WO2022114868A1 - Method for manufacturing recycled positive electrode active material using waste secondary battery - Google Patents

Method for manufacturing recycled positive electrode active material using waste secondary battery Download PDF

Info

Publication number
WO2022114868A1
WO2022114868A1 PCT/KR2021/017681 KR2021017681W WO2022114868A1 WO 2022114868 A1 WO2022114868 A1 WO 2022114868A1 KR 2021017681 W KR2021017681 W KR 2021017681W WO 2022114868 A1 WO2022114868 A1 WO 2022114868A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
manufacturing
renewable
Prior art date
Application number
PCT/KR2021/017681
Other languages
French (fr)
Korean (ko)
Inventor
진홍수
Original Assignee
주식회사 엘아이비에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘아이비에너지 filed Critical 주식회사 엘아이비에너지
Priority to CN202180003928.3A priority Critical patent/CN114830408A/en
Publication of WO2022114868A1 publication Critical patent/WO2022114868A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for manufacturing a recycled positive electrode active material using a waste secondary battery, and more particularly, to a method for manufacturing a recycled positive electrode active material configured to be capable of regeneration at a high production rate and to provide an efficiency similar to that of the first secondary battery. It's about
  • Lithium transition metal oxide is used as a cathode active material for lithium secondary batteries, and lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMnO 2 , LiMn 2 O 4 , etc.), lithium iron phosphate compound ( LiFePO 4 etc.) and lithium nickel oxide (LiNiO 2 etc.) are mainly used.
  • the cathode active material of such a lithium secondary battery for example, lithium cobalt oxide or transition metal constituting NCM-based lithium oxide is expensive, and in particular, cobalt is a strategic metal, and each country is interested in supply and demand, Since the number of cobalt producing countries is limited, it is known as a metal whose supply and demand is unstable worldwide. In addition, since these transition metals can cause environmental problems, it is necessary to respond to environmental regulations.
  • this conventional recycling method can be used only limited to lithium cobalt oxide (LCO) among waste positive electrode active materials, and lithium nickel cobalt manganese oxide (NCM) or lithium ion manganese oxide (LMO) for electric vehicles, which is increasingly used, is used.
  • LCO lithium cobalt oxide
  • NCM lithium nickel cobalt manganese oxide
  • LMO lithium ion manganese oxide
  • the conventional recycling method described above is not a preferable method in terms of cost, because when producing cobalt using oxalic acid, it is calcined to decompose oxalic acid into carbon dioxide and then re-dissolved cobalt oxide in sulfuric acid to make cobalt sulfate. .
  • the above-described conventional recycling method causes considerable difficulties in wastewater treatment due to an excess of oxalic acid that enters to selectively separate cobalt.
  • the positive electrode active material regenerated in this way has a high impurity content to be used as a secondary battery precursor raw material with high added value, and thus lacks value as an intact material, and thus lacks practical marketability.
  • the present inventors have completed the present invention, recognizing that it is urgent to develop a method for efficiently regenerating a cathode active material for a secondary battery.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2064668
  • Patent Document 2 Japanese Patent Laid-Open No. 1999-006020
  • An object of the present invention is to provide a method for manufacturing a recycled positive electrode active material that can be economically and easily regenerated from a waste secondary battery and can provide excellent electrochemical properties.
  • the present invention provides a method for manufacturing a recycled positive electrode active material using a waste secondary battery.
  • the method of manufacturing a renewable positive electrode active material of the present invention may be configured to include the following steps.
  • x and y each have a value between 0 and 10.
  • the positive electrode plate separated from the waste secondary battery in step (S1) may include an active material, a conductive material, and a binder.
  • step (S1) may be performed in an inert gas or reducing gas environment.
  • step (S1) the heat treatment of step (S1) is performed in a temperature range of 510 ° C. to 750 ° C., and as the anode plate is reduced by the heat treatment performed in step (S1), Co x O y material can be produced. have.
  • Co x O y generated in step (S1) may include at least one material selected from the group consisting of CoO, Co 2 O 3 and Co 3 O 4 .
  • the Co x O y material produced in step (S1) may be CoO.
  • the Co x O y material generated in step (S1) may be formed in a porous structure.
  • the Co x O y material produced in step (S1) may include pores in the range of 0.001 to 10.0 cm 3 /g.
  • the Co x O y material produced in step (S1) may have a specific surface area of 0.3 to 50.0 m 2 /g.
  • the lithium-containing material mixed in step (S2) may include at least one material selected from the group consisting of LiOH, Li 2 CO 3 , LiNO 3 and Li 3 PO 4 .
  • the material containing lithium mixed in step (S2) may be mixed so that the molar ratio of lithium to Co contained in the Co x O y material produced in step (S1) is 1.0 to 1.06. have.
  • the heat treatment in step (S3) may be performed in a temperature range of 800 °C to 1,050 °C.
  • the heat treatment in step (S3) may be performed by dry heat treatment or wet heat treatment.
  • the present invention provides a recycled positive electrode active material formed according to the above-described manufacturing method.
  • the method for manufacturing a recycled cathode active material using a waste secondary battery of the present invention can economically and easily regenerate a cathode active material from a waste secondary battery, and the electrochemical performance of the cathode active material is not deteriorated during the regeneration process, and has excellent resistance properties, electrical conductivity characteristics and capacity characteristics can be implemented.
  • FIG. 1 is a block diagram schematically showing a method for manufacturing a recycled positive electrode active material using a waste secondary battery of the present invention.
  • FIG. 2 is an X-ray photoelectron spectroscopy (XPS) spectrum obtained by analyzing the components of a positive electrode plate that can be used in a method of manufacturing a recycled positive electrode active material of the present invention.
  • XPS X-ray photoelectron spectroscopy
  • Example 3 is a scanning electron microscope (SEM) image confirming the pores formed on the CoO produced in Example 1 of the present invention.
  • step (S1) is an X-ray diffraction (XRD) of a material prepared by performing the heat treatment of step (S1) at 500° C., 600° C. and 700° C. in the method for manufacturing a recycled cathode active material using a waste secondary battery of the present invention. ) is the pattern.
  • XRD X-ray diffraction
  • Example 6 is an X-ray diffraction pattern (X-ray diffraction, XRD) of CoO produced in Example 1 of the present invention and a recycled cathode active material ((LCO) 1) prepared using this CoO.
  • XRD X-ray diffraction
  • LCO recycled cathode active material
  • FIG. 7 is a graph illustrating electrochemical performance evaluation at 3.0 to 4.3V for the recycled positive active material and the commercial positive active material prepared according to the present invention.
  • the present invention provides a method for manufacturing a renewable positive electrode active material comprising the following steps.
  • x and y may each have a value of 0 to 10.
  • “Anode active material” refers to an active material containing lithium oxide as the main component that generates electricity through a chemical reaction in a secondary battery.
  • the positive active material is a positive active material containing lithium and cobalt, preferably LCO (LiCoO 2 ), LCA (LiCoAlO 2 ), LCM (LiCoMnO 2 ) and LCMA (LiCoMnAlO 2 ) ) may be at least one selected from the group consisting of a positive active material having a layered structure of It may be at least one layered structure positive electrode active material selected from the group consisting of NCO, NCA, NCM and NCMA.
  • the LCO is in the form of oxides of lithium and cobalt having a layered structure, and has the advantage of very high stability and longevity.
  • the LCA is in the form of oxides of lithium, cobalt and aluminum having a layered structure, and has the advantage of being easy to apply industrially and having a long life by reducing the content of expensive cobalt.
  • the LCM is in the form of oxides of lithium, cobalt and manganese having a layered structure, and has the advantage of being easy to apply industrially by reducing the content of expensive cobalt, and having somewhat high stability.
  • the LCMA is in the form of oxides of lithium, cobalt, manganese, and aluminum having a layered structure, and can be said to be a combination of the LCA and the LCM, thereby exhibiting the advantages of the LCA and the LCM together.
  • the LMO is an oxide form of lithium and manganese having a spinel structure, has very high stability, and does not contain expensive cobalt, so it is economically very cheap.
  • the LFP is a material containing lithium, iron, phosphorus and oxygen having an olivine structure, and is relatively compared to the LCO (LiCoO 2 ), LCA (LiCoMnO 2 ), LCM (LiCoMnO 2 ) and LMO (LiMn 2 O 4 ). It has the best stability and has a long lifespan, so it can be applied to various fields.
  • the step (S1) may be a step of generating Co x O y by reducing heat treatment of the positive electrode plate separated from the waste secondary battery.
  • the positive electrode plate separated from the waste secondary battery used in step (S1) may include a positive electrode active material, a conductive material, a binder, and the like. That is, the positive electrode plate separated from the waste secondary battery used in step (S1) can be used as it is in the state used in the secondary battery (that is, the electrode plate is rolled by applying an active material, a conductive material, a binder, etc.). .
  • a Co x O y material can be generated due to the conductive material and the binder material attached to the positive electrode plate.
  • the binder is a component that assists in bonding the positive active material and the conductive material and bonding to the current collector, and examples thereof include polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVOH, PVA). , PVAI), carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose (HPMC), polyvinyl pyrrolidone (Polyvinyl Pyrrolidone), tetrafluoroethylene (Polytetrafluoroethylene, PTFE) , polyethylene (PE), polypropylene (PP), ethylene-propylene-diene terpolymers (Ethylene, Propylene, Non-conjugated Diene, Ethylene Propylene Terpolymers, EPDM), styrene-butylene rubber, fluororubber and various public It may be at least one selected from the group consisting of coalescing, but any binders commonly used may be applied without limitation.
  • PVDF polyviny
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the secondary battery.
  • graphite such as natural graphite and artificial graphite
  • carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskeys such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • step (S1) is preferably performed at 510° C. to 750° C. for the positive electrode plate, and most preferably, may be performed at a temperature range of 550° C. to 660° C. When the heat treatment of step (S1) is performed in a temperature range of less than 510° C., sufficient reduction is not performed properly, so that the phase of the initial active material can be maintained.
  • the step (S1) may be performed in an environment in which oxygen is lacking and the reduction reaction can be performed more easily, preferably in an inert gas environment or a reducing gas environment, preferably argon (Ar), nitrogen (N 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO) or hydrogen (H 2 ) may be carried out in an environment, most preferably in an argon or nitrogen environment.
  • argon Ar
  • nitrogen N 2
  • carbon dioxide CO 2
  • CO carbon monoxide
  • H 2 hydrogen
  • the Co x O y material generated in step (S1) may include at least one material selected from the group consisting of CoO, Co 2 O 3 and Co 3 O 4 .
  • the Co x O y material produced in step (S1) may preferably be CoO.
  • Co x O y which is a material produced in step (S1), means a main material produced by heat treatment, and a case in which a small amount of other materials are included with these materials is not excluded.
  • the Co x O y material produced in step (S1) may have a porous structure in which pores are formed, and preferably, pores of 0.001 to 10.0 cm 3 /g may be included in the Co x O y material.
  • pores are formed by eluting oxygen (O 2 ) gas and lithium (Li) ions during the reduction process of the spent secondary battery. Due to the pores, the specific surface area of the positive electrode active material increases, so that the diffusion of lithium during the production of the recycled LCO can provide an effect that can improve
  • the Co x O y material produced in step (S1) may have a specific surface area of 0.3 to 50.0 m 2 /g.
  • the step (S2) is a step of mixing the generated Co x O y with a lithium-containing material, and the lithium-containing material mixed in the (S2) step includes LiOH, Li 2 CO 3 , LiNO 3 and Li At least one material selected from the group consisting of 3 PO 4 may be included, and preferably, at least one material selected from the group consisting of Li 2 CO 3 , LiNO 3 and Li 3 PO 4 may be included, and most preferably At least one material selected from the group consisting of Li 2 CO 3 and Li 3 PO 4 may be included.
  • the material containing lithium mixed in step (S2) may be mixed so that the molar ratio (Li/Co) of lithium to Co contained in Co x O y generated in step (S1) is 1.0 to 1.06. .
  • the heat treatment in step (S3) may be performed at 800 °C to 1,050 °C.
  • step (S3) may be performed through dry heat treatment performed by putting it in an oven, furnace, tube, etc. in the absence of moisture, or wet heat treatment through hydrothermal treatment.
  • the separated positive electrode plate was measured by X-ray photoelectron spectroscopy (XPS), and the measurement result is shown in FIG. 2 .
  • XPS X-ray photoelectron spectroscopy
  • the positive electrode plate separated from the waste lithium secondary battery contains lithium including an active material, an additive binder (PVDF), an electrolyte, and the like.
  • Example 1 According to the present invention (S1) in Example 1 using a specific surface area analyzer (Brunauer Emmett Teller, BET) to confirm that CoO with pores was generated by separating the positive electrode plate from the waste secondary battery and then heat-reducing it.
  • a specific surface area analyzer Brunauer Emmett Teller, BET
  • the specific surface areas of CoO, recycled positive electrode active material (LCO) 1, and commercial positive electrode active material (LCO) prepared by the method were analyzed, and are shown in [Table 1] below.
  • the CoO produced in step (S1) according to the present invention has pores having a denser pore size and a high specific surface area compared to the recycled cathode active material 1 and the commercial cathode active material. can confirm.
  • the CoO produced in Example 1 was measured with a scanning electron microscope to confirm the pore formation image and is shown in FIG. 3 .
  • the step (S1) for comparison according to the heat treatment environment (gas environment) of the step (S1), the step (S1) is performed in an oxygen environment with Examples 1 and 2 and as a comparison group therefor Comparative regenerated positive electrode active materials 1 to 3 heat-treated at 500° C., 600° C. and 700° C. were prepared and X-ray diffraction patterns were measured, and are shown in FIG. 4 .
  • Comparative Regenerated Positive Active Material 4 in which step (S1) was performed at 500° C., has an X-ray diffraction pattern in which CoO and the active material coexist regardless of the temperature range.
  • the regenerated positive electrode active materials 1 and 2 according to the present invention in which step (S1) was performed at 600° C. and 700° C. showed an X-ray diffraction pattern in which both the active materials were reduced and only CoO was present.
  • step (S1) in order to prepare pure CoO from which impurities are completely removed through step (S1), it is most preferable to perform the heat treatment of step (S1) in a temperature range of 510° C. to 750° C. in an inert gas argon gas environment. can be checked
  • the regenerated positive electrode active material (Example 1) prepared using the porous CoO prepared according to the present invention has a layered structure.
  • the commercial positive active material, the regenerated positive active material 1, and the regenerated positive active material 2 have substantially the same characteristics within an error range in charge capacity, discharge capacity and efficiency. From these results, it can be confirmed that the regenerated positive electrode active material prepared according to the present invention does not deteriorate electrochemical performance and can realize excellent electrochemical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a method for manufacturing a recycled positive electrode active material, the method comprising: (S1) a step for producing a CoxOy material by heat-treating a positive electrode plate separated from a waste secondary battery; (S2) a step for mixing a material including lithium with the produced CoxOy material; and (S3) a step for heat-treating the mixed material to form a recycled positive electrode active material, wherein, in CoxOy, x and y each have a value of 0 to 10.

Description

폐 이차전지를 이용한 재생 양극 활물질의 제조방법Manufacturing method of recycled positive electrode active material using waste secondary battery
본 발명은 폐 이차전지를 이용한 재생 양극 활물질의 제조방법에 관한 것으로, 보다 구체적으로는 높은 생성율로 재생이 가능하며 최초 이차전지의 효율과 유사한 효율을 제공할 수 있도록 구성된 재생 양극 활물질의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a recycled positive electrode active material using a waste secondary battery, and more particularly, to a method for manufacturing a recycled positive electrode active material configured to be capable of regeneration at a high production rate and to provide an efficiency similar to that of the first secondary battery. it's about
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며 사이클 수명이 길고 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing. Among these secondary batteries, a lithium secondary battery having a high energy density and voltage, a long cycle life and a low self-discharge rate has been commercialized and widely used.
리튬 이차전지의 양극 활물질로는 리튬 전이금속 산화물이 이용되고 있으며, 리튬 전이금속 산화물로는 리튬 코발트 산화물(LiCoO2), 리튬 망간 산화물(LiMnO2, LiMn2O4 등), 리튬 인산철 화합물(LiFePO4 등), 리튬 니켈 산화물(LiNiO2 등) 등이 주로 이용되고 있다. 그러나, 이러한 리튬 이차전지의 양극 활물질, 예를 들어 리튬 코발트 산화물 또는 NCM계 리튬 산화물을 이루는 전이금속들은 비용이 고가이고, 특히 코발트는 전략금속에 속하는 것으로서 세계 각국별로 수급에 각별한 관심을 갖고 있으며, 코발트 생산국의 수가 한정되어 있어 세계적으로 그 수급이 불안정한 금속으로 알려져 있다. 또한, 이러한 전이금속들은 환경 문제를 일으킬 수 있어 환경 규제에 대한 대응도 필요한 실정이다.Lithium transition metal oxide is used as a cathode active material for lithium secondary batteries, and lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMnO 2 , LiMn 2 O 4 , etc.), lithium iron phosphate compound ( LiFePO 4 etc.) and lithium nickel oxide (LiNiO 2 etc.) are mainly used. However, the cathode active material of such a lithium secondary battery, for example, lithium cobalt oxide or transition metal constituting NCM-based lithium oxide is expensive, and in particular, cobalt is a strategic metal, and each country is interested in supply and demand, Since the number of cobalt producing countries is limited, it is known as a metal whose supply and demand is unstable worldwide. In addition, since these transition metals can cause environmental problems, it is necessary to respond to environmental regulations.
종래의 폐 리튬 이차전지의 재활용 방법은 파쇄, 자력 선별, 분급 등으로 폐 양극활물질만을 선택적으로 농축시킨 뒤 환원제로 과산화수소를 사용하는 황산 침출법으로 코발트를 침출하였다. 이후 침출 용액으로부터 코발트를 회수하기 위해 옥살산을 이용하여 코발트를 선택적으로 분리 회수하는 공정과 pH를 조절하고 불순물을 제거하는 공정을 거친 다음 용매 추출법을 이용해 황산 코발트를 제조하는 방식으로 폐 리튬 이차전지를 재활용하였다. 그런데 이러한 종래의 재활용 방식은 폐 양극 활물질 가운데 리튬코발트산화물(LCO)에만 국한되어 이용될 수 있으며, 사용 추세가 증가하고 있는 리튬니켈코발트망간산화물(NCM) 또는 전기 자동차용 리튬이온망간산화물(LMO) 등에서는 황산만으로 침출이 효율적으로 이루어지기 힘든 문제가 있다. 또한, 전술한 종래의 재활용 방식은 옥살산을 이용해 코발트를 생성할 때 소성을 하여 이산화탄소로 옥살산을 분해한 다음 산화코발트를 황산에 재용해하여 황산코발트를 만들기 때문에, 비용 측면에서 바람직한 공법이라고 할 수 없다. 뿐만 아니라, 전술한 종래의 재활용 방식은 코발트를 선택적으로 분리하기 위해 들어가는 과량의 옥살산으로 인해 폐수 처리에도 상당한 어려움을 발생시킨다.In the conventional recycling method of a waste lithium secondary battery, only the waste positive electrode active material is selectively concentrated by crushing, magnetic separation, classification, etc., and then cobalt is leached by a sulfuric acid leaching method using hydrogen peroxide as a reducing agent. Afterwards, in order to recover cobalt from the leaching solution, a process of selectively separating and recovering cobalt using oxalic acid, adjusting the pH and removing impurities, and then using a solvent extraction method to prepare cobalt sulfate. recycled. However, this conventional recycling method can be used only limited to lithium cobalt oxide (LCO) among waste positive electrode active materials, and lithium nickel cobalt manganese oxide (NCM) or lithium ion manganese oxide (LMO) for electric vehicles, which is increasingly used, is used. In other cases, there is a problem in that it is difficult to efficiently perform leaching with only sulfuric acid. In addition, the conventional recycling method described above is not a preferable method in terms of cost, because when producing cobalt using oxalic acid, it is calcined to decompose oxalic acid into carbon dioxide and then re-dissolved cobalt oxide in sulfuric acid to make cobalt sulfate. . In addition, the above-described conventional recycling method causes considerable difficulties in wastewater treatment due to an excess of oxalic acid that enters to selectively separate cobalt.
또 다른 종래 기술로는 알루미늄이 제거된 양극 활물질 분말을 산으로 침출한 이후에 알칼리 침전을 통해 니켈, 코발트, 망간이 혼합된 수산화물 형태나 단일 수산화물 형태로 재활용하는 기술이 있다. 그러나, 이러한 방식으로 재생된 양극 활물질은 부가가치가 높은 이차전지 전구체 원료로 사용하기에는 불순물 함량이 높고, 이로 인해 온전한 소재로서의 가치가 결여되어 실질적인 상품성이 부족하다는 문제점이 있다.As another prior art, there is a technique for recycling a cathode active material powder from which aluminum has been removed with an acid, and then recycling it in the form of a hydroxide or a single hydroxide in which nickel, cobalt, and manganese are mixed through alkali precipitation. However, the positive electrode active material regenerated in this way has a high impurity content to be used as a secondary battery precursor raw material with high added value, and thus lacks value as an intact material, and thus lacks practical marketability.
따라서, 전술한 문제점을 보완하기 위해 본 발명가들은 효율적인 이차전지 양극 활물질의 재생하기 위한 방법의 개발이 시급하다 인식하여, 본 발명을 완성하였다.Therefore, in order to supplement the above-described problems, the present inventors have completed the present invention, recognizing that it is urgent to develop a method for efficiently regenerating a cathode active material for a secondary battery.
[선행기술문헌][Prior art literature]
(특허문헌 1) 대한민국 등록특허공보 제10-2064668호(Patent Document 1) Republic of Korea Patent Publication No. 10-2064668
(특허문헌 2) 일본 공개특허공보 제1999-006020호(Patent Document 2) Japanese Patent Laid-Open No. 1999-006020
본 발명의 목적은 폐 이차전지로부터 경제적이고 용이하게 재생이 가능하며 우수한 전기 화학적 특성을 제공할 수 있는 재생 양극 활물질의 제조방법을 제공하는 것이다. An object of the present invention is to provide a method for manufacturing a recycled positive electrode active material that can be economically and easily regenerated from a waste secondary battery and can provide excellent electrochemical properties.
발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 본 발명의 기재로부터 당해 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있다.The technical problems to be achieved by the invention are not limited to the technical problems mentioned above, and other technical problems not mentioned can be clearly understood by those of ordinary skill in the art from the description of the present invention.
상기 목적을 달성하기 위하여, 본 발명은 폐 이차전지를 이용한 재생 양극 활물질의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for manufacturing a recycled positive electrode active material using a waste secondary battery.
이하, 본 발명에 따른 재생 양극 활물질의 제조방법에 대하여 상세하게 설명한다.Hereinafter, a method for manufacturing a recycled positive electrode active material according to the present invention will be described in detail.
본 발명의 재생 양극 활물질의 제조방법은 다음의 단계를 포함하도록 구성될 수 있다.The method of manufacturing a renewable positive electrode active material of the present invention may be configured to include the following steps.
(S1) 폐 이차전지로부터 분리된 양극 극판을 열처리하여 CoxOy 물질을 생성하는 단계;(S1) heat-treating the positive electrode plate separated from the waste secondary battery to produce a Co x O y material;
(S2) 생성된 CoxOy 물질에 리튬을 포함하는 물질을 혼합하는 단계;(S2) mixing a material containing lithium to the produced Co x O y material;
(S3) 혼합된 물질을 열처리하여 재생 양극 활물질을 형성하는 단계.(S3) heat-treating the mixed material to form a recycled cathode active material.
상기 CoxOy에서 x 및 y는 각각 0 내지 10 사이의 값을 갖는다. In Co x O y , x and y each have a value between 0 and 10.
본 발명에 있어서, 상기 (S1) 단계에서 폐 이차전지로부터 분리된 양극 극판은 활물질, 도전재 및 바인더를 포함할 수 있다.In the present invention, the positive electrode plate separated from the waste secondary battery in step (S1) may include an active material, a conductive material, and a binder.
본 발명에 있어서, 상기 (S1) 단계의 열처리는 불활성 가스 또는 환원성 가스 환경에서 수행될 수 있다.In the present invention, the heat treatment of step (S1) may be performed in an inert gas or reducing gas environment.
본 발명에 있어서, 상기 (S1) 단계의 열처리는 510℃ 내지 750℃의 온도범위에서 수행되고, 상기 (S1) 단계에서 수행되는 열처리에 의해 양극 극판이 환원되면서 CoxOy 물질이 생성될 수 있다.In the present invention, the heat treatment of step (S1) is performed in a temperature range of 510 ° C. to 750 ° C., and as the anode plate is reduced by the heat treatment performed in step (S1), Co x O y material can be produced. have.
본 발명에 있어서, 상기 (S1) 단계에서 생성되는 CoxOy에는 CoO, Co2O3 및 Co3O4로 이루어진 군으로 부터 선택된 1종 이상의 물질이 포함될 수 있다.In the present invention, Co x O y generated in step (S1) may include at least one material selected from the group consisting of CoO, Co 2 O 3 and Co 3 O 4 .
본 발명에 있어서, 상기 (S1) 단계에서 생성되는 CoxOy 물질은 CoO일 수 있다.In the present invention, the Co x O y material produced in step (S1) may be CoO.
본 발명에 있어서, 상기 (S1) 단계에서 생성되는 CoxOy 물질은 다공성의 구조로 형성될 수 있다.In the present invention, the Co x O y material generated in step (S1) may be formed in a porous structure.
본 발명에 있어서, 상기 (S1) 단계에서 생성되는 CoxOy 물질은 기공을 0.001 내지 10.0 cm3/g의 범위로 포함할 수 있다.In the present invention, the Co x O y material produced in step (S1) may include pores in the range of 0.001 to 10.0 cm 3 /g.
본 발명에 있어서, 상기 (S1) 단계에서 생성되는 CoxOy 물질은 0.3 내지 50.0 m2/g의 비표면적을 가질 수 있다.In the present invention, the Co x O y material produced in step (S1) may have a specific surface area of 0.3 to 50.0 m 2 /g.
본 발명에 있어서, 상기 (S2) 단계에서 혼합되는 리튬을 포함하는 물질에는 LiOH, Li2CO3, LiNO3 및 Li3PO4로 이루어진 군으로부터 선택된 1종 이상의 물질이 포함될 수 있다.In the present invention, the lithium-containing material mixed in step (S2) may include at least one material selected from the group consisting of LiOH, Li 2 CO 3 , LiNO 3 and Li 3 PO 4 .
본 발명에 있어서, 상기 (S2) 단계에서 혼합되는 리튬을 포함하는 물질은 상기 (S1) 단계에서 생성되는 CoxOy 물질에 포함된 Co에 대한 리튬의 몰비가 1.0 내지 1.06이 되도록 혼합될 수 있다. In the present invention, the material containing lithium mixed in step (S2) may be mixed so that the molar ratio of lithium to Co contained in the Co x O y material produced in step (S1) is 1.0 to 1.06. have.
본 발명에 있어서, 상기 (S3) 단계의 열처리는 800℃ 내지 1,050℃의 온도범위에서 수행될 수 있다.In the present invention, the heat treatment in step (S3) may be performed in a temperature range of 800 °C to 1,050 °C.
본 발명에 있어서, 상기 (S3) 단계의 열처리는 건식 열처리 또는 습식 열처리로 수행될 수 있다.In the present invention, the heat treatment in step (S3) may be performed by dry heat treatment or wet heat treatment.
또한, 본 발명은 전술한 제조방법에 따라 형성된 재생 양극 활물질을 제공한다.In addition, the present invention provides a recycled positive electrode active material formed according to the above-described manufacturing method.
상기 폐 이차전지를 이용한 재생 양극 활물질의 제조방법 및 이에 의해 제조된 재생 양극 활물질에서 언급된 모든 사항은 모순되지 않는 한 동일하게 적용될 수 있다.All matters mentioned in the manufacturing method of the recycled positive electrode active material using the waste secondary battery and the recycled positive active material manufactured by the method may be equally applied as long as there is no contradiction.
본 발명의 폐 이차전지를 이용한 재생 양극 활물질의 제조방법은 폐 이차전지로부터 양극 활물질을 경제적이고 용이하게 재생할 수 있으며, 양극 활물질의 전기화학적 성능은 재생 과정에서 저하되지 않고, 우수한 저항 특성, 전기 전도도 특성 및 용량 특성을 구현할 수 있다.The method for manufacturing a recycled cathode active material using a waste secondary battery of the present invention can economically and easily regenerate a cathode active material from a waste secondary battery, and the electrochemical performance of the cathode active material is not deteriorated during the regeneration process, and has excellent resistance properties, electrical conductivity characteristics and capacity characteristics can be implemented.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명의 폐 이차전지를 이용한 재생 양극 활물질의 제조방법을 대략적으로 나타낸 블록도이다.1 is a block diagram schematically showing a method for manufacturing a recycled positive electrode active material using a waste secondary battery of the present invention.
도 2는 본 발명의 재생 양극 활물질의 제조방법에 이용될 수 있는 양극 극판의 성분을 분석한 X선 광전자 분광법(X-ray photoelectron spectroscopy, XPS) 스펙트럼이다.FIG. 2 is an X-ray photoelectron spectroscopy (XPS) spectrum obtained by analyzing the components of a positive electrode plate that can be used in a method of manufacturing a recycled positive electrode active material of the present invention.
도 3은 본 발명의 실시예 1에서 생성된 CoO 상에 형성된 기공을 확인한 주사전자현미경(Scanning Electron Microscope, SEM) 이미지이다.3 is a scanning electron microscope (SEM) image confirming the pores formed on the CoO produced in Example 1 of the present invention.
도 4는 본 발명의 폐 이차전지를 이용한 재생 양극 활물질의 제조방법에 있어서 (a) 공기 및 (b) 아르곤 기체 환경에서 (S1) 단계를 수행해 제조된 물질의 X선 회절(X-ray diffraction, XRD) 패턴이다.4 is an X-ray diffraction (X-ray diffraction, X-ray diffraction, XRD) pattern.
도 5는 본 발명의 폐 이차전지를 이용한 재생 양극 활물질의 제조방법에 있어서 500℃, 600℃ 및 700℃에서 (S1) 단계의 열처리를 수행해 제조된 물질의 X선 회절(X-ray diffraction, XRD) 패턴이다.5 is an X-ray diffraction (XRD) of a material prepared by performing the heat treatment of step (S1) at 500° C., 600° C. and 700° C. in the method for manufacturing a recycled cathode active material using a waste secondary battery of the present invention. ) is the pattern.
도 6은 본 발명의 실시예 1에서 생성된 CoO 및 이러한 CoO를 이용하여 제조된 재생 양극 활물질((LCO) 1)에 대한 X선 회절 패턴(X-ray diffraction, XRD)이다.6 is an X-ray diffraction pattern (X-ray diffraction, XRD) of CoO produced in Example 1 of the present invention and a recycled cathode active material ((LCO) 1) prepared using this CoO.
도 7은 본 발명에 따라 제조된 재생 양극 활물질과 상용 양극 활물질에 대해 3.0 내지 4.3V로 전기화학 성능을 평가한 그래프이다.7 is a graph illustrating electrochemical performance evaluation at 3.0 to 4.3V for the recycled positive active material and the commercial positive active material prepared according to the present invention.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.The terms used in this specification have been selected as currently widely used general terms as possible while considering the functions in the present invention, but these may vary depending on the intention or precedent of a person skilled in the art, the emergence of new technology, and the like. In addition, in a specific case, there is a term arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the description of the corresponding invention. Therefore, the term used in the present invention should be defined based on the meaning of the term and the overall content of the present invention, rather than the name of a simple term.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related art, and are not interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. .
수치 범위는 상기 범위에 정의된 수치를 포함한다. 본 명세서에 걸쳐 주어진 모든 최대의 수치 제한은 낮은 수치 제한이 명확히 쓰여져 있는 것처럼 모든 더 낮은 수치 제한을 포함한다. 본 명세서에 걸쳐 주어진 모든 최소의 수치 제한은 더 높은 수치 제한이 명확히 쓰여져 있는 것처럼 모든 더 높은 수치 제한을 포함한다. 본 명세서에 걸쳐 주어진 모든 수치 제한은 더 좁은 수치 제한이 명확히 쓰여져 있는 것처럼, 더 넓은 수치 범위 내의 더 좋은 모든 수치 범위를 포함할 것이다.Numerical ranges are inclusive of the values defined in that range. Every maximum numerical limitation given throughout this specification includes all lower numerical limitations as if the lower numerical limitation were expressly written. Every minimum numerical limitation given throughout this specification includes all higher numerical limitations as if the higher numerical limitation were expressly written. Any numerical limitation given throughout this specification shall include all numerical ranges within the broader numerical range, as if the narrower numerical limitation were expressly written down.
이하, 본 발명의 실시예를 상세히 기술하나, 하기 실시예에 의해 본 발명이 한정되지 아니함은 자명하다.Hereinafter, examples of the present invention will be described in detail, but it is obvious that the present invention is not limited by the following examples.
본 발명에 따른 재생 양극 활물질 제조방법Method for manufacturing a regenerative cathode active material according to the present invention
본 발명은 하기의 단계를 포함하는 재생 양극 활물질의 제조방법을 제공한다.The present invention provides a method for manufacturing a renewable positive electrode active material comprising the following steps.
(S1) 폐 이차전지로부터 분리된 양극 극판을 열처리하여 CoxOy 물질을 생성하는 단계;(S1) heat-treating the positive electrode plate separated from the waste secondary battery to produce a Co x O y material;
(S2) 생성된 CoxOy 물질에 리튬을 포함하는 물질을 혼합하는 단계;(S2) mixing a material containing lithium to the produced Co x O y material;
(S3) 혼합된 물질을 열처리하여 재생 양극 활물질을 형성하는 단계.(S3) heat-treating the mixed material to form a recycled cathode active material.
상기 CoxOy에서 x 및 y는 각각 0 내지 10의 값을 가질 수 있다.In Co x O y , x and y may each have a value of 0 to 10.
“양극 활물질”은 이차전지 내에서 화학적 반응을 통해 전기를 생산하는 주요 구성으로, 일반적으로 리튬산화물이 포함된 활물질을 일컫는다. 상기 양극 활물질을 본 발명에 적용할 경우, 상기 양극 활물질은 리튬과 코발트를 포함하는 양극 활물질로서, 바람직하게는 LCO(LiCoO2), LCA(LiCoAlO2), LCM(LiCoMnO2) 및 LCMA(LiCoMnAlO2)로 이루어진 층상 구조의 양극 활물질, LMO(LiMn2O4)인 스피넬 구조의 양극 활물질 및 LFP(LiFePO4)인 올리빈 구조의 양극 활물질로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 상기 NCO, NCA, NCM 및 NCMA로 이루어진 군으로부터 선택된 1종 이상의 층상 구조 양극 활물질일 수 있다.“Anode active material” refers to an active material containing lithium oxide as the main component that generates electricity through a chemical reaction in a secondary battery. When the positive active material is applied to the present invention, the positive active material is a positive active material containing lithium and cobalt, preferably LCO (LiCoO 2 ), LCA (LiCoAlO 2 ), LCM (LiCoMnO 2 ) and LCMA (LiCoMnAlO 2 ) ) may be at least one selected from the group consisting of a positive active material having a layered structure of It may be at least one layered structure positive electrode active material selected from the group consisting of NCO, NCA, NCM and NCMA.
상기 LCO는 층상구조를 갖는 리튬과 코발트의 산화물 형태로, 안정성과 수명이 매우 높다는 장점을 갖는다.The LCO is in the form of oxides of lithium and cobalt having a layered structure, and has the advantage of very high stability and longevity.
상기 LCA는 층상구조의 리튬, 코발트 및 알루미늄의 산화물 형태로, 값비싼 코발트의 함량을 줄여 산업적으로 적용되기 용이하고 수명이 길다는 장점을 갖는다.The LCA is in the form of oxides of lithium, cobalt and aluminum having a layered structure, and has the advantage of being easy to apply industrially and having a long life by reducing the content of expensive cobalt.
상기 LCM은 층상구조의 리튬, 코발트 및 망간의 산화물 형태로, 값비싼 코발트의 함량을 줄여 산업적으로 적용되기 용이하고 안정성이 다소 높다는 장점을 갖는다.The LCM is in the form of oxides of lithium, cobalt and manganese having a layered structure, and has the advantage of being easy to apply industrially by reducing the content of expensive cobalt, and having somewhat high stability.
상기 LCMA는 층상구조의 리튬, 코발트, 망간 및 알루미늄의 산화물 형태로, 상기 LCA 및 LCM의 조합이라 할 수 있어, 상기 LCA 및 LCM의 장점을 함께 나타낼 수 있다.The LCMA is in the form of oxides of lithium, cobalt, manganese, and aluminum having a layered structure, and can be said to be a combination of the LCA and the LCM, thereby exhibiting the advantages of the LCA and the LCM together.
상기 LMO는 스피넬 구조의 리튬과 망간의 산화물 형태로, 안정이 매우 높으며, 비싼 코발트를 포함하지 않아 경제적으로 매우 저렴하다는 장점을 갖는다.The LMO is an oxide form of lithium and manganese having a spinel structure, has very high stability, and does not contain expensive cobalt, so it is economically very cheap.
상기 LFP는 올리빈 구조의 리튬, 철, 인 및 산소를 포함하는 물질로서, 상기 LCO(LiCoO2), LCA(LiCoMnO2), LCM(LiCoMnO2) 및 LMO(LiMn2O4)와 비교하여 상대적으로 안정성이 가장 좋으며, 수명도 길어 다양한 분야에 적용될 수 있다.The LFP is a material containing lithium, iron, phosphorus and oxygen having an olivine structure, and is relatively compared to the LCO (LiCoO 2 ), LCA (LiCoMnO 2 ), LCM (LiCoMnO 2 ) and LMO (LiMn 2 O 4 ). It has the best stability and has a long lifespan, so it can be applied to various fields.
상기 (S1) 단계는 폐 이차전지로부터 분리된 양극 극판을 환원 열처리하여 CoxOy를 생성하는 단계일 수 있다.The step (S1) may be a step of generating Co x O y by reducing heat treatment of the positive electrode plate separated from the waste secondary battery.
상기 (S1) 단계에서 이용되는 폐 이차전지로부터 분리된 양극 극판에는 양극 활물질, 도전재, 바인더 등이 포함될 수 있다. 즉, 상기 (S1) 단계에서 이용되는 폐 이차전지로부터 분리된 양극 극판은 이차전지에서 사용되던 상태(즉, 극판에 활물질, 도전재, 바인더 등이 도포되어 압연된 상태)로 그대로 이용될 수 있다. 이러한 양극 극판을 이용해 (S1) 단계에서 열처리를 수행하면, 상기 양극 극판에 부착되어 있는 도전재 및 바인더 물질로 인해 CoxOy 물질이 생성될 수 있게 된다.The positive electrode plate separated from the waste secondary battery used in step (S1) may include a positive electrode active material, a conductive material, a binder, and the like. That is, the positive electrode plate separated from the waste secondary battery used in step (S1) can be used as it is in the state used in the secondary battery (that is, the electrode plate is rolled by applying an active material, a conductive material, a binder, etc.). . When the heat treatment is performed in step (S1) using such a positive electrode plate, a Co x O y material can be generated due to the conductive material and the binder material attached to the positive electrode plate.
상기 바인더는 상기 양극 활물질과 상기 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 그 예는 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVDF), 폴리비닐알코올(polyvinyl alcohol, PVOH, PVA, PVAI), 카르복시메틸셀룰로우즈(carboxymethyl cellulose, CMC), 전분, 히드록시프로필셀룰로우즈(Hydroxypropyl Cellulose, HPMC), 폴리비닐피롤리돈(Polyvinyl Pyrrolidone), 테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE), 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene,PP), 에틸렌-프로필렌-디엔 테르 폴리머(Ethylene, Propylene, Non-conjugated Diene, Ethylene Propylene Terpolymers, EPDM), 스티렌 브티렌 고무, 불소 고무 및 다양한 공중합체로 이루어진 군에서 선택된 1종 이상일 수 있으나, 통상적으로 사용하는 바인더라면 제한 없이 적용할 수 있다.The binder is a component that assists in bonding the positive active material and the conductive material and bonding to the current collector, and examples thereof include polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVOH, PVA). , PVAI), carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose (HPMC), polyvinyl pyrrolidone (Polyvinyl Pyrrolidone), tetrafluoroethylene (Polytetrafluoroethylene, PTFE) , polyethylene (PE), polypropylene (PP), ethylene-propylene-diene terpolymers (Ethylene, Propylene, Non-conjugated Diene, Ethylene Propylene Terpolymers, EPDM), styrene-butylene rubber, fluororubber and various public It may be at least one selected from the group consisting of coalescing, but any binders commonly used may be applied without limitation.
상기 도전재는 이차전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 천연 흑연이나 인조흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the secondary battery. For example, graphite, such as natural graphite and artificial graphite; carbon black, such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
상기 (S1) 단계의 열처리는 상기 양극 극판을 510℃ 내지 750℃에서 수행되는 것이 바람직하며, 가장 바람직하게는 550℃ 내지 660℃ 온도 범위에서 수행될 수 있다. 상기 (S1) 단계의 열처리를 510℃ 미만의 온도 범위에서 수행될 경우 충분한 환원이 제대로 수행되지 않아 초기 활물질의 상을 유지할 수 있다.The heat treatment of step (S1) is preferably performed at 510° C. to 750° C. for the positive electrode plate, and most preferably, may be performed at a temperature range of 550° C. to 660° C. When the heat treatment of step (S1) is performed in a temperature range of less than 510° C., sufficient reduction is not performed properly, so that the phase of the initial active material can be maintained.
상기 (S1) 단계는 산소가 결핍되어 환원 반응이 보다 용이하게 수행 가능한 환경, 바람직하게 불활성 기체 환경 또는 환원성 기체 환경에서 수행될 수 있으며, 바람직하게는 아르곤(Ar), 질소(N2), 이산화탄소(CO2), 일산화탄소(CO) 또는 수소(H2) 환경에서 수행될 수 있고, 가장 바람직하게는 아르곤 또는 질소 환경에서 수행될 수 있다.The step (S1) may be performed in an environment in which oxygen is lacking and the reduction reaction can be performed more easily, preferably in an inert gas environment or a reducing gas environment, preferably argon (Ar), nitrogen (N 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO) or hydrogen (H 2 ) may be carried out in an environment, most preferably in an argon or nitrogen environment.
상기 (S1) 단계에서 생성되는 CoxOy 물질에는 CoO, Co2O3 및 Co3O4로 이루어진 군으로부터 선택된 1종 이상의 물질이 포함될 수 있다. 상기 (S1) 단계에서 생성되는 CoxOy 물질은 바람직하게는 CoO일 수 있다.The Co x O y material generated in step (S1) may include at least one material selected from the group consisting of CoO, Co 2 O 3 and Co 3 O 4 . The Co x O y material produced in step (S1) may preferably be CoO.
참고로, 본 명세서에서 (S1) 단계에서 생성되는 물질인 CoxOy는 열처리에 의해 생성되는 주된 물질을 의미하고, 이러한 물질과 함께 다른 물질이 소량 포함되어 형성되는 경우를 배제하지 않는다.For reference, in the present specification, Co x O y , which is a material produced in step (S1), means a main material produced by heat treatment, and a case in which a small amount of other materials are included with these materials is not excluded.
상기 (S1) 단계에서 생성되는 CoxOy 물질은 기공이 형성된 다공성의 구조를 가질 수 있으며, 바람직하게는 0.001 내지 10.0 cm3/g의 기공이 CoxOy 물질에 포함될 수 있다.The Co x O y material produced in step (S1) may have a porous structure in which pores are formed, and preferably, pores of 0.001 to 10.0 cm 3 /g may be included in the Co x O y material.
이러한 기공은 상기 폐 이차전지의 환원 과정에서 산소(O2) 가스 및 리튬(Li) 이온이 용출되어 형성된 것으로, 상기 기공으로 인해 상기 양극 활물질의 비표면적이 증가하여 상기 재생 LCO 제조 시 리튬의 확산을 향상시킬 수 있는 효과를 제공할 수 있다.These pores are formed by eluting oxygen (O 2 ) gas and lithium (Li) ions during the reduction process of the spent secondary battery. Due to the pores, the specific surface area of the positive electrode active material increases, so that the diffusion of lithium during the production of the recycled LCO can provide an effect that can improve
또한, 상기 (S1) 단계에서 생성되는 CoxOy 물질은 0.3 내지 50.0 m2/g의 비표면적을 가질 수 있다. In addition, the Co x O y material produced in step (S1) may have a specific surface area of 0.3 to 50.0 m 2 /g.
상기 (S2) 단계는 상기 생성된 CoxOy를 리튬을 포함하는 물질과 혼합하는 단계로서, 상기 (S2) 단계에서 혼합되는 리튬을 포함하는 물질에는 LiOH, Li2CO3, LiNO3 및 Li3PO4로 이루어진 군으로부터 선택된 1종 이상의 물질이 포함될 수 있으며, 바람직하게는 Li2CO3, LiNO3 및 Li3PO4로 이루어진 군으로부터 선택된 1종 이상의 물질이 포함될 수 있고, 가장 바람직하게는 Li2CO3 및 Li3PO4로 이루어진 군으로부터 선택된 1종 이상의 물질이 포함될 수 있다.The step (S2) is a step of mixing the generated Co x O y with a lithium-containing material, and the lithium-containing material mixed in the (S2) step includes LiOH, Li 2 CO 3 , LiNO 3 and Li At least one material selected from the group consisting of 3 PO 4 may be included, and preferably, at least one material selected from the group consisting of Li 2 CO 3 , LiNO 3 and Li 3 PO 4 may be included, and most preferably At least one material selected from the group consisting of Li 2 CO 3 and Li 3 PO 4 may be included.
상기 (S2) 단계에서 혼합되는 리튬을 포함하는 물질은 상기 (S1) 단계에서 생성되는 CoxOy에 포함된 Co에 대한 리튬의 몰비(Li/Co)가 1.0 내지 1.06이 되도록 혼합될 수 있다.The material containing lithium mixed in step (S2) may be mixed so that the molar ratio (Li/Co) of lithium to Co contained in Co x O y generated in step (S1) is 1.0 to 1.06. .
상기 (S3) 단계의 열처리는 800℃ 내지 1,050℃에서 수행될 수 있다.The heat treatment in step (S3) may be performed at 800 °C to 1,050 °C.
또한, 상기 (S3) 단계의 열처리는 수분이 존재하지 않은 상태에서 오븐, 로, 튜브 등에 투입하여 수행되는 건식 열처리 또는 수열처리를 통한 습식 열처리를 통해 수행될 수 있다.In addition, the heat treatment of step (S3) may be performed through dry heat treatment performed by putting it in an oven, furnace, tube, etc. in the absence of moisture, or wet heat treatment through hydrothermal treatment.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해 질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 후술하는 실시예들은 단지 본 발명의 개시가 완전하도록 하고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 보다 명확히 이해할 수 있도록 하기 위해 제공되는 것이며, 본 발명의 권리범위는 후술하는 실시예에 의해 한정되지 않고 청구범위에 기재된 사항에 의해 결정되어야 한다.Advantages and features of the present invention, and a method of achieving them, will become apparent with reference to the embodiments described below in detail. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and the embodiments described below are merely intended to complete the disclosure of the present invention and are common in the technical field to which the present invention pertains. It is provided so that those with knowledge may more clearly understand the present invention, and the scope of the present invention is not limited by the examples described below, but should be determined by the matters described in the claims.
실시예 1. 재생 양극 활물질 1 제조Example 1. Preparation of Regenerated Positive Active Material 1
폐 리튬이차전지로부터 활물질 및 첨가제를 포함하는 양극 극판을 분리한 다음 불활성 기체인 아르곤(Ar) 환경에서 600℃로 열처리 환원하여 기공을 갖는 CoO를 제조하고, 생성된 CoO에 Li2CO3를 1.02:1(Li2CO3:CoO)의 몰비로 첨가(혼합)한 다음 850℃에서 158 mAh/g로 열처리하여 재생 양극 활물질(LCO) 1을 제조하였다.After separating the positive electrode plate containing the active material and additives from the waste lithium secondary battery, heat treatment was reduced to 600° C. in an inert gas argon (Ar) environment to prepare CoO having pores, and Li 2 CO 3 was added to 1.02 in the produced CoO. After adding (mixing) in a molar ratio of :1 (Li 2 CO 3 :CoO), heat treatment was performed at 850° C. at 158 mAh/g to prepare a recycled cathode active material (LCO) 1.
실시예 2. 재생 양극 활물질 2 제조Example 2. Preparation of Regenerated Positive Active Material 2
폐 리튬이차전지로부터 활물질 및 첨가제를 포함하는 양극 극판을 분리한 다음 불활성 기체인 아르곤(Ar) 환경에서 700℃로 열처리 환원하여 기공이 형성된 CoO를 제조하고, 생성된 CoO에 Li2CO3를 1.04:1(Li2CO3:CoO) 몰비로 첨가(혼합)한 다음 850℃에서 158 mAh/g로 열처리하여 재생 양극 활물질(LCO) 2를 제조하였다.After separating the positive electrode plate containing the active material and additives from the waste lithium secondary battery, heat treatment was reduced to 700° C. in an inert gas argon (Ar) environment to prepare CoO with pores, and Li 2 CO 3 was added to 1.04 in the produced CoO. After adding (mixing) in a molar ratio of :1 (Li 2 CO 3 :CoO), heat treatment was performed at 850° C. at 158 mAh/g to prepare a recycled cathode active material (LCO) 2 .
실험예 1. 분리된 양극 극판 성분 확인Experimental Example 1. Confirmation of separated positive electrode plate components
폐 리튬이차전지로부터 분리된 양극 극판에 포함되어 있는 성분을 확인하기 위해 분리된 양극 극판을 X선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)으로 측정하였으며, 측정 결과는 도 2에 나타내었다.In order to confirm the components contained in the positive electrode plate separated from the waste lithium secondary battery, the separated positive electrode plate was measured by X-ray photoelectron spectroscopy (XPS), and the measurement result is shown in FIG. 2 .
도 2를 참조하면, 폐 리튬이차전지로부터 분래된 양극 극판에는 활물질을 포함하는 리튬, 첨가제인 바인더(PVDF), 전해질 등이 포함되어 있는 것을 확인할 수 있다.Referring to FIG. 2 , it can be seen that the positive electrode plate separated from the waste lithium secondary battery contains lithium including an active material, an additive binder (PVDF), an electrolyte, and the like.
실험예 1. 생성된 CoO 표면의 기공 확인Experimental Example 1. Confirmation of pores on the surface of the CoO produced
1.1. 비표면적분석기(Brunauer Emmett Teller, BET)1.1. Specific Surface Area Analyzer (Brunauer Emmett Teller, BET)
본 발명에 따라 (S1) 폐 이차전지에서 양극 극판을 분리한 다음 이를 열처리 환원하여 기공이 형성된 CoO가 생성되었음을 확인하기 위해, 비표면적분석기(Brunauer Emmett Teller, BET)를 이용하여 상기 실시예 1에 의해 제조된 CoO, 재생 양극 활물질(LCO) 1 및 상용 양극 활물질(LCO)의 비표면적을 분석하였으며, 이를 하기 [표 1]에 나타내었다.According to the present invention (S1) in Example 1 using a specific surface area analyzer (Brunauer Emmett Teller, BET) to confirm that CoO with pores was generated by separating the positive electrode plate from the waste secondary battery and then heat-reducing it. The specific surface areas of CoO, recycled positive electrode active material (LCO) 1, and commercial positive electrode active material (LCO) prepared by the method were analyzed, and are shown in [Table 1] below.
비표면적(m2/g)Specific surface area (m 2 /g) 평균 기공 크기(Å)Average pore size (Å) 기공 부피(cm3/g)pore volume (cm 3 /g)
실시예 1의 CoOCoO of Example 1 9.05749.0574 108.445108.445 0.0221880.022188
재생 양극 활물질 1Renewable cathode active material 1 0.15480.1548 102.278102.278 0.0007390.000739
상용 양극 활물질Commercial cathode active material 0.11130.1113 91.6791.67 0.0005060.000506
상기 [표 1]을 참조하면, 재생 양극 활물질 1 및 상용 양극 활물질과 비교해 본 발명에 따라 (S1) 단계에서 생성된 CoO에는 보다 조밀한 기공 크기를 가지면서 높은 비표면적을 갖는 기공이 형성되어 있음을 확인할 수 있다.Referring to [Table 1], the CoO produced in step (S1) according to the present invention has pores having a denser pore size and a high specific surface area compared to the recycled cathode active material 1 and the commercial cathode active material. can confirm.
1.2. 주사전자현미경(Scanning Electron Microscope, SEM)1.2. Scanning Electron Microscope (SEM)
본 발명에 따라 폐 이차전지에서 양극 극판을 분리하고 이를 (S1) 단계에서 환원하여 기공이 형성된 CoO를 확인하기 위해, 상기 실시예 1에서 생성된 CoO를 주사전자현미경으로 측정해 기공 형성 이미지를 확인하였으며, 이를 도 3에 나타내었다.According to the present invention, in order to confirm the CoO in which pores are formed by separating the positive electrode plate from the waste secondary battery and reducing it in step (S1) according to the present invention, the CoO produced in Example 1 was measured with a scanning electron microscope to confirm the pore formation image and is shown in FIG. 3 .
도 3을 참조하면, (a) 본 발명에 따른 실시예 1에서 생성된 CoO를 확대하였을 때, (b) 상기 생성된 CoO 상에 기공이 형성되어 있음을 확인할 수 있으며, (c) 상기 생성된 CoO의 단면 상에도 기공이 형성되어 있음을 확인할 수 있다. 상기 기공은 상기 폐 이차전지의 환원 과정에서 산소(O2) 가스 및 리튬(Li) 이온이 용출되면서 형성될 수 있는 것으로, 상기 결과를 통해 본 발명에 따른 CoO의 경우 내부 및 외부(표면) 전체에 기공이 형성되었음을 확인할 수 있다.Referring to FIG. 3 , (a) when the CoO produced in Example 1 according to the present invention is enlarged, (b) it can be confirmed that pores are formed on the produced CoO, (c) the generated CoO It can be seen that pores are also formed on the cross-section of CoO. The pores may be formed while oxygen (O2) gas and lithium (Li) ions are eluted during the reduction process of the spent secondary battery. Based on the above results, in the case of CoO according to the present invention, the entire interior and exterior (surface) It can be confirmed that pores are formed.
실험예 2. (S1) 단계의 열처리에 따른 효과 비교Experimental Example 2. Comparison of effects of heat treatment in step (S1)
2.1. (S1) 단계의 열처리에 기체 환경에 따른 비교2.1. Comparison according to the gas environment in the heat treatment of step (S1)
본 발명에 따른 재생 양극 활물질의 제조방법에 있어서, (S1) 단계의 열처리 환경(기체 환경)에 따른 비교를 위해, 상기 실시예 1 및 2와, 이에 대한 비교군으로 (S1) 단계를 산소 환경에서 500℃, 600℃ 및 700℃로 열처리한 비교 재생 양극 활물질 1 내지 3을 제조하여 X선 회절 패턴을 측정하였으며, 이를 도 4에 나타내었다.In the method for manufacturing a recycled positive electrode active material according to the present invention, for comparison according to the heat treatment environment (gas environment) of the step (S1), the step (S1) is performed in an oxygen environment with Examples 1 and 2 and as a comparison group therefor Comparative regenerated positive electrode active materials 1 to 3 heat-treated at 500° C., 600° C. and 700° C. were prepared and X-ray diffraction patterns were measured, and are shown in FIG. 4 .
도 4를 참조하면, (a) 산소 환경에서 500℃, 600℃ 내지 700℃로 열처리한 비교 재생 양극 활물질 1 내지 3은 온도 범위와 상관없이 초기 활물질만이 존재하는 X선 회절 패턴을 갖는 것을 확인할 수 있다. 반면, (b) 아르곤 기체 환경에서 각각 600℃ 및 700℃로 (S1) 단계를 수행한 재생 양극 활물질 1 및 2는 활물질은 모두 환원되고 CoO 형태의 코발트산화물만이 존재하는 X선 회절 패턴을 보이는 것을 확인할 수 있다.Referring to FIG. 4 , (a) it can be seen that Comparative Regenerated Positive Active Materials 1 to 3, which were heat treated at 500° C. and 600° C. to 700° C. in an oxygen environment, have an X-ray diffraction pattern in which only the initial active material exists regardless of the temperature range. can On the other hand, (b) the regenerated positive electrode active materials 1 and 2, in which step (S1) was performed at 600 ° C and 700 ° C, respectively, in an argon gas environment, showed an X-ray diffraction pattern in which both active materials were reduced and only cobalt oxide in the form of CoO was present. can check that
2.2. (S1) 단계 온도에 따른 비교2.2. (S1) Comparison according to step temperature
본 발명에 따른 재생 양극 활물질의 제조방법에 있어서, (S1) 단계 온도 범위에 따른 비교를 위해, 상기 실시예 1 및 2와, 이에 대한 비교군으로 상기 실시예 1과 모든 조건은 동일하되 (S1) 단계의 열처리 온도만을 500℃로 변경한 비교 재생 양극 활물질 4를 제조하여 X선 회절 패턴을 측정하였으며, 이를 도 5에 나타내었다.In the method for manufacturing a recycled cathode active material according to the present invention, for comparison according to the temperature range of step (S1), Examples 1 and 2 and all conditions of Example 1 as a comparison group are the same (S1) ), an X-ray diffraction pattern was measured by preparing a comparative regenerated positive active material 4 in which only the heat treatment temperature of the step was changed to 500° C., which is shown in FIG. 5 .
도 5를 참조하면, 500℃에서 (S1) 단계가 수행된 비교 재생 양극 활물질 4는 온도 범위와 상관없이 CoO와 활물질이 공존하는 X선 회절 패턴을 갖는 것을 확인할 수 있다. 반면, 600℃ 및 700℃에서 (S1) 단계가 수행된 본 발명에 따른 재생 양극 활물질 1 및 2는 활물질은 모두 환원되고 CoO만이 존재하는 X선 회절 패턴을 보이는 것을 확인할 수 있다.Referring to FIG. 5 , it can be confirmed that Comparative Regenerated Positive Active Material 4, in which step (S1) was performed at 500° C., has an X-ray diffraction pattern in which CoO and the active material coexist regardless of the temperature range. On the other hand, it can be seen that the regenerated positive electrode active materials 1 and 2 according to the present invention in which step (S1) was performed at 600° C. and 700° C. showed an X-ray diffraction pattern in which both the active materials were reduced and only CoO was present.
상기 결과로부터, (S1) 단계를 통해 불순물이 완전히 제거된 순수 CoO를 제조하기 위해서는 불활성 기체인 아르곤 기체 환경에서 510℃ 내지 750℃의 온도범위로 (S1) 단계의 열처리를 수행하는 것이 가장 바람직한 것을 확인할 수 있다.From the above results, in order to prepare pure CoO from which impurities are completely removed through step (S1), it is most preferable to perform the heat treatment of step (S1) in a temperature range of 510° C. to 750° C. in an inert gas argon gas environment. can be checked
실험예 3. 층상 구조의 재생 양극 활물질 확인Experimental Example 3. Confirmation of the layered structure of the regenerated positive electrode active material
본 발명에 따라 제조된 재생 양극 활물질의 구조적 특징을 확인하기 위해, 상기 실시예 1에서 생성된 CoO 및 상기 생성된 CoO를 이용하여 제조된 재생 양극 활물질(LCO) 1에 대해 X선 회절 패턴을 측정하였으며, 이를 도 6에 나타내었다.In order to confirm the structural characteristics of the recycled cathode active material prepared according to the present invention, an X-ray diffraction pattern was measured for the CoO produced in Example 1 and the recycled cathode active material (LCO) 1 prepared using the produced CoO. and this is shown in FIG. 6 .
도 6을 참조하면, 본 발명에 따라 제조된 다공성의 CoO를 이용하여 제조된 재생 양극 활물질(실시예 1)은 층상 구조를 갖게 됨을 확인할 수 있다.Referring to FIG. 6 , it can be confirmed that the regenerated positive electrode active material (Example 1) prepared using the porous CoO prepared according to the present invention has a layered structure.
실험예 3. 재생 양극 활물질의 전기화학 성능 평가Experimental Example 3. Electrochemical Performance Evaluation of Regenerated Positive Active Material
본 발명에 따라 제조된 재생 양극 활물질의 전기화학적 성능을 평가하기 위해, 상용되는 양극 활물질(LCO)에 대해 3.0 내지 4.3V로 전기화학 성능을 평가하였으며, 그 결과를 하기 [표 2] 및 도 7에 나타내었다.In order to evaluate the electrochemical performance of the recycled positive active material prepared according to the present invention, the electrochemical performance was evaluated at 3.0 to 4.3 V for a commercially available positive electrode active material (LCO), and the results are shown in Table 2 and FIG. 7 shown in
충전용량(mAh/g)Charging capacity (mAh/g) 방전용량(mAh/g)Discharge capacity (mAh/g) 효율(%)efficiency(%)
상용 양극 활물질Commercial cathode active material 164.2164.2 159.6159.6 97.297.2
재생 양극 활물질 1Renewable cathode active material 1 163.9163.9 158.7158.7 96.896.8
재생 양극 활물질 2Renewable cathode active material 2 163.3163.3 157.7157.7 96.696.6
상기 [표 2] 및 도 7을 참조하면, 상용 양극 활물질, 재생 양극 활물질 1 및 재생 양극 활물질 2는 충전용량, 방전용량 및 효율 등에 있어서 오차범위 내에서 거의 동일한 특성을 가짐을 확인할 수 있다. 이러한 결과로부터 본 발명에 따라 제조된 재생 양극 활물질은 전기화학적 성능이 저하되지 않고, 우수한 전기화학적 특성을 구현할 수 있음을 확인할 수 있다.Referring to [Table 2] and FIG. 7, it can be seen that the commercial positive active material, the regenerated positive active material 1, and the regenerated positive active material 2 have substantially the same characteristics within an error range in charge capacity, discharge capacity and efficiency. From these results, it can be confirmed that the regenerated positive electrode active material prepared according to the present invention does not deteriorate electrochemical performance and can realize excellent electrochemical properties.
이상 설명으로부터, 본 발명에 속하는 기술 분야의 당업자는 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로서 이해해야만 한다.From the above description, those skilled in the art to which the present invention pertains will understand that the present invention may be implemented in other specific forms without changing the technical spirit or essential characteristics thereof. In this regard, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (14)

  1. (S1) 폐 이차전지로부터 분리된 양극 극판을 열처리하여 CoxOy 물질을 생성하는 단계;(S1) heat-treating the positive electrode plate separated from the waste secondary battery to produce a Co x O y material;
    (S2) 생성된 CoxOy 물질에 리튬을 포함하는 물질을 혼합하는 단계;(S2) mixing a material containing lithium to the produced Co x O y material;
    (S3) 혼합된 물질을 열처리하여 재생 양극 활물질을 형성하는 단계;를 포함하고,(S3) heat-treating the mixed material to form a recycled cathode active material;
    상기 CoxOy에서 x 및 y는 각각 0 내지 10 사이의 값을 갖는,In the Co x O y , x and y each have a value between 0 and 10,
    재생 양극 활물질의 제조방법.A method for manufacturing a renewable positive electrode active material.
  2. 제1항에 있어서,According to claim 1,
    상기 (S1) 단계에서 폐 이차전지로부터 분리된 양극 극판에는 양극 활물질, 도전재 및 바인더가 포함되어 있는,The positive electrode plate separated from the waste secondary battery in step (S1) contains a positive electrode active material, a conductive material and a binder,
    재생 양극 활물질의 제조방법.A method for manufacturing a renewable positive electrode active material.
  3. 제1항에 있어서,According to claim 1,
    상기 (S1) 단계는 불활성 가스 또는 환원성 가스 환경에서 수행되는,The (S1) step is performed in an inert gas or reducing gas environment,
    재생 양극 활물질의 제조방법.A method for manufacturing a renewable positive electrode active material.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 (S1) 단계의 열처리는 510℃ 내지 750℃의 온도범위에서 수행되고, 상기 (S1) 단계에서 수행되는 열처리에 의해 양극 극판이 환원되면서 CoxOy 물질이 생성되는,The heat treatment of step (S1) is performed in a temperature range of 510° C. to 750° C., and as the anode plate is reduced by the heat treatment performed in step (S1), Co x O y material is produced,
    재생 양극 활물질의 제조방법.A method for manufacturing a renewable positive electrode active material.
  5. 제1항에 있어서,According to claim 1,
    상기 (S1) 단계에서 생성되는 CoxOy 물질에는 CoO, Co2O3 및 Co3O4로 이루어진 군으로부터 선택된 1종 이상의 물질이 포함되는,The Co x O y material generated in step (S1) includes at least one material selected from the group consisting of CoO, Co 2 O 3 and Co 3 O 4 ,
    재생 양극 활물질의 제조방법.A method for manufacturing a renewable positive electrode active material.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 (S1) 단계에서 생성되는 CoxOy 물질은 CoO인,The Co x O y material produced in step (S1) is CoO,
    재생 양극 활물질의 제조방법.A method for manufacturing a renewable positive electrode active material.
  7. 제1항에 있어서,According to claim 1,
    상기 (S1) 단계에서 생성되는 CoxOy 물질은 다공성의 구조로 형성되는,The Co x O y material produced in step (S1) is formed in a porous structure,
    재생 양극 활물질의 제조방법.A method for manufacturing a renewable positive electrode active material.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 (S1) 단계에서 생성되는 CoxOy 물질은 기공을 0.001 내지 10.0 cm3/g 범위로 포함하는,The Co x O y material produced in step (S1) includes pores in the range of 0.001 to 10.0 cm 3 /g,
    재생 양극 활물질의 제조방법.A method for manufacturing a renewable positive electrode active material.
  9. 제1항에 있어서,According to claim 1,
    상기 (S1) 단계에서 생성되는 CoxOy 물질은 0.3 내지 50.0 m2/g의 비표면적을 갖는, The Co x O y material produced in step (S1) has a specific surface area of 0.3 to 50.0 m 2 /g,
    재생 양극 활물질의 제조방법.A method for manufacturing a renewable positive electrode active material.
  10. 제1항에 있어서,The method of claim 1,
    상기 (S2) 단계에서 혼합되는 리튬을 포함하는 물질에는 LiOH, Li2CO3, LiNO3 및 Li3PO4로 이루어진 군으로부터 선택된 1종 이상의 물질이 포함되는,The lithium-containing material mixed in step (S2) includes at least one material selected from the group consisting of LiOH, Li 2 CO 3 , LiNO 3 and Li 3 PO 4 ,
    재생 양극 활물질의 제조방법.A method for manufacturing a renewable positive electrode active material.
  11. 제1항에 있어서,According to claim 1,
    상기 (S2) 단계에서 혼합되는 리튬을 포함하는 물질은 상기 (S1) 단계에서 생성되는 CoxOy 물질에 포함된 Co에 대한 리튬의 몰비가 1.0 내지 1.06이 되도록 혼합되는, The material containing lithium mixed in step (S2) is mixed so that the molar ratio of lithium to Co contained in the Co x O y material produced in step (S1) is 1.0 to 1.06,
    재생 양극 활물질의 제조방법.A method for manufacturing a renewable positive electrode active material.
  12. 제1항에 있어서,The method of claim 1,
    상기 (S3) 단계의 열처리는 800℃ 내지 1,050℃의 온도범위에서 수행되는,The heat treatment of step (S3) is performed in a temperature range of 800 ° C to 1,050 ° C,
    재생 양극 활물질의 제조방법.A method for manufacturing a renewable positive electrode active material.
  13. 제12항에 있어서,13. The method of claim 12,
    상기 (S3) 단계의 열처리는 건식 열처리 또는 습식 열처리로 수행되는,The heat treatment of step (S3) is performed by dry heat treatment or wet heat treatment,
    재생 양극 활물질의 제조방법.A method for manufacturing a renewable positive electrode active material.
  14. 제1항 내지 제13항 중 어느 한 항에 따른 제조방법에 따라 형성된 재생 양극 활물질.A recycled cathode active material formed according to the manufacturing method according to any one of claims 1 to 13.
PCT/KR2021/017681 2020-11-27 2021-11-26 Method for manufacturing recycled positive electrode active material using waste secondary battery WO2022114868A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180003928.3A CN114830408A (en) 2020-11-27 2021-11-26 Method for preparing regenerated positive active material using waste secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200163147A KR20220074538A (en) 2020-11-27 2020-11-27 Method for prepairng of recycled cathode material using waste secondary battery
KR10-2020-0163147 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022114868A1 true WO2022114868A1 (en) 2022-06-02

Family

ID=81754868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017681 WO2022114868A1 (en) 2020-11-27 2021-11-26 Method for manufacturing recycled positive electrode active material using waste secondary battery

Country Status (3)

Country Link
KR (2) KR20220074538A (en)
CN (1) CN114830408A (en)
WO (1) WO2022114868A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000019850A (en) * 1998-09-16 2000-04-15 박종덕 Method for recycling exhausted lithium secondary battery
KR20130113748A (en) * 2012-04-06 2013-10-16 한국과학기술연구원 Fabricating method of cathode for lithium ion secondary battery by recycling cathode active material and a lithium ion secondary battery fabricated thereby
KR101992715B1 (en) * 2017-01-25 2019-06-25 주식회사 엘지화학 Method for recovering positive electrode active material from lithium secondary battery
KR20190123524A (en) * 2018-04-24 2019-11-01 (주)이엠티 A Method of Recycling Material for Precursor of Anode Active Material, Precursor of Anode Active Material, Anode Active Material, Anode, and Lithium Ion Secondary Battery Using The Same
KR20200055235A (en) * 2018-11-13 2020-05-21 부경대학교 산학협력단 Method of recovery of nickel and cobalt

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116020A (en) 1997-06-18 1999-01-12 Nisso Kinzoku Kagaku Kk Method for recovering high-purity cobalt compound from scrap lithium ion battery
CN1262042C (en) * 2004-06-09 2006-06-28 南开大学 Method for regenerating anode materials of waste lithium ion secondary battery
JP5657730B2 (en) * 2013-03-29 2015-01-21 Jx日鉱日石金属株式会社 Method for recovering valuable materials from lithium-ion batteries
CN104953199B (en) * 2015-05-13 2018-03-13 中国科学院过程工程研究所 Metal-doped nickle cobalt lithium manganate using lithium ion cell anode waste synthesis and its production and use
CN110311186A (en) * 2019-03-06 2019-10-08 清华大学 A method of recycling valuable element from waste and old lithium ion battery
CN110190351B (en) * 2019-05-20 2020-08-25 秦晋娜 Regeneration method of waste lithium cobaltate electrode material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000019850A (en) * 1998-09-16 2000-04-15 박종덕 Method for recycling exhausted lithium secondary battery
KR20130113748A (en) * 2012-04-06 2013-10-16 한국과학기술연구원 Fabricating method of cathode for lithium ion secondary battery by recycling cathode active material and a lithium ion secondary battery fabricated thereby
KR101992715B1 (en) * 2017-01-25 2019-06-25 주식회사 엘지화학 Method for recovering positive electrode active material from lithium secondary battery
KR20190123524A (en) * 2018-04-24 2019-11-01 (주)이엠티 A Method of Recycling Material for Precursor of Anode Active Material, Precursor of Anode Active Material, Anode Active Material, Anode, and Lithium Ion Secondary Battery Using The Same
KR20200055235A (en) * 2018-11-13 2020-05-21 부경대학교 산학협력단 Method of recovery of nickel and cobalt

Also Published As

Publication number Publication date
KR20220074538A (en) 2022-06-03
KR20230169012A (en) 2023-12-15
CN114830408A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2015041450A1 (en) Porous silicon-based anode active material, and lithium secondary battery containing same
WO2014014274A1 (en) Carbon-silicon composite, method for preparing same, and cathode active material comprising carbon-silicon composite
WO2013002457A1 (en) Positive electrode active material, electrode including the positive electrode active material, and lithium electrochemical battery
WO2019112390A1 (en) Anode active material for lithium secondary battery and method for manufacturing same
WO2015065095A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
WO2014182036A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2012115411A2 (en) Positive electrode active material having improved output characteristics, and lithium secondary battery comprising same
WO2014010970A1 (en) High density anode active material and preparation method thereof
WO2013085317A1 (en) Composite cathode active material with improved output characteristic and secondary battery, battery module, and battery pack using same
WO2012064053A2 (en) Lithium manganese composite oxide and method for preparing same
WO2015099243A1 (en) Electrode active material containing boron compound and electrochemical device using same
WO2016088997A1 (en) Manganese-based cathode active material for sodium secondary battery, and sodium secondary battery containing same
WO2016175426A1 (en) Surface treatment method for lithium cobalt oxide, and lithium secondary battery comprising same
WO2016209014A1 (en) Method for manufacturing lithium secondary battery and lithium secondary battery manufactured using same
WO2015174652A1 (en) Positive electrode active material for lithium ion battery, containing lithium vanadium zirconium phosphate, and lithium ion battery comprising same
WO2015190696A1 (en) Oxide-based double-structure negative electrode active material for lithium secondary battery and lithium secondary battery comprising same
WO2018194345A1 (en) Anode for lithium secondary battery, lithium secondary battery comprising same, and manufacturing method therefor
KR20240018538A (en) Manufacturing method for recycled cathode active material
WO2022114868A1 (en) Method for manufacturing recycled positive electrode active material using waste secondary battery
WO2017082680A1 (en) Anode active material and lithium secondary battery comprising same
WO2022035229A1 (en) Sulfide-based all-solid-state battery including positive electrode active material coated with lithium niobate precursor and method of manufacturing the same
WO2013002559A2 (en) Cathode active material, lithium secondary battery including cathode active material, and method for electrochemically activating lithium secondary battery
WO2021125870A1 (en) Positive electrode active material, method for producing same, and lithium secondary battery including same
WO2015137728A1 (en) Electrode active material containing reduced titanium oxide and electrochemical device using same
WO2016137287A1 (en) Cathode active material, cathode comprising same, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898693

Country of ref document: EP

Kind code of ref document: A1