WO2022114910A1 - 메탈로센 담지 촉매의 제조방법 - Google Patents

메탈로센 담지 촉매의 제조방법 Download PDF

Info

Publication number
WO2022114910A1
WO2022114910A1 PCT/KR2021/017812 KR2021017812W WO2022114910A1 WO 2022114910 A1 WO2022114910 A1 WO 2022114910A1 KR 2021017812 W KR2021017812 W KR 2021017812W WO 2022114910 A1 WO2022114910 A1 WO 2022114910A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
metallocene
catalyst
less
Prior art date
Application number
PCT/KR2021/017812
Other languages
English (en)
French (fr)
Inventor
최재훈
이정원
이승미
권현지
정철환
김종현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210166435A external-priority patent/KR102632852B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP21898735.2A priority Critical patent/EP4079775A4/en
Priority to CN202180010495.4A priority patent/CN115250620A/zh
Priority to US17/791,794 priority patent/US20230091054A1/en
Publication of WO2022114910A1 publication Critical patent/WO2022114910A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • the present invention is a method for producing a metallocene-supported catalyst capable of reducing the amount of fine powder generated while exhibiting catalytic activity, minimizing the occurrence of fouling and chunking, and stably producing polyethylene having excellent physical properties is about
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems. These two highly active catalyst systems have been developed according to their respective characteristics. Ziegler-Natta catalyst has been widely applied to existing commercial processes since its invention in the 1950s. There is a problem in that there is a limit to securing the desired physical properties because the composition distribution is not uniform.
  • the metallocene catalyst is composed of a combination of a main catalyst containing a transition metal compound (or a metallocene compound) as a main component and a cocatalyst containing an organometallic compound containing aluminum as a main component, and such a catalyst is a homogeneous complex catalyst with a single activity. It is a single site catalyst, and a polymer with a narrow molecular weight distribution and a uniform distribution of comonomer composition is obtained according to the characteristic of a single active site. It has properties that can change the degree, copolymerization properties, molecular weight, crystallinity, etc.
  • the production of the olefin polymer using the catalyst described above is divided into solution polymerization, slurry polymerization, or gas phase polymerization according to the method of adding the catalyst.
  • the reaction proceeds at a temperature lower than the melting point of the polymer to be produced.
  • the reaction temperature rises above the critical temperature during the reaction, fouling occurs due to fine powder on the inner wall of the reactor or cooler, and a chunk-shaped polymer is generated. This phenomenon is exacerbated as the fine powder concentration in the polymer particles is high and the size of the polymer particles is small.
  • the present invention can reduce the amount of fine powder while exhibiting catalytic activity, and as a result, minimize the generation of fouling and chunks, and can stably produce polyethylene having excellent physical properties.
  • Preparation of a supported metallocene catalyst The purpose is to provide a method.
  • Another object of the present invention is to provide a method for preparing polyethylene using the metallocene-supported catalyst prepared by the above method.
  • It provides a method for producing a supported metallocene catalyst, comprising: adding a metallocene-based catalyst precursor to the support on which the cocatalyst is supported and reacting, to support the metallocene-based catalyst precursor on the support:
  • R is each independently C 3-20 branched chain alkyl.
  • a method for producing polyethylene comprising the step of polymerizing an ethylene monomer in the presence of a supported metallocene catalyst prepared by the above method.
  • a polyethylene prepared by the above-described manufacturing method, a polyethylene resin composition comprising the same, and a film for shrinkage.
  • the metallocene-supported catalyst prepared by the production method according to the present invention can significantly reduce the generation of fine powder during polymerization of ethylene monomer, particularly gas phase polymerization, while exhibiting excellent catalytic activity. As a result, generation of fouling and chunks can be minimized, and polyethylene with excellent physical properties can be stably manufactured .
  • the polyethylene produced may also have an improved morphology, which may be particularly useful for the manufacture of shrink films.
  • FIG. 1A and 1B are photographs of the polyethylene prepared in Example 1 observed with a scanning electron microscope at different observation magnifications (FIG. 1a observation magnification: 60 times, FIG. 1b observation magnification: 1000 times).
  • FIG. 2a and 2b are photographs of the polyethylene prepared in Comparative Example 4 observed with a scanning electron microscope at different observation magnifications ( FIG. 2a observation magnification: 60 times, FIG. 2b observation magnification: 1000 times).
  • equivalent (eq) means molar equivalent (eq/mol).
  • the carrier when the metallocene-supported catalyst is prepared, the carrier is pretreated with an alkylaluminum-based compound having a specific structure and an aliphatic chain monoether-based compound to increase the carrier's carrying capacity, and as a result, the catalytic activity is increased, and The generation of fines during polymerization is reduced, which can also reduce fouling and chunking.
  • the metallocene-supported catalyst prepared by the above preparation method can stably produce polyethylene by minimizing the generation of fine powder during polymerization of ethylene monomer, particularly gas phase polymerization, while exhibiting excellent catalytic activity, and the produced polyethylene is improved It may be particularly useful in the manufacture of a film for shrinkage due to its physical properties and morphology.
  • step 2 adding and reacting a cocatalyst to the carrier pretreated as a result of the above step, thereby supporting the cocatalyst on the carrier (step 2);
  • the metallocene-based catalyst precursor is added to the support on which the promoter is supported and reacted to support the metallocene-based catalyst precursor (step 3); includes:
  • R is each independently C 3-20 branched chain alkyl.
  • step 1 is a step of pre-treating the carrier.
  • the pretreatment is to improve the carrying capacity of the carrier, and specifically, it may be performed by reacting the alkylaluminum-based compound represented by Formula 1 with the aliphatic chain monoether-based compound, and then adding the carrier to react.
  • the alkylaluminum-based compound and the aliphatic chain monoether-based compound are reacted, a complex is formed.
  • the complex reacts with a hydroxyl group on the surface of the carrier and is adsorbed to the surface of the carrier.
  • the reaction complex of the alkylaluminum-based compound and the aliphatic chain monoether-based compound is adsorbed on the surface, the bonding force between the aluminum derived from the alkylaluminum-based compound and the carrier, for example, Si in the case of a silica carrier is increased, so that the supporting power of the carrier is increased. can be increased.
  • the supported amount can also be increased, and as a result, the catalytic activity can be increased, and the morphology of the polymer to be prepared can be improved.
  • the alkylaluminum compound compared to the heterocyclic ether compound represented by THF, and the alkylaluminum on the surface of the carrier.
  • THF heterocyclic ether compound represented by THF
  • the alkylaluminum on the surface of the carrier can increase the adsorption rate of As a result, it is possible to exhibit a more excellent catalytic activity increase and morphology improvement effect on the polymer.
  • the improvement effect can be further increased by controlling the molar ratio of the alkylaluminum-based compound and the aliphatic chain monoether-based compound. If the content of the alkylaluminum-based compound is too high and the content of the aliphatic chain monoether-based compound is too low, the improvement effect due to the use of the aliphatic chain monoether-based compound is insignificant, and the content of the alkylaluminum-based compound is too low, and the aliphatic chain monoether-based compound is too low. The content of the chain monoether-based compound is too high, and the cocatalyst loading rate may be reduced.
  • the above-described effect can be further enhanced by using the alkylaluminum-based compound and the aliphatic chain monoether-based compound in a molar ratio of 1:0.5 to 1:3. More specifically, based on the aliphatic chain monoether compound, the alkylaluminum compound and the aliphatic chain monoether compound are mixed in a molar ratio of 1:0.5 or more, or 1:0.8 or more, or 1:1 or more, or 1:1.5 The molar ratio or more, and 1:3 molar ratio or less, or 1:2.8 molar ratio or less, or 1:2.5 molar ratio or less, or 1:2.3 molar ratio or less, or 1:2 molar ratio or less, or 1:1.8 molar ratio or less can be used.
  • a molar ratio of 1:3 or less based on the aliphatic chain monoether compound means that the amount of the aliphatic chain monoether compound used is reduced to 3 molar ratio or less.
  • the alkyl aluminum-based compound is a compound represented by the formula (1).
  • R is each independently C 3-20 branched chain alkyl, more specifically C 3 or more, or C 4 or more, C 20 or less, or C 10 or less, or C 8 or less, or C 6 or less branched chain alkyl.
  • triisopropylaluminum triisobutylaluminum, tri-t-butylaluminum, triisopentylaluminum, or trineopentylaluminum, and any one or a mixture of two or more thereof may be used.
  • the alkylaluminum-based compound represented by Formula 1 has a structure including three branched chain alkyls, and compared to an alkylaluminum-based compound containing a straight-chain alkyl such as triethylaluminum, the attraction to the aliphatic chain monoether-based compound It is small, and as a result, it can be uniformly dispersed and bound to the carrier.
  • the aliphatic chain monoether-based compound may be a compound represented by Formula 2 below.
  • R a and R b are each independently C 1-20 straight-chain or branched alkyl, and more specifically, C 1-12 straight-chain or branched alkyl.
  • MTBE methyl t-butyl ether
  • ethyl t-butyl ether propyl t-butyl ether
  • sec-butyl tert-butyl ether any one or a mixture of two or more thereof may be used.
  • the reaction between the alkylaluminum-based compound and the aliphatic chain monoether-based compound may be performed in a hydrocarbon-based solvent such as hexane at a temperature of 30 to 80°C. If the reaction temperature is less than 30 ° C., there is a fear that the reactivity may decrease, and if it exceeds 80 ° C., it is difficult to control the reaction rate, or there is a fear of the occurrence of side reactions. More specifically, it may be carried out at 30°C or higher, or 40°C or higher, or 40°C or higher, and 80°C or lower, or 70°C or lower, or 60°C or lower.
  • a hydrocarbon-based solvent such as hexane
  • the reaction may be carried out at a temperature of 30 to 80 °C. If the reaction temperature is less than 30 ° C., there is a fear that the reactivity may decrease, and if it exceeds 80 ° C., it is difficult to control the reaction rate, or there is a fear of the occurrence of side reactions. More specifically, it may be carried out at 30°C or higher, or 40°C or higher, or 40°C or higher, and 80°C or lower, or 70°C or lower, or 60°C or lower.
  • an inorganic material commonly used in the preparation of a metallocene-supported catalyst such as silica, alumina, magnesia, silica-alumina, or silica-magnesia may be used. They may further include oxide, carbonate, sulfate, and nitrate components such as Na 2 O, K 2 CO 3 , BaSO 4 , and Mg(NO 3 ) 2 .
  • the carrier may be one that satisfies the following conditions, and more specifically, it may be a silica carrier that satisfies the following conditions:
  • Total volatile organic compound amount 5% by weight or less based on the total weight of the carrier, specifically silica.
  • the carrier may have an average particle size (D50) of 30 ⁇ m or more.
  • the average particle size of the carrier affects the fine powder content of the polymer produced. If the average particle size is too small, the effect of pretreatment and antistatic agent prescription may be reduced due to the high fine powder content. There is a fear that the effect of pretreatment and antistatic agent treatment may decrease due to the generation of fine powder.
  • the carrier may have an average particle size (D50) of 30 ⁇ m or more, or 35 ⁇ m or more, or 40 ⁇ m or more, and 60 ⁇ m or less, or 55 ⁇ m or less, or 50 ⁇ m or less, or 40 ⁇ m or less.
  • the average particle size (D50) of the carrier means the particle size at 50% of the particle volume cumulative distribution according to the particle size when analyzing the particle size distribution of the carrier, and the laser diffraction method is used.
  • D50 the average particle size of the carrier
  • the laser diffraction method is used.
  • the particle size distribution is analyzed by injecting into the hopper of the particle size analyzer and setting the method in the range of 0.5 to 350 ⁇ m to measure the diffraction pattern difference according to the particle size when carrier particles pass through the laser beam, and from the result, the particle size is The particle size D50 at 50% of the cumulative particle volume distribution can be obtained.
  • the carrier may have a pore volume of 1.4ml/g or less, more specifically 1.4ml/g or less, or 1.38ml/g or less, or 1.35ml/g or less, 1.0ml/g or more, or 1.2 ml/g or more, or 1.3 ml/g or more, or 1.32 ml/g or more.
  • the pore volume of the carrier can affect the catalytic activity and the bulk density of the polymer. If the pore volume of the carrier is too large or small, the catalytic activity may be lowered or the bulk density of the polymer may be reduced.
  • the pore volume of the carrier can be measured using a BET measuring instrument of the Belsorp-max model manufactured by MicrotracBEL, and the pore volume per unit mass of the carrier can be measured.
  • the measurement device automatically measures the amount of gas adsorbed and desorbed to the sample based on the relative pressure, and based on the measured value of the amount of gas and the mass of the sample, The pore volume per unit mass of the sample is automatically measured and calculated.
  • the carrier may have a total volatile organic compound (TVOC) content of 5 wt% or less based on the total weight of the carrier. If the content of TVOC in the silica carrier is high, catalytic activity may be lowered due to moisture, and the amount of fine powder may be increased. More specifically, the TVOC content may be 5 wt% or less, or 4 wt% or less, or 3.5 wt% or less, or 3 wt% or less, based on the total weight of the carrier.
  • TVOC total volatile organic compound
  • the TVOC content may be greater than 0 wt%, or 0.0001 wt% or more, or 0.01 wt% or more, or 0.1 wt% or more, based on the total weight of the carrier.
  • the TVOC content in the carrier can be measured according to a conventional method using a thermogravimetric analyzer. Specifically, using a TGA 4000 thermogravimetric analyzer manufactured by Perkin Elmer, the temperature of the carrier sample was raised to room temperature (from 25° C. to 900° C. at a rate of 20° C./min) under a nitrogen atmosphere, and then the mass of the carrier sample generated The mass loss was measured using a recording microbalance in a computer-controlled oven chamber, and the TVOC content was calculated therefrom, with a nitrogen flow rate of 60-70 mL/min. set it to be
  • a carrier that satisfies the above physical property requirements, in particular a silica carrier.
  • the morphology of the polymer produced can be further improved.
  • step 2 is a step of supporting the promoter on the carrier pretreated in step 1.
  • the co-catalyst serves to enhance catalyst activity and process stability, and specifically, an alkylaluminoxane-based compound represented by the following Chemical Formula 3 may be used:
  • R c may be the same as or different from each other, and are each independently C 1-20 alkyl,
  • n is an integer greater than or equal to 2;
  • methylaluminoxane examples include methylaluminoxane, ethylaluminoxane, isobutylaluminoxane, or butylaluminoxane, and any one or a mixture of two or more thereof may be used. More specifically, methylaluminoxane may be used.
  • the alkylaluminoxane-based compound acts as a scavenger of the hydroxyl groups present on the surface of the carrier to improve catalytic activity, and converts the halogen group of the catalyst precursor to a methyl group to promote chain growth during polymerization of polyethylene.
  • a metallocene-based catalyst precursor which will be described later, it may exhibit better catalytic activity.
  • the co-catalyst may be supported in an amount of 0.1 mmol or more, or 5 mmol or more, or 8 mmol or more, or 10 mmol or more, or 15 mmol or more, and 25 mmol or less, or 20 mmol or less per carrier weight, for example, based on 1 g of the silica carrier. have.
  • 0.1 mmol or more or 5 mmol or more, or 8 mmol or more, or 10 mmol or more, or 15 mmol or more, and 25 mmol or less, or 20 mmol or less per carrier weight, for example, based on 1 g of the silica carrier.
  • the co-catalyst supporting process may be performed by adding a co-catalyst to the dispersion in which the pre-treated carrier is dispersed, obtained in step 1, and heating to a temperature of 70 to 100° C. to react. More specifically, at a temperature of 70° C. or higher, or 80° C. or higher, and less than 100° C., or 90° C. or lower, 40 minutes or more, or 1 hour or more, or 3 hours or more, or 5 hours or more, and 10 hours or less, Alternatively, it may be carried out by reacting with stirring for 8 hours or less, or 7 hours or less.
  • the cocatalyst may be added in the form of a solid powder, or may be added as a solution dissolved in a hydrocarbon solvent such as hexane or toluene.
  • concentration of the cocatalyst in the solution may be appropriately determined in consideration of the amount of the cocatalyst in the metallocene supported catalyst, the reaction time, and the like.
  • step 3 is a step of supporting the metallocene-based catalyst precursor on the support on which the cocatalyst is supported in step 2.
  • the metallocene-based catalyst precursor may include a first metallocene compound represented by the following Chemical Formula 4; and at least one of the second metallocene compounds represented by the following Chemical Formula 5.
  • M 1 is a Group 4 transition metal
  • A is carbon (C), silicon (Si), or germanium (Ge);
  • Cp 1 is indenyl, wherein Cp 1 is hydrogen, a hydrocarbyl group having 1 to 30 carbon atoms, a hydrocarbyloxy group having 1 to 30 carbon atoms, a hydrocarbyloxyhydrocarbyl group having 2 to 30 carbon atoms, a hydrocarbyl group having 1 to 20 carbon atoms. Unsubstituted or substituted with one or more substituents selected from the group consisting of a carbyl (oxy) silyl group, or a silyl hydrocarbyl group having 1 to 20 carbon atoms,
  • R 1 to R 4 are the same as or different from each other, and each independently represents hydrogen, a C 1 to C 30 hydrocarbyl group, a C 1 to C 30 hydrocarbyloxy group, or a C 2 to C 30 hydrocarbyloxy hydrocarbyl group;
  • Q 1 and Q 2 are the same as or different from each other and are each independently a C 1 to C 30 hydrocarbyl group, a C 1 to C 30 hydrocarbyloxy group, or a C 2 to C 30 hydrocarbyloxy hydrocarbyl group;
  • X 1 and X 2 are the same as or different from each other, and each independently a halogen, a nitro group, an amido group, a phosphine group, a phosphide group, a hydrocarbyl group having 1 to 30 carbon atoms, a hydrocarbyloxy group having 1 to 30 carbon atoms, a hydrocarbyloxyhydrocarbyl group having 2 to 30 carbon atoms, —SiH 3 , a hydrocarbyl (oxy)silyl group having 1 to 30 carbon atoms, a sulfonate group having 1 to 30 carbon atoms, or a sulfone group having 1 to 30 carbon atoms;
  • M 2 is a Group 4 transition metal
  • X 3 and X 4 are the same as or different from each other, and each independently a halogen, a nitro group, an amido group, a phosphine group, a phosphide group, a hydrocarbyl group having 1 to 30 carbon atoms, a hydrocarbyloxy group having 1 to 30 carbon atoms, a hydrocarbyloxyhydrocarbyl group having 2 to 30 carbon atoms, —SiH 3 , a hydrocarbyl (oxy)silyl group having 1 to 30 carbon atoms, a sulfonate group having 1 to 30 carbon atoms, or a sulfone group having 1 to 30 carbon atoms;
  • Z is -O-, -S-, -NR 5 -, or -PR 6 -;
  • R 5 and R 6 are each independently hydrogen, a hydrocarbyl group having 1 to 20 carbon atoms, a hydrocarbyl (oxy)silyl group having 1 to 20 carbon atoms, and a silylhydrocarbyl group having 1 to 20 carbon atoms;
  • T 1 is C, Si, Ge, Sn or Pb,
  • Q 3 is hydrogen, a hydrocarbyl group having 1 to 30 carbon atoms, a hydrocarbyloxy group having 1 to 30 carbon atoms, a hydrocarbyloxyhydrocarbyl group having 2 to 30 carbon atoms, -SiH 3 , hydrocarbyl (oxy) having 1 to 30 carbon atoms Any one of a silyl group, a hydrocarbyl group having 1 to 30 carbon atoms substituted with a halogen, and -NR 7 R 8 ,
  • Q 4 is any one of a hydrocarbyloxyhydrocarbyl group having 2 to 30 carbon atoms
  • R 7 and R 8 are each independently any one of hydrogen and a hydrocarbyl group having 1 to 30 carbon atoms, or are connected to each other to form an aliphatic or aromatic ring;
  • Cp 2 is any one of the ligands represented by the following formulas 6a to 6d,
  • Y is O or S
  • R 11 to R 19 are the same as or different from each other, and each independently represent any one of hydrogen, a hydrocarbyl group having 1 to 30 carbon atoms, or a hydrocarbyloxy group having 1 to 30 carbon atoms,
  • indicates a site binding to T.
  • the hydrocarbyl group is a monovalent functional group in which a hydrogen atom is removed from hydrocarbon, and is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, an aralkenyl group, an aralkynyl group, an alkylaryl group, an alkenylaryl group, and an alkyl group. It may include a nylaryl group and the like.
  • the hydrocarbyl group having 1 to 30 carbon atoms may be a hydrocarbyl group having 1 to 20 carbon atoms or 1 to 10 carbon atoms.
  • the hydrocarbyl group may be a straight chain, branched chain or cyclic alkyl group.
  • the hydrocarbyl group having 1 to 30 carbon atoms is a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a tert-butyl group, an n-pentyl group, and a n-hexyl group.
  • straight-chain, branched-chain or cyclic alkyl groups such as a sil group, n-heptyl group, and cyclohexyl group; or an aryl group such as phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, or fluorenyl.
  • it may be an alkylaryl such as methylphenyl, ethylphenyl, methylbiphenyl, or methylnaphthyl, and may be an arylalkyl such as phenylmethyl, phenylethyl, biphenylmethyl, or naphthylmethyl.
  • it may be an alkenyl such as allyl, allyl, ethenyl, propenyl, butenyl, pentenyl.
  • the hydrocarbyloxy group is a functional group in which a hydrocarbyl group is bonded to oxygen.
  • the hydrocarbyloxy group having 1 to 30 carbon atoms may be a hydrocarbyloxy group having 1 to 20 carbon atoms or 1 to 10 carbon atoms.
  • the hydrocarbyloxy group may be a straight chain, branched chain or cyclic alkyl.
  • the hydrocarbyloxy group having 1 to 30 carbon atoms is a methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, iso-butoxy group, tert-butoxy group, n-pentoxy group , a straight-chain, branched-chain or cyclic alkoxy group such as n-hexoxy group, n-heptoxy group, cyclohexoxy group; Alternatively, it may be an aryloxy group such as a phenoxy group or a naphthalenoxy group.
  • a hydrocarbyloxyhydrocarbyl group is a functional group in which one or more hydrogens of a hydrocarbyl group are substituted with one or more hydrocarbyloxy groups.
  • the hydrocarbyloxyhydrocarbyl group having 2 to 30 carbon atoms may be a hydrocarbyloxyhydrocarbyl group having 2 to 20 carbon atoms or 2 to 15 carbon atoms.
  • the hydrocarbyloxyhydrocarbyl group may be a straight chain, branched chain or cyclic alkyl group.
  • the hydrocarbyloxyhydrocarbyl group having 2 to 30 carbon atoms is a methoxymethyl group, a methoxyethyl group, an ethoxymethyl group, an iso-propoxymethyl group, an iso-propoxyethyl group, an iso-propoxyhexyl group, a tert- part alkoxyalkyl groups such as a oxymethyl group, a tert-butoxyethyl group, and a tert-butoxyhexyl group; or an aryloxyalkyl group such as a phenoxyhexyl group.
  • the hydrocarbyl(oxy)silyl group is a functional group in which 1 to 3 hydrogens of -SiH 3 are substituted with 1 to 3 hydrocarbyl groups or hydrocarbyloxy groups.
  • the hydrocarbyl (oxy)silyl group having 1 to 30 carbon atoms may be a hydrocarbyl (oxy)silyl group having 1 to 20 carbon atoms, 1 to 15 carbon atoms, 1 to 10 carbon atoms, or 1 to 5 carbon atoms.
  • the hydrocarbyl (oxy)silyl group having 1 to 30 carbon atoms is an alkyl group such as a methylsilyl group, a dimethylsilyl group, a trimethylsilyl group, a dimethylethylsilyl group, a diethylmethylsilyl group or a dimethylpropylsilyl group.
  • Alkoxysilyl groups such as a methoxysilyl group, a dimethoxysilyl group, a trimethoxysilyl group, or a dimethoxyethoxysilyl group; It may be an alkoxyalkylsilyl group such as a methoxydimethylsilyl group, a diethoxymethylsilyl group, or a dimethoxypropylsilyl group.
  • the silylhydrocarbyl group having 1 to 20 carbon atoms is a functional group in which at least one hydrogen of the hydrocarbyl group is substituted with a silyl group.
  • the silyl group may be -SiH 3 or a hydrocarbyl (oxy)silyl group.
  • the silylhydrocarbyl group having 1 to 20 carbon atoms may be a silylhydrocarbyl group having 1 to 15 carbon atoms or 1 to 10 carbon atoms.
  • the silylhydrocarbyl group having 1 to 20 carbon atoms is a silylalkyl group such as -CH 2 -SiH 3 ; an alkylsilylalkyl group such as a methylsilylmethyl group, a methylsilylethyl group, a dimethylsilylmethyl group, a trimethylsilylmethyl group, a dimethylethylsilylmethyl group, a diethylmethylsilylmethyl group, or a dimethylpropylsilylmethyl group; Or it may be an alkoxysilylalkyl group, such as a dimethylethoxysilylpropyl group.
  • the halogen may be fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • the sulfonate group has a structure of -O-SO 2 -R a , and R a may be a hydrocarbyl group having 1 to 30 carbon atoms. Specifically, the sulfonate group having 1 to 30 carbon atoms may be a methanesulfonate group or a phenylsulfonate group.
  • a sulfone group having 1 to 30 carbon atoms has a structure of -R b -SO 2 -R c , wherein R b and R c are the same as or different from each other and may each independently be any one of a hydrocarbyl group having 1 to 30 carbon atoms.
  • the sulfone group having 1 to 30 carbon atoms may be a methylsulfonylmethyl group, a methylsulfonylpropyl group, a methylsulfonylbutyl group, or a phenylsulfonylpropyl group.
  • that two substituents adjacent to each other are connected to each other to form an aliphatic or aromatic ring means that the atom(s) of the two substituents and the valence (atoms) to which the two substituents are bonded are connected to each other to form a ring do.
  • examples in which R 7 and R 8 of -NR 7 R 8 are connected to each other to form an aliphatic ring include a piperidinyl group
  • R 7 and R 8 of -NR 7 R 8 are Examples of the aromatic ring connected to each other may be exemplified by a pyrrolyl group.
  • the Group 4 transition metal may be titanium (Ti), zirconium (Zr), hafnium (Hf), or rutherpodium (Rf), specifically, titanium (Ti), zirconium (Zr), or hafnium (Hf) may be, and more specifically, may be zirconium (Zr) or hafnium (Hf), but is not limited thereto.
  • substituents are optionally a hydroxyl group within the range of exhibiting the same or similar effect as the desired effect; halogen; hydrocarbyl group; hydrocarbyloxy group; a hydrocarbyl group or a hydrocarbyloxy group containing at least one hetero atom among the heteroatoms of Groups 14 to 16; silyl group; hydrocarbyl (oxy) silyl group; phosphine group; phosphide group; sulfonate group; And it may be substituted with one or more substituents selected from the group consisting of a sulfone group.
  • the metallocene-based catalyst precursor includes the first and second metallocene compounds having the above-described structure, polyethylene having excellent mechanical properties and excellent shrinkage and processability can be manufactured.
  • the first metallocene compound represented by Chemical Formula 4 contributes to improving mechanical properties through molecular structure improvement and distribution change by increasing the long chain branch (LCB) content, and is represented by Chemical Formula 5
  • the displayed second metallocene compound may contribute to improving shrinkage and processability by increasing a short chain branch (SCB) content.
  • M 1 may be titanium (Ti), zirconium (Zr), or hafnium (Hf), preferably zirconium (Zr).
  • A may be silicon (Si).
  • X 1 and X 2 may each be a halogen, specifically chlorine.
  • Cp 1 is an indenyl group
  • Cp 1 is hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms.
  • an arylalkyl group having 7 to 14 carbon atoms an alkylaryl group having 7 to 14 carbon atoms, an alkylsilyl group having 1 to 10 carbon atoms, a silylalkyl group having 1 to 10 carbon atoms, and an alkylsilylalkyl group having 2 to 12 carbon atoms selected from the group consisting of It may be unsubstituted or substituted with one or more substituents.
  • Cp 1 may be unsubstituted or substituted with one or more substituents selected from the group consisting of hydrogen, methyl, ethyl, propyl, butyl, butenyl, trimethylsilylmethyl, phenyl, and t-butylphenyl.
  • R 1 to R 4 may each independently be hydrogen or an alkyl group having 1 to 20 carbon atoms. Specifically, R 1 to R 4 may each independently be hydrogen or an alkyl group having 1 to 3 carbon atoms, and more specifically, R 1 to R 4 may be all hydrogen or methyl.
  • Q 1 and Q 2 may each be an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms, specifically, an alkyl group having 1 to 6 carbon atoms. , an aryl group having 6 to 12 carbon atoms, or an alkoxyalkyl group having 2 to 12 carbon atoms, and more specifically, methyl, ethyl, phenyl or t-butoxyhexyl.
  • the first metallocene compound may be one represented by the following Chemical Formula 4-1 or 4-2, and any one or a mixture of two or more thereof may be used:
  • M 1 , X 1 , X 2 , R 1 to R 4 , Q 1 , and Q 2 are as defined above,
  • R 11 is hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, an arylalkyl group having 7 to 14 carbon atoms, an alkyl group having 7 to 14 carbon atoms It may be an aryl group, an alkylsilyl group having 1 to 10 carbon atoms, a silylalkyl group having 1 to 10 carbon atoms, or an alkylsilylalkylene group having 2 to 12 carbon atoms, and more specifically, hydrogen, methyl, ethyl, propyl, butyl, butenyl. , trimethylsilylmethyl, or phenyl.
  • R 21 is an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, an arylalkyl group having 7 to 14 carbon atoms, and more specifically, t-butyl It may be an arylalkyl group having 7 to 14 carbon atoms, such as phenyl.
  • R 22 is a linear or branched alkyl group having 1 to 10 carbon atoms, and more specifically, may be a branched alkyl group having 3 to 6 carbon atoms, such as isopropyl.
  • first metallocene compound may be selected from the group consisting of the following compounds (4a) to (4p):
  • the first metallocene compound represented by the above structural formulas may be synthesized by applying known reactions, and for a more detailed synthesis method, refer to Examples.
  • the second metallocene compound is specifically, in Formula 5, Z is -NR 5 -, wherein R 5 may be a hydrocarbyl group having 1 to 10 carbon atoms, specifically, R 5 is a carbon number 1 It may be a straight-chain or branched alkyl group of to 6, and more specifically, a branched alkyl group having 3 to 6 carbon atoms, such as a tert-butyl group.
  • T is , T 1 is carbon (C) or silicon (Si), Q 3 is a hydrocarbyl group having 1 to 30 carbon atoms, or a hydrocarbyloxy group having 1 to 30 carbon atoms, and Q 4 is a hydrocarbyl group having 2 to 30 carbon atoms. It may be an oxyhydrocarbyl group.
  • Q 3 is a hydrocarbyl group having 1 to 10 carbon atoms
  • Q 4 may be a hydrocarbyloxyhydrocarbyl group having 2 to 12 carbon atoms
  • Q 3 is an alkyl group having 1 to 6 carbon atoms
  • Q 4 may be an alkoxy-substituted C1 to C6 alkyl group having 1 to 6 carbon atoms.
  • T 1 may be silicon (Si)
  • Q 3 may be methyl
  • Q 4 may be tert-butoxy-substituted hexyl.
  • the second metallocene compound may be one represented by any one of the following Chemical Formulas 5-1 to 5-4, and any one or a mixture of two or more thereof may be used:
  • M 2 , X 3 , X 4 , T 1 , Q 3 , Q 4 , R 5 , and R 11 to R 19 are the same as defined in Formula 5 above.
  • R 11 to R 14 , R 18 and R 19 are each independently hydrogen or a hydrocarbyl group having 1 to 10 carbon atoms
  • R 15 to R 17 are each independently a hydrocarbon group having 1 to 10 carbon atoms. It could be a beg More specifically, R 11 to R 14 , R 18 and R 19 may each independently be hydrogen or an alkyl having 1 to 10 carbon atoms, and R 15 to R 17 may each independently be an alkyl having 1 to 10 carbon atoms. More specifically, R 11 to R 14 , R 18 and R 19 may each independently be hydrogen or methyl, and R 15 to R 17 may each independently be methyl.
  • M 2 may be titanium (Ti), zirconium (Zr), or hafnium (Hf), specifically titanium (Ti).
  • X 3 and X 4 may each be a halogen, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 1 to 6 carbon atoms, specifically chlorine or methyl.
  • the second metallocene compound may be selected from the group consisting of compounds (5a) to (5c).
  • the second metallocene compound represented by the above structural formulas may be synthesized by applying known reactions, and more detailed synthesis methods may refer to Examples.
  • the first and second metallocene compounds may be in the form of a meso isomer, a racemic isomer, or a mixture thereof.
  • racemic form or “racemic form” or “racemic isomer” means that the same substituent on two cyclopentadienyl moieties is a transition metal represented by M 1 in Formula 4, For example, it means a shape on the opposite side to a plane including a transition metal such as zirconium (Zr) or hafnium (Hf) and the center of the cyclopentadienyl moiety.
  • Zr zirconium
  • Hf hafnium
  • the term “meso isomer” or “meso isomer” refers to a stereoisomer of the above-mentioned racemic isomer, wherein the same substituent on two cyclopentadienyl moieties is M 1 in Formula 4
  • the indicated transition metal for example, means a form that is on the same plane with respect to a plane including a transition metal such as zirconium (Zr) or hafnium (Hf) and the center of the cyclopentadienyl moiety.
  • the metallocene-based catalyst precursor may include at least one of the first metallocene compounds or at least one of the second metallocene compounds, , or a mixture of the first metallocene compound and the second metallocene compound.
  • the first metallocene compound and the second metallocene compound may be supported in a molar ratio of 1:0.2 to 1:2.
  • excellent supporting performance, catalytic activity, and high copolymerizability may be exhibited.
  • process stability is improved and fouling, which has been frequently occurring in the prior art, can be prevented.
  • the molar ratio of the first metallocene compound to the second metallocene compound is less than 1:0.2 based on the content of the first metallocene compound, and the amount of the second metallocene compound is too low, only the first metallocene compound dominates As a result, it becomes difficult to reproduce the desired molecular structure of the polymer, and mechanical properties may be deteriorated.
  • the molar ratio of the first metallocene compound to the second metallocene compound exceeds 1:2 and the amount of the second metallocene compound is excessively large, only the second metallocene compound plays a dominant role, improving processability and Shrinkage may be reduced.
  • the molar ratio of the first metallocene compound and the second metallocene compound is 1:0.2 or more, or 1:0.3 or more, or 1:0.4 or more, or 1:0.5 or more, and 1:2 or less, or 1:1.8 or less, or 1:1.5 or less, or 1:1.2 or less, or 1:1 or less, or 1:0.8 or less.
  • the amount of the second metallocene compound is increased to 0.2 or more.
  • the ratio of 1:2 or less based on the amount of the second metallocene compound used means that the amount of the second metallocene compound used is reduced to 2 molar ratio or less. That is, in the first metallocene compound and the second metallocene compound, the amount of the second metallocene compound is 0.2 mol or more, or 0.3 mol or more, or 0.4 mol or more, based on 1 mol of the first metallocene compound; or 0.5 mol or more, 2 mol or less, or 1.8 mol or less, or 1.5 mol or less, or 1.2 mol or less, or 1 mol or less, or 0.8 mol or less.
  • the above-described metallocene-based catalyst precursor may be supported in a content range of 100 ⁇ mol or more, or 150 ⁇ mol or more, and 450 ⁇ mol or less, or 500 ⁇ mol or less per carrier weight, for example, based on 1 g of the silica carrier.
  • a content range of 100 ⁇ mol or more, or 150 ⁇ mol or more, and 450 ⁇ mol or less, or 500 ⁇ mol or less per carrier weight, for example, based on 1 g of the silica carrier.
  • it When supported in the above content range, it may exhibit an appropriate supported catalyst activity, which may be advantageous in terms of maintaining the activity of the catalyst and economic feasibility.
  • the loading of the metallocene-based catalyst precursor on the promoter-supported carrier obtained in step 3 may be performed according to a conventional method.
  • a metallocene-based catalyst precursor to the dispersion in which the promoter-supported carrier is dispersed, obtained in step 2, and reacting at a temperature of 40 to 80°C. More specifically, the reaction may be carried out at a temperature of 40°C or higher, or 50°C or higher, and 80°C or lower, or 70°C or lower.
  • the first and second metallocene compounds may be simultaneously added, and after the first metallocene compound is added, the second metallocene compound is added in order, or the second metal After the introduction of the rosene compound, it may be added in the order of the first metallocene compound.
  • the metallocene-based catalyst precursor may be introduced in a solution phase, and in this case, a hydrocarbon-based solvent such as toluene may be used as the solvent.
  • a hydrocarbon-based solvent such as toluene
  • the concentration of the metallocene compound in the solution may be appropriately determined in consideration of the supported amount of the metallocene compound in the supported catalyst, reaction efficiency, and the like.
  • a supported catalyst in which a cocatalyst and a metallocene-based catalyst precursor are supported on a carrier pretreated with an alkylaluminum-based compound and an aliphatic chain monoether-based compound is prepared. Since the prepared supported catalyst exhibits excellent catalytic activity, it may be used as a catalyst for preparing an olefin polymer by itself, or may be used after treatment with an antistatic agent to prevent static electricity generation during polymerization.
  • an antistatic agent is added to the carrier on which the metallocene-based catalyst precursor is supported and reacted. It may further include a step (step 4).
  • step 4 is a step of preparing a metallocene-supported catalyst by adding and reacting an antistatic agent to the carrier on which the metallocene-based catalyst precursor and the cocatalyst prepared in step 3 are supported.
  • the antistatic agent is specifically selected from the group consisting of ethoxylated alkylamine-based compounds and sulfonic acid-based compounds; and at least one second antistatic agent selected from the group consisting of fatty acid esters and metal salts of fatty acids.
  • the first antistatic agent has excellent antistatic properties, but has low dispersibility, so that when used alone, there is a problem in that the antistatic properties vary greatly depending on the location of the catalyst.
  • the second antistatic agent when used alone, the effect of suppressing fine powder generation and reducing static electricity is lower than that of the first antistatic agent, but serves to help disperse the first antistatic agent and improve flowability. Accordingly, by using the first antistatic agent and the second antistatic agent in combination, the variation in the antistatic property of the first antistatic agent can be reduced, and as a result, the effect of reducing fine powder and improving the electrostatic property can be enhanced.
  • the first antistatic agent and the second antistatic agent may be used in a weight ratio of 10:90 to 90:10, and more specifically, the first antistatic agent and the second antistatic agent, the first antistatic agent 10:90 or more, or 20:80 or more, or 30:70 or more, or 40:60 or more, or 50:50 or more, or 60:40 or more, or 65:35 or more, and 90:10 or more, or 80:20 or less, or 75:25 or less, or 70:30 or less by weight.
  • the weight ratio of the first antistatic agent and the second antistatic agent is 10:90 or more based on the first antistatic agent, it means that the amount of the first antistatic agent is increased to 10 parts by weight or more, and also based on the first antistatic agent 90:10 or less means that the amount of the first antistatic agent is reduced to 90 parts by weight or less. That is, the first antistatic agent is 10 wt% or more, or 20 wt% or more, or 30 wt% or more, or 40 wt% or more, or 50 wt% or more, based on the total weight of the first antistatic agent and the second antistatic agent. , or 60% by weight or more, or 65% by weight or more, 90% by weight or less, or 80% by weight or less, or 75% by weight or less, or 70% by weight or less.
  • the amount of fine powder can be minimized while exhibiting higher catalytic activity, and as a result, the electrostatic properties are improved and the polymer is It is possible to implement the morphology improvement effect.
  • the ethoxylated alkylamine may be specifically a compound represented by the following Chemical Formula 7:
  • R d may be a C 8-30 straight or branched chain alkyl, and when R d includes an alkyl group having a carbon number in the above range, fines reduction through excellent antistatic action without inducing unpleasant odor effect can be shown.
  • the ethoxylated alkylamine may be a compound in which R d in Formula 7 is C 8-22 straight-chain alkyl, C 10-18 straight-chain alkyl, or C 13-15 straight-chain alkyl. And, one kind alone or a mixture of two or more kinds of these compounds may be used.
  • ethoxylated alkylamine examples include N,N-bis(2-hydroxyethyl)tridecylamine (N,N-bis(2-hydroxyethyl)tridecylamine), N,N-bis(2-hydroxy Ethyl) pentadecylamine (N,N-bis(2-hydroxyethyl)pentadecylamine), or N,N-bis(2-hydroxyethyl)octadecylamine (N,N-bis(2-hydroxyethyl)octadecylamine) and any one of them or a mixture of two or more thereof may be used.
  • a commercially available ethoxylated alkylamine-based antistatic agent may also be used.
  • AtmerTM163 manufactured by CRODA
  • CRODA CRODA
  • organic sulfonic acid or a metal salt of the organic sulfonic acid may be used, and specific examples thereof include dodecylbenzenesulfonic acid, toluenesulfonic acid, camphorsulfonic acid, benzenesulfonic acid, and styrenesulfonic acid, or a metal salt thereof. and any one of them or a mixture of two or more thereof may be used.
  • a commercially available sulfonic acid-based antistatic agent may be used, for example, as dodecylbenzenesulfonic acid, StatsafeTM 6000 (manufactured by innospec) may be used.
  • the second antistatic agent at least one compound selected from the group consisting of fatty acid esters and fatty acid metal salts may be used.
  • the fatty acid ester is a fatty acid and a monovalent (mono-valent) or polyvalent (polyvalenet) alcohol ester-bonded compound, specifically, methyl stearate, ethyl stearate, propyl stearate, butyl stearate, or ethyl palmi fatty acid alkyl esters in which the fatty acid is ester-bonded with a monohydric alcohol such as methanol, ethanol, propanol, or butanol, such as tate; or glycerol as a polyhydric alcohol with the fatty acid, such as glycerol monostearate (2,3-dihydroxypropyl octadecenoate), glycerol monopalmitate (2,3-dihydroxypropyl hexadecanoate), glyceryl oleate bound glycerol fatty acid ester, and the like, and any one or a mixture of two or more thereof may be used.
  • the glycerol fatty acid ester contains two free hydroxyl groups to neutralize the charging of the polymer particles, and to partially deactivate the cocatalyst additionally included in the catalyst, thereby reducing the generation of fine powder.
  • the glycerol fatty acid ester can reduce electrostatic charging by polar functional groups and reduce the formation of polymer aggregates. As a result, it is possible to improve productivity by reducing fine powder when used together with the first metallocene compound on a carrier. The effect of reducing the generation of fine powder of the glycerol fatty acid ester can be further improved when used in combination with an ethoxylated alkylamine among the first antistatic agents.
  • the glycerol fatty acid ester may be specifically glycerol monostearate or glycerol monopalmitate, and one or a mixture of two or more of these compounds may be used.
  • commercially available glycerol fatty acid ester-based compounds may be used, for example, Atmer 129TM (manufactured by CRODA) may be used as glycerol monostearate.
  • the metal salt of the fatty acid is specifically aluminum stearate, zinc stearate, calcium stearate, magnesium stearate, such as a metal stearate (Metallic Stearate) and any one or a mixture of two or more thereof may be used.
  • the fatty acid may be a C 8-22 saturated or unsaturated fatty acid, more specifically C 8 or more, or C 10 or more, or C 12 or more, or C 15 or more, or C 16 or more, and C 22 or less, or C 20 or less, or C 18 or less saturated or unsaturated fatty acid, including straight-chain or branched alkyl, More specifically, it may be a saturated fatty acid including straight-chain alkyl, and more specifically, stearic acid or palmitic acid.
  • the second antistatic agent is more specifically, at least one selected from the group consisting of metal salts of stearic acid and glycerol stearic acid esters, such as aluminum stearate and glycerol monostearate.
  • metal salts of stearic acid and glycerol stearic acid esters such as aluminum stearate and glycerol monostearate.
  • the antistatic agent including the first and second antistatic agents may be included in an amount of 0.5 to 5% by weight based on the total weight of the metallocene-supported catalyst. If the content of the antistatic agent is less than 0.5% by weight, the improvement effect due to the inclusion of the antistatic agent is insignificant, so that the generation of fine powder increases, and fouling may occur as a result. In addition, when the content of the antistatic agent exceeds 5% by weight, the catalyst activity may be reduced due to a relative decrease in the content of the metallocene-based catalyst precursor.
  • the antistatic agent is 0.5% by weight or more, or 1% by weight or more, or 1.5% by weight or more, 5% by weight or less, or 4% by weight or less, or 3.5% by weight based on the total weight of the metallocene-supported catalyst or less, or 3 wt% or less, or 2.5 wt% or less, or 2 wt% or less.
  • the antistatic agent may be added as a solution diluted in a hydrocarbon solvent such as hexane, and the content of the antistatic agent in the solution may be appropriately selected in consideration of the content of the antistatic agent in the metallocene-supported catalyst.
  • the reaction is at a temperature of 20 to 60 °C, more specifically 20 °C or higher, or 40 °C or higher, and 60 °C or lower, or 50 °C or lower.
  • the reaction can be efficiently performed without fear of side reactions occurring.
  • the solvent in the mixture is removed by evaporation, and the prepared metallocene supported catalyst can be obtained in the form of a solid powder.
  • the metallocene-supported catalyst prepared by the above preparation method may exhibit improved electrostatic properties by including two types of hybrid antistatic agents. Accordingly, it is possible to reduce the generation of fine powder during the production of the olefin polymer using the metallocene-supported catalyst, improve polymerization stability, and as a result prevent the occurrence of fouling in the reactor and improve polymer properties. It is particularly useful for the production of linear low-density polyethylene comprising LCB by gas phase polymerization.
  • a method for producing polyethylene comprising the step of polymerizing ethylene in the presence of the metallocene supported catalyst.
  • the above-described metallocene supported catalyst may be used in a solid powder state, may be used in a slurry state mixed in a solvent, or may be used in a state diluted in a solvent, or oil and grease according to a polymerization method. It can be used in the form of a mud catalyst mixed with a mixture. However, in consideration of the above-described flowability and electrostatic property improvement effect, a better effect can be realized in the gas phase polymerization reaction, and therefore, it is preferably used in a solid state.
  • the polymerization reaction for the production of polyethylene is homopolymerized with one ethylene monomer using one continuous slurry polymerization reactor, loop slurry reactor, gas phase reactor or solution reactor, or copolymerizing the ethylene monomer with an olefin monomer having 3 or more carbon atoms.
  • it is more appropriate to polymerize the ethylene monomer by gas phase polymerization in that it can implement a better effect.
  • polyethylene production method may be carried out in a single-CSTR reactor (Single-CSTR Reactor).
  • polymerization may proceed in the presence of an inert gas such as nitrogen.
  • the inert gas may serve to maintain the reaction activity of the metallocene compound included in the catalyst for a long time by suppressing the rapid reaction of the metallocene catalyst at the initial stage of the polymerization reaction.
  • hydrogen gas may be optionally further used for the purpose of controlling the molecular weight and molecular weight distribution of polyethylene.
  • Hydrogen gas serves to activate the inactive site of the metallocene catalyst and cause a chain transfer reaction to control molecular weight. Or 0.12 vol% or more, it may be added in an amount corresponding to 0.2 vol% or less, or 0.18 vol% or less. When hydrogen gas is introduced in an amount within the above range, processability can be improved by reducing the molecular weight of the polymer to be prepared.
  • the polymerization reaction temperature may be 70 to 100 °C, more specifically 70 °C or more, or 80 °C or more, 100 °C or less, or 90 °C or less. If the polymerization reaction temperature is too low, it is not appropriate in terms of polymerization rate and productivity. It is desirable that this be done.
  • the pressure during the polymerization reaction may be 20 to 50 bar, more specifically, 20 bar or more, or 30 bar or more, and 50 bar or less, or 40 bar or less to ensure optimal productivity.
  • the polymerization reaction pressure may be 20 bar or more in terms of preventing blocking due to excessive generation of high molecular weight and optimizing productivity, and 50 bar in consideration of the prevention of side reactions under high-pressure polymerization conditions can be the following
  • an organic solvent may be further used as a reaction medium or a diluent in the polymerization reaction.
  • Such an organic solvent may be used in an amount such that slurry-phase polymerization can be appropriately performed in consideration of the content of the ethylene monomer.
  • trialkylaluminum such as triethylaluminum may be optionally further added.
  • alkyl is as defined above, specifically C 1-20 alkyl, more specifically C 1-6 straight or branched chain alkylyl such as methyl, ethyl, isobutyl, etc. can
  • the trialkylaluminum (based on 1M) is 300ppm or more, or 400ppm or more, based on the total weight of the monomer, and may be added in an amount of 1500ppm or less, or 1350ppm or less, in the presence of trialkylaluminum in this content range During the polymerization reaction, homopolyethylene having excellent strength properties can be more easily prepared.
  • an alpha-olefin, a cyclic olefin, a diene olefin having two or more double bonds, or a triene olefin may be used as the olefin monomer.
  • olefin monomer examples include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1 -dodecene, 1-tetradecene, 1-hexadecene, 1-aitocene, norbornene, norbornadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1,5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, etc. are mentioned, and 2 or more types of these monomers may be mixed and copolymerized.
  • Polyethylene produced by the above-described manufacturing method has a lower bulk density and improved morphology compared to the prior art, and has a low content of fine powder in the polymer.
  • the polyethylene satisfies the following conditions (a1) to (a4):
  • D90, D10 and D50 mean particle sizes at 90%, 10%, and 50% points of the cumulative particle volume distribution according to particle size, respectively, in particle size distribution analysis for polyethylene particles, and laser diffraction It can be measured using a laser diffraction method.
  • HELOS light diffraction from Sympatec GmbH equipped with RODOS/M (dispersion nozzle diameter: 4 mm, vibrating sample supply device: VIBRI) manufactured by Sympatec GmbH, which is a flow-airflow dry dispersion device for light diffraction of polyethylene, which is the powder to be measured.
  • particle size analyzer It is injected into the hopper of the particle size analyzer, and the method is set in the range of 50 to 3500 ⁇ m to measure the diffraction pattern difference according to the particle size when the polyethylene particles pass through the laser beam to analyze the particle size distribution, and from the result to the particle size
  • particle sizes D90, D50, and D10 at the point where the accumulation becomes 90%, the point at which the accumulation becomes 10%, and the point at which the accumulation becomes 50%, respectively, are obtained from the particles with the smallest particle size.
  • the polyethylene has a bulk density of 0.45 g/cc or less as measured according to ASTM D1895-96. More specifically, 0.45 g/cc or less, or 0.44 g/cc or less, or 0.43 g/cc or less, 0.3 g/cc or more, or 0.31 g/cc or more, or 0.35 g/cc or more, or 0.37 g/cc or more , or 0.40 g/cc or more, or 0.41 g/cc or more, or 0.42 g/cc or more.
  • 0.45 g/cc or less 0.44 g/cc or less, or 0.43 g/cc or less
  • 0.3 g/cc or more or 0.31 g/cc or more, or 0.35 g/cc or more, or 0.37 g/cc or more
  • 0.40 g/cc or more or 0.41 g/cc or more, or 0.42 g/cc or more.
  • the polyethylene has a fine powder content of less than 75 ⁇ m with a particle size (P) of 1.3% by weight or less, more specifically 1.25% by weight or less, or 1.15% by weight or less, or 1.1% by weight based on the total weight of the polyethylene particles. or less, or 1 wt% or less, or 0.9 wt% or less, or 0.85 wt% or less, or 0.8 wt% or less, or 0.7 wt% or less, or 0.6 wt% or less, or 0.5 wt% or less.
  • P particle size
  • the fine powder content in the polyethylene is preferably as low as possible, but may be included in an amount of more than 0 wt%, or 0.0001 wt% or more, or 0.1 wt% or more in consideration of the manufacturing process and the like.
  • the fine content in the polyethylene having a particle size of less than 75 ⁇ m is calculated using a laser diffraction method to analyze a particle size distribution, and then a fine powder having a particle size of less than 75 ⁇ m is calculated, and the fine content is based on the total weight of the polyethylene. is expressed as a percentage (% by weight).
  • the particle size distribution analysis using the laser diffraction method may be performed in the same manner as the particle size distribution analysis method of the polyethylene particles described above.
  • the polyethylene has an average particle size (D50) of 500 ⁇ m or more, more specifically 500 ⁇ m or more, or 520 ⁇ m or more, or 550 ⁇ m or more, or 560 ⁇ m or more, or 580 ⁇ m or more, or 600 ⁇ m or more, or 610 ⁇ m or more, or 620 ⁇ m or more, and 750 ⁇ m or less, or 700 ⁇ m or less, or 680 ⁇ m or less, or 660 ⁇ m or less, or 650 ⁇ m or less.
  • D50 average particle size
  • the polyethylene has a SPAN value of less than 1 according to Equation 1, specifically 0.9 or less, 0.8 or less, or 0.7 or less, 0.1 or more, or 0.3 or more, or 0.5 or more, or 0.6 or more.
  • polyethylene has an improved morphology compared to the prior art, such as an increase in average particle size (D50) and particle uniformity, improved physical properties may be exhibited.
  • the metallocene-based catalyst precursor in the metallocene-supported catalyst prepared by the preparation method according to the present invention is a first metallocene compound represented by Chemical Formula 4; And when it contains at least one metallocene compound selected from the group consisting of a second metallocene compound represented by Chemical Formula 5, polyethylene prepared using the same has the physical properties of (a1) to (a4) and In addition, one or more, or two or more, or three or more, or four or more, or all of the following conditions among (b1) to (b6) below may be further satisfied. It is thus useful for the production of films, especially films for shrinkage:
  • melt flow index (MFRR; MI 21.6 measured at a temperature of 190 ° C and a load of 21.6 kg according to ASTM D 1238, and MI 2.16 measured at a temperature of 190 ° C and a load of 2.16 kg according to ASTM D 1238 divided by value): 50 to 90,
  • the polyethylene has a melt index of 0.2 to 1.1 g/10min, more specifically 0.2 g/10min or more, or 0.25 g/10min or more, or 0.28, measured at 190°C and 2.16kg load condition according to ASTM D 1238.
  • g/10min or more or 0.3 g/10min or more, or 0.33 g/10min or more, and 1.1 g/10min or less, or 0.8 g/10min or less, or 0.5 g/10min or less, or 0.37 g/10min or less, or 0.35 g /10 min or less.
  • the polyethylene is a melt flow calculated by dividing MI 21.6 measured at a temperature of 190° C. and a load of 21.6 kg according to ASTM D 1238, and MI 2.16 measured at a temperature of 190° C. and a load of 2.16 kg according to ASTM D 1238.
  • Index (MFRR) is 50 to 90, more specifically 50 or more, or 60 or more, or 65 or more, or 70 or more, and 90 or less, or 80 or less, or 75 or less, or 72.5 or less, or 72 or less.
  • the polyethylene has a density of 0.918 to 0.940 g/cm 3 , more specifically 0.918 g/cm 3 or more, or 0.920 g/cm 3 or more, or 0.925 g/cm 3 or more, or 0.929 as measured according to ASTM 765. g/cm 3 or more, 0.940 g/cm 3 or less, or 0.935 g/cm 3 or less, or 0.931 g/cm 3 or less.
  • excellent mechanical strength properties particularly impact resistance
  • improved processability can be exhibited along with the improvement of mechanical strength properties. .
  • the polyethylene has a weight average molecular weight of 90,000 to 120,000 g/mol, more specifically 90,000 g/mol or more, or 95,000 g/mol or more, or 97,000 g/mol or more, or 99,000 g/mol, calculated through GPC analysis.
  • mol or more and may be 120,000 g/mol or less, or 110,000 g/mol or less, or 103,000 g/mol or less, or 100,000 g/mol or less.
  • the polyethylene has a ratio of Mw/Mn calculated using Mw and Mn values obtained through GPC analysis, that is, a molecular weight distribution of 3.3 or less, more specifically 3.3 or less, or 3.2 or less, or 3.1 or less, and 2.4 or more, or 2.7 or more, or 2.9 or more, or 3.0 or more. As it has such a narrow molecular weight distribution, excellent mechanical strength characteristics may be exhibited.
  • the weight average molecular weight and the number average molecular weight of polyethylene can be measured using gel permeation chromatography (GPC, gel permeation chromatography, manufactured by Water), and the molecular weight distribution is the measured weight average molecular weight. It can be calculated by dividing by the average molecular weight. A specific measurement method will be described in detail in the following experimental examples.
  • the number of long-chain branches which are branches of 8 or more carbons bonded to the main chain, is 0.02 to 0.05/1000C, where 1000C means 1000 carbons constituting the polyethylene. More specifically, it may be 0.02/1000C or more, or 0.025/1000C or more, or 0.03/1000C or more, and may be 0.05/1000C or less, or 0.04/1000C or less, or 0.035/1000C or less.
  • the long chain branch (LCB) in polyethylene is a chain branched in a branch-like form with respect to the longest main chain in each of the polymer chains, specifically, more than 8 carbon atoms, more Specifically, it means a chain of 8 to 500.
  • the number of such long chain branches can be calculated by analyzing the polymer using PerkinElmer Spectrum 100 FT-IR coupled with high-temperature GPC (PL-GPC220), or by measuring using 13 C-NMR. For example, when using FT-IR, polyethylene is dissolved in 1,2,4-Trichlorobenzene containing 0.0125% of BHT using PL-SP260 at 160° C.
  • Polyethylene can be used in the manufacture of packaging containers, films, sheets, injection molded articles, textile products, etc. that require a low bulk density and a low fine powder content, and is particularly useful for the production of shrink films.
  • the TD direction (transverse direction, TD, perpendicular to the resin flow direction) of the film prepared using the polyethylene, measured according to the method of the oil bath method according to the American Society for Testing and Materials standard ASTM D 2732-14 (2020).
  • the shrinkage percentage (%) is 15% or more, or 19% or more, and 25% or less, or 23% or less, or 20% or less.
  • a polyethylene resin composition and a film for shrinkage, including polyethylene which is manufactured according to the manufacturing method and satisfies the above-described physical property requirements.
  • the film for shrinkage may be manufactured according to a conventional method for producing a film for shrinkage, except that the film contains polyethylene.
  • the carrier used in the following Examples and Comparative Examples is silica satisfying the following conditions:
  • TVOC content 3% by weight based on the total weight of silica.
  • the average particle size (D50) of the silica carrier was measured by RODOS/M (dispersion nozzle diameter: 4 mm, vibrating sample supply device: VIBRI) manufactured by Sympatec GmbH, which is a flow-air flow dry dispersion device for light diffraction in a powder state of the silica carrier. It is injected into the hopper of the HELOS optical diffraction particle size analyzer manufactured by Sympatec GmbH, and the method is set in the range of 0.5 to 350 ⁇ m to measure the diffraction pattern difference according to particle size when silica carrier particles pass through the laser beam to distribute the particle size. was analyzed, and the particle size D50 at 50% of the cumulative distribution of particle volume according to particle size was obtained from the result.
  • a BET measuring instrument of Belsorp_max model manufactured by MicrotracBEL was used for the pore volume of the silica carrier.
  • the measuring device measures the amount of gas adsorbed and desorbed to the sample based on the relative pressure, and based on the measured value of the gas amount and the mass of the sample, the unit mass of the sample. The sugar pore volume is automatically measured and calculated.
  • the TVOC content of the silica carrier was measured using a TGA 4000 thermogravimetric analyzer manufactured by Perkin Elmer Co., Ltd., specifically, a silica carrier sample under a nitrogen atmosphere from room temperature (25° C.) to 900° C. at a rate of 20° C./min. After heating, and then measuring the mass loss in the generated silica carrier sample, the TVOC content was calculated therefrom (nitrogen flow rate: 60-70 ml/min).
  • TIBAL triisobutylaluminum
  • MTBE methyl tert-butyl ether
  • a silica carrier (average particle size (D50): 40 ⁇ m, pore volume: 1.32 ml/g, TVOC content: 3 wt % based on the total weight of silica) was added to the resulting reactant and stirred at 40 ° C. for 1 hour, 75 g of methylaluminoxane (MAO, 10 wt% in toluene, equivalent to 16 mmol based on 1 g of silica carrier) was added, and the reaction was stirred at 80° C. for 5 hours or more.
  • MAO methylaluminoxane
  • the resulting reactant was filtered through a filter, and the reaction filtrate was separated and removed.
  • an antistatic agent a mixture of N,N-bis(2-hydroxyethyl)octadecylamine (BHOA) and glycerol monostearate (GMS) in a weight ratio of 65:35
  • BHOA N,N-bis(2-hydroxyethyl)octadecylamine
  • GMS glycerol monostearate
  • the resulting reactant was filtered through a filter to separate and remove the filtrate, and the residue was dried to prepare a solid metallocene-supported catalyst.
  • a supported catalyst and an ethylene/1-hexene copolymer were prepared in the same manner as in Example 1, except that the preparation of the supported catalyst in Example 1 was performed under the conditions shown in Table 1 below.
  • the 'eq' used in the amount of the carrier pretreatment materials means an equivalent value based on 1 equivalent of the metallocene-based catalyst precursor input.
  • the 'weight %' of the antistatic agent used is the weight of the antistatic agent as a percentage based on the total weight of the metallocene-supported catalyst.
  • TIBAL triisobutylaluminum
  • Tri-t-butyl Al Tri-t-butyl aluminum
  • ETBE is ethyl t-butyl ether
  • catalyst precursors A, B, C, D, E, and F used in Examples and Comparative Examples are compounds having the following structures.
  • Example 1 The polyethylene prepared in Example 1 and Comparative Example 4 was observed with a scanning electron microscope (SEM), and the results are shown in FIGS. 1A to 2B, respectively.
  • SEM scanning electron microscope
  • the polyethylene prepared according to Example 1 had a spherical particle shape, and showed an improved morphology compared to the polyethylene prepared in Comparative Example 4.
  • BHOA as the first antistatic agent and GMS as the second antistatic agent are mixed in a weight ratio of 0:100, 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 65: 35, 70:30, 75:25, 80:20, 90:10, 100:0 was carried out in the same manner as in Example 1, except for using a metallocene supported catalyst and polyethylene prepared, and the catalytic activity and the amount of fine powder generated were measured.
  • Polyethylene particles were injected into the hopper of the HELOS optical diffraction particle size analyzer from Sympatec GmbH equipped with RODOS/M (dispersion nozzle diameter: 4 mm, vibrating sample supply: VIBRI) manufactured by Sympatec GmbH, a flow-air flow dry dispersion device for light diffraction. And, the particle size distribution was analyzed by measuring the diffraction pattern difference according to the particle size when the polyethylene particles passed through the laser beam by setting a method in the range of 50 to 3500 ⁇ m. From the result, after calculating the weight of the fine powder having a particle size of less than 75 ⁇ m, it was expressed as a percentage based on the total weight of polyethylene (% by weight).
  • the catalytic activity increased while the content of the first antistatic agent in the mixture of the first antistatic agent and the second antistatic agent increased from 0:100 to 65:35 by weight of the first antistatic agent and the second antistatic agent, and , the fine powder content showed a tendency to decrease.
  • the content of the first antistatic agent was further increased because the mixing ratio of the first antistatic agent and the second antistatic agent exceeded 65:35, the catalytic activity decreased and the fine powder content showed a tendency to increase. From this, it can be seen that through control of the mixing ratio of the first antistatic agent and the second antistatic agent, better effects of increasing catalytic activity and reducing fine powder content can be realized.
  • the mixing weight ratio of the first antistatic agent and the second antistatic agent is 60:40 to 70:30, it is possible to significantly reduce the amount of fine powder to 0.6% by weight or less while exhibiting high catalytic activity.
  • Catalyst activity (kgPE/g ⁇ cat ⁇ h): It was calculated as the ratio of the weight (kg) of the prepared polymer to the weight (g) of the catalyst used based on the unit time (h).
  • the weight (g) of polyethylene placed in a 100 mL container was measured using IPT model 1132 (manufactured by IPT Institut fur Pruftechnik Geratebau GmbH & Co), which is a bulk density measuring device, and the bulk density was obtained therefrom.
  • Polyethylene particles were transferred to the hopper of the HELOS optical diffraction particle size analyzer manufactured by Sympatec GmbH equipped with RODOS/M (dispersion nozzle diameter: 4 mm, vibrating sample supply: VIBRI) manufactured by Sympatec GmbH, a flow-air flow dry dispersion device for light diffraction.
  • the particle size distribution was analyzed by measuring the diffraction pattern difference according to the particle size when the polyethylene particles passed through the laser beam by setting the method in the range of 50 to 3500 ⁇ m.
  • particle sizes D90, D50, and D10 at 90%, 10%, and 50% points of the cumulative particle volume distribution according to the particle size were respectively obtained, and SPAN was calculated according to Equation 1 below using them.
  • D90, D10, and D50 mean particle sizes at 90%, 10%, and 50% points of the cumulative particle volume distribution according to particle size, respectively, in particle size distribution analysis for polyethylene particles.
  • the weight of the fine powder having a particle size of less than 75 ⁇ m was calculated, and the content of the fine powder was expressed as a percentage based on the total weight of polyethylene (weight%).
  • Example 17 when the pretreatment was performed by the manufacturing method according to the present invention, the amount of fine powder was greatly reduced even without the use of an antistatic agent. In addition, Example 17 showed more improved catalytic activity due to pretreatment during preparation of the supported catalyst, and as a result, polyethylene having a uniform particle size distribution with a SPAN of 0.7 while having an increased average particle size compared to Comparative Example was prepared became
  • the metallocene-supported catalyst was prepared by the manufacturing method according to the present invention.
  • the prepared Examples 1, 9, and 15 showed excellent catalytic activity compared to Comparative Examples, and the fine powder content was greatly reduced to less than 1 wt%.
  • the average particle size of the prepared polyethylene was larger than 600 ⁇ m, and the SPAN was remarkably small as 0.6.
  • the improvement effect may be increased or decreased depending on the type, amount, and mixing molar ratio of the antistatic agent and the metallocene compound in the preparation of the metallocene-supported catalyst, but pretreatment It was confirmed that the effect of improving the catalyst activity and reducing the amount of fine powder was confirmed as compared to the comparative example in which the catalytic activity was not performed or the pretreatment conditions were not satisfied. In addition, from the above results, it is possible to further enhance the effect of improving the catalyst activity and reducing the amount of fine powder through optimization of the type, amount, and mixing molar ratio of the antistatic agent and the metallocene compound, and the average particle size and uniformity of the polyethylene to be produced can be further improved.
  • melt index MI 2.16
  • melt flow index MFRR
  • MI 2.16 Melt Index
  • MI 21.6 was measured according to ASTM D1238 at a temperature of 190°C and a load of 21.6 kg
  • MI 2.16 was 190 according to ASTM D1238. It was measured under a temperature of °C and a load of 2.16 kg.
  • the density of polyethylene was measured according to ASTM 765.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) were measured for the polyethylene body of Example using gel permeation chromatography (GPC), and molecular weight distribution (Mw) by dividing the weight average molecular weight by the number average molecular weight /Mn, polydispersity index) was calculated.
  • GPC gel permeation chromatography
  • a PL-GPC220 instrument manufactured by Waters Corporation was used, and a PLgel MIX-B column (length 300 mm) manufactured by Polymer Laboratories was used.
  • the measurement temperature was 160 °C
  • 1,2,4-trichlorobenzene (1,2,4-Trichlorobenzene) was used as a solvent, and the flow rate was 1 mL/min.
  • 10 mg of the polyethylene sample of the example was pretreated by dissolving it in 1,2,4-Trichlorobenzene containing 0.0125% BHT at 160°C for 10 hours using PL-SP260 (manufactured by Agilent Technology), a sample pretreatment system, and 10 mg/10 mL of After preparing to a concentration, it was supplied in an amount of 200 ⁇ L.
  • the values of Mw and Mn were derived using a calibration curve formed using a polystyrene standard specimen.
  • the weight average molecular weight of the polystyrene standard specimen is 2,000 g/mol, 10,000 g/mol, 30,000 g/mol, 70,000 g/mol, 200,000 g/mol, 700,000 g/mol, 2,000,000 g/mol, 4,000,000 g/mol, and 10,000,000
  • 10,000 g/mol, 30,000 g/mol, 70,000 g/mol, 200,000 g/mol, 700,000 g/mol, 2,000,000 g/mol, 4,000,000 g/mol, and 10,000,000 Nine types of g/mol were used.
  • polyethylene was pretreated by dissolving it in 1,2,4-Trichlorobenzene containing 0.0125% BHT at 160°C for 10 hours using PL-SP260, and then PerkinElmer Spectrum 100 FT- connected to high-temperature GPC (PL-GPC220).
  • the number of LCBs containing 8 or more carbons per 1,000 carbons was measured at 160°C using IR (unit: pieces/1000C).
  • Example 1 Example 7
  • Example 8 basic Properties MI 2.16 (g/10min) 0.33 0.37 0.28 MFRR 72.0 65.3 72.1 density 0.931 0.929 0.929 Mw (g/mol) 99,000 97,000 103,000 PDI 2.9 3.1 3.2 Number of LCBs (/1000C) 0.032 0.035 0.030
  • the polyethylene of Examples 1, 7 and 8 exhibited low MI and density, high Mw, narrow PDI, and high LCB content. Able to know.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명에서는 촉매 활성을 나타내면서도 미분 발생량을 감소시킬 수 있고, 결과 파울링과 청크(chunk) 발생을 최소화하고, 우수한 물성을 갖는 폴리에틸렌을 안정적으로 제조할 수 있는, 메탈로센 담지 촉매의 제조방법이 제공된다.

Description

메탈로센 담지 촉매의 제조방법
관련 출원(들)과의 상호 인용
본 출원은 2020년 11월 30일자 한국 특허 출원 제10-2020-0165106호 및 2021년 11월 29일자 한국 특허 출원 제10-2021-0166435호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 촉매 활성을 나타내면서도 미분 발생량을 감소시킬 수 있고, 결과 파울링과 청크(chunk) 발생을 최소화하고, 우수한 물성을 갖는 폴리에틸렌을 안정적으로 제조할 수 있는, 메탈로센 담지 촉매의 제조방법에 관한 것이다.
올레핀 중합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있다. 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 혼재하는 다활성점 촉매(multi-site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.
한편, 메탈로센 촉매는 전이금속 화합물(또는 메탈로센 화합물)이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매(single site catalyst)이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.
상기한 촉매를 이용한 올레핀 중합체의 제조는, 촉매의 투입 방법에 따라 용액 중합, 슬러리 중합 또는 기상 중합 공정으로 구분된다.
촉매가 건조 분말 상태로 투입되는 기상 중합 공정은, 생성되는 중합체의 용융점 보다 낮은 온도에서 반응을 진행한다. 그런데 만약 반응 중 임계 온도 이상으로 반응 온도가 상승할 경우, 반응기나 냉각기 내벽 등에 미분에 의한 파울링이 발생하고, 청크 모양의 고분자가 생성된다. 이러한 현상은 중합체 입자 중 미분 농도가 높을수록, 중합체 입자의 크기가 작을수록 심화되며, 결과로서 중합체 배출이 원활하지 못하고, 장시간 운전이 불가능해진다.
이에 본 발명은 촉매 활성을 나타내면서도 미분 발생량을 감소시킬 수 있고, 결과 파울링과 청크(chunk) 발생을 최소화하고, 우수한 물성을 갖는 폴리에틸렌을 안정적으로 제조할 수 있는, 메탈로센 담지 촉매의 제조방법을 제공하는 것을 목적으로 한다.
본 발명은 또한 상기한 제조방법으로 제조된 메탈로센 담지 촉매를 이용한 폴리에틸렌의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 일 구현예에 따르면,
하기 화학식 1로 표시되는 알킬알루미늄계 화합물 및 지방족 사슬 모노에테르계 화합물로 담체를 전처리 하는 단계;
상기 전처리된 담체에 대해 조촉매를 투입하고 반응시켜, 상기 담체에 조촉매를 담지시키는 단계;
상기 조촉매가 담지된 담체에 대해 메탈로센계 촉매 전구체를 투입하고 반응시켜, 상기 담체에 메탈로센계 촉매 전구체를 담지시키는 단계;를 포함하는, 메탈로센 담지 촉매의 제조방법을 제공한다:
[화학식 1]
Al(R)3
상기 화학식 1에서,
R은 각각 독립적으로 C3-20의 분지쇄 알킬이다.
또, 본 발명의 다른 일 구현예에 따르면, 상기한 제조방법에 의해 제조된 메탈로센 담지 촉매의 존재 하에, 에틸렌 단량체를 중합하는 단계를 포함하는, 폴리에틸렌의 제조방법을 제공한다.
발명의 또 다른 일 구현예에 따르면, 상기한 제조방법에 의해 제조되는 폴리에틸렌, 이를 포함하는 폴리에틸렌 수지 조성물 및 수축용 필름을 제공한다.
본 발명에 따른 제조방법으로 제조된 메탈로센 담지 촉매는 우수한 촉매 활성을 나타내면서도, 에틸렌 단량체의 중합, 특히 기상 중합 시 미분 발생을 크게 감소시킬 수 있다. 결과 파울링과 청크(chunk) 발생을 최소화할 수 있고, 우수한 물성을 갖는 폴리에틸렌을 안정적으로 제조할 수 있다. 또한 제조되는 폴리에틸렌은 개선된 모폴로지를 가져 수축용 필름의 제조에 특히 유용할 수 있다.
도 1a 및 도 1b는 실시예 1에서 제조한 폴리에틸렌을 주사전자 현미경으로 관찰배율을 달리하며 관찰한 사진이다(도 1a 관찰배율: 60배, 도 1b 관찰배율: 1000배).
도 2a 및 도 2b는 비교예 4에서 제조한 폴리에틸렌을 주사전자 현미경으로 관찰배율을 달리하며 관찰한 사진이다(도 2a 관찰배율: 60배, 도 2b 관찰배율: 1000배).
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 발명에 있어서, 당량(eq)은 몰 당량(eq/mol)을 의미한다.
발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 발명의 구체적인 구현예에 따른 메탈로센 담지 촉매의 제조방법, 및 이를 이용한 폴리에틸렌의 제조방법 등에 대해 설명하기로 한다.
종래 메탈로센 촉매를 이용한 올레핀 중합체의 중합시, 반응 조건에 따라 반응기나 냉각기 내벽 등에 미분에 의한 파울링이 발생하고, 청크 모양의 고분자가 생성되었다. 이를 해결하기 위하여 촉매에 대해 대전방지제를 처리하여 사용하는 방법이 제안되었으나, 통상의 담지 촉매 제조 과정에서와 같이 대전 방지제를 적용하는 경우, 대전방지제 내 히드록시기 등에 의해 촉매가 불활성화되기 쉽고, 또 불활성화된 촉매는 미분 발생의 요인이 되어 파울링을 발생시키는 등 공정성을 저해하는 문제가 있었다.
이에 대해 본 발명에서는 메탈로센 담지 촉매의 제조시, 특정 구조의 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물로 담체를 전처리함으로써 담체의 담지력을 증가시키고, 결과로서 촉매 활성이 증가되고, 또 중합 반응시 미분 발생이 감소되어 파울링 및 청크 생성 또한 감소시킬 수 있다.
더 나아가, 촉매에 대해 대전방지제를 처리하여 사용하는 경우, 대전방지제에 의한 촉매 불활성화를 방지하는 동시에, 촉매에 대한 담체의 높은 담지력으로 대전방지제 사용에 따른 촉매 활성 저하를 보상하며, 미분 발생 및 정전기 발생을 방지하여 파울링 및 청크 생성을 더욱 감소시킬 수 있다.
또 상기한 제조방법으로 제조된 메탈로센 담지 촉매는 우수한 촉매 활성을 나타내면서도, 에틸렌 단량체의 중합, 특히 기상 중합 시 미분 발생을 최소화하여 안정적으로 폴리에틸렌을 제조할 수 있으며, 또 제조되는 폴리에틸렌은 개선된 물성 및 모폴로지를 가져 수축용 필름의 제조에 특히 유용할 수 있다.
더 나아가, 대전방지제의 구조 및 투입량을 제어하고 최적화으로써, 미분 발생 및 정전기 발생 방지 효과를 더욱 높일 수 있다.
구체적으로, 본 발명의 일 구현예에 따른 메탈로센 담지 촉매의 제조방법은,
하기 화학식 1로 표시되는 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물로 담체를 전처리 하는 단계; (단계 1);
상기 단계의 결과로 전처리된 담체에 대해 조촉매를 투입하고 반응시켜, 상기 담체에 조촉매를 담지시키는 단계(단계 2); 및
상기 단계의 결과로 조촉매가 담지된 담체에 대해 메탈로센계 촉매 전구체를 투입하고 반응시켜 메탈로센계 촉매 전구체를 담지시키는 단계(단계 3);를 포함한다:
[화학식 1]
Al(R)3
상기 화학식 1에서,
R은 각각 독립적으로 C3-20의 분지쇄 알킬이다.
이하 각 단계 별로 설명한다.
발명의 일 구현예에 따른 메탈로센 담지 촉매의 제조방법에 있어서 단계 1은, 담체를 전처리하는 단계이다.
상기 전처리는 담체의 담지력을 향상시키기 위한 것으로, 구체적으로는 상기 화학식 1로 표시되는 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물을 반응시킨 후, 담체를 투입하여 반응시킴으로써 수행될 수 있다.
상기 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물을 반응시키면 착체를 형성하게 된다. 여기에 담체를 투입하면 상기 착체가 담체 표면의 히드록시기와 반응하여 담체 표면에 흡착되게 된다. 상기 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물의 반응 착체가 표면 흡착되면, 알킬알루미늄계 화합물로부터 유래한 알루미늄과, 담체, 일례로 실리카 담체의 경우 Si 간의 결합력이 증가되어, 담체의 담지력이 증가될 수 있다. 이에 따라, 조촉매 및 메탈로센계 촉매 전구체의 담지가 유리하고, 담지량 또한 증가될 수 있으며, 결과로서 촉매 활성이 증가되고, 제조되는 중합체의 모폴로지를 개선시킬 수 있다.
또, 상기 지방족 사슬 모노에테르계 화합물은 그 특징적 구조로 인해, THF로 대표되는 헤테로 사이클릭 에테르계 화합물과 비교하여 상기 알킬알루미늄계 화합물과의 착체 형성이 보다 유리하고, 또 담체 표면에 대한 알킬알루미늄의 흡착율을 증가시킬 수 있다. 그 결과, 보다 우수한 촉매 활성 증가 및 중합체에 대한 모폴로지 개선효과를 나타낼 수 있다.
상기한 개선 효과는 상기 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물의 몰비 제어를 통해 더욱 증가시킬 수 있다. 상기 알킬알루미늄계 화합물의 함량이 지나치게 높고, 지방족 사슬 모노에테르계 화합물의 함량이 지나치게 낮으면 지방족 사슬 모노에테르계 화합물의 사용에 따른 개선 효과가 미미하고, 알킬알루미늄계 화합물의 함량이 지나치게 낮고, 지방족 사슬 모노에테르계 화합물의 함량이 지나치게 높으며, 조촉매 담지율이 저하될 수 있다. 이에 본 발명에서는 상기 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물을 1:0.5 내지 1:3의 몰비로 사용함으로써 상기한 효과를 더욱 증진시킬 수 있다. 보다 구체적으로는 지방족 사슬 모노에테르계 화합물을 기준으로, 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물을 1:0.5 몰비 이상, 또는 1:0.8 몰비 이상, 또는 1:1 몰비 이상, 또는 1:1.5 몰비 이상이고, 1:3 몰비 이하, 또는 1:2.8 몰비 이하, 또는 1:2.5 몰비 이하, 또는 1:2.3 몰비 이하, 또는 1:2 몰비 이하, 또는 1:1.8 몰비 이하로 사용할 수 있다. 이때 상기 지방족 사슬 모노에테르계 화합물을 기준으로, 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물의 몰비가 1:0.5 몰비 이상이라 함은, 지방족 사슬 모노에테르계 화합물의 사용량이 0.5몰비 이상으로 증가함을 의미하고, 지방족 사슬 모노에테르계 화합물을 기준으로 1:3 몰비 이하라 함은, 1 지방족 사슬 모노에테르계 화합물의 사용량이 3몰비 이하로 감소함을 의미한다. 즉, 상기 알킬알루미늄계 화합물 1몰에 대하여 지방족 사슬 모노에테르계 화합물 0.5몰비 이상, 또는 0.8몰비 이상, 또는 1몰비 이상, 또는 1.5몰비 이상이고, 또는 3 몰비 이상, 또는 2.8몰비 이하, 또는 2.5몰비 이하, 또는 2.3 몰비 이하, 또는 1.8몰비 이하로 사용할 수 있음을 의미한다.
한편, 상기 알킬알루미늄계 화합물은 상기 화학식 1로 표시되는 화합물이다.
상기 화학식 1에 있어서, R은 각각 독립적으로 C3-20의 분지쇄 알킬이며, 보다 구체적으로는 C3 이상, 또는 C4 이상이고, C20 이하, 또는 C10 이하, 또는 C8포 이하, 또는 C6 이하의 분지쇄 알킬일 수 있다.
구체적인 예로는 트리이소프로필알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄, 트리이소펜틸알루미늄, 또는 트리네오펜틸알루미늄 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 화학식 1로 표시되는 알킬알루미늄계 화합물은 3개의 분지쇄 알킬을 포함하는 구조로 인해, 트리에틸알루미늄과 같이 직쇄 알킬을 포함하는 알킬알루미늄계 화합물과 비교하여, 지방족 사슬 모노에테르계 화합물에 대한 인력이 작으며, 결과로서 담체에 균일하게 분산되어 결합할 수 있다.
한편, 상기 지방족 사슬 모노에테르계 화합물은 하기 화학식 2로 표시되는 화합물 일 수 있다.
[화학식 2]
Ra-O-Rb
상기 화학식 2에서, Ra 및 Rb는 각각 독립적으로 C1-20의 직쇄 또는 분지쇄 알킬이며, 보다 구체적으로는 C1-12의 직쇄 또는 분지쇄 알킬이다.
구체적인 예로는 메틸t-부틸에테르(methyl t-butyl ether; MTBE), 에틸t-부틸에테르, 프로필t-부틸에테르, 또는 세컨부틸t-부틸에테르(sec-butyl tert-butyl ether) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물의 반응은 헥산 등의 탄화수소계 용매 중에서 30 내지 80℃의 온도에서 수행될 수 있다. 반응 온도가 30℃ 미만이면, 반응성이 저하될 우려가 있고, 80℃를 초과하면 반응 속도 제어가 어렵거나, 부반응 발생의 우려가 있다. 보다 구체적으로는 30℃ 이상, 또는 40℃ 이상, 또는 40℃ 이상이고, 80℃ 이하, 또는 70℃ 이하, 또는 60℃ 이하에서 수행될 수 있다.
상기 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물의 반응 완료 후, 담체를 투입하여 반응시킨다.
상기 담체의 투입 후 반응은 30 내지 80℃의 온도에서 수행될 수 있다. 반응 온도가 30℃ 미만이면, 반응성이 저하될 우려가 있고, 80℃를 초과하면 반응 속도 제어가 어렵거나, 부반응 발생의 우려가 있다. 보다 구체적으로는 30℃ 이상, 또는 40℃ 이상, 또는 40℃ 이상이고, 80℃ 이하, 또는 70℃ 이하, 또는 60℃ 이하에서 수행될 수 있다.
한편, 상기 담체로는 실리카, 알루미나, 마그네시아, 실리카-알루미나, 또는 실리카-마그네시아 등 통상 메탈로센 담지 촉매의 제조시 사용되는 무기물이 사용될 수 있다. 이들은 또 Na2O, K2CO3, BaSO4, 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 더 포함할 수 있다.
이중에서도 실리카 담체를 사용할 경우, 상기 메탈로센 화합물이 실리카 담체의 표면에 존재하는 실록산기 등의 반응성 작용기와 화학적으로 결합하여 담지되기 때문에, 폴리에틸렌 중합공정에서 담체 표면으로부터 유리되어 나오는 촉매가 거의 없으며, 그 결과 슬러리 또는 기상 중합으로 폴리에틸렌을 제조할 때 반응기 벽면이나 중합체 입자끼리 엉겨 붙는 파울링을 최소화할 수 있다
또한 상기 담체는 하기 조건을 충족하는 것일 수 있으며, 보다 구체적으로는 하기 조건을 충족하는 실리카 담체일 수 있다:
i) 평균 입자 크기(D50): 30㎛ 이상
ii) 기공 부피: 1.4ml/g 이하, 및
iii) 총 휘발성 유기 화합물 양: 담체, 구체적으로는 실리카 총 중량 기준 5중량% 이하.
구체적으로 상기 담체는, 평균 입자 크기(D50)가 30㎛ 이상일 수 있다. 담체의 평균 입자 크기는 생성되는 중합체의 미분 함량에 영향을 미치며, 평균 입자크기가 지나치게 작을 경우 미분 함량이 높아 전처리 및 대전방지제 처방 효과가 저하될 수 있고, 지나치게 클 경우 촉매 제조 시 입자간 충돌에 의한 미분 발생으로 전처리 및 대전방지제 처리 효과 저하의 우려가 있다. 이에 상기 담체는 평균 입자 크기(D50)가 보다 구체적으로 30㎛ 이상, 또는 35㎛ 이상, 또는 40㎛ 이상이고, 60㎛ 이하, 또는 55㎛ 이하, 또는 50㎛ 이하, 또는 40㎛ 이하일 수 있다.
한편, 본 발명에 있어서 담체의 평균 입자 크기(D50)은 담체의 입도 분포 분석시, 입자 크기에 따른 입자 부피 누적 분포의 50% 지점에서의 입자 크기를 의미하며, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로는, 담체를 분말 상태로 광회절용 유동기류식 건식 분산 장치인 Sympatec GmbH 사제의 RODOS/M (분산노즐 직경: 4 mm, 진동시료 공급장치: VIBRI)가 구비된 Sympatec GmbH 사제의 HELOS 광 회절 입도 분석 장치의 호퍼에 주입하고, 0.5 내지 350 ㎛ 범위의 method를 설정하여 담체 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 분석하고, 그 결과로부터 입자 크기에 따른 입자 부피 누적 분포의 50% 지점에서의 입자 크기 D50를 구할 수 있다.
또, 상기 담체는 기공 부피가 1.4ml/g 이하인 것일 수 있으며, 보다 구체적으로는 1.4ml/g 이하, 또는 1.38ml/g 이하, 또는 1.35ml/g 이하이고, 1.0ml/g 이상, 또는 1.2ml/g 이상, 또는 1.3 ml/g 이상, 또는 1.32ml/g 이상일 수 있다. 담체의 기공 부피는 촉매 활성 및 중합체의 벌크 밀도(Bulk density)에 영향을 미칠 수 있다. 담체의 기공 부피가 지나치게 크거나 작으면 촉매 활성이 저하되거나, 또는 중합체의 벌크 밀도가 감소될 수 있다.
본 발명에 있어서 담체의 기공 부피는 MicrotracBEL사제 Belsorp-max 모델의 BET 측정 장비를 사용하여, 담체의 단위 질량당 기공 부피를 측정할 수 있다. 구체적으로는 상기 BET 측정 장비에 담체 샘플을 로딩하면, 해당 측정 장비에서는 상기 샘플에 흡착 및 탈착되는 기체량을 상대 압력 기준으로 자동 측정하며, 이러한 기체량의 측정 값과 샘플의 질량을 기초로, 상기 샘플의 단위 질량당 기공 부피가 자동 측정 및 산출된다.
또, 상기 담체는 총 휘발성 유기 화합물(TVOC) 함량이 담체 총 중량에 대하여 5중량% 이하일 수 있다. 실리카 담체내 TVOC 함량이 높으면 수분으로 인해 촉매 활성이 저하되며, 미분 발생량이 증가할 수 있다. 보다 구체적으로는 TVOC 함량이 담체 총 중량에 대하여 5중량% 이하, 또는 4중량% 이하, 또는 3.5 중량% 이하, 또는 3중량% 이하일 수 있다. TVOC 함량은 낮을수록 바람직하지만, 제조 공정 등을 고려할 때 TVOC 함량은 담체 총 중량에 대하여 0중량% 초과, 또는 0.0001중량% 이상, 또는 0.01중량% 이상 또는 0.1 중량% 이상일 수 있다.
본 발명에 있어서, 담체 내 TVOC 함량은 열중량 분석기(thermogravimetric analyzer)를 사용한 통상의 방법에 따라 측정할 수 있다. 구체적으로는 Perkin Elmer사제의 TGA 4000 열중량 분석기를 사용하여, 질소 분위기 하에 담체 시료의 온도를 상온(25℃에서 900℃까지 20℃/min의 속도로 승온하고, 이후 발생된 담체 시료에서의 질량 손실(mass loss)을 컴퓨터 제어된 오븐 챔버 내에서 기록 저울(recording microbalance)을 이용하여 측정하고, 이로부터 TVOC 함량을 산출하였다. 이때 질소의 유동 속도(flow rate)는 60-70 mL/min가 되도록 설정한다.
상기한 물성 요건을 충족하는 담체, 특히 실리카 담체의 사용시. 제조되는 중합체의 모폴로지를 더욱 개선할 수 있다.
다음으로 단계 2는 상기 단계 1에서 전처리한 담체에 대해 조촉매를 담지 시키는 단계이다.
상기 조촉매는 촉매 활성 증진 및 공정 안정성을 향상시키는 역할을 하며, 구체적으로는 하기 화학식 3으로 표시되는 알킬알루미녹산계 화합물이 사용될 수 있다:
[화학식 3]
-[Al(Rc)-O]m-
상기 화학식 3에서,
Rc은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 C1-20의 알킬이고,
m은 2 이상의 정수이다.
구체적인 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 또는 부틸알루미녹산 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로는 메틸알루미녹산이 사용될 수 있다.
상기 알킬알루미녹산계 화합물은 담체 표면에 존재하는 히드록실기의 스캐빈저(scavenger)로 작용하여 촉매 활성을 향상시키고, 촉매 전구체의 할로겐기를 메틸기로 전환시켜 폴리에틸렌의 중합시, 사슬 성장을 촉진시킬 수 있으며, 특히 후술하는 메탈로센계 촉매 전구체와의 조합 사용시 보다 우수한 촉매 활성을 나타낼 수 있다.
상기 조촉매는 담체 중량당, 예컨대, 실리카 담체 1g을 기준으로 0.1mmol 이상 또는 5mmol 이상, 또는 8mmol 이상, 또는 10mmol 이상, 또는 15mmol 이상이고, 25 mmol 이하, 또는 20 mmol 이하의 함량으로 담지될 수 있다. 상기한 함량 범위로 포함시 조촉매 사용에 따른 촉매 활성 개선 효과와 함께 미분 발생 저감 효과를 충분히 얻을 수 있다.
상기 조촉매 담지 공정은, 상기 단계 1에서 수득한, 전처리된 담체가 분산된 분산액에, 조촉매를 투입하고, 70 내지 100℃의 온도로 가열하며 반응시킴으로써 수행될 수 있다. 보다 구체적으로는 70℃ 이상, 또는 80℃ 이상이고, 100℃ 미만, 또는 90℃ 이하의 온도에서, 40분 이상, 또는 1시간 이상, 또는 3시간 이상, 또는 5시간 이상이고, 10시간 이하, 또는 8시간 이하, 또는 7시간 이하로 교반하며 반응시킴으로써 수행될 수 있다.
상기 조촉매는 고체 분말 형태로 투입될 수도 있고, 또는 헥산, 톨루엔 등의 탄화수소계 용매 중에 용해시킨 용액 상으로 투입될 수도 있다. 이때, 용액 중 조촉매의 농도는 메탈로센 담지 촉매에서의 조촉매의 담지량, 및 반응 시간 등을 고려하여 적절히 결정될 수 있다.
다음으로 단계 3은 상기 단계 2에서 조촉매가 담지된 담체에 대해 메탈로센계 촉매 전구체를 담지시키는 단계이다.
상기 메탈로센계 촉매 전구체는 구체적으로, 하기 화학식 4로 표시되는 제1메탈로센 화합물; 및 하기 화학식 5로 표시되는 제2 메탈로센 화합물 중 1 이상을 포함한다.
[화학식 4]
Figure PCTKR2021017812-appb-img-000001
상기 화학식 4에서,
M1는 4족 전이금속이고;
A는 탄소(C), 실리콘(Si), 또는 게르마늄(Ge)이고;
Cp1은 인데닐이고, 상기 Cp1은 수소, 탄소수 1 내지 30의 하이드로카빌기, 탄소수 1 내지 30의 하이드로카빌옥시기, 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기, 탄소수 1 내지 20의 하이드로카빌(옥시)실릴기, 또는 탄소수 1 내지 20의 실릴하이드로카빌기로 이루어진 군에서 선택되는 1 이상의 치환기로 치환되거나, 또는 비치환되며,
R1 내지 R4는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 30의 하이드로카빌기, 탄소수 1 내지 30의 하이드로카빌옥시기, 또는 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기이고;
Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 30의 하이드로카빌기, 탄소수 1 내지 30의 하이드로카빌옥시기 또는 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기이며;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 30의 하이드로카빌기, 탄소수 1 내지 30의 하이드로카빌옥시기, 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기, -SiH3, 탄소수 1 내지 30의 하이드로카빌(옥시)실릴기, 탄소수 1 내지 30의 술포네이트기, 또는 탄소수 1 내지 30의 술폰기이고;
[화학식 5]
Figure PCTKR2021017812-appb-img-000002
상기 화학식 5에서,
M2은 4족 전이금속이고;
X3 및 X4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 30의 하이드로카빌기, 탄소수 1 내지 30의 하이드로카빌옥시기, 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기, -SiH3, 탄소수 1 내지 30의 하이드로카빌(옥시)실릴기, 탄소수 1 내지 30의 술포네이트기, 또는 탄소수 1 내지 30의 술폰기이며;
Z는 -O-, -S-, -NR5-, 또는 -PR6- 이며,
R5 및 R6은 각각 독립적으로 수소, 탄소수 1 내지 20의 하이드로카빌기, 탄소수 1 내지 20의 하이드로카빌(옥시)실릴기 및 탄소수 1 내지 20의 실릴하이드로카빌기 중 어느 하나이고;
T는
Figure PCTKR2021017812-appb-img-000003
또는
Figure PCTKR2021017812-appb-img-000004
이고,
T1은 C, Si, Ge, Sn 또는 Pb이며,
Q3은 수소, 탄소수 1 내지 30의 하이드로카빌기, 탄소수 1 내지 30의 하이드로카빌옥시기, 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기, -SiH3, 탄소수 1 내지 30의 하이드로카빌(옥시)실릴기, 할로겐으로 치환된 탄소수 1 내지 30의 하이드로카빌기, 및 -NR7R8 중 어느 하나이고,
Q4는 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기 중 어느 하나이며,
R7 및 R8은 각각 독립적으로 수소 및 탄소수 1 내지 30의 하이드로카빌기 중 어느 하나이거나, 혹은 서로 연결되어 지방족 또는 방향족 고리를 형성하는 것이며;
Cp2는 하기 화학식 6a 내지 6d로 표시되는 리간드 중 어느 하나이고,
[화학식 6a]
Figure PCTKR2021017812-appb-img-000005
[화학식 6b]
Figure PCTKR2021017812-appb-img-000006
[화학식 6c]
Figure PCTKR2021017812-appb-img-000007
[화학식 6d]
Figure PCTKR2021017812-appb-img-000008
상기 화학식 6a 내지 6d에서,
Y는 O 또는 S이고,
R11 내지 R19는 서로 동일하거나 상이하며, 각각 독립적으로, 수소, 탄소수 1 내지 30의 하이드로카빌기, 또는 탄소수 1 내지 30의 하이드로카빌옥시기 중 어느 하나이고,
ㆍ는 T와 결합하는 부위를 나타낸다.
본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.
하이드로카빌기는 하이드로카본으로부터 수소 원자를 제거한 형태의 1가 작용기로서, 알킬기, 알케닐기, 알키닐기, 아릴기, 아르알킬기, 아르알케닐기, 아르알키닐기, 알킬아릴기, 알케닐아릴기 및 알키닐아릴기 등을 포함할 수 있다. 그리고, 탄소수 1 내지 30의 하이드로카빌기는 탄소수 1 내지 20 또는 탄소수 1 내지 10의 하이드로카빌기일 수 있다. 일예로, 하이드로카빌기는 직쇄, 분지쇄 또는 고리형 알킬일 수 있다. 보다 구체적으로, 탄소수 1 내지 30의 하이드로카빌기는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, n-헥실기, n-헵틸기, 사이클로헥실기 등의 직쇄, 분지쇄 또는 고리형 알킬기; 또는 페닐, 비페닐, 나프틸, 안트라세닐, 페난트레닐, 또는 플루오레닐 등의 아릴기일 수 있다. 또한, 메틸페닐, 에틸페닐, 메틸비페닐, 메틸나프틸 등의 알킬아릴일 수 있으며, 페닐메틸, 페닐에틸, 비페닐메틸, 나프틸메틸 등의 아릴알킬일 수도 있다. 또한, 알릴, 알릴, 에테닐, 프로페닐, 부테닐, 펜테닐 등의 알케닐일 수 있다.
하이드로카빌옥시기는 하이드로카빌기가 산소에 결합한 작용기이다. 구체적으로, 탄소수 1 내지 30의 하이드로카빌옥시기는 탄소수 1 내지 20 또는 탄소수 1 내지 10의 하이드로카빌옥시기일 수 있다. 일예로, 하이드로카빌옥시기는 직쇄, 분지쇄 또는 고리형 알킬일 수 있다. 보다 구체적으로, 탄소수 1 내지 30의 하이드로카빌옥시기는 메톡시기, 에톡시기, n-프로폭시기, iso-프로폭시기, n-부톡시기, iso-부톡시기, tert-부톡시기, n-펜톡시기, n-헥톡시기, n-헵톡시기, 사이클로헥톡시기 등의 직쇄, 분지쇄 또는 고리형 알콕시기; 또는 페녹시기 또는 나프탈렌옥시(naphthalenoxy)기 등의 아릴옥시기일 수 있다.
하이드로카빌옥시하이드로카빌기는 하이드로카빌기의 1개 이상의 수소가 1개 이상의 하이드로카빌옥시기로 치환된 작용기이다. 구체적으로, 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기는 탄소수 2 내지 20 또는 탄소수 2 내지 15의 하이드로카빌옥시하이드로카빌기일 수 있다. 일예로, 하이드로카빌옥시하이드로카빌기는 직쇄, 분지쇄 또는 고리형 알킬일 수 있다. 보다 구체적으로, 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기는 메톡시메틸기, 메톡시에틸기, 에톡시메틸기, iso-프로폭시메틸기, iso-프로폭시에틸기, iso-프로폭시헥실기, tert-부톡시메틸기, tert-부톡시에틸기, tert-부톡시헥실기 등의 알콕시알킬기; 또는 페녹시헥실기 등의 아릴옥시알킬기일 수 있다.
하이드로카빌(옥시)실릴기는 -SiH3의 1 내지 3개의 수소가 1 내지 3개의 하이드로카빌기 또는 하이드로카빌옥시기로 치환된 작용기이다. 구체적으로, 탄소수 1 내지 30의 하이드로카빌(옥시)실릴기는, 탄소수 1 내지 20, 탄소수 1 내지 15, 탄소수 1 내지 10 또는 탄소수 1 내지 5의 하이드로카빌(옥시)실릴기일 수 있다. 보다 구체적으로, 탄소수 1 내지 30의 하이드로카빌(옥시)실릴기는 메틸실릴기, 다이메틸실릴기, 트라이메틸실릴기, 다이메틸에틸실릴기, 다이에틸메틸실릴기 또는 다이메틸프로필실릴기 등의 알킬실릴기; 메톡시실릴기, 다이메톡시실릴기, 트라이메톡시실릴기 또는 다이메톡시에톡시실릴기 등의 알콕시실릴기; 메톡시다이메틸실릴기, 다이에톡시메틸실릴기 또는 다이메톡시프로필실릴기 등의 알콕시알킬실릴기 등일 수 있다.
탄소수 1 내지 20의 실릴하이드로카빌기는 하이드로카빌기의 1 이상의 수소가 실릴기로 치환된 작용기이다. 상기 실릴기는 -SiH3 또는 하이드로카빌(옥시)실릴기일 수 있다. 구체적으로, 탄소수 1 내지 20의 실릴하이드로카빌기는 탄소수 1 내지 15 또는 탄소수 1 내지 10의 실릴하이드로카빌기일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 실릴하이드로카빌기는 -CH2-SiH3 등의 실릴알킬기; 메틸실릴메틸기, 메틸실릴에틸기, 다이메틸실릴메틸기, 트라이메틸실릴메틸기, 다이메틸에틸실릴메틸기, 다이에틸메틸실릴메틸기 또는 다이메틸프로필실릴메틸기 등의 알킬실릴알킬기; 또는 다이메틸에톡시실릴프로필기 등의 알콕시실릴알킬기 등일 수 있다.
할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)일 수 있다.
술포네이트기는 -O-SO2-Ra의 구조로 Ra는 탄소수 1 내지 30의 하이드로카빌기일 수 있다. 구체적으로, 탄소수 1 내지 30의 술포네이트기는 메탄설포네이트기 또는 페닐설포네이트기 등일 수 있다.
탄소수 1 내지 30의 술폰기는 -Rb-SO2-Rc의 구조로 여기서 Rb 및 Rc는 서로 동일하거나 상이하며 각각 독립적으로 탄소수 1 내지 30의 하이드로카빌기 중 어느 하나일 수 있다. 구체적으로, 탄소수 1 내지 30의 술폰기는 메틸설포닐메틸기, 메틸설포닐프로필기, 메틸설포닐부틸기 또는 페닐설포닐프로필기 등일 수 있다.
본 명세서에서 서로 인접하는 2 개의 치환기가 서로 연결되어 지방족 또는 방향족 고리를 형성한다는 것은 2개의 치환기의 원자(들) 및 상기 2개의 치환기가 결합된 원자가(원자들이) 서로 연결되어 고리를 이루는 것을 의미한다. 구체적으로, -NR7R8의 R7 및 R8이 서로 연결되어 지방족 고리를 형성한 예로는 피페리디닐(piperidinyl)기 등을 들 수 있고, -NR7R8의 R7 및 R8이 서로 연결되어 방향족 고리를 형성한 예로는 피롤릴(pyrrolyl)기 등을 예시할 수 있다.
그리고, 4족 전이 금속은, 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf), 또는 러더포듐(Rf)일 수 있으며, 구체적으로 티타늄(Ti), 지르코늄(Zr), 또는 하프늄(Hf) 일 수 있으며, 보다 구체적으로 지르코늄(Zr), 또는 하프늄(Hf)일 수 있으며, 이에만 한정되는 것은 아니다.
상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시기; 할로겐; 하이드로카빌기; 하이드로카빌옥시기; 14족 내지 16족의 헤테로 원자들 중 하나 이상의 헤테로 원자를 포함하는 하이드로카빌기 또는 하이드로카빌옥시기; 실릴기; 하이드로카빌(옥시)실릴기; 포스파인기; 포스파이드기; 술포네이트기; 및 술폰기로 이루어진 군에서 선택된 1 이상의 치환기로 치환될 수 있다.
본 발명에 있어서, 상기 메탈로센계 촉매 전구체는 상기한 구조의 제1 및 제2메탈로센 화합물을 포함함으로써, 기계적 물성이 우수하면서도 수축율 및 가공성 또한 우수한 폴리에틸렌을 제조할 수 있다.
구체적으로, 상기 화학식 4로 표시되는 제1 메탈로센 화합물은 장쇄 분지 (LCB, Long chain branch) 함량을 증가시켜 분자 구조 개선 및 분포 변화를 통해 기계적 물성을 개선하는 데 기여하고, 상기 화학식 5로 표시되는 제2 메탈로센 화합물은 단쇄 분지(SCB, short chain branch) 함량을 증가시켜 수축율 및 가공성을 개선하는 데 기여할 수 있다.
구체적으로, 상기 화학식 4에서, M1은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)일 수 있으며, 바람직하게는 지르코늄(Zr)일 수 있다.
그리고, 상기 화학식 4에서 A는 실리콘(Si)일 수 있다.
그리고, 상기 화학식 4에서, X1 및 X2는 각각 할로겐일 수 있으며, 구체적으로는 염소일 수 있다.
그리고, 상기 화학식 4에서, Cp1은 인데닐기이고, 상기 Cp1은 수소, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 탄소수 2 내지 10의 알케닐기, 탄소수 6 내지 12의 아릴기, 탄소수 7 내지 14의 아릴알킬기, 탄소수 7 내지 14의 알킬아릴기, 탄소수 1 내지 10의 알킬실릴기, 탄소수 1 내지 10의 실릴알킬기, 및 탄소수 2 내지 12의 알킬실릴알킬기로 이루어진 군에서 선택되는 1 이상의 치환기로 치환되거나, 비치환될 수 있다. 보다 구체적으로, 상기 Cp1은 수소, 메틸, 에틸, 프로필, 부틸, 부테닐, 트리메틸실릴메틸, 페닐 및 t-부틸페닐로 이루어진 군에서 선택되는 1 이상의 치환기로 치환되거나, 비치환될 수 있다.
그리고, 상기 화학식 4에서, R1 내지 R4은 각각 독립적으로 수소 또는 탄소수 1 내지 20의 알킬기일 수 있다. 구체적으로, R1 내지 R4은 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기일 수 있으며, 보다 구체적으로는 R1 내지 R4은 모두 수소이거나, 또는 모두 메틸일 수 있다.
그리고, 상기 화학식 4에서, Q1 및 Q2는 각각 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 12의 아릴기, 또는 탄소수 2 내지 20의 알콕시알킬기일 수 있으며, 구체적으로는 탄소수 1 내지 6의 알킬기, 탄소수 6 내지 12의 아릴기, 또는 탄소수 2 내지 12의 알콕시알킬기일 수 있으며, 보다 구체적으로는 메틸, 에틸, 페닐 또는 t-부톡시헥실일 수 있다.
상기 제1 메탈로센 화합물은 구체적으로, 하기 화학식 4-1 또는 4-2로 표시되는 것일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다:
[화학식 4-1]
Figure PCTKR2021017812-appb-img-000009
[화학식 4-2]
Figure PCTKR2021017812-appb-img-000010
상기 화학식 4-1 및 4-2에서, M1, X1, X2, R1 내지 R4, Q1, 및 Q2는 앞서 정의한 바와 같고,
R11은 수소, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 탄소수 2 내지 10의 알케닐기, 탄소수 6 내지 12의 아릴기, 탄소수 7 내지 14의 아릴알킬기, 탄소수 7 내지 14의 알킬아릴기, 탄소수 1 내지 10의 알킬실릴기, 탄소수 1 내지 10의 실릴알킬기, 또는 탄소수 2 내지 12의 알킬실릴알킬렌기일 수 있고, 보다 구체적으로는 수소, 메틸, 에틸, 프로필, 부틸, 부테닐, 트리메틸실릴메틸, 또는 페닐일 수 있다.
R21는 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 탄소수 2 내지 10의 알케닐기, 탄소수 6 내지 12의 아릴기, 탄소수 7 내지 14의 아릴알킬기이고, 보다 구체적으로는 t-부틸페닐과 같은 탄소수 7 내지 14의 아릴알킬기일 수 있다.
R22는 탄소수 1 내지 10의 직쇄 또는 분지상 알킬기이고, 보다 구체적으로는 이소프로필과 같은 탄소수 3 내지 6의 분지상 알킬기일 수 있다.
그리고, 상기 제1 메탈로센 화합물은 하기 화합물 (4a) 내지 (4p)로 이루어진 군에서 선택되는 것일 수 있다:
Figure PCTKR2021017812-appb-img-000011
.
상기 구조식들로 표시되는 제1 메탈로센 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다.
한편, 상기 제2 메탈로센 화합물은 구체적으로, 상기 화학식 5에서, Z는 -NR5-이며, 상기 R5는 탄소수 1 내지 10의 하이드로카빌기일 수 있으며, 구체적으로 상기 R5는 탄소수 1 내지 6의 직쇄 또는 분지상의 알킬기일 수 있으며, 보다 구체적으로는 tert-부틸기와 같은 탄소수 3 내지 6의 분지상 알킬기일 수 있다.
그리고, 상기 화학식 5에서, T는
Figure PCTKR2021017812-appb-img-000012
이고, T1은 탄소(C) 또는 실리콘(Si)이며, Q3은 탄소수 1 내지 30의 하이드로카빌기, 또는 탄소수 1 내지 30의 하이드로카빌옥시기이고, Q4는 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기일 수 있다. 구체적으로, Q3은 탄소수 1 내지 10의 하이드로카빌기이고, Q4는 탄소수 2 내지 12의 하이드로카빌옥시하이드로카빌기일 수 있으며, 좀더 구체적으로 Q3은 탄소수 1 내지 6의 알킬기이고, Q4는 탄소수 1 내지 6의 알콕시 치환된 탄소수 1 내지 6의 알킬기일 수 있다. 보다 구체적으로, T1은 실리콘(Si)이며, Q3은 메틸이고, Q4는 tert-부톡시 치환된 헥실일 수 있다.
구체적으로, 상기 제2 메탈로센 화합물은 하기 화학식 5-1 내지 5-4 중 어느 하나로 표시되는 것일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다:
[화학식 5-1]
Figure PCTKR2021017812-appb-img-000013
[화학식 5-2]
Figure PCTKR2021017812-appb-img-000014
[화학식 5-3]
Figure PCTKR2021017812-appb-img-000015
[화학식 5-4]
Figure PCTKR2021017812-appb-img-000016
상기 화학식 5-1 내지 5-4에서, M2, X3, X4, T1, Q3, Q4, R5, 및 R11 내지 R19는 상기 화학식 5에서 정의한 바와 같다.
그리고, 상기 화학식 5에서, R11 내지 R14, R18 및 R19는 각각 독립적으로 수소 또는 탄소수 1 내지 10의 하이드로카빌기이고, R15 내지 R17은 각각 독립적으로 탄소수 1 내지 10의 하이드로카빌기일 수 있다. 보다 구체적으로, R11 내지 R14, R18 및 R19는 각각 독립적으로 수소 또는 탄소수 1 내지 10의 알킬이고, R15 내지 R17은 각각 독립적으로 탄소수 1 내지 10의 알킬일 수 있다. 보다 더 구체적으로, R11 내지 R14, R18 및 R19는 각각 독립적으로 수소 또는 메틸이고, R15 내지 R17은 각각 독립적으로 메틸일 수 있다.
그리고, 상기 화학식 5에서, M2는 티타늄(Ti), 지르코늄(Zr), 또는 하프늄(Hf)이고, 구체적으로는 티타늄(Ti) 일 수 있다.
그리고, 상기 화학식 5에서, X3 및 X4는 각각 할로겐 또는 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 6의 알킬기일 수 있으며, 구체적으로는 염소 또는 메틸일 수 있다.
그리고, 상기 화학식 5에서, 상기 제2 메탈로센 화합물은 화합물 (5a) 내지 (5c)로 이루어진 군에서 선택되는 것일 수 있다.
Figure PCTKR2021017812-appb-img-000017
상기 구조식들로 표시되는 제2 메탈로센 화합물은 공지의 반응들을 응용하여 합성될 수 있으며, 보다 상세한 합성 방법은 실시예를 참고할 수 있다.
본 발명에서 상기 제1 및 제2메탈로센 화합물은 메조 이성질체, 라세믹 이성질체, 또는 이들의 혼합된 형태일 수 있다.
본 명세서에서, "라세믹 형태(racemic form)" 또는 "라세믹체" 또는 "라세믹 이성질체"는, 두 개의 사이클로펜타디에닐 부분 상의 동일한 치환체가, 상기 화학식 4에서 M1로 표시되는 전이금속, 예컨대, 지르코늄(Zr) 또는 하프늄(Hf) 등의 전이금속을 포함한 평면 및 상기 사이클로펜타디에닐 부분의 중앙에 대해 반대편 상에 있는 형태를 의미한다.
그리고, 본 명세서에서 용어 "메조 형태(meso isomer)" 또는 "메조 이성질체"는, 상술한 라세믹 이성질체의 입체 이성질체로서, 두 개의 사이클로펜타디에닐 부분 상의 동일한 치환체가, 상기 화학식 4에서 M1로 표시되는 전이금속, 예컨대, 지르코늄(Zr) 또는 하프늄(Hf) 등의 전이금속을 포함한 평면 및 상기 사이클로펜타디에닐 부분의 중앙에 대해 동일한 상에 있는 형태를 의미한다.
한편, 발명의 일 구현예에 따른 메탈로센 담지 촉매에서, 메탈로센계 촉매 전구체는 상기 제1메탈로센 화합물 중 1종 이상, 또는 제2메탈로센 화합물 중 1종 이상을 포함할 수도 있고, 또는 상기 제1 메탈로센 화합물과 상기 제2 메탈로센 화합물의 혼합물을 포함할 수도 있다.
제1 메탈로센 화합물과 제2메탈로센 화합물의 혼합물을 사용할 경우, 제1메탈로센 화합물과 제2메탈로센 화합물은 1:0.2 내지 1:2의 몰비로 담지될 수 있다. 상기한 혼합 몰비로 상기 제1 및 제2 메탈로센 화합물을 포함함으로써, 우수한 담지 성능, 촉매 활성 및 고공중합성을 나타낼 수 있다. 특히, 기상 중합 공정을 통해 저밀도 폴리에틸렌을 제조하는 경우, 공정안정성이 향상되어 종래 빈번하게 발생하던 파울링을 방지할 수 있다. 제1메탈로센 화합물의 함량 기준 제1메탈로센 화합물과 제2메탈로센 화합물의 몰비가 1:0.2 미만으로 제2메탈로센 화합물양이 지나치게 낮으면 제1 메탈로센 화합물만 주도적으로 역할을 하여 원하고자 하는 중합체의 분자구조를 재현하기 어려워지며 기계적 물성이 저하될 수 있다. 또한, 제1메탈로센 화합물과 제2메탈로센 화합물의 몰비가 1:2를 초과하여, 제2메탈로센 화합물 양이 지나치게 많으면, 제2 메탈로센 화합물만 주도적으로 역할을 하여 가공성 및 수축률이 저하될 수 있다. 보다 구체적으로는 상기 제2메탈로센 화합물의 사용량 기준, 상기 제1메탈로센 화합물과 제2메탈로센 화합물의 몰비가 1:0.2 이상, 또는 1:0.3 이상, 또는 1:0.4 이상, 또는 1:0.5 이상이고, 1:2 이하, 또는 1:1.8 이하, 또는 1:1.5 이하, 또는 1:1.2 이하, 또는 1:1 이하, 또는 1:0.8 이하일 수 있다. 이때 상기 제2메탈로센 화합물의 사용량 기준 상기 제1메탈로센 화합물과 제2메탈로센 화합물의 몰비가 1:0.2 이상이라 함은, 제2메탈로센 화합물의 사용량이 0.2 몰비 이상으로 증가함을 의미하고, 상기 제2메탈로센 화합물의 사용량 기준 1:2 이하이라 함은, 제2메탈로센 화합물의 사용량이 2 몰비 이하로 감소함을 의미한다. 즉 상기 제1메탈로센 화합물과 제2메탈로센 화합물은, 상기 제1 메탈로센 화합물 1 몰에 대하여 상기 제2메탈로센 화합물이 0.2몰 이상, 또는 0.3몰 이상, 또는 0.4몰 이상, 또는 0.5몰 이상이고, 2몰 이하, 또는 1.8몰 이하, 또는 1.5몰 이하, 또는 1.2 몰 이하, 또는 1몰 이하, 또는 0.8몰 이하로 사용될 수 있다.
상기한 메탈로센계 촉매 전구체는 담체 중량당, 예컨대, 실리카 담체 1g을 기준으로 100 μmol 이상, 또는 150 μmol 이상이고, 450 μmol 이하, 또는 500 μmol 이하의 함량 범위로 담지될 수 있다. 상기 함량 범위로 담지될 때, 적절한 담지 촉매 활성을 나타내어 촉매의 활성 유지 및 경제성 측면에서 유리할 수 있다.
한편, 상기 단계 3에서 수득한 조촉매 담지된 담체에 대한 메탈로센계 촉매 전구체의 담지는, 통상의 방법에 따라 수행될 수 있다.
구체적으로는 상기 단계 2에서 수득한, 조촉매 담지된 담체가 분산된 분산액에 메탈로센계 촉매 전구체를 투입하고, 40 내지 80℃의 온도에서 반응시킴으로써 수행될 수 있다. 보다 구체적으로는 40℃ 이상, 또는 50℃ 이상이고, 80℃ 이하, 또는 70℃ 이하의 온도에서 반응시킴으로써 수행될 수 있다.
상기 메탈로센계 촉매 전구체의 투입시 제1 및 제2 메탈로센 화합물의 동시에 투입될 수도 있고, 제1메탈로센 화합물의 투입 후 제2메탈로센 화합물의 순서로 투입되거나, 또는 제2메탈로센 화합물의 투입 후 제1메탈로센 화합물의 순서로 투입될 수 있다.
또, 상기 메탈로센계 촉매 전구체는 용액 상으로 투입될 수 있으며, 이때 용매로는 톨루엔 등의 탄화수소계 용매가 사용될 수 있다. 용액 중 메탈로센 화합물의 농도는 담지 촉매에서의 메탈로센 화합물의 담지량, 및 반응 효율 등을 고려하여 적절히 결정될 수 있다.
상기한 제조 단계를 통해, 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물로 전처리된 담체 상에, 조촉매 및 메탈로센계 촉매 전구체가 담지된 담지 촉매가 제조된다. 제조된 담지 촉매는 우수한 촉매 활성을 나타내기 때문에 그 자체로 올레핀 중합체의 제조 촉매로 사용될 수 있으며, 또는 중합 반응시 정전기 발생 방지를 위해 대전방지제로 처리 후 사용될 수도 있다.
이에 따라 발명의 일 구현예에 따른 메탈로센 담지 촉매의 제조방법은, 상기 메탈로센계 촉매 전구체를 담지 시키는 단계 후, 상기 메탈로센계 촉매 전구체가 담지된 담체에 대해 대전방지제를 투입하고 반응시키는 단계(단계 4)를 더 포함할 수 있다.
구체적으로, 단계 4는, 상기 단계 3에서 제조한, 메탈로센계 촉매 전구체 및 조촉매가 담지된 담체에 대해, 대전방지제를 투입하고 반응시켜 메탈로센 담지 촉매를 제조하는 단계이다.
발명의 일 구현예에 따른 제조 방법에 있어서, 상기 대전방지제는 구체적으로 에톡시화된 알킬아민계 및 설폰산계 화합물로 이루어진 군에서 선택되는 1 종 이상의 제1대전방지제; 및 지방산 에스테르 및 지방산의 금속염으로 이루어진 군에서 선택되는 1종 이상의 제2대전방지제를 포함한다.
상기 제1대전방지제는, 대전 방지 특성은 우수하지만 분산성이 낮아 단독으로 사용시 촉매의 위치에 따른 대전 방지 특성의 편차가 큰 문제점이 있다. 이에 반해 제2대전방지제는 단독 사용시 미분 발생 억제 및 정전기 감소 효과는 제1대전방지제에 비해 낮지만, 상기 제1대전방지제의 분산을 돕고 흐름성을 좋게 하는 역할을 한다. 이에 제1대전방지제와 제2대전방지제를 조합 사용함으로써, 제1대전방지제의 대전 방지 특성 편차를 감소시키고, 결과로서 미분 감소 및 정전 특성 개선 효과를 증진시킬 수 있다.
또, 상기 제1대전방지제와 제2대전방지제의 혼합 중량비를 제어함으로써 촉매 활성과 미분 발생 감소, 이에 따른 모폴로지 개선 효과를 더욱 증진시킬 수 있다. 구체적으로 본 발명에서는 상기 제1대전방지제와 제2대전방지제는, 10:90 내지 90:10의 중량비로 사용될 수 있으며, 보다 구체적으로는 상기 제1대전방지제와 제2대전방지제는, 제1대전방지제 기준 10:90 이상, 또는 20:80 이상, 또는 30:70: 이상, 또는 40:60 이상, 또는 50:50 이상, 또는 60:40 이상, 또는 65:35 이상이고, 90:10 이하, 또는 80:20 이하, 또는 75:25 이하, 또는 70:30 이하의 중량비로 사용될 수 있다. 이때 제1대전방지제와 제2대전방지제의 중량비가 제1대전방지제 기준 10:90 이상이라 함은, 제1대전방지제의 사용량이 10중량부 이상으로 증가하는 것을 의미하고, 또 제1대전방지제 기준 90:10 이하라 함은, 제1대전방지제의 사용량이 90중량부 이하로 감소하는 것을 의미한다. 즉 상기 제1대전방지제는, 제1대전방지제와 제2대전방지제의 총 중량에 대하여 10중량% 이상, 또는 20중량% 이상, 또는 30중량% 이상, 또는 40중량% 이상, 또는 50중량% 이상, 또는 60중량% 이상, 또는 65중량% 이상이고, 90중량% 이하, 또는 80중량% 이하, 또는 75중량% 이하, 또는 70중량% 이하로 사용될 수 있다.
보다 구체적으로는 제1대전방지제와 제2대전방지제가 60:40 내지 70:30의 중량비로 사용될 경우, 보다 높은 촉매 활성을 나타내면서도 미분 발생량을 최소화할 수 있으며, 결과로서 정전 특성 개선 및 중합체의 모폴로지 개선 효과를 구현할 수 있다.
상기 제1대전방지제에 있어서, 상기 에톡시화된 알킬아민은 구체적으로 하기 화학식 7로 표시되는 화합물일 수 있다:
[화학식 7]
RdN-(CH2CH2OH)2
상기 화학식 7에서, Rd는 C8-30의 직쇄 또는 분지쇄 알킬일 수 있으며, Rd가 상기한 범위의 탄소수를 갖는 알킬기를 포함할 때, 불쾌한 냄새 유발 없이 우수한 대전 방지 작용을 통한 미분 감소 효과를 나타낼 수 있다.
보다 구체적으로 상기 에톡시화된 알킬아민은 상기 화학식 7에서 Rd가 C8-22의 직쇄상 알킬이거나, 혹은 C10-18의 직쇄상 알킬, 혹은 C13-15의 직쇄상 알킬인 화합물일 수 있으며, 이들 화합물 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
상기 에톡시화된 알킬아민의 구체예로는 N,N-비스(2-히드록시에틸)트리데실아민 (N,N-bis(2-hydroxyethyl)tridecylamine), N,N-비스(2-히드록시에틸)펜타데실아민 (N,N-bis(2-hydroxyethyl)pentadecylamine), 또는 N,N-비스(2-히드록시에틸)옥타데실아민(N,N-bis(2-hydroxyethyl)octadecylamine) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또는 상업적으로 입수 가능한 에톡시화된 알킬아민계 대전방지제 또한 사용될 수 있으며, 일례로 N,N-비스(2-히드록시에틸)옥타데실아민으로서 Atmer™163(CRODA사제)가 사용될 수 있다.
또, 상기 설폰산계 화합물로는 유기술폰산 또는 상기 유기술폰산의 금속염이 사용될 수 있으며, 그 구체예로는 도데실벤젠술폰산, 톨루엔술폰산, 켐포술폰산, 벤젠술폰산, 및 스티렌술폰산, 또는 이들의 금속염 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상업적으로 입수 가능한 설폰산계 대전방지제가 사용될 수 있으며, 일례로 도데실벤젠술폰산으로서, Statsafe™ 6000(innospec 사제)가 사용될 수 있다.
한편, 상기 제2대전방지제로는 지방산 에스테르 및 지방산 금속염으로 이루어진 군에서 선택되는 1종 이상의 화합물이 사용될 수 있다.
상기 지방산 에스테르는, 지방산과, 1가(mono-valent) 또는 다가(polyvalenet) 알코올이 에스테르 결합된 화합물로서, 구체적으로, 메틸 스테아레이트, 에틸 스테아레이트, 프로필 스테아레이트, 부틸 스테아레이트, 또는 에틸 팔미테이트 등과 같이, 상기 지방산과 메탄올, 에탄올, 프로판올, 또는 부탄올 등과 같은 1가 알코올이 에스테르 결합된 지방산 알킬 에스테르; 또는 글리세롤 스테아레이트 (glycerol monostearate 또는 2,3-dihydroxypropyl octadecenoate), 글리세롤 팔미테이트 (glycerol monopalmitate 또는 2,3-dihydroxypropyl hexadecanoate), 글리세롤 올레이트(glyceryl oleate)와 같은, 상기 지방산과 다가 알코올로서 글리세롤이 에스테르 결합된 글리세롤 지방산 에스테르 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또 상기 지방산 에스테르 중에서도 글리세롤 지방산 에스테르는 2개의 유리 히드록시기를 포함하여, 중합체 입자의 대전을 중화하고, 또 촉매내 추가적으로 포함되는 조촉매를 부분적으로 비활성함으로써 미분 발생을 저감시킬 수 있다. 또, 종래 올레핀 중합에 사용되는 여러 대전방지제 중에서도 상기 글리세롤 지방산 에스테르는 극성 작용기에 의해 정전기 대전을 줄이고, 중합체의 응집체 형성을 감소시킬 수 있다. 그 결과 상기 제1메탈로센 화합물과 함께 담체에 담지하여 사용시 미분 절감을 통해 생산성을 향상시킬 수 있다. 이 같은 글리세롤 지방산 에스테르의 미분 발생 저감 효과는 상기 제1대전방지제 중에서도 에톡시화된 알킬아민과의 조합 사용시 더욱 향상될 수 있다.
상기 글리세롤 지방산 에스테르는 구체적으로 글리세롤 모노스테아레이트 또는 글리세롤 모노팔미테이트 등일 수 있으며, 이들 화합물 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 또 상업적으로 입수 가능한 글리세롤 지방산 에스테르계 화합물이 사용될 수 있으며, 일례로, 글리세롤 모노스테아레이트로서 Atmer 129™(CRODA사제) 등이 사용될 수도 있다.
또, 상기 지방산의 금속염은 구체적으로 알루미늄 스테아레이트 (alumimium stearate), 징크 스테아레이트 (zinc stearate), 칼슘스테아레이트 (calcium stearate), 마그네슘 스테아레이트 (Magnesium-stearate)과 같은 스테아린산 금속염(Metallic Stearate) 일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
한편, 본 발명에 있어서, 상기 지방산은 C8-22의 포화 또는 불포화 지방산일 수 있으며, 보다 구체적으로는 C8 이상, 또는 C10 이상, 또는 C12 이상, 또는 C15 이상, 또는 C16 이상이고, C22 이하, 또는 C20 이하, 또는 C18 이하의 직쇄 또는 분지쇄 알킬을 포함하는 포화 또는 불포화 지방산일 수 있으며, 보다 구체적으로는 직쇄 알킬을 포함하는 포화 지방산이고, 보다 더 구체적으로는 스테아린산 또는 팔미트산 일 수 있다.
발명의 일 구현예에 따른 제조방법에 있어서, 상기 제2대전방지제는 보다 구체적으로, 알루미늄 스테아레이트, 글리세롤 모노스테아레이트와 같은, 스테아린산의 금속염 및 글리세롤 스테아린산 에스테르로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.
상기한 제1 및 제2대전방지제를 포함하는 대전방지제는, 메탈로센 담지 촉매 총 중량에 대하여 0.5 내지 5중량%로 포함될 수 있다. 대전방지제의 함량이 0.5중량% 미만이면 대전방지제 포함에 따른 개선 효과가 미미하여 미분 발생이 증가하고, 결과로서 파울링이 발생할 수 있다. 또 대전방지제의 함량이 5중량%를 초과할 경우에는 메탈로센계 촉매 전구체 함량의 상대적인 감소로 촉매 활성이 저하될 수 있다. 보다 구체적으로는 상기 대전방지제는 메탈로센 담지 촉매 총 중량에 대하여 0.5중량% 이상, 또는 1중량% 이상, 또는 1.5중량% 이상이고, 5중량% 이하, 또는 4중량% 이하, 또는 3.5중량% 이하, 또는 3중량% 이하, 또는 2.5중량% 이하, 또는 2중량% 이하이다.
상기한 대전방지제는 헥산 등의 탄화수소계 용매에 희석시킨 용액 상태로 투입될 수 있으며, 이때 용액 중 대전방지제의 함량은 메탈로센 담지 촉매 내 대전방지제의 함량을 고려하여 적절히 선택될 수 있다.
상기 대전방지제의 투입 후 반응은 20 내지 60℃, 보다 구체적으로는 20℃ 이상, 또는 40℃ 이상이고, 60℃ 이하, 또는 50℃ 이하의 온도에서 반응시킨다. 상기한 온도 범위에서 반응을 수행할 때, 부반응 발생의 우려 없이 효율좋게 반응이 이루어 질 수 있다.
상기 반응의 결과로, 혼합물 중의 용매가 증발 제거되고, 제조된 메탈로센 담지 촉매는 고체 분말의 형태로 수득될 수 있다.
상기한 제조방법으로 제조된 메탈로센 담지 촉매는 2종의 혼성 대전방지제를 포함함에 따라, 개선된 정전 특성을 나타낼 수 있다. 이에 따라 상기 메탈로센 담지 촉매를 이용하여 올레핀 중합체의 제조시 미분 생성을 감소시키고, 중합 안정성을 향상시키며, 결과로서 반응기 내 파울링 발생을 방지하고, 중합체 물성을 개선시킬 수 있다. 특히 기상 중합 반응에 의해, LCB를 포함하는 선형 저밀도 폴리에틸렌의 제조에 유용하다.
이에 발명의 또 다른 일 구현예에 따르면 상기한 메탈로센 담지 촉매의 존재 하에, 에틸렌을 중합하는 단계를 포함하는, 폴리에틸렌의 제조방법을 제공한다.
상기한 메탈로센 담지 촉매는, 중합 방법에 따라 고체 분말 상태로 사용되거나, 용매 중에 혼합된 슬러리(slurry) 상태로 사용될 수 있으며, 또는 용매 중에 희석된 상태로 사용될 수도 있고, 또는 오일 및 그리스의 혼합물에 혼합한 머드 촉매의 형태로 사용될 수 있다. 다만, 상기한 흐름성 및 정전 특성 개선 효과를 고려할 때 기상 중합 반응에서 보다 우수한 효과를 구현할 수 있으므로, 고체 상태로 사용되는 것이 바람직하다.
한편, 폴리에틸렌 제조를 위한 중합 반응은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기를 이용하여 하나의 에틸렌 단량체로 호모 중합하거나 또는 상기 에틸렌 단량체와, 탄소수 3 이상의 올레핀 단량체를 공중합하여 진행할 수 있다. 다만, 일 구현예의 방법에 따라, 보다 우수한 효과를 구현할 수 있다는 점에서 기상 중합으로 에틸렌 단량체를 중합하는 것이 보다 적절하다.
또 상기 폴리에틸렌의 제조 방법은 단일-CSTR 반응기(Single-CSTR Reactor)에서 진행될 수 있다.
상기 중합 반응기에서는, 예를 들어, 질소와 같은 불활성 기체의 존재 하에 중합이 진행될 수 있다. 상기 불활성 기체는 중합 반응 초기에 메탈로센 촉매의 급격한 반응을 억제함으로써 촉매내에 포함된 메탈로센 화합물의 반응 활성을 길게 지속시키는 역할을 할 수 있다.
또, 상기 중합 반응시, 폴리에틸렌의 분자량 및 분자량 분포를 조절하기 위한 목적으로 수소 기체가 선택적으로 더 사용될 수도 있다.
수소 기체는 메탈로센 촉매의 비활성 사이트를 활성화시키고, 체인 이동 반응을 일으켜 분자량을 조절하는 역할을 하는 것으로, 중합 반응시 수소 기체가 더 투입될 경우, 에틸렌 단량체 총 부피에 대하여 0.1부피% 이상, 또는 0.12 부피% 이상이고, 0.2부피% 이하, 또는 0.18 부피% 이하에 해당하는 양으로 투입될 수 있다. 상기한 범위 내의 함량으로 수소 기체를 투입할 경우, 제조되는 중합체의 분자량이 감소함으로써 가공성을 증진시킬 수 있다.
또, 상기 중합 반응시 온도는 70 내지 100℃, 보다 구체적으로는 70℃ 이상, 또는 80℃ 이상이고, 100℃ 이하, 또는 90℃ 이하가 될 수 있다. 중합 반응시 온도가 지나치게 낮으면 중합 속도 및 생산성 측면에서 적절하지 않으므로 70℃ 이상이 바람직하고, 또 중합 반응 온도가 필요 이상으로 높으면 반응기 내 파울링 현상이 유발될 수 있으므로, 100℃ 이하에서 중합 반응이 이루어지는 것이 바람직하다.
또한, 상기 중합 반응시 압력은 최적의 생산성 확보를 위하여 20 내지 50bar, 보다 구체적으로는 20bar 이상, 또는 30bar 이상이고, 50bar 이하, 또는 40bar 이하로 될 수 있다. 상기 중합 반응 압력은 고분자량 과다 생성에 의한 블록킹(blocking) 예방 및 생산성 최적화 측면에서 20bar 이상이 될 수 있고, 고압 중합 조건하에서 부반응 발생 방지를 고려하여 50bar 이하가 될 수 있다.
그리고, 상기 중합 반응에는 반응 매질 또는 희석제로서 유기 용매가 더 사용될 수 있다. 이러한 유기 용매는 에틸렌 단량체의 함량을 고려하여 슬러리상 중합 등이 적절히 수행될 수 있는 정도의 함량으로 사용될 수 있다.
또, 상기 중합 반응시 트리에틸알루미늄과 같은 트리알킬알루미늄이 선택적으로 더 투입될 수 있다.
중합 반응기내에 수분이나 불순물이 존재하면 촉매의 일부가 분해(decomposition)되게 되는데, 상기한 트리알킬알루미늄은 반응기 내에 존재하는 수분이나 불순물 또는 단량체에 포함된 수분을 사전에 잡아내는 scavenger 역할을 하기 때문에, 제조에 사용되는 촉매의 활성을 극대화할 수 있으며, 그 결과로서 우수한 물성, 특히 좁은 분자량 분포를 갖는 호모 폴리에틸렌을 보다 효율 좋게 제조할 수 있다. 구체적으로 상기 트리알킬알루미늄에 있어서, 알킬은 앞서 정의한 바와 같으며, 구체적으로는 C1-20의 알킬이고, 보다 구체적으로 메틸, 에틸, 이소부틸 등과 같은 C1-6의 직쇄 또는 분지쇄 알킬일 수 있다.
또, 상기 트리알킬알루미늄(1M 기준)은 상기 단량체 총 중량에 대해 300ppm 이상, 또는 400ppm 이상이고, 1500ppm 이하, 또는 1350 ppm 이하의 함량으로 투입될 수 있으며, 이러한 함량 범위의 트리알킬알루미늄의 존재 하에 중합 반응시, 우수한 강도 특성을 갖는 호모 폴리에틸렌을 보다 용이하게 제조할 수 있다.
그리고, 상기 올레핀 단량체가 공단량체로서 투입되는 경우, 상기 올레핀 단량체로는 알파-올레핀, 사이클릭 올레핀, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀 또는 트리엔 올레핀 등이 사용될 수 있다.
상기 올레핀 단량체의 구체적인 예로서, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디시클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등을 들 수 있으며, 이들 단량체를 2종 이상 혼합하여 공중합할 수도 있다.
상기한 제조방법에 의해 제조되는 폴리에틸렌은 종래 대비 낮은 벌크 밀도 및 개선된 모폴로지를 가지며, 중합체 내 미분 함량이 낮다.
구체적으로 상기 폴리에틸렌은 하기 (a1) 내지 (a4)의 조건을 충족한다:
(a1) ASTM D1895-96에 따라 측정한 벌크 밀도(BD): 0.45 g/cc 이하,
(a2) 입자 크기 75㎛ 미만의 미분 함량: 폴리에틸렌 총 중량에 대하여 1.3중량% 이하,
(a3) 평균 입자 크기(D50): 500㎛ 이상, 및
(a4) 하기 수학식 1에 따른 SPAN 값: 1 미만.
[수학식 1]
SPAN = (D90-D10) / D50
상기 수학식 1에서, D90, D10 및 D50은 폴리에틸렌 입자에 대한 입도 분포 분석시, 입자 크기에 따른 입자 부피 누적 분포의 90%, 10% 및 50% 지점에서의 입자 크기를 각각 의미하며, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말인 폴리에틸렌을 광회절용 유동기류식 건식 분산 장치인 Sympatec GmbH 사제의 RODOS/M (분산노즐 직경: 4 mm, 진동시료 공급장치: VIBRI)가 구비된 Sympatec GmbH 사제의 HELOS 광 회절 입도 분석 장치의 호퍼에 주입하고, 50 내지 3500 ㎛ 범위의 method를 설정하여 폴리에틸렌 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 분석하고, 그 결과로부터 입자 크기에 따른 입자 부피 누적 분포에 있어서, 입자 크기가 가장 작은 입자로부터 누적이 90%가 되는 지점, 10%가 되는 지점, 및 50%가 되는 지점에서의 입자 크기 D90, D50 및 D10을 각각 구한다.
구체적으로, 상기 폴리에틸렌은 ASTM D1895-96에 따라 측정한 벌크 밀도가 0.45 g/cc 이하이다. 보다 구체적으로는 0.45 g/cc 이하, 또는 0.44 g/cc 이하 또는 0.43 g/cc 이하이며, 0.3 g/cc 이상, 또는 0.31 g/cc 이상, 또는 0.35g/cc 이상, 또는 0.37g/cc 이상이고, 또는 0.40 g/cc 이상, 또는 0.41 g/cc 이상, 또는 0.42 g/cc이상이다. 이와 같은 범위의 벌크 밀도를 가짐으로써 생산성 증대의 효과를 나타낼 수 있다.
또, 상기 폴리에틸렌은 폴리에틸렌 전체 입자의 총 중량에 대하여 입자 크기(P) 75㎛ 미만의 미분 함량이 1.3중량% 이하이며, 보다 구체적으로는 1.25중량% 이하, 또는 1.15중량% 이하, 또는 1.1중량% 이하, 또는 1중량% 이하, 또는 0.9중량% 이하, 또는 0.85중량% 이하, 또는 0.8중량% 이하, 또는 0.7중량% 이하, 또는 0.6중량% 이하, 또는 0.5중량% 이하일 수 있다. 이와 같이 미분의 요인이 되는 입자 크기 75 ㎛ 미만의 입자 발생이 적거나 또는 없기 때문에, 미분에 의한 파울링 발생 및 이로 인한 공정 불안정성이 방지되며, 제품 가공 시 입자가 비산되는 문제점을 줄일 수 있다. 상기 폴리에틸렌 내 미분 함량은 낮을수록 바람직하지만, 제조 공정 등을 고려할 때 0중량% 초과, 또는 0.0001중량% 이상, 또는 0.1중량% 이상으로 포함될 수 있다.
한편, 상기 폴리에틸렌 내 입자 크기 75㎛ 미만의 미분 함량은, 레이저 회절법을 이용하여 입자 크기 분포를 분석한 후, 입자 크기가 75 ㎛ 미만의 미분 중량을 산출하고, 폴리에틸렌 총 중량을 기준으로 미분 함량을 백분율로 나타낸다(중량%). 이때 상기 레이저 회절법을 이용한 입도 분포 분석은 상술한 폴리에틸렌 입자의 입도 분포 분석 방법과 동일하게 수행할 수 있다.
또, 상기 폴리에틸렌은 평균 입자 크기(D50)가 500㎛ 이상이며, 보다 구체적으로는 500㎛ 이상, 또는 520㎛ 이상, 또는 550㎛ 이상, 또는 560㎛ 이상, 또는 580㎛ 이상, 또는 600㎛ 이상, 또는 610㎛ 이상, 또는 620㎛ 이상이고, 750㎛ 이하, 또는 700㎛ 이하, 또는 680㎛ 이하, 또는 660㎛ 이하, 또는 650㎛ 이하이다.
또, 상기 폴리에틸렌은 상기 수학식 1에 따른 SPAN 값이 1 미만이며, 구체적으로는 0.9 이하, 0.8 이하, 또는 0.7 이하이고, 0.1 이상, 또는 0.3 이상, 또는 0.5 이상, 또는 0.6 이상이다.
이와 같이 폴리에틸렌이 평균 입자 크기(D50) 및 입자 균일도가 증가하는 등 종래 대비 개선된 모폴로지를 가짐에 따라, 향상된 물성적 특성을 나타낼 수 있다.
일례로 본 발명에 따른 제조방법으로 제조된 메탈로센 담지 촉매에서의 메탈로센계 촉매 전구체가 상기 화학식 4로 표시되는 제1메탈로센 화합물; 및 상기 화학식 5로 표시되는 제2 메탈로센 화합물로 이루어진 군에서 선택되는 1종 이상의 메탈로센 화합물을 포함하는 경우, 이를 이용하여 제조한 폴리에틸렌은 상기한 (a1) 내지 (a4)의 물성과 더불어, 하기 (b1) 내지 (b6) 중 1 이상, 또는 2 이상, 또는 3 이상, 또는 4 이상, 또는 하기 조건 모두를 더 충족할 수 있다. 이에 따라 필름, 특히 수축용 필름의 제조에 유용하다:
(b1) ASTM D 1238에 따라 190 ℃, 2.16kg 하중 조건에서 측정한 용융지수(MI2.16): 0.2 내지 1.1 g/10min,
(b2) 용융 흐름 지수(MFRR; ASTM D 1238에 따라 190℃의 온도 및 21.6kg의 하중 하에서 측정한 MI21.6을, ASTM D 1238에 따라 190℃의 온도 및 2.16kg의 하중 하에서 측정한 MI2.16으로 나누어 계산한 값): 50 내지 90,
(b3) ASTM 765에 따라 측정한 밀도: 0.918 내지 0.940 g/cm3,
(b4) 중량평균 분자량(Mw): 90,000 내지 120,000 g/mol, 및
(b5) 분자량 분포(PDI): 2.5 내지 3.3.
(b6) LCB 개수: 0.02 내지 0.05개/1000C
구체적으로 상기 폴리에틸렌은 ASTM D 1238에 따라 190℃, 2.16kg 하중 조건에서 측정한 용융지수가 0.2 내지 1.1 g/10min이고, 보다 구체적으로는 0.2 g/10min 이상, 또는 0.25 g/10min 이상, 또는 0.28 g/10min 이상, 또는 0.3 g/10min 이상, 또는 0.33 g/10min 이상이고, 1.1 g/10min 이하, 또는 0.8 g/10min 이하, 또는 0.5 g/10min 이하, 또는 0.37 g/10min 이하, 또는 0.35 g/10min 이하이다. 상기한 범위의 MI를 나타냄에 따라 우수한 가공성을 유지하면서도 개선된 기계적 강도 특성을 나타낼 수 있다.
또 상기 폴리에틸렌은 ASTM D 1238에 따라 190℃의 온도 및 21.6kg의 하중 하에서 측정한 MI21.6을, ASTM D 1238에 따라 190℃의 온도 및 2.16kg의 하중 하에서 측정한 MI2.16으로 나누어 계산한 용융 흐름 지수(MFRR)가 50 내지 90, 보다 구체적으로는 50 이상, 또는 60 이상, 또는 65 이상, 또는 70 이상이고, 90 이하, 또는 80 이하, 또는 75 이하, 또는 72.5 이하, 또는 72 이하이다. 상기한 범위 내의 용융 흐름 지수를 가짐에 따라 우수한 가공성을 나타낼 수 있으며, 상기 용융지수 범위와 함께 충족할 경우 우수한 기계적 강도 특성을 나타내면서도 개선된 가공성을 나타낼 수 있다.
또, 상기 폴리에틸렌은 ASTM 765에 따라 측정한 밀도가 0.918 내지 0.940 g/cm3, 보다 구체적으로는 0.918 g/cm3 이상, 또는 0.920 g/cm3 이상, 또는 0.925 g/cm3 이상, 또는 0.929 g/cm3 이상이고, 0.940 g/cm3 이하, 또는 0.935 g/cm3 이하, 또는 0.931 g/cm3 이하일 수 있다. 상기한 범위 내의 밀도를 충족함에 따라 우수한 기계적 강도 특성, 특히 내충격성을 나타낼 수 있으며, 상기 용용지수 및 용융흐름 지수의 조건과 더불어 충족할 경우, 기계적 강도 특성 개선과 함께 개선된 가공성을 나타낼 수 있다.
또, 상기 폴리에틸렌은 GPC 분석을 통해 산출되는 중량평균 분자량이 90,000 내지 120,000 g/mol, 보다 구체적으로는 90,000 g/mol 이상, 또는 95,000 g/mol 이상, 또는 97,000 g/mol 이상, 또는 99,000 g/mol 이상이고, 120,000 g/mol 이하, 또는 110,000 g/mol 이하, 또는 103,000 g/mol 이하, 또는 100,000 g/mol 이하일 수 있다. 상기한 범위 내의 Mw를 가짐에 따라 우수한 기계적 강도 특성을 나타낼 수 있다.
또, 상기 폴리에틸렌은 GPC 분석을 통해 수득한 Mw 및 Mn 값을 이용하여 계산되는 Mw/Mn의 비, 즉 분자량 분포가 3.3 이하, 보다 구체적으로는 3.3 이하, 또는 3.2 이하, 또는 3.1 이하이고, 2.4 이상 또는 2.7 이상, 또는 2.9 이상, 또는 3.0 이상일 수 있다. 이와 같이 좁은 분자량 분포를 가짐에 따라 우수한 기계적 강도 특성을 나타낼 수 있다.
한편, 본 발명에 있어서 폴리에틸렌의 중량평균 분자량 및 수평균 분자량은 겔 투과 크로마토그래피(GPC, gel permeation chromatography, Water사 제조)를 이용하여 측정할 수 있으며, 분자량 분포는 상기 측정한 중량평균 분자량을 수평균 분자량으로 나누어 계산할 수 있다. 구체적인 측정방법은 이하 실험예에서 상세히 설명한다.
또한, 상기 폴리에틸렌은 주쇄에 결합된 탄소수 8개 이상의 곁가지(branch)인 장쇄 분지(LCB)의 개수가 0.02 내지 0.05개/1000C로, 이때 1000C는 폴리에틸렌을 구성하는 탄소 1000 개를 의미한다. 보다 구체적으로는 0.02개/1000C 이상, 또는 0.025개/1000C 이상, 또는 0.03개/1000C 이상이고, 0.05개/1000C 이하, 또는 0.04개/1000C 이하, 또는 0.035개/1000C 이하일 수 있다.
본 발명에 있어서, 폴리에틸렌에서의 장쇄 분지(Long chain branch; LCB)란, 중합체 사슬들 각각에서 가장 긴 주쇄에 대해 가지와 같은 형태로 분지 결합된 사슬(chain), 구체적으로는 탄소수 8 이상, 보다 구체적으로는 8 내지 500의 사슬을 의미한다. 이러한 장쇄 분지의 개수는 고온 GPC(PL-GPC220)와 연결된 PerkinElmer Spectrum 100 FT-IR를 이용하여 중합체를 분석하거나, 또는 13C-NMR을 이용하여 측정함으로써 산출될 수 있다. 일례로, FT-IR을 이용할 경우, 폴리에틸렌을 PL-SP260을 이용하여 BHT 0.0125%가 포함된 1,2,4-Trichlorobenzene에서 160℃, 10시간 동안 녹여 전처리한 후, 고온 GPC(PL-GPC220)와 연결된 PerkinElmer Spectrum 100 FT-IR을 이용하여 160℃에서 탄소 1,000개 당 곁가지 함량(단위: 개)를 측정할 수 있다. 또, 13C-NMR을 이용하여 측정할 경우, 폴리에틸렌 시료를 TCE-d2(1,1,2,2-Tetrachloroethane-d2)용매에 녹여 13C-NMR을 수행하고, 탄소수 1,000 개당 포함되는 탄소수 8개 이상의 곁가지(branch)의 수를 분석하여 그 합을 계산하는 방식으로 측정할 수 있다. 구체적인 측정방법은 이하 실험예에서 상세히 설명한다.
이에 따라 본 발명의 제조방법에 의해 제조된 상기 폴리에틸렌은, 낮은 벌크 밀도와 낮은 미분 함량이 요구되는 포장용기, 필름, 시트, 사출 성형품, 섬유 제품 등의 제조시 이용될 수 있으며, 특히 수축용 필름의 제조에 유용하다.
구체적으로 미국재료시험학회규격 ASTM D 2732-14 (2020)에 따라, oil bath method의 방법에 따라 측정한, 상기 폴리에틸렌을 이용하여 제조한 필름의 TD 방향(transverse direction, TD, 수지 유동 방향에 수직한 방향) 수축률(%)이 15% 이상, 또는 19% 이상이고, 25% 이하, 또는 23% 이하, 또는 20% 이하이다.
이에, 발명의 또 다른 일 구현예에 따르면 상기 제조방법에 따라 제조되어 상기한 물성 요건을 충족하는 폴리에틸렌을 포함하는, 폴리에틸렌 수지 조성물 및 수축용 필름이 제공된다.
또, 상기 수축용 필름은 상기한 폴리에틸렌을 포함하는 것을 제외하고는 통상의 수축용 필름 제조 방법에 따라 제조될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 다만, 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예들에 의하여 한정되는 것은 아니다.
이하 실시예 및 비교예에서 사용된 담체는 하기의 조건을 충족하는 실리카이다:
1) 평균 입자 크기(D50): 40㎛,
2) 기공 부피: 1.32ml/g, 및
3) TVOC 함량: 실리카 총 중량 기준 3중량%.
상기 실리카 담체의 평균 입자 크기(D50)는, 실리카 담체를 분말 상태로 광회절용 유동기류식 건식 분산 장치인 Sympatec GmbH 사제의 RODOS/M (분산노즐 직경: 4 mm, 진동시료 공급장치: VIBRI)가 구비된 Sympatec GmbH 사제의 HELOS 광 회절 입도 분석 장치의 호퍼에 주입하고, 0.5 내지 350 ㎛ 범위의 method를 설정하여 실리카 담체 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 분석하고, 그 결과로부터 입자 크기에 따른 입자 부피 누적 분포의 50% 지점에서의 입자 크기 D50를 구하였다.
또, 상기 실리카 담체의 기공 부피는 MicrotracBEL사제 Belsorp_max 모델의 BET 측정 장비를 이용하였다. 상기 측정 장비에 실리카 담체 샘플을 로딩하면, 상기 측정 장비에서는 샘플에 흡착 및 탈착되는 기체량을 상대 압력 기준으로 측정하고, 이러한 기체량의 측정 값과 샘플의 질량을 기초로, 상기 샘플의 단위 질량당 기공 부피가 자동 측정 및 산출된다.
또, 상기 실리카 담체의 TVOC 함량은 Perkin Elmer사제의 TGA 4000 열중량 분석기를 사용하여 측정하였으며, 구체적으로는, 질소 분위기 하에 실리카 담체 시료를 상온(25℃)에서 900℃까지 20℃/min 속도로 승온하고, 이후 발생된 실리카 담체 시료에서의 질량 손실을 측정한 후, 이로부터 TVOC 함량을 산출하였다(질소유동속도: 60~70ml/min).
실시예 1
(1) 담지 촉매의 제조
트리이소부틸알루미늄(TIBAL) 0.6 g(메탈로센계 촉매 전구체 투입량 1당량 기준 1당량에 해당)을 헥산 50ml에 첨가한 후, 메틸t-부틸에테르(methyl tert-butyl ether; MTBE) 0.3 g(메탈로센계 촉매 전구체 투입량 1당량 기준 1 당량에 해당, TIBAL:MTBE의 몰비=1:1)을 첨가하여 40℃에서 1시간 동안 반응시켰다. 결과의 반응물에 실리카 담체(평균 입자크기(D50): 40㎛, 기공 부피: 1.32ml/g, TVOC 함량: 실리카 총 중량 기준 3중량%) 10g을 투입하고, 40℃에서 1시간 교반한 후, 메틸알루미녹산(MAO, 10wt% in 톨루엔, 실리카 담체 1g 기준으로 16mmol에 해당) 75g을 투입하고, 80℃에서 5시간 이상 교반하여 반응시켰다. 결과의 반응물에 대해, 메탈로센계 촉매 전구체로서 하기 구조의 제1 메탈로센 화합물(A)과 제2 메탈로센 화합물(B)의 혼합물(A:B의 혼합 몰비=2:1)를 3mmol 투입하고(실리카 담체 1g 기준으로 담지되는 촉매 전구체의 총 양이 0.076mmol에 해당), 50℃에서 반응시켰다. 결과의 반응물을 필터로 여과하고, 반응여액은 분리하여 제거하였다. 잔류물에 대해, 헥산에 희석시킨 대전방지제(N,N-비스(2-히드록시에틸)옥타데실아민(BHOA) 및 글리세롤 모노스테아레이트(GMS)가 65:35의 중량비로 혼합된 혼합물)를 메탈로센 담지 촉매 총 중량에 대하여 2.0중량%가 되도록 하는 양으로 투입하고, 50℃에서 30분간 반응시켰다.
결과의 반응물을 필터로 여과하여 여액은 분리 제거하고, 잔류물은 건조하여 고체상의 메탈로센 담지 촉매를 제조하였다.
Figure PCTKR2021017812-appb-img-000018
Figure PCTKR2021017812-appb-img-000019
(A) (B)
(2) 폴리에틸렌의 제조
2L 오토클레이브에, seed bed로서 NaCl을 500g 넣고 교반시키면서 에틸렌(C2), 수소(H2) 및 1-헥센(1-C6)을 투입하였다. 개별적인 유량은 타겟(target) 제품에 맞게 조절하였으며, 모든 가스류 및 공단량체인 1-헥센의 농도는 on-line gas chromatograph로 확인하였다.
앞서 제조한 메탈로센 담지 촉매를 건조 분말로서 30 mg 투입하고, 반응기 압력 약 40 bar 및 중합 온도 약 85 ℃의 조건에서 중합 반응을 실시하였다. 1시간 동안 반응시킨 후, 교반을 멈추고 내부 기체들을 모두 벤트(vent)시킨 뒤, 결과의 반응물과 seed bed를 회수하였다. Seed bed는 물에 녹여 제거하고, 결과의 고체를 회수 및 건조하여 폴리에틸렌으로서 에틸렌/1-헥센 공중합체를 수득하였다.
실시예 2 내지 17, 및 비교예 1 내지 6
상기 실시예 1에서의 담지 촉매 제조시 하기 표 1에 기재된 조건으로 수행하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 담지 촉매 및 에틸렌/1-헥센 공중합체를 제조하였다.
담체 전처리 물질 메탈로센계 촉매 전구체 대전방지제
알킬알루미늄계 화합물
(eq)
에테르계 화합물
(eq)
알킬알루미늄계 화합물:에테르계 화합물의 몰비 전구체 종류 혼합 몰비 제1대전방지제 제2대전방지제 제1:제2대전방지제의 혼합중량비 대전방지제 사용량
(중량%)
실시예 1 TIBAL
(1)
MTBE
(1)
1:1 A,B 2:1 BHOA GMS 65:35 2.0
실시예 2 TIBAL
(1)
MTBE
(1)
1:1 A,B 2:1 BHOA GMS 65:35 1.5
실시예 3 TIBAL
(1)
MTBE
(1)
1:1 A,B 2:1 BHOA AS 65:35 1.5
실시예4 TIBAL
(1)
MTBE
(1)
1:1 A,B 2:1 BHOA GMS 70:30 2.0
실시예5 TIBAL
(1)
MTBE
(2)
1:2 A,B 2:1 BHOA GMS 65:35 2.0
실시예6 TIBAL
(1)
MTBE
(2)
1:2 A,B 2:1 BHOA AS 65:35 1.5
실시예7 TIBAL
(1)
MTBE
(1)
1:1 C,D 2:1 BHOA GMS 65:35 2.0
실시예8 TIBAL
(1)
MTBE
(2)
1:2 E,F 2:1 BHOA GMS 65:35 2.0
실시예9 TIBAL
(1)
ETBE
(1)
1:1 A,B 2:1 BHOA GMS 65:35 2.0
실시예10 TIBAL
(1)
MTBE
(1)
1:1 A,B 2:1 DBSA GMS 65:35 2.0
실시예11 TIBAL
(1)
MTBE
(1)
1:1 A,B 2:1 BHOA GMS 65:35 3.5
실시예12 TIBAL
(1)
MTBE
(1)
1:1 A,B 2:1 BHOA - 100:0 2.0
실시예13 TIBAL
(1)
MTBE
(1)
1:1 A,B 2:1 - GMS 0:100 2.0
실시예14 TIBAL
(1)
MTBE
(1)
1:1 A,B 2:1 BHOA GMS 65:35 0.3
실시예15 Tri-t-butyl Al (1) MTBE
(1)
1:1 A,B 2:1 BHOA GMS 65:35 2.0
실시예16 TIBAL
(1)
MTBE
(1)
1:1 A,B 1:1 BHOA GMS 65:35 2.0
실시예17 TIBAL
(1)
MTBE
(1)
1:1 A,B 2:1 - - - -
비교예 1 TIBAL
(1)
- 1:0 A,B 2:1 BHOA GMS 65:35 2.0
비교예 2 TIBAL
(1)
THF
(1)
1:1 A,B 2:1 BHOA GMS 65:35 2.0
비교예 3 - - - A,B 2:1 BHOA GMS 65:35 2.0
비교예 4 - - - A,B 2:1 - - - -
비교예 5 TEAL
(1)
MTBE
(1)
1:1 A,B 2:1 BHOA GMS 65:35 2.0
비교예 6 TEAL
(1)
MTBE
(1)
1:1 C,D 2:1 - - - -
상기 표 1에서, 담체 전처리 물질들의 사용량 단위 'eq'는 메탈로센계 촉매 전구체 투입량 1 당량을 기준으로 한 당량 값을 의미한다.
또 대전방지제의 사용량 단위 '중량%'는 대전방지제의 중량을 메탈로센 담지 촉매 총 중량을 기준으로 백분율로 나타낸 것이다.
또, 상기 표에서 약어는 아래와 같다:
TIBAL: 트리이소부틸알루미늄
TEAL: 트리에틸알루미늄
Tri-t-butyl Al: 트리t-부틸알루미늄
MTBE: 메틸t-부틸에테르
ETBE는 에틸t-부틸에테르
BHOA: N,N-비스(2-히드록시에틸)옥타데실아민
GMS: 글리세롤 모노스테아레이트
AS: 알루미늄 스테아레이트
DBSA: 도데실벤젠술폰산
또, 상기 실시예 및 비교예에서 사용된 촉매 전구체 A, B, C, D, E, 및 F는 하기 구조를 갖는 화합물이다.
Figure PCTKR2021017812-appb-img-000020
Figure PCTKR2021017812-appb-img-000021
(A) (B)
Figure PCTKR2021017812-appb-img-000022
Figure PCTKR2021017812-appb-img-000023
(C) (D)
Figure PCTKR2021017812-appb-img-000024
Figure PCTKR2021017812-appb-img-000025
(E) (F)
실험예 1
상기 실시예 1 및 비교예 4에서 제조한 폴리에틸렌을 주사전자 현미경(SEM)으로 관찰하고, 그 결과를 도 1a 내지 도 2b에 각각 나타내었다.
관찰 결과, 실시예 1에 따라 제조된 폴리에틸렌은 구형의 입자상을 가지며, 비교예 4에서 제조한 폴리에틸렌에 비해 개선된 모폴로지를 나타내었다.
실험예 2
대전방지제 내 제1 및 제2 대전방지제의 혼합비가 촉매 활성 및 미분 발생량에 미치는 영향을 평가하였다.
구체적으로는, 제1대전방지제로서 BHOA와 제2대전방지제로서 GMS를 혼합 중량비 0:100, 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 65:35, 70:30, 75:25, 80:20, 90:10, 100:0으로 다양하게 변화시켜 사용하는 것을 제외하고는 실시예 1에서와 동일한 방법으로 수행하여 메탈로센 담지 촉매 및 폴리에틸렌을 제조하고, 촉매 활성 및 미분 발생량을 측정하였다.
(1) 촉매 활성 (kgPE/g·cat·h)
단위 시간(h)을 기준으로, 사용된 촉매 중량(g)에 대한 제조된 중합체의 중량(kg)의 비로 계산하였다.
(2) 입자 크기 75㎛ 미만의 미분 함량
폴리에틸렌 입자를 광회절용 유동기류식 건식 분산 장치인 Sympatec GmbH 사제의 RODOS/M (분산노즐 직경: 4mm, 진동시료 공급장치: VIBRI)가 구비된 Sympatec GmbH 사제의 HELOS 광 회절 입도 분석 장치의 호퍼에 주입하고, 50 내지 3500 ㎛ 범위의 method를 설정하여 폴리에틸렌 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 분석하였다. 그 결과로부터, 입자 크기가 75 ㎛ 미만의 미분 중량을 산출한 후, 폴리에틸렌 총 중량을 기준으로 백분율로 나타내었다(중량%).
측정 결과를 하기 표 2에 나타내었다.
제1대전방지제:제2대전방지제의 혼합 중량비 촉매 활성
(kgPE/g·cat·h)
입자 크기 75㎛ 미만의 미분 함량 (중량%)
0:100 4.0 1.12
10:90 4.4 1.10
20:80 4.7 1.01
30:70 4.9 0.83
40:60 5.5 0.72
50:50 5.8 0.64
60:40 6.9 0.58
65:35 7.3 0.50
70:30 6.8 0.56
75:25 6.2 0.69
80:20 5.8 0.77
90:10 5.6 0.95
100:0 5.5 1.24
실험결과, 제1대전방지제와 제2대전방지제의 중량비가 0:100에서 65:35로까지 제1대전방지제와 제2대전방지제의 혼합물에서의 제1대전방지제 함량이 증가하는 동안에는 촉매 활성이 증가하고, 미분 함량은 감소하는 경향을 나타내었다. 그러나 제1대전방지제와 제2대전방지제의 혼합비가 65:35를 초과하여 제1대전방지제의 함량이 더욱 증가하는 경우에는 촉매 활성이 감소하고, 미분 함량은 증가하는 경향을 나타내었다. 이로부터 제1대전방지제와 제2대전방지제의 혼합비 제어를 통해 보다 우수한 촉매활성 증가 및 미분함량 감소의 효과를 구현할 수 있음을 알 수 있다. 구체적으로, 제1대전방지제와 제2대전방지제의 혼합중량비가 60:40 내지 70:30일 때 높은 촉매 활성을 나타내면서도 0.6중량% 이하로 미분 발생량을 크게 감소시킬 수 있다.
실험예 3
실시예 및 비교예에 따른 폴리에틸렌 제조시, 사용된 촉매 활성, 이에 따라 제조된 폴리에틸렌의 물성을 하기와 같은 방법으로 각각 평가하고, 그 결과를 하기 표 3에 나타내었다.
(1) 촉매 활성 (kgPE/g·cat·h): 단위 시간(h)을 기준으로, 사용된 촉매 중량(g)에 대한 제조된 중합체의 중량(kg)의 비로 계산하였다.
(2) 벌크 밀도 (bulk density; BD) (g/cc): ASTM D1895-96에 따라 측정하였다.
구체적으로는, 벌크 밀도 측정 장치인 IPT model 1132(IPT Institut fur Pruftechnik Geratebau GmbH & Co사제)를 이용하여 100 mL 용기에 들어가는 폴리에틸렌의 무게(g)를 측정하고, 이로부터 벌크 밀도를 구하였다.
(3) 폴리에틸렌의 평균 입자 크기(D50) 및 입자 크기 분포 (SPAN)
폴리에틸렌 입자를 광회절용 유동기류식 건식 분산 장치인 Sympatec GmbH 사제의 RODOS/M (분산노즐 직경: 4 mm, 진동시료 공급장치: VIBRI)가 구비된 Sympatec GmbH 사제의 HELOS 광 회절 입도 분석 장치의 호퍼에 주입하고, 50 내지 3500 ㎛ 범위의 method를 설정하여 폴리에틸렌 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 분석하였다.
분석 결과로부터 입자 크기에 따른 입자 부피 누적 분포의 90%, 10% 및 50% 지점에서의 입자 크기 D90, D50 및 D10을 각각 구하고, 또 이를 이용하여 하기 수학식 1에 따라 SPAN을 계산하였다.
[수학식 1]
SPAN= (D90-D10) / D50
상기 수학식 1에서, D90, D10 및 D50은 폴리에틸렌 입자에 대한 입도 분포 분석시, 입자 크기에 따른 입자 부피 누적 분포의 90%, 10% 및 50% 지점에서의 입자 크기를 각각 의미한다.
(4) 입자 크기 75㎛ 미만의 미분 함량
상기 (3)의 입도 분석 결과로부터, 입자 크기가 75 ㎛ 미만인 미분의 중량을 산출하고, 폴리에틸렌 총 중량을 기준으로 상기 미분의 함량을 백분율로 나타내었다(중량%).
(5) 청크(chunk) 함량
시브(sieve)를 이용해 실시예 및 비교예에서 제조한 폴리에틸렌 중 입자 크기가 2000㎛ 이상인 폴리에틸렌 입자(chunk)를 분리하여 그 중량을 측정하고, 폴리에틸렌 총 중량을 기준으로, 2000㎛ 이상의 입자 크기를 갖는 폴리에틸렌 입자(chunk)의 함량을 백분율로 나타내었다(중량%).
촉매활성
(kgPE/g·cat·h)
폴리에틸렌
Chunk 함량
(중량%)
BD
(g/cc)
입자 크기 75㎛ 미만의 미분 함량 (중량%) D50
(㎛)
SPAN
실시예 1 7.3 0 0.42 0.50 650 0.6
실시예 2 7.2 0.2 0.40 0.83 630 0.6
실시예 3 7.0 2 0.40 0.55 630 0.7
실시예 4 7.0 0.4 0.40 0.56 600 0.6
실시예 5 6.7 1 0.42 0.69 620 0.6
실시예 6 6.6 2.2 0.41 0.79 660 0.7
실시예 7 8.2 0 0.42 0.70 680 0.5
실시예 8 7.5 0.2 0.43 0.85 650 0.6
실시예 9 6.4 1.5 0.42 0.6 620 0.6
실시예 10 7.5 2 0.42 0.57 650 0.9
실시예 11 6.3 0.5 0.39 0.72 610 0.8
실시예 12 5.5 0 0.38 1.24 560 0.9
실시예 13 4.0 2 0.37 1.12 520 0.9
실시예 14 7.1 0.5 0.31 1.25 520 0.9
실시예 15 6.4 0.3 0.39 0.77 600 0.6
실시예 16 5.9 0 0.4 0.53 650 0.6
실시예 17 6.9 2 0.42 0.4 630 0.7
비교예 1 5.9 0 0.36 1.32 570 1.0
비교예 2 5.5 0.3 0.35 1.62 530 1.3
비교예 3 5.5 0.3 0.35 1.50 380 0.8
비교예 4 5.9 2.5 0.32 2.53 370 1.3
비교예 5 5.2 0.4 0.38 2.30 570 1.1
비교예 6 4.9 2.4 0.35 1.73 450 1.1
실험결과, 종래와 같이 전처리나 대전방지제의 사용없이 폴리에틸렌을 제조할 경우, 미분 발생량이 많고, 제조되는 폴리에틸렌의 입자 크기가 작으며, 입자 균일도 또한 낮다(비교예 4 참조). 이를 해결하기 위하여 대전방지제를 투입할 경우, 미분 발생량을 감소시킬 수는 있으나, 사용된 대전방지제가 촉매를 불활성화시켜 촉매 활성이 저하되고, 또 불활성화된 촉매가 미분 발생을 초래하여 대전방지제 사용에 따른 미분 발생량 감소의 효과를 반감시켰다(비교예 3).
그러나, 실시예 17에서와 같이 본 발명에 따른 제조방법으로 전처리를 수행할 경우 대전방지제의 사용 없이도 미분 발생량이 크게 감소되었다. 또 실시예 17은 담지 촉매의 제조시 전처리로 인해 보다 개선된 촉매 활성을 나타내었으며, 결과 비교예와 비교하여 증가된 평균 입자 크기를 가지면서도 SPAN이 0.7로 균일한 입자 크기 분포를 갖는 폴리에틸렌이 제조되었다.
한편, 전처리를 수행하지만 알킬알루미늄계 화합물로서 트리에틸알루미늄을 사용한 비교예 6의 경우, 비교예 4에 비해서는 미분 발생량이 감소되고, 제조된 폴리에틸렌의 평균 입자 크기 및 SPAN 면에서도 개선된 결과를 나타내었지만, 실시예 17에 비해서는 미분 발생량, 폴리에틸렌의 평균입자 크기, SPAN, 그리고 chunk 발생량 면에서 모두 저하된 결과를 나타내었다. 이 같은 결과는 트리에틸알루미늄이 실시예 17에서 사용한 트리이소부틸알루미늄과 비교하여 지방족 사슬 모노에테르계 화합물에 대해 큰 인력을 나타내어 담체에 대해 불균일하게 분산되어 결합함으로써, 전처리 효과가 저하되었기 때문이다.
또, 비교예 6에서와 같이 전처리를 수행하고, 더하여 대전방지제를 처리한 비교예 5의 경우, 대전방지제 처리에도 불구하고 미분 발생량은 오히려 더 증가하였다.
또, 동일 조건에서 메탈로센 담지 촉매의 제조시 전처리 조건만을 달리한 실시예 1, 9, 15 및 비교예 1, 2, 5를 비교하면, 본 발명에 따른 제조방법으로 메탈로센 담지 촉매를 제조한 실시예 1, 9, 15는 비교예들에 비해 우수한 촉매 활성을 나타내면서도 미분 함량이 1중량% 미만으로 크게 감소되었다. 또 제조된 폴리에틸렌의 평균 입자 크기가 600㎛ 이상으로 더 크고, SPAN은 0.6으로 현저하게 작았다. 이와 같은 결과로부터 메탈로센 담지 촉매의 제조시 본 발명에서의 전처리 조건을 만족할 때, 촉매 활성의 개선과 더불어 미분 발생량 감소의 효과를 동시에 구현할 수 있으며, 더 나아가 제조되는 폴리에틸렌의 물성 또한 개선시킬 수 있음을 알 수 있다.
또 실시예 2-8, 10-14 및 16의 결과로부터 메탈로센 담지 촉매의 제조시 대전방지제 및 메탈로센 화합물의 종류, 사용량 및 혼합 몰비에 따라 상기 개선 효과가 가감될 수는 있으나, 전처리를 수행하지 않거나 전처리 조건을 만족하지 않는 비교예에 비교하여, 촉매 활성의 개선 및 미분 발생량 감소의 효과는 우수함이 확인되었다. 또한 상기 결과로부터 대전방지제 및 메탈로센 화합물의 종류, 사용량 및 혼합 몰비의 최적화를 통해 촉매 활성의 개선, 미분 발생량 감소의 효과를 더욱 증진시킬 수 있고, 또 제조하고자 하는 폴리에틸렌의 평균 입자 크기 및 균일도를 더욱 개선시킬 수 있음을 알 수 있다.
실험예 4
상기 실시예 1, 7 및 8에서 제조한 폴리에틸렌 및 이를 이용하여 제조한 필름의 물성을 각각 측정하고, 평가하였다. 그 결과를 표 4에 나타내었다.
(1) 용융지수(MI2.16) 및 용융흐름지수(MFRR)
용융지수(Melt Index, MI2.16)는 ASTM D1238 (조건 E, 190℃, 2.16kg 하중)에 따라 측정하였으며, 10분 동안 용융되어 나온 중합체의 무게(g)로 나타내었다.
용융 흐름 지수(Melt Flow Rate Ratio, MFRR)는 MI21.6을 MI2.16으로 나누어 계산하였으며, MI21.6은 ASTM D1238에 따라 190℃의 온도 및 21.6 kg의 하중 하에서 측정하고, MI2.16은 ASTM D1238에 따라 190℃의 온도 및 2.16 kg의 하중 하에서 측정하였다.
(2) 밀도 (Density)(g/cm3)
ASTM 765에 따라 폴리에틸렌의 밀도를 측정하였다.
(3) 중량평균 분자량(Mw) 및 분자량 분포(PDI)
실시예의 폴리에틸렌체에 대하여 겔 투과 크로마토그래피(GPC, gel permeation chromatography)를 이용하여 중량평균 분자량(Mw)과 수평균 분자량(Mn)을 측정하고, 중량평균 분자량을 수평균 분자량으로 나누어 분자량 분포(Mw/Mn, polydispersity index)를 계산하였다.
구체적으로, 겔 투과 크로마토그래피(GPC) 장치로는 Waters사제의 PL-GPC220 기기를 이용하고, Polymer Laboratories사제의 PLgel MIX-B 컬럼(길이 300mm)을 사용하였다. 이때 측정 온도는 160℃이며, 1,2,4-트리클로로벤젠(1,2,4-Trichlorobenzene)을 용매로서 사용하였으며, 유속은 1 mL/min로 하였다. 실시예의 폴리에틸렌 샘플 10mg을 시료전처리 시스템인 PL-SP260 (Agilent Technology 사제)을 이용하여 BHT 0.0125% 포함된 1,2,4-Trichlorobenzene에서 160℃, 10 시간 동안 녹여 전처리하고, 10 mg/10 mL의 농도로 조제한 다음, 200 μL의 양으로 공급하였다. 폴리스티렌 표준 시편을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn의 값을 유도하였다. 폴리스티렌 표준 시편의 중량평균 분자량은 2,000g/mol, 10,000g/mol, 30,000g/mol, 70,000g/mol, 200,000g/mol, 700,000 g/mol, 2,000,000 g/mol, 4,000,000 g/mol, 및 10,000,000 g/mol의 9종을 사용하였다.
(4) 장쇄 분지(LCB, long chain branch) 함량
상기 실시예 및 비교예에서 제조한 폴리에틸렌에 대해 고온 GPC(PL-GPC220)와 연결된 PerkinElmer Spectrum 100 FT-IR를 이용하여, 중합체 사슬들 각각에서 가장 긴 주쇄에 대해 가지와 같은 형태로 분지 결합된 탄소수 8 이상의 장쇄 분지(LCB) 함량을 측정하였다.
구체적으로, 폴리에틸렌을 PL-SP260을 이용하여 BHT 0.0125%가 포함된 1, 2, 4-Trichlorobenzene에서 160℃, 10시간 동안 녹여 전처리한 후, 고온 GPC(PL-GPC220)와 연결된 PerkinElmer Spectrum 100 FT-IR을 이용하여 160℃에서 탄소 1,000개당 포함되는 탄소수 8 이상의 LCB 개수를 측정하였다(단위: 개/1000C).
실시예1 실시예7 실시예8
기본
물성
MI2.16
(g/10min)
0.33 0.37 0.28
MFRR 72.0 65.3 72.1
밀도 0.931 0.929 0.929
Mw(g/mol) 99,000 97,000 103,000
PDI 2.9 3.1 3.2
LCB 개수(/1000C) 0.032 0.035 0.030
실험결과, 실시예 1, 7 및 8의 폴리에틸렌은 낮은 MI와 밀도, 높은 Mw, 좁은 PDI 및 높은 LCB 함량을 나타내었으며, 이 같은 폴리에틸렌의 물성으로부터 필름의 제조, 특히 수축용 필름의 제조에 유용함을 알 수 있다.

Claims (15)

  1. 하기 화학식 1로 표시되는 알킬알루미늄계 화합물 및 지방족 사슬 모노에테르계 화합물로 담체를 전처리 하는 단계;
    상기 전처리된 담체에 대해 조촉매를 투입하고 반응시켜, 상기 담체에 조촉매를 담지시키는 단계;
    상기 조촉매가 담지된 담체에 대해 메탈로센계 촉매 전구체를 투입하고 반응시켜, 상기 담체에 메탈로센계 촉매 전구체를 담지시키는 단계;를 포함하는,
    메탈로센 담지 촉매의 제조방법:
    [화학식 1].
    Al(R)3
    상기 화학식 1에서,
    R은 각각 독립적으로 C3-20의 분지쇄 알킬이다.
  2. 제1항에 있어서,
    상기 알킬알루미늄계 화합물은, 트리이소프로필알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄, 트리이소펜틸알루미늄, 또는 트리네오펜틸알루미늄인, 메탈로센 담지 촉매의 제조방법.
  3. 제1항에 있어서,
    상기 지방족 사슬 모노에테르계 화합물은 메틸t-부틸에테르, 에틸t-부틸에테르, 프로필t-부틸에테르, 또는 세컨부틸t-부틸에테르인, 메탈로센 담지 촉매의 제조방법.
  4. 제1항에 있어서,
    상기 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물은 1:0.5 내지 1:3의 몰비로 사용되는, 메탈로센 담지 촉매의 제조방법.
  5. 제1항에 있어서,
    상기 전처리는, 알킬알루미늄계 화합물과 지방족 사슬 모노에테르계 화합물을 반응시킨 후, 담체를 투입하고 반응시킴으로써 수행되는, 메탈로센 담지 촉매의 제조방법.
  6. 제1항에 있어서,
    상기 메탈로센계 촉매 전구체를 담지 시키는 단계 후, 상기 메탈로센계 촉매 전구체가 담지된 담체에 대해 대전방지제를 투입하고 반응시키는 단계를 더 포함하는, 메탈로센 담지 촉매의 제조방법.
  7. 제6항에 있어서,
    상기 대전방지제는, 에톡시화된 알킬아민계 및 설폰산계 화합물로 이루어진 군에서 선택되는 1 종 이상의 제1대전방지제; 및 지방산 에스테르 및 지방산 금속염으로 이루어진 군에서 선택되는 1종 이상의 제2대전방지제;를 포함하는, 메탈로센 담지 촉매의 제조방법.
  8. 제7항에 있어서,
    상기 제1대전방지제는 N,N-비스(2-히드록시에틸)트리데실아민, N,N-비스(2-히드록시에틸)펜타데실아민, N,N-비스(2-히드록시에틸)옥타데실아민, 도데실벤젠술폰산, 톨루엔술폰산, 켐포술폰산, 벤젠술폰산, 및 스티렌술폰산으로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함하고,
    상기 제2대전방지제는, 글리세롤 모노스테아레이트, 글리세롤 모노팔미테이트, 메틸 스테아레이트, 에틸 스테아레이트, 프로필 스테아레이트, 부틸 스테아레이트, 알루미늄 스테아레이트, 징크 스테아레이트, 칼슘 스테아레이트, 및 마그네슘 스테아레이트로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함하는, 메탈로센 담지 촉매의 제조방법.
  9. 제7항에 있어서,
    상기 제1대전방지제와 제2대전방지제는 10:90 내지 90:10의 중량비로 포함되는, 메탈로센 담지 촉매의 제조방법.
  10. 제6항에 있어서,
    상기 대전방지제는 메탈로센 담지 촉매 총 중량에 대하여 0.5 내지 5중량%의 양으로 포함되는, 메탈로센 담지 촉매의 제조방법.
  11. 제1항에 있어서,
    상기 담체는 실리카이고,
    상기 조촉매는 메틸알루미녹산, 에틸알루미녹산, 프로필알루미녹산, 및 부틸알루미녹산으로 이루어진 군에서 선택되는 1 종 이상의 알킬알루미녹산계 화합물을 포함하는, 메탈로센 담지 촉매의 제조방법.
  12. 제1항에 있어서,
    상기 메탈로센계 촉매 전구체는, 하기 화학식 4로 표시되는 제1메탈로센 화합물; 및 하기 화학식 5로 표시되는 제2 메탈로센 화합물로 이루어진 군에서 선택되는 1종 이상의 메탈로센 화합물을 포함하는, 메탈로센 담지 촉매의 제조방법:
    [화학식 4]
    Figure PCTKR2021017812-appb-img-000026
    상기 화학식 4에서,
    M1는 4족 전이금속이고;
    A는 탄소, 실리콘, 또는 게르마늄이고;
    Cp1은 인데닐이고, 상기 Cp1은 수소, 탄소수 1 내지 30의 하이드로카빌기, 탄소수 1 내지 30의 하이드로카빌옥시기, 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기, 탄소수 1 내지 20의 하이드로카빌(옥시)실릴기, 및 탄소수 1 내지 20의 실릴하이드로카빌기로 이루어진 군에서 선택되는 1 이상의 치환기로 치환되거나, 또는 비치환되며,
    R1 내지 R4는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 탄소수 1 내지 30의 하이드로카빌기, 탄소수 1 내지 30의 하이드로카빌옥시기, 또는 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기이고;
    Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 탄소수 1 내지 30의 하이드로카빌기, 탄소수 1 내지 30의 하이드로카빌옥시기 또는 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기이며;
    X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 30의 하이드로카빌기, 탄소수 1 내지 30의 하이드로카빌옥시기, 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기, -SiH3, 탄소수 1 내지 30의 하이드로카빌(옥시)실릴기, 탄소수 1 내지 30의 술포네이트기, 또는 탄소수 1 내지 30의 술폰기이고;
    [화학식 5]
    Figure PCTKR2021017812-appb-img-000027
    상기 화학식 5에서,
    M2은 4족 전이금속이고;
    X3 및 X4는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 30의 하이드로카빌기, 탄소수 1 내지 30의 하이드로카빌옥시기, 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기, -SiH3, 탄소수 1 내지 30의 하이드로카빌(옥시)실릴기, 탄소수 1 내지 30의 술포네이트기, 또는 탄소수 1 내지 30의 술폰기이며;
    Z는 -O-, -S-, -NR5-, 또는 -PR6- 이며,
    R5 및 R6은 각각 독립적으로 수소, 탄소수 1 내지 20의 하이드로카빌기, 탄소수 1 내지 20의 하이드로카빌(옥시)실릴기 및 탄소수 1 내지 20의 실릴하이드로카빌기 중 어느 하나이고;
    T는
    Figure PCTKR2021017812-appb-img-000028
    또는
    Figure PCTKR2021017812-appb-img-000029
    이고,
    T1은 C, Si, Ge, Sn 또는 Pb이며,
    Q3은 수소, 탄소수 1 내지 30의 하이드로카빌기, 탄소수 1 내지 30의 하이드로카빌옥시기, 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기, -SiH3, 탄소수 1 내지 30의 하이드로카빌(옥시)실릴기, 할로겐으로 치환된 탄소수 1 내지 30의 하이드로카빌기, 및 -NR7R8 중 어느 하나이고,
    Q4는 탄소수 2 내지 30의 하이드로카빌옥시하이드로카빌기 중 어느 하나이며,
    R7 및 R8은 각각 독립적으로 수소 및 탄소수 1 내지 30의 하이드로카빌기 중 어느 하나이거나, 혹은 서로 연결되어 지방족 또는 방향족 고리를 형성하는 것이며;
    Cp2는 하기 화학식 6a 내지 6d로 표시되는 리간드 중 어느 하나이고,
    [화학식 6a]
    Figure PCTKR2021017812-appb-img-000030
    [화학식 6b]
    Figure PCTKR2021017812-appb-img-000031
    [화학식 6c]
    Figure PCTKR2021017812-appb-img-000032
    [화학식 6d]
    Figure PCTKR2021017812-appb-img-000033
    상기 화학식 6a 내지 6d에서,
    Y는 O 또는 S이고,
    R11 내지 R19는 서로 동일하거나 상이하며, 각각 독립적으로, 수소, 탄소수 1 내지 30의 하이드로카빌기, 또는 탄소수 1 내지 30의 하이드로카빌옥시기 중 어느 하나이고,
    ㆍ는 T와 결합하는 부위를 나타낸다.
  13. 제12항에 있어서,
    상기 제1 메탈로센 화합물은 하기 화합물 4a 내지 4p로 이루어진 군에서 선택되는 것이고,
    상기 제2 메탈로센 화합물은 하기 화합물 5a 내지 5c로 이루어진 군에서 선택되는, 메탈로센 담지 촉매의 제조방법:
    Figure PCTKR2021017812-appb-img-000034
    Figure PCTKR2021017812-appb-img-000035
    .
  14. 제1항에 따른 제조방법으로 제조된 메탈로센 담지 촉매의 존재 하에, 에틸렌 단량체를 중합하는 단계를 포함하는, 폴리에틸렌의 제조방법.
  15. 제14항에 있어서,
    상기 폴리에틸렌은 하기 (a1) 내지 (a4)의 조건을 충족하는, 폴리에틸렌의 제조방법:
    (a1) ASTM D1895-96에 따라 측정한 벌크 밀도: 0.45 g/cc 이하,
    (a2) 입자 크기 75㎛ 미만의 미분 함량: 폴리에틸렌 총 중량에 대하여 1.3중량% 이하,
    (a3) 평균 입자 크기(D50): 500㎛ 이상, 및
    (a4) 하기 수학식 1에 따른 SPAN 값: 1미만.
    [수학식 1]
    SPAN = (D90-D10) / D50
    상기 수학식 1에서, D90, D10 및 D50은 폴리에틸렌 입자에 대한 레이저 회절법을 이용한 입도 분포 분석시, 입자 크기에 따른 입자 부피 누적 분포의 90%, 10% 및 50% 지점에서의 입자 크기를 각각 의미한다.
PCT/KR2021/017812 2020-11-30 2021-11-30 메탈로센 담지 촉매의 제조방법 WO2022114910A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21898735.2A EP4079775A4 (en) 2020-11-30 2021-11-30 PROCESS FOR PREPARING A SUPPORTED METALLOCENE CATALYST
CN202180010495.4A CN115250620A (zh) 2020-11-30 2021-11-30 茂金属负载型催化剂的制备方法
US17/791,794 US20230091054A1 (en) 2020-11-30 2021-11-30 Method for preparing metallocene supported catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200165106 2020-11-30
KR10-2020-0165106 2020-11-30
KR10-2021-0166435 2021-11-29
KR1020210166435A KR102632852B1 (ko) 2020-11-30 2021-11-29 메탈로센 담지 촉매의 제조방법

Publications (1)

Publication Number Publication Date
WO2022114910A1 true WO2022114910A1 (ko) 2022-06-02

Family

ID=81756234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017812 WO2022114910A1 (ko) 2020-11-30 2021-11-30 메탈로센 담지 촉매의 제조방법

Country Status (4)

Country Link
US (1) US20230091054A1 (ko)
EP (1) EP4079775A4 (ko)
CN (1) CN115250620A (ko)
WO (1) WO2022114910A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040054101A1 (en) * 2000-08-03 2004-03-18 Thierry Saudemont Method for preparing a catalyst support for polymerising ethylene and a-olefins, resulting support and corresponding catalyst
KR20120061029A (ko) * 2010-09-29 2012-06-12 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법
KR101498814B1 (ko) * 2013-09-17 2015-03-05 한화케미칼 주식회사 메탈로센 담지 촉매의 제조 방법
KR20170114056A (ko) * 2016-04-01 2017-10-13 주식회사 레이크머티리얼즈 올레핀 중합용 메탈로센 담지촉매, 이의 제조방법 및 이를 이용한 폴리올레핀의 제조방법
KR101827523B1 (ko) * 2012-03-06 2018-03-22 에스케이이노베이션 주식회사 혼성 담지 메탈로센 촉매, 이의 제조방법 및 이를 이용한 폴리올레핀의 제조방법
KR20200071432A (ko) * 2018-12-11 2020-06-19 한화솔루션 주식회사 올레핀 중합용 촉매의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0863919T3 (da) * 1995-11-27 2000-12-11 Grace W R & Co Understøttet katalysator indeholdende en tøjret, kationdannende aktivator
IT1301989B1 (it) * 1998-08-03 2000-07-20 Licio Zambon Catalizzatori metallocenici per la polimerizzazione delle olefine.
TWI555574B (zh) * 2011-03-09 2016-11-01 亞比馬利股份有限公司 含有碳陽離子劑之鋁氧烷催化活性劑及其於聚烯烴催化劑中之用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040054101A1 (en) * 2000-08-03 2004-03-18 Thierry Saudemont Method for preparing a catalyst support for polymerising ethylene and a-olefins, resulting support and corresponding catalyst
KR20120061029A (ko) * 2010-09-29 2012-06-12 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법
KR101827523B1 (ko) * 2012-03-06 2018-03-22 에스케이이노베이션 주식회사 혼성 담지 메탈로센 촉매, 이의 제조방법 및 이를 이용한 폴리올레핀의 제조방법
KR101498814B1 (ko) * 2013-09-17 2015-03-05 한화케미칼 주식회사 메탈로센 담지 촉매의 제조 방법
KR20170114056A (ko) * 2016-04-01 2017-10-13 주식회사 레이크머티리얼즈 올레핀 중합용 메탈로센 담지촉매, 이의 제조방법 및 이를 이용한 폴리올레핀의 제조방법
KR20200071432A (ko) * 2018-12-11 2020-06-19 한화솔루션 주식회사 올레핀 중합용 촉매의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4079775A4 *

Also Published As

Publication number Publication date
CN115250620A (zh) 2022-10-28
EP4079775A4 (en) 2023-07-26
EP4079775A1 (en) 2022-10-26
US20230091054A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
WO2016072783A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2020184887A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2019212307A1 (ko) 에틸렌/알파-올레핀 공중합체, 이의 제조방법
WO2020251264A1 (ko) 프로필렌-에틸렌 랜덤 공중합체
WO2020130718A1 (ko) 폴리올레핀
WO2019132471A1 (ko) 올레핀계 중합체
WO2022114910A1 (ko) 메탈로센 담지 촉매의 제조방법
WO2020184888A1 (ko) 전이 금속 화합물, 촉매 조성물 및 이를 이용한 폴리프로필렌의 제조 방법
WO2019234637A1 (en) Ethylene polymer mixture, method of preparing the same, and molded article using the same
WO2022071735A1 (ko) 폴리에틸렌 조성물 및 그의 제조 방법
WO2021210948A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2020218874A1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2022025696A1 (ko) 열가소성 수지 조성물
WO2021060907A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2020251265A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리프로필렌의 제조 방법
WO2022035132A1 (ko) 메탈로센 담지 촉매의 제조 방법, 메탈로센 담지 촉매 및 이를 이용한 폴리올레핀의 제조 방법
WO2020122563A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2020122562A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2021086027A1 (ko) 메탈로센 담지 촉매의 제조방법 및 메탈로센 담지 촉매
WO2022071744A1 (ko) 시공성 및 가공성이 우수한 에틸렌/1-헥센 공중합체
WO2024096400A1 (ko) 폴리올레핀 및 이를 포함하는 필름
WO2019212302A1 (ko) 올레핀계 공중합체 및 이의 제조방법
WO2024063415A1 (ko) 폴리에틸렌 조성물 및 이를 포함하는 이축 연신 필름
WO2021251766A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2022108167A1 (ko) 폴리올레핀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021898735

Country of ref document: EP

Effective date: 20220719

NENP Non-entry into the national phase

Ref country code: DE