WO2019066275A2 - Positive electrode active material for lithium secondary battery, and method for producing positive electrode active material - Google Patents

Positive electrode active material for lithium secondary battery, and method for producing positive electrode active material Download PDF

Info

Publication number
WO2019066275A2
WO2019066275A2 PCT/KR2018/010105 KR2018010105W WO2019066275A2 WO 2019066275 A2 WO2019066275 A2 WO 2019066275A2 KR 2018010105 W KR2018010105 W KR 2018010105W WO 2019066275 A2 WO2019066275 A2 WO 2019066275A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
vanadium oxide
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2018/010105
Other languages
French (fr)
Korean (ko)
Other versions
WO2019066275A3 (en
Inventor
김수환
채종현
임성철
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2019066275A2 publication Critical patent/WO2019066275A2/en
Publication of WO2019066275A3 publication Critical patent/WO2019066275A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery and a method of manufacturing the same. More specifically, the present invention relates to a cathode active material for a lithium secondary battery including a zirconium (Zr) ion-doped vanadium oxide and a method for manufacturing the same.
  • Zr zirconium
  • Lithium secondary battery technology has been applied to various fields at present through remarkable development.
  • various batteries capable of overcoming the limitations of current lithium secondary batteries have been studied .
  • Metal-air batteries which have a theoretical capacity in terms of capacity in comparison with current lithium secondary batteries, all solid batteries that do not have explosion risk in terms of safety, lithium secondary batteries in terms of output, (Na-S) or redox flow battery (RFB) in the aspect of enlargement, and a thin film battery in the aspect of miniaturization.
  • a lithium secondary battery uses a metal oxide such as LiCoO 2 as a cathode active material and a carbon material as a negative electrode active material, and a polyolefin-based porous separator is sandwiched between a cathode and an anode, and a non-aqueous electrolytic solution having a lithium salt such as LiPF 6 Impregnated.
  • LiCoO 2 which is used as a cathode active material in most commercial lithium secondary batteries, has a high operating voltage and a large capacity.
  • LiCoO 2 is relatively expensive and has a charge / discharge current of about 150 mAh / g And the crystal structure is unstable at a voltage of 4.3 V or more, causing a reaction with the electrolytic solution, and there is a risk of ignition. Moreover, LiCoO 2 has a disadvantage in that it exhibits a very large change in physical properties even when some parameters are changed on the manufacturing process.
  • LiMn 2 O 4 has a lower capacity than LiCoO 2 but has a low cost and no pollution factor.
  • LiCoO 2 has a layered structure (Layered structure)
  • LiMn 2 O 4 has a spinel if (Spinel) structure.
  • These two materials commonly have excellent performance as a battery when they have excellent crystallinity. Therefore, in order to crystallize the two materials, it is necessary to carry out the heat treatment process during the manufacture of the thin film or the post-process. Therefore, the fabrication of a battery using these two materials on a polymer (e.g., plastic) material for medical or special purposes is impossible up to now because the polymer material can not withstand the heat treatment temperature.
  • vanadium oxide In order to solve the disadvantages of the two materials, vanadium oxide is proposed.
  • the vanadium oxide has an advantage that it has very good electrode characteristics even in the amorphous state although the capacity is low.
  • the synthesis of the vanadium oxide is relatively easy and the synthesis is possible at room temperature.
  • the amorphous vanadium oxide synthesized at room temperature is superior to the crystalline vanadium oxide in its performance (for example, life or efficiency). Therefore, if vanadium oxide is used as a cathode active material, a room temperature process becomes possible, and it becomes possible to manufacture a secondary battery on a polymer material such as a plastic. For this reason, vanadium oxides by various chemical methods and vacuum thin film synthesis methods are expected to be highly applicable to cathode active materials of secondary batteries in the future.
  • the vanadium oxide has a problem that the charge / discharge capacity (C-rate capability), output characteristics, and water surface performance of the battery are insufficient by the lithium ion de-intercalation process.
  • C-rate capability charge / discharge capacity
  • output characteristics output characteristics
  • water surface performance of the battery are insufficient by the lithium ion de-intercalation process.
  • Patent Document 1 Korean Patent Application No. 2011-0066585
  • the present invention relates to a lithium secondary battery which can improve the life characteristics of a battery by suppressing elution of vanadium by doping zirconium ions into vanadium oxide, which is a component of the cathode active material, A cathode active material for a secondary battery, and a method of manufacturing the same.
  • the present invention provides a cathode active material for a lithium secondary battery including a zirconium ion-doped vanadium oxide.
  • the vanadium oxide is a compound represented by the following formula (1).
  • the zirconium ion is doped with 0.1 mol% or more and less than 10 mol% based on the vanadium oxide.
  • the present invention relates to a process for preparing a mixture comprising dissolving an organic acid, a vanadium oxide precursor and a zirconium ion precursor in a solvent and then mixing to produce a mixture; Drying the resulting mixture; And heat treating the dried mixture.
  • the present invention also provides a method for producing the above-described cathode active material for a lithium secondary battery.
  • the present invention relates to a positive electrode active material layer comprising the above-mentioned positive electrode active material, a conductive material and a binder; And a positive electrode collector, wherein the positive electrode active material layer provides a positive electrode for a lithium secondary battery formed on a positive electrode collector.
  • the present invention provides a lithium secondary battery comprising the above-described positive electrode.
  • vanadium oxide doped with zirconium ions as a positive electrode active material of a lithium secondary battery suppresses the elution of vanadium that may occur during charging and discharging of the lithium secondary battery and consequently improves the life characteristics of the lithium secondary battery can do.
  • FIG. 1 is a graph showing a specific capacity of a lithium secondary battery manufactured according to Examples 1 and 2 and Comparative Example 1 according to a cycle.
  • FIG. 2 is a graph showing the results of XRD analysis of the cathode active material prepared according to Examples 1 and 2 and Comparative Example 1.
  • FIG. 2 is a graph showing the results of XRD analysis of the cathode active material prepared according to Examples 1 and 2 and Comparative Example 1.
  • FIG. 3 is a graph showing the elution amount of vanadium relative to initial vanadium after the charge and discharge cycles of the lithium secondary battery produced in Example 1 and Comparative Example 1 were carried out 50 times.
  • the present invention provides a cathode active material for a lithium secondary battery including a zirconium (Zr) ion-doped vanadium oxide.
  • vanadium oxide can have a high specific capacity in theory, it can be suitable as a material for a cathode active material in a lithium secondary battery.
  • the electric conductivity and the ion diffusion coefficient are substantially low, vanadium is eluted into the electrolyte, and the electrode structure may collapse .
  • zirconium ions are doped into vanadium oxide which is a cathode active material.
  • the vanadium oxide according to the present invention is a compound represented by the following formula (1).
  • the degree of oxidation of vanadium varies depending on the values of a and b in the above formula (1).
  • the vanadium oxide has an oxidation number of 2, 3, 4 and 5, and when the oxidation number of vanadium is 2 and 3, the vanadium oxide has a basicity.
  • the oxidation number of vanadium is 4 and 5, It has both sexes.
  • VO 2 having an oxidation number of 4 of vanadium and V 2 O 5 having an oxidation number of vanadium of 5 are stable.
  • the vanadium oxide may be VO 2 , V 2 O 3 , V 2 O 5, or a combination thereof, and preferably vanadium pentoxide (V 2 O 5 ).
  • the vanadium pentoxide (V 2 O 5 ) has good ion exchange ability with respect to lithium ions and has a high potential of about 4 V with respect to lithium metal, and is utilized as a cathode material of a lithium secondary battery. In addition, it is used as an electrode material suitable for a solid electrolyte and a polymer electrolyte lithium secondary battery.
  • V 2 O 5 of the mesoporous structure has a high surface area due to porosity, thereby improving the diffusion speed of lithium ions, the electric storage capacity, and the electric conductivity.
  • zirconium ions are doped into vanadium oxide, but the structure formed by vanadium oxide in the cathode active material is not modified by doping with zirconium ions.
  • Zirconium ions are present in the structure to impart stability to the structure, thereby inhibiting the elution of vanadium.
  • the zirconium ion is doped in an amount of 0.1 mol% to less than 10 mol%, preferably 3 mol% to 7 mol%, based on the vanadium oxide.
  • zirconium ion When the zirconium ion is doped to less than 0.1 mol%, the stability of the structure due to the zirconium ion is improved and the vanadium dissolution inhibiting effect is insignificant.
  • zirconium ion When the zirconium ion is doped to 10 mol% or more, zirconium ions and vanadium oxide are combined to form ZrV 2 O 7 can be formed, and the capacity of the lithium secondary battery can be reduced by this crystal.
  • the cathode active material may be prepared by dissolving an organic acid, a vanadium oxide precursor, and a zirconium ion precursor in a solvent and then mixing to produce a mixture; Drying the resulting mixture; And heat-treating the dried mixture.
  • the organic acid as a constituent of the mixture helps the vanadium oxide precursor form a vanadium oxide structure with a suitable oxidation number and suitably doping zirconium ions from the zirconium ion precursor within the structure.
  • the organic acid may be selected from the group consisting of citric acid, oxalic acid, tannic acid, or a combination thereof, and is preferably selected from the group consisting of May be citric acid.
  • the vanadium oxide precursor as a constituent of the mixture is a substance before the conversion to vanadium oxide by reaction with an organic acid.
  • the vanadium oxide precursor has a ratio of vanadium to oxygen in the vanadium oxide and a ratio of vanadium oxide to vanadium oxide in the cathode active material. . ≪ / RTI >
  • the vanadium oxide precursor may be vanadium oxide, ammonium vanadium or a combination thereof.
  • the vanadium oxide precursor is at least one selected from the group consisting of NH 4 VO 3 .
  • the zirconium ion precursor as a constituent of the mixture is a substance which provides a zirconium ion in the vanadium oxide structure, and the kind of the zirconium ion precursor may affect the doping of the zirconium ion in the vanadium oxide structure.
  • the zirconium ion precursor is not particularly limited as long as it is a material generally used in the related art, according to one embodiment of the present invention, the zirconium ion precursor is a zirconium salt hydrate, and preferably ZrOCl 2 .8H 2 O have.
  • the mixing ratio of the organic acid, the vanadium oxide precursor and the zirconium ion precursor in the mixture may be adjusted within a range in which the prepared cathode active material satisfies the above-described doping amount of the zirconium ion.
  • the mixture comprises 40 to 70 parts by weight, preferably 50 to 60 parts by weight of an organic acid, 30 to 60 parts by weight, preferably 10 to 60 parts by weight, based on 100 parts by weight of the total of the organic acid, vanadium oxide precursor and zirconium ion precursor, Preferably 40 to 50 parts by weight of a vanadium oxide precursor, and 1 to 5 parts by weight, preferably 2 to 4 parts by weight of a zirconium ion precursor.
  • the solvent during the preparation of the mixture is not particularly limited as long as it is a commonly used solvent in the related art, but a solvent that does not remain in the cathode active material that remains after drying and heat treatment may be preferable.
  • the solvent may be water.
  • the resulting mixture is dried to remove all or part of the solvent.
  • the drying method is not particularly limited, and a method generally used in the related art is used.
  • the dried mixture is heat treated to remove additional residual solvent and form a suitable vanadium oxide structure.
  • the heat treatment is carried out at 350 to 650 ° C, preferably 450 to 550 ° C, for 1 to 10 hours, preferably 4 to 8 hours, under an air atmosphere.
  • the cathode for a lithium secondary battery includes a cathode active material layer and a cathode current collector, and the cathode active material layer is formed on the cathode current collector and includes a cathode active material, a conductive material, and a binder.
  • the binder contained in the positive electrode active material layer is a component that assists in bonding between the positive electrode active material and the conductive material and bonding to the current collector.
  • the binder include polyvinylidene fluoride (PVdF), polyvinylidene fluoride-polyhexafluoro Propylene copolymer (PVdF / HFP), polyvinyl acetate, polyvinyl alcohol, polyvinyl ether, polyethylene, polyethylene oxide, alkylated polyethylene oxide, polypropylene, polymethyl (meth) acrylate, polyethyl Butadiene rubber, ethylene-propylene-diene monomer (EPDM) rubber, polyvinyl pyrrolidone, polyvinyl pyrrolidone, styrene-butadiene rubber, acrylonitrile- Sulfonated EPDM rubber, styrene-butylene rubber, fluororubber, carboxymethylcellulose (CMC), starch,
  • the binder is added in an amount of 1 to 30 parts by weight, preferably 5 to 20 parts by weight based on 100 parts by weight of the positive electrode active material layer. If the content of the binder is less than 1 part by weight, the adhesive force between the cathode active material and the current collector may be insufficient. If the amount of the binder is more than 30 parts by weight, the adhesive strength may be improved, but the content of the cathode active material may be decreased.
  • the conductive material contained in the positive electrode active material layer is not particularly limited as long as it does not cause side reactions in the internal environment of the lithium secondary battery and does not cause chemical changes in the battery but has excellent electrical conductivity.
  • the conductive material includes graphite or conductive carbon
  • graphite such as natural graphite and artificial graphite
  • Carbon black such as carbon black, acetylene black, ketjen black, black black, thermal black, channel black, furnace black, lamp black, and summer black
  • Conductive fibers such as carbon fiber and metal fiber
  • Carbon fluoride Metal powders such as aluminum and nickel powder
  • Conductive whiskey such as zinc oxide and potassium titanate
  • Conductive oxides such as titanium oxide
  • polyphenylene derivatives may be used singly or in combination of two or more, but the present invention is not limited thereto.
  • the conductive material is added in an amount of 1 to 30 parts by weight, preferably 5 to 20 parts by weight based on 100 parts by weight of the positive electrode active material layer. If the content of the conductive material is less than 1 part by weight, the effect of improving electrical conductivity may not be expected or the electrochemical characteristics of the battery may deteriorate. If the content of the conductive material exceeds 30 parts by weight, the amount of the cathode active material And the capacity and the energy density may be lowered.
  • the method of incorporating the conductive material into the cathode active material layer is not particularly limited, and conventional methods known in the art such as coating on the cathode active material can be used. In some cases, since the conductive second coating layer is added to the positive electrode active material, the addition of the conductive material as described above may be substituted.
  • a filler may be optionally added as a component for suppressing the expansion of the positive electrode.
  • a filler is not particularly limited as long as it can inhibit the expansion of the electrode without causing chemical change in the battery, and examples thereof include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers; Etc. may be used.
  • the positive electrode active material layer including the positive electrode active material, the binder and the conductive material is prepared by dispersing and mixing the above materials in a dispersion medium (solvent) to prepare a slurry, applying it on the positive electrode current collector, drying and rolling, .
  • a dispersion medium solvent
  • N-methyl-2-pyrrolidone (DMF), dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), ethanol, isopropanol, water and mixtures thereof may be used as the dispersion medium.
  • the positive electrode current collector may be formed of a metal such as platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), silver (Ag), ruthenium (Ru), nickel (Ni), stainless steel (STS) ), Molybdenum (Mo), chromium (Cr), carbon (C), titanium (Ti), tungsten (W), ITO (In doped SnO 2 ), FTO (F doped SnO 2 ) , A surface of aluminum (Al) or a stainless steel surface treated with carbon (C), nickel (Ni), titanium (Ti) or silver (Ag) may be used.
  • the shape of the anode current collector may be in the form of a foil, a film, a sheet, a punched, a porous body, a foam or the like.
  • the positive electrode for a lithium secondary battery includes the above-described positive electrode active material layer and a positive electrode collector.
  • the present invention provides a lithium secondary battery comprising a positive electrode according to the above-described contents.
  • a lithium secondary battery comprises a positive electrode composed of a positive electrode active material layer and a positive electrode collector, a negative electrode composed of a negative electrode active material layer and a negative electrode collector, and a separator intercepting electrical contact between the positive electrode and the negative electrode, And an electrolytic solution impregnated with them to conduct lithium ions.
  • the negative electrode may be manufactured according to a conventional method known in the art.
  • a negative electrode may be prepared by dispersing and mixing a negative electrode active material, a conductive material, a binder, and a filler as necessary in a dispersion medium (solvent) to prepare a slurry, coating the dispersion on an anode current collector, followed by drying and rolling .
  • a dispersion medium solvent
  • lithium metal or a lithium alloy for example, an alloy of lithium and a metal such as aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium or indium
  • a lithium alloy for example, an alloy of lithium and a metal such as aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium or indium
  • the negative electrode collector may be formed of at least one selected from the group consisting of Pt, Au, Pd, Ir, Ag, Ru, Ni, STS, ), Molybdenum (Mo), chromium (Cr), carbon (C), titanium (Ti), tungsten (W), ITO (In doped SnO 2 ), FTO (F doped SnO 2 ) (C), nickel (Ni), titanium (Ti), or silver (Ag) on the surface of copper, copper or stainless steel may be used.
  • the anode current collector may be in the form of a foil, a film, a sheet, a punched, a porous body, a foam or the like.
  • the separation membrane is interposed between the positive electrode and the negative electrode to prevent a short circuit therebetween and to provide a movement path of lithium ions.
  • an olefin-based polymer such as polyethylene or polypropylene, glass fiber or the like may be used in the form of a sheet, a multilayer, a microporous film, a woven fabric and a nonwoven fabric, but is not limited thereto.
  • a solid electrolyte such as a polymer (for example, an organic solid electrolyte, an inorganic solid electrolyte or the like) is used as the electrolyte
  • the solid electrolyte may also serve as a separation membrane.
  • an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 mu m, and the thickness generally ranges from 5 to 300 mu m.
  • carbonate, ester, ether, or ketone may be used alone or as a mixture of two or more of them as a non-aqueous liquid electrolyte (non-aqueous organic solvent), but the present invention is not limited thereto.
  • the solvent examples include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, Ethyl acetate, n-propyl acetate, phosphoric acid triester, dibutyl ether, dimethyl ether, N-methyl-2-pyrrolidinone, 1,2-dimethoxyethane, tetrahydroxyfurfurane (Franc) Tetrahydrofuran derivatives such as tetrahydrofuran and tetrahydrofuran, dimethyl sulfoxide, formamide, dimethylformamide, dioxolane and derivatives thereof, acetonitrile, nitromethane, methyl formate, methyl acetate, trimethoxymethane, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imid
  • Lithium salt-containing non-aqueous electrolyte solution and the lithium salt may be a known one which is soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4, LiB 10 Cl 10 , LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiPF 3 (CF 2 CF 3) 3, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, LiFSI, chloroborane lithium, lower aliphatic carboxylate lithium, lithium tetraphenylborate, imide, and the like.
  • LiCl, LiBr, LiI, LiClO 4 LiBF 4, LiB 10 Cl 10 , LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiPF 3 (CF 2 CF 3) 3, LiAlCl 4, CH 3 SO 3 Li, CF 3
  • the above (non-aqueous) electrolytic solution may contain, for the purpose of improving charge / discharge characteristics, flame retardancy, etc., for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, Amide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxyethanol, .
  • a halogen-containing solvent such as carbon tetrachloride, ethylene trifluoride or the like may be further added to impart nonflammability, or a carbon dioxide gas may be further added to improve high-temperature storage characteristics.
  • the lithium secondary battery of the present invention can be produced by a conventional method in the art.
  • a porous separator may be placed between the anode and the cathode, and a non-aqueous electrolyte may be added.
  • the lithium secondary battery according to the present invention not only exhibits improved capacity characteristics (rapid capacity decrease prevention) under high-speed charge / discharge cycle conditions, but also excellent cycle characteristics, rate characteristics and life characteristics,
  • the present invention can be suitably used as a unit cell of a battery module which is a power source of a medium and large-sized device.
  • the present invention also provides a battery module in which two or more lithium secondary batteries are electrically connected (in series or in parallel). It is needless to say that the number of lithium secondary batteries included in the battery module may be variously controlled in consideration of the use and capacity of the battery module.
  • the present invention provides a battery pack in which the battery module is electrically connected according to a conventional technique.
  • the battery module and the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle (PHEV); Electric truck; Electric commercial vehicle; Or a power storage system, but is not limited thereto.
  • a power tool including an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle (PHEV); Electric truck; Electric commercial vehicle; Or a power storage system, but is not limited thereto.
  • Citric acid (Sigma Aldrich Co.), vanadium oxide precursor (NH 4 VO 3, vena hwageum Co., Ltd.) and zirconium ion precursor to prepare a mixture by mixing and then dissolving (ZrOCl 2 ⁇ 8H 2 O, Sigma-Aldrich Co.) in distilled water Respectively.
  • the mixture was dried and then heat-treated at 500 ° C for 6 hours in an air atmosphere to prepare a cathode active material.
  • the mixing weight ratio of the citric acid: vanadium oxide precursor: zirconium ion precursor was 54: 43: 3 (cathode active material containing 5 mol% of Zr ion relative to vanadium oxide).
  • the cathode active material prepared by the above method was mixed with a conductive material and a binder and dispersed in N-methyl pyrrolidone (NMP) to prepare a slurry.
  • NMP N-methyl pyrrolidone
  • the slurry was applied to an aluminum current collector and dried to prepare a positive electrode.
  • Super-C was used as the conductive material
  • PVDF polyvinylidene fluoride
  • the mixing ratio by weight of the cathode active material: conductive material: binder was 8: 1: 1.
  • a separator was interposed between the positive electrode and the negative electrode. Thereafter, an electrolytic solution was injected into the case to prepare a coin cell.
  • lithium metal was used as the negative electrode
  • a polyethylene separator was used as the separator
  • a lithium secondary battery was finally prepared in the same manner as in Example 1 except that the mixing weight ratio of citric acid: vanadium oxide precursor: zirconium ion precursor in the production step of the cathode active material was 53: 43: 4 (10 mol % ≪ / RTI > Zr ion).
  • a lithium secondary battery was finally prepared in the same manner as in Example 1, except that zirconium ion precursor and citric acid and vanadium oxide precursor were mixed in a weight ratio of 56:44 in the production step of the cathode active material.
  • the cathode active materials prepared in Examples 1 and 2 and Comparative Example 1 were subjected to XRD analysis, and the results are shown in FIG. 2, it can be confirmed that a ZrV 2 O 7 crystal peak appears in the graph of Example 2. Since the ZrV 2 O 7 crystal can reduce the capacity of the electrode, the initial specific capacity value of the coin cell of Example 2 was low as shown in Fig.
  • the elution amount of vanadium in the coin cells of Example 1 and Comparative Example 1 was measured and shown in Fig.
  • the elution amount was measured by dissolving the cell after 50 cycles of charging and discharging, measuring the remaining amount of vanadium by ICP analysis of the separator and the lithium anode, and calculating the amount of remaining vanadium in the separator and the lithium cathode compared to the cathode active material. 3, when the vanadium oxide was doped with zirconium ions as in Example 1, it was confirmed that the amount of vanadium elution was reduced to a significant level.

Abstract

Provided is positive electrode active material for a lithium secondary battery, the positive electrode active material comprising vanadium oxide doped with zirconium (Zr) ions.The vanadium oxide is doped with 0.1-10 mol% zirconium ions with respect to the former. By applying the positive electrode active material for a lithium secondary battery to same, elution of vanadium from the positive electrode is controlled, and consequently, the lifespan of the battery is extended.

Description

리튬 이차전지용 양극 활물질 및 이의 제조방법Cathode active material for lithium secondary battery and manufacturing method thereof
본 출원은 2017년 9월 27일자 한국 특허 출원 제10-2017-0124807호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0124807, filed on September 27, 2017, which is incorporated herein by reference in its entirety.
본 발명은 리튬 이차전지용 양극 활물질 및 이의 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 지르코늄(Zr) 이온이 도핑된 바나듐 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이의 제조방법에 관한 것이다.The present invention relates to a cathode active material for a lithium secondary battery and a method of manufacturing the same. More specifically, the present invention relates to a cathode active material for a lithium secondary battery including a zirconium (Zr) ion-doped vanadium oxide and a method for manufacturing the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대한 수요가 급격히 증가하고 있다. 최근에는 전기 자동차(EV), 하이브리드 전기 자동차(HEV) 등의 동력원으로서 이차전지의 사용이 실현화되고 있다. 이에 따라, 다양한 요구에 부응할 수 있는 이차전지에 대해 많은 연구가 진행되고 있고, 특히, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지에 대한 수요가 높아 이에 대한 연구가 활발히 진행되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing. Recently, the use of a secondary battery as a power source for an electric vehicle (EV), a hybrid electric vehicle (HEV) and the like has been realized. Accordingly, a lot of research has been conducted on a secondary battery capable of meeting various demands, and in particular, a demand for a lithium secondary battery having a high energy density, a high discharge voltage and an output stability is high, .
리튬 이차전지의 기술은 최근 현저한 발전을 통하여 현재 다양한 분야에서 응용되고 있으나, 전지의 용량, 안전성, 출력, 대형화, 초소형화 등의 관점에서 현재 리튬 이차전지의 한계를 극복할 수 있는 다양한 전지들이 연구되고 있다. 대표적으로 현재의 리튬 이차전지에 비해 용량 측면에서 이론 용량이 매우 큰 금속-공기 전지(Metal-air battery), 안전성 측면에서 폭발 위험이 없는 전고체 전지(All solid battery), 출력 측면에서 리튬 이차전지에 비해 출력 특성이 우수한 슈퍼 캐퍼시터(Supercapacitor), 대형화 측면에서는 나트륨-황(Na-S) 전지 혹은 레독스 플로우 전지(RFB: Rex flow battery), 초소형화 측면에서는 박막전지(Thin film battery) 등이 학계 및 산업계에서 지속적인 연구가 진행되고 있다.Lithium secondary battery technology has been applied to various fields at present through remarkable development. However, in view of capacity, safety, output, enlargement and miniaturization of batteries, various batteries capable of overcoming the limitations of current lithium secondary batteries have been studied . Metal-air batteries, which have a theoretical capacity in terms of capacity in comparison with current lithium secondary batteries, all solid batteries that do not have explosion risk in terms of safety, lithium secondary batteries in terms of output, (Na-S) or redox flow battery (RFB) in the aspect of enlargement, and a thin film battery in the aspect of miniaturization. Continuous research is underway in academia and industry.
일반적으로, 리튬 이차전지는 양극 활물질로 LiCoO2 등의 금속 산화물과 음극 활물질로 탄소 재료를 사용하며, 음극과 양극 사이에 폴리올레핀계 다공성 분리막을 넣고, LiPF6 등의 리튬염을 가진 비수성 전해액을 함침시켜 제조된다. 그러나 현재 대부분의 상용 리튬 이차전지의 양극 활물질로 사용되고 있는 LiCoO2는 작동 전압이 높고 용량이 크다는 장점이 있으나, 자원량의 한계로 인하여 상대적으로 고가이고, 충ㆍ방전 전류량이 약 150 mAh/g 정도로 낮으며, 4.3 V 이상의 전압에서는 결정구조가 불안정하고, 전해액과 반응을 일으켜 발화의 위험성을 갖고 있는 등 여러 가지 문제점을 갖고 있다. 더욱이, LiCoO2은 제조 공정상에서 일부 변수(Parameter)의 변화에도 매우 큰 물성 변화를 나타내는 단점을 가지고 있다.Generally, a lithium secondary battery uses a metal oxide such as LiCoO 2 as a cathode active material and a carbon material as a negative electrode active material, and a polyolefin-based porous separator is sandwiched between a cathode and an anode, and a non-aqueous electrolytic solution having a lithium salt such as LiPF 6 Impregnated. However, LiCoO 2, which is used as a cathode active material in most commercial lithium secondary batteries, has a high operating voltage and a large capacity. However, due to the limit of the amount of resources, LiCoO 2 is relatively expensive and has a charge / discharge current of about 150 mAh / g And the crystal structure is unstable at a voltage of 4.3 V or more, causing a reaction with the electrolytic solution, and there is a risk of ignition. Moreover, LiCoO 2 has a disadvantage in that it exhibits a very large change in physical properties even when some parameters are changed on the manufacturing process.
이러한 LiCoO2의 대안으로 제시된 것 중의 하나는 LiMn2O4이다. LiMn2O4는 LiCoO2보다 용량은 낮으나 저가이면서 공해 요인이 없다는 장점을 가지고 있다. 양극 활물질의 대표적인 예인 LiCoO2와 LiMn2O4의 구조를 살펴보면, LiCoO2는 층상 구조(Layered structure)를 가지며, LiMn2O4는 경우는 스피넬(Spinel) 구조를 갖는다. 이 두 물질은 공통적으로 결정성(Crystallinity)이 우수할 때 전지로서 우수한 성능을 가지게 된다. 따라서 특히 박막 전지를 제작할 때 이 두 물질의 결정화를 위해서 박막의 제작 시 또는 후공정으로 반드시 열처리 공정을 수반하여야만 한다. 따라서 이 두 물질을 이용한 전지의 제작을 의료용 또는 특수한 용도로 고분자(예컨대, 플라스틱) 재료 위에 구현하는 것은 고분자 물질이 열처리 온도에서 견디지 못한다는 이유로 현재까지는 불가능하다.One of the alternatives to this LiCoO 2 is LiMn 2 O 4 . LiMn 2 O 4 has a lower capacity than LiCoO 2 but has a low cost and no pollution factor. Looking at the typical examples of the structure of LiCoO 2 and LiMn 2 O 4 of the positive electrode active material, LiCoO 2 has a layered structure (Layered structure), LiMn 2 O 4 has a spinel if (Spinel) structure. These two materials commonly have excellent performance as a battery when they have excellent crystallinity. Therefore, in order to crystallize the two materials, it is necessary to carry out the heat treatment process during the manufacture of the thin film or the post-process. Therefore, the fabrication of a battery using these two materials on a polymer (e.g., plastic) material for medical or special purposes is impossible up to now because the polymer material can not withstand the heat treatment temperature.
상기 두 물질이 가지고 있는 단점을 해결하기 위하여 제시된 것이 바나듐 산화물이다. 바나듐 산화물은 용량은 낮으나 비정질(Amorphous) 상태에서도 매우 우수한 전극 특성을 갖는다는 장점을 가지고 있다. 그리고 바나듐 산화물의 경우, 상기 두 물질보다 합성이 비교적 용이하며, 특히 상온에서 합성이 가능하다는 이유로 매우 주목을 받고 있다. 상온에서 합성된 비정질 바나듐 산화물의 경우 결정성의 바나듐 산화물보다 오히려 그 성능(예컨대, 수명 또는 효율)이 우수하다. 그러므로 바나듐 산화물을 양극 활물질로 이용한다면 상온 공정이 가능해지고, 따라서 플라스틱과 같은 고분자 물질 위에 이차전지를 제작하는 것이 가능하게 된다. 이러한 이유에서 여러 가지의 화학적 방법 및 진공 박막 합성법에 의한 바나듐 산화물은 앞으로 이차전지의 양극 활물질로 응용될 가능성이 매우 높을 것으로 예측되고 있다. In order to solve the disadvantages of the two materials, vanadium oxide is proposed. The vanadium oxide has an advantage that it has very good electrode characteristics even in the amorphous state although the capacity is low. In the case of vanadium oxide, the synthesis of the vanadium oxide is relatively easy and the synthesis is possible at room temperature. The amorphous vanadium oxide synthesized at room temperature is superior to the crystalline vanadium oxide in its performance (for example, life or efficiency). Therefore, if vanadium oxide is used as a cathode active material, a room temperature process becomes possible, and it becomes possible to manufacture a secondary battery on a polymer material such as a plastic. For this reason, vanadium oxides by various chemical methods and vacuum thin film synthesis methods are expected to be highly applicable to cathode active materials of secondary batteries in the future.
그러나, 바나듐 산화물은 리튬 이온 탈삽입 과정에 의해 전지의 충·방전 용량(C-rate capability), 출력 특성, 수면 성능이 부족하다는 문제점이 있다. 따라서, 해당 기술 분야에서는 양극 활물질로서 개선된 바나듐 산화물이 요구된다.However, the vanadium oxide has a problem that the charge / discharge capacity (C-rate capability), output characteristics, and water surface performance of the battery are insufficient by the lithium ion de-intercalation process. Thus, there is a need in the art for improved vanadium oxide as a cathode active material.
[선행기술문헌][Prior Art Literature]
[특허문헌][Patent Literature]
(특허문헌 1) 대한민국 특허출원 제2011-0066585호(Patent Document 1) Korean Patent Application No. 2011-0066585
바나듐 산화물을 포함하는 종래의 양극 활물질의 문제점을 해결하기 위해, 본 발명은 양극 활물질의 구성성분인 바나듐 산화물에 지르코늄 이온을 도핑함으로써, 바나듐의 용출을 억제하여 전지의 수명 특성을 개선할 수 있는 리튬 이차전지용 양극 활물질 및 이의 제조방법을 제공하고자 한다.In order to solve the problems of the conventional cathode active material containing vanadium oxide, the present invention relates to a lithium secondary battery which can improve the life characteristics of a battery by suppressing elution of vanadium by doping zirconium ions into vanadium oxide, which is a component of the cathode active material, A cathode active material for a secondary battery, and a method of manufacturing the same.
본 발명의 제1 측면에 따르면,According to a first aspect of the present invention,
본 발명은 지르코늄 이온이 도핑된 바나듐 산화물을 포함하는 리튬 이차전지용 양극 활물질을 제공한다.The present invention provides a cathode active material for a lithium secondary battery including a zirconium ion-doped vanadium oxide.
본 발명의 일 구체예에 있어서, 상기 바나듐 산화물은 하기 화학식 1로 표현되는 화합물이다.In one embodiment of the present invention, the vanadium oxide is a compound represented by the following formula (1).
[화학식 1][Chemical Formula 1]
VaOb V a O b
상기 화학식 1에서, 1 ≤ a ≤ 6이고, 2 ≤ b ≤ 13이다.In the above formula (1), 1? A? 6 and 2? B? 13.
본 발명의 일 구체예에 있어서, 상기 지르코늄 이온은 바나듐 산화물을 기준으로 0.1mol%이상 10mol%미만이 도핑된다.In one embodiment of the present invention, the zirconium ion is doped with 0.1 mol% or more and less than 10 mol% based on the vanadium oxide.
본 발명의 제2 측면에 따르면,According to a second aspect of the present invention,
본 발명은 유기산, 바나듐 산화물 전구체 및 지르코늄 이온 전구체를 용매에 용해시킨 후 혼합하여 혼합물을 생성하는 단계; 생성된 혼합물을 건조하는 단계; 및 건조된 혼합물을 열처리하는 단계를 포함하는 상술한 리튬 이차전지용 양극 활물질의 제조방법을 제공한다.The present invention relates to a process for preparing a mixture comprising dissolving an organic acid, a vanadium oxide precursor and a zirconium ion precursor in a solvent and then mixing to produce a mixture; Drying the resulting mixture; And heat treating the dried mixture. The present invention also provides a method for producing the above-described cathode active material for a lithium secondary battery.
본 발명의 제3 측면에 따르면,According to a third aspect of the present invention,
본 발명은 상술한 양극 활물질, 도전재 및 바인더를 포함하는 양극 활물질층; 및 양극 집전체를 포함하고, 상기 양극 활물질층은 양극 집전체 상에 형성되는 리튬 이차전지용 양극을 제공한다.The present invention relates to a positive electrode active material layer comprising the above-mentioned positive electrode active material, a conductive material and a binder; And a positive electrode collector, wherein the positive electrode active material layer provides a positive electrode for a lithium secondary battery formed on a positive electrode collector.
본 발명의 제4 측면에 따르면,According to a fourth aspect of the present invention,
본 발명은 상술한 양극을 포함하는 리튬 이차전지를 제공한다.The present invention provides a lithium secondary battery comprising the above-described positive electrode.
리튬 이차전지의 양극 활물질로 본 발명에 따른 지르코늄 이온이 도핑된 바나듐 산화물을 사용함으로써, 리튬 이차전지의 충·방전시 발생할 수 있는 바나듐의 용출을 억제하여, 결과적으로 리튬 이차전지의 수명 특성을 개선할 수 있다.The use of vanadium oxide doped with zirconium ions according to the present invention as a positive electrode active material of a lithium secondary battery suppresses the elution of vanadium that may occur during charging and discharging of the lithium secondary battery and consequently improves the life characteristics of the lithium secondary battery can do.
도 1은 실시예 1 및 2와 비교예 1에 따라 제조된 리튬 이차전지의 사이클에 따른 비용량을 나타낸 그래프이다.1 is a graph showing a specific capacity of a lithium secondary battery manufactured according to Examples 1 and 2 and Comparative Example 1 according to a cycle.
도 2는 실시예 1 및 2와 비교예 1에 따라 제조된 양극 활물질의 XRD 분석 결과를 나타낸 그래프이다.FIG. 2 is a graph showing the results of XRD analysis of the cathode active material prepared according to Examples 1 and 2 and Comparative Example 1. FIG.
도 3은 실시예 1과 비교예 1에 따라 제조된 리튬 이차전지를 충·방전 사이클을 50회 진행한 후, 초기 바나듐 대비 바나듐의 용출량을 나타낸 그래프이다.FIG. 3 is a graph showing the elution amount of vanadium relative to initial vanadium after the charge and discharge cycles of the lithium secondary battery produced in Example 1 and Comparative Example 1 were carried out 50 times.
본 발명에 따라 제공되는 구체예는 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아님을 이해해야 한다.The embodiments provided in accordance with the present invention can be all achieved by the following description. It is to be understood that the following description is of a preferred embodiment of the present invention and that the present invention is not necessarily limited thereto.
이하 명세서에서 수치 범위에 대하여, "내지"의 표현은 범위의 상한과 하한을 모두 포함하는 의미로 사용되며, 상한 또는 하한을 포함하지 않는 경우에는 포함여부를 구체적으로 표시하기 위해 "미만", "초과", "이하" 또는 "이상"의 표현이 사용된다.In the following description, for the numerical range, the expressions " to " are used to mean both of the upper and lower limits of the range. When the upper and lower limits are not included, Quot; over, " " below, " or " abnormal "
양극 활물질 및 이의 제조방법Cathode active material and manufacturing method thereof
본 발명은 지르코늄(Zr) 이온이 도핑된 바나듐 산화물을 포함하는 리튬 이차전지용 양극 활물질을 제공한다.The present invention provides a cathode active material for a lithium secondary battery including a zirconium (Zr) ion-doped vanadium oxide.
상술한 바와 같이, 바나듐 산화물(Vanadium Oxide, Vanadate)은 이론적으로 높은 비용량을 가질 수 있기 때문에, 리튬 이차전지에서 양극 활물질의 재료로 적합할 수 있다. 그러나, 상기 바나듐 산화물을 리튬 이차전지의 양극 활물질로 적용하는 경우에, 실질적으로 전기 전도도(Electric conductivity)와 이온 확산계수(Ion diffusion coefficient)가 낮고, 바나듐이 전해액으로 용출되어 전극 구조가 붕괴될 수 있다는 문제점을 발생한다. 이러한 문제점을 해결하기 위해, 본 발명에서는 양극 활물질인 바나듐 산화물에 지르코늄 이온을 도핑한다.As described above, since vanadium oxide (Vanadium Oxide) can have a high specific capacity in theory, it can be suitable as a material for a cathode active material in a lithium secondary battery. However, when the vanadium oxide is used as a cathode active material of a lithium secondary battery, the electric conductivity and the ion diffusion coefficient are substantially low, vanadium is eluted into the electrolyte, and the electrode structure may collapse . In order to solve such a problem, in the present invention, zirconium ions are doped into vanadium oxide which is a cathode active material.
본 발명에 따른 바나듐 산화물은 하기 화학식 1로 표현되는 화합물이다.The vanadium oxide according to the present invention is a compound represented by the following formula (1).
[화학식 1][Chemical Formula 1]
VaOb V a O b
상기 화학식 1에서, 1 ≤ a ≤ 6이고, 2 ≤ b ≤ 13이다.In the above formula (1), 1? A? 6 and 2? B? 13.
상기 바나듐 산화물은 상기 화학식 1에서 a 및 b 값에 따라 바나듐의 산화 정도가 달라진다. 실질적으로, 상기 바나듐 산화물에서 바나듐의 산화수는 2, 3, 4 및 5일 수 있고, 바나듐의 산화수가 2 및 3인 경우 바나듐 산화물은 염기성을 띠고, 바나듐의 산화수가 4 및 5인 경우 바나듐 산화물은 양쪽성을 띤다. 이 중에서는 바나듐의 산화수가 4인 VO2와 바나듐의 산화수가 5인 V2O5가 안정하다. 본 발명의 일 구체예에 따르면, 상기 바나듐 산화물은 VO2, V2O3, V2O5 또는 이들의 조합일 수 있고, 바람직하게는 오산화바나듐(V2O5)일 수 있다. 상기 오산화바나듐(V2O5)은 리튬 이온에 대한 이온 교환(Intercalation) 능력이 좋고, 리튬 금속에 대한 전위도가 4V 정도로 높아, 리튬 이차전지의 양극재료로써 활용되고 있다. 또한, 고체전해질 및 폴리머전해질 리튬 이차전지에 적합한 전극재료로 이용되고 있다. 특히, 중간세공 구조의 V2O5은 다공성으로 인해 높은 표면적을 가지게 되어, 리튬 이온의 확산속도의 향상, 전기저장능력 및 전기전도도가 향상된다.The degree of oxidation of vanadium varies depending on the values of a and b in the above formula (1). In fact, when the vanadium oxide has an oxidation number of 2, 3, 4 and 5, and when the oxidation number of vanadium is 2 and 3, the vanadium oxide has a basicity. When the oxidation number of vanadium is 4 and 5, It has both sexes. Among them, VO 2 having an oxidation number of 4 of vanadium and V 2 O 5 having an oxidation number of vanadium of 5 are stable. According to one embodiment of the present invention, the vanadium oxide may be VO 2 , V 2 O 3 , V 2 O 5, or a combination thereof, and preferably vanadium pentoxide (V 2 O 5 ). The vanadium pentoxide (V 2 O 5 ) has good ion exchange ability with respect to lithium ions and has a high potential of about 4 V with respect to lithium metal, and is utilized as a cathode material of a lithium secondary battery. In addition, it is used as an electrode material suitable for a solid electrolyte and a polymer electrolyte lithium secondary battery. In particular, V 2 O 5 of the mesoporous structure has a high surface area due to porosity, thereby improving the diffusion speed of lithium ions, the electric storage capacity, and the electric conductivity.
본 발명에서는 상기 바나듐 산화물을 포함하는 양극 활물질의 문제점을 개선하기 위해, 바나듐 산화물에 지르코늄 이온을 도핑하는데, 지르코늄 이온의 도핑에 의해 양극 활물질에서 바나듐 산화물에 의해 형성된 구조체가 변형되는 것은 아니다. 지르코늄 이온은 상기 구조체 내에 존재하면서 구조체에 안정성을 부여하고, 이에 의해 바나듐의 용출을 억제한다. 본 발명의 일 구체예에 따르면, 상기 지르코늄 이온은 바나듐 산화물을 기준으로 0.1mol%이상 10mol%미만, 바람직하게는 3mol% 내지 7mol%가 도핑된다. 지르코늄 이온이 0.1mol%미만으로 도핑되는 경우에는 지르코늄 이온에 의한 구조체의 안정성 향상 및 바나듐의 용출 억제 효과가 미미하며, 지르코늄 이온이 10mol%이상으로 도핑되는 경우에는 지르코늄 이온과 바나듐 산화물이 결합하여 ZrV2O7과 같은 결정이 형성될 수 있고, 이러한 결정에 의해 리튬 이차전지의 용량이 감소할 수 있다.In the present invention, in order to improve the problem of the cathode active material containing vanadium oxide, zirconium ions are doped into vanadium oxide, but the structure formed by vanadium oxide in the cathode active material is not modified by doping with zirconium ions. Zirconium ions are present in the structure to impart stability to the structure, thereby inhibiting the elution of vanadium. According to one embodiment of the present invention, the zirconium ion is doped in an amount of 0.1 mol% to less than 10 mol%, preferably 3 mol% to 7 mol%, based on the vanadium oxide. When the zirconium ion is doped to less than 0.1 mol%, the stability of the structure due to the zirconium ion is improved and the vanadium dissolution inhibiting effect is insignificant. When the zirconium ion is doped to 10 mol% or more, zirconium ions and vanadium oxide are combined to form ZrV 2 O 7 can be formed, and the capacity of the lithium secondary battery can be reduced by this crystal.
상술한 양극 활물질은 유기산, 바나듐 산화물 전구체 및 지르코늄 이온 전구체를 용매에 용해시킨 후 혼합하여 혼합물을 생성하는 단계; 생성된 혼합물을 건조하는 단계; 및 건조된 혼합물을 열처리하는 단계를 포함하는 리튬 이차전지용 양극 활물질의 제조방법에 의해 제조될 수 있다.The cathode active material may be prepared by dissolving an organic acid, a vanadium oxide precursor, and a zirconium ion precursor in a solvent and then mixing to produce a mixture; Drying the resulting mixture; And heat-treating the dried mixture. The positive electrode active material for a lithium secondary battery according to claim 1,
상기 혼합물의 구성성분으로서 유기산은 바나듐 산화물 전구체가 적절한 산화수를 갖는 바나듐 산화물 구조체를 형성하고, 지르코늄 이온 전구체로부터의 지르코늄 이온이 상기 구조체 내에 적절하게 도핑되도록 돕는다. 상기 유기산은 상기 역할이 가능한 물질이면 특별히 한정되지 않지만, 본 발명의 일 구체예에 따르면, 상기 유기산은 시트르산(Citric acid), 옥살산(Oxalic acid), 타닌산(tannic acid) 또는 이의 조합이고, 바람직하게는 시트르산일 수 있다.The organic acid as a constituent of the mixture helps the vanadium oxide precursor form a vanadium oxide structure with a suitable oxidation number and suitably doping zirconium ions from the zirconium ion precursor within the structure. The organic acid may be selected from the group consisting of citric acid, oxalic acid, tannic acid, or a combination thereof, and is preferably selected from the group consisting of May be citric acid.
상기 혼합물의 구성성분으로서 바나듐 산화물 전구체는 유기산과의 반응에 의해 바나듐 산화물로 전환되기 전 단계의 물질로서, 상기 바나듐 산화물 전구체의 종류는 바나듐 산화물에서 바나듐과 산소의 비율 및 양극 활물질에서 바나듐 산화물의 구조에 영향을 미칠 수 있다. 상기 바나듐 산화물 전구체는 해당 기술 분야에서 일반적으로 사용되는 물질이면 특별히 한정되지 않지만, 본 발명의 일 구체예에 따르면, 상기 바나듐 산화물 전구체는 바나듐 옥사이드, 바나듐산 암모늄 또는 이의 조합이고, 바람직하게는 NH4VO3일 수 있다.The vanadium oxide precursor as a constituent of the mixture is a substance before the conversion to vanadium oxide by reaction with an organic acid. The vanadium oxide precursor has a ratio of vanadium to oxygen in the vanadium oxide and a ratio of vanadium oxide to vanadium oxide in the cathode active material. . ≪ / RTI > The vanadium oxide precursor may be vanadium oxide, ammonium vanadium or a combination thereof. Preferably, the vanadium oxide precursor is at least one selected from the group consisting of NH 4 VO 3 .
상기 혼합물의 구성성분으로서 지르코늄 이온 전구체는 바나듐 산화물 구조체 내에 지르코늄 이온을 제공하는 물질로서, 상기 지르코늄 이온 전구체의 종류는 바나듐 산화물 구조체 내에 지르코늄 이온의 도핑에 영향을 미칠 수 있다. 상기 지르코늄 이온 전구체는 해당 기술 분야에서 일반적으로 사용되는 물질이면 특별히 한정되지 않지만, 본 발명의 일 구체예에 따르면, 상기 지르코늄 이온 전구체는 지르코늄염 수화물이고, 바람직하게는 ZrOCl2·8H2O일 수 있다.The zirconium ion precursor as a constituent of the mixture is a substance which provides a zirconium ion in the vanadium oxide structure, and the kind of the zirconium ion precursor may affect the doping of the zirconium ion in the vanadium oxide structure. Although the zirconium ion precursor is not particularly limited as long as it is a material generally used in the related art, according to one embodiment of the present invention, the zirconium ion precursor is a zirconium salt hydrate, and preferably ZrOCl 2 .8H 2 O have.
상기 혼합물에서 유기산, 바나듐 산화물 전구체 및 지르코늄 이온 전구체의 혼합 비율은 제조된 양극 활물질이 상술한 지르코늄 이온의 도핑 양을 만족하는 범위 내에서 조절될 수 있다. 본 발명의 일 구체예에 따르면, 상기 혼합물은 유기산, 바나듐 산화물 전구체 및 지르코늄 이온 전구체 총 100 중량부를 기준으로, 40 내지 70 중량부, 바람직하게는 50 내지 60 중량부의 유기산, 30 내지 60 중량부, 바람직하게는 40 내지 50 중량부의 바나듐 산화물 전구체, 및 1 내지 5 중량부, 바람직하게는 2 내지 4 중량부의 지르코늄 이온 전구체를 포함한다.The mixing ratio of the organic acid, the vanadium oxide precursor and the zirconium ion precursor in the mixture may be adjusted within a range in which the prepared cathode active material satisfies the above-described doping amount of the zirconium ion. According to one embodiment of the present invention, the mixture comprises 40 to 70 parts by weight, preferably 50 to 60 parts by weight of an organic acid, 30 to 60 parts by weight, preferably 10 to 60 parts by weight, based on 100 parts by weight of the total of the organic acid, vanadium oxide precursor and zirconium ion precursor, Preferably 40 to 50 parts by weight of a vanadium oxide precursor, and 1 to 5 parts by weight, preferably 2 to 4 parts by weight of a zirconium ion precursor.
상기 혼합물 생성시에 용매는 해당 기술 분야에서 일반적으로 사용되는 용매면 특별히 한정되지 않지만, 건조 및 열처리 후 잔류하지 않는 양극 활물질에 잔류하지 않는 용매가 바람직할 수 있다. 본 발명의 일 구체예에 따르면, 상기 용매는 물이 바람직할 수 있다. 생성된 혼합물은 용매의 전부 또는 일부를 제거하기 위해 건조된다. 건조 방법은 특별히 한정되지 않으며, 해당 기술 분야에서 일반적으로 사용되는 방법이 사용된다.The solvent during the preparation of the mixture is not particularly limited as long as it is a commonly used solvent in the related art, but a solvent that does not remain in the cathode active material that remains after drying and heat treatment may be preferable. According to one embodiment of the present invention, the solvent may be water. The resulting mixture is dried to remove all or part of the solvent. The drying method is not particularly limited, and a method generally used in the related art is used.
건조된 혼합물은 추가적인 잔류 용매 제거 및 적절한 바나듐 산화물 구조체를 형성하기 위해서 열처리된다. 상기 목적을 달성하기 위해, 열처리는 공기 분위기 하에 350 내지 650℃, 바람직하게는 450 내지 550℃로 1 내지 10시간, 바람직하게는 4 내지 8시간 동안 수행된다.The dried mixture is heat treated to remove additional residual solvent and form a suitable vanadium oxide structure. In order to achieve the above object, the heat treatment is carried out at 350 to 650 ° C, preferably 450 to 550 ° C, for 1 to 10 hours, preferably 4 to 8 hours, under an air atmosphere.
양극 및 이의 제조방법Anode and manufacturing method thereof
본 발명은 상술한 내용에 따른 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공한다. 구체적으로, 상기 리튬 이차전지용 양극은 양극 활물질층 및 양극 집전체를 포함하고, 상기 양극 활물질층은 양극 집전체 상에 형성되며 양극 활물질, 도전재 및 바인더를 포함한다.The present invention provides a positive electrode for a lithium secondary battery comprising the positive electrode active material according to the above-mentioned contents. Specifically, the cathode for a lithium secondary battery includes a cathode active material layer and a cathode current collector, and the cathode active material layer is formed on the cathode current collector and includes a cathode active material, a conductive material, and a binder.
상기 양극 활물질층에 포함되는 바인더는 양극 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분으로, 예컨대, 폴리비닐리덴플루오라이드(PVdF), 폴리비닐리덴플루오라이드-폴리헥사플루오로프로필렌 공중합체(PVdF/HFP), 폴리비닐아세테이트, 폴리비닐알코올, 폴리비닐에테르, 폴리에틸렌, 폴리에틸렌옥사이드, 알킬화 폴리에틸렌옥사이드, 폴리프로필렌, 폴리메틸(메트)아크릴레이트, 폴리에틸(메트)아크릴레이트, 폴리테트라플루오로에틸렌(PTFE), 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리비닐피롤리돈, 스티렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무, 에틸렌-프로필렌-디엔 모노머(EPDM) 고무, 술폰화 EPDM 고무, 스틸렌-부틸렌 고무, 불소 고무, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 및 이들의 혼합물로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.The binder contained in the positive electrode active material layer is a component that assists in bonding between the positive electrode active material and the conductive material and bonding to the current collector. Examples of the binder include polyvinylidene fluoride (PVdF), polyvinylidene fluoride-polyhexafluoro Propylene copolymer (PVdF / HFP), polyvinyl acetate, polyvinyl alcohol, polyvinyl ether, polyethylene, polyethylene oxide, alkylated polyethylene oxide, polypropylene, polymethyl (meth) acrylate, polyethyl Butadiene rubber, ethylene-propylene-diene monomer (EPDM) rubber, polyvinyl pyrrolidone, polyvinyl pyrrolidone, styrene-butadiene rubber, acrylonitrile- Sulfonated EPDM rubber, styrene-butylene rubber, fluororubber, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose At least one selected from the group consisting of celluloses, regenerated celluloses, and mixtures thereof, but is not limited thereto.
상기 바인더는 양극 활물질층 총 100 중량부를 기준으로 1 내지 30 중량부, 바람직하게는 5 내지 20 중량부 첨가된다. 바인더의 함량이 1 중량부 미만이면 양극 활물질과 집전체와의 접착력이 불충분해질 수 있고, 30 중량부를 초과하면 접착력은 향상되지만 그만큼 양극 활물질의 함량이 감소하여 전지 용량이 낮아질 수 있다.The binder is added in an amount of 1 to 30 parts by weight, preferably 5 to 20 parts by weight based on 100 parts by weight of the positive electrode active material layer. If the content of the binder is less than 1 part by weight, the adhesive force between the cathode active material and the current collector may be insufficient. If the amount of the binder is more than 30 parts by weight, the adhesive strength may be improved, but the content of the cathode active material may be decreased.
상기 양극 활물질층에 포함되는 도전재는 리튬 이차전지의 내부 환경에서 부반응을 유발하지 않고 당해 전지에 화학적 변화를 유발하지 않으면서 우수한 전기전도성을 갖는 것이라면 특별히 제한되지 않으며, 대표적으로는 흑연 또는 도전성 탄소를 사용할 수 있으며, 예컨대, 천연 흑연, 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 뎅카 블랙, 써멀 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 결정구조가 그라펜이나 그라파이트인 탄소계 물질; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화 아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 산화물; 및 폴리페닐렌 유도체 등의 도전성 고분자;를 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.The conductive material contained in the positive electrode active material layer is not particularly limited as long as it does not cause side reactions in the internal environment of the lithium secondary battery and does not cause chemical changes in the battery but has excellent electrical conductivity. Typically, the conductive material includes graphite or conductive carbon For example, graphite such as natural graphite and artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, black black, thermal black, channel black, furnace black, lamp black, and summer black; A carbon-based material whose crystal structure is graphene or graphite; Conductive fibers such as carbon fiber and metal fiber; Carbon fluoride; Metal powders such as aluminum and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive oxides such as titanium oxide; And polyphenylene derivatives may be used singly or in combination of two or more, but the present invention is not limited thereto.
상기 도전재는 양극 활물질층 총 100 중량부를 기준으로 1 내지 30 중량부, 바람직하게는 5 내지 20 중량부로 첨가된다. 도전재의 함량이 1 중량부 미만으로 너무 적으면 전기전도성 향상 효과를 기대하기 어렵거나 전지의 전기화학적 특성이 저하될 수 있으며, 도전재의 함량이 30 중량부를 초과하여 너무 많으면 상대적으로 양극 활물질의 양이 적어져 용량 및 에너지 밀도가 저하될 수 있다.The conductive material is added in an amount of 1 to 30 parts by weight, preferably 5 to 20 parts by weight based on 100 parts by weight of the positive electrode active material layer. If the content of the conductive material is less than 1 part by weight, the effect of improving electrical conductivity may not be expected or the electrochemical characteristics of the battery may deteriorate. If the content of the conductive material exceeds 30 parts by weight, the amount of the cathode active material And the capacity and the energy density may be lowered.
양극 활물질층에 도전재를 포함시키는 방법은 크게 제한되지 않으며, 양극 활물질에의 코팅 등 해당 기술 분야에 공지된 통상적인 방법을 사용할 수 있다. 또한 경우에 따라서는 양극 활물질에 도전성의 제2 피복층이 부가됨으로 인해 상기와 같은 도전재의 첨가를 대신할 수도 있다.The method of incorporating the conductive material into the cathode active material layer is not particularly limited, and conventional methods known in the art such as coating on the cathode active material can be used. In some cases, since the conductive second coating layer is added to the positive electrode active material, the addition of the conductive material as described above may be substituted.
본 발명의 양극을 구성하는 양극 활물질층에는 양극의 팽창을 억제하는 성분으로서 충진제가 선택적으로 더 첨가될 수 있다. 이러한 충진제는 당해 전지에 화학적 변화를 유발하지 않으면서 전극의 팽창을 억제할 수 있는 것이라면 특별히 제한되는 것은 아니며, 예컨대, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소 섬유 등의 섬유상 물질; 등을 사용할 수 있다.In the positive electrode active material layer constituting the positive electrode of the present invention, a filler may be optionally added as a component for suppressing the expansion of the positive electrode. Such a filler is not particularly limited as long as it can inhibit the expansion of the electrode without causing chemical change in the battery, and examples thereof include olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers; Etc. may be used.
상기 양극 활물질, 바인더 및 도전재를 포함하는 양극 활물질층은 분산매(용매)에 상기 물질들을 분산, 혼합시켜 슬러리를 만들고, 이를 양극 집전체 상에 도포한 후 건조 및 압연하여, 양극 집전체 상에 형성된다.The positive electrode active material layer including the positive electrode active material, the binder and the conductive material is prepared by dispersing and mixing the above materials in a dispersion medium (solvent) to prepare a slurry, applying it on the positive electrode current collector, drying and rolling, .
상기 분산매(용매)로는 NMP(N-methyl-2-pyrrolidone), DMF(Dimethyl formamide), DMSO(Dimethyl sulfoxide), 에탄올, 이소프로판올, 물 및 이들의 혼합물을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.N-methyl-2-pyrrolidone (DMF), dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), ethanol, isopropanol, water and mixtures thereof may be used as the dispersion medium.
상기 양극 집전체로는 백금(Pt), 금(Au), 팔라듐(Pd), 이리듐(Ir), 은(Ag), 루테늄(Ru), 니켈(Ni), 스테인리스스틸(STS), 알루미늄(Al), 몰리브데늄(Mo), 크롬(Cr), 카본(C), 티타늄(Ti), 텅스텐(W), ITO(In doped SnO2), FTO(F doped SnO2), 및 이들의 합금과, 알루미늄(Al) 또는 스테인리스스틸의 표면에 카본(C), 니켈(Ni), 티타늄(Ti) 또는 은(Ag)을 표면 처리한 것 등을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 양극 집전체의 형태는 호일, 필름, 시트, 펀칭된 것, 다공질체, 발포체 등의 형태일 수 있다.The positive electrode current collector may be formed of a metal such as platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), silver (Ag), ruthenium (Ru), nickel (Ni), stainless steel (STS) ), Molybdenum (Mo), chromium (Cr), carbon (C), titanium (Ti), tungsten (W), ITO (In doped SnO 2 ), FTO (F doped SnO 2 ) , A surface of aluminum (Al) or a stainless steel surface treated with carbon (C), nickel (Ni), titanium (Ti) or silver (Ag) may be used. The shape of the anode current collector may be in the form of a foil, a film, a sheet, a punched, a porous body, a foam or the like.
리튬 이차전지용 양극은 상술한 양극 활물질층 및 양극 집전체를 포함한다.The positive electrode for a lithium secondary battery includes the above-described positive electrode active material layer and a positive electrode collector.
리튬 이차전지Lithium secondary battery
본 발명은 상술한 내용에 따른 양극을 포함하는 리튬 이차전지를 제공한다.The present invention provides a lithium secondary battery comprising a positive electrode according to the above-described contents.
일반적으로 리튬 이차전지는 양극 활물질층과 양극 집전체로 구성된 양극, 음극 활물질층과 음극 집전체로 구성된 음극, 및 상기 양극과 음극 간의 전기적 접촉을 차단하고 리튬이온을 이동하게 하는 분리막으로 구성되며, 이들에 함침되어 리튬이온의 전도를 위한 전해액을 포함한다.Generally, a lithium secondary battery comprises a positive electrode composed of a positive electrode active material layer and a positive electrode collector, a negative electrode composed of a negative electrode active material layer and a negative electrode collector, and a separator intercepting electrical contact between the positive electrode and the negative electrode, And an electrolytic solution impregnated with them to conduct lithium ions.
상기 음극은 해당 기술 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들어, 음극 활물질, 도전재, 바인더, 필요에 따라 충진제 등을 분산매(용매)에 분산, 혼합시켜 슬러리를 만들고, 이를 음극 집전체 상에 도포한 후 건조 및 압연하여 음극을 제조할 수 있다.The negative electrode may be manufactured according to a conventional method known in the art. For example, a negative electrode may be prepared by dispersing and mixing a negative electrode active material, a conductive material, a binder, and a filler as necessary in a dispersion medium (solvent) to prepare a slurry, coating the dispersion on an anode current collector, followed by drying and rolling .
상기 음극 활물질로는 리튬 금속이나 리튬 합금(예컨대, 리튬과 알루미늄, 아연, 비스무스, 카드뮴, 안티몬, 실리콘, 납, 주석, 갈륨 또는 인듐 등과 같은 금속과의 합금)를 사용할 수 있다.As the negative electrode active material, lithium metal or a lithium alloy (for example, an alloy of lithium and a metal such as aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium or indium) may be used.
상기 음극 집전체로는 백금(Pt), 금(Au), 팔라듐(Pd), 이리듐(Ir), 은(Ag), 루테늄(Ru), 니켈(Ni), 스테인리스스틸(STS), 구리(Cu), 몰리브데늄(Mo), 크롬(Cr), 카본(C), 티타늄(Ti), 텅스텐(W), ITO(In doped SnO2), FTO(F doped SnO2), 및 이들의 합금과, 구리(Cu) 또는 스테인리스스틸의 표면에 카본(C), 니켈(Ni), 티타늄(Ti) 또는 은(Ag)을 표면 처리한 것 등을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 음극 집전체의 형태는 호일, 필름, 시트, 펀칭된 것, 다공질체, 발포체 등의 형태일 수 있다.The negative electrode collector may be formed of at least one selected from the group consisting of Pt, Au, Pd, Ir, Ag, Ru, Ni, STS, ), Molybdenum (Mo), chromium (Cr), carbon (C), titanium (Ti), tungsten (W), ITO (In doped SnO 2 ), FTO (F doped SnO 2 ) (C), nickel (Ni), titanium (Ti), or silver (Ag) on the surface of copper, copper or stainless steel may be used. The anode current collector may be in the form of a foil, a film, a sheet, a punched, a porous body, a foam or the like.
상기 분리막은 양극과 음극 사이에 개재되어 이들 사이의 단락을 방지하고 리튬이온의 이동 통로를 제공하는 역할을 한다.The separation membrane is interposed between the positive electrode and the negative electrode to prevent a short circuit therebetween and to provide a movement path of lithium ions.
분리막으로는 폴리에틸렌, 폴리프로필렌과 같은 올레핀계 폴리머, 유리섬유 등을 시트, 다중막, 미세다공성 필름, 직포 및 부직포 등의 형태로 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 한편 전해질로서 폴리머 등의 고체 전해질(예컨대, 유기 고체 전해질, 무기 고체 전해질 등)이 사용되는 경우에는 상기 고체 전해질이 분리막을 겸할 수도 있다. 구체적으로는, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막을 사용한다. 분리막의 기공 직경은 일반적으로 0.01 내지 10㎛, 두께는 일반적으로 5 내지 300㎛ 범위일 수 있다.As the separation membrane, an olefin-based polymer such as polyethylene or polypropylene, glass fiber or the like may be used in the form of a sheet, a multilayer, a microporous film, a woven fabric and a nonwoven fabric, but is not limited thereto. On the other hand, when a solid electrolyte such as a polymer (for example, an organic solid electrolyte, an inorganic solid electrolyte or the like) is used as the electrolyte, the solid electrolyte may also serve as a separation membrane. Specifically, an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator is generally from 0.01 to 10 mu m, and the thickness generally ranges from 5 to 300 mu m.
상기 전해액으로는 비수계 전해액(비수계 유기 용매)으로서 카보네이트, 에스테르, 에테르 또는 케톤을 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.As the electrolyte solution, carbonate, ester, ether, or ketone may be used alone or as a mixture of two or more of them as a non-aqueous liquid electrolyte (non-aqueous organic solvent), but the present invention is not limited thereto.
예를 들어, 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸에틸 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, γ-부틸로락톤, n-메틸 아세테이트, n-에틸 아세테이트, n-프로필 아세테이트, 인산 트리에스테르, 디부틸 에테르, 디메틸에테르, N-메틸-2-피롤리디논, 1,2-디메톡시 에탄, 테트라히드록시 프랑(Franc), 2-메틸 테트라하이드로푸란과 같은 테트라하이드로푸란 유도체, 디메틸설폭시드, 포름아미드, 디메틸포름아미드, 디옥소런 및 그 유도체, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산 메틸, 트리메톡시 메탄, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기 용매가 사용될 수 있으나, 반드시 이에 한정되는 것은 아니다.Examples of the solvent include dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, Ethyl acetate, n-propyl acetate, phosphoric acid triester, dibutyl ether, dimethyl ether, N-methyl-2-pyrrolidinone, 1,2-dimethoxyethane, tetrahydroxyfurfurane (Franc) Tetrahydrofuran derivatives such as tetrahydrofuran and tetrahydrofuran, dimethyl sulfoxide, formamide, dimethylformamide, dioxolane and derivatives thereof, acetonitrile, nitromethane, methyl formate, methyl acetate, trimethoxymethane, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, methyl propionate, ethyl propionate and the like can be used. This is not limited.
상기 전해액에는 리튬염을 더 첨가하여 사용할 수 있으며(이른바, 리튬염 함유 비수계 전해액), 상기 리튬염으로는 비수계 전해액에 용해되기 좋은 공지의 것, 예를 들어 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiPF3(CF2CF3)3, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, LiFSI, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등을 들 수 있으나, 반드시 이에 한정되는 것은 아니다.(Lithium salt-containing non-aqueous electrolyte solution), and the lithium salt may be a known one which is soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4, LiB 10 Cl 10 , LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiPF 3 (CF 2 CF 3) 3, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, LiFSI, chloroborane lithium, lower aliphatic carboxylate lithium, lithium tetraphenylborate, imide, and the like.
상기 (비수계) 전해액에는 충·방전 특성, 난연성 등의 개선을 목적으로, 예를 들어 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위해 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온보존 특성을 향상시키기 위해 이산화탄산 가스를 더 포함시킬 수도 있다.The above (non-aqueous) electrolytic solution may contain, for the purpose of improving charge / discharge characteristics, flame retardancy, etc., for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, Amide, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxyethanol, . In some cases, a halogen-containing solvent such as carbon tetrachloride, ethylene trifluoride or the like may be further added to impart nonflammability, or a carbon dioxide gas may be further added to improve high-temperature storage characteristics.
본 발명의 리튬 이차전지는 당 분야의 통상적인 방법에 따라 제조할 수 있다. 예를 들어, 양극과 음극 사이에 다공성의 분리막을 넣고, 비수 전해액을 투입함으로써 제조할 수 있다.The lithium secondary battery of the present invention can be produced by a conventional method in the art. For example, a porous separator may be placed between the anode and the cathode, and a non-aqueous electrolyte may be added.
본 발명에 따른 리튬 이차전지는 고속 충·방전 사이클 조건에서 향상된 용량 특성(급격한 용량 저하 방지)을 나타낼 뿐만 아니라, 사이클 특성, 레이트(Rate) 특성 및 수명 특성이 우수한 바, 소형 디바이스의 전원으로 사용되는 전지 셀에 적용됨은 물론, 중대형 디바이스의 전원인 전지모듈의 단위전지로 특히 적합하게 사용될 수 있다.The lithium secondary battery according to the present invention not only exhibits improved capacity characteristics (rapid capacity decrease prevention) under high-speed charge / discharge cycle conditions, but also excellent cycle characteristics, rate characteristics and life characteristics, The present invention can be suitably used as a unit cell of a battery module which is a power source of a medium and large-sized device.
이러한 측면에서, 본 발명은 또한 상기 리튬 이차전지 2개 이상이 전기적으로 연결(직렬 또는 병렬)되어 포함된 전지모듈을 제공한다. 상기 전지모듈에 포함되는 리튬 이차전지의 수량은 전지모듈의 용도 및 용량 등을 고려하여 다양하게 조절될 수 있음은 물론이다.In this respect, the present invention also provides a battery module in which two or more lithium secondary batteries are electrically connected (in series or in parallel). It is needless to say that the number of lithium secondary batteries included in the battery module may be variously controlled in consideration of the use and capacity of the battery module.
나아가, 본 발명은 당 분야의 통상적인 기술에 따라 상기 전지모듈을 전기적으로 연결한 전지팩을 제공한다.Further, the present invention provides a battery pack in which the battery module is electrically connected according to a conventional technique.
상기 전지모듈 및 전지팩은 파워 툴(Power Tool); 전기차(Electric Vehicle, EV), 하이브리드 전기차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 전기 트럭; 전기 상용차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용가능하나, 반드시 이에 한정되는 것은 아니다.The battery module and the battery pack may include a power tool; An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle (PHEV); Electric truck; Electric commercial vehicle; Or a power storage system, but is not limited thereto.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the present invention is not limited thereto.
실시예Example
실시예Example 1 One
1. 양극 활물질의 제조1. Preparation of cathode active material
시트르산(시그마 알드리치 사 제품), 바나듐 산화물 전구체(NH4VO3, 대정 화금 사 제품) 및 지르코늄 이온 전구체(ZrOCl2·8H2O, 시그마 알드리치 사 제품)를 증류수에 용해시킨 후 혼합하여 혼합물을 제조하였다. 상기 혼합물을 건조한 후, 공기 분위기 하에 500℃에서 6시간 동안 열처리하여 양극 활물질을 제조하였다. 여기서, 시트르산 : 바나듐 산화물 전구체 : 지르코늄 이온 전구체의 혼합 중량비는 54 : 43 : 3이었다(바나듐 산화물 대비 5mol%의 Zr 이온을 포함하는 양극 활물질).Citric acid (Sigma Aldrich Co.), vanadium oxide precursor (NH 4 VO 3, vena hwageum Co., Ltd.) and zirconium ion precursor to prepare a mixture by mixing and then dissolving (ZrOCl 2 · 8H 2 O, Sigma-Aldrich Co.) in distilled water Respectively. The mixture was dried and then heat-treated at 500 ° C for 6 hours in an air atmosphere to prepare a cathode active material. Here, the mixing weight ratio of the citric acid: vanadium oxide precursor: zirconium ion precursor was 54: 43: 3 (cathode active material containing 5 mol% of Zr ion relative to vanadium oxide).
2. 리튬 이차전지용 양극의 제조2. Preparation of anode for lithium secondary battery
상기 방법으로 제조한 양극 활물질을 도전재 및 바인더와 혼합한 후, N-메틸피롤리돈(NMP)에 분산시켜 슬러리를 제조하였다. 상기 실러리를 알루미늄 집전체에 도포한 후 건조하여 양극을 제조하였다. 여기서, 상기 도전재는 슈퍼-C(Super-C)를 사용하였고, 상기 바인더는 폴리비닐리덴 플로라이드(PVDF)를 사용하였다. 또한, 양극 활물질 : 도전재 : 바인더의 혼합 중량비는 8 : 1 : 1이었다.The cathode active material prepared by the above method was mixed with a conductive material and a binder and dispersed in N-methyl pyrrolidone (NMP) to prepare a slurry. The slurry was applied to an aluminum current collector and dried to prepare a positive electrode. Here, Super-C was used as the conductive material, and polyvinylidene fluoride (PVDF) was used as the binder. The mixing ratio by weight of the cathode active material: conductive material: binder was 8: 1: 1.
3. 리튬 이차전지의 제조3. Preparation of lithium secondary battery
상기 방법으로 제조한 양극을 음극과 대면하도록 위치시킨 후, 양극과 음극 사이에 분리막을 개재하였다. 그 후, 케이스 내부로 전해액을 주입하여 코인셀을 제조하였다. 여기서, 상기 음극은 리튬 금속을 사용하였고, 상기 분리막은 폴리에틸렌 분리막을 사용하였으며, 상기 전해액은 디메틸에테르 (DME)의 유기용매에 4M 농도의 LiFSI가 용해된 전해액을 사용하였다.After the prepared positive electrode was positioned to face the negative electrode, a separator was interposed between the positive electrode and the negative electrode. Thereafter, an electrolytic solution was injected into the case to prepare a coin cell. Here, lithium metal was used as the negative electrode, a polyethylene separator was used as the separator, and an electrolytic solution in which LiFSI of 4M concentration was dissolved in an organic solvent of dimethyl ether (DME) was used.
실시예Example 2 2
양극 활물질의 제조 단계에서 시트르산 : 바나듐 산화물 전구체 : 지르코늄 이온 전구체의 혼합 중량비는 53 : 43 : 4인 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬 이차전지를 최종적으로 제조하였다(바나듐 산화물 대비 10mol%의 Zr 이온을 포함하는 양극 활물질).A lithium secondary battery was finally prepared in the same manner as in Example 1 except that the mixing weight ratio of citric acid: vanadium oxide precursor: zirconium ion precursor in the production step of the cathode active material was 53: 43: 4 (10 mol % ≪ / RTI > Zr ion).
비교예Comparative Example 1 One
양극 활물질의 제조 단계에서 지르코늄 이온 전구체 없이 시트르산과 바나듐 산화물 전구체를 56 : 44의 중량비로 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬 이차전지를 최종적으로 제조하였다.A lithium secondary battery was finally prepared in the same manner as in Example 1, except that zirconium ion precursor and citric acid and vanadium oxide precursor were mixed in a weight ratio of 56:44 in the production step of the cathode active material.
실험예Experimental Example 1: 전지의 수명 특성 분석 1: Analysis of battery life characteristics
전지의 수명 특성을 분석하기 위해, 실시예 1 및 2와 비교예 1에서 제조된 코인셀(4.0 ~ 2.1V)을 충전 0.2C/방전 0.5C의 조건으로 반복적으로 충/방전하여 각 사이클에 따른 비용량 (Specific Capacity)을 측정하였다. 그 결과를 도 1에 나타내었다. 도 1에 의하면, 실시예 1 및 2의 코인셀은 비교예 1의 코인셀과 대비하여 사이클의 진행에 비용량의 감소량이 현저하게 줄어든 것을 확인할 수 있었다.In order to analyze the lifespan characteristics of the battery, the coin cell (4.0 to 2.1 V) manufactured in Examples 1 and 2 and Comparative Example 1 was repeatedly charged / discharged under the conditions of 0.2 C / discharge 0.5 C, Specific Capacity was measured. The results are shown in Fig. 1, it can be seen that the coin cells of Examples 1 and 2 are significantly reduced in the amount of non-capacity reduction in the course of the cycle as compared with the coin cell of Comparative Example 1. [
실험예Experimental Example 2:  2: XRDXRD 분석 analysis
실시예 1 및 2와 비교예 1에서 제조된 양극 활물질을 XRD 분석하여, 그 결과를 도 2에 나타내었다. 도 2에 의하면, 실시예 2에 대한 그래프에서 ZrV2O7 결정 피크가 나타나는 것을 확인할 수 있었다. ZrV2O7 결정은 전극의 용량을 감소시킬 수 있기 때문에, 도 1에 표시된 바와 같이 실시예 2의 코인셀은 초기의 비용량 값이 낮게 나타났다.The cathode active materials prepared in Examples 1 and 2 and Comparative Example 1 were subjected to XRD analysis, and the results are shown in FIG. 2, it can be confirmed that a ZrV 2 O 7 crystal peak appears in the graph of Example 2. Since the ZrV 2 O 7 crystal can reduce the capacity of the electrode, the initial specific capacity value of the coin cell of Example 2 was low as shown in Fig.
실험예Experimental Example 3: 바나듐 용출량 분석 3: Analysis of vanadium leaching
50 사이클 진행 후, 실시예 1과 비교예 1의 코인셀에서 바나듐의 용출량을 측정하여 도 3에 나타내었다. 상기 용출량 측정은 50 사이클 충·방전 후 셀을 분해하고, 분리막과 리튬 음극을 ICP 분석하여 남아 있는 바나듐의 양을 측정하고, 양극 활물질 대비 분리막과 리튬 음극에 남아있는 양을 용출량으로 계산하였다. 도 3에 의하면, 실시예 1과 같이 바나듐 산화물에 지르코늄 이온을 도핑하는 경우 바나듐의 용출량이 유의미한 수준으로 감소되는 것을 확인할 수 있었다.After 50 cycles, the elution amount of vanadium in the coin cells of Example 1 and Comparative Example 1 was measured and shown in Fig. The elution amount was measured by dissolving the cell after 50 cycles of charging and discharging, measuring the remaining amount of vanadium by ICP analysis of the separator and the lithium anode, and calculating the amount of remaining vanadium in the separator and the lithium cathode compared to the cathode active material. 3, when the vanadium oxide was doped with zirconium ions as in Example 1, it was confirmed that the amount of vanadium elution was reduced to a significant level.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것이며, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.It is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (14)

  1. 지르코늄(Zr) 이온이 도핑된 바나듐 산화물을 포함하는 리튬 이차전지용 양극 활물질.A cathode active material for a lithium secondary battery comprising a vanadium oxide doped with zirconium (Zr) ions.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 바나듐 산화물은 하기 화학식 1로 표현되는 화합물인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.Wherein the vanadium oxide is a compound represented by the following formula (1).
    [화학식 1][Chemical Formula 1]
    VaOb V a O b
    상기 화학식 1에서, 1 ≤ a ≤ 6이고, 2 ≤ b ≤ 13이다.In the above formula (1), 1? A? 6 and 2? B? 13.
  3. 청구항 2에 있어서,The method of claim 2,
    상기 바나듐 산화물은 오산화바나듐(V2O5)인 것을 특징으로 하는 리튬 이차전지용 양극 활물질.Wherein the vanadium oxide is vanadium pentoxide (V 2 O 5 ).
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 지르코늄 이온은 바나듐 산화물을 기준으로 0.1mol%이상 10mol%미만이 도핑되는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.Wherein the zirconium ion is doped in an amount of 0.1 mol% or more and less than 10 mol% based on the vanadium oxide.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 지르코늄 이온은 바나듐 산화물을 기준으로 3mol% 내지 7mol%가 도핑되는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.Wherein the zirconium ion is doped in an amount of 3 mol% to 7 mol% based on the vanadium oxide.
  6. 청구항 1에 따른 리튬 이차전지용 양극 활물질의 제조방법으로서,A method for producing a positive electrode active material for a lithium secondary battery according to claim 1,
    상기 제조방법은,In the above manufacturing method,
    (1) 유기산, 바나듐 산화물 전구체 및 지르코늄 이온 전구체를 용매에 용해시킨 후 혼합하여 혼합물을 생성하는 단계;(1) dissolving an organic acid, a vanadium oxide precursor and a zirconium ion precursor in a solvent, and then mixing to produce a mixture;
    (2) 생성된 혼합물을 건조하는 단계; 및(2) drying the resulting mixture; And
    (3) 건조된 혼합물을 열처리하는 단계를 포함하는 리튬 이차전지용 양극 활물질의 제조방법.(3) heat-treating the dried mixture.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 (1) 단계에서 유기산은 시트르산, 옥살산, 타닌산 또는 이의 조합인 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.Wherein the organic acid in step (1) is citric acid, oxalic acid, tannic acid, or a combination thereof.
  8. 청구항 6에 있어서,The method of claim 6,
    상기 (1) 단계에서 바나듐 산화물 전구체는 바나듐 옥사이드, 바나듐산 암모늄 또는 이의 조합인 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.Wherein the vanadium oxide precursor in step (1) is vanadium oxide, ammonium vanadium, or a combination thereof.
  9. 청구항 6에 있어서,The method of claim 6,
    상기 (1) 단계에서 지르코늄 이온 전구체는 지르코늄염 수화물인 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.Wherein the zirconium ion precursor is a zirconium salt hydrate in the step (1).
  10. 청구항 6에 있어서,The method of claim 6,
    상기 (1) 단계에서 상기 혼합물은,The mixture in the step (1)
    유기산, 바나듐 산화물 전구체 및 지르코늄 이온 전구체 총 100 중량부를 기준으로,Based on 100 parts by weight of the organic acid, the vanadium oxide precursor and the zirconium ion precursor in total,
    40 내지 70 중량부의 유기산;40 to 70 parts by weight of an organic acid;
    30 내지 60 중량부의 바나듐 산화물 전구체; 및30 to 60 parts by weight of a vanadium oxide precursor; And
    1 내지 5 중량부의 지르코늄 이온 전구체를 포함하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.And 1 to 5 parts by weight of a precursor of zirconium ion.
  11. 청구항 6에 있어서,The method of claim 6,
    상기 (3) 단계는 건조된 혼합물을 공기 분위기 하에 350 내지 650℃로 1 내지 10시간 동안 열처리하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.Wherein the step (3) comprises heat-treating the dried mixture at 350 to 650 ° C for 1 to 10 hours in an air atmosphere.
  12. 청구항 1에 따른 양극 활물질, 도전재 및 바인더를 포함하는 양극 활물질층; 및 양극 집전체를 포함하고,A cathode active material layer comprising a cathode active material, a conductive material and a binder according to claim 1; And a positive electrode collector,
    상기 양극 활물질층은 양극 집전체 상에 형성되는 리튬 이차전지용 양극.Wherein the positive electrode active material layer is formed on the positive electrode collector.
  13. 청구항 12에 있어서,The method of claim 12,
    상기 양극 활물질층은,The positive electrode active material layer
    양극 활물질층 총 100 중량부를 기준으로,Based on the total 100 parts by weight of the positive electrode active material layer,
    50 내지 90 중량부의 양극 활물질;50 to 90 parts by weight of a cathode active material;
    1 내지 30 중량부의 도전재; 및1 to 30 parts by weight of a conductive material; And
    1 내지 30 중량부의 바인더를 포함하는 것을 특징으로 하는 리튬 이차전지용 양극.1. A positive electrode for a lithium secondary battery, comprising: 1 to 30 parts by weight of a binder.
  14. 청구항 12에 따른 양극을 포함하는 리튬 이차전지.A lithium secondary battery comprising a positive electrode according to claim 12.
PCT/KR2018/010105 2017-09-27 2018-08-31 Positive electrode active material for lithium secondary battery, and method for producing positive electrode active material WO2019066275A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0124807 2017-09-27
KR1020170124807A KR20190036049A (en) 2017-09-27 2017-09-27 Positive electrode active material for lithium secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
WO2019066275A2 true WO2019066275A2 (en) 2019-04-04
WO2019066275A3 WO2019066275A3 (en) 2019-05-23

Family

ID=65901639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010105 WO2019066275A2 (en) 2017-09-27 2018-08-31 Positive electrode active material for lithium secondary battery, and method for producing positive electrode active material

Country Status (2)

Country Link
KR (1) KR20190036049A (en)
WO (1) WO2019066275A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094059A (en) * 2021-09-28 2022-02-25 格林美(湖北)新能源材料有限公司 Composite nano-layer coated cobalt-free single crystal positive electrode material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764561B (en) 2020-02-06 2022-05-11 日商旭化成建材股份有限公司 Phenolic Resin Foamed Volume Laminate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110066585A (en) 2009-12-11 2011-06-17 주식회사 하이닉스반도체 Method for test pattern of semiconductor device
CN103641170B (en) * 2013-12-09 2015-08-05 江苏大学 A kind of method of direct synthesizing submicron vanadic acid zirconium
KR101579251B1 (en) * 2014-05-16 2015-12-22 동국대학교 산학협력단 Positive active material of lithium ion battery comprising lithium banadium zirconium phosphate and lithium ion battery comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094059A (en) * 2021-09-28 2022-02-25 格林美(湖北)新能源材料有限公司 Composite nano-layer coated cobalt-free single crystal positive electrode material and preparation method thereof

Also Published As

Publication number Publication date
KR20190036049A (en) 2019-04-04
WO2019066275A3 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2015041450A1 (en) Porous silicon-based anode active material, and lithium secondary battery containing same
WO2015030402A1 (en) Lithium transition metal composite particles, method for preparing same, and positive active materials comprising same
WO2014014274A1 (en) Carbon-silicon composite, method for preparing same, and cathode active material comprising carbon-silicon composite
WO2018012694A1 (en) Lithium secondary battery having lithium metal formed on cathode and manufacturing method therefor
WO2010093219A2 (en) Lithium secondary battery with improved energy density
WO2019088672A1 (en) Anode active material for electrochemical device, anode comprising same anode active material, and electrochemical device comprising same anode
WO2016108384A1 (en) Cathode active material for lithium-ion secondary batteries, method for producing same, and lithium-ion secondary battery comprising same
WO2010101396A2 (en) Positive electrode material having a high energy density, and lithium secondary battery comprising same
WO2017171425A1 (en) Cathode active material particles including core containing lithium cobalt oxide and coating layer containing boron and fluorine, and method for preparing same
WO2013085317A1 (en) Composite cathode active material with improved output characteristic and secondary battery, battery module, and battery pack using same
WO2018164405A1 (en) Anode active material, anode comprising anode active material, and secondary battery comprising anode
WO2018212481A1 (en) Method for manufacturing anode for lithium secondary battery
WO2014168398A1 (en) Electrode laminate comprising electrodes having different areas and secondary battery comprising same
WO2018016737A1 (en) Lithium secondary battery comprising cathode active material for synthesizing lithium cobalt oxide, and manufacturing method therefor
WO2020071814A1 (en) Multilayer-structured anode comprising silicon-based compound, and lithium secondary battery comprising same
WO2019225879A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
WO2013157832A1 (en) Method of manufacturing electrode for lithium secondary cell and electrode manufactured by using same
WO2019103499A1 (en) Anode active material for lithium secondary battery, and preparation method therefor
KR20200018902A (en) A negative electrode for a lithium secondary battery formed with a ferroelectric polymer protective layer, method for preparing the same, and a lithium secondary battery including the negative electrode
WO2019083332A2 (en) Silicon-carbon composite and lithium secondary battery comprising same
WO2018147558A1 (en) Method for manufacturing electrode for secondary battery suitable for long life
WO2018062883A2 (en) Anode for lithium secondary battery comprising mesh-shaped insulating layer, and lithium secondary battery comprising same
WO2019066275A2 (en) Positive electrode active material for lithium secondary battery, and method for producing positive electrode active material
WO2020145638A1 (en) Method for producing positive electrode active material for lithium secondary battery, and positive electrode active material produced thereby
WO2014061973A1 (en) Method for preparing silicon oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861430

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861430

Country of ref document: EP

Kind code of ref document: A2