours the light-dark cycle;
  • INS-1E cells rat insulinoma cells
  • ⁇ -TC6 cells mouse insulinoma pancreatic islet ⁇ cells
  • the operation method is as follows: using the existing protein crystal structure model (3IOL) on RCSB-PDB, in Schrodinger (Schrodinger) software, based on the fit of ligand and receptor structure, flexible and polar docking mode, to evaluate icariin ( ICT) affinity to the N-terminal extracellular domain of GLP-1R.
  • 3IOL protein crystal structure model
  • Schrodinger Schrodinger
  • ICT icariin
  • TGs elevated triglyceride
  • PA palmitate
  • the operation method is: use RPMI 1640 medium to culture INS-1E cells (rat insulinoma cells) and ⁇ -TC6 cells (mouse insulinoma pancreatic islet ⁇ cells) (containing 11.1mM glucose, 10% fetal bovine serum, 10mM HEPES, 2 mM glutamine, 1 mM sodium pyruvate, 100 U/mL penicillin, 100 ⁇ g/mL streptomycin and 50 ⁇ M beta mercaptoethanol). Palmitate (PA) was dissolved in a 0.5% fatty acid-free bovine serum albumin (BSA) solution at a final concentration of 0.5 mM in RPMI 1640. Cells were cultured at 37°C in a humidified incubator with 5% carbon dioxide. All experiments used cells in logarithmic growth phase. Mouse pancreatic INS-1E and ⁇ -TC6 cell lines were treated with 0.5 mM PA and ICT (2.5, 5, 10, 20 ⁇ M) for 48 h, respectively.
  • INS-1E cells
  • ICT Inhibitory effect of icariin (ICT) on the decrease in insulin secretion in pancreatic islet cells induced by palmitate (PA) treatment under high glucose stimulation
  • the operation method is: use RPMI 1640 medium to culture (GIBCO, containing 11.1 mM glucose) INS-1E cells (rat insulinoma cells) (10% fetal bovine serum, 10 mM HEPES, 2 mM glutamine, 1 mM sodium pyruvate, 100 U /mL penicillin, 100 ⁇ g/mL streptomycin and 50 ⁇ M beta mercaptoethanol). Palmitate (PA) was dissolved in a 0.5% fatty acid-free bovine serum albumin (BSA) solution at a final concentration of 0.5 mM in RPMI 1640. Cells were cultured at 37°C in a humidified incubator with 5% carbon dioxide. All experiments used cells in logarithmic growth phase. The mouse pancreatic INS-1E cell line was treated with 0.5 mM PA and ICT (5, 10, 20 ⁇ M) for 48 h, respectively.
  • GEBCO medium to culture
  • ICT ICT
  • NC represents the negative control group in the figure. It can be seen from the figure that ICT can alleviate the decrease in insulin secretion caused by PA under high glucose stimulation, and increase the insulin secretion induced by high glucose stimulation.
  • ICT icariin
  • the operation method is as follows: lyse mouse INS-1E cells with TRIzol reagent (Takara, Japan), and extract total mRNA according to the instructions. cDNA synthesis was performed using PrimeScript RT MasterMix kit (Takara, Japan). mRNA levels were determined using the iTaq Universal SYBR Green Supermix Real-Time PCR system (CFX96 Touch, Bio-Rad Laboratories) according to the instructions. The target gene primers used are shown in the table below. Relative gene expression was analyzed using the comparative threshold cycle method, using ⁇ -actin as an internal reference for comparison.
  • mice INS-1E cells were cultured in a 12-well plate (CELLSTAR, Germany) with 1 mL of culture medium added for 48 h. Digested with trypsin, collected and lysed on ice with 100 ⁇ L of pre-cooled RIPA (Biyuntian Biotechnology, Shanghai, China) buffer for 30 min (1 mL of RIPA contains TBS, NP-40 1%, 0.5% sodium deoxycholate, 0.1% SDS, sodium azide 0.004%, 10 ⁇ L sodium orthovanadate, 40 ⁇ L protease inhibitor). Protein concentration was determined by BCA protein detection kit (Thermo Scientific). A 50 ⁇ g total protein sample was PAGE (standard 10% Tris-HCL).
  • NC in the figure represents the negative control group The results are shown in Figure 8 (NC in the figure represents the negative control group). It can be seen from the figure that ICT can promote the phosphorylation of the downstream AKT/GSK3 ⁇ signaling pathway by activating GLP-1R, and inhibit the degradation of the nuclear transcription factor PDX1 by phosphorylating GSK3 ⁇ . .
  • the operation method was as follows: the experimental mice were randomly divided into three groups, 5 mice in each group, namely the control group (Control), the high-fat experimental group (HFD), the ICT low-dose (20 mg/kg) group and the ICT high-dose (60 mg/kg) group. /kg) group.
  • the normal diet 11.85% fat, 3.4 kcal/g
  • the high-fat diet (60% fat, 5.21 kcal/g) was fed to the high-fat experimental group and the high-fat drug-added group.
  • the high-fat drug-added group received low-dose (20 mg/kg) and high-dose (60 mg/kg) ICT by gavage every day, and performed glucose tolerance test (GTT) and insulin tolerance test (ITT) throughout the experimental period. , monitor body weight and food intake weekly.
  • GTT glucose tolerance test
  • ITT insulin tolerance test
  • GTT glucose tolerance test
  • ITT insulin tolerance test
  • ICT icariin
  • the operation method was as follows: the experimental mice were randomly divided into three groups, 5 mice in each group, namely the control group (Control), the high-fat experimental group (HFD), the ICT low-dose (20 mg/kg) group and the ICT high-dose (60 mg/kg) group. /kg) group.
  • the normal diet 11.85% fat, 3.4 kcal/g
  • the high-fat diet (60% fat, 5.21 kcal/g) was fed to the high-fat experimental group and the high-fat drug-added group.
  • the high-fat drug-added group received low-dose (20 mg/kg) and high-dose (60 mg/kg) ICT by gavage every day.
  • the operation method was as follows: the experimental mice were randomly divided into three groups, 5 mice in each group, namely the control group (Control), the high-fat experimental group (HFD), the ICT low-dose (20 mg/kg) group and the ICT high-dose (60 mg/kg) group. /kg) group.
  • the normal diet 11.85% fat, 3.4 kcal/g
  • the high-fat diet (60% fat, 5.21 kcal/g) was fed to the high-fat experimental group and the high-fat drug-added group.
  • Low-dose (20 mg/kg) and high-dose (60 mg/kg) ICT were administered by gavage.
  • pancreas was sacrificed, and the pancreas was fixed with 4% PFA at 4°C overnight and embedded in paraffin.
  • the paraffin block sections were taken and attached to the adhesive slides for immunohistochemical (IHC) staining and hematoxylin-eosin (HE) staining.
  • ICT can promote the phosphorylation of the downstream AKT/GSK3 ⁇ signaling pathway by activating GLP-1R, and inhibit the degradation of the nuclear transcription factor PDX1 by phosphorylating GSK3 ⁇ .

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Diabetes (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)

Abstract

一种人胰高血糖素样肽-1受体(Glucagon-like peptide 1 receptor,GLP-1R)激活剂,包括式Ⅰ的化合物或其药学上可接受的盐,其中,R1、R2、R3、R4、R5、R6各自独立地选自H、C1-C4烷基、巯基、磷酸基、乙烯基或乙酰基中的任意一种。式Ⅰ的化合物或其药学上可接受的盐能改善全身组织细胞的糖脂代谢,增强脂质分子的氧化降解,抑制脂肪生成基因的表达,抑制乙酰辅酶A合成酶活性,减少甘油三酯的合成,改善葡萄糖诱导的胰岛素合成与分泌,解除胰岛素拮抗,缓解胰岛β细胞代偿性扩增,提高Ⅱ型糖尿病样状态下胰腺细胞的存活率及功能。

Description

一种人胰高血糖素样肽-1受体激活剂及其应用 技术领域
本申请属于生物医药技术领域,具体涉及一种新型的人胰高血糖素样肽-1受体激活剂及其应用。
背景技术
糖尿病是慢性渐进性的非传染性疾病,以血液内葡萄糖(血糖)水平不断升高为特征,其发生或是因为胰腺不能分泌足够的胰岛素来调整血糖,或是因为身体不能有效使用其所分泌的胰岛素。糖尿病对于医疗卫生体系和社会来说都是一个巨大的负担。
在临床上,Ⅱ型糖尿病(T2DM)是一种比较普遍的进展性疾病,其主要特点表现为持续性的血糖上升、进行性的β细胞功能降低,在糖尿病患者中,Ⅱ型糖尿病所占的比例约为95%。针对Ⅱ型糖尿病治疗发现,很多患者初诊时就已经处于肥胖(超重)、高血压或高血脂的代谢紊乱状态。以往的治疗结果显示:只有40%的Ⅱ型糖尿病患者经过标准治疗(如使用二甲双胍、磺脲和胰岛素)达到血糖控制目标。此外,许多降糖药会导致患者出现低血糖或体重增加等不良反应。为此,各国学者不断努力,积极探寻新的治疗药物,以使Ⅱ型糖尿病患者达到降糖、减重、降压和调脂的最佳平衡状态。
目前全球糖尿病治疗药物主要有胰岛素、DPP-4抑制剂、GLP-1R激动剂,SGLT-2抑制剂,α糖苷酶抑制剂。
胰高糖素样肽-1(GLP-1)属于肠促胰岛素家族,其分泌受进食活动调节,具有血糖浓度依赖性降糖效应。胰高血糖素样肽-1受体(glucagon-like peptide-1 receptor,GLP-1R)是Ⅱ型糖尿病最为有效的治疗靶点之一。GLP-1受体激动剂 (GLP-1RAs)能模拟GLP-1生理作用,延长作用时间。由于GLP-1RAs具有强效、长效、不良反应轻、患者耐受性好等特点,可能成为一种治疗Ⅱ型糖尿病极有前景的药物。近十年来许多GLP-1RAs研制成功并用于治Ⅱ型糖尿病。经过多年基础研究积累,转化和临床研究表明GLP-1与其受体相互作用能够有效调控机体糖稳态和能量代谢。GLP-1R属于G蛋白偶联受体(GPCR)B簇亚族(B1)的一员,它的典型特征是具有一个相对比较大的胞外域(ECD)和有α螺旋束构成的7次跨膜核心域(TMD)。GLP-1R作为GLP-1/GLP-1R途径下游信号的靶标,主要是通过“two-domain model”来激活受体。首先GLP-1C端域(cGLP-1)同GLP-1R胞外域(ECD)形成的“affinity trap”结合,从而确保GLP-1 N端域(nGLP-1)与受体核心域(TMD)形成的“pocket”互交。
发明内容
本申请提供了一种新型的人胰高血糖素样肽-1受体激活剂及其应用。
第一方面,本申请提供一种人胰高血糖素样肽-1受体激活剂,所述人胰高血糖素样肽-1受体激活剂包括式Ⅰ所示的化合物、其药学上可接受的盐或其衍生修饰分子;
Figure PCTCN2021073260-appb-000001
其中,R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自H、C1-C4烷基、巯基、 磷酸基、乙烯基或乙酰基中的任意一种。
式Ⅰ所示的化合物的主骨架为3,5,7-三羟基-2-(4-甲氧苯)-8-(3-甲基丁烯-2-烯)苯并吡喃-4氢。式Ⅰ所示的化合物包括8-异戊烯基黄酮类、淫羊藿素及其相关化学官能团的修饰改造衍生化合物。改造的形式包括但不限于以下方式:苯环或甲氧苯及苯并吡喃的空间关系改造、苯环或甲氧苯的基团修饰、苯并吡喃的基团修饰等。
本申请首次发现,式Ⅰ所示的化合物或其药学上可接受的盐可作为一种新型的人胰高血糖素样肽-1受体激活剂。其在模拟肥胖和Ⅱ型糖尿病的脂毒条件下,能对胰岛细胞脂质代谢实现调控作用。此外,还可以逆转胰岛细胞内甘油三酯和胆固醇含量的升高,抑制脂肪生成基因的表达,抑制乙酰辅酶A合成酶活性,改善葡萄糖诱导的胰岛素合成,提高Ⅱ型糖尿病样状态下胰腺细胞的存活率。且本申请研究发现,其对脂肪生成、胰岛素释放和细胞存活的这些有益作用依赖于通过激活GLP-1R从而促进下游AKT的磷酸化。此外,在脂毒条件下,其抑制了INS-1细胞胰岛素调节基因PDX1和GLP-1R的表达。
在一些实施方案中,式Ⅰ所示的化合物中,R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自H、甲基、乙基或丙基中的任意一种。
在一些实施方案中,式Ⅰ所示的化合物中,R 1、R 2、R 3为H,R 4、R 5、R 6为甲基。
在一些实施方案中,所述人胰高血糖素样肽-1受体激活剂为淫羊藿素(Icaritin)或其药学上可接受的盐。
淫羊藿别名仙灵脾,为小檗科多年生草本植物淫羊藿的干燥叶,性温,味辛、甘,归肝、肾经,有补肾壮阳、强筋健骨、祛风除湿、止咳平喘的作用,常用于肾阳虚衰、阳痿尿频、筋骨痿软、腰膝无力、风湿痹痛、肢体麻木等症 的治疗。淫羊藿始载于《神农本草经》,认为其有“主阴痿绝伤,茎中痛,利小便,益气力,强志”之功效。《本草纲目》称其有“益精气,坚筋骨,补腰膝,强心力”之功效。《本草备要》记载其有“补命门,益精气,坚筋骨,利小便”之功效。淫羊藿的主要化学成分是黄酮类,此外还有酚苷类、多糖类、微量元素等。经研究,淫羊藿能增强下丘脑-垂体-性腺轴及肾上腺皮质轴、胸腺轴等内分泌系统的分泌功能。
在一些实施方案中,所述人胰高血糖素样肽-1受体激活剂促进AKT/GSK3β信号通路的磷酸化,并抑制核内转录因子PDX1降解。
在一些实施方案中,所述人胰高血糖素样肽-1受体激活剂增加胰岛素功能相关基因的表达,所述胰岛素功能相关基因包括Pdx1、Ins或Glp1r。
在一些实施方案中,所述人胰高血糖素样肽-1受体激活剂增加胰岛细胞内高糖刺激下的胰岛素分泌。
在一些实施方案中,所述人胰高血糖素样肽-1受体激活剂抑制胰岛细胞内由棕榈酸酯引起的甘油三酯含量升高。
在一些实施方案中,所述人胰高血糖素样肽-1受体激活剂缓解由高脂饮食,尤其是棕榈油引起的胰岛素抵抗。
在一些实施方案中,所述人胰高血糖素样肽-1受体激活剂缓解由高脂饮食引起的血清胰岛素、甘油三酯或胆固醇含量升高。
在一些实施方案中,所述人胰高血糖素样肽-1受体激活剂缓解由高脂饮食引起的胰岛细胞增殖异常。
在本申请中,所述人胰高血糖素样肽-1受体激活剂还包括药学上可接受的辅料。
优选地,所述辅料包括赋形剂、稀释剂、载体、调味剂、粘合剂或填充剂 中的任意一种或至少两种的组合。
优选地,所述载体包括脂质体、胶束、树状大分子、微球或微囊。
本申请所述人胰高血糖素样肽-1受体激活剂或其药学上可接受的盐、酯、溶剂合物可以负载于常用药用载体上实现更好的生物相容性、靶向性、生物安全性和给药效果。
在本申请中,人胰高血糖素样肽-1受体激活剂或其药学上可接受的盐、酯、溶剂合物可以根据实际需要被制备成任一种药物剂型,各剂型均可以按照药学领域的常规方法制备。
在本申请中,所述人胰高血糖素样肽-1受体激活剂的给药途径可以根据实际需要选择口服给药、舌下给药、静脉注射、腹腔注射、肌肉注射、皮下注射或经皮给药的任意一种方式。
第二方面,本申请提供一种如上所述的人胰高血糖素样肽-1受体激活剂在制备AKT/GSK3β信号通路激活剂中的应用。
第三方面,本申请提供一种如上所述的人胰高血糖素样肽-1受体激活剂在制备治疗胰岛细胞增殖异常的药物中的应用。
第四方面,本申请提供一种如上所述的人胰高血糖素样肽-1受体激活剂在制备缓解由高脂饮食引起的甘油三酯和/或胆固醇含量升高的药物中的应用。
第五方面,本申请提供一种如上所述的人胰高血糖素样肽-1受体激活剂在制备缓解由高脂饮食引起的胰岛素抵抗的药物中的应用。
第六方面,本申请提供一种如上所述的人胰高血糖素样肽-1受体激活剂在制备治疗Ⅱ型糖尿病的药物中的应用。
相对于现有技术,本申请具有以下有益效果:
本申请首次发现,式Ⅰ所示的化合物或其药学上可接受的盐能改善全身组 织细胞的糖脂代谢,尤其对肝细胞、胰岛细胞和脂肪细胞等的代谢调控信号通路有促进作用,增强脂质分子的氧化降解,抑制脂肪生成基因的表达,抑制乙酰辅酶A合成酶活性,减少甘油三酯的合成,清除肝细胞、胰岛细胞和脂肪细胞内堆积的内甘油三酯和胆固醇,逆转脂肪肝、脂质性肝炎和脂肪胰。改善葡萄糖诱导的胰岛素合成与分泌,解除胰岛素拮抗,缓解胰岛β细胞代偿性扩增,提高Ⅱ型糖尿病样状态下胰腺细胞的存活率及功能。这些有益的作用依赖于式Ⅰ所示的化合物激活GLP-1R从而促进其下游关键因子AKT等的磷酸化修饰。此外,式Ⅰ所示的化合物还能解除高脂毒性对胰岛β细胞的胰腺和十二指肠同源框-1(Pancreatic and duodenal homeobox-1,PDX1)和GLP-1R基因表达的抑制作用。
附图说明
图1是淫羊藿素(ICT)与GLP-1R N端胞外结构域的分子对接结果图;
图2是淫羊藿素(ICT)对INS-1E细胞内由棕榈酸酯(PA)处理引起的甘油三酯(TGs)含量升高的抑制作用结果图;
图3是淫羊藿素(ICT)对β-TC6细胞内由棕榈酸酯(PA)处理引起的甘油三酯(TGs)含量升高的抑制作用结果图;
图4是淫羊藿素(ICT)对INS-1E细胞内由棕榈酸酯(PA)处理引起的高糖刺激下胰岛素分泌降低的抑制作用结果图;
图5是淫羊藿素(ICT)对Pdx1基因表达的影响图;
图6是淫羊藿素(ICT)对Ins基因表达的影响图;
图7是淫羊藿素(ICT)对Glp1r基因表达的影响图;
图8是淫羊藿素(ICT)对AKT/GSK3β信号通路的影响结果图;
图9是葡萄糖耐受实验(GTT)结果图;
图10是胰岛素耐受实验(ITT)结果图;
图11是淫羊藿素(ICT)对由高脂饮食引起的血清胰岛素(C-肽)含量增高的作用结果图;
图12是淫羊藿素(ICT)对由高脂饮食引起的甘油三酯含量增高的作用结果图;
图13是淫羊藿素(ICT)对由高脂饮食引起的胆固醇含量增高的作用结果图;
图14是各组小鼠胰腺胰岛的染色切片图(a、b、c、d依次表示对照组、高脂组、低剂量用药组和高剂量用药组);
图15是动物水平淫羊藿素(ICT)对Pdx1基因表达的影响图;
图16是动物水平淫羊藿素(ICT)对Ins基因表达的影响图;
图17是动物水平淫羊藿素(ICT)对Glp1r基因表达的影响图;
图18是动物水平淫羊藿素(ICT)对AKT/GSK3β信号通路的影响结果图。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施本申请的过程、条件、试剂、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本申请没有特别限制内容。各实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
除非另有说明,本说明书中使用的全部专业术语和科学用语的含义均与本申请所属技术领域的技术人员一般理解的含义相同。但如有冲突,以包含定义的本说明书为准。
其中淫羊藿素(ICT)购自于Sigma Aldrich公司;
实验动物雄性8周龄C57BL/6J小鼠购自于维通利华实验动物技术有限公司,对小鼠所有操作均在无菌层流室内进行,全部小鼠自由摄食和饮水,并保持12小时的光-暗循环;
INS-1E细胞(大鼠胰岛素瘤细胞)和β-TC6细胞(小鼠胰岛素瘤胰岛β细胞)来源于中科院上海细胞库。
实施例1
淫羊藿素(ICT)与GLP-1R N端胞外结构域的亲和力评估
操作方法为:利用RCSB-PDB上现有的蛋白晶体结构模型(3IOL),在Schrodinger(薛定谔)软件里基于配体和受体结构的契合,柔性与极性对接模式,评估淫羊藿素(ICT)与GLP-1R N端胞外结构域的亲和力。
对接结果如图1所示,由图可知:ICT在LYS113-GLU127结构域有一个对接位点。
实施例2
淫羊藿素(ICT)对胰岛细胞内由棕榈酸酯(PA)处理引起的甘油三酯(TGs)含量升高的抑制作用
操作方法为:利用RPMI 1640培养基培养INS-1E细胞(大鼠胰岛素瘤细胞)和β-TC6细胞(小鼠胰岛素瘤胰岛β细胞)(含有11.1mM葡萄糖,10%胎牛血清,10mM HEPES,2mM谷胺酰胺,1mM丙酮酸钠,100U/mL青霉素,100μg/mL链霉素和50μMβ巯基乙醇)。棕榈酸酯(PA)溶解在0.5%的不含脂肪酸牛血清白蛋白(BSA)溶液中,其在RPMI 1640中的终浓度为0.5mM。细胞在37℃和含5%二氧化碳的湿润温箱中培养。所有实验均使用对数生长期的细胞。用0.5 mM PA和ICT(2.5,5,10,20μM)分别处理小鼠胰腺INS-1E和β-TC6细胞系48h。
结果如图2和图3所示(图中NC表示阴性对照组,PA表示加入棕榈酸酯组,PA+ICT10/20表示加入棕榈酸酯和淫羊藿素10/20μM组,图2对应于INS-1E细胞,图3对应于β-TC6细胞),由图可知:INS-1E和β-TC6细胞内由PA处理而引起的甘油三酯(TGs)含量升高受到ICT处理的抑制,并存在剂量依赖效应。
实施例3
淫羊藿素(ICT)对胰岛细胞内由棕榈酸酯(PA)处理引起的高糖刺激下胰岛素分泌降低的抑制作用
操作方法为:利用RPMI 1640培养基培养(GIBCO,含11.1mM葡萄糖)INS-1E细胞(大鼠胰岛素瘤细胞)(10%胎牛血清,10mM HEPES,2mM谷胺酰胺,1mM丙酮酸钠,100U/mL青霉素,100μg/mL链霉素和50μMβ巯基乙醇)。棕榈酸酯(PA)溶解在0.5%的不含脂肪酸牛血清白蛋白(BSA)溶液中,其在RPMI 1640中的终浓度为0.5mM。细胞在37℃和含5%二氧化碳的湿润温箱中培养。所有实验均使用对数生长期的细胞。用0.5mM PA和ICT(5,10,20μM)分别处理小鼠胰腺INS-1E细胞系48h。
结果如图4所示(图中NC表示阴性对照组),由图可知:ICT可缓解由PA引起的在高糖刺激下胰岛素分泌降低现象,增加高糖刺激诱导的胰岛素分泌。
实施例4
淫羊藿素(ICT)对胰岛素功能相关基因表达的影响
操作方法为:用TRIzol试剂(Takara,日本)裂解小鼠INS-1E细胞,按照说明书提取总mRNA。使用PrimeScript RT MasterMix试剂盒(Takara,日本)进行 cDNA合成。根据说明书,利用iTaq Universal SYBR Green SupermixReal-Time PCR系统(CFX96 Touch,Bio-Rad Laboratories)测定mRNA水平。所使用的目的基因引物见下表。相对基因表达采用比较阈值周期法进行分析,利用β-actin作为内参进行比较。
Figure PCTCN2021073260-appb-000002
结果如图5-7所示(图中NC表示阴性对照组,图5对应于Pdx1基因,图6对应于Ins基因,图7对应于Glp1r基因),由图可知:ICT增加了胰岛素功能相关Pdx1基因的表达,从而引起下游胰岛素合成基因Ins表达的增加,同时,ICT也增加了Glp1r基因的表达。
实施例5
淫羊藿素(ICT)对AKT/GSK3β信号通路的影响
操作方法为:小鼠INS-1E细胞在加入1mL培养液的12孔板(CELLSTAR, 德国)中培养48h。用胰蛋白酶消化下来,收集并在冰上用100μL预冷RIPA(碧云天生物科技,上海,中国)缓冲液裂解30min(1mL RIPA包含TBS、NP-40 1%,0.5%钠脱氧胆酸盐、0.1%SDS、叠氮化钠0.004%、10μL原钒酸钠、40μL蛋白酶抑制剂)。蛋白浓度由BCA蛋白检测试剂盒(Thermo Scientific)测定。50μg总蛋白样品用PAGE(标准10%Tris-HCL)。蛋白印迹在PVDF膜上(Merck Millipore,Darmstadt,Germany),然后在封闭缓冲液(5%脱脂BSA,10mM Tri-HCL,1.15M NaCl,0.1%Tween-20)中室温孵育1h。免疫印迹包括以下步骤:在4℃条件下一抗(见下表)孵育过夜,随后与相应的辣根过氧化物酶偶联二抗孵育2h。使用化学发光HRP底物(Merck Millipore,德国)进行可视化标记。在每个实验中,对actin的条带灰度值进行归一化,并将结果表达用与对照组比较。
抗体 稀释 货号 品牌
ACC 1:1000 #3662 Cell Signaling Technology
phospho-ACC(Ser 79) 1:1000 #3661 Cell Signaling Technology
AKT 1:1000 #4691 Cell Signaling Technology
phospho-AKT(Ser 473) 1:1000 #4060 Cell Signaling Technology
GSK3β 1:1000 #9315 Cell Signaling Technology
phospho-GSK3β(Ser 9) 1:1000 #9336 Cell Signaling Technology
AMPK 1:1000 #5832 Cell Signaling Technology
phospho-AMPK(Thr 172) 1:1000 #2535 Cell Signaling Technology
PDX1 1:1000 #5679 Cell Signaling Technology
GLP-1R 1:1000 NBP1-97308 Novus Biologicals
β-Actin 1:1000 #4970 Cell Signaling Technology
Secondary antibodies 1:5000 KC-RB-035 KangChen Bio-tech Inc.
结果如图8所示(图中NC表示阴性对照组),由图可知:ICT可以通过激 活GLP-1R促进下游AKT/GSK3β信号通路磷酸化,并通过磷酸化GSK3β来抑制核内转录因子PDX1降解。
实施例6
淫羊藿素(ICT)对由高脂饮食引起的胰岛素抵抗现象的缓解作用
操作方法为:将实验小鼠随机分为三组,每组5只,分别为对照组(Control)、高脂实验组(HFD)、ICT低剂量(20mg/kg)组和ICT高剂量(60mg/kg)组。普通饲料(11.85%脂肪,3.4千卡/克)喂养对照组,高脂饲料(60%脂肪,5.21千卡/克)喂养高脂实验组和高脂加药组。高脂加药组每天以灌胃方式摄入低剂量(20mg/kg)和高剂量(60mg/kg)ICT,进行葡萄糖耐受实验(GTT)和胰岛素耐受实验(ITT),在整个实验期间,每周监测一次体重和食物摄入量。
葡萄糖耐受实验(GTT)和胰岛素耐受实验(ITT)的结果分别如图9和图10所示,由图可知:ICT可以缓解由高脂饮食引起的胰岛素抵抗现象。
实施例7
淫羊藿素(ICT)对由高脂饮食引起的血清胰岛素(C-肽)、甘油三酯和胆固醇含量增高的缓解作用
操作方法为:将实验小鼠随机分为三组,每组5只,分别为对照组(Control)、高脂实验组(HFD)、ICT低剂量(20mg/kg)组和ICT高剂量(60mg/kg)组。普通饲料(11.85%脂肪,3.4千卡/克)喂养对照组,高脂饲料(60%脂肪,5.21千卡/克)喂养高脂实验组和高脂加药组。高脂加药组每天以灌胃方式摄入低剂量(20mg/kg)和高剂量(60mg/kg)ICT。16周后处死取血1ml,置于室温2h后500g离心10min取上清,分别用Elisa试剂盒(Merck Millipore,德国)检测血清胰岛素,液体甘油三酯试剂盒(普利莱,北京)检测甘油三酯和总胆固醇试剂盒 (普利莱,北京)检测胆固醇含量。
结果如图11-13所示,由图可知:相比对照组,高脂实验组小鼠血清胰岛素(C-肽),甘油三酯和胆固醇含量明显增高,而加药实验组血清胰岛(C-肽),甘油三酯和胆固醇含量趋于正常。
实施例8
淫羊藿素(ICT)对由高脂饮食引起的胰腺胰岛增殖异常的缓解作用
操作方法为:将实验小鼠随机分为三组,每组5只,分别为对照组(Control)、高脂实验组(HFD)、ICT低剂量(20mg/kg)组和ICT高剂量(60mg/kg)组。普通饲料(11.85%脂肪,3.4千卡/克)喂养对照组,高脂饲料(60%脂肪,5.21千卡/克)喂养高脂实验组和高脂加药组,高脂加药组每天以灌胃方式摄入低剂量(20mg/kg)和高剂量(60mg/kg)ICT。16周后处死取胰腺组织,4%PFA固定小鼠胰腺4℃过夜,石蜡包埋。取石蜡块切片,贴于粘附载玻片上进行免疫组化(IHC)染色和苏木精-伊红(hematoxylin-eosin,HE)染色。
结果如图14所示(a、b、c、d依次表示对照组、高脂组、低剂量用药组和高剂量用药组),由图可知:高脂实验组胰岛数量较对照组和高脂加药组明显增加,形态相对不规则,面积也相对较大。说明高脂饲料引起胰腺胰岛增殖异常,而ICT加入能缓解此现象。
实施例9
动物水平淫羊藿素(ICT)对胰岛素功能相关基因表达的影响
操作方法参照实施例4。
结果如图15-17所示(图15对应于Pdx1基因,图16对应于Ins基因,图17对应于Glp1r基因),由图可知:在小鼠体内实验中,mRNA变化与细胞水平 实验相似,ICT增加了胰岛素功能相关Pdx1基因的表达,从而引起下游胰岛素合成基因Ins表达增加,同时,ICT也增加了Glp1r基因的表达。
实施例10
动物水平淫羊藿素(ICT)对AKT/GSK3β信号通路的影响
操作方法参照实施例5。
结果如图18所示,由图可知:ICT可以通过激活GLP-1R促进下游AKT/GSK3β信号通路磷酸化,并通过磷酸化GSK3β来抑制核内转录因子PDX1降解。
申请人声明,本申请通过上述实施例来说明本申请的人胰高血糖素样肽-1受体激活剂及其应用,但本申请并不局限于上述实施例,即不意味着本申请必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。

Claims (13)

  1. 一种人胰高血糖素样肽-1受体激活剂,其包括式Ⅰ所示的化合物、其药学上可接受的盐或其衍生修饰分子;
    Figure PCTCN2021073260-appb-100001
    其中,R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自H、C1-C4烷基、巯基、羟基、磷酸基、乙烯基、乙酰基、硫辛酸基或糖基中的任意一种。
  2. 如权利要求1所述的人胰高血糖素样肽-1受体激活剂,其中,式Ⅰ所示的化合物中,R 1、R 2、R 3、R 4、R 5、R 6各自独立地选自H、甲基、乙基或丙基中的任意一种。
  3. 如权利要求1所述的人胰高血糖素样肽-1受体激活剂,其中,式Ⅰ所示的化合物中,R 1、R 2、R 3为H,R 4、R 5、R 6为甲基。
  4. 如权利要求1所述的人胰高血糖素样肽-1受体激活剂,其中,所述人胰高血糖素样肽-1受体激活剂为淫羊藿素或其药学上可接受的盐。
  5. 如权利要求1-4中任一项所述的人胰高血糖素样肽-1受体激活剂,其中,所述人胰高血糖素样肽-1受体激活剂具有选自以下的任意一种作用或至少两种作用的组合:
    (i)所述人胰高血糖素样肽-1受体激活剂促进AKT/GSK3β信号通路的磷酸化,并抑制核内转录因子PDX1降解;
    (ii)所述人胰高血糖素样肽-1受体激活剂增加胰岛素功能相关基因的表达,所述胰岛素功能相关基因包括Pdx1、Ins或Glp1r;
    (iii)所述人胰高血糖素样肽-1受体激活剂增加胰岛细胞内高糖刺激下的胰岛素分泌;
    (iv)所述人胰高血糖素样肽-1受体激活剂抑制胰岛细胞内由棕榈酸酯引起的甘油三酯含量升高。
  6. 如权利要求1-5中任一项所述的人胰高血糖素样肽-1受体激活剂,其中,所述人胰高血糖素样肽-1受体激活剂产生选自以下的任意一种效果或至少两种效果的组合:
    (i)所述人胰高血糖素样肽-1受体激活剂缓解由高脂饮食引起的胰岛素抵抗;
    (ii)所述人胰高血糖素样肽-1受体激活剂缓解由高脂饮食,尤其是棕榈油引起的血清胰岛素、血糖、甘油三酯或/和胆固醇含量升高;
    (iii)所述人胰高血糖素样肽-1受体激活剂缓解由高脂饮食引起的胰岛细胞增殖异常。
  7. 如权利要求1-6中任一项所述的人胰高血糖素样肽-1受体激活剂,其中,所述人胰高血糖素样肽-1受体激活剂还包括药学上可接受的辅料。
  8. 如权利要求7所述的人胰高血糖素样肽-1受体激活剂,其中,所述辅料包括赋形剂、稀释剂、载体、调味剂、粘合剂或填充剂中的任意一种或至少两种的组合。
  9. 如权利要求1-8中任一项所述的人胰高血糖素样肽-1受体激活剂在制备AKT/GSK3β信号通路激活剂中的应用。
  10. 如权利要求1-8中任一项所述的人胰高血糖素样肽-1受体激活剂在制备 治疗胰岛细胞增殖异常的药物中的应用。
  11. 如权利要求1-8中任一项所述的人胰高血糖素样肽-1受体激活剂在制备缓解由高脂饮食引起的甘油三酯和/或胆固醇含量升高的药物中的应用。
  12. 如权利要求1-8中任一项所述的人胰高血糖素样肽-1受体激活剂在制备缓解由高脂饮食引起的胰岛素抵抗的药物中的应用。
  13. 如权利要求1-8中任一项所述的人胰高血糖素样肽-1受体激活剂在制备治疗Ⅱ型糖尿病的药物中的应用。
PCT/CN2021/073260 2020-12-04 2021-01-22 一种人胰高血糖素样肽-1受体激活剂及其应用 WO2022116382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011411830.5 2020-12-04
CN202011411830.5A CN112451515A (zh) 2020-12-04 2020-12-04 一种人胰高血糖素样肽-1受体激活剂及其应用

Publications (1)

Publication Number Publication Date
WO2022116382A1 true WO2022116382A1 (zh) 2022-06-09

Family

ID=74806645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073260 WO2022116382A1 (zh) 2020-12-04 2021-01-22 一种人胰高血糖素样肽-1受体激活剂及其应用

Country Status (2)

Country Link
CN (1) CN112451515A (zh)
WO (1) WO2022116382A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106380459A (zh) * 2016-08-25 2017-02-08 中国药科大学 一种降脂的黄酮类化合物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194701C (zh) * 2003-06-08 2005-03-30 浙江大学 淫羊藿素或去甲基淫羊藿素在制备雌激素受体调节剂中的应用
WO2009079860A1 (fr) * 2007-12-25 2009-07-02 Nan Zhang Médicament destiné au traitement de l'obésité ou de la stéatose hépatique
CN103622946A (zh) * 2012-08-26 2014-03-12 鲁南制药集团股份有限公司 淫羊藿苷元的医药用途
CN103271903A (zh) * 2013-05-21 2013-09-04 赵全成 淫羊藿素、环淫羊藿素及组合物的医药新用途
CN103446099B (zh) * 2013-08-19 2015-10-28 中国科学院深圳先进技术研究院 淫羊藿素在制备防治阿尔茨海默病药物中的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106380459A (zh) * 2016-08-25 2017-02-08 中国药科大学 一种降脂的黄酮类化合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM DA HYE, JUNG HYUN AH, SOHN HEE SOOK, KIM JIN WOONG, CHOI JAE SUE: "Potential of Icariin Metabolites from Epimedium koreanum Nakai as Antidiabetic Therapeutic Agents", MOLECULES, vol. 22, no. 6, pages 986, XP055936154, DOI: 10.3390/molecules22060986 *
ZHENG ZG ET AL.: "Anhydroicaritin improves diet-induced obesity and hyperlipidemia and alleviates insulin resistance by suppressing SREBPs activation", BIOCHEMICAL PHARMACOLOGY, vol. 122, no. 1, 2 November 2016 (2016-11-02), XP029820645, ISSN: 0006-2952, DOI: 10.1016/j.bcp.2016.10.016 *

Also Published As

Publication number Publication date
CN112451515A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
Foretz et al. Metformin: Update on mechanisms of action and repurposing potential
J Meneses et al. Antidiabetic drugs: mechanisms of action and potential outcomes on cellular metabolism
Hoang et al. The neurosurvival factor Humanin inhibits β-cell apoptosis via signal transducer and activator of transcription 3 activation and delays and ameliorates diabetes in nonobese diabetic mice
Kong et al. Berberine reduces insulin resistance through protein kinase C–dependent up-regulation of insulin receptor expression
Cui et al. Novel synergic antidiabetic effects of Astragalus polysaccharides combined with Crataegus flavonoids via improvement of islet function and liver metabolism
Karunakaran et al. Guards and culprits in the endoplasmic reticulum: glucolipotoxicity and β-cell failure in type II diabetes
Yuan et al. A new perspective of triptolide-associated hepatotoxicity: liver hypersensitivity upon LPS stimulation
US10624917B2 (en) Compositions and methods useful for treating or preventing liver diseases or disorders, and promoting weight loss
Nawano et al. Hyperglycemia contributes insulin resistance in hepatic and adipose tissue but not skeletal muscle of ZDF rats
CN114790160B (zh) 一种茴香霉素衍生物以及茴香霉素和其衍生物作为glp-1r激动剂的用途
Fang et al. Crocin improves insulin sensitivity and ameliorates adiposity by regulating AMPK‐CDK5‐PPARγ signaling
Ahmadi et al. Antidiabetic drugs and oxidized low-density lipoprotein: A review of anti-atherosclerotic mechanisms
An et al. Protective effect of Schisandrae chinensis oil on pancreatic β-cells in diabetic rats
Sun et al. APS could potentially activate hepatic insulin signaling in HFD-induced IR mice
Cao et al. Sitagliptin reduces endothelial dysfunction and apoptosis induced by high-fat diet and palmitate in thoracic aortas and endothelial cells via ROS-ER stress-CHOP pathway
Chen et al. Glucosamine sulfate inhibits TNF-α and IFN-γ-induced production of ICAM-1 in human retinal pigment epithelial cells in vitro
Yuan et al. Artesunate protects pancreatic β-cells from streptozotocin-induced diabetes via inhibition of the NLRP3/caspase-1/GSDMD pathway
US9693994B2 (en) Class IIa HDAC inhibitors for the treatment of infection
JP6716187B2 (ja) アディポネクチン受容体に対する作用薬ペプチド
WO2022116382A1 (zh) 一种人胰高血糖素样肽-1受体激活剂及其应用
JP2003519660A (ja) 耐糖能に影響を与える薬剤を調製するための、環状エーテルの使用
CN112955132A (zh) 用于预防或治疗肥胖或非酒精性脂肪性肝炎的包含氢醌衍生物的药物组合物
WO2018237243A1 (en) GARCINOL COMPOSITIONS FOR THE THERAPEUTIC MANAGEMENT OF ENDOPLASMIC RETICULUM STRESS
Cao et al. Rosiglitazone Protects against Acetaminophen-Induced Acute Liver Injury by Inhibiting Multiple Endoplasmic Reticulum Stress Pathways
JP7224303B2 (ja) 薬剤、組成物、及びそれに関連する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899426

Country of ref document: EP

Kind code of ref document: A1