KR20230169012A - Method for prepairng of recycled cathode material using waste secondary battery - Google Patents

Method for prepairng of recycled cathode material using waste secondary battery Download PDF

Info

Publication number
KR20230169012A
KR20230169012A KR1020230167330A KR20230167330A KR20230169012A KR 20230169012 A KR20230169012 A KR 20230169012A KR 1020230167330 A KR1020230167330 A KR 1020230167330A KR 20230167330 A KR20230167330 A KR 20230167330A KR 20230169012 A KR20230169012 A KR 20230169012A
Authority
KR
South Korea
Prior art keywords
positive electrode
active material
electrode active
paragraph
heat treatment
Prior art date
Application number
KR1020230167330A
Other languages
Korean (ko)
Inventor
진홍수
Original Assignee
주식회사 엘아이비에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘아이비에너지 filed Critical 주식회사 엘아이비에너지
Priority to KR1020230167330A priority Critical patent/KR20230169012A/en
Publication of KR20230169012A publication Critical patent/KR20230169012A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 (S1) 폐 이차전지로부터 분리된 양극 극판을 열처리하여 CoxOy 물질을 생성하는 단계; (S2) 생성된 CoxOy 물질에 리튬을 포함하는 물질을 혼합하는 단계; (S3) 혼합된 물질을 열처리하여 재생 양극 활물질을 형성하는 단계를 포함하는 재생 양극 활물질의 제조방법을 제공하며, CoxOy에서 x 및 y는 각각 0 내지 10 사이의 값을 갖는다.The present invention includes the steps of (S1) heat-treating a positive electrode plate separated from a waste secondary battery to generate Co x O y material; (S2) mixing a material containing lithium with the produced Co x O y material; (S3) Provides a method for manufacturing a recycled positive electrode active material including the step of heat treating the mixed material to form a recycled positive electrode active material, where x and y in Co x O y each have a value between 0 and 10.

Description

폐 이차전지를 이용한 재생 양극 활물질의 제조방법 {Method for prepairng of recycled cathode material using waste secondary battery}Method for manufacturing recycled cathode active material using waste secondary battery {Method for preparation of recycled cathode material using waste secondary battery}

본 발명은 폐 이차전지를 이용한 재생 양극 활물질의 제조방법에 관한 것으로, 보다 구체적으로는 높은 생성율로 재생이 가능하며 최초 이차전지의 효율과 유사한 효율을 제공할 수 있도록 구성된 재생 양극 활물질의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a regenerated cathode active material using waste secondary batteries, and more specifically, to a method of manufacturing a regenerated cathode active material configured to enable regeneration at a high production rate and provide an efficiency similar to that of the original secondary battery. It's about.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing. Among these secondary batteries, lithium secondary batteries, which have high energy density and voltage, long cycle life, and low self-discharge rate, have been commercialized and are widely used.

리튬 이차전지의 양극 활물질로는 리튬 전이금속 산화물이 이용되고 있으며, 이중에서도 LiCoO2의 리튬 코발트 산화물, 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4 등) 또는 리튬 니켈 산화물(LiNiO2 등) 등이 주로 사용되고 있다. 그러나, 이러한 리튬 이차전지의 양극 활물질, 예를 들어 리튬 코발트 산화물 또는 NCM계 리튬 산화물을 이루는 전이금속들은 비용이 고가이고, 특히 코발트는 전략금속에 속하는 것으로서, 세계 각국별로 수급에 각별한 관심을 갖고 있으며, 코발트 생산국의 수가 한정되어 있어 세계적으로 그 수급이 불안정한 금속으로 알려져 있다. 또한, 이러한 전이금속들은 환경 문제를 일으킬 수 있어 환경 규제에 대한 대응도 필요한 실정이다.Lithium transition metal oxide is used as a positive electrode active material for lithium secondary batteries, and among these, lithium cobalt oxide of LiCoO 2 , lithium manganese oxide (LiMnO 2 or LiMn 2 O 4 , etc.), lithium iron phosphate compound (LiFePO 4 , etc.), or Lithium nickel oxide (LiNiO 2 , etc.) is mainly used. However, the transition metals that make up the cathode active materials of these lithium secondary batteries, such as lithium cobalt oxide or NCM-based lithium oxide, are expensive, and cobalt in particular is a strategic metal, and countries around the world have a special interest in supply and demand. , Cobalt is known as a metal whose supply and demand are unstable worldwide due to the limited number of producing countries. In addition, these transition metals can cause environmental problems, so it is necessary to respond to environmental regulations.

종래의 폐 리튬 이차전지의 재활용 방법은 파쇄, 자력 선별, 분급 등으로 폐 양극활물질만을 선택적으로 농축시킨 뒤 환원제로 과산화수소를 사용하는 황산 침출법으로 코발트를 침출한다. 다음으로 침출 용액으로부터 코발트를 회수하기 위하여 옥살산을 이용하여 코발트를 선택적으로 분리 회수하는 공정과 pH를 조절하여 불순물을 제거하고 난 용액으로부터 용매 추출법을 통해 황산 코발트를 제조하는 공정에 의해 폐 리튬 이차전지를 재활용하고 있다. 그런데 종래 기술에서는 폐 양극 활물질 중에 리튬코발트산화물(LCO)에 국한된 공법이며 사용 추세가 증가하는 리튬니켈코발트망간산화물(NCM) 또는 전기 자동차용 리튬이온망간산화물(LMO) 타입에서는 침출제가 황산만으로 침출이 효율적으로 이루어지기 힘들며, 또한 종래 기술에서는 옥살산을 이용해서 코발트를 생성할 경우 반드시 소성을 하여 이산화탄소로 옥살산을 분해하고, 산화코발트를 황산에 재용해하여 황산코발트를 만들어야 하므로, 비용 측면에서 바람직한 공법이라고 할 수 없다. 뿐만 아니라 코발트를 선택적으로 분리하기 위해 들어가는 과량의 옥살산으로 인해 폐수 처리에도 상당한 어려움이 있다.The conventional method of recycling waste lithium secondary batteries selectively concentrates only waste cathode active materials through crushing, magnetic sorting, and classification, and then leaches cobalt through sulfuric acid leaching using hydrogen peroxide as a reducing agent. Next, in order to recover cobalt from the leaching solution, a process of selectively separating and recovering cobalt using oxalic acid and a process of producing cobalt sulfate through solvent extraction from the solution after removing impurities by adjusting the pH are used to produce waste lithium secondary batteries. is recycling. However, in the prior art, the method was limited to lithium cobalt oxide (LCO) among waste cathode active materials, and in the lithium nickel cobalt manganese oxide (NCM) or lithium ion manganese oxide (LMO) types for electric vehicles, which are increasingly being used, the leaching agent is only sulfuric acid. It is difficult to do this efficiently, and in the prior art, when producing cobalt using oxalic acid, it must be calcined to decompose the oxalic acid into carbon dioxide and re-dissolve the cobalt oxide in sulfuric acid to produce cobalt sulfate, so it is a preferable method in terms of cost. Can not. In addition, there are significant difficulties in wastewater treatment due to the excessive amount of oxalic acid used to selectively separate cobalt.

또 다른 종래 기술에서는 알루미늄이 제거된 양극 활물질 분말을 산으로 침출한 이후에 알칼리 침전을 통한 니켈, 코발트, 망간이 혼합된 수산화물 형태, 또는 단일 수산화물 형태로만 재활용되고 있다. 다만, 제품은 부가가치가 높은 이차전지 전구체 원료로 사용하기에는 불순물 함량이 높다. 이는 온전한 소재로서의 가치가 결여된 반제품으로 실제적인 상품성이 부족하다는 문제점이 있다.In another conventional technology, the cathode active material powder from which aluminum has been removed is leached with acid and then recycled only in the form of a mixed hydroxide of nickel, cobalt, and manganese through alkali precipitation, or in the form of a single hydroxide. However, the product has a high impurity content to be used as a secondary battery precursor raw material with high added value. This is a semi-finished product that lacks the value of a complete material, and has the problem of lack of actual marketability.

따라서, 전술한 문제점을 보완하기 위해 본 발명가들은 효율적인 이차전지 양극 활물질의 재생하기 위한 방법의 개발이 시급하다 인식하여, 본 발명을 완성하였다.Therefore, in order to solve the above-mentioned problems, the present inventors recognized that it is urgent to develop a method for efficiently regenerating positive electrode active materials for secondary batteries, and completed the present invention.

대한민국 등록특허공보 제10-2064668호Republic of Korea Patent Publication No. 10-2064668 일본 공개특허공보 제1999-006020호Japanese Patent Publication No. 1999-006020

본 발명의 목적은 폐 이차전지로부터 경제적이고 용이하게 재생이 가능하며 우수한 전기 화학적 특성을 제공할 수 있는 재생 양극 활물질의 제조방법을 제공하는 것이다. The purpose of the present invention is to provide a method for manufacturing a regenerated positive electrode active material that can be economically and easily recycled from waste secondary batteries and can provide excellent electrochemical properties.

발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 본 발명의 기재로부터 당해 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있다.The technical problems to be achieved by the invention are not limited to the technical problems mentioned above, and other technical problems not mentioned can be clearly understood by those skilled in the art from the description of the present invention.

상기 목적을 달성하기 위하여, 본 발명은 폐 이차전지를 이용한 재생 양극 활물질의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for manufacturing a recycled positive electrode active material using waste secondary batteries.

이하, 본 명세서에 대하여 더욱 상세하게 설명한다.Hereinafter, this specification will be described in more detail.

본 발명은 다음의 단계를 포함하는 재생 양극 활물질의 제조방법을 제공한다.The present invention provides a method for manufacturing a recycled positive electrode active material comprising the following steps.

(S1) 폐 이차전지로부터 분리된 양극 극판을 열처리하여 CoxOy 물질을 생성하는 단계;(S1) generating Co x O y material by heat treating the positive electrode plate separated from the waste secondary battery;

(S2) 생성된 CoxOy 물질에 리튬을 포함하는 물질을 혼합하는 단계;(S2) mixing a material containing lithium with the produced Co x O y material;

(S3) 혼합된 물질을 열처리하여 재생 양극 활물질을 형성하는 단계. (S3) heat-treating the mixed materials to form a recycled positive electrode active material.

상기 CoxOy에서 x 및 y는 각각 0 내지 10 사이의 값을 갖는다. In Co x O y , x and y each have a value between 0 and 10.

본 발명에 있어서, 상기 (S1) 단계에서 폐 이차전지로부터 분리된 양극 극판은 활물질, 도전재 및 바인더를 포함할 수 있다.In the present invention, the positive electrode plate separated from the waste secondary battery in step (S1) may include an active material, a conductive material, and a binder.

본 발명에 있어서, 상기 (S1) 단계의 열처리는 불활성 가스 또는 환원성 가스 하에서 수행될 수 있다.In the present invention, the heat treatment in step (S1) may be performed under an inert gas or reducing gas.

본 발명에 있어서, 상기 (S1) 단계의 열처리는 510 내지 750 ℃의 온도범위에서 수행되고, 상기 (S1) 단계에서 수행되는 열처리에 의해 양극 극판이 환원되면서 CoxOy 물질이 생성될 수 있다.In the present invention, the heat treatment in step (S1) is performed at a temperature range of 510 to 750 ° C., and the anode plate is reduced by the heat treatment performed in step (S1), thereby producing Co x O y material. .

본 발명에 있어서, 상기 (S1) 단계에서 생성되는 CoxOy는 CoO, Co2O3 및 Co3O4로 이루어진 군으로 부터 선택된 1종 이상의 물질이 포함될 수 있다. In the present invention , Co

본 발명에 있어서, 상기 (S1) 단계에서 생성되는 CoxOy 물질은 CoO일 수 있다.In the present invention, the Co x O y material produced in step (S1) may be CoO.

본 발명에 있어서, 상기 (S1) 단계에서 생성되는 CoxOy 물질은 다공성의 구조로 형성될 수 있다.In the present invention, the Co x O y material produced in step (S1) may be formed in a porous structure.

본 발명에 있어서, 상기 (S1) 단계에서 생성되는 CoxOy 물질은 기공을 0.001 내지 10.0 cm3/g의 범위로 포함할 수 있다.In the present invention, the Co x O y material produced in step (S1) may include pores in the range of 0.001 to 10.0 cm 3 /g.

본 발명에 있어서, 상기 (S1) 단계에서 생성되는 CoxOy 물질은 0.3 내지 50.0 m2/g의 비표면적을 가질 수 있다.In the present invention, the Co x O y material produced in step (S1) may have a specific surface area of 0.3 to 50.0 m 2 /g.

본 발명에 있어서, 상기 (S2) 단계에서 혼합되는 리튬을 포함하는 물질에는 LiOH, Li2CO3, LiNO3 및 Li3PO4로 이루어진 군으로부터 선택된 1종 이상의 물질이 포함될 수 있다.In the present invention, the lithium-containing material mixed in step (S2) may include one or more materials selected from the group consisting of LiOH, Li 2 CO 3 , LiNO 3 and Li 3 PO 4 .

본 발명에 있어서, 상기 (S2) 단계에서 혼합되는 리튬을 포함하는 물질은 CoxOy 물질에 대해 Co에 대한 리튬의 몰비가 1.0 내지 1.06이 되도록 혼합될 수 있다. In the present invention, the material containing lithium mixed in the step (S2) may be mixed so that the molar ratio of lithium to Co in the Co x O y material is 1.0 to 1.06.

본 발명에 있어서, 상기 (S3) 단계의 열처리는 800 내지 1,050 ℃의 온도범위에서 수행될 수 있다.In the present invention, the heat treatment in step (S3) may be performed at a temperature range of 800 to 1,050 °C.

본 발명에 있어서, 상기 (S3) 단계의 열처리는 건식 열처리 또는 습식 열처리로 수행될 수 있다.In the present invention, the heat treatment in step (S3) may be performed by dry heat treatment or wet heat treatment.

또한, 본 발명은 전술한 제조방법에 따라 형성된 재생 양극 활물질을 제공한다.Additionally, the present invention provides a recycled positive electrode active material formed according to the above-described manufacturing method.

상기 폐 이차전지를 이용한 재생 양극 활물질의 제조방법 및 이에 의해 제조된 재생 양극 활물질에서 언급된 모든 사항은 모순되지 않는 한 동일하게 적용된다.All matters mentioned in the above method of manufacturing a regenerated positive electrode active material using a waste secondary battery and the regenerated positive electrode active material produced thereby are equally applicable unless contradictory.

본 발명의 폐 이차전지를 이용한 재생 양극 활물질의 제조방법은 폐 이차전지로부터 양극 활물질을 경제적이고 용이하게 재생할 수 있으며, 양극 활물질의 전기화학적 성능은 재생 과정에서 저하되지 않고, 우수한 저항 특성, 전기 전도도 특성 및 용량 특성을 구현할 수 있다.The method for manufacturing a regenerated positive electrode active material using a waste secondary battery of the present invention can economically and easily regenerate the positive electrode active material from a waste secondary battery, the electrochemical performance of the positive electrode active material is not deteriorated during the regeneration process, and excellent resistance characteristics and electrical conductivity are possible. Characteristics and capacity characteristics can be implemented.

본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.

도 1은 본 발명의 폐 이차전지를 이용한 재생 양극 활물질의 제조방법을 대략적으로 나타낸 블록도이다.
도 2는 본 발명에 따른 양극 극판의 포함된 성분을 확인한 X선 광전자 분광법(X-ray photoelectron spectroscopy, XPS) 스펙트럼이다.
도 3은 본 발명에 따른 실시예 1에서 생성된 CoO 상에 형성된 기공을 확인한 주사전자현미경(Scanning Electron Microscope, SEM) 이미지이다.
도 4는 본 발명의 폐 이차전지를 이용한 재생 양극 활물질의 제조방법에 있어서 (a) 공기 조건 및 (b) 아르곤 기체 조건 하에서 수행된 (S1) 단계로 인해 제조된 물질의 X선 회절(X-ray diffraction, XRD) 패턴이다.
도 5는 본 발명의 폐 이차전지를 이용한 재생 양극 활물질의 제조방법에 있어서 500, 600 및 700 ℃에서 수행된 (S1) 단계의 열처리로 인해 제조된 물질의 X선 회절(X-ray diffraction, XRD) 패턴이다.
도 6은 본 발명에 따른 실시예 1에서 생성된 CoO 및 상기 생성된 CoO를 이용하여 제조된 재생 양극 활물질(LCO) 1에 대한 X선 회절 패턴(X-ray diffraction, XRD)이다.
도 7은 본 발명에 따라 제조된 재생 양극 활물질과 상용 양극 활물질에 대해 3.0 내지 4.3 V로 전기화학 성능을 평가한 그래프이다.
Figure 1 is a block diagram schematically showing a method of manufacturing a recycled positive electrode active material using a waste secondary battery of the present invention.
Figure 2 is an X-ray photoelectron spectroscopy (XPS) spectrum confirming the components included in the positive electrode plate according to the present invention.
Figure 3 is a scanning electron microscope (SEM) image confirming the pores formed on CoO produced in Example 1 according to the present invention.
Figure 4 shows the X-ray diffraction (X- It is a ray diffraction (XRD) pattern.
Figure 5 is an ) is a pattern.
Figure 6 is an X-ray diffraction (XRD) pattern for CoO produced in Example 1 according to the present invention and recycled positive electrode active material (LCO) 1 manufactured using the produced CoO.
Figure 7 is a graph evaluating the electrochemical performance at 3.0 to 4.3 V for the recycled positive electrode active material and the commercial positive electrode active material prepared according to the present invention.

본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.The terms used in this specification are general terms that are currently widely used as much as possible while considering the function in the present invention, but this may vary depending on the intention or precedent of a person skilled in the art, the emergence of new technology, etc. In addition, in certain cases, there are terms arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the description of the relevant invention. Therefore, the terms used in the present invention should be defined based on the meaning of the term and the overall content of the present invention, rather than simply the name of the term.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless clearly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.

수치 범위는 상기 범위에 정의된 수치를 포함한다. 본 명세서에 걸쳐 주어진 모든 최대의 수치 제한은 낮은 수치 제한이 명확히 쓰여져 있는 것처럼 모든 더 낮은 수치 제한을 포함한다. 본 명세서에 걸쳐 주어진 모든 최소의 수치 제한은 더 높은 수치 제한이 명확히 쓰여져 있는 것처럼 모든 더 높은 수치 제한을 포함한다. 본 명세서에 걸쳐 주어진 모든 수치 제한은 더 좁은 수치 제한이 명확히 쓰여져 있는 것처럼, 더 넓은 수치 범위 내의 더 좋은 모든 수치 범위를 포함할 것이다.The numerical range includes the values defined in the range above. Every maximum numerical limit given throughout this specification includes all lower numerical limits as if the lower numerical limit were explicitly written out. Every minimum numerical limit given throughout this specification includes every higher numerical limit as if such higher numerical limit was clearly written. All numerical limits given throughout this specification will include all better numerical ranges within the broader numerical range, as if the narrower numerical limits were clearly written.

이하, 본 발명의 실시예를 상세히 기술하나, 하기 실시예에 의해 본 발명이 한정되지 아니함은 자명하다.Hereinafter, examples of the present invention will be described in detail, but it is obvious that the present invention is not limited to the following examples.

재생 양극 활물질 제조방법Recycled cathode active material manufacturing method

본 발명은 하기의 단계를 포함하는 재생 양극 활물질의 제조방법을 제공한다.The present invention provides a method for producing a recycled positive electrode active material comprising the following steps.

(S1) 폐 이차전지로부터 분리된 양극 극판을 열처리하여 CoxOy 물질을 생성하는 단계;(S1) generating Co x O y material by heat treating the positive electrode plate separated from the waste secondary battery;

(S2) 생성된 CoxOy 물질에 리튬을 포함하는 물질을 혼합하는 단계;(S2) mixing a material containing lithium with the produced Co x O y material;

(S3) 혼합된 물질을 열처리하여 재생 양극 활물질을 형성하는 단계. (S3) heat-treating the mixed materials to form a recycled positive electrode active material.

상기 CoxOy에서 x 및 y는 각각 0 내지 10의 값을 가질 수 있다.In Co x O y, x and y may each have a value of 0 to 10.

“양극 활물질”은 이차전지 내에서 화학적 반응을 통해 전기를 생산하는 주요 구성으로, 일반적으로 리튬산화물이 포함된 활물질을 일컫는다. 상기 양극 활물질을 본 발명에 적용할 경우, 상기 양극 활물질은 리튬과 코발트를 포함하는 양극 활물질로서, 바람직하게는 LCO(LiCoO2), LCA(LiCoAlO2), LCM(LiCoMnO2) 및 LCMA(LiCoMnAlO2)로 이루어진 층상 구조의 양극 활물질, LMO(LiMn2O4)인 스피넬 구조의 양극 활물질 및 LFP(LiFePO4)인 올리빈 구조의 양극 활물질로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 바람직하게는 상기 NCO, NCA, NCM 및 NCMA로 이루어진 군으로부터 선택된 1종 이상의 층상 구조 양극 활물질일 수 있다.“Cathode active material” is the main component that produces electricity through chemical reactions within a secondary battery, and generally refers to an active material containing lithium oxide. When applying the positive electrode active material to the present invention, the positive electrode active material is a positive electrode active material containing lithium and cobalt, preferably LCO (LiCoO 2 ), LCA (LiCoAlO 2 ), LCM (LiCoMnO 2 ), and LCMA (LiCoMnAlO 2 ), a positive electrode active material with a layered structure consisting of LMO (LiMn 2 O 4 ), a spinel-structured positive electrode active material, and an olivine-structured positive electrode active material, which is LFP (LiFePO 4 ), and preferably one or more of the above. It may be one or more layered structure positive electrode active materials selected from the group consisting of NCO, NCA, NCM, and NCMA.

상기 LCO는 층상구조를 갖는 리튬과 코발트의 산화물 형태로, 안정성과 수명이 매우 높다는 장점을 갖는다.The LCO is an oxide of lithium and cobalt with a layered structure and has the advantage of very high stability and lifespan.

상기 LCA는 층상구조의 리튬, 코발트 및 알루미늄의 산화물 형태로, 값비싼 코발트의 함량을 줄여 산업적으로 적용되기 용이하고 수명이 길다는 장점을 갖는다.The LCA is a layered oxide of lithium, cobalt, and aluminum, and has the advantage of being easy to apply industrially and having a long lifespan by reducing the content of expensive cobalt.

상기 LCM은 층상구조의 리튬, 코발트 및 망간의 산화물 형태로, 값비싼 코발트의 함량을 줄여 산업적으로 적용되기 용이하고 안정성이 다소 높다는 장점을 갖는다.The LCM is a layered oxide of lithium, cobalt, and manganese, and has the advantage of being easy to apply industrially by reducing the content of expensive cobalt and having somewhat higher stability.

상기 LCMA는 층상구조의 리튬, 코발트, 망간 및 알루미늄의 산화물 형태로, 상기 LCA 및 LCM의 조합이라 할 수 있어, 상기 LCA 및 LCM의 장점을 함께 나타낼 수 있다.The LCMA is a layered form of oxides of lithium, cobalt, manganese, and aluminum, and can be said to be a combination of the LCA and LCM, thereby exhibiting the advantages of both the LCA and LCM.

상기 LMO는 스피넬 구조의 리튬과 망간의 산화물 형태로, 안정이 매우 높으며, 비싼 코발트를 포함하지 않아 경제적으로 매우 저렴하다는 장점을 갖는다.The LMO is a spinel-structured oxide of lithium and manganese, and has the advantage of being very stable and economically very inexpensive as it does not contain expensive cobalt.

상기 LFP는 올리빈 구조의 리튬, 철, 인 및 산소를 포함하는 물질로서, 상기 LCO(LiCoO2), LCA(LiCoMnO2), LCM(LiCoMnO2) 및 LMO(LiMn2O4)와 비교하여 상대적으로 안정성이 가장 좋으며, 수명도 길어 다양한 분야에 적용될 수 있다.The LFP is a material containing lithium, iron, phosphorus , and oxygen in an olivine structure, and has a relative It has the best stability and has a long lifespan, so it can be applied to various fields.

상기 (S1) 단계는 폐 이차전지로부터 분리된 양극 극판을 환원 열처리하여 CoxOy를 생성하는 단계;일 수 있다.The step (S1) may be a step of generating Co x O y by performing a reduction heat treatment on the positive electrode plate separated from the waste secondary battery.

상기 (S1) 단계에서 이용되는 폐 이차전지로부터 분리된 양극 극판에는 양극 활물질, 도전재, 바인더 등이 포함될 수 있다. 이때, 상기 양극 극판 내에 존재하는 도전재 및 바인더 물질로 인해 (S1) 단계에서 열처리를 수행하면 CoxOy 물질이 생성될 수 있게 된다.The positive electrode plate separated from the waste secondary battery used in step (S1) may include a positive electrode active material, a conductive material, a binder, etc. At this time, due to the conductive material and binder material present in the positive electrode plate, Co x O y material can be generated when heat treatment is performed in step (S1).

상기 바인더는 상기 양극 활물질과 상기 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 그 예는 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVDF), 폴리비닐알코올(polyvinyl alcohol, PVOH, PVA, PVAI), 카르복시메틸셀룰로우즈(carboxymethyl cellulose, CMC), 전분, 히드록시프로필셀룰로우즈(Hydroxypropyl Cellulose, HPMC), 폴리비닐피롤리돈(Polyvinyl Pyrrolidone), 테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE), 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene,PP), 에틸렌-프로필렌-디엔 테르 폴리머(Ethylene, Propylene, Non-conjugated Diene, Ethylene Propylene Terpolymers, EPDM), 스티렌 브티렌 고무, 불소 고무 및 다양한 공중합체로 이루어진 군에서 선택된 1종 이상일 수 있으나, 통상적으로 사용하는 바인더라면 제한 없이 적용할 수 있다.The binder is a component that assists the bonding of the positive electrode active material with the conductive material and the bonding to the current collector, examples of which include polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVOH, PVA) , PVAI), carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose (HPMC), polyvinyl pyrrolidone, polytetrafluoroethylene (PTFE) , polyethylene (PE), polypropylene (PP), ethylene-propylene-diene terpolymers (Ethylene, Propylene, Non-conjugated Diene, Ethylene Propylene Terpolymers, EPDM), styrene butyrene rubber, fluorine rubber and various aerial It may be one or more types selected from the group consisting of combinations, but any commonly used binder can be applied without limitation.

상기 도전재는 이차전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 천연 흑연이나 인조흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the secondary battery. For example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.

상기 (S1) 단계의 열처리는 상기 양극 극판을 510 내지 750 ℃에서 수행되는 것이 바람직하며, 가장 바람직하게는 550 내지 660 ℃ 온도 범위에서 수행될 수 있다. 상기 (S1) 단계의 열처리를 510 ℃ 미만의 온도 범위에서 수행될 경우 충분한 환원이 제대로 수행되지 않아 초기 활물질의 상을 유지할 수 있다.The heat treatment in step (S1) is preferably performed on the anode plate at a temperature of 510 to 750 °C, and most preferably in a temperature range of 550 to 660 °C. If the heat treatment in step (S1) is performed at a temperature range of less than 510°C, sufficient reduction may not be performed properly and the initial active material phase may be maintained.

상기 (S1) 단계는 산소가 결핍되어 환원 반응이 보다 용이하게 수행 가능한 환경, 바람직하게 불활성 기체 또는 환원성 기체 분위기 하에서 수행될 수 있으며, 바람직하게는 아르곤(Ar), 질소(N2), 이산화탄소(CO2), 일산화탄소(CO) 또는 수소(H2) 환경 하에서 수행될 수 있고, 가장 바람직하게는 아르곤 또는 질소 환경 하에서 수행될 수 있다.The step (S1) may be performed in an oxygen-deficient environment in which the reduction reaction can be carried out more easily, preferably in an inert gas or reducing gas atmosphere, preferably in argon (Ar), nitrogen (N 2 ), carbon dioxide ( CO 2 ), carbon monoxide (CO), or hydrogen (H 2 ) may be carried out in an environment, and most preferably carried out in an argon or nitrogen environment.

상기 (S1) 단계에서 생성되는 CoxOy 물질에는 CoO, Co2O3 및 Co3O4로 이루어진 군으로부 선택된 1종 이상의 물질, 바람직하게는 CoO일 수 있다. The Co _ _ _ _

참고로, 본 명세서에서 (S1) 단계에서 생성되는 물질인 CoxOy는 열처리에 의해 생성되는 주된 물질을 의미하고, 이러한 물질과 함께 다른 물질이 소량 포함되어 형성되는 경우를 배제하지 않는다.For reference, in this specification , Co

상기 (S1) 단계에서 생성되는 CoxOy 물질은 기공이 형성된 다공성의 구조를 가질 수 있으며, 바람직하게는 0.001 내지 10.0 cm3/g의 기공이 CoxOy 물질에 포함될 수 있다. The Co _ _ _

이러한 기공은 상기 폐 이차전지의 환원으로 인해 산소(O2) 가스 및 리튬(Li) 이온의 용출에 의해 형성된 것으로, 상기 기공으로 인해 상기 양극 활물질의 비표면적이 증가하여 상기 재생 LCO 제조 시 리튬의 확산을 향상시킬 수 있는 효과를 달성할 수 있다.These pores are formed by the elution of oxygen (O 2 ) gas and lithium (Li) ions due to the reduction of the spent secondary battery, and the specific surface area of the positive electrode active material increases due to the pores, thereby reducing the amount of lithium in the production of the regenerated LCO. The effect of improving diffusion can be achieved.

또한, 상기 (S1) 단계에서 생성되는 CoxOy 물질은 0.3 내지 50.0 m2/g의 비표면적을 가질 수 있다. Additionally, the Co x O y material produced in step (S1) may have a specific surface area of 0.3 to 50.0 m 2 /g.

상기 (S2) 단계는 상기 생성된 CoxOy 및 리튬을 포함하는 물질을 혼합하는 단계;로서, 상기 (S2) 단계에서 혼합되는 리튬을 포함하는 물질에는 LiOH, Li2CO3, LiNO3 및 Li3PO4로 이루어진 군으로부터 선택된 1종 이상의 물질이 포함될 수 있으며, 바람직하게는 Li2CO3, LiNO3 및 Li3PO4로 이루어진 군으로부터 선택된 1종 이상의 물질이 포함될 수 있고, 가장 바람직하게는 Li2CO3 및 Li3PO4로 이루어진 군으로부터 선택된 1종 이상의 물질이 포함될 수 있다.The (S2) step is a step of mixing the produced Co At least one material selected from the group consisting of Li 3 PO 4 may be included, preferably at least one material selected from the group consisting of Li 2 CO 3 , LiNO 3 and Li 3 PO 4 , and most preferably may include one or more materials selected from the group consisting of Li 2 CO 3 and Li 3 PO 4 .

상기 (S2) 단계에서 혼합되는 리튬을 포함하는 물질은 상기 (S1) 단계에서 생성되는 CoxOy에 대해 Co에 대한 리튬의 몰비(Li/Co)가 1.0 내지 1.06이 되도록 혼합될 수 있다.The material containing lithium mixed in the (S2) step may be mixed so that the molar ratio of lithium to Co (Li/Co) for Co x O y produced in the (S1) step is 1.0 to 1.06.

상기 (S3) 단계의 열처리는 800 내지 1,050 ℃에서 수행될 수 있다.The heat treatment in step (S3) may be performed at 800 to 1,050 °C.

또한, 상기 (S3) 단계의 열처리는 수분이 존재하지 않은 상태에서 오븐, 로, 튜브 등에 투입하여 수행되는 건식 열처리 또는 수열처리를 통한 습식 열처리를 통해 수행될 수 있다.In addition, the heat treatment in step (S3) may be performed through dry heat treatment performed by placing the material in an oven, furnace, tube, etc. in the absence of moisture, or wet heat treatment through hydrothermal treatment.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해 질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하세 알려 주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The advantages and features of the present invention and methods for achieving them will become clear with reference to the embodiments described in detail below. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms, and only the embodiments are provided to ensure that the disclosure of the present invention is complete, and are provided by those skilled in the art It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims.

실시예 1. 재생 양극 활물질 1 제조Example 1. Preparation of recycled positive electrode active material 1

폐 리튬이차전지 내에 활물질 및 첨가제를 포함하는 양극 극판을 분리하여 불활성 기체인 아르곤(Ar) 및 600 ℃에서 열처리 환원하여 기공이 형성된 생성된 CoO를 제조하였다. 상기 생성된 CoO에 Li2CO3를 1.02:1(Li2CO3:CoO:) 몰비로 첨가(혼합)하여 850 ℃에서 158 mAh/g로 (S3) 단계로 하여 재생 양극 활물질(LCO) 1을 제조하였다.The positive electrode plate containing the active material and additives from the waste lithium secondary battery was separated and reduced by heat treatment at 600°C with argon (Ar), an inert gas, to produce CoO with pores formed. Li 2 CO 3 was added (mixed) to the produced CoO at a molar ratio of 1.02:1 (Li 2 CO 3 :CoO:) to obtain a (S3) step of 158 mAh/g at 850°C to produce regenerated positive electrode active material (LCO) 1. was manufactured.

실시예 2. 재생 양극 활물질 2 제조Example 2. Preparation of recycled positive electrode active material 2

폐 리튬이차전지 내에 활물질 및 첨가제를 포함하는 양극 극판을 분리하여 불활성 기체인 아르곤(Ar) 및 700 ℃에서 열처리 환원하여 표면에 기공이 형성된 생성된 CoO를 제조하였다. 상기 생성된 CoO에 Li2CO3를 1.04:1(Li2CO3:CoO:) 몰비로 첨가(혼합)하여 850 ℃에서 158 mAh/g로 (S3) 단계를 거쳐 재생 양극 활물질(LCO) 2를 제조하였다.The positive electrode plate containing the active material and additives from the waste lithium secondary battery was separated and reduced by heat treatment at 700°C with argon (Ar), an inert gas, to produce CoO with pores formed on the surface. Li 2 CO 3 was added (mixed) to the produced CoO at a molar ratio of 1.04:1 (Li 2 CO 3 :CoO:) to obtain a regenerated positive electrode active material (LCO) 2 at 158 mAh/g at 850°C through step (S3). was manufactured.

실험예 1. 분리된 양극 극판 성분 확인Experimental Example 1. Confirmation of separated positive electrode plate components

폐 리튬이차전지 내에서 분리된 양극 극판의 포함되는 성분을 확인하기 위해 상기 분리된 양극 극판에 대해 X선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)를 측정하였으며, 이를 도 2에 나타내었다.In order to confirm the components contained in the separated positive electrode plate in the waste lithium secondary battery, X-ray photoelectron spectroscopy (XPS) was measured on the separated positive electrode plate, and this is shown in FIG. 2.

도 2를 참조하면, 활물질을 포함하는 리튬, 첨가제인 바인더(PVDF), 전해질 등이 분석되는 것을 확인할 수 있다.Referring to Figure 2, it can be seen that lithium containing the active material, binder (PVDF) as an additive, electrolyte, etc. are analyzed.

실험예 1. 생성된 CoO 표면 기공 확인Experimental Example 1. Confirmation of generated CoO surface pores

1.1. 비표면적분석기(Brunauer Emmett Teller, BET)1.1. Specific surface area analyzer (Brunauer Emmett Teller, BET)

본 발명에 따라 (S1) 폐 이차전지에서 양극 극판을 분리하고 이를 열처리 환원하여 기공이 형성된 생성된 CoO를 확인하기 위해, 비표면적분석기(Brunauer Emmett Teller, BET)를 이용하여 상기 실시예 1에 의해 제조된 CoO, 재생 양극 활물질(LCO) 1과 상용 양극 활물질(LCO)의 비표면적을 분석하였으며, 이를 하기 [표 1]에 나타내었다.According to the present invention (S1), the positive electrode plate was separated from the waste secondary battery and heat-treated and reduced to confirm the CoO produced with pores, using a specific surface area analyzer (Brunauer Emmett Teller, BET) according to Example 1. The specific surface areas of the manufactured CoO, recycled cathode active material (LCO) 1, and commercial cathode active material (LCO) were analyzed, and are shown in [Table 1] below.

[표 1][Table 1]

상기 [표 1]을 참조하면, 재생 양극 활물질 1 및 상용 양극 활물질과 비교하여 본 발명에 따라 (S1) 단계에서 생성된 CoO 상에 보다 조밀한 기공 크기를 가지면서 높은 비표면적을 갖는 기공이 형성되었음을 확인할 수 있다.Referring to [Table 1], compared to the recycled cathode active material 1 and the commercial cathode active material, pores with a denser pore size and a higher specific surface area are formed on the CoO produced in step (S1) according to the present invention. You can confirm that it has been done.

1.2. 주사전자현미경(Scanning Electron Microscope, SEM)1.2. Scanning Electron Microscope (SEM)

본 발명에 따라 폐 이차전지에서 양극 극판을 분리하고 이를 (S1) 단계에서 환원하여 기공이 형성된 CoO를 확인하기 위해, 상기 실시예 1에서 생성된 CoO에 대해 주사전자현미경을 통해 기공 형성 이미지를 확인하였으며, 이를 도 3에 나타내었다.In order to confirm CoO in which pores were formed by separating the positive electrode plate from a waste secondary battery and reducing it in step (S1) according to the present invention, pore formation images were confirmed through a scanning electron microscope for the CoO produced in Example 1. This is shown in Figure 3.

도 3을 참조하면, (a) 본 발명에 따른 실시예 1에서 생성된 CoO 상을 확대하였을 때에, (b) 상기 생성된 CoO 상에 기공이 형성되어 있음을 확인할 수 있으며, (c) 상기 생성된 CoO의 단면 상에도 기공이 형성되어 있음을 확인할 수 있다. 상기 기공은 상기 폐 이차전지의 환원으로 인해 산소(O2) 가스 및 리튬(Li) 이온의 용출에 의해 형성될 수 있는 것으로, 상기 결과를 통해, 본 발명에 따른 CoO의 경우 내부 및 외부(표면) 전체에 기공이 형성되었음을 확인할 수 있다.Referring to Figure 3, (a) when the CoO phase produced in Example 1 according to the present invention is enlarged, (b) it can be confirmed that pores are formed in the produced CoO, and (c) the produced It can be seen that pores are formed on the cross section of CoO. The pores may be formed by the elution of oxygen (O 2 ) gas and lithium (Li) ions due to the reduction of the spent secondary battery. Through the above results, in the case of CoO according to the present invention, the inside and outside (surface ) It can be seen that pores have been formed throughout.

실험예 2. (S1) 단계의 열처리에 따른 효과 비교Experimental Example 2. Comparison of effects according to heat treatment in step (S1)

2.1. (S1) 단계의 열처리에 기체 환경에 따른 비교2.1. (S1) Comparison of step heat treatment according to gas environment

본 발명에 따른 재생 양극 활물질의 제조방법에 있어서, (S1) 단계 기체 환경 조건에 따른 비교를 위해, 상기 실시예 1 및 2와, 이에 대한 비교군으로 (S1) 단계를 산소 조건 하에서 500, 600 및 700 ℃에서 수행한 비교 재생 양극 활물질 1 내지 3을 제조하여 X선 회절 패턴을 측정하였으며, 이를 도 4에 나타내었다.In the method for producing a recycled positive electrode active material according to the present invention, for comparison according to the gas environmental conditions of the (S1) step, Examples 1 and 2, and as a comparison group, the (S1) step were performed at 500 and 600 times under oxygen conditions. and comparative regenerated positive electrode active materials 1 to 3 were prepared at 700° C. and X-ray diffraction patterns were measured, which are shown in FIG. 4.

도 4를 참조하면, (a) 산소 조건 및 500, 600 내지 700 ℃에서 수행된 비교 재생 양극 활물질 1 내지 3은 온도 범위와 상관없이 초기 활물질만이 존재하는 X선 회절 패턴을 갖는 것을 확인할 수 있다. 반면, (b) 아르곤 기체 조건 하에서 각각 600 및 700 ℃에서 (S1) 단계가 수행된 재생 양극 활물질 1 및 2는 활물질은 모두 환원되고 CoO 형태의 코발트산화물만이 존재하는 X선 회절 패턴을 보이는 것을 확인할 수 있다.Referring to FIG. 4, (a) it can be seen that comparative regenerated positive electrode active materials 1 to 3 performed under oxygen conditions and at 500, 600 to 700° C. have an X-ray diffraction pattern in which only the initial active material is present regardless of the temperature range. . On the other hand, (b) regenerated positive electrode active materials 1 and 2, in which steps (S1) were performed at 600 and 700 ° C. respectively under argon gas conditions, showed an X-ray diffraction pattern in which all active materials were reduced and only cobalt oxide in the form of CoO was present. You can check it.

2.2. (S1) 단계 온도에 따른 비교2.2. (S1) Comparison according to stage temperature

본 발명에 따른 재생 양극 활물질의 제조방법에 있어서, (S1) 단계 온도 범위에 따른 비교를 위해, 상기 실시예 1 및 2와, 이에 대한 비교군으로 상기 실시예 1과 모든 조건은 동일하되 (S1) 단계 온도만을 500 ℃에서 수행한 비교 재생 양극 활물질 4를 제조하여 X선 회절 패턴을 측정하였으며, 이를 도 5에 나타내었다.In the method for manufacturing a recycled positive electrode active material according to the present invention, for comparison according to the temperature range of step (S1), all conditions are the same as Examples 1 and 2 and Example 1 as a comparison group, but (S1) ) Comparative regenerated cathode active material 4 was manufactured in which only the step temperature was performed at 500°C, and the X-ray diffraction pattern was measured, which is shown in FIG. 5.

도 5를 참조하면, 500 ℃에서 (S1) 단계가 수행된 비교 재생 양극 활물질 4는 온도 범위와 상관없이 CoO와 활물질이 공존하는 X선 회절 패턴을 갖는 것을 확인할 수 있다. 반면, 600 및 700 ℃에서 (S1) 단계가 수행된 본 발명에 따른 재생 양극 활물질 1 및 2는 활물질은 모두 환원되고 CoO만이 존재하는 X선 회절 패턴을 보이는 것을 확인할 수 있다.Referring to FIG. 5, it can be seen that the comparative regenerated positive electrode active material 4 in which step (S1) was performed at 500 ° C. has an X-ray diffraction pattern in which CoO and the active material coexist regardless of the temperature range. On the other hand, it can be confirmed that the regenerated positive electrode active materials 1 and 2 according to the present invention in which the (S1) step was performed at 600 and 700 ° C. showed an X-ray diffraction pattern in which all active materials were reduced and only CoO was present.

상기 결과로부터, (S1) 단계를 통해 불순물에 완전히 제거된 순수 CoO를 제조하기 위해서는 불활성 기체인 아르곤 기체 환경 및 510 내지 750 ℃의 온도범위에서 수행되는 것이 가장 바람직한 것을 확인할 수 있다.From the above results, it can be seen that in order to produce pure CoO from which impurities are completely removed through step (S1), it is most preferable to perform the process in an inert argon gas environment and a temperature range of 510 to 750 ° C.

실험예 3. 층상 구조의 재생 양극 활물질 확인Experimental Example 3. Confirmation of recycled positive electrode active material with layered structure

본 발명에 따라 제조된 재생 양극 활물질의 구조적 특징을 확인하기 위해, 상기 실시예 1에서 제조된 생성된 CoO 및 상기 생성된 CoO를 이용하여 제조된 재생 양극 활물질(LCO) 1에 대해 X선 회절 패턴을 측정하였으며, 이를 도 6에 나타내었다.In order to confirm the structural characteristics of the recycled positive electrode active material prepared according to the present invention, was measured, and it is shown in Figure 6.

도 6을 참조하면, 기공이 형성되어 다공형 구조를 갖는 생성된 CoO를 이용하여 제조된 재생 양극 활물질(실시예 1)가 층상 구조를 갖는 것을 확인할 수 있다.Referring to FIG. 6, it can be seen that the recycled positive electrode active material (Example 1) manufactured using CoO, which has a porous structure in which pores are formed, has a layered structure.

실험예 3. 재생 양극 활물질의 전기화학 성능 평가Experimental Example 3. Electrochemical performance evaluation of recycled positive electrode active material

본 발명에 따라 제조된 재생 양극 활물질의 전기화학적 성능을 평가하기 위해, 상용되는 양극 활물질(LCO)에 대해 3.0 내지 4.3 V로 전기화학 성능을 평가하였다. 그 결과를 하기 [표 2] 및 도 7에 나타내었다.In order to evaluate the electrochemical performance of the recycled positive electrode active material prepared according to the present invention, the electrochemical performance was evaluated at 3.0 to 4.3 V with respect to a commercially available positive electrode active material (LCO). The results are shown in Table 2 and Figure 7 below.

[표 2][Table 2]

상기 [표 2] 및 도 7을 참조하면, 상용 양극 활물질, 재생 양극 활물질 1 및 재생 양극 활물질 2의 충전용량, 방전용량 및 효율에 있어서 오차범위 내에서 거의 동일함을 확인할 수 있다. 상기 결과로부터 본 발명에 따라 제작된 양극 활물질의 전기화학적 성능이 저하되지 않고, 우수한 전기화학적 특성을 구현할 수 있음을 확인할 수 있다.Referring to [Table 2] and FIG. 7, it can be seen that the charge capacity, discharge capacity, and efficiency of the commercial positive electrode active material, recycled positive electrode active material 1, and recycled positive electrode active material 2 are almost identical within the error range. From the above results, it can be confirmed that the electrochemical performance of the positive electrode active material produced according to the present invention is not deteriorated and excellent electrochemical properties can be achieved.

이상 설명으로부터, 본 발명에 속하는 기술 분야의 당업자는 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로서 이해해야만 한다.From the above description, those skilled in the art to which the present invention pertains will understand that the present invention can be implemented in other specific forms without changing its technical idea or essential features. In this regard, the embodiments described above should be understood in all respects as illustrative and not restrictive.

Claims (14)

(S1) 폐 이차전지로부터 분리된 양극 극판을 열처리하여 CoxOy 물질을 생성하는 단계;
(S2) 생성된 CoxOy 물질에 리튬을 포함하는 물질을 혼합하는 단계;
(S3) 혼합된 물질을 열처리하여 재생 양극 활물질을 형성하는 단계;를 포함하고,
상기 CoxOy에서 x 및 y는 각각 0 내지 10 사이의 값을 갖는,
재생 양극 활물질의 제조방법.
(S1) generating Co x O y material by heat treating the positive electrode plate separated from the waste secondary battery;
(S2) mixing a material containing lithium with the produced Co x O y material;
(S3) heat treating the mixed material to form a recycled positive electrode active material;
In the Co x O y , x and y each have a value between 0 and 10,
Method for manufacturing recycled positive electrode active material.
제1항에 있어서,
상기 (S1) 단계에서 폐 이차전지로부터 분리된 양극 극판에는 양극 활물질, 도전재 및 바인더가 포함되어 있는,
재생 양극 활물질의 제조방법.
According to paragraph 1,
The positive electrode plate separated from the waste secondary battery in step (S1) contains a positive electrode active material, a conductive material, and a binder,
Method for manufacturing recycled positive electrode active material.
제1항에 있어서,
상기 (S1) 단계는 불활성 가스 또는 환원성 가스 환경에서 수행되는,
재생 양극 활물질의 제조방법.
According to paragraph 1,
The step (S1) is performed in an inert gas or reducing gas environment,
Method for manufacturing recycled positive electrode active material.
제3항에 있어서,
상기 (S1) 단계의 열처리는 510 내지 750 ℃의 온도범위에서 수행되고, 상기 (S1) 단계에서 수행되는 열처리에 의해 양극 극판이 환원되면서 CoxOy 물질이 생성되는,
재생 양극 활물질의 제조방법.
According to paragraph 3,
The heat treatment in the (S1) step is performed in a temperature range of 510 to 750 ° C., and the anode plate is reduced by the heat treatment performed in the (S1) step to produce a Co x O y material,
Method for manufacturing recycled positive electrode active material.
제1항에 있어서,
상기 (S1) 단계에서 생성되는 CoxOy 물질에는 CoO, Co2O3 및 Co3O4로 이루어진 군으로부터 선택된 1종 이상의 물질이 포함되는,
재생 양극 활물질의 제조방법.
According to paragraph 1,
The Co x O y material produced in the step (S1) includes at least one material selected from the group consisting of CoO, Co 2 O 3 and Co 3 O 4
Method for manufacturing recycled positive electrode active material.
제5항에 있어서,
상기 (S1) 단계에서 생성되는 CoxOy 물질은 CoO인,
재생 양극 활물질의 제조방법.
According to clause 5,
The Co x O y material produced in the (S1) step is CoO,
Method for manufacturing recycled positive electrode active material.
제1항에 있어서,
상기 (S1) 단계에서 생성되는 CoxOy 물질은 다공성의 구조로 형성되는,
재생 양극 활물질의 제조방법.
According to paragraph 1,
The Co x O y material produced in the step (S1) is formed in a porous structure,
Method for manufacturing recycled positive electrode active material.
제7항에 있어서,
상기 (S1) 단계에서 생성되는 CoxOy 물질은 기공을 0.001 내지 10.0 cm3/g 범위로 포함하는,
재생 양극 활물질의 제조방법.
In clause 7,
The Co x O y material produced in step (S1) contains pores in the range of 0.001 to 10.0 cm 3 /g,
Method for manufacturing recycled positive electrode active material.
제1항에 있어서,
상기 (S1) 단계에서 생성되는 CoxOy 물질은 0.3 내지 50.0 m cm2/g의 비표면적을 갖는,
재생 양극 활물질의 제조방법.
According to paragraph 1,
The Co x O y material produced in the step (S1) has a specific surface area of 0.3 to 50.0 m cm 2 /g,
Method for manufacturing recycled positive electrode active material.
제1항에 있어서,
상기 (S2) 단계에서 혼합되는 리튬을 포함하는 물질에는 LiOH, Li2CO3, LiNO3 및 Li3PO4로 이루어진 군으로부터 선택된 1종 이상의 물질이 포함되는,
재생 양극 활물질의 제조방법.
According to paragraph 1,
The lithium-containing material mixed in step (S2) includes one or more materials selected from the group consisting of LiOH, Li 2 CO 3 , LiNO 3 , and Li 3 PO 4 .
Method for manufacturing recycled positive electrode active material.
제1항에 있어서,
상기 (S2) 단계에서 혼합되는 리튬을 포함하는 물질은 상기 (S1) 단계에서 생성되는 CoxOy 물질에 대해 Co에 대한 리튬의 몰비가 1.0 내지 1.06이 되도록 혼합되는,
재생 양극 활물질의 제조방법.
According to paragraph 1,
The material containing lithium mixed in the (S2) step is mixed so that the molar ratio of lithium to Co is 1.0 to 1.06 with respect to the Co x O y material produced in the (S1) step.
Method for manufacturing recycled positive electrode active material.
제1항에 있어서,
상기 (S3) 단계의 열처리는 800℃ 내지 1,050℃의 온도범위에서 수행되는,
재생 양극 활물질의 제조방법.
According to paragraph 1,
The heat treatment in step (S3) is performed in a temperature range of 800 ℃ to 1,050 ℃,
Method for manufacturing recycled positive electrode active material.
제12항에 있어서,
상기 (S3) 단계의 열처리는 건식 열처리 또는 습식 열처리로 수행되는,
재생 양극 활물질의 제조방법.
According to clause 12,
The heat treatment in step (S3) is performed by dry heat treatment or wet heat treatment,
Method for manufacturing recycled positive electrode active material.
제1항 내지 제13항 중 어느 한 항에 따른 제조방법에 따라 형성된 재생 양극 활물질.A recycled positive electrode active material formed according to the manufacturing method according to any one of claims 1 to 13.
KR1020230167330A 2020-11-27 2023-11-27 Method for prepairng of recycled cathode material using waste secondary battery KR20230169012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230167330A KR20230169012A (en) 2020-11-27 2023-11-27 Method for prepairng of recycled cathode material using waste secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200163147A KR20220074538A (en) 2020-11-27 2020-11-27 Method for prepairng of recycled cathode material using waste secondary battery
KR1020230167330A KR20230169012A (en) 2020-11-27 2023-11-27 Method for prepairng of recycled cathode material using waste secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020200163147A Division KR20220074538A (en) 2020-11-27 2020-11-27 Method for prepairng of recycled cathode material using waste secondary battery

Publications (1)

Publication Number Publication Date
KR20230169012A true KR20230169012A (en) 2023-12-15

Family

ID=81754868

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200163147A KR20220074538A (en) 2020-11-27 2020-11-27 Method for prepairng of recycled cathode material using waste secondary battery
KR1020230167330A KR20230169012A (en) 2020-11-27 2023-11-27 Method for prepairng of recycled cathode material using waste secondary battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020200163147A KR20220074538A (en) 2020-11-27 2020-11-27 Method for prepairng of recycled cathode material using waste secondary battery

Country Status (3)

Country Link
KR (2) KR20220074538A (en)
CN (1) CN114830408A (en)
WO (1) WO2022114868A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024177632A1 (en) * 2023-02-23 2024-08-29 Ascend Elements, Inc. Microstructure tuning of cathode material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116020A (en) 1997-06-18 1999-01-12 Nisso Kinzoku Kagaku Kk Method for recovering high-purity cobalt compound from scrap lithium ion battery
KR102064668B1 (en) 2018-04-24 2020-01-09 (주)이엠티 A Method of Recycling Material for Precursor of Anode Active Material, Precursor of Anode Active Material, Anode Active Material, Anode, and Lithium Ion Secondary Battery Using The Same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000019850A (en) * 1998-09-16 2000-04-15 박종덕 Method for recycling exhausted lithium secondary battery
CN1262042C (en) * 2004-06-09 2006-06-28 南开大学 Method for regenerating anode materials of waste lithium ion secondary battery
KR101328585B1 (en) * 2012-04-06 2013-11-12 한국과학기술연구원 Fabricating method of cathode for lithium ion secondary battery by recycling cathode active material and a lithium ion secondary battery fabricated thereby
JP5657730B2 (en) * 2013-03-29 2015-01-21 Jx日鉱日石金属株式会社 Method for recovering valuable materials from lithium-ion batteries
CN104953199B (en) * 2015-05-13 2018-03-13 中国科学院过程工程研究所 Metal-doped nickle cobalt lithium manganate using lithium ion cell anode waste synthesis and its production and use
KR101992715B1 (en) * 2017-01-25 2019-06-25 주식회사 엘지화학 Method for recovering positive electrode active material from lithium secondary battery
KR102249266B1 (en) * 2018-11-13 2021-05-06 부경대학교 산학협력단 Method of recovery of nickel and cobalt
CN110311186A (en) * 2019-03-06 2019-10-08 清华大学 A method of recycling valuable element from waste and old lithium ion battery
CN110190351B (en) * 2019-05-20 2020-08-25 秦晋娜 Regeneration method of waste lithium cobaltate electrode material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116020A (en) 1997-06-18 1999-01-12 Nisso Kinzoku Kagaku Kk Method for recovering high-purity cobalt compound from scrap lithium ion battery
KR102064668B1 (en) 2018-04-24 2020-01-09 (주)이엠티 A Method of Recycling Material for Precursor of Anode Active Material, Precursor of Anode Active Material, Anode Active Material, Anode, and Lithium Ion Secondary Battery Using The Same

Also Published As

Publication number Publication date
CN114830408A (en) 2022-07-29
WO2022114868A1 (en) 2022-06-02
KR20220074538A (en) 2022-06-03

Similar Documents

Publication Publication Date Title
CN107615531B (en) Transition metal-containing composite hydroxide and method for producing same, nonaqueous electrolyte secondary battery and positive electrode active material for same, and method for producing same
KR20170075596A (en) Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same
KR101349900B1 (en) Recycling method of electrode active material of metal oxide, electrode active material of metal oxide for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery fabricated thereby
KR101823729B1 (en) Lithium metal oxide and negative active material comprising the same for lithium secondary battery, and preparing methode thereof
KR102580242B1 (en) Cobalt oxide for lithium secondary battery, lithium cobalt oxide for lithium secondary battery formed from the same, preparing method of the lithium cobalt oxide, and lithium secondary battery including positive electrode comprising the lithium cobalt oxide
CN111422925A (en) High-nickel ternary cathode material, preparation method thereof, lithium ion battery and electric automobile
CN107925079B (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
KR102272325B1 (en) Manufacturing method of Ni―Co―Mn precursor using disposed material of Lithium ion battery
KR20230169012A (en) Method for prepairng of recycled cathode material using waste secondary battery
CN114868281A (en) Positive electrode active material, method of preparing the same, and lithium secondary battery comprising the same
KR20240018538A (en) Manufacturing method for recycled cathode active material
Zhang et al. High capacity lithium-manganese-nickel-oxide composite cathodes with low irreversible capacity loss and good cycle life for lithium ion batteries
KR101501804B1 (en) Silicon based negative active material and secondary battery comprising the same
KR101439630B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
KR102084499B1 (en) Method for Manufacturing Cathode Active Material Including Carbon Source and Cathode Active Material Manufactured Thereby
CN113113588A (en) Method for preparing lithium fast ion conductor material coated high-nickel ternary layered oxide by using covalent interface engineering strategy
CN112939036A (en) Anode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
KR20090103133A (en) Cathode active material for lithium secondary and method for preparing thereof and lithium secondary battery containing the same for cathode
KR102724568B1 (en) Manufacturing method of metal-lithium fluoride composite for cathode additive for pre-doping of anode and lithium ion capacitor including the same
US11777136B2 (en) Cathode active material for sodium ion battery, and preparation process thereof
KR102675713B1 (en) Recycling cathode active material, method for recycling cathode active material and secondary battery containing the same
CN114639889B (en) Method for in-situ restoration of waste lithium battery anode material by supercritical water
KR20130118192A (en) Electrode active material having pores and secondary battery comprising the same
EP4287353A1 (en) Reuse method of active material of positive electrode scrap
JP7192397B2 (en) Lithium-cobalt-manganese composite oxide and lithium secondary battery containing the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E601 Decision to refuse application