WO2022114849A1 - 증발식 응축기 및 이를 포함하는 공기 조화기 - Google Patents

증발식 응축기 및 이를 포함하는 공기 조화기 Download PDF

Info

Publication number
WO2022114849A1
WO2022114849A1 PCT/KR2021/017621 KR2021017621W WO2022114849A1 WO 2022114849 A1 WO2022114849 A1 WO 2022114849A1 KR 2021017621 W KR2021017621 W KR 2021017621W WO 2022114849 A1 WO2022114849 A1 WO 2022114849A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
fluid
air
row
module
Prior art date
Application number
PCT/KR2021/017621
Other languages
English (en)
French (fr)
Inventor
한재현
정철기
이동근
황인수
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200163010A external-priority patent/KR20220074472A/ko
Priority claimed from KR1020210150027A external-priority patent/KR20220074734A/ko
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to EP21898674.3A priority Critical patent/EP4253872A1/en
Priority to US18/253,855 priority patent/US20240027110A1/en
Priority to AU2021388344A priority patent/AU2021388344A1/en
Priority to CN202180079474.8A priority patent/CN116635679A/zh
Priority to MX2023006131A priority patent/MX2023006131A/es
Publication of WO2022114849A1 publication Critical patent/WO2022114849A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0207Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions the longitudinal or transversal partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/041Details of condensers of evaporative condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0066Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications with combined condensation and evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic

Definitions

  • the present invention relates to an evaporative condenser with improved cooling efficiency and an air conditioner including the same.
  • the condenser is a heat exchanger that cools and liquefies the high-temperature, high-pressure refrigerant vapor supplied from the compressor, and serves to discharge heat in the refrigeration cycle to the outside.
  • Evaporative condenser is a combination of water cooling and air cooling, spraying water on the tube through which the cooling fluid passes, flowing the air supplied from the blower to the surface of the tube, and discharging the vapor vaporized from the surface of the tube to discharge the cooling fluid is configured to cool the
  • Patent Document 1 discloses an evaporative condenser.
  • a flow path of a cooling fluid is formed inside and one flat tube formed by bending in a zigzag direction, an evaporated water supply unit that supplies evaporated water to the flat tube, and a blower that supplies air in the opposite direction of the evaporated water is disclosed.
  • Patent Document 1 since one flat tube is used, the cross section from the fluid inlet side to the outlet side becomes constant. However, in the condenser, vapor is cooled and liquefied. Even if the same volume is introduced, the volume decreases from the inlet side to the outlet side. When the cross section is constant, pressure loss occurs due to the volume decrease.
  • Patent Document 1 KR10-2019-0006781 A
  • the present invention is to solve the above problems, and an object of the present invention is to provide an evaporative condenser capable of securing cooling performance without pressure loss and an air conditioner including the same.
  • the present invention provides the following evaporative condenser and air conditioner in order to achieve the above object.
  • a condensing module comprising a fluid passage; a water injection module for spraying water passing through the condensation module from the top of the condensation module; and a blowing module disposed on one side of the condensing module to provide air passing through the condensing module; an evaporative condenser comprising a, wherein the condensing module is disposed on one side and a first header having a flow path formed therein, disposed on the other side and N header rows including a second header having a flow path formed therein and a plurality of connecting tubes connecting the flow paths of the first header and the second header between the first header and the second header are stacked, where N 2 or more natural water, the condensing module, the water supply rate and the blowing module provide an evaporative condenser disposed so that the water sprayed by the water injection module and the air provided by the blowing module pass between the connection tubes of the condensation module.
  • the fluid inlet is connected to the first header row
  • the fluid outlet is connected to the N-th header row
  • the stacking direction from the first header row to the N-th header row and the air of the blowing module may be opposite to each other.
  • the fluid inlet is connected to a first header of the first header row, and between a first header of the first header row and a first header of a second header row disposed above the first header row A flow path hole may be formed in the .
  • the header row includes a 2-1 direction header row in which a fluid flows in a 2-1 direction from a first header to a second header in the connection tube and a first header from a second header in the connection tube.
  • a header row in a 2-2 direction through which a fluid flows in a facing second direction is included, and
  • a header row sequentially stacked from the first header row is a header row in a 2-1 direction, and includes the N-th header row.
  • the header row includes a 2-1 direction header row in which a fluid flows in a 2-1 direction from a first header to a second header in the connection tube, and a first header from a second header in the connection tube.
  • a header row in a 2-2 direction in which fluid flows in a 2-2 direction toward The B header sequences sequentially stacked on the header sequence are a 2-2 direction header sequence, and the C header sequences sequentially stacked on the A+B-th header sequence are the 2-1 direction header sequences, and A, B, C is a natural number, A ⁇ B, A>C, and A+B+C ⁇ N may be satisfied.
  • the header row includes a 2-1 direction header row in which a fluid flows in a 2-1 direction from a first header to a second header in the connection tube and a first header from a second header in the connection tube. and a 2-2 direction header row in which fluid flows in a 2-2 direction facing, wherein the fluid introduced into the fluid inlet alternately passes through the 2-1 direction header row and the 2-2 direction header row, and then the fluid It is discharged to the outlet, and from the fluid inlet to the fluid outlet, the number of header rows in the 2-1 direction or 2-2 direction through which the fluid passes may decrease.
  • the fluid inlet is connected to the first header of the first header row
  • the fluid outlet is connected to the Nth header row
  • the connection tube is directed from the first header toward the second header in a 2-1 direction.
  • a fluid introduced into the fluid inlet comprising: a 2-1 direction connection tube through which a fluid flows; and a 2-2 direction connection tube through which a fluid flows in a 2-2 direction from the second header toward the first header. is discharged to the fluid outlet after passing through the 2-1 th direction connecting tube and the 2nd 2nd direction connecting tube alternately, and from the fluid inlet to the fluid outlet, the number of connecting tubes through which the fluid passes may decrease .
  • the header row including the 2-1-th direction connecting tube and the 2-2 direction connecting tube may include the 2-1-th direction connecting tube and the 2-2-th direction connecting tube in the first or second header.
  • a baffle may be disposed at a corresponding position between the directional connecting tubes.
  • the fluid inlet is connected to the first header row
  • the fluid outlet is connected to the Nth header row
  • the fluid flows in a 2-1 direction from the first header to the second header in the connection tube
  • the condensing module is configured such that the flow of the fluid in the connection tube is in the 2-1 direction and the 2-2 direction.
  • the sum of the cross-sectional areas through which the fluid passes in the one direction may include a portion greater than the sum of the cross-sectional areas through which the fluid passes in the other direction.
  • an air conditioner comprising an evaporator, an expansion valve, a compressor, and a condenser as a refrigerant cycle, wherein the condenser is the above-described evaporative condenser.
  • the air conditioner may include: an indoor unit in which the evaporator is disposed; an outdoor unit in which the evaporative condenser is disposed; and a connecting passage connecting the blowing module and the room.
  • the air conditioner may include a supply passage through which air is supplied from the outdoor to the indoor; an exhaust passage through which air is discharged from indoors to outdoors; and a ventilation heat exchanger disposed on the supply flow path and the discharge flow path, wherein the air supplied to the room and the air discharged to the outside cross and exchange heat.
  • the air conditioner may include a supply passage through which air is supplied from the outdoor to the indoor; an exhaust passage through which air is discharged from indoors to outdoors; and an evaporative cooler disposed on the supply passage and including a water injection module; Including, the discharge passage may be connected to the blowing module.
  • the air conditioner may include a circulation passage for circulating indoor air, and the evaporator may be disposed on a path of the circulation passage.
  • the air conditioner may include an outdoor unit in which the condenser is disposed; an indoor unit in which the evaporator is disposed, wherein the outdoor unit is disposed on an inflow passage through which outdoor air is introduced, and includes a dry channel and a wet channel, and an evaporative cooler for cooling the air passing through the dry channel; a dehumidifying rotor disposed before the evaporative cooler on the inflow passage and dehumidifying the incoming air; and a heating unit disposed before the dehumidification rotor on a regeneration passage through which air for regenerating the dehumidification rotor passes and heating the air, wherein the dehumidification rotor is disposed over the regeneration passage and the inlet passage, and the inlet passage includes: After passing through the evaporative cooler, it branches into an indoor supply passage connected to a room, a condenser supply passage connected to the condenser, and a cooler supply passage connected to a wet channel of the evaporative
  • the air conditioner may further include a discharge flow path through which air is discharged from the room, and the discharge flow path may be connected to the regeneration flow path.
  • the present invention can provide a three-dimensional evaporative condenser in which no pressure loss occurs and an air conditioner including the same.
  • FIG. 1 is a schematic perspective view of a condensation module of an evaporative condenser according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the condensing module of FIG. 1 .
  • FIG. 3 is a schematic diagram of an evaporative condenser
  • FIG. 4 is a cross-sectional perspective view of a first header of a first to third header row of the condensing module of FIG. 1 ;
  • 5A to 5D are schematic diagrams of a condensation module according to another embodiment of the present invention.
  • FIG. 6A is a schematic perspective view of a condensation module according to another embodiment of the present invention
  • FIG. 6B is a schematic plan view of each header row of the condensation module of FIG. 6A .
  • FIG. 7A is a schematic perspective view of a condensation module according to another embodiment of the present invention
  • FIG. 7B is a schematic plan view of each header row of the condensation module of FIG. 7A .
  • FIG. 8A is a schematic perspective view of a condenser according to another embodiment of the present invention
  • FIG. 8B is a schematic cross-sectional view taken along line A-A of the condenser of FIG. 8A .
  • FIG. 9A is a schematic perspective view of a condenser according to another embodiment of the present invention
  • FIG. 9B is a schematic cross-sectional view taken along line A-A of the condenser of FIG. 9A .
  • FIG. 10A is a schematic perspective view of a condenser according to another embodiment of the present invention
  • FIG. 10B is a schematic cross-sectional view taken along line A-A of the condenser of FIG. 10A .
  • FIG. 11A is a schematic perspective view of a condenser according to another embodiment of the present invention
  • FIG. 11B is a schematic cross-sectional view taken along line A-A of the condenser of FIG. 11A .
  • FIG. 12A is a schematic diagram of an air conditioner according to a first embodiment of the present invention.
  • 12B, 12C, and 12D are schematic views of an air conditioner according to a modification of the first embodiment of the present invention.
  • FIG. 13 is a schematic diagram of an air conditioner according to a second embodiment of the present invention.
  • FIGS. 14B and 14C are an air conditioner according to a modified example of the third embodiment.
  • FIG. 15 is a schematic diagram of an air conditioner according to a fourth embodiment of the present invention.
  • FIG. 16 is a schematic diagram of an air conditioner according to a fifth embodiment of the present invention.
  • FIG. 17 is a schematic diagram of an air conditioner according to a sixth embodiment of the present invention.
  • FIG. 18A is a schematic diagram of a house in which an air conditioner according to a sixth embodiment of the present invention is installed, and FIG. 18B is a schematic diagram of a furnace.
  • FIG. 19 is a schematic diagram of an air conditioner according to a seventh embodiment of the present invention.
  • FIG. 20 is a schematic diagram of an air conditioner according to an eighth embodiment of the present invention.
  • Ventilation heat exchanger 170 evaporative cooler
  • FIG. 1 is a schematic perspective view of the condenser 1 according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the condenser 1 of FIG. 1
  • FIG. 3 is the condenser of FIG.
  • a schematic diagram of an evaporative cooling device comprising (1) is shown
  • FIG. 4 is the first header 11, 21 of the first to third header rows 10, 20, 30 of the condenser 1 of FIG. , 31) is shown in cross-sectional perspective.
  • the condenser 1 includes first to sixth header rows 10, 20, 30, 40, 50, 60, and the first header row A fluid inlet (I) is connected to (10), and a fluid outlet (O) is connected to the sixth header row (60), and connecting tubes of the first to sixth header rows (10, 20, 30, 40, 50, 60)
  • Covers 81 and 82 are disposed on both front and back sides of (13, 23, 33, 43, 53, 63), and a fin member that helps heat exchange between each connection tube (13, 23, 33, 43, 53, 63) (F) is placed.
  • a water injection module 90 for spraying water is disposed on the upper portion of the condenser 1, and a blower 95 for flowing air between the connecting tubes 13, 23, 33, 43, 53, 63 is disposed on the lower portion. .
  • the fluid flows into the first header row 10 at the bottom, and exits into the sixth header row 60 at the top.
  • Water is sprayed from top to bottom through the watering module 90 .
  • the air passes through the connecting tubes 13, 23, 33, 43, 53, 63 together with water while moving from the top to the bottom by the blower 95 disposed at the bottom.
  • Water is evaporated while passing between the connection tubes (13, 23, 33, 43, 53, 63), and heat exchange occurs between the fluid and water/air due to the latent heat of evaporation and the sensible heat of water/air, thereby removing the condenser (1).
  • the fluid passing through is condensed.
  • the heat exchange area may be increased by the fin member F disposed between the connecting tubes 13 , 23 , 33 , 43 , 53 and 63 .
  • heat exchange between the water/air and the fluid (refrigerant) occurs, and the heat exchange occurs in a counterflow to each other. That is, since heat exchange occurs while water and air flow from the top to the bottom and the fluid flows from the bottom to the top, it is possible to lower the temperature of the final fluid compared to the non-counterflow flow.
  • the cooling efficiency can be improved in the structure of this embodiment. Through this structure and the counter-flow configuration, it is possible to lower the final fluid temperature while maintaining the size of the condenser 1 .
  • this embodiment has been described in a manner that the air is moved from the top to the bottom by the blower 95, it is not limited thereto, and the blower 95 is installed in the upper part and operates in a way that pushes the air from the top to the bottom It is also possible to
  • the condenser 1 of the present invention has a three-dimensional structure because the fluid passes in the first direction, which is the extension direction of the header, the second direction, which is the extension direction of the connecting tube, and the third direction, which is the stacking direction of the header row. Even if it occupies a volume, more heat exchange is possible, and cooling performance can be improved. In this case, the first direction, the second direction, and the third direction may be different directions.
  • the first direction may be an X direction
  • the second direction may be a Y direction perpendicular to the X direction
  • the third direction may be the X direction and a Z direction perpendicular to the Y direction, otherwise the first direction may be a radial direction
  • the second direction may be a circumferential direction
  • the third direction may be a height direction.
  • the fluid enters from the fluid inlet, flows along the first header (11, 21, 31, 41, 51, 61), and passes through the connecting tube (13, 23, 33, 43, 53, 63) It goes to the second headers 12, 22, 32, 42, 52, 62, and after moving in the third direction in the second headers 12, 22, 32, 42, 52, 62, the second headers 12, 22 , 32, 42, 52, 62) through the connecting tube (13, 23, 33, 43, 53, 63) to the first header (11, 21, 31, 41, 51, 61) is repeated. That is, the fluid flows from the first header to the second header, and then flows from the second header to the first header while changing the direction in the second direction.
  • the cross-sectional area through which the fluid passes can be reduced.
  • the direction from the first header 11, 21, 31, 41, 51, 61 to the second header 12, 22, 32, 42, 52, 62 is called the 2-1 direction
  • a direction from the second headers 12 , 22 , 32 , 42 , 52 , 62 toward the first headers 11 , 21 , 31 , 41 , 51 and 61 is referred to as a 2-2 direction.
  • the first to sixth head rows 10, 20, 30, 40, 50, 60 of the present invention are disposed on one side and the first headers 11, 21, 31, 41, 51, 61 having a flow path formed therein.
  • first header 11 of the first header row 10 In the case of the first header 11 of the first header row 10, one side is connected to the fluid inlet I along the longitudinal direction, and the other side has a tubular shape blocked by the baffle 11b.
  • a flow path hole 11c is formed at the top, and the second header is positioned at a position corresponding to the flow path hole 11c of the first header row 10 .
  • a flow path hole 21c is also formed in the lower portion of the first header 21 of the column 10, so that the first header 11 of the first header column 10 and the first header 11 of the second header column 20 are formed. 21) communicate with each other.
  • the flow path hole 21c is provided not only on the lower part but also on the upper part of the third header row 30 toward the first header 31, , a flow path hole 31c is also formed in the first header 31 of the third header row 30 at a position corresponding to the flow path hole 21c, so that the first header 11 of the first header row 10 is ), the fluid flows into the first header 21 of the second header row 20 and the first header 31 of the third header row 30 .
  • baffles 21a and 21b In the case of the first header 21 of the second header row 20, both sides in the longitudinal direction are blocked by baffles 21a and 21b, and the same is the case with the first header 31 of the third header row 30. .
  • the connection tube (13, 23, 33) on the surface facing the second header (12, 22, 32, 42, 52, 62) , 43 , 53 , 63 are formed with communication holes 11d and 61d to be connected with the first headers 11 , 21 , 31 , 41 , 51 , 61 and the second headers 12 , 22 , 32 , 42 , 52, 62 between the plurality of connecting tubes (13, 23, 33, 43, 53, 63) are connected, so the communication hole (11d, 61d) is also formed in plurality.
  • the second headers 12 , 22 , 32 , 42 , 52 , and 62 have the same structure as the first headers 11 , 21 , 31 , 41 , 51 and 61 symmetrically.
  • the connecting tubes 13, 23, 33, 43, 53, and 63 have a structure in which a plurality of micro-channels, that is, micro-channels, are formed in the longitudinal direction of the tube.
  • a fin member (F) is connected between the connection tubes (13, 23, 33, 43, 53, 63) to expand the heat exchange area.
  • the connecting tubes 13, 23, 33, 43, 53, 63 and the first and second headers 11, 12, 21, 22, 31, 32, 41, 42, 51, 52, 61, 62 are arc coated. It can be coated with Tech Arc Coating (TAC).
  • TAC Tech Arc Coating
  • the pin member (F) is coated with a porous material containing hydrophilicity or hydrophilicity in order to evenly spread the water sprayed by the water injection module (90).
  • the porous material is coated with a metal organic framework (MOF).
  • the fluid flowing into the first header 11 of the first header row 10 is of the first header 21 and the third header row 30 of the second header row 20 . It is divided into a first header 31, and a connecting tube ( 13, 23, 33), and during the heat exchange by water/air, a part is changed from gas to liquid, thereby reducing the volume occupied by the fluid of the same weight.
  • the second headers 12, 22, and 32 of the first to third header rows 10, 20, and 30 are connected to the second headers 42 and 52 of the fourth and fifth header rows 40 and 50 through a channel hole. are connected, and thus, the fluid flowing into the second headers 12, 22, 32 of the first to third header rows 10, 20, 30 is again transferred to the fourth and fifth header rows 40 and 50. It rises to the second header (42, 52). After that, it flows from the second headers 42 and 52 of the fourth and fifth header rows 40 and 50 to the first headers 41 and 51 on the connecting tubes 43 and 53, and the connecting tubes 43, 53), heat is exchanged by water/air, and a part is changed to liquid by gas, thereby reducing the volume occupied by the same intangible fluid again.
  • the fluid introduced into the first headers 41 and 51 of the fourth and fifth header rows 40 and 50 is transferred to the sixth header by a flow path formed between the fourth to sixth header rows 40, 50 and 60.
  • the raised fluid moves through the connecting tube 63 from the first header 61 to the second header 62 of the sixth header row 60, and while moving through the connecting tube 63, water/air It is condensed into a liquid by heat exchange with
  • the second header 62 of the sixth header row 60 is connected to the fluid outlet O, and is condensed while passing through the first to sixth header rows 10, 20, 30, 40, 50, 60.
  • the fluid is discharged through the fluid outlet (O) and sent to another configuration of the cooling cycle.
  • the condenser 1 In the case of the condenser 1 according to an embodiment of the present invention, after the fluid flows into the first header 11, the second header 12, 22, 32, 42, 52, 62 in the 2-1 direction, then the direction is reversed from the second header 12, 22, 32, 42, 52, 62 to the first header 11, 21 , 31, 41, 51, 61), flows in the 2-2 direction, is changed again, flows in the 2-1 direction, and is discharged to the fluid outlet (O), the 2-1 direction ⁇ 2-th direction When switching from the 2nd direction to the 2-1 direction, the number of header columns passing through is changed.
  • the fourth to the fifth header column 940, 50 is reduced to two, and after the direction is switched back to the 2-1 direction, it is reduced to one sixth header column 60, so that the total number of header columns passing through is 3 ⁇ 2 ⁇ 1. decreases.
  • header rows are stacked to have the same size, a large number of header rows means a large area through which the fluid passes, which means that the volume occupied by them is large, and a small number of header rows means that the fluid passes through. This small size means that the volume it occupies is small.
  • the fluid passing in the 2-1 direction simultaneously flows through three header rows, that is, the connecting tubes of the first to third header rows 10, 20, and 30. Cooling occurs while passing through (13, 23, 33).
  • the heat exchange is performed going backwards, so that as the liquid state increases, a small number of header rows are passed, and only the connecting tube 63 of one header row 60 passes at the end. Therefore, it is possible to reduce the cross-sectional area of the flow path of the condenser 1 passing through according to the decrease in the volume of the fluid, thereby reducing the pressure loss caused by the decrease in volume.
  • Reducing pressure loss means that a lot of heat exchange can be made during the time the fluid (refrigerant) passes. Even with the same size condenser, a large amount of heat exchange is possible, so if the same capacity, a small size condenser can be used. , if the size is the same, large capacity cooling is possible.
  • the condenser 1 of the present invention has a three-dimensional structure because the fluid passes in the first direction, which is the extension direction of the header, the second direction, which is the extension direction of the connection tube, and the third direction, which is the stacking direction of the header row. Due to this, even if occupying the same volume, more heat exchange is possible, and cooling performance may be improved.
  • the first direction may be an X direction
  • the second direction may be a Y direction perpendicular to the X direction
  • the third direction may be the X direction and a Z direction perpendicular to the Y direction.
  • 5a to 5d are schematic diagrams of a condenser according to another embodiment of the present invention.
  • 5A to 5D are all the same in that the fluid flows into the first header 11 of the first header row 10, but the entire header row 10, 20, 30, 40, 50, 60 ) and the number of header columns passing in the 2-1 direction and the 2-2 direction are different.
  • the fluid flowing into the first header 11 of the first header row 10 flows through the first header 21 and the third header row 30 of the second header row 20 . It is divided into a first header 31, and a connecting tube ( 13, 23, 33), and during the heat exchange by water/air, a part is changed from gas to liquid, thereby reducing the volume occupied by the fluid of the same weight.
  • the second headers 12, 22, and 32 of the first to third header rows 10, 20, and 30 are connected to the second headers 42 and 52 of the fourth and fifth header rows 40 and 50 through a channel hole. are connected, and thus, the fluid flowing into the second headers 12, 22, 32 of the first to third header rows 10, 20, 30 is again transferred to the fourth and fifth header rows 40 and 50. It rises to the second header (42, 52). After that, it flows from the second headers 42 and 52 of the fourth and fifth header rows 40 and 50 to the first headers 41 and 51 on the connecting tubes 43 and 53, and the connecting tubes 43, 53), heat is exchanged by water/air, and a part is changed to liquid by gas, thereby reducing the volume occupied by the same intangible fluid again.
  • the fluid introduced into the first headers 41 and 51 of the fourth and fifth header rows 40 and 50 is transferred to the sixth header by a flow path formed between the fourth to sixth header rows 40, 50 and 60.
  • the raised fluid moves through the connecting tube 63 from the first header 61 to the second header 62 of the sixth header row 60, and while moving through the connecting tube 63, water/air It is condensed into a liquid by heat exchange with
  • the second header 62 of the sixth header string 60 is configured to communicate with the second header 72 of the seventh header string 70 , and is configured to be connected to the second header 62 of the sixth header string 60 .
  • the incoming fluid rises to the second header 72 of the seventh header row 70, passes through the connection tube 73 and the first header 71 of the seventh header row 70, and then the fluid outlet (O) It is discharged through the refrigeration cycle and sent to the configuration of another cooling cycle.
  • the fluid supplied to the condenser 1 moves the header rows 10, 20, 30, 40, 50, 60, 70 in the 2-1 direction ⁇ 2-2 direction ⁇ 2-1 direction ⁇ the second direction. It passes while switching in the 2-2 direction, and it decreases from the number of the first header string as it goes back. That is, while passing through the header rows 10, 20, 30, 40, 50, 60, 70 of the condenser 1, the number of header rows increases in the 2-1 direction ⁇ 2-2 direction ⁇ 2-2 direction ⁇ the second direction. In the direction of 2-2, it decreases to 3 ⁇ 2 ⁇ 1 ⁇ 1.
  • the number of header strings does not necessarily have to be reduced at all direction changes, and if necessary, it is possible to maintain the number of header lines without decreasing in some direction changes. For example, it is possible to maintain the cross-sectional area through which it passes after being sufficiently converted into a liquid.
  • the fluid flowing into the first header 11 of the first header row 10 is divided into the first header 21 of the second header row 20, and the first to second headers
  • the rows 10 and 20 flow from the first headers 11 and 21 to the second headers 12 and 22 along the connecting tubes 13 and 23, during which heat is exchanged by water/air, and some of them are from gas to liquid. , and thereby the volume occupied by a fluid of the same weight is reduced.
  • the second headers 12 and 22 of the first to second header rows 10 and 20 are connected to the second headers 32 and 42 of the third and fourth header rows 30 and 40 through a channel hole, Accordingly, the fluid flowing into the second headers 12 and 22 of the first to second header rows 10 and 20 is again transferred to the second headers 32 and 42 of the third and fourth header rows 30 and 40. goes up to After that, it flows from the second headers 32 and 42 of the third and fourth header rows 30 and 40 to the first headers 31 and 41 on the connecting tubes 33 and 43, and the connecting tubes 33, 43), heat is exchanged by water/air, and a part is changed to liquid by gas.
  • the fluid introduced into the first headers 31 and 41 of the third and fourth header rows 30 and 40 is transferred to the fifth header by a flow path formed between the third to fifth header rows 30 , 40 and 50 .
  • the raised fluid moves through the connecting tube 53 from the first header 51 to the second header 52 of the fifth header row 50, and while moving through the connecting tube 53, water/air It is condensed into a liquid by heat exchange with
  • the second header 52 of the fifth header string 50 is configured to communicate with the second header 62 of the sixth header string 60 , and is configured to be connected to the second header 52 of the fifth header string 50 .
  • the incoming fluid rises to the second header 62 of the sixth header row 60, passes through the connection tube 63 and the first header 61 of the sixth header row 60, and then the fluid outlet (O) It is discharged through the refrigeration cycle and sent to the configuration of another cooling cycle.
  • the fluid supplied to the condenser 1 moves the header rows 10, 20, 30, 40, 50, 60 in the 2-1 direction ⁇ 2-2 direction ⁇ 2-1 direction ⁇ 2-th direction. It passes while switching in two directions, and the number of first header columns is greater than the number of header columns that pass last. That is, while passing through the header rows 10, 20, 30, 40, 50, and 60 of the condenser 1, the number of header rows increases in the 2-1 direction ⁇ 2-2 direction ⁇ 2-1 direction ⁇ 2-th direction. It becomes 2 ⁇ 2 ⁇ 1 ⁇ 1 in the 2 direction. In this way, it is also possible to reduce the cross-sectional area only in one part.
  • the fluid flowing into the first header 11 of the first header row 10 is the first headers 21, 31, 41 of the second to fourth header rows 20, 30, 40 ), and connecting tubes from the first headers 11, 21, 31, 41 of the first to fourth header rows 10, 20, 30, 40 to the second headers 12, 22, 32, 42 It flows along (13, 23, 33, 43), and in the meantime, heat is exchanged by water/air, and a part is changed from gas to liquid, thereby reducing the volume occupied by the fluid of the same weight.
  • the second headers 12, 22, 32, 42 of the first to fourth header strings 10, 20, 30, 40 are the second headers 52, 62 of the fifth and sixth header strings 50 and 60 ) and the flow path hole, and therefore, the fluid introduced into the second headers 12, 22, 32, 42 of the first to fourth header rows 10, 20, 30, 40 is again the fifth and sixth It goes up to the second headers 52 and 62 of the header rows 50 and 60. After that, it flows from the second headers 52 and 62 of the fifth and sixth header rows 50 and 60 to the first headers 51 and 61 through the connecting tubes 53 and 63, and the connecting tubes 53, 63), heat is exchanged by water/air, and a part is changed to liquid by gas.
  • the fluid introduced into the first headers 51 and 61 of the fifth and sixth header rows 50 and 60 is transferred to the seventh header by a flow path formed between the fifth to seventh header rows 50, 60, and 70.
  • the raised fluid moves through the connection tube 73 from the first header 71 to the second header 72 of the seventh header row 70, and while moving through the connection tube 73, water/air It is condensed into a liquid by heat exchange with Then, after passing through the second header 72 of the seventh header row 70, it is discharged through the fluid outlet O and sent to another configuration of the cooling cycle.
  • the fluid supplied to the condenser 1 converts the header rows 10, 20, 30, 40, 50, 60, 70 in the 2-1 direction ⁇ 2-2 direction ⁇ 2-1 direction. and the number of header columns decreases as it goes backwards. That is, while passing through the header rows 10, 20, 30, 40, 50, 60, and 70 of the condenser 1, the number of header rows is 4 in the 2-1 direction ⁇ 2-2 direction ⁇ 2-1 direction. It becomes ⁇ 2 ⁇ 1.
  • the fluid flowing into the first header 11 of the first header row 10 is divided into the first headers 21 and 31 of the second to third header rows 20 and 30, , flows from the first headers 11, 21, 31 of the first to third header rows 10, 20, 30 to the second headers 12, 22, 32 through the connecting tubes 13, 23, 33 .
  • the second headers 12, 22, 32 of the first to third header sequences 10, 20, 30 are the second headers 42, 52, 62 of the fourth to sixth header sequences 40, 50, 60 ) and the flow path hole, so that the fluid flowing into the second headers 12, 22, 32 of the first to third header rows 10, 20, 30 is again transferred to the fourth to sixth header rows 40 , 50, 60 rises to the second header (42, 52, 62).
  • the connecting tubes 43, 53, 63 are connected from the second headers 42, 52, 62 of the fourth to sixth header rows 40, 50, 60 to the first headers 41, 51, 61. It flows through the connection tube (43, 53, 63) while passing through the heat exchange by water/air, a part is changed to a liquid by the gas.
  • the fluid introduced into the first headers 41, 51 and 61 of the fourth to sixth header rows 40, 50, 60 is a flow path hole formed between the fourth to seventh header rows 40, 50, 60, and 70. rises to the first header 71 of the seventh header column 70 by The raised fluid moves through the connection tube 73 from the first header 71 to the second header 72 of the seventh header row 70, and while moving through the connection tube 73, water/air It is condensed into a liquid by heat exchange with Then, after passing through the second header 72 of the seventh header row 70, it is discharged through the fluid outlet O and sent to another configuration of the cooling cycle.
  • the fluid supplied to the condenser 1 converts the header rows 10, 20, 30, 40, 50, 60, 70 in the 2-1 direction ⁇ the 2-2 direction ⁇ the 2-1 direction. and the number of header columns decreases as it goes backwards. That is, while passing through the header rows 10, 20, 30, 40, 50, 60, 70 of the condenser 1, the number of header rows is 3 in the 2-1 direction ⁇ 2-2 direction ⁇ 3 ⁇ 3 in the first direction. ⁇ becomes 1. That is, it is also possible in the present invention to reduce the number of header sequences only at the end.
  • FIG. 6a and 6b show a condenser of another embodiment of the present invention.
  • Fig. 6a is a perspective view of a condenser 1 of another embodiment of the present invention
  • Fig. 6b is a cross-sectional view of each header row 10, 20, 30, 40, 50 of the condenser 1 of Fig. 6a. .
  • the condenser 1 of FIGS. 6A and 6B is common to the condenser 1 of FIGS. 1 to 4 in that the cross-sectional area of the passage through which the fluid passes is reduced as compared with the condenser 1 of FIGS.
  • the cross-sectional area of the passage is adjusted by controlling the number of header rows 10, 20, 30, 40, 50, 60, in the case of FIGS. 6A and 6B, the fluid in the passage By controlling the number of connecting tubes 13, 23, 33, 43, 53 passing through according to the flow, the cross-sectional area of the flow passage through which the fluid passes is reduced.
  • the basic structure is the same as in Figs. That is, the fluid inlet (I) is connected to the lowermost first header row (10), and the fluid outlet (O) is connected to the uppermost fifth header row (50).
  • each header row 10 , 20 , 30 , 40 , 50 is stacked on the first header row 10, and each header row 10, 20, 30, 40, 50 is disposed on one side and inside The first headers 11, 21, 31, 41, 51 having a flow path formed therein, the second headers 12, 22, 32, 42, 52 disposed on the other side and having a flow path formed therein, and the first headers 11 and 21 , 31 , 41 , 51 and a plurality of connecting tubes 13 , 23 , 33 , 43 connecting the flow paths of the first header and the second header between the second headers 12 , 22 , 32 , 42 and 52 , 53).
  • each header row 10 , 20 , 30 , 40 , 50 includes the same number of connection tubes 13 , 23 , 33 , 43 , 53 .
  • the first to fifth header sequences 10, 20, 30, 40, 50 are formed from the first header 11, 21, 31, 41, 51 to the second header 12, 22, 32, 42, 52. a 2-1 th direction connecting tube through which a fluid flows in a 2-1 th direction toward ) and a 2-2 direction connecting tube through which the fluid flows in the 2-2 direction toward the , 33, 43, 53), but alternately passes through the 2-1 direction connecting tube and the 2-2 direction connecting tube.
  • a fluid inlet (I) is connected to the first header (11) of the first header row (10), and the fluid introduced through the fluid inlet (I) passes through the first header (11) and the connection tube (13) flows to the second header 12 .
  • Flow holes 12c and 22c are formed between the first header row 10 and the second headers 12 and 22 of the second header row 20, and the first header row is formed by the flow path holes 12c and 22c.
  • the fluid in the second header (12) of (10) rises to the second header (22) of the second header row (20).
  • the fluid introduced into the second header 22 of the second header row 20 flows through the connection tube 23 to the first header 21 .
  • connection tubes 13 of the first header row 10 are 2-1 direction connection tubes through which a fluid flows in the direction from the first header 11 to the second header 12 , and of the second header row 20 .
  • All of the connecting tubes 23 are 2-2 direction connecting tubes through which the fluid flows from the second header 22 to the first header 21 .
  • the fluid introduced into the first header 21 of the second header row 20 is passed through the flow path holes 21c and 31c between the first headers 21 and 31 of the second and third header rows 20 and 30. It is raised to the first header 31 of the third header row 30 by this.
  • a baffle 31e is disposed in the middle, and the passage holes 21c and 31c are partitioned by the baffle 31e, and the first header 31 is close to the fluid inlet side. It is formed only in the region, and in the second region, which is another space, channel holes 31c and 41c are formed between the first headers 31 and 41 of the third and fourth header rows 30 and 40 .
  • the fluid rising to the first area partitioned by the baffle 31e among the first headers 31 of the third header row 30 passes through the connection tube 33 through which the fluid flows in the 2-1 direction. flows to the second header 32 .
  • a part of the second header 32 rises through the passage holes 32c and 42c formed between the second headers 32 and 42 of the third and fourth header rows 30 and 40, and a part of the baffle ( 31e) flows through the connection tube 33 through which the fluid flows in the 2-2 direction to the second region of the first header 31 partitioned by.
  • the flow holes 32c and 42c of the third and fourth header rows 30 and 40 are not formed in all of the lengthwise directions of the second headers 32 and 42, but are 2 It is formed only in a portion corresponding to the first area partitioned by the baffle 42e in the header 42 .
  • the fluid raised to the first region of the second header 42 of the fourth header row 40 is provided at a corresponding position and the fluid flows in the 2-2 direction through the connecting tube 43 to the first header 41 flows to
  • the fluid flowing into the second region of the first headers 31 of the third header row 30 is a flow path formed between the first headers 31 and 41 of the third and fourth header rows 30 and 40 . It ascends to the first header 41 of the fourth header row 40 through the holes 31c and 41c. The fluid that has risen to the first header 41 of the fourth header row 40 passes through the second header 42 and the connection tube 43 of the fourth header row 40 and flows into the first header 41 merges with the coming fluid.
  • the combined fluid is provided in another area partitioned by the baffle 42e, that is, at a position corresponding to the second area, and is provided in a fourth header row 40 through a connection tube 43 through which the fluid flows in the 2-1 direction. flows into the second region of the second header 42 of The second header 42 of the second header 42 is passed through the passage holes 42c and 52c formed between the second header 42 of the fourth header row 40 and the second header 52 of the fifth header row 50 .
  • the fluid in the second region rises to the second header 52 of the fifth header row 50 .
  • the flow path holes 42c and 52c are far from the fluid inlet on a plane (lower in FIG. 6b) of the area partitioned by the baffle 52e in the second header 52 of the fifth header row 50. It is formed only at a position corresponding to the second region, and thus, the fluid flows into the second region of the second headers 52 of the fifth header row 50 .
  • the fluid introduced into the second header 52 flows to the first header 51 through the connection tube 53 through which the fluid flows in the 2-2 direction.
  • the first header 51 is also partitioned by the baffle 51e, and the fluid flows into the second area of the first header 51 corresponding to the second area of the second header 52 .
  • the second area of the first header 51 is formed to be longer than the second area of the second header 52 , so that a part of the second area of the first header 51 is It also overlaps with the first area of the second header 52 .
  • the fluid flowing into the second region of the first header 51 through the connection passage 53 that connects the overlap section and flows in the 2-1 direction flows back to the first region of the second header 52 .
  • the fluid flowing into the first region of the second header 52 flows back to the first header 51 through the connection tube 53 connected to the first region of the first header 51, and the first header 51 ) is connected to the fluid outlet, and the fluid flowing into the first region of the first header 51 is discharged to the outside of the condenser.
  • the introduced fluid is heat-exchanged while passing through the header and the connection tube, and the fluid is transferred between the first headers 11, 21, 31, 41, 51 and the second headers 12, 22, 32, 42, 52) between the connecting tubes 13, 23, 33, 43, 53 in the 2-1 direction (from the first header to the second header) and the 2-2 direction (from the second header to the first header).
  • the number of connecting tubes (13, 23, 33, 43, 53) passing alternately and passing from the fluid inlet (I) to the fluid outlet (O) decreases.
  • 22 connection tubes 13, 23, 33, 43, 53 are arranged in each header row, and in the first header row 10, all 22 connection tubes 13 are directed in the 2-1 direction.
  • the fluid flows, and in the next second header row 20, the fluid flows in all of the 22 connecting tubes 23 in the 2-2 direction.
  • the 18 connecting tubes 33 connected to the first region of the first header 31 pass in the 2-1 direction.
  • the remaining branched fluid passes through the four 2-2 direction connecting tubes 33 returning to the second area of the first header 31 again, and passes through the second area of the first header 31 to the fourth It rises to the first header 41 of the header row 40 and merges with the branched fluid again. That is, the branched fluid passes through 10 + 4 connecting tubes flowing in the 2-2 direction.
  • the joined fluid flows to the second region through 12 connecting tubes 43 flowing in the first direction connected to the second region of the second header 42 of the fourth header row 40, and then to the fifth region. It rises to the second area of the second header (52) of the header row (50). Since the second area of the second header 52 is connected to ten connecting tubes 53 flowing in the second direction, it passes through the ten connecting tubes 53 to the second area of the first header 51 . fluid flows.
  • the fluid introduced into the second region of the first header 51 flows in the seven 2-1 directions, and the second header 52 passes through the connection tube 53 connected to the first region of the second header 52 . ), this fluid flows again in the five 2nd-2 directions and returns to the first header 51 through the connecting tube 53 connected to the first region of the first header 51, and then the fluid It is discharged through the outlet (O).
  • the fluid passes through the connecting tube in the 2-1 direction and the 2-2 direction alternately, and the number decreases as it goes back as 22 ⁇ 22 ⁇ 18 ⁇ 14 ⁇ 12 ⁇ 10 ⁇ 7 ⁇ 5. That is, by reducing the number of connection tubes (13, 23, 33, 43, 53) through which the fluid passes in accordance with the increase in density of the fluid having a small density at the inlet side of the fluid by heat exchange, the cross-sectional area is reduced correspondingly. , improves cooling efficiency by allowing proper cooling in the section where the phase change of the fluid is made.
  • the flow passage cross-sectional area can be adjusted according to the order in which the fluid passes, so that efficient heat exchange can be achieved according to the refrigerant.
  • FIG. 7a and 7b show a condenser of another embodiment of the present invention.
  • 7A is a perspective view of a condenser 1 according to another embodiment of the present invention
  • FIG. 7B is a cross-sectional view of the condenser 1 of FIG. 7A in each header row 10 , 20 , 30 , 40 .
  • the basic structure is the same as in Figs. 6A and 6B. That is, the fluid inlet (I) is connected to the lowermost first header row (10), and the fluid outlet (O) is connected to the uppermost fourth header row (40).
  • the second to fourth header rows 20, 30, and 40 are stacked on the first header row 10, and each header row 10, 20, 30, 40 is disposed on one side and has a flow path therein.
  • each header row (10, 20, 30, 40) includes the same number of connecting tubes (13, 23, 33, 43).
  • the first to fourth header strings 10, 20, 30, 40 are the 2-1th headers from the first headers 11, 21, 31, 41 toward the second headers 12, 22, 32, and 42.
  • a 2-1-th direction connecting tube through which a fluid flows in the direction includes a 2-2 direction connecting tube through which the fluid flows, and the fluid passes through the connecting tubes 13, 23, 33, 43 of the first to fourth header rows 10, 20, 30, 40, but the second- The one-way connecting tube and the second two-way connecting tube pass alternately.
  • a fluid inlet (I) is connected to the first header (11) of the first header row (10), and the fluid introduced through the fluid inlet (I) passes through the first header (11) and the connection tube (13) flows to the second header 12 .
  • Flow holes 12c and 22c are formed between the first header row 10 and the second headers 12 and 22 of the second header row 20, and the first header row is formed by the flow path holes 12c and 22c.
  • the fluid in the second header (12) of (10) rises to the second header (22) of the second header row (20).
  • a baffle 22e is disposed in the middle of the second header 22 of the second header row 20, and the channel holes 12c and 22c are partitioned by the baffle 22e and the first header 22e close to the fluid inlet side.
  • channel holes 22c and 32c are formed between the second headers 22 and 32 of the second and third header rows 20 and 30 .
  • the fluid rising to the second region partitioned by the baffle 21e among the first headers 21 of the second header row 20 passes through the connection tube 23 through which the fluid flows in the 2-2 direction. flows to the first header 21 .
  • a part of the first header 21 rises through the passage holes 21c and 31c formed between the first headers 21 and 31 of the second and third header rows 20 and 30, and a part of the baffle ( In the second region of the second header 22 partitioned by 22e), the fluid flows through the connection tube 23 in the 2-2 direction.
  • the passage holes 21c and 31c of the second and third header rows 20 and 30 are not formed in all of the first headers 21 and 31 in the longitudinal direction, but are
  • the first header 31 is formed only in a portion corresponding to the first area partitioned by the baffle 31e.
  • the fluid raised to the first region of the first header 31 of the third header row 30 is provided at a corresponding position and the second header 32 is provided through the connection tube 33 through which the fluid flows in the 2-1 direction. flows to
  • the fluid flowing into the second region of the second headers 22 of the second header row 20 is a flow path formed between the second headers 22 and 32 of the second and third header rows 20 and 30 .
  • the second header 32 of the third header row 30 is raised through the holes 22c and 32c.
  • the fluid that has risen to the second header 32 of the third header row 30 passes through the first header 31 and the connection tube 33 of the third header row 30 and flows into the second header 32 merges with the coming fluid.
  • the merged fluid is provided in another region partitioned by the baffle 31e, that is, at a position corresponding to the second region, and is provided in a third header row 30 through a connection tube 33 through which the fluid flows in the 2-2 direction. flows into the second region of the first header 31 of The first header 31 of the third header row 30 and the first header 31 of the fourth header row 40 pass through the flow passage holes 31c and 41c formed between the first header 41 of the fourth header row 40 . The fluid in the second region rises to the first header 41 of the fourth header row 40 . However, the flow path holes 31c and 41c are far from the fluid inlet on a plane (lower in FIG.
  • the fluid introduced into the first header 41 flows to the second header 42 through the connection tube 43 through which the fluid flows in the 2-1 direction.
  • the second header 42 is also partitioned by the baffle 42e, and the fluid flows into the second area of the second header 42 corresponding to the second area of the first header 41 .
  • the second area of the second header 42 is formed to be longer than the second area of the first header 41 , so that part of the second area of the second header 42 is It also overlaps with the first area of the first header 41 .
  • the fluid flowing into the second area of the second header 42 through the connection passage 43 connecting the overlap section and flowing in the 2-2 direction flows back to the first area of the first header 41 .
  • the introduced fluid is heat-exchanged while passing through the header and the connection tube, and the fluid is transferred between the first headers 11, 21, 31, 41 and the second headers 12, 22, 32, and 42.
  • 22 connection tubes 13 , 23 , 33 , 43 are disposed in each header row, and in the first header row 10 , all of the 22 connection tubes 13 flow in the 2-1 direction.
  • the fluid flows through the 18 connecting tubes 23 connected to the first region of the second header 22 in the 2-2 direction in the next second header row 20 .
  • the remaining branched fluid passes through the 4 2-1 direction connecting tubes 23 returning to the second area of the second header 22, and passes through the second area of the second header 22 to the third It rises to the second header 32 of the header row 30 and joins the branched fluid again. That is, the branched fluid passes through 10 + 4 connecting tubes flowing in the 2-1 direction.
  • the joined fluid flows to the second area through 12 connecting tubes 33 flowing in the 2-2 direction connected to the second area of the first header 31 of the third header row 30, and then It rises to the second area of the first header 41 of the fourth header row 40 . Since the second region of the first header 41 is connected to the ten connecting tubes 43 flowing in the 2-1 direction, the second region of the second header 42 passes through the ten connecting tubes 43 . fluid flows into the area.
  • the fluid introduced into the second region of the second header 42 flows in seven 2-1 directions and passes through the connection tube 43 connected to the first region of the first header 41 to the first header 41 . , the fluid flows again in five 2-1 directions and returns to the second header 42 through the connecting tube 43 connected to the first area of the second header 42, and then the fluid outlet It is discharged through (O).
  • the fluid alternately passes through the connecting tube in the 2-1 direction and the 2-2 direction, and the number decreases as it goes back to 22-18-14-12-10-7-5. That is, by reducing the number of connection tubes (13, 23, 33, 43) through which the fluid passes in accordance with the increase in density of the fluid having a small density at the inlet side of the fluid by heat exchange, the cross-sectional area is reduced correspondingly to reduce the fluid
  • the cooling efficiency is improved by allowing proper cooling in the section where the phase change is made.
  • FIG. 8A is a schematic perspective view of a condenser according to another embodiment of the present invention
  • FIG. 8B is a schematic cross-sectional view taken along line A-A of the condenser of FIG. 8A .
  • the condenser includes first to third header rows 10, 20, 30, each header row having first headers 11 and 21 extending in a first direction. , 31) and the second headers 12, 22, 32, a plurality of connecting tubes extending in the second direction and connecting the first headers 11, 21, 31 and the second headers 12, 22, 32 13 , 23 , and 33 , wherein the first to third headers 10 , 20 and 30 are stacked in a third direction.
  • the fluid entering the fluid inlet flows in the 2-1 direction in the connection tube 13 of the first header row 10, and in the 2-2 direction in the connection tube 23 of the second header row 20, 3 In the connection tube 33 of the header row 30, it flows again in the 2-1 direction and then is discharged to the fluid outlet.
  • Each connection tube (13, 23, 33) includes a plurality of microtubes (13a-h, 23a-d, 33a-b) occupying a part of the connection tube (13, 23, 33) therein.
  • the cross-sectional area of each micro-tube (13a-h, 23a-d, 33a-b) is the same, the micro-tube (13a-) included in the connection tube (13, 23, 33) of each header row (10, 20, 30)
  • the number of h, 23a-d, 33a-b) becomes smaller as it approaches the fluid outlet side, that is, the third header row 30, and therefore, as the direction in the second direction is changed, the cross-sectional area through which the fluid passes the sum becomes smaller.
  • each connecting tube 13 includes eight microtubes 13a to h.
  • the sum of the cross-sectional areas becomes 6 ⁇ 8 ⁇ the microtube cross-sectional area.
  • Six connection tubes 23 are connected to the second header 22 in the second header row 20, and since each connection tube 23 includes four microtubes 23a to d, the fluid is The sum of the cross-sectional areas while flowing in the 2-2 direction in the second header row 20 becomes 6 ⁇ 4 ⁇ the microtube cross-sectional area.
  • connection tubes 33 are connected to the first header 31 in the third header row 30, and since two microtubes 33a to b are included in each connection tube 33, the fluid 3
  • the sum of the cross-sectional areas while flowing in the 2-1 direction in the header row 30 becomes 6 ⁇ 2 ⁇ the cross-sectional area of the microtubes.
  • the cross-sectional area of the microtubes is the same, as the direction is changed while passing through the first to third header rows 10, 20, 30, 48 ⁇ 24 ⁇ 12 is reduced. That is, the cross-sectional area is reduced by reducing the number of microtubes through which the fluid passes in accordance with the increase in density by heat exchange of the fluid, which had a small density at the inlet side, so that cooling can be performed properly in the section where the phase change of the fluid occurs. to improve cooling efficiency.
  • FIG. 9A is a schematic perspective view of a condenser according to another embodiment of the present invention
  • FIG. 9B is a schematic cross-sectional view taken along line A-A of the condenser of FIG. 9A .
  • the condenser includes first to third header rows 10, 20, 30, each header row having first headers 11 and 21 extending in a first direction. , 31) and the second headers 12, 22, 32, a plurality of connecting tubes extending in the second direction and connecting the first headers 11, 21, 31 and the second headers 12, 22, 32 13 , 23 , and 33 , wherein the first to third headers 10 , 20 and 30 are stacked in a third direction.
  • some header rows 10 , 20 include a plurality of rows of connecting tubes 13 , 23 , 33 . That is, in the case of the first header row 10, the first row connection tube 13, the second row connection tube 13', and the third row connection tube 13'' are included. Since it includes a plurality of rows of connecting tubes (13, 13', 13''), when having the same length headers (11, 21, 31), including more connecting tubes (13, 13', 13'') it is possible
  • the fluid entering the fluid inlet flows in the 2-1 direction from the connection tubes 13, 13', 13'' of the first header row 10, and the connection tubes 23, 23' of the second header row 20 ) in the 2-2 direction, and in the connection tube 33 of the third header row 30, it flows again in the 2-1 direction, and then is discharged to the fluid outlet.
  • Each connecting tube (13, 13', 13'', 23, 23', 33) has a plurality of microtubes occupying a part of the connecting tube (13, 13', 13'', 23, 23', 33) therein (13a-b, 13'a-b, 13''a-b, 23a-b, 23'a-b, 33a-b).
  • each connection tube 13, 13' , 13'', 23, 23', 33) of the microtubules (13a-b, 13'a-b, 13''a-b, 23a-b, 23'a-b, 33a-b) disposed in number is the same
  • the number of columns of the connection tubes 13, 13', 13'', 23, 23', 33 of each header row 10, 20, 30 is closer to the fluid outlet side, that is, the third header row 30 becomes smaller, and thus, as the direction in the second direction is changed, the sum of the cross-sectional areas through which the fluid passes becomes smaller.
  • the fluid is microtubes 13a to b, 13'a of the connecting tubes 13, 13', 13'' in three rows of six connected to the first header 11. ⁇ b, 13''a ⁇ b) pass. Accordingly, while the fluid flows in the 2-1 direction in the first header row 10, the sum of the cross-sectional areas becomes 6 ⁇ 3 ⁇ 2 ⁇ the microtube cross-sectional area.
  • two rows of connecting tubes 23 are connected to the second header 22 by six, and two microtubes 23a-b, 23' are connected to each of the connecting tubes 23 and 23'.
  • connection tubes 33 are connected to the first header 31, and since each connection tube 33 includes two microtubes 33a to b, while the fluid flows in the second-first direction in the third header row 30, the sum of the cross-sectional areas becomes 6 ⁇ 1 ⁇ 2 ⁇ microtube cross-sectional areas.
  • the cross-sectional area of the microtubes is the same, as the direction is changed while passing through the first to third header rows 10, 20, 30, 36 ⁇ 24 ⁇ 12 is reduced. That is, the cross-sectional area is reduced by reducing the number of microtubes through which the fluid passes in accordance with the increase in density by heat exchange of the fluid, which had a small density at the inlet side, so that cooling can be performed properly in the section where the phase change of the fluid occurs. to improve cooling efficiency
  • FIG. 10A is a schematic perspective view of a condenser according to another embodiment of the present invention
  • FIG. 10B is a schematic cross-sectional view taken along line A-A of the condenser of FIG. 10A .
  • the condenser includes first to fourth header rows 10 , 20 , 30 , 40 , each header row having a first header 11 extending in a first direction. , 21 , 31 , 41 and a second header 12 , 22 , 32 , 42 , extending in a second direction, the first header 11 , 21 , 31 , 41 and the second header 12 , 22 , 32 , 42) and includes a plurality of connecting tubes 13, 23, 33, 43, and the first to fourth headers 10, 20, 30, and 40 are stacked in a third direction.
  • the fluid entering the fluid inlet flows in the 2-1 direction in the connection tube 13 of the first header row 10, and in the 2-2 direction in the connection tube 23 of the second header row 20, In the connecting tube 33 of the third header row 30, it flows again in the 2-1 direction, and after flowing in the 2-2 direction in the connecting tube 43 of the fourth header row 40, it is discharged to the fluid outlet.
  • Each header row (10, 20, 30, 40) is stacked having the same length in the first direction, but connecting tubes (13, 23, 33, 43) included in each header row (10, 20, 30, 40)
  • the number of is different, and the closer to the fluid outlet, the smaller the number of connection tubes 13, 23, 33, 43 included in the header rows 10, 20, 30, 40.
  • the cross-sectional area of each connecting tube (13, 23, 33) is the same.
  • Connection tubes 13, 23, 33, 43 of each header row 10, 20, 30, 40 may include microtubes, and the number of microtubes may include the first to fourth header rows 10, 20, It is preferable that the number of microtubes in the connection tubes 13, 23, 33, 43 of 30 and 40 is the same, or at least the number of microtubes in the first header row 10 is greater than the number of microtubes in the fourth header row 40. do.
  • connection tubes 13 are connected to the first header 11 in the first header row 10, and the fluid flows in the 2-1 direction in the first header row 10.
  • the sum is 6 x the cross-sectional area of the connecting tube.
  • the five connecting tubes 23 are connected to the second header 22 in the second header row 20
  • the sum of the cross-sectional areas is 5 ⁇ while the fluid flows in the 2-2 direction in the second header row 20 It is the cross-sectional area of the connecting tube.
  • the four connection tubes 33 are connected to the first header 31 in the third header row 30, the sum of the cross-sectional areas is 4x while the fluid flows in the 2-1 direction in the third header row 30 It is the cross-sectional area of the connecting tube.
  • the three connecting tubes 43 are connected to the second header 42 in the fourth header row 30 , the sum of the cross-sectional areas is 3 ⁇ while the fluid flows in the 2-2 direction in the fourth header row 30 . It is the cross-sectional area of the connecting tube.
  • the cross-sectional area of the connecting tube (13, 23, 33, 43) is the same, as the direction is changed while passing through the first to fourth header rows (10, 20, 30, 40), 6 ⁇ 5 ⁇ 4 ⁇ 3 decreases. That is, the cross-sectional area is reduced by reducing the number of microtubes through which the fluid passes in accordance with the increase in density by heat exchange of the fluid, which had a small density at the inlet side, so that cooling can be performed properly in the section where the phase change of the fluid occurs. to improve cooling efficiency.
  • FIG. 11A is a schematic perspective view of a condenser according to another embodiment of the present invention
  • FIG. 11B is a schematic cross-sectional view taken along line A-A of the condenser of FIG. 11A .
  • the condenser includes first to fourth header rows 10, 20, 30, 40, each header row having a first header 11 extending in a first direction. , 21 , 31 , 41 and a second header 12 , 22 , 32 , 42 , extending in a second direction, the first header 11 , 21 , 31 , 41 and the second header 12 , 22 , 32 and a plurality of connecting tubes 13, 13', 23, 23', 33, 43 for connecting the , 42, wherein the first to fourth headers 10, 20, 30, 40 are disposed in a third direction. are stacked
  • connection tube 33 of the third header row 30 flows again in the 2-1 direction, and flows again in the 2-2 direction in the connection tube 43 of the fourth header row 40 is discharged to the rear fluid outlet.
  • some header rows 10, 20 include a plurality of rows of connecting tubes 13, 13', 23, 23'. That is, in the case of the first header row 10, it includes the first row connection tube 13 and the second row connection tube 13', and in the case of the second header row 20, the first row connection tube ( 23) and a second row connecting tube 23'. Since it includes multiple rows of connecting tubes 13, 13', 23, 23', more connecting tubes 13, 13', 23, 23' with headers 11, 21, 31, 41 of the same length ) can be included.
  • each connection tube (13, 13', 23, 23', 33, 43) has a plurality of microtubes (13a) occupying a part of the connection tube (13, 13', 23, 23', 33, 43) therein ⁇ c, 13'a-b, 23a-b, 23'a-b, 33a-c, 43a-b).
  • Each of the microtubes 13a-c, 13'a-b, 23a-b, 23'a-b, 33a-c, 43a-b has the same cross-sectional area.
  • Microtubes (13a-c, 13'a-b, 23a-b, 23'a-b, The number of 33a-c, 43a-b may be the same, but in this embodiment, the first row connecting tubes 13 of the first header row 10 and the connecting tubes 33 of the third header row 30 are ) includes three microtubes (13a-c, 33a-c), and the remaining connection tubes (13', 23, 23', 43) are two microtubes (13'a-b, 23a-b, 23). 'a-b, 43a-b).
  • the microtubes (13a-c, 13'a-b, 13a-c, 13'a-b, The number of 23a-b, 23'a-b, 33a-c, 43a-b) becomes smaller as it approaches the fluid outlet side, that is, the fourth header row 40, and thus, the direction in the second direction is changed. Accordingly, the sum of the cross-sectional areas through which the fluid passes becomes smaller.
  • the cross-sectional area while the fluid flows in the 2-1 direction in the first header row 10 The sum of (6 ⁇ 3+6 ⁇ 2) ⁇ microtube cross-sectional area.
  • the second header row 20 two rows of connecting tubes 23 and 23' are connected to the second header 22 by six, and two microtubes 23a-b, 23'a ⁇ b), the sum of the cross-sectional areas while the fluid flows in the 2-2 direction in the second header row 20 becomes 6x2x2xmicrotube cross-sectional area.
  • the third header row 30 six connection tubes 33 are connected to the first header 31, and since three microtubes 33a to c are included in each connection tube 33, the fluid is 3 The sum of the cross-sectional areas while flowing in the 2-1 direction in the header row 30 becomes 6 ⁇ 3 ⁇ microtubular cross-sectional area.
  • connection tubes 43 are connected to the second header 42 in the fourth header row 40, and since two microtubes 43a to c are included in each connection tube 43, the fluid is 4
  • the sum of the cross-sectional areas while flowing in the 2-2 direction in the header row 40 becomes 6 ⁇ 2 ⁇ microtubule cross-sectional area.
  • the cross-sectional area of the microtubes is the same, as the direction is changed while passing through the first to fourth header rows 10, 20, 30, 40, it decreases from 30 ⁇ 24 ⁇ 18 ⁇ 12. That is, the cross-sectional area is reduced by reducing the number of microtubes through which the fluid passes in accordance with the increase in density by heat exchange of the fluid, which had a small density at the inlet side, so that cooling can be performed properly in the section where the phase change of the fluid occurs. to improve cooling efficiency.
  • 12A is a schematic diagram of an air conditioner according to a first embodiment of the present invention.
  • the air conditioner according to the first embodiment of the present invention includes an evaporative condenser 110 in which the compressed refrigerant is condensed, an expansion valve 120 in which the refrigerant passing through the evaporative condenser 110 is expanded; and a refrigerant cycle R1 including an evaporator 130 in which the refrigerant passing through the expansion valve 120 is evaporated and a compressor 140 compressing the refrigerant passing through the evaporator 130 .
  • the evaporative condenser 110 includes a condensation module 111 including a fluid passage; a water injection module 112 for spraying water passing through the condensation module 111 above the condensation module; and a blowing module 113 disposed on one side of the condensing module 111 to provide air passing through the condensing module 111 .
  • the condensation module 111 may be the condensation module 1 described with reference to FIGS. 1 to 11
  • the water injection module 112 and the blower module 113 are the water injection module of FIG. 3 . 90 and the blowing module 95 may be applied.
  • the evaporative condenser 110 may be installed in an outdoor unit that is spatially separated from the indoor unit, and the condensing module 111 has a condensing module 111 after sucking air from the outside by the blowing module 113 in the condensing module 111 . ), the air passage A1, which is discharged as the temperature rises, is connected to the water supply source, and is sprayed to the condensing module 111 by the water supply module 112, and then the water supply drained from the lower part of the condensing module 111 The flow path W1 and the refrigerant cycle R1 pass, and the refrigerant is condensed by the air of the air flow path A1 and the water of the water supply flow path W1.
  • the condensing module 111 exchanges heat with the water and air while passing through the three-dimensional structure formed in the three directions of the extension direction of the header, the extension direction of the connection tube, and the stacking direction of the header row, more heat exchange is possible even if it occupies the same volume. As a result, cooling efficiency may be improved.
  • the evaporator 130 through which the refrigerant cycle R1 passes is disposed in the indoor unit 150 , and the indoor unit 150 includes a blower 151 , and the indoor air by the blower 151 moves the evaporator 130 . After passing through, a circulation passage A10 that is supplied back into the room is formed.
  • the air conditioner of the modified example of the present invention includes an evaporative condenser 110 in which the compressed refrigerant is condensed, an expansion valve 120 in which the refrigerant passing through the evaporative condenser 110 is expanded; and a refrigerant cycle R1 including an evaporator 130 in which the refrigerant passing through the expansion valve 120 is evaporated and a compressor 140 compressing the refrigerant passing through the evaporator 130 .
  • the evaporative condenser 110 includes a condensing module including a fluid passage similar to FIG. 12A ; a water injection module for spraying water passing through the condensation module from the top of the condensation module; and a blower module disposed on one side of the condensation module to provide air passing through the condensation module.
  • the condensing module may be the above-described condensing module.
  • All components through which the refrigerant cycle R1 passes are disposed in the indoor unit 150 . That is, the refrigerant cycle R1 is driven indoors.
  • the corresponding configuration does not necessarily have to be disposed indoors, and if the components are disposed in one space, that is, one case, the case itself may be disposed outside, for example, the case is disposed outside and indoors. It may be implemented by changing the structure in which air is drawn in, passed through the evaporator 130, cooled, and then supplied back into the room.
  • the air is sucked from the outside by the blower module and then passed through the condensing module, and then the temperature rises and is discharged. Then, the water supply passage W1 and the refrigerant cycle R1 drained from the lower part of the condensing module pass through, and the refrigerant is condensed by the air in the air passage A1 and the water in the water supply passage W1.
  • the circulation flow path A10 in which the indoor air circulates passes through the evaporator 130, and the condensed water generated in the evaporator 130 passes the condensate water flow path W4 and meets at the confluence point P6 to the evaporative condenser 110.
  • the condensed water flow path W4 passes through the condensing module through the water injection module without joining the water supply flow path W1.
  • condensed water moisture in the room is condensed, so it is possible to pour water into the condensing module without water supply, and since condensed water comes out of the evaporator 130, it is possible to improve the cooling efficiency in that the temperature is low.
  • the water supply passage W1 is required.
  • the evaporator 130 is located above the evaporative condenser 110, and when condensed water in the condensate flow path W4 is supplied to the evaporative condenser 110 by its own weight, condensed water can be It may be supplied to the evaporative condenser 110 .
  • the condensing module of the evaporative condenser 110 exchanges heat with the water and air while passing through the three-dimensional structure formed in the three directions of the extension direction of the header, the extension direction of the connection tube, and the stacking direction of the header row, even if it occupies the same volume Cooling efficiency can be improved by allowing more heat exchange.
  • 12C and 12D are schematic views of an air conditioner according to another modification of the first embodiment of the present invention.
  • FIGS. 12C and 12D the configuration of the indoor unit and the outdoor unit is not different from that of FIG. 12A .
  • a plurality of indoor units 150 are connected to one outdoor unit, and a plurality of evaporators 130 are provided in the refrigerant cycle R1 to have a structure in which they branch and then merge.
  • a plurality of indoor units 150 are connected to a plurality of outdoor units, so that the refrigerant cycle R branches to and then joins the indoor units and outdoor units.
  • a plurality of indoor units and outdoor units may be configured in one cycle, and a plurality of outdoor units may be connected to one indoor unit.
  • the air conditioner according to the second embodiment of the present invention includes an evaporative condenser 110 in which the compressed refrigerant is condensed, an expansion valve 120 in which the refrigerant passing through the evaporative condenser 110 is expanded; and a refrigerant cycle R1 including an evaporator 130 in which the refrigerant passing through the expansion valve 120 is evaporated and a compressor 140 compressing the refrigerant passing through the evaporator 130 .
  • the evaporative condenser 110 includes a condensation module 111 including a fluid passage; a water injection module 112 for spraying water passing through the condensation module from the upper portion of the condensation module 111; and a blowing module (not shown) disposed on one side of the condensing module 111 to provide air passing through the condensing module 111 .
  • the condensation module 111 may be the condensation module 1 described with reference to FIGS. 1 to 11
  • the water injection module 112 and the blower module 113 are the water injection module of FIG. 3 . 90 and the blowing module 95 may be applied.
  • the evaporative condenser 110 may be installed in an outdoor unit disposed at a location spatially separated from the indoor unit.
  • the air flow path A1 connected to the outside so that air is supplied to the condensing module 111 and the exhaust flow path A2 through which the indoor air is discharged are joined at the confluence point P1 and are connected to the condenser supply flow path A3, and the A blowing module may be installed in the condenser supply passage A3 to provide external air and indoor air to the condensing module 111 .
  • the air in the condenser supply passage A3 passes through the condensing module 111 and then is discharged to the outside after the temperature rises.
  • the water supply passage W1 connected to the water supply source is discharged from the lower part of the condensation module 111 after being sprayed to the condensation module 111 by the water injection module 112, and the refrigerant cycle R1 is the condensation module 111. While passing, the refrigerant is condensed by the air in the condenser supply passage A3 and the water in the water supply passage W1.
  • the evaporator 130 through which the refrigerant cycle R1 passes is disposed in the indoor unit 150, the indoor unit 150 includes a blower 151, and the indoor air passes through the evaporator 130 by the blower 151. It is the same as in the first embodiment that the circulation passage A10 to be supplied back into the room is formed afterward.
  • FIGS. 14B and 14C are schematic views of an air conditioner according to a third embodiment of the present invention.
  • the air conditioner according to the third embodiment of the present invention includes an evaporative condenser 110 in which the compressed refrigerant is condensed in the same manner as in the first and second embodiments, and the refrigerant passing through the evaporative condenser 110 .
  • the expansion valve 120 is expanded; and a refrigerant cycle R1 including an evaporator 130 in which the refrigerant passing through the expansion valve 120 is evaporated and a compressor 140 compressing the refrigerant passing through the evaporator 130 .
  • the evaporative condenser 110 includes a condensation module 111 including a fluid passage; a water injection module 112 for spraying water passing through the condensation module from the upper portion of the condensation module 111; and a blowing module (not shown) disposed on one side of the condensing module 111 to provide air passing through the condensing module 111, wherein the condensing module 111 is described in FIGS. What can be the condensing module 1 is the same as in the first and second embodiments.
  • the evaporative condenser 110 may be installed in an outdoor unit disposed at a location spatially separated from the indoor unit.
  • An air flow path A1 connected to the outside so that air is supplied to the condensing module 111 and a discharge flow path A2 through which indoor air is discharged are joined at a junction P1 and connected to a condenser supply flow path A3.
  • the air conditioner is disposed on the supply passage A4 through which air is introduced into the room from the outside, the supply passage A4 and the discharge passage A2, and is provided between the air supplied into the room and the outside.
  • the exhaust air crosses and further includes a ventilation heat exchanger 200 configured to exchange heat.
  • the ventilation heat exchanger 200 includes a heat exchange unit 21 that exchanges heat while the supply passage A4 and the discharge passage A2 cross each other.
  • the supply flow path A4 that passes through the heat exchange unit 210 of the ventilation heat exchanger 200 and is supplied to the room branches at the branch point and is a circulation flow path at the junction P6 of the circulation flow path A10 before being supplied to the evaporator 130 . It can be fed into the room with or without (A10).
  • the air supply of the supply flow path A4 may be determined depending on the situation, and of course, it may be configured to supply only one side.
  • a blower module may be installed in the condenser supply passage A3 to provide external air and indoor air to the condensing module 111 .
  • the air in the condenser supply passage A3 passes through the condensing module 111 and then is discharged to the outside after the temperature rises.
  • the water supply passage W1 connected to the water supply source is discharged from the lower part of the condensation module 111 after being sprayed to the condensation module 111 by the water injection module 112, and the refrigerant cycle R1 is the condensation module 111. While passing, the refrigerant is condensed by the air in the condenser supply passage A3 and the water in the water supply passage W1.
  • the evaporator 130 through which the refrigerant cycle R1 passes is disposed in the indoor unit 150, the indoor unit 150 includes a blower 151, and the indoor air passes through the evaporator 130 by the blower 151. It is the same as in the first embodiment that the circulation passage A10 to be supplied back into the room is formed afterward.
  • the supply flow path A4 of FIG. 14A and the supply flow path A4 are directly supplied into the room without branching, and the supplied air is mixed in the room and then circulated to the circulation flow path A10 of the indoor unit.
  • a modified example of the third embodiment of FIG. 14C illustrates that the indoor unit 150 of FIG. 14A is disposed in a plurality of spaces Z1 to Z3, respectively.
  • the ventilation heat exchanger 200 may be disposed in an installation space Z0 different from the use spaces Z1 to Z3 in which the indoor unit 150 is disposed, such as a ceiling, an outdoor unit room, or a multi-purpose room, and is disposed in the same space as the outdoor unit. It is also possible
  • the discharge passage A2 includes first to third discharge passages A2a to A2c connected to the use spaces Z1 to Z3, and the supply passage A4 is connected to the use spaces Z1 to Z3. It includes first to third supply passages A4a to A4c.
  • the air conditioner 100 may further include a controller C disposed indoors, and the controller C controls the refrigerant cycle R1 and the ventilation heat exchanger 200 for each use.
  • the space (Z1 to Z3) can be adjusted to the desired state by the user.
  • the evaporative condenser 110 of the present invention the noise of the compressor disposed in the outdoor unit is also reduced, energy efficiency is increased, and it is possible to reduce the size and save space. Furthermore.
  • Ventil/cooling mode operating ventilation heat exchanger and refrigerant cycle at the same time
  • cooling mode operating refrigerant cycle
  • ventilation mode operating ventilation heat exchanger
  • the air conditioner according to the fourth embodiment of the present invention includes a refrigerant cycle R1 in which the compressed refrigerant circulates in the same manner as in the first to third embodiments.
  • the evaporative condenser 110 includes a condensation module 111 including a fluid passage; a water injection module 112 for spraying water passing through the condensation module from the upper portion of the condensation module 111; and a blowing module (not shown) disposed on one side of the condensing module 111 to provide air passing through the condensing module 111 .
  • the evaporative condenser 110 may be installed in an outdoor unit disposed at a location spatially separated from the indoor unit.
  • the air flow path A1 connected to the outside so that air is supplied to the condensing module 111 and the exhaust flow path A2 through which the indoor air is discharged are joined at the confluence point P1 and are connected to the condenser supply flow path A3, and the A blowing module may be installed in the condenser supply passage A3 to provide external air and indoor air to the condensing module 111 .
  • the air in the condenser supply passage A3 passes through the condensing module 111 and then is discharged to the outside after the temperature rises.
  • the water supply flow path W2 connected to the water supply source is discharged from the lower part of the condensation module 111 after being sprayed to the condensation module 111 by the water injection module 112, and the refrigerant cycle R1 is the condensation module 111. While passing, the refrigerant is condensed by the air in the condenser supply passage A3 and the water in the water supply passage W1.
  • the air conditioner of the fourth embodiment is installed on the supply passage A4 and the supply passage A4 for supplying air from the outdoor to the indoor as opposed to the discharge passage A2, and cools the air flowing into the room. It further includes an evaporative cooler 170 .
  • the water supply flow path W1 connected to the water supply source branches into the water supply flow path W2 toward the evaporative condenser 110 and the water supply flow path W3 toward the evaporative cooler 170 at the branch point P2. and latent heat for cooling water and air passing through the evaporative cooler 170 and water providing latent heat for condensing the refrigerant passing through the evaporative condenser 110 by the water supply passages W2 and W3 provided water is provided.
  • the water that has passed through the evaporative cooler 170 is drained to the outside.
  • the water that has passed through the evaporative cooler 170 and the evaporative condenser 110 is collected without being drained, and then again together with the water supplied from the water supply source the evaporative cooler 170 and/or the evaporative condenser 110. It can also be recycled in the way it is supplied.
  • the evaporator 130 through which the refrigerant cycle R1 passes is disposed in the indoor unit 150, the indoor unit 150 includes a blower 151, and the indoor air passes through the evaporator 130 by the blower 151. It is the same as in the first embodiment that the circulation passage A10 to be supplied back into the room is formed afterward.
  • the air conditioner of the fifth embodiment of the present invention includes a refrigerant cycle (R1) in which the compressed refrigerant circulates in the same manner as in the first to fourth embodiments, and the refrigerant cycle (R1) is a condenser ( 110) and the refrigerant evaporates and passes through the evaporator 130 to cool the air.
  • R1 refrigerant cycle
  • the refrigerant cycle (R1) is a condenser ( 110) and the refrigerant evaporates and passes through the evaporator 130 to cool the air.
  • the air conditioner according to the fifth embodiment includes an outdoor unit in which the evaporative condenser 110 is disposed; and an indoor unit 150 in which the evaporator 130 is disposed.
  • the outdoor unit is disposed on the inflow passage (A4) through which outdoor air is introduced, and includes a dry channel and a wet channel, and an evaporative cooler 170 for cooling the air passing through the dry channel; a dehumidifying rotor 180 disposed before the evaporative cooler 170 on the inflow passage A4 and dehumidifying the incoming air; and a heating unit 185 disposed before the dehumidifying rotor 180 on the regeneration passages A9 and A11 through which air for regenerating the dehumidifying rotor 180 passes and heating the air.
  • the dehumidification rotor 180 is disposed over the regeneration passages A9 and A11 and the inflow passage A4, and the dehumidification rotor 180 absorbs moisture in the inflow passage A4 through the rotating rotor,
  • the regeneration passages A9 and A11 operate in such a way that the absorbed moisture is discharged.
  • the inlet flow path A4 includes an indoor supply flow path A8 connected to the room at branch points P3 and P4, and a condenser supply flow path connected to the evaporative condenser 110 ( A7), the evaporative cooler 170 is branched into the cooler supply passage A5 connected to the wet channel.
  • the bifurcation points P3 and P4 are shown as two, but one bifurcation point may branch to three places.
  • the indoor supply flow path A8 is connected to the indoor unit 150 , and after passing through the evaporator 130 , it may be supplied into the room in a cooled state.
  • the air conditioner may include a discharge flow path A2 for discharging indoor air to the outside by an amount corresponding to the amount of air supplied to the room, and this discharge flow path A2 is at the junction P5 of the regeneration flow paths A9 and A11. ) may join the regeneration passages A9 and A11, join the regeneration passages A9 and A11 to regenerate the dehumidifying rotor 180, and then discharge to the outside.
  • the water supply flow path W1 connected to the water supply source branches into the water supply flow path W2 toward the evaporative condenser 110 and the water supply flow path W3 toward the evaporative cooler 170 at the branch point P2. and latent heat for cooling water and air passing through the evaporative cooler 170 and water providing latent heat for condensing the refrigerant passing through the evaporative condenser 110 by the water supply passages W2 and W3 provided water is provided.
  • the water that has passed through the evaporative cooler 170 is drained to the outside.
  • the air conditioner according to the sixth embodiment of the present invention includes a refrigerant cycle (R1) in which the compressed refrigerant circulates in the same manner as in the first to fifth embodiments, and the refrigerant cycle (R1) is a condenser ( 110) and the refrigerant evaporates and passes through the evaporator 130 to cool the air.
  • R1 refrigerant cycle
  • the refrigerant cycle (R1) is a condenser ( 110) and the refrigerant evaporates and passes through the evaporator 130 to cool the air.
  • an air conditioning space such as a basement is provided in addition to the living space where a person resides, and the indoor unit is not disposed in the indoor living space.
  • the evaporator 130 is disposed in the air conditioning space.
  • a circulation passage A10 for supplying indoor air back to the room in a controlled state after sucking the indoor air is connected to the room, and the evaporator 130 is disposed on the circulation passage A10.
  • the evaporator 130 is disposed on the circulation passage A10 passing through the air conditioning space.
  • the air conditioning space may include a heating unit for heating the passing air in addition to the evaporator 130 for cooling the passing air, and may be used to provide heated or cooled air to the room.
  • FIGS. 18A and 18B are schematic views of a house H and a furnace FN in which a sixth embodiment of the present invention is installed.
  • the air conditioning space may be a furnace (FN) for heating the house.
  • an outdoor unit may be disposed outside the house (H), and in the basement of the house (H), the furnace (FN) and the furnace (FN) provided by heating and sucking the air inside the house (H)
  • a duct (D) connecting the interior space of the house (H) may be provided.
  • the outdoor unit has the same structure as the outdoor unit of FIG. 17 .
  • the furnace FN which is the air conditioning space, can heat the circulation passage A10 passing through the duct D.
  • An evaporator is connected to the duct D connected to the upper side of the furnace FN. (130, see Fig. 17) is provided with a coil A (A) is disposed.
  • the coil A is connected to the outdoor unit shown in FIG. 18A so that refrigerant condensed in the outdoor unit is evaporated while passing through the coil A, and heat from the air passing through the circulation passage A10 may be taken away. That is, when the furnace FN does not heat, the air conditioner forms an internal circulation air flow, that is, a circulation passage A10, and then drives the outdoor unit and A coil A to connect the duct D of the furnace FN. It is possible to provide air conditioning to the house (H) through
  • the air conditioner may include the furnace FN, the A coil, and the outdoor unit, and may provide cooling and heating to the house H as needed.
  • the air conditioner of the seventh embodiment of the present invention includes a refrigerant cycle (R1) in which the compressed refrigerant circulates in the same manner as in the first to sixth embodiments, and the refrigerant cycle (R1) is a condenser ( 110) and the refrigerant evaporates and passes through the evaporator 130 to cool the air.
  • R1 refrigerant cycle
  • the refrigerant cycle (R1) is a condenser ( 110) and the refrigerant evaporates and passes through the evaporator 130 to cool the air.
  • the seventh embodiment includes a dehumidifying device 300 for dehumidifying indoor air, and the dehumidified air that has passed through the dehumidifying device 300 joins other indoor air at a confluence point P6 and passes through the evaporator 130 .
  • the confluence point P6 is shown to be located before the evaporator 130, as long as it comes out from the middle of the evaporator 130 or the indoor unit 150 to the circulation passage A10, each air passes through the evaporator 130 and then joins. free
  • the dehumidifying device 300 includes a dehumidifying rotor 310 , an external air passage A13 through which external air passes, and a heat exchange unit 330 heating the external air.
  • a dehumidifying rotor 310 In the external air flow path A13, outside air is heated in the heat exchange unit 330, and then the dehumidifying rotor 310 is regenerated, and the regenerated dehumidifying rotor 310 is disposed on the dehumidifying flow path A12 to dehumidify the indoor air. do.
  • the dehumidification passage A12 and the external air passage A13 are partitioned by the inner wall 320 and do not mix with each other.
  • the outdoor unit in the seventh embodiment is the same as the outdoor unit in the first embodiment, a detailed description thereof will be omitted.
  • cooling and dehumidification are implemented as separate devices, that is, dehumidification is implemented through the evaporator 130 and a separate dehumidifying rotor 310 and the dehumidified air is provided through the evaporator 130 .
  • air having a temperature/humidity different from that of dehumidification through a conventional air conditioner can be provided to the room.
  • dehumidification through an air conditioner (evaporator)
  • dehumidification is performed through the relationship between temperature and saturated humidity. It is possible to satisfy everyone.
  • the dehumidified air is supplied to the evaporator 130 , condensed water does not occur in the evaporator 130 , and thus mold or bacterial growth caused by the moisture of the evaporator 130 does not occur.
  • the air conditioner of the eighth embodiment of the present invention includes a refrigerant cycle R1 in which the compressed refrigerant circulates in the same manner as in the first to seventh embodiments, and the refrigerant cycle R1 is a condenser ( 110) and the refrigerant evaporates and passes through the evaporator 130 for cooling the air.
  • the refrigerant cycle R1 a heat exchange unit 330' is disposed between the condenser 110 and the compressor 140, and this heat exchange The part 330 ′ is disposed on the outdoor unit and is disposed on the external air flow path A13 .
  • a dehumidification rotor 310 is disposed in the outdoor unit, and a portion of the dehumidification rotor 310 is disposed in the dehumidification passage A12 and the other portion is disposed in the external air passage A13.
  • the dehumidification passage A12 and the external air passage A13 are configured to be separated from each other, and the air introduced from the external air passage A13 is configured to sequentially pass through the heat exchange unit 330 ′ and the dehumidification rotor 310 . .
  • the air introduced from the external air flow path A13 passes through the heat exchange unit 330' and heats up while exchanging heat with the refrigerant whose temperature is increased by compression, and is dehumidified with the air whose temperature is increased by the heat exchange unit 330'.
  • the rotor 310 is regenerated.
  • the dehumidification passage A12 is configured to introduce air from indoors or outdoors, and to supply air to the room after passing through the dehumidification rotor 310 .
  • the air supplied to the room is supplied to merge with the junction P6 that joins the circulation flow path A10 at the branch point P8, or does not merge with the circulation flow path A10 but directly, for example, through a duct on the ceiling. It can be supplied directly into the indoor space.
  • the air that regenerates the dehumidification rotor 310 is heated by the refrigerant whose temperature is increased by the compressor 140, a separate heating source is not required for regeneration, thereby improving overall energy efficiency.
  • dehumidification is performed through the dehumidifying rotor 310 as in the seventh embodiment, it is also possible to satisfy all temperature/humidity desired by the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

본 발명은 압력 손실이 발생되지 않으면서 냉각 성능을 확보할 수 있는 증발식 응축기와 이를 포함하는 공기 조화기를 제공하는 것으로, 유체 통로를 포함하는 응축 모듈; 상기 응축 모듈 상부에서 응축 모듈을 통과하는 물을 분사하는 주수 모듈; 및 상기 응축 모듈의 일측에 배치되어 상기 응축 모듈을 통과하는 공기를 제공하는 송풍 모듈;을 포함하는 증발식 응축기로, 상기 응축 모듈은 일측에 배치되며 내부에 유로가 형성된 제 1 헤더, 타측에 배치되며 내부에 유로가 형성된 제 2 헤더 및 상기 제 1 헤더와 제 2 헤더 사이에서 상기 제 1 헤더와 제 2 헤더의 유로를 연결하는 복수의 연결튜브를 포함하는 N 개의 헤더열이 적층되며, 여기서 N은 2 이상의 자연수, 상기 응축 모듈, 주수 모률 및 송풍 모듈은 상기 주수 모듈이 분사하는 물 및 상기 송풍 모듈이 제공하는 공기는 상기 응축 모듈의 연결튜브 사이를 통과하도록 배치된 증발식 응축기를 제공한다.

Description

증발식 응축기 및 이를 포함하는 공기 조화기
본 발명은 냉각 효율이 향상된 증발식 응축기와 이를 포함하는 공기 조화기에 대한 것이다.
응축기는 압축기에서 공급되는 고온, 고압의 냉매증기를 냉각 및 액화시키는 열교환기로서, 냉동사이클 내의 열을 외부로 방출하는 역할을 한다.
증발식 응축기는 수냉식과 공냉식의 작용을 혼합한 방식으로 냉각 유체가 통과하는 튜브에 물을 분무하고 송풍기로부터 공급되는 공기를 튜브의 표면으로 유동시키고, 튜브의 표면에서 기화된 수증기를 배출시켜 냉각 유체를 냉각시키도록 구성된다.
특허문헌 1 에는 증발식 응축기가 개시되어 있다.
특허문헌 1 의 경우에 냉각유체의 유로가 내부에 형성되고 지그재그 방향으로 벤딩되어 형성된 하나의 플렛튜브와 플렛튜브로 증발수를 공급하는 증발수 공급유닛 및 증발수의 반대 방향으로 공기를 공급하는 송풍기가 개시되어 있다.
특허문헌 1 의 경우에 하나의 플렛튜브를 활용하므로, 유체 유입측으로부터 유출측까지 단면이 일정하게 된다. 하지만, 응축기에서는 증기가 냉각되어 액화가 발생되는 것으로 동일 부피가 유입되더라도 유입측에서 유출측으로 갈수록 부피가 감소하게 되는데, 단면이 일정한 경우에 부피 감소로 인하여 압력 손실이 발생된다.
(특허문헌 1) KR10-2019-0006781 A
본 발명은 위와 같은 문제를 해결하기 위한 것으로, 압력 손실이 발생되지 않으면서 냉각 성능을 확보할 수 있는 증발식 응축기와 이를 포함하는 공기 조화기를 제공하는 것을 목적으로 한다.
본 발명은 위와 같은 목적을 달성하기 위하여 다음과 같은 증발식 응축기 및 공기 조화기를 제공한다.
본 발명은 일실시예로, 유체 통로를 포함하는 응축 모듈; 상기 응축 모듈 상부에서 응축 모듈을 통과하는 물을 분사하는 주수 모듈; 및 상기 응축 모듈의 일측에 배치되어 상기 응축 모듈을 통과하는 공기를 제공하는 송풍 모듈;을 포함하는 증발식 응축기로, 상기 응축 모듈은 일측에 배치되며 내부에 유로가 형성된 제 1 헤더, 타측에 배치되며 내부에 유로가 형성된 제 2 헤더 및 상기 제 1 헤더와 제 2 헤더 사이에서 상기 제 1 헤더와 제 2 헤더의 유로를 연결하는 복수의 연결튜브를 포함하는 N 개의 헤더열이 적층되며, 여기서 N은 2 이상의 자연수, 상기 응축 모듈, 주수 모률 및 송풍 모듈은 상기 주수 모듈이 분사하는 물 및 상기 송풍 모듈이 제공하는 공기는 상기 응축 모듈의 연결튜브 사이를 통과하도록 배치된 증발식 응축기를 제공한다.
일실시예에서, 상기 응축 모듈에서 유체 입구는 제 1 헤더열에 연결되며, 유체 출구는 제 N 헤더열에 연결되며, 상기 제 1 헤더열에서 상기 제 N 헤더열까지 적층되는 방향과 상기 송풍 모듈의 공기 공급 방향은 서로 반대될 수 있다.
일실시예에서, 상기 응축 모듈에서 상기 유체 입구는 상기 제 1 헤더열의 제 1 헤더에 연결되며, 상기 제 1 헤더열의 제 1 헤더 및 상기 제 1 헤더열의 위에 배치되는 제2 헤더열의 제 1 헤더 사이에는 유로홀이 형성될 수 있다.
일실시예에서, 상기 헤더열은 상기 연결튜브에서 제 1 헤더로부터 제 2 헤더를 향하는 제 2-1 방향으로 유체가 흐르는 제 2-1 방향 헤더열과 상기 연결튜브에서 제 2 헤더로부터 제 1 헤더를 향하는 제 2 방향으로 유체가 흐르는 제 2-2 방향 헤더열을 포함하며, 상기 제1 헤더열로부터 순차적으로 적층된 A 개의 헤더열은 제 2-1 방향 헤더열이고, 상기 제 N 헤더열을 포함하여 상기 제 N 헤더열에서부터 아래로 연속적으로 배치되는 제1 또는 제2 방향 헤더열의 수가 M 개일 때, A, M 은 자연수이며, A > M 이고, A+M ≤ N, A≥2 을 만족할 수 있다.
일실시예에서, 상기 헤더열은 상기 연결튜브에서 제 1 헤더로부터 제 2 헤더를 향하는 제 2-1 방향으로 유체가 흐르는 제 2-1 방향 헤더열과, 상기 연결튜브에서 제 2 헤더로부터 제 1 헤더를 향하는 제 2-2 방향으로 유체가 흐르는 제 2-2 방향 헤더열을 포함하며, 상기 제 1 헤더열로부터 순차적으로 적층된 A 개의 헤더열은 제 2-1 방향 헤더열이고, 제 A 헤더열 상에 순차적으로 적층된 B 개의 헤더열은 제 2-2 방향 헤더열이며, 제 A+B 헤더열 상에 순차적으로 적층된 C 개의 헤더열은 제 2-1 방향 헤더열이며, A, B, C 는 자연수이며, A≥B 이며, A > C 이며, A+B+C ≤ N 를 만족할 수 있다.
일실시예에서, 상기 헤더열은 상기 연결튜브에서 제 1 헤더로부터 제 2 헤더를 향하는 제 2-1 방향으로 유체가 흐르는 제 2-1 방향 헤더열과 상기 연결튜브에서 제 2 헤더로부터 제 1 헤더를 향하는 제 2-2 방향으로 유체가 흐르는 제 2-2 방향 헤더열을 포함하며, 상기 유체 입구로 유입된 유체는 상기 제 2-1 방향 헤더열과 제 2-2 방향 헤더열을 번갈아 통과한 후 유체 출구로 토출되며, 상기 유체 입구로부터 상기 유체 출구로 갈수록 상기 유체가 통과하는 제 2-1 방향 또는 제 2-2 방향 헤더열의 수가 감소할 수 있다.
일실시예에서, 제 1 헤더열의 제 1 헤더에 유체 입구가 연결되며, 제 N 헤더열에 유체 출구가 연결되며, 상기 연결튜브는 상기 제 1 헤더로부터 상기 제 2 헤더를 향하는 제 2-1 방향으로 유체가 흐르는 제 2-1 방향 연결튜브와, 상기 제 2 헤더로부터 상기 제 1 헤더를 향하는 제 2-2 방향으로 유체가 흐르는 제 2-2 방향 연결튜브를 포함하며, 상기 유체 입구로 유입된 유체는 상기 제 2-1 방향 연결튜브와 제 2-2 방향 연결튜브를 번갈아 통과한 후 유체 출구로 토출되며, 상기 유체 입구로부터 상기 유체 출구로 갈수록 상기 유체가 통과하는 연결튜브의 수가 감소할 수 있다.
일실시예에서, 상기 제 2-1 방향 연결튜브와 상기 제 2-2 방향 연결튜브를 포함하는 헤더열은 제 1 또는 제 2 헤더에서 상기 상기 제 2-1 방향 연결튜브와 상기 제 2-2 방향 연결튜브 사이의 대응되는 위치에 배플이 배치될 수 있다.
일실시예에서, 제 1 헤더열에 유체 입구가 연결되며, 제 N 헤더열에 유체 출구가 연결되며, 상기 유체는 상기 연결튜브에서 제 1 헤더에서 제 2 헤더를 향하는 제 2-1 방향과, 제 2 헤더에서 제 1 헤더를 향하는 제 2-2 방향을 번갈아 가면서 상기 유체 입구로부터 상기 유체 출구로 유동되며, 상기 응축 모듈은 상기 연결튜브에서 유체의 흐름이 상기 제 2-1 방향 및 제 2-2 방향 중 어느 한 방향에서 다른 방향으로 전환될 때, 상기 한 방향에서 유체가 통과하는 단면적의 합이 상기 다른 방향에서 유체가 통과하는 단면적의 합보다 큰 부분을 포함할 수 있다.
본 발명을 일실시예에서, 냉매 사이클로 증발기, 팽창밸브, 압축기 및 응축기를 포함하는 공기 조화기로,상기 응축기는 상술한 증발식 응축기인 공기 조화기를 제공한다.
일실시예에서 상기 공기 조화기는 상기 증발기가 배치되는 실내기; 상기 증발식 응축기가 배치되는 실외기; 및 상기 송풍 모듈과 실내를 연결하는 연결 통로를 포함할 수 있다.
일실시예에서, 상기 공기 조화기는 실외에서 실내로 공기가 공급되는 공급 유로; 실내에서 실외로 공기가 배출되는 배출 유로; 및 상기 공급 유로 및 상기 배출 유로 상에 배치되며, 실내로 공급되는 공기와 실외로 배출되는 공기가 교차하며 열교환하게 구성되는 환기 열교환기;를 포함하며, 상기 배출 유로는 상기 송풍 모듈과 연결될 수 있다.
일실시예에서, 상기 공기 조화기는 실외에서 실내로 공기가 공급되는 공급 유로; 실내에서 실외로 공기가 배출되는 배출 유로; 및 상기 공급 유로 상에 배치되며, 주수 모듈을 포함하는 증발식 냉각기; 를 포함하며, 상기 배출 유로는 상기 송풍 모듈과 연결될 수 있다.
일실시예에서, 상기 공기조화기는 실내 공기를 순환시키는 순환 유로;를 포함하며, 상기 증발기는 상기 순환 유로의 경로 상에 배치될 수 있다.
일실시예에서, 상기 공기 조화기는 상기 응축기가 배치되는 실외기; 상기 증발기가 배치되는 실내기;를 포함하며, 상기 실외기는 실외 공기가 유입되는 유입 유로 상에 배치되며, 건채널과 습채널을 포함하며, 상기 건채널을 통과하는 공기를 냉각시키는 증발식 냉각기; 상기 유입 유로 상에 상기 증발식 냉각기 전에 배치되며, 유입되는 공기를 제습하는 제습로터; 상기 제습로터를 재생시키기 위한 공기가 지나가는 재생 유로 상에서 상기 제습로터 전에 배치되어 공기를 가열하는 가열부;를 포함하며, 상기 제습로터는 상기 재생 유로와 상기 유입 유로에 걸쳐서 배치되며, 상기 유입 유로는 상기 증발식 냉각기를 통과한 후 실내와 연결되는 실내 공급 유로, 상기 응축기와 연결되는 응축기 공급 유로, 상기 증발식 냉각기의 습채널과 연결되는 냉각기 공급 유로로 분기되며, 상기 실내 공급 유로는 상기 실내기에 연결될 수 있다.
일실시예에서, 상기 공기 조화기는 실내부터 공기가 빠져나오는 배출 유로를 더 포함하며, 상기 배출 유로는 상기 재생 유로에 연결될 수 있다.
본 발명은 압력 손실이 발생하지 않는 입체식 증발식 응축기 및 이를 포함하는 공기 조화기를 제공하는 것이 가능하다.
도 1 은 본 발명의 일실시예에 따른 증발식 응축기의 응축 모듈의 개략 사시도이다.
도 2 는 도 1 의 응축 모듈의 분해사시도이다.
도 3 은 증발식 응축기의 개략도이다.
도 4 는 도 1 의 응축 모듈의 제 1 내지 제 3 헤더열의 제 1 헤더의 단면 사시도이다.
도 5a 내지 도 5d 는 본 발명의 다른 실시예에 따른 응축 모듈의 개략도이다.
도 6a 는 본 발명의 또 다른 실시예에 따른 응축 모듈의 개략 사시도이며, 도 6b 는 도 6a 의 응축 모듈의 각 헤더열의 개략 평면도이다.
도 7a 는 본 발명의 또 다른 실시예에 따른 응축 모듈의 개략 사시도이며, 도 7b 는 도 7a 의 응축 모듈의 각 헤더열의 개략 평면도이다.
도 8a 는 본 발명의 또 다른 실시예에 따른 응축기의 개략 사시도이며, 도 8b는 도 8a 의 응축기의 A-A 선에 따른 개략 단면도이다.
도 9a 는 본 발명의 또 다른 실시예에 따른 응축기의 개략 사시도이며, 도 9b는 도 9a 의 응축기의 A-A 선에 따른 개략 단면도이다.
도 10a 는 본 발명의 또 다른 실시예에 따른 응축기의 개략 사시도이며, 도 10b는 도 10a 의 응축기의 A-A 선에 따른 개략 단면도이다.
도 11a 는 본 발명의 또 다른 실시예에 따른 응축기의 개략 사시도이며, 도 11b는 도 11a 의 응축기의 A-A 선에 따른 개략 단면도이다.
도 12a 은 본 발명의 제 1 실시예에 따른 공기 조화기의 개략도이다.
도 12b, 12c, 12d 는 본 발명의 제 1 실시예의 변형예 따른 공기 조화기의 개략도이다.
도 13 는 본 발명의 제 2 실시예에 따른 공기 조화기의 개략도이다.
도 14a 는 본 발명의 제 3 실시예에 따른 공기 조화기의 개략도이며, 도 14b, c는 제 3 살시예의 변형예에 따른 공기 조화기이다.
도 15 은 본 발명의 제 4 실시예에 따른 공기 조화기의 개략도이다.
도 16 는 본 발명의 제 5 실시예에 따른 공기 조화기의 개략도이다.
도 17 는 본 발명의 제 6 실시예에 따른 공기 조화기의 개략도이다.
도 18a 는 본 발명의 제 6 실시예에 따른 공기 조화기가 설치된 집의 개략도이며, 도 18b는 퍼니스의 개략도이다.
도 19 는 본 발명의 제 7 실시예에 따른 공기 조화기의 개략도이다.
도 20 은 본 발명의 제 8 실시예에 따른 공기 조화기의 개략도이다.
* 부호의 설명*
1: 응축 모듈 10, 20, 30, 40, 50, 60, 70: 헤더열
11, 21, 31, 41, 51, 61, 71: 제 1 헤더
12, 22, 32, 42, 52, 62, 72: 제 2 헤더
13, 23, 33, 43, 53, 63, 73: 연결튜브
11a, 11b, 11e: 배플
22e. 31e. 41e, 42e, 51e, 52e: 배플
90: 주수모듈 95: 송풍기
F: 핀부재
110: 증발식 응축기 120: 팽창 밸브
130: 증발기 140: 압축기
150: 실내기 151: 송풍기
160; 환기 열교환기 170: 증발식 냉각기
180: 제습 로터 185: 가열기
이하에서는 첨부된 도면을 참고로 하여, 본 발명의 구체적인 실시예에 대하여 설명하도록 한다.
도 1 내지 도 4 에는 본 발명의 일실시예에 따른 응축기(1)및 이를 포함하는 증발식 냉각 장치가 개시되어 있다. 구체적으로 도 1 에는 본 발명의 일실시예에 따른 응축기(1)의 개략 사시도가 도시되어 있으며, 도 2 에는 도 1 의 응축기(1)의 분해사시도가 도시되어 있으며, 도 3 에는 도 1 의 응축기(1)를 포함하는 증발식 냉각 장치의 개략도가 도시되어 있고, 도 4 는 도 1 의 응축기(1)의 제 1 내지 제 3 헤더열(10, 20, 30)의 제 1 헤더(11, 21, 31)의 단면 사시도가 도시되어 있다.
도 1 내지 도 3 에서 보이듯이, 본 발명의 일실시예에 따른 응축기(1)는 제 1 내지 제 6 헤더열(10, 20, 30, 40, 50, 60)을 포함하며, 제 1 헤더열(10)에는 유체 입구(I)가 제 6 헤더열(60)에는 유체 출구(O)가 연결되며, 제 1 내지 제 6 헤더열(10, 20, 30, 40, 50, 60)의 연결튜브(13, 23, 33, 43, 53, 63)의 전후 양측에는 커버(81, 82)가 배치되고, 각 연결튜브(13, 23, 33, 43, 53, 63) 사이에는 열교환을 돕는 핀부재(F)가 배치된다.
또한, 응축기(1)의 상부에는 물을 분사하는 주수 모듈(90)이 및 하부에는 상기 연결튜브(13, 23, 33, 43, 53, 63) 사이로 공기를 유동시키는 송풍기(95)가 배치된다.
응축기(1)은 유체(냉매)가 하부인 제 1 헤더열(10)로 유입되어, 상부인 제 6 헤더열(60)로 빠져나가게 된다. 물은 주수 모듈(90) 통하여 위에서 아래로 뿌려진다. 공기는 하부에 배치된 송풍기(95)에 의해서 상부로부터 하부로 이동되면서 물과 함께 연결튜브(13, 23, 33, 43, 53, 63)를 통과한다. 연결튜브(13, 23, 33, 43, 53, 63) 사이를 통과하면서 물을 증발시키며, 증발 잠열과 물/공기의 현열에 의해서 유체와 물/공기 사이에 열교환이 발생하여 응축기(1)를 통과하는 유체는 응축된다. 이때, 연결튜브(13, 23, 33, 43, 53, 63) 사이에 배치되는 핀부재(F)에 의해서 열교환 면적은 증대될 수 있다.
이 실시예에서, 물/공기와 유체(냉매)사이의 열교환이 발생하게 되는데, 서로 대향류로 열교환이 발생한다. 즉, 물과 공기는 상부에서 하부로, 유체는 하부에서 상부로 흐르면서 열교환이 발생하기 때문에, 비대향류 대비 최종 유체의 온도를 좀 더 낮게 하는 것이 가능하다. 특히, 아래에서 설명하지만 이 실시예의 구조에서 냉각 효율이 향상될 수 있는데 이 구조와 대향류 구성을 통하여 응축기(1) 사이즈를 유지하면서도 최종 유체 온도는 낮추는 것이 가능하다.
한편, 이 실시예에서는 송풍기(95)에 의해서 공기가 위에서 하부로 이동되는 방식으로 설명하였지만, 이에 제한되는 것은 아니며, 송풍기(95)가 상부에 설치되어, 공기를 위에서 아래로 밀어내는 방식으로 동작하는 것도 가능하다.
나아가, 공기 흐름 자체가 아래에서 위를 항하게 하는 것도 가능하다.
본 발명의 응축기(1)는 헤더의 연장 방향인 제 1 방향, 연결튜브의 연장 방향인 제 2 방향 및 헤더열의 적층 방향인 제 3 방향으로 유체가 통과하기 때문에, 입체적 구조를 가지며, 그로 인하여 동일 부피를 차지하더라도 더 많은 열교환이 가능하여 냉각 성능이 향상될 수 있다. 이때, 제 1 방향, 제 2 방향, 제 3 방향을 서로 다른 방향일 수 있다.
예를 들어, 제 1 방향은 X 방향, 제 2 방향은 X 방향에 수직한 Y 방향, 및 제 3 방향은 상기 X 방향 및 Y 방향에 수직한 Z 방향이 될 수 있으며, 다르게 제 1 방향은 반경 방향, 제 2 방향은 원주 방향, 제 3 방향은 높이 방향이 될 수도 있다.
본 발명에서, 유체는 유체 입구에서 들어와서 제 1 헤더(11, 21, 31, 41, 51, 61)를 따라서 흘러들어가 연결튜브(13, 23, 33, 43, 53, 63)를 통과한 후 제 2 헤더(12, 22, 32, 42, 52, 62)로 가며, 제 2 헤더(12, 22, 32, 42, 52, 62)에서 제 3 방향으로 이동된 후 제 2 헤더(12, 22, 32, 42, 52, 62)에서 연결튜브(13, 23, 33, 43, 53, 63)를 통과해 제 1 헤더(11, 21, 31, 41, 51, 61)로 가는 것을 반복한다. 즉, 제 1 헤더에서 제 2 헤더 방향으로 유체가 흘러 갔다가 다시 제 2 헤더에서 제 1 헤더 방향으로 유체가 제 2 방향에서 방향 전환을 하면서 흘러가며, 방향 전환을 할 때, 유체가 통과하는 단면적이 감소될 수 있다. 제 2 방향에서, 제 1 헤더(11, 21, 31, 41, 51, 61)에서 제 2 헤더(12, 22, 32, 42, 52, 62)를 향하는 방향을 제 2-1 방향이라고 하며, 제 2 헤더(12, 22, 32, 42, 52, 62)에서 제 1 헤더(11, 21, 31, 41, 51, 61)를 향하는 방향을 제 2-2 방향이라고 한다.
한편, 본 발명의 제 1 내지 제 6 헤드열(10, 20, 30, 40, 50, 60)은 일측에 배치되며 내부에 유로가 형성된 제 1 헤더(11, 21, 31, 41, 51, 61), 타측에 배치되며 내부에 유로가 형성된 제 2 헤더(12, 22, 32, 42, 52, 62) 및 상기 제 1 헤더(11, 21, 31, 41, 51, 61)와 제 2 헤더(12, 22, 32, 42, 52, 62) 사이에서 상기 제 1 헤더(11, 21, 31, 41, 51, 61)와 제 2 헤더(12, 22, 32, 42, 52, 62)의 유로를 연결하는 복수의 연결튜브(13, 23, 33, 43, 53, 63)를 포함한다.
제 1 헤더열(10)의 제 1 헤더(11)의 경우에 길이방향을 따라서 한쪽은 유체 입구(I)에 연결되며, 다른 쪽은 배플(11b)에 의해서 막혀 있는 관형상을 가진다. 제 1 헤더열(10)의 제 1 헤더(11)의 경우에 상부로 유로홀(11c)이 형성되며, 상기 제 1 헤더열(10)의 유로홀(11c)에 대응되는 위치에 제 2 헤더열(10)의 제 1 헤더(21)의 하부에도 유로홀(21c)이 형성되어 상기 제 1 헤더열(10)의 제 1 헤더(11)과 제 2 헤더열(20)의 제 1 헤더(21)은 서로 연통한다. 나아가, 상기 제 2 헤더열(20)의 제 1 헤더(21)의 경우에 하부뿐만 아니라, 상기 제 3 헤더열(30)의 제 1 헤더(31)을 향한 상부에도 유로홀(21c)을 가지며, 상기 유로홀(21c)에 대응되는 위치의 제 3 헤더열(30)의 제 1 헤더(31)에도 유로홀(31c)이 형성되머, 상기 제 1 헤더열(10)의 제 1 헤더(11)로 유입된 유체는 상기 제 2 헤더열(20)의 제 1 헤더(21)와 제 3 헤더열(30)의 제 1 헤더(31)로 이동된다.
제 2 헤더열(20)의 제 1 헤더(21)의 경우에 길이 방향 양쪽이 배플(21a, 21b)로 막혀 있으며, 제 3 헤더열(30)의 제 1 헤더(31)의 경우도 동일하다.
한편, 제 1 헤더(11, 21, 31, 41, 51, 61)의 경우에 제 2 헤더(12, 22, 32, 42, 52, 62)를 향하는 면에 상기 연결튜브(13, 23, 33, 43, 53, 63)과 연결되기 위한 연통공(11d, 61d)이 형성되며, 제 1 헤더(11, 21, 31, 41, 51, 61)와 제 2 헤더(12, 22, 32, 42, 52, 62) 사이에는 다수 개의 연결튜브(13, 23, 33, 43, 53, 63)가 연결되므로, 연통공(11d, 61d) 역시 다수 개 형성된다.
제 2 헤더(12, 22, 32, 42, 52, 62)의 경우 제 1 헤더(11, 21, 31, 41, 51, 61)와 동일한 구조가 대칭되게 형성된다. 연결튜브(13, 23, 33, 43, 53, 63)는 튜브의 길이 방향으로 마이크로 체널, 즉, 미세체널이 복수 개 형성되는 구조를 가진다. 상기 연결튜브(13, 23, 33, 43, 53, 63) 사이에 핀부재(F)가 연결되어 열교환 면적을 확장시킨다. 상기 연결튜브(13, 23, 33, 43, 53, 63) 및 제 1, 2 헤더(11, 12, 21, 22, 31, 32, 41, 42, 51, 52, 61, 62)는 아크 코팅 기술(Tech Arc Coating, TAC)로 코팅될 수 있다.
핀부재(F)는 주수 모듈(90)에 의해서 분사되는 물을 고르게 퍼지게 하기 위해서 친수성 또는 친수성을 포함하는 다공성 소재로 코팅되며. 상기 다공성 소재는 금속 유기 구조체(Metal Organic Framework; MOF)로 코팅된다.
도 3 을 참고하여, 이러한 구조의 응축기(1)를 포함하는 증발식 냉각 장치에서 유체의 흐름을 설명한다.
본 발명의 일실시예에서, 제 1 헤더열(10)의 제 1 헤더(11)로 유입되는 유체는 제 2 헤더열(20)의 제 1 헤더(21), 제 3 헤더열(30)의 제 1 헤더(31)로 나눠지며, 제 1 내지 제 3 헤더열(10, 20, 30)의 제 1 헤더(11, 21, 31)로부터 제 2 헤더(12, 22, 32)로 연결튜브(13, 23, 33)를 타고 흐르며, 그 동안에 물/공기에 의해서 열교환되어 일부가 기체에서 액체로 변화되며 그에 의해서 동일한 무게의 유체가 차지하는 부피가 감소된다.
제 1 내지 제 3 헤더열(10, 20, 30)의 제 2 헤더(12, 22, 32)는 제 4 및 제 5 헤더열(40, 50)의 제 2 헤더(42, 52)와 유로홀로 연결되어 있으며, 따라서, 제 1 내지 제 3 헤더열(10, 20, 30)의 제 2 헤더(12, 22, 32)로 유입된 유체는 다시 제 4 및 제 5 헤더열(40, 50)의 제 2 헤더(42, 52)로 올라간다. 그 후, 제 4 및 제 5 헤더열(40, 50)의 제 2 헤더(42, 52)로부터 제 1 헤더(41, 51)로 연결튜브(43, 53)를 타고 흐르며, 연결튜브(43, 53)를 통과하는 동안에 물/공기에 의해서 열교환되어 일부가 기체에 의해서 액체로 변화되며, 그에 의해서 동일한 무체의 유체가 차지하는 부피가 재차 감소된다.
제 4 및 제 5 헤더열(40, 50)의 제 1 헤더(41, 51)로 유입된 유체는 제 4 내지 제 6 헤더열(40, 50, 60) 사이에 형성된 유로홀에 의해서 제 6 헤더열(60)의 제 1 헤더(61)로 상승한다. 올라온 유체는 제 6 헤더열(60)의 제 1 헤더(61)에서 제 2 헤더(62)로 연결튜브(63)를 통과하여 이동하며, 연결튜브(63)를 통과하여 이동하는 동안에 물/공기와 열교환하여 액체로 응축된다. 제 6 헤더열(60)의 제 2 헤더(62)는 유체 출구(O)와 연결되어 있으며, 제 1 내지 제 6 헤더열(10, 20,30, 40, 50, 60)을 통과하면서 응축된 유체는 유체 출구(O)를 통하여 배출되며 다른 냉각 사이클의 구성으로 보내지게 된다.
본 발명의 일실시예에 따른 응축기(1)의 경우에 제 1 헤더(11)로 유체가 유입된 후 제 1 헤더(11, 21, 31, 41, 51, 61)에서 제 2 헤더(12, 22, 32, 42, 52, 62)를 향하는 제 2-1 방향으로 흐르고, 그 후 방향이 전환되어 제 2 헤더(12, 22, 32, 42, 52, 62)에서 제 1 헤더(11, 21, 31, 41, 51, 61)를 향하는 제 2-2 방향으로 흐르고, 다시 방향이 전환되어 제 2-1 방향으로 흐른 후 유체 출구(O)로 배출되는데, 제 2-1 방향 → 제 2-2 방향 → 제 2-1 방향으로 전환될 때, 통과하는 헤더열의 수가 변화된다. 즉, 유체가 유입된 후 제 2-1 방향으로 흐르는 헤더열을 제 1 내지 제 3 헤더열(10, 20, 30)로 3개인데, 방향이 제 2-2 방향으로 전환된 후에는 제 4 내지 제 5 헤더열940, 50) 2개로 감소하며, 다시 방향이 제 2-1 방향으로 전환된 후에는 제 6 헤더열(60) 한 개로 감소하여 전체적으로 통과하는 헤더열의 수가 3 → 2 → 1로 감소한다.
본 발명의 일실시예에서 헤더열은 동일 사이즈로 적층되어 형성되므로, 헤더열의 수가 크다는 것은 유체가 통과하는 면적이 크다는 것이며, 이는 차지하는 부피가 크다는 것이며, 헤더열의 수가 작다는 것은 유체가 통과하는 면적이 작다는 것으로 차지하는 부피가 작다는 것이다.
따라서, 초기에 기체 상태가 대부분인 유체 입구(I) 쪽에서는 제 2-1 방향으로 통과하는 유체가 동시에 3개의 헤더열, 즉, 제 1 내지 제 3 헤더열(10, 20, 30)의 연결튜브(13, 23, 33)를 통과하면서 냉각이 이루어진다. 뒤로 가면서 열교환이 이루어져 액체 상태가 많아질수록 작은 수의 헤더열을 통과하게 하며, 마지막에는 하나의 헤더열(60)의 연결튜브(63)만을 통과하게 된다. 따라서, 유체의 부피감소에 맞춰서 통과하는 응축기(1)의 유로 단면적을 감소시킬 수 있으며, 이로 인하여 부피감소로 인하여 발생하는 압력 손실을 감소시킬 수 있다.
압력 손실이 감소된다는 것은 유체(냉매)가 통과하는 시간 동안 열교환이 많이 이루어질 수 있다는 것으로, 동일한 사이즈의 응축기라고 하더라도 많은 양의 열교환이 가능하게 되므로, 동일한 용량이라면 작은 사이즈로 응축기의 사용이 가능하며, 동일한 사이즈라면 큰 용량의 냉각이 가능하다.
또한, 본 발명의 응축기(1)는 헤더의 연장 방향인 제 1 방향, 연결튜브의 연장 방향인 제 2 방향 및 헤더열의 적층 방향인 제 3 방향으로 유체가 통과하기 때문에, 입체적 구조를 가지며, 그로 인하여 동일 부피를 차지하더라도 더 많은 열교환이 가능하여 냉각 성능이 향상될 수 있다. 예를 들어, 제 1 방향은 X 방향, 제 2 방향은 X 방향에 수직한 Y 방향, 및 제 3 방향은 상기 X 방향 및 Y 방향에 수직한 Z 방향이 될 수 있다.
도 5a 내지 도 5d 에는 본 발명의 다른 실시예에 따른 응축기의 개략도가 도시되어 있다.
도 5a 내지 도 5d 의 실시예의 경우에 모두 유체가 제 1 헤더열(10)의 제 1 헤더(11)로 유입된다는 점에서는 동일하지만, 전체 헤더열(10, 20, 30, 40, 50, 60)의 수 및 제 2-1 방향 및 제 2-2 방향으로 통과하는 헤더열의 수가 상이하다.
도 5a 의 일실시예에서, 제 1 헤더열(10)의 제 1 헤더(11)로 유입되는 유체는 제 2 헤더열(20)의 제 1 헤더(21), 제 3 헤더열(30)의 제 1 헤더(31)로 나눠지며, 제 1 내지 제 3 헤더열(10, 20, 30)의 제 1 헤더(11, 21, 31)로부터 제 2 헤더(12, 22, 32)로 연결튜브(13, 23, 33)를 타고 흐르며, 그 동안에 물/공기에 의해서 열교환되어 일부가 기체에서 액체로 변화되며 그에 의해서 동일한 무게의 유체가 차지하는 부피가 감소된다.
제 1 내지 제 3 헤더열(10, 20, 30)의 제 2 헤더(12, 22, 32)는 제 4 및 제 5 헤더열(40, 50)의 제 2 헤더(42, 52)와 유로홀로 연결되어 있으며, 따라서, 제 1 내지 제 3 헤더열(10, 20, 30)의 제 2 헤더(12, 22, 32)로 유입된 유체는 다시 제 4 및 제 5 헤더열(40, 50)의 제 2 헤더(42, 52)로 올라간다. 그 후, 제 4 및 제 5 헤더열(40, 50)의 제 2 헤더(42, 52)로부터 제 1 헤더(41, 51)로 연결튜브(43, 53)를 타고 흐르며, 연결튜브(43, 53)를 통과하는 동안에 물/공기에 의해서 열교환되어 일부가 기체에 의해서 액체로 변화되며, 그에 의해서 동일한 무체의 유체가 차지하는 부피가 재차 감소된다.
제 4 및 제 5 헤더열(40, 50)의 제 1 헤더(41, 51)로 유입된 유체는 제 4 내지 제 6 헤더열(40, 50, 60) 사이에 형성된 유로홀에 의해서 제 6 헤더열(60)의 제 1 헤더(61)로 상승한다. 올라온 유체는 제 6 헤더열(60)의 제 1 헤더(61)에서 제 2 헤더(62)로 연결튜브(63)를 통과하여 이동하며, 연결튜브(63)를 통과하여 이동하는 동안에 물/공기와 열교환하여 액체로 응축된다. 제 6 헤더열(60)의 제 2 헤더(62)는 제 7 헤더열(70)의 제 2 헤더(72)에 연통되게 구성되어, 제 6 헤더열(60)의 제 2 헤더(62)로 들어온 유체는 제 7 헤더열(70)의 제 2 헤더(72)로 상승되며, 제 7 헤더열(70)의 연결튜브(73) 및 제 1 헤더(71)를 통과한 후 유체 출구(O)를 통하여 배출되며 다른 냉각 사이클의 구성으로 보내지게 된다.
이 실시예에서는 응축기(1)로 공급된 유체는 헤더열(10, 20, 30, 40, 50, 60, 70)를 제 2-1 방향 → 제 2-2 방향 → 제 2-1 방향 → 제 2-2 방향으로 전환되면서 통과하며, 최초의 헤더열의 수로부터 뒤로 가면서 감소된다. 즉, 응축기(1)의 헤더열(10, 20, 30, 40, 50, 60, 70)을 통과하면서 헤더열의 수는 제 2-1 방향 → 제 2-2 방향 → 제 2-2 방향 → 제 2-2 방향으로 3→2→1→1로 감소한다. 이때 방향 전환이 복수 회 있는 경우에 모든 방향 전환 시에 반드시 헤더열의 수가 감소되어야 하는 것은 아니며, 필요한 경우, 일부 방향 전환 시에는 헤더열의 수가 감소되지 않고 유지되는 것도 가능하다. 예를 들면 액체로 충분히 변환된 후에 통과하는 단면적을 그대로 유지하는 것도 가능하다.
도 5b의 실시예의 경우, 제 1 헤더열(10)의 제 1 헤더(11)로 유입되는 유체는 제 2 헤더열(20)의 제 1 헤더(21)로 나눠지며, 제 1 내지 제 2 헤더열(10, 20)의 제 1 헤더(11, 21)로부터 제 2 헤더(12, 22)로 연결튜브(13, 23)를 타고 흐르며, 그 동안에 물/공기에 의해서 열교환되어 일부가 기체에서 액체로 변화되며 그에 의해서 동일한 무게의 유체가 차지하는 부피가 감소된다.
제 1 내지 제 2 헤더열(10, 20)의 제 2 헤더(12, 22)는 제 3 및 제 4 헤더열(30, 40)의 제 2 헤더(32, 42)와 유로홀로 연결되어 있으며, 따라서, 제 1 내지 제 2 헤더열(10, 20)의 제 2 헤더(12, 22)로 유입된 유체는 다시 제 3 및 제 4 헤더열(30, 40)의 제 2 헤더(32, 42)로 올라간다. 그 후, 제 3 및 제 4 헤더열(30, 40)의 제 2 헤더(32, 42)로부터 제 1 헤더(31, 41)로 연결튜브(33, 43)를 타고 흐르며, 연결튜브(33, 43)를 통과하는 동안에 물/공기에 의해서 열교환되어 일부가 기체에 의해서 액체로 변화된다.
제 3 및 제 4 헤더열(30, 40)의 제 1 헤더(31, 41)로 유입된 유체는 제 3 내지 제 5 헤더열(30, 40, 50) 사이에 형성된 유로홀에 의해서 제 5 헤더열(50)의 제 1 헤더(51)로 상승한다. 올라온 유체는 제 5 헤더열(50)의 제 1 헤더(51)에서 제 2 헤더(52)로 연결튜브(53)를 통과하여 이동하며, 연결튜브(53)를 통과하여 이동하는 동안에 물/공기와 열교환하여 액체로 응축된다. 제 5 헤더열(50)의 제 2 헤더(52)는 제 6 헤더열(60)의 제 2 헤더(62)에 연통되게 구성되어, 제 5 헤더열(50)의 제 2 헤더(52)로 들어온 유체는 제 6 헤더열(60)의 제 2 헤더(62)로 상승되며, 제 6 헤더열(60)의 연결튜브(63) 및 제 1 헤더(61)를 통과한 후 유체 출구(O)를 통하여 배출되며 다른 냉각 사이클의 구성으로 보내지게 된다.
이 실시예에서는 응축기(1)로 공급된 유체는 헤더열(10, 20, 30, 40, 50, 60)를 제 2-1 방향 → 제 2-2 방향 → 제 2-1 방향 → 제 2-2 방향으로 전환되면서 통과하며, 최초의 헤더열의 수는 최종 통과하는 헤더열의 수보다 크다. 즉, 응축기(1)의 헤더열(10, 20, 30, 40, 50, 60)을 통과하면서 헤더열의 수는 제 2-1 방향→ 제 2-2 방향 → 제 2-1 방향 → 제 2-2 방향으로 2→2→1→1 이 된다. 이와 같이 한 부분에서만 단면적이 감소하는 것도 가능하다.
도 5c 의 실시예의 경우, 제 1 헤더열(10)의 제 1 헤더(11)로 유입되는 유체는 제 2 내지 제 4 헤더열(20, 30, 40)의 제 1 헤더(21, 31, 41)로 나눠지며, 제 1 내지 제 4 헤더열(10, 20, 30, 40)의 제 1 헤더(11, 21, 31, 41)로부터 제 2 헤더(12, 22, 32, 42)로 연결튜브(13, 23, 33, 43)를 타고 흐르며, 그 동안에 물/공기에 의해서 열교환되어 일부가 기체에서 액체로 변화되며 그에 의해서 동일한 무게의 유체가 차지하는 부피가 감소된다.
제 1 내지 제 4 헤더열(10, 20, 30, 40)의 제 2 헤더(12, 22, 32, 42)는 제 5 및 제 6 헤더열(50, 60)의 제 2 헤더(52, 62)와 유로홀로 연결되어 있으며, 따라서, 제 1 내지 제 4 헤더열(10, 20, 30, 40)의 제 2 헤더(12, 22, 32, 42)로 유입된 유체는 다시 제 5 및 제 6 헤더열(50, 60)의 제 2 헤더(52, 62)로 올라간다. 그 후, 제 5 및 제 6 헤더열(50, 60)의 제 2 헤더(52, 62)로부터 제 1 헤더(51, 61)로 연결튜브(53, 63)를 타고 흐르며, 연결튜브(53, 63)를 통과하는 동안에 물/공기에 의해서 열교환되어 일부가 기체에 의해서 액체로 변화된다.
제 5 및 제 6 헤더열(50, 60)의 제 1 헤더(51, 61)로 유입된 유체는 제 5 내지 제 7 헤더열(50, 60, 70) 사이에 형성된 유로홀에 의해서 제 7 헤더열(70)의 제 1 헤더(71)로 상승한다. 올라온 유체는 제 7 헤더열(70)의 제 1 헤더(71)에서 제 2 헤더(72)로 연결튜브(73)를 통과하여 이동하며, 연결튜브(73)를 통과하여 이동하는 동안에 물/공기와 열교환하여 액체로 응축된다. 그 후 제 7 헤더열(70)의 제 2 헤더(72)를 통과한 후 유체 출구(O)를 통하여 배출되며 다른 냉각 사이클의 구성으로 보내지게 된다.
이 실시예에서는 응축기(1)로 공급된 유체는 헤더열(10, 20, 30, 40, 50, 60, 70)를 제 2-1 방향 → 제 2-2 방향 → 제 2-1 방향으로 전환되면서 통과하며, 헤더열의 수는 뒤로 갈수록 작아진다. 즉, 응축기(1)의 헤더열(10, 20, 30, 40, 50, 60, 70)을 통과하면서 헤더열의 수는 제 2-1 방향 → 제 2-2 방향 → 제 2-1 방향으로 4→2→1 이 된다.
도 5d 의 실시예의 경우, 제 1 헤더열(10)의 제 1 헤더(11)로 유입되는 유체는 제 2 내지 제 3 헤더열(20, 30)의 제 1 헤더(21, 31)로 나눠지며, 제 1 내지 제 3 헤더열(10, 20, 30)의 제 1 헤더(11, 21, 31)로부터 제 2 헤더(12, 22, 32)로 연결튜브(13, 23, 33)를 타고 흐른다.
제 1 내지 제 3 헤더열(10, 20, 30)의 제 2 헤더(12, 22, 32)는 제 4 내지 제 6 헤더열(40, 50, 60)의 제 2 헤더(42, 52, 62)와 유로홀로 연결되어 있으며, 따라서, 제 1 내지 제 3 헤더열(10, 20, 30)의 제 2 헤더(12, 22, 32)로 유입된 유체는 다시 제 4 내지 제 6 헤더열(40, 50, 60)의 제 2 헤더(42, 52, 62)로 올라간다. 그 후, 제 4 내지 제 6 헤더열(40, 50, 60)의 제 2 헤더(42, 52, 62)로부터 제 1 헤더(41, 51, 61)로 연결튜브(43, 53, 63)를 타고 흐르며, 연결튜브(43, 53, 63)를 통과하는 동안에 물/공기에 의해서 열교환되어 일부가 기체에 의해서 액체로 변화된다.
제 4 내지 제 6 헤더열(40, 50, 60)의 제 1 헤더(41, 51, 61)로 유입된 유체는 제 4 내지 7 헤더열(40, 50, 60, 70) 사이에 형성된 유로홀에 의해서 제 7 헤더열(70)의 제 1 헤더(71)로 상승한다. 올라온 유체는 제 7 헤더열(70)의 제 1 헤더(71)에서 제 2 헤더(72)로 연결튜브(73)를 통과하여 이동하며, 연결튜브(73)를 통과하여 이동하는 동안에 물/공기와 열교환하여 액체로 응축된다. 그 후 제 7 헤더열(70)의 제 2 헤더(72)를 통과한 후 유체 출구(O)를 통하여 배출되며 다른 냉각 사이클의 구성으로 보내지게 된다.
이 실시예에서는 응축기(1)로 공급된 유체는 헤더열(10, 20, 30, 40, 50, 60, 70)를 제 2-1 방향→제 2-2 방향→제 2-1 방향으로 전환되면서 통과하며, 헤더열의 수는 뒤로 갈수록 작아진다. 즉, 응축기(1)의 헤더열(10, 20, 30, 40, 50, 60, 70)을 통과하면서 헤더열의 수는 제 2-1 방향→제 2-2 방향→제 1 방향으로 3→3→1 이 된다. 즉, 끝에서만 헤더열을 수가 감소하는 것도 본 발명에서 가능하다.
도 6a 및 도 6b 에는 본 발명의 또 다른 실시예의 응축기가 도시되어 있다. 도 6a 에는 본 발명의 또 다른 실시예의 응축기(1)의 사시도가, 도 6b 에는 도 6a 의 응축기(1)의 각 헤더열(10, 20, 30, 40, 50)에서의 단면도가 도시되어 있다.
도 6a 및 도 6b 의 응축기(1)는 상기 도 1 내지 4 의 응축기(1)와 비교했을 때, 유체가 통과함에 따라서 통과하는 유로의 단면적이 감소한다는 점에서 공통된다. 다만, 도 1 내지 4 의 경우에 헤더열(10, 20, 30, 40, 50, 60)의 수를 조절함으로써 통과하는 유로의 단면적을 조절했다고 한다면, 도 6a 및 6b 의 경우에는 유로에서 유체가 흐름에 따라서 통과하는 연결튜브(13, 23, 33, 43, 53)의 수를 조절함으로써 유체가 지나가는 유로의 단면적을 감소시킨다.
도 6a 및 도 6b 에 도시되어 있지만, 기본 구조는 도 1 내지 4 와 동일하다. 즉, 유체 입구(I)가 최하측의 제 1 헤더열(10)에 연결되며, 유체 출구(O)가 최상측의 제 5 헤더열(50)에 연결된다. 제 1 헤더열(10) 상에 제 2 내지 제 5 헤더열(20, 30, 40, 50)이 쌓이며, 각 헤더열(10, 20, 30, 40, 50)은 일측에 배치되며 내부에 유로가 형성된 제 1 헤더(11, 21, 31, 41, 51), 타측에 배치되며 내부에 유로가 형성된 제 2 헤더(12, 22, 32, 42, 52) 및 상기 제 1 헤더(11, 21, 31, 41, 51)와 제 2 헤더(12, 22, 32, 42, 52) 사이에서 상기 제 1 헤더와 제 2 헤더의 유로를 연결하는 복수의 연결튜브(13, 23, 33, 43, 53)를 포함한다. 도 6b 에서 보이듯이, 각 헤더열(10, 20, 30, 40, 50)에서는 동일한 수의 연결튜브(13, 23, 33, 43, 53)를 포함한다.
제 1 내지 제 5 헤더열(10, 20, 30, 40, 50)은 상기 제 1 헤더(11, 21, 31, 41, 51)로부터 상기 제 2 헤더(12, 22, 32, 42, 52)를 향하는 제 2-1 방향으로 유체가 흐르는 제 2-1 방향 연결튜브와, 상기 제 2 헤더(12, 22, 32, 42, 52)로부터 상기 제 1 헤더(11, 21, 31, 41, 51)를 향하는 제 2-2 방향으로 유체가 흐르는 제 2-2 방향 연결튜브를 포함하며, 유체는 제 1 내지 제 5 헤더열(10, 20, 30, 40, 50)의 연결튜브(13, 23, 33, 43, 53)를 통과하되, 제 2-1 방향 연결튜브와 제 2-2 방향 연결튜브를 번갈아 지나간다.
제 1 헤더열(10)의 제 1 헤더(11)에는 유체 입구(I)가 연결되며, 유체 입구(I)를 통하여 유입된 유체는 제 1 헤더(11) 및 연결튜브(13)를 통과하여 제 2 헤더(12)로 흐르게 된다. 제 1 헤더열(10)과 제 2 헤더열(20)의 제 2 헤더(12, 22) 사이에는 유로홀(12c, 22c)이 형성되머, 유로홀(12c, 22c)에 의해서 제 1 헤더열(10)의 제 2 헤더(12)의 유체는 제 2 헤더열(20)의 제 2 헤더(22)로 상승한다. 제 2 헤더열(20)의 제 2 헤더(22)로 유입된 유체는 연결튜브(23)을 통과하여 제 1 헤더(21)로 흐르게 된다. 제 1 헤더열(10)의 연결튜브(13)는 모두 제 1 헤더(11)에서 제 2 헤더(12) 방향으로 유체가 흐르는 제 2-1 방향 연결 튜브이며, 제 2 헤더열(20)의 연결튜브(23)는 모두 제 2 헤더(22)에서 제 1 헤더(21) 방향으로 유체가 흐르는 제 2-2 방향 연결튜브이다.
제 2 헤더열(20)의 제 1 헤더(21)로 유입된 유체는 제 2 및 제 3 헤더열(20, 30)의 제 1 헤더(21, 31) 사이의 유로홀(21c, 31c)에 의해서 제 3 헤더열(30)의 제 1 헤더(31)로 상승된다. 이때, 제 3 헤더열(30)의 제 1 헤더(31)는 중간에 베플(31e)이 배치되며, 상기 유로홀(21c, 31c)은 배플(31e)에 의해서 구획되며 유체 입측에 가까운 제 1 영역에만 형성이 되며, 다른 공간인 제 2 영역에는 제 3 및 4 헤더열(30, 40)의 제 1 헤더(31, 41) 사이에 유로홀(31c, 41c)이 형성된다. 한편, 제 3 헤더열(30)의 제 1 헤더(31) 중 배플(31e)에 의해서 구획된 제 1 영역으로 상승된 유체는 제 2-1 방향으로 유체가 흐르는 연결튜브(33)를 통과해 제 2 헤더(32)로 흘러간다.
제 2 헤더(32)에서 일부는 제 3 및 제 4 헤더열(30, 40)의 제 2 헤더(32, 42) 사이에 형성된 유로홀(32c, 42c)을 통하여 상승하며, 일부는 상기 배플(31e)에 의해서 구획된 제 1 헤더(31)의 제 2 영역으로 제 2-2 방향으로 유체가 흐르는 연결튜브(33)를 통과해 흘러간다. 제 3 및 제 4 헤더열(30, 40)의 상기 유로홀(32c, 42c)은 제 2 헤더(32, 42)의 길이 방향 전부에 형성되는 것은 아니며, 상기 제 4 헤더열(40)의 제 2 헤더(42)에서 배플(42e)로 구획되는 제 1 영역에 대응되는 부분에만 형성된다. 제 4 헤더열(40)의 제 2 헤더(42)의 제 1 영역으로 올라온 유체는 대응하는 위치에 구비되며 제 2-2 방향으로 유체가 흐르는 연결튜브(43)를 통하여 제 1 헤더(41)로 흘러간다.
한편, 제 3 헤더열(30)의 제 1 헤더(31)의 제 2 영역으로 유입된 유체는 제 3 및 제 4 헤더열(30, 40)의 제 1 헤더(31, 41) 사이에 형성된 유로홀(31c, 41c)을 통하여 제 4 헤더열(40)의 제 1 헤더(41)로 올라간다. 이렇게 제 4 헤더열(40)의 제 1 헤더(41)로 올라간 유체는 제 4 헤더열(40)의 제 2 헤더(42), 연결튜브(43)를 통과하여 제 1 헤더(41)로 흘러오는 유체와 합류한다.
합류된 유체는 상기 배플(42e)에 의해서 구획된 다른 영역, 즉 제 2 영역에 대응되는 위치에 구비되며 제 2-1 방향으로 유체가 흐르는 연결튜브(43)를 통하여 제 4 헤더열(40)의 제 2 헤더(42)의 제 2 영역으로 흘러간다. 제 4 헤더열(40)의 제 2 헤더(42)와 제 5 헤더열(50)의 제 2 헤더(52) 사이에 형성된 유로홀(42c, 52c)을 통하여 상기 제 2 헤더(42)의 제 2 영역의 유체가 제 5 헤더열(50)의 제 2 헤더(52)로 상승한다. 다만, 상기 유로홀(42c, 52c)은 상기 제 5 헤더열(50)의 제 2 헤더(52)에서 배플(52e)에 의해서 구획된 영역 중 평면 상에서 유체 입구로부터 먼(도면 6b 에서 아래쪽)의 제 2 영역에 대응되는 위치에만 형성되며, 따라서, 유체는 제 5 헤더열(50)의 제 2 헤더(52) 중 제 2 영역으로 유입된다.
제 2 헤더(52)로 유입된 유체는 제 2-2 방향으로 유체가 흐르는 연결튜브(53)를 통과하여 제 1 헤더(51)로 흘러간다. 제 1 헤더(51) 역시 배플(51e)에 의해서 구획되며, 제 2 헤더(52)의 제 2 영역에 대응되는 제 1 헤더(51)의 제 2 영역으로 유체가 유입된다. 도 6b 에서 보이듯이, 상기 제 1 헤더(51)의 제 2 영역은 상기 제 2 헤더(52)의 제 2 영역보다 길게 형성되며, 따라서, 제 1 헤더(51)의 제 2 영역 중 일부는 상기 제 2 헤더(52)의 제 1 영역과도 오버랩된다. 상기 오버랩 구간을 연결하며 제 2-1 방향으로 유체가 흐르는 연결통로(53)를 통하여 상기 제 1 헤더(51)의 제 2 영역으로 유입된 유체가 다시 제 2 헤더(52)의 제 1 영역으로 흘러간다. 제 2 헤더(52)의 제 1 영역으로 유입된 유체는 제 1 헤더(51)의 제 1 영역과 연결된 연결튜브(53)을 통하여 다시 제 1 헤더(51)로 흘러가며, 제 1 헤더(51)의 제 1 영역은 유체 출구에 연결되어, 상기 제 1 헤더(51)의 제 1 영역으로 유입된 유체는 응축기 외부로 배출된다.
도 6b 에서 확인할 수 있듯이, 유입된 유체는 헤더와 연결튜브를 통과하면서 열교환되는데, 유체는 제 1 헤더(11, 21, 31, 41, 51)와 제 2 헤더(12, 22, 32, 42, 52) 사이의 연결튜브(13, 23, 33, 43, 53)를 제 2-1 방향(제 1 헤더에서 제 2 헤더 방향)과 제 2-2 방향(제 2 헤더에서 제 1 헤더 방향)으로 번갈아 가면서 통과하며, 유체 입구(I)에서 유체 출구(O)로 갈수록 통과하는 연결튜브(13, 23, 33, 43, 53)의 수가 감소한다. 이 실시예에서 각 헤더열에는 22개의 연결튜브(13, 23, 33, 43, 53)가 배치되는데, 제 1 헤더열(10)에서는 22개의 연결뷰브(13) 모두가 제 2-1 방향으로 유체가 흐르며, 다음 제 2 헤더열(20)에서는 동일하게 22개의 연결튜브(23) 모두가 제 2-2 방향으로 유체가 흐른다. 제 3 헤더열(30)에서는 제 1 헤더(31)의 제 1 영역에 연결된 연결튜브(33) 18개가 제 2-1 방향으로 유체가 통과한다.
제 3 헤더열(30)의 제 2 헤더(32)에서 일부는 제 4 헤더열(40)의 제 2 헤더(42)로 상승된 후 제 2-2 방향으로 흐르는 연결튜브(43) 10개를 통하여 제 1 헤더(41)로 흘러간다. 분기된 나머지 유체는 다시 제 1 헤더(31)의 제 2 영역으로 돌아오는 제 2-2 방향 연결튜브(33) 4개를 통과하고, 제 1 헤더(31)의 제 2 영역을 통과하여 제 4 헤더열(40)의 제 1 헤더(41)로 상승하여 다시 분기된 유체와 합류한다. 즉, 분기된 유체는 10 + 4 개의 제 2-2 방향으로 흐르는 연결튜브를 통과한다.
합류된 유체는 제 4 헤더열(40)의 제 2 헤더(42)의 제 2 영역에 연결된 제 1 방향으로 흐르는 연결튜브(43) 12 개를 통과하여 제 2 영역으로 흘러가며, 그 후 제 5 헤더열(50)의 제 2 헤더(52)의 제 2 영역으로 상승한다. 상기 제 2 헤더(52)의 제 2 영역은 10개의 제 2 방향으로 흐르는 연결튜브(53)에 연결되어 있으므로, 10개의 연결튜브(53)를 통과하여 제 1 헤더(51)의 제 2 영역으로 유체가 흘러간다.
제 1 헤더(51)의 제 2 영역으로 유입된 유체는 7개의 제 2-1 방향으로 흐르며, 상기 제 2 헤더(52)의 제 1 영역과 연결된 연결튜브(53)를 통하여 제 2 헤더(52)로 흘러가며, 이 유체는 다시 5개의 제 2-2 방향으로 흐르며 제 1 헤더(51)의 제 1 영역과 연결된 연결튜브(53)를 통하여 제 1 헤더(51)로 돌아오며, 그 후 유체 출구(O)를 통하여 배출된다.
유체의 경로 상에서 유체는 제 2-1 방향, 제 2-2 방향의 연결튜브를 번갈아가면서 통과하고, 그 수는 22→22→18→14→12→10→7→5 로 뒤로 갈수록 감소한다. 즉, 유체의 입측에서 작은 밀도를 가지던 유체가 열교환에 의해서 밀도가 커지는 것에 맞추어서 유체가 통과하는 연결튜브(13, 23, 33, 43, 53)의 수를 감소시킴으로써 단면적을 줄여 대응되게 감소시켜, 유체의 상변화가 이루어지는 구간에서 냉각이 적절하게 이루어질 수 있게 하여 냉각 효율을 향상시킨다. 특히, 제 1 헤더(11, 21, 31, 41, 51)와 제 2 헤더(12, 22, 32, 42, 52) 사이에 복수의 연결튜브(13, 23, 33, 43, 53) 및 헤더 내부의 배플(31e, 42e, 51e, 52e)을 통하여 유체가 통과하는 순서에 따라 유로 단면적을 조절할 수 있어서 냉매에 따라서 효율적 열교환을 달성할 수 있다.
도 7a 및 도 7b 에는 본 발명의 또 다른 실시예의 응축기가 도시되어 있다. 도 7a 에는 본 발명의 또 다른 실시예의 응축기(1)의 사시도가, 도 7b 에는 도 7a 의 응축기(1)의 각 헤더열(10, 20, 30, 40)에서의 단면도가 도시되어 있다.
도 7a 및 도 7b 에 도시되어 있지만, 기본 구조는 도 6a 및 6b 와 동일하다. 즉, 유체 입구(I)가 최하측의 제 1 헤더열(10)에 연결되며, 유체 출구(O)가 최상측의 제 4 헤더열(40)에 연결된다. 제 1 헤더열(10) 상에 제 2 내지 제 4 헤더열(20, 30, 40)이 쌓이며, 각 헤더열(10, 20, 30, 40)은 일측에 배치되며 내부에 유로가 형성된 제 1 헤더(11, 21, 31, 41), 타측에 배치되며 내부에 유로가 형성된 제 2 헤더(12, 22, 32, 42) 및 상기 제 1 헤더(11, 21, 31, 41)와 제 2 헤더(12, 22, 32, 42) 사이에서 상기 제 1 헤더와 제 2 헤더의 유로를 연결하는 복수의 연결튜브(13, 23, 33, 43)를 포함한다. 도 7b 에서 보이듯이, 각 헤더열(10, 20, 30, 40)에서는 동일한 수의 연결튜브(13, 23, 33, 43)를 포함한다.
제 1 내지 제 4 헤더열(10, 20, 30, 40)은 상기 제 1 헤더(11, 21, 31, 41)로부터 상기 제 2 헤더(12, 22, 32, 42)를 향하는 제 2-1 방향으로 유체가 흐르는 제 2-1 방향 연결튜브와, 상기 제 2 헤더(12, 22, 32, 42)로부터 상기 제 1 헤더(11, 21, 31, 41)를 향하는 제 2-2 방향으로 유체가 흐르는 제 2-2 방향 연결튜브를 포함하며, 유체는 제 1 내지 제 4 헤더열(10, 20, 30, 40)의 연결튜브(13, 23, 33, 43)를 통과하되, 제 2-1 방향 연결튜브와 제 2-2 방향 연결튜브를 번갈아 지나간다.
제 1 헤더열(10)의 제 1 헤더(11)에는 유체 입구(I)가 연결되며, 유체 입구(I)를 통하여 유입된 유체는 제 1 헤더(11) 및 연결튜브(13)를 통과하여 제 2 헤더(12)로 흐르게 된다. 제 1 헤더열(10)과 제 2 헤더열(20)의 제 2 헤더(12, 22) 사이에는 유로홀(12c, 22c)이 형성되머, 유로홀(12c, 22c)에 의해서 제 1 헤더열(10)의 제 2 헤더(12)의 유체는 제 2 헤더열(20)의 제 2 헤더(22)로 상승한다. 이때, 제 2 헤더열(20)의 제 2 헤더(22)는 중간에 베플(22e)이 배치되며, 상기 유로홀(12c, 22c)은 배플(22e)에 의해서 구획되며 유체 입측에 가까운 제 1 영역에만 형성이 되며, 다른 공간인 제 2 영역에는 제 2 및 3 헤더열(20, 30)의 제 2 헤더(22, 32) 사이에 유로홀(22c, 32c)이 형성된다. 한편, 제 2 헤더열(20)의 제 1 헤더(21) 중 배플(21e)에 의해서 구획된 제 2 영역으로 상승된 유체는 제 2-2 방향으로 유체가 흐르는 연결튜브(23)를 통과해 제 1 헤더(21)로 흘러간다.
제 1 헤더(21)에서 일부는 제 2 및 제 3 헤더열(20, 30)의 제 1 헤더(21, 31) 사이에 형성된 유로홀(21c, 31c)을 통하여 상승하며, 일부는 상기 배플(22e)에 의해서 구획된 제 2 헤더(22)의 제 2 영역으로 제 2-2 방향으로 유체가 흐르는 연결튜브(23)를 통과해 흘러간다. 제 2 및 제 3 헤더열(20, 30)의 상기 유로홀(21c, 31c)은 제 1 헤더(21, 31)의 길이 방향 전부에 형성되는 것은 아니며, 상기 제 3 헤더열(30)의 제 1 헤더(31)에서 배플(31e)로 구획되는 제 1 영역에 대응되는 부분에만 형성된다. 제 3 헤더열(30)의 제 1 헤더(31)의 제 1 영역으로 올라온 유체는 대응하는 위치에 구비되며 제 2-1 방향으로 유체가 흐르는 연결튜브(33)를 통하여 제 2 헤더(32)로 흘러간다.
한편, 제 2 헤더열(20)의 제 2 헤더(22)의 제 2 영역으로 유입된 유체는 제 2 및 제 3 헤더열(20, 30)의 제 2 헤더(22, 32) 사이에 형성된 유로홀(22c, 32c)을 통하여 제 3 헤더열(30)의 제 2 헤더(32)로 올라간다. 이렇게 제 3 헤더열(30)의 제 2 헤더(32)로 올라간 유체는 제 3 헤더열(30)의 제 1 헤더(31), 연결튜브(33)를 통과하여 제 2 헤더(32)로 흘러오는 유체와 합류한다.
합류된 유체는 상기 배플(31e)에 의해서 구획된 다른 영역, 즉 제 2 영역에 대응되는 위치에 구비되며 제 2-2 방향으로 유체가 흐르는 연결튜브(33)를 통하여 제 3 헤더열(30)의 제 1 헤더(31)의 제 2 영역으로 흘러간다. 제 3 헤더열(30)의 제 1 헤더(31)와 제 4 헤더열(40)의 제 1 헤더(41) 사이에 형성된 유로홀(31c, 41c)을 통하여 상기 제 1 헤더(31)의 제 2 영역의 유체가 제 4 헤더열(40)의 제 1 헤더(41)로 상승한다. 다만, 상기 유로홀(31c, 41c)은 상기 제 4 헤더열(40)의 제 1 헤더(41)에서 배플(41e)에 의해서 구획된 영역 중 평면 상에서 유체 입구로부터 먼(도면 7b 에서 아래쪽)의 제 2 영역에 대응되는 위치에만 형성되며, 따라서, 유체는 제 4 헤더열(40)의 제 1 헤더(41) 중 제 2 영역으로 유입된다.
제 1 헤더(41)로 유입된 유체는 제 2-1 방향으로 유체가 흐르는 연결튜브(43)를 통과하여 제 2 헤더(42)로 흘러간다. 제 2 헤더(42) 역시 배플(42e)에 의해서 구획되며, 제 1 헤더(41)의 제 2 영역에 대응되는 제 2 헤더(42)의 제 2 영역으로 유체가 유입된다. 도 7b 에서 보이듯이, 상기 제 2 헤더(42)의 제 2 영역은 상기 제 1 헤더(41)의 제 2 영역보다 길게 형성되며, 따라서, 제 2 헤더(42)의 제 2 영역 중 일부는 상기 제 1 헤더(41)의 제 1 영역과도 오버랩된다. 상기 오버랩 구간을 연결하며 제 2-2 방향으로 유체가 흐르는 연결통로(43)를 통하여 상기 제 2 헤더(42)의 제 2 영역으로 유입된 유체가 다시 제 1 헤더(41)의 제 1 영역으로 흘러간다. 제 1 헤더(41)의 제 1 영역으로 유입된 유체는 제 2 헤더(42)의 제 1 영역과 연결된 연결튜브(43)을 통하여 다시 제 2 헤더(42)로 흘러가며, 제 2 헤더(42)의 제 1 영역은 유체 출구에 연결되어, 상기 제 2 헤더(42)의 제 1 영역으로 유입된 유체는 응축기 외부로 배출된다.
도 7b 에서 확인할 수 있듯이, 유입된 유체는 헤더와 연결튜브를 통과하면서 열교환되는데, 유체는 제 1 헤더(11, 21, 31, 41)와 제 2 헤더(12, 22, 32, 42) 사이의 연결튜브(13, 23, 33, 43)를 제 2-1 방향과 제 2-2 방향으로 번갈아 가면서 통과하며, 유체 입구(I)에서 유체 출구(O)로 갈수록 통과하는 연결튜브(13, 23, 33, 43)의 수가 감소한다. 이 실시예에서 각 헤더열에는 22개의 연결튜브(13, 23, 33, 43)가 배치되는데, 제 1 헤더열(10)에서는 22개의 연결뷰브(13) 모두가 제 2-1 방향으로 유체가 흐르며, 다음 제 2 헤더열(20)에서는 제 2 헤더(22)의 제 1 영역에 연결된 연결튜브(23) 18개가 제 2-2 방향으로 유체가 통과한다.
제 2 헤더열(20)의 제 1 헤더(21)에서 일부는 제 3 헤더열(30)의 제 1 헤더(31)로 상승된 후 제 2-1 방향으로 흐르는 연결튜브(33) 10개를 통하여 제 2 헤더(32)로 흘러간다. 분기된 나머지 유체는 다시 제 2 헤더(22)의 제 2 영역으로 돌아오는 제 2-1 방향 연결튜브(23) 4개를 통과하고, 제 2 헤더(22)의 제 2 영역을 통과하여 제 3 헤더열(30)의 제 2 헤더(32)로 상승하여 다시 분기된 유체와 합류한다. 즉, 분기된 유체는 10 + 4 개의 제 2-1 방향으로 흐르는 연결튜브를 통과한다.
합류된 유체는 제 3 헤더열(30)의 제 1 헤더(31)의 제 2 영역에 연결된 제 2-2 방향으로 흐르는 연결튜브(33) 12 개를 통과하여 제 2 영역으로 흘러가며, 그 후 제 4 헤더열(40)의 제 1 헤더(41)의 제 2 영역으로 상승한다. 상기 제 1 헤더(41)의 제 2 영역은 10개의 제 2-1 방향으로 흐르는 연결튜브(43)에 연결되어 있으므로, 10개의 연결튜브(43)를 통과하여 제 2 헤더(42)의 제 2 영역으로 유체가 흘러간다.
제 2 헤더(42)의 제 2 영역으로 유입된 유체는 7개의 제 2-1 방향으로 흐르며 상기 제 1 헤더(41)의 제 1 영역과 연결된 연결튜브(43)를 통하여 제 1 헤더(41)로 흘러가며, 이 유체는 다시 5개의 제 2-1 방향으로 흐르며 제 2 헤더(42)의 제 1 영역과 연결된 연결튜브(43)를 통하여 제 2 헤더(42)로 돌아오며, 그 후 유체 출구(O)를 통하여 배출된다.
유체의 경로 상에서 유체는 제 2-1 방향, 제 2-2 방향의 연결튜브를 번갈아가면서 통과하고, 그 수는 22-18-14-12-10-7-5 로 뒤로 갈수록 감소한다. 즉, 유체의 입측에서 작은 밀도를 가지던 유체가 열교환에 의해서 밀도가 커지는 것에 맞추어서 유체가 통과하는 연결튜브(13, 23, 33, 43)의 수를 감소시킴으로써 단면적을 줄여 대응되게 감소시켜, 유체의 상변화가 이루어지는 구간에서 냉각이 적절하게 이루어질 수 있게 하여 냉각 효율을 향상시킨다.
도 8a 에는 본 발명의 또 다른 실시예에 따른 응축기의 개략 사시도가 도시되어 있으며, 도 8b에는 도 8a 의 응축기의 A-A 선에 따른 개략 단면도가 도시되어 있다.
도 8a 및 8b 에서 보이듯이, 이 실시예에 따른 응축기는 제 1 내지 제 3 헤더열(10, 20, 30)을 포함하며, 각 헤더열은 제 1 방향으로 연장하는 제 1 헤더(11, 21, 31) 및 제 2 헤더(12, 22, 32), 제 2 방향으로 연장하며 상기 제 1 헤더(11, 21, 31)와 제 2 헤더(12, 22, 32)를 연결하는 복수의 연결튜브(13, 23, 33)를 포함하며, 상기 제 1 내지 제 3 헤더(10, 20, 30)는 제 3 방향으로 적층된다.
유체 입구로 들어온 유체는 제 1 헤더열(10)의 연결튜브(13)에서 제 2-1 방향으로 흐르며, 제 2 헤더열(20)의 연결튜브(23)에서는 제 2-2 방향으로, 제 3 헤더열(30)의 연결튜브(33)에서는 다시 제 2-1 방향으로 흐른후 유체 출구로 배출된다.
각 연결튜브(13, 23, 33)는 내부에 연결튜브(13, 23, 33)의 일부를 차지하는 복수의 미세튜브(13a~h, 23a~d, 33a~b)를 포함한다. 각 미세튜브(13a~h, 23a~d, 33a~b)의 단면적은 동일하지만, 각 헤더열(10, 20, 30)의 연결튜브(13, 23, 33)가 포함하는 미세튜브(13a~h, 23a~d, 33a~b)의 수는 유체 출구쪽, 즉 제 3 헤더열(30)에 가까울수록 작아지며, 따라서, 제 2 방향에서의 방향이 전환됨에 따라서, 유체가 통과하는 단면적의 합은 작아진다.
예를 들어, 제 1 헤더열(10)에서 제 1 헤더(11)에 6개의 연결튜브(13)가 연결되며, 각 연결튜브(13)에는 8개의 미세튜브(13a~h)가 포함되어 있으므로, 유체가 제 1 헤더열(10)에서 제 2-1 방향으로 흐르는 동안 단면적의 합은 6×8×미세튜브 단면적이 된다. 제 2 헤더열(20)에서 제 2 헤더(22)에 6개의 연결튜브(23)가 연결되며, 각 연결튜브(23)에는 4개의 미세튜브(23a~d)가 포함되어 있으므로, 유체가 제 2 헤더열(20)에서 제 2-2 방향으로 흐르는 동안 단면적의 합은 6×4×미세튜브 단면적이 된다. 제 3 헤더열(30)에서 제 1 헤더(31)에 6개의 연결튜브(33)가 연결되며, 각 연결튜브(33)에는 2개의 미세튜브(33a~b)가 포함되어 있으므로, 유체가 제 3 헤더열(30)에서 제 2-1 방향으로 흐르는 동안 단면적의 합은 6×2×미세튜브 단면적이 된다.
미세튜브의 단면적이 동일하므로, 제 1 내지 제 3 헤더열(10, 20, 30)을 통과하면서 방향이 전환됨에 따라서, 48 → 24 → 12로 감소한다. 즉, 유체의 입측에서 작은 밀도를 가지던 유체가 열교환에 의해서 밀도가 커지는 것에 맞추어서 유체가 통과하는 미세튜브의 수를 감소시킴으로써 단면적을 줄여 유체의 상변화가 이루어지는 구간에서 냉각이 적절하게 이루어질 수 있게 하여 냉각 효율을 향상시킨다.
도 9a 에는 본 발명의 또 다른 실시예에 따른 응축기의 개략 사시도가 도시되어 있으며, 도 9b는 도 9a 의 응축기의 A-A 선에 따른 개략 단면도이다.
도 9a 및 9b 에서 보이듯이, 이 실시예에 따른 응축기는 제 1 내지 제 3 헤더열(10, 20, 30)을 포함하며, 각 헤더열은 제 1 방향으로 연장하는 제 1 헤더(11, 21, 31) 및 제 2 헤더(12, 22, 32), 제 2 방향으로 연장하며 상기 제 1 헤더(11, 21, 31)와 제 2 헤더(12, 22, 32)를 연결하는 복수의 연결튜브(13, 23, 33)를 포함하며, 상기 제 1 내지 제 3 헤더(10, 20, 30)는 제 3 방향으로 적층된다.
이 실시예에서, 일부 헤더열(10, 20)은 연결튜브(13, 23, 33)를 복수열로 포함한다. 즉, 제 1 헤더열(10)의 경우에 제 1 열 연결튜브(13)와 제 2 열 연결튜브(13') 및 제 3 열 연결튜브(13'')를 포함한다. 복수 열로 연결튜브(13, 13', 13'')를 포함하기 때문에, 동일한 길이의 헤더(11, 21, 31)를 가졌을 때 더 많은 연결튜브(13, 13', 13'')를 포함하는 것이 가능하다.
유체 입구로 들어온 유체는 제 1 헤더열(10)의 연결튜브(13, 13', 13'')에서 제 2-1 방향으로 흐르며, 제 2 헤더열(20)의 연결튜브(23, 23')에서는 제 2-2 방향으로, 제 3 헤더열(30)의 연결튜브(33)에서는 다시 제 2-1 방향으로 흐른후 유체 출구로 배출된다.
각 연결튜브(13, 13', 13'', 23, 23', 33)는 내부에 연결튜브(13, 13', 13'', 23, 23', 33)의 일부를 차지하는 복수의 미세튜브(13a~b, 13'a~b, 13''a~b, 23a~b, 23'a~b, 33a~b)를 포함한다. 각 미세튜브(13a~b, 13'a~b, 13''a~b, 23a~b, 23'a~b, 33a~b)의 단면적은 실질적으로 동일하며 각 연결튜브(13, 13', 13'', 23, 23', 33)에 배치되는 미세튜브(13a~b, 13'a~b, 13''a~b, 23a~b, 23'a~b, 33a~b)의 수도 동일하다. 다만, 각 헤더열(10, 20, 30)의 연결튜브(13, 13', 13'', 23, 23', 33)의 열 수가 유체 출구쪽, 즉 제 3 헤더열(30)에 가까울 수록 작아지며, 따라서, 제 2 방향에서의 방향이 전환됨에 따라서, 유체가 통과하는 단면적의 합은 작아진다.
예를 들어, 제 1 헤더열(10)에서 유체는 제 1 헤더(11)에 연결된 6 개씩 3개열의 연결튜브(13, 13', 13'')의 미세튜브(13a~b, 13'a~b, 13''a~b)를 통과한다. 따라서, 유체가 제 1 헤더열(10)에서 제 2-1 방향으로 흐르는 동안 단면적의 합은 6×3×2×미세튜브 단면적이 된다. 제 2 헤더열(20)에서 제 2 헤더(22)에 6개씩 2개 열의 연결튜브(23)가 연결되며, 각 연결튜브(23, 23')에는 2개의 미세튜브(23a~b, 23'a~b)가 포함되어 있으므로, 유체가 제 2 헤더열(20)에서 제 2-2 방향으로 흐르는 동안 단면적의 합은 6×2×2×미세튜브 단면적이 된다. 제 3 헤더열(30)에서 제 1 헤더(31)에 6개 1개열의 연결튜브(33)가 연결되며, 각 연결튜브(33)에는 2개의 미세튜브(33a~b)가 포함되어 있으므로, 유체가 제 3 헤더열(30)에서 제 2-1 방향으로 흐르는 동안 단면적의 합은 6×1×2×미세튜브 단면적이 된다.
미세튜브의 단면적이 동일하므로, 제 1 내지 제 3 헤더열(10, 20, 30)을 통과하면서 방향이 전환됨에 따라서, 36 → 24 → 12로 감소한다. 즉, 유체의 입측에서 작은 밀도를 가지던 유체가 열교환에 의해서 밀도가 커지는 것에 맞추어서 유체가 통과하는 미세튜브의 수를 감소시킴으로써 단면적을 줄여 유체의 상변화가 이루어지는 구간에서 냉각이 적절하게 이루어질 수 있게 하여 냉각 효율을 향상시킨다
도 10a 에는 본 발명의 또 다른 실시예에 따른 응축기의 개략 사시도가 도시되어 있으며, 도 10b에는 도 10a 의 응축기의 A-A 선에 따른 개략 단면도가 도시되어 있다.
도 10a 및 10b 에서 보이듯이, 이 실시예에 따른 응축기는 제 1 내지 제 4 헤더열(10, 20, 30, 40)을 포함하며, 각 헤더열은 제 1 방향으로 연장하는 제 1 헤더(11, 21, 31, 41) 및 제 2 헤더(12, 22, 32, 42), 제 2 방향으로 연장하며 상기 제 1 헤더(11, 21, 31, 41)와 제 2 헤더(12, 22, 32, 42)를 연결하는 복수의 연결튜브(13, 23, 33, 43)를 포함하며, 상기 제 1 내지 제 4 헤더(10, 20, 30, 40)는 제 3 방향으로 적층된다.
유체 입구로 들어온 유체는 제 1 헤더열(10)의 연결튜브(13)에서 제 2-1 방향으로 흐르며, 제 2 헤더열(20)의 연결튜브(23)에서는 제 2-2 방향으로, 제 3 헤더열(30)의 연결튜브(33)에서는 다시 제 2-1 방향으로 흐르며, 제 4 헤더열(40)의 연결튜브(43)에서 제 2-2 방향으로 흐른 뒤 유체 출구로 배출된다.
각 헤더열(10, 20, 30, 40)은 제 1 방향으로 동일한 길이를 가지고 적층되지만, 각 헤더열(10, 20, 30, 40)이 포함하는 연결튜브(13, 23, 33, 43)의 수는 상이하며, 유체 출구에 가까울 수록 헤더열(10, 20, 30, 40)이 포함하는 연결튜브(13, 23, 33, 43)의 수는 작다. 각 연결튜브(13, 23, 33)의 단면적은 동일하다. 각 헤더열(10, 20, 30, 40)의 연결튜브(13, 23, 33, 43)는 미세튜브를 포함할 수 있으며, 미세튜브의 수는 제 1 내지 제 4 헤더열(10, 20, 30, 40)의 연결튜브(13, 23, 33, 43)에서 동일하거나, 적어도 제 1 헤더열(10)에서의 미세튜브의 수가 제 4 헤더열(40)의 미세튜브의 수보다 많은 것이 바람직하다.
예를 들어, 제 1 헤더열(10)에서 제 1 헤더(11)에 6개의 연결튜브(13)가 연결되며, 유체는 제 1 헤더열(10)에서 제 2-1 방향으로 흐르는 동안 단면적의 합은 6×연결튜브 단면적이 된다. 제 2 헤더열(20)에서 제 2 헤더(22)에 5개의 연결튜브(23)가 연결되므로, 유체가 제 2 헤더열(20)에서 제 2-2 방향으로 흐르는 동안 단면적의 합은 5×연결튜브 단면적이 된다. 제 3 헤더열(30)에서 제 1 헤더(31)에 4개의 연결튜브(33)가 연결되므로, 유체가 제 3 헤더열(30)에서 제 2-1 방향으로 흐르는 동안 단면적의 합은 4×연결튜브 단면적이 된다. 제 4 헤더열(30)에서 제 2 헤더(42)에 3개의 연결튜브(43)가 연결되므로, 유체가 제 4 헤더열(30)에서 제 2-2 방향으로 흐르는 동안 단면적의 합은 3×연결튜브 단면적이 된다.
연결튜브(13, 23, 33, 43)의 단면적이 동일하므로, 제 1 내지 제 4 헤더열(10, 20, 30, 40)을 통과하면서 방향이 전환됨에 따라서, 6 → 5 → 4 → 3 으로 감소한다. 즉, 유체의 입측에서 작은 밀도를 가지던 유체가 열교환에 의해서 밀도가 커지는 것에 맞추어서 유체가 통과하는 미세튜브의 수를 감소시킴으로써 단면적을 줄여 유체의 상변화가 이루어지는 구간에서 냉각이 적절하게 이루어질 수 있게 하여 냉각 효율을 향상시킨다.
도 11a 에는 본 발명의 또 다른 실시예에 따른 응축기의 개략 사시도가 도시되어 있으며, 도 11b에는 도 11a 의 응축기의 A-A 선에 따른 개략 단면도가 도시되어 있다.
도 11a 및 11b 에서 보이듯이, 이 실시예에 따른 응축기는 제 1 내지 제 4 헤더열(10, 20, 30, 40)을 포함하며, 각 헤더열은 제 1 방향으로 연장하는 제 1 헤더(11, 21, 31, 41) 및 제 2 헤더(12, 22, 32, 42), 제 2 방향으로 연장하며 상기 제 1 헤더(11, 21, 31, 41)와 제 2 헤더(12, 22, 32, 42)를 연결하는 복수의 연결튜브(13, 13', 23, 23', 33, 43)를 포함하며, 상기 제 1 내지 제 4 헤더(10, 20, 30, 40)는 제 3 방향으로 적층된다.
유체 입구로 들어온 유체는 제 1 헤더열(10)의 연결튜브(13, 13')에서 제 2-1 방향으로 흐르며, 제 2 헤더열(20)의 연결튜브(23, 23')에서는 제 2-2 방향으로, 제 3 헤더열(30)의 연결튜브(33)에서는 다시 제 2-1 방향으로 흐르며, 제 4 헤더열(40)의 연결튜브(43)에서 다시 제 2-2 방향으로 흐른 뒤 유체 출구로 배출된다.
이 실시예에서, 일부 헤더열(10, 20)은 연결튜브(13, 13', 23, 23')를 복수열로 포함한다. 즉, 제 1 헤더열(10)의 경우에 제 1 열 연결튜브(13)와 제 2 열 연결튜브(13')를 포함하며, 제 2 헤더열(20)의 경우에 제 1 열 연결튜브(23)와 제 2열 연결튜브(23')를 포함한다. 복수 열로 연결튜브(13, 13', 23, 23')를 포함하기 때문에, 동일한 길이의 헤더(11, 21, 31, 41)를 가졌을 때 더 많은 연결튜브(13, 13', 23, 23')를 포함하는 것이 가능하다.
또한, 각 연결튜브(13, 13', 23, 23', 33, 43)는 내부에 연결튜브(13, 13', 23, 23', 33, 43)의 일부를 차지하는 복수의 미세튜브(13a~c, 13'a~b, 23a~b, 23'a~b, 33a~c, 43a~b)를 포함한다. 각 미세튜브(13a~c, 13'a~b, 23a~b, 23'a~b, 33a~c, 43a~b)의 단면적은 동일하다. 제 1 내지 제 4 헤더열(10, 20, 30, 40)에서 연결튜브(13, 33)가 포함하는 미세튜브(13a~c, 13'a~b, 23a~b, 23'a~b, 33a~c, 43a~b)의 수는 동일할 수도 있지만, 이 실시예에서, 제 1 헤더열(10)의 제 1 열 연결튜브(13)와 제 3 헤더열(30)의 연결튜브(33)는 3개의 미세튜브(13a~c, 33a~c)를 포함하며, 나머지 연결튜브(13', 23, 23', 43)는 2개의 미세튜브(13'a~b, 23a~b, 23'a~b, 43a~b)를 포함한다.
이 실시예에서 각 헤더열(10, 20, 30, 40)의 연결튜브(13, 13', 23, 23', 33, 43)가 포함하는 미세튜브(13a~c, 13'a~b, 23a~b, 23'a~b, 33a~c, 43a~b)의 수는 유체 출구쪽, 즉 제 4 헤더열(40)에 가까울 수록 작아지며, 따라서, 제 2 방향에서의 방향이 전환됨에 따라서, 유체가 통과하는 단면적의 합은 작아진다.
예를 들어, 제 1 헤더열(10)에서 제 1 헤더(11)에 6개씩 2열의 연결튜브(13, 13')가 연결되며, 제 1 열 연결튜브(13)에는 3개의 미세튜브(13a~c)가, 제 2 열 연결튜브(13')에서는 2개의 미세튜브(13'a~b)가 포함되어 있으므로, 유체가 제 1 헤더열(10)에서 제 2-1 방향으로 흐르는 동안 단면적의 합은 (6×3+6×2)×미세튜브 단면적이 된다. 제 2 헤더열(20)에서 제 2 헤더(22)에 6개씩 2열의 연결튜브(23, 23')가 연결되며, 각 연결튜브(23, 23')에는 2개의 미세튜브(23a~b, 23'a~b)가 포함되어 있으므로, 유체가 제 2 헤더열(20)에서 제 2-2 방향으로 흐르는 동안 단면적의 합은 6×2×2×미세튜브 단면적이 된다. 제 3 헤더열(30)에서 제 1 헤더(31)에 6개의 연결튜브(33)가 연결되며, 각 연결튜브(33)에는 3개의 미세튜브(33a~c)가 포함되어 있으므로, 유체가 제 3 헤더열(30)에서 제 2-1 방향으로 흐르는 동안 단면적의 합은 6×3×미세튜브 단면적이 된다. 제 4 헤더열(40)에서 제 2 헤더(42)에 6개의 연결튜브(43)가 연결되며, 각 연결튜브(43)에는 2개의 미세튜브(43a~c)가 포함되어 있으므로, 유체가 제 4 헤더열(40)에서 제 2-2 방향으로 흐르는 동안 단면적의 합은 6×2×미세튜브 단면적이 된다.
미세튜브의 단면적이 동일하므로, 제 1 내지 제 4 헤더열(10, 20, 30, 40)을 통과하면서 방향이 전환됨에 따라서, 30 → 24 → 18 →12로 감소한다. 즉, 유체의 입측에서 작은 밀도를 가지던 유체가 열교환에 의해서 밀도가 커지는 것에 맞추어서 유체가 통과하는 미세튜브의 수를 감소시킴으로써 단면적을 줄여 유체의 상변화가 이루어지는 구간에서 냉각이 적절하게 이루어질 수 있게 하여 냉각 효율을 향상시킨다.
도 12a 에는 본 발명의 제 1 실시예의 공기 조화기의 개략도가 도시되어 있다. 도 12a 에서 보이듯이, 본 발명의 제1 실시예의 공기 조화기는 압축된 냉매가 응축되는 증발식 응축기(110), 상기 증발식 응축기(110)를 통과한 냉매가 팽창되는 팽창 밸브(120); 상기 팽창 밸브(120)를 통과한 냉매가 증발되는 증발기(130) 및 상기 증발기(130)를 통과한 냉매를 압축하는 압축기(140)를 포함하는 냉매 싸이클(R1)을 포함한다.
증발식 응축기(110)는 유체 통로를 포함하는 응축 모듈(111); 상기 응축 모듈 상부에서 응축 모듈(111)을 통과하는 물을 분사하는 주수 모듈(112); 및 상기 응축 모듈(111)의 일측에 배치되어 상기 응축 모듈(111)을 통과하는 공기를 제공하는 송풍 모듈(113)을 포함한다. 제 1 실시예의 공기 조화기에서 상기 응축 모듈(111)은 도 1 내지 11 에서 설명된 응축 모듈(1)일 수 있으며, 상기 주수 모듈(112) 및 상기 송풍 모듈(113)은 도 3 의 주수 모듈(90) 및 송풍 모듈(95)이 적용될 수도 있다.
증발식 응축기(110)는 실내와는 공간적으로 분리된 실외에 배치된 실외기에 설치될 수 있으며, 상기 응축 모듈(111)에는 송풍 모듈(113)에 의해서 외부에서 공기를 흡입한 후 응축 모듈(111)을 통과한 후 온도가 상승되어 배출되는 공기 유로(A1), 수공급원에 연결되어 상기 주수 모듈(112)에 의해서 응축 모듈(111)로 분사된 후 응축 모듈(111) 하부에서 배수되는 수공급 유로(W1) 및 냉매 싸이클(R1)이 통과하며, 공기 유로(A1)의 공기와 수공급 유로(W1)의 물에 의해서 상기 냉매가 응축하게 된다.
응축 모듈(111)은 헤더의 연장 방향, 연결튜브의 연장 방향 및 헤더열의 적층 방향 3 방향으로 형성된 입체적 구조를 냉매가 통과하면서 상기 물 및 공기와 열교환하기 때문에, 동일 부피를 차지하더라도 더 많은 열교환이 가능하여 냉각 효율이 향상될 수 있다.
한편, 냉매 싸이클(R1)이 통과하는 증발기(130)는 실내기(150)에 배치되며, 실내기(150)는 송풍기(151)를 포함하며, 송풍기(151)에 의해서 실내 공기는 증발기(130)를 통과한 후 다시 실내로 공급되는 순환 유로(A10)가 형성한다.
도 12b 에는 본 발명의 제 1 실시예의 변형예에 따른 공기 조화기의 개략도가 도시되어 있다. 도 12b 에서 보이듯이, 본 발명의 변형예의 공기 조화기는 압축된 냉매가 응축되는 증발식 응축기(110), 상기 증발식 응축기(110)를 통과한 냉매가 팽창되는 팽창 밸브(120); 상기 팽창 밸브(120)를 통과한 냉매가 증발되는 증발기(130) 및 상기 증발기(130)를 통과한 냉매를 압축하는 압축기(140)를 포함하는 냉매 싸이클(R1)을 포함한다.
증발식 응축기(110)는 도시되지는 않았지만, 도 12a 와 유사하게 유체 통로를 포함하는 응축 모듈; 상기 응축 모듈 상부에서 응축 모듈을 통과하는 물을 분사하는 주수 모듈; 및 상기 응축 모듈의 일측에 배치되어 상기 응축 모듈을 통과하는 공기를 제공하는 송풍 모듈을 포함한다. 제 1 변형예의 공기 조화기에서 상기 응축 모듈은 상술한 응축 모듈일 수 있다.
냉매 싸이클(R1)이 통과하는 모든 구성은 실내기(150)에 배치된다. 즉, 냉매 싸이클(R1)은 실내에서 구동된다. 하지만, 해당 구성이 반드시 실내에 배치되어야만 하는 것은 아니며, 구성들이 하나의 공간, 즉, 하나의 케이스에 배치된다면 케이스 자체는 외부에 배치되는 것도 가능하다, 예를 들어, 케이스는 외부에 배치되고 실내 공기를 끌어와 증발기(130)를 통과시켜 냉각시킨 후 다시 실내로 공급하는 구조로 변경되어 실시될 수도 있다.
다만, 상기 응축 모듈에는 송풍 모듈에 의해서 외부에서 공기를 흡입한 후 응축 모듈을 통과한 후 온도가 상승되어 배출되는 공기 유로(A1), 수공급원에 연결되어 상기 주수 모듈에 의해서 응축 모듈로 분사된 후 응축 모듈 하부에서 배수되는 수공급 유로(W1) 및 냉매 싸이클(R1)이 통과하며, 공기 유로(A1)의 공기와 수공급 유로(W1)의 물에 의해서 상기 냉매가 응축하게 된다.
한편, 실내 공기가 순환하는 순환 유로(A10)가 증발기(130)를 통과하며, 증발기(130)에서 발생되는 응축수는 응축수 유로(W4)를 지나서 합류점(P6)에서 만나서 증발식 응축기(110)로 공급된다. 응축수 유로(W4)가 수공급 유로(W1)와 합류하지 않고 각각 주수 모듈을 통하여 응축 모듈을 통과하는 것도 가능하다. 응축수의 경우에 실내의 수분이 응축되는 것이므로, 수공급 없이도 응축 모듈에 주수가 가능하다는 점 및 응축수가 증발기(130)에서 나오기 때문에 온도가 낮다는 점에서 냉각 효율 향상이 가능하다. 다만, 응축수의 경우에 증발식 응축기(110)에 필요한 냉각 부하를 충족하기에는 양이 부족할 수 있으므로, 수공급 유로(W1)가 필요하다.
증발기(130)는 상기 증발식 응축기(110)의 상부에 위치하며, 응축수 유로(W4)에서 응축수가 응축수 자중에 의해서 증발식 응축기(110)로 공급되게 구성되면, 별도의 추가 동력 없이도 응축수가 상기 증발식 응축기(110)로 공급될 수 있다.
증발식 응축기(110)의 응축 모듈은 헤더의 연장 방향, 연결튜브의 연장 방향 및 헤더열의 적층 방향 3 방향으로 형성된 입체적 구조를 냉매가 통과하면서 상기 물 및 공기와 열교환하기 때문에, 동일 부피를 차지하더라도 더 많은 열교환이 가능하여 냉각 효율이 향상될 수 있다.
도 12c, d 에는 본 발명의 제 1 실시예의 다른 변형예에 따른 공기 조화기의 개략도가 도시되어 있다.
도 12c, d 의 경우에 실내기, 실외기의 구성은 도 12a 와 다르지 않다. 다만, 도 12c의 경우에 하나의 실외기에 복수의 실내기(150)가 연결되어, 냉매 싸이클(R1)에서 복수의 증발기(130)가 구비되어, 분기했다가 합류하는 구조를 가지는 것이며, 도 12d의 경우에 복수의 실외기에 복수의 실내기(150)가 연결되어, 실내기 및 실외기로 냉매 싸이클(R)이 분기했다가 합류하는 구조를 가진다. 복수의 실내기 및 실외기가 하나의 싸이클로 구성될 수 있을 뿐만 아니라, 하나의 실내기에 복수의 실외기가 연결될 수도 있다.
도 13 에는 본 발명의 제 2 실시예에 따른 공기 조화기의 개략도가 도시되어 있다. 도 13 에서 보이듯이, 본 발명의 제 2 실시예의 공기 조화기는 압축된 냉매가 응축되는 증발식 응축기(110), 상기 증발식 응축기(110)를 통과한 냉매가 팽창되는 팽창 밸브(120); 상기 팽창 밸브(120)를 통과한 냉매가 증발되는 증발기(130) 및 상기 증발기(130)를 통과한 냉매를 압축하는 압축기(140)를 포함하는 냉매 싸이클(R1)을 포함한다.
증발식 응축기(110)는 유체 통로를 포함하는 응축 모듈(111); 상기 응축 모듈 상부(111)에서 응축 모듈을 통과하는 물을 분사하는 주수 모듈(112); 및 상기 응축 모듈(111)의 일측에 배치되어 상기 응축 모듈(111)을 통과하는 공기를 제공하는 송풍 모듈(미도시)을 포함한다. 제 2 실시예의 공기 조화기에서 상기 응축 모듈(111)은 도 1 내지 11 에서 설명된 응축 모듈(1)일 수 있으며, 상기 주수 모듈(112) 및 상기 송풍 모듈(113)은 도 3 의 주수 모듈(90) 및 송풍 모듈(95)이 적용될 수도 있다.
증발식 응축기(110)는 실내와는 공간적으로 분리된 위치에 배치되는 실외기에 설치될 수 있다. 상기 응축 모듈(111)에 공기가 공급되도록 외부와 연결된 공기 유로(A1)과 실내의 공기가 배출되는 배출 유로(A2)가 합류점(P1)에서 합류하여 응축기 공급 유로(A3)로 연결되며, 상기 응축기 공급 유로(A3)에 송풍 모듈이 설치되어 외부 공기와 실내 공기를 상기 응축 모듈(111)에 제공할 수 있다. 상기 응축기 공급 유로(A3)의 공기는 응축 모듈(111)을 통과한 후 온도가 상승된 후 외부로 배출된다. 수공급원에 연결된 수공급 유로(W1)는 상기 주수 모듈(112)에 의해서 응축 모듈(111)로 분사된 후 응축 모듈(111) 하부에서 배수되며, 냉매 싸이클(R1)은 응축 모듈(111)을 통과하면서, 상기 응축기 공급 유로(A3)의 공기와 수공급 유로(W1)의 물에 의해서 상기 냉매가 응축하게 된다.
냉매 싸이클(R1)이 통과하는 증발기(130)는 실내기(150)에 배치되며, 실내기(150)는 송풍기(151)를 포함하며, 송풍기(151)에 의해서 실내 공기는 증발기(130)를 통과한 후 다시 실내로 공급되는 순환 유로(A10)가 형성되는 것은 제 1 실시예와 동일하다.
도 14a~c 에는 본 발명의 제 3 실시예에 따른 공기 조화기의 개략도가 도시되어 있다. 도 14a 에는 제 3 실시예가, 도 14b, 14c 에는 제 3 실시예의 변형례가 도시되어 있다. 도 14a 에서 보이듯이, 본 발명의 제 3 실시예의 공기 조화기는 제 1 및 제 2 실시예와 동일하게 압축된 냉매가 응축되는 증발식 응축기(110), 상기 증발식 응축기(110)를 통과한 냉매가 팽창되는 팽창 밸브(120); 상기 팽창 밸브(120)를 통과한 냉매가 증발되는 증발기(130) 및 상기 증발기(130)를 통과한 냉매를 압축하는 압축기(140)를 포함하는 냉매 싸이클(R1)을 포함한다.
증발식 응축기(110)는 유체 통로를 포함하는 응축 모듈(111); 상기 응축 모듈 상부(111)에서 응축 모듈을 통과하는 물을 분사하는 주수 모듈(112); 및 상기 응축 모듈(111)의 일측에 배치되어 상기 응축 모듈(111)을 통과하는 공기를 제공하는 송풍 모듈(미도시)을 포함할 수 있으며, 응축 모듈(111)이 도 1 내지 11 에서 설명된 응축 모듈(1)일 수 있는 것은 제 1 및 제 2 실시예와 동일하다.
증발식 응축기(110)는 실내와는 공간적으로 분리된 위치에 배치되는 실외기에 설치될 수 있다. 상기 응축 모듈(111)에 공기가 공급되도록 외부와 연결된 공기 유로(A1)과 실내의 공기가 배출되는 배출 유로(A2)가 합류점(P1)에서 합류하여 응축기 공급 유로(A3)로 연결된다. 제 3 실시예에서 상기 공기 조화기는 외부로부터 실내로 공기가 도입되는 공급 유로(A4) 및, 상기 공급 유로(A4) 및 상기 배출 유로(A2) 상에 배치되며, 실내로 공급되는 공기와 실외로 배출되는 공기가 교차하며 열교환하게 구성되는 환기 열교환기(200)를 더 포함한다. 환기 열교환기(200)는 상기 공급 유로(A4)와 상기 배출 유로(A2)가 교차하면서 열교환하는 열교환부(21)를 포함한다. 여기서 환기 열교환기(200)는 실내에 위치하지만, 실내가 아닌 다른 위치, 예를 들면 실외에 배치되더라도 무방하다. 환기 열교환기(200)의 열교환부(210)를 통과하여 실내로 공급되는 공급 유로(A4)는 분기점에서 분기하여 증발기(130)로 공급되기 전의 순환 유로(A10)의 합류점(P6)에서 순환 유로(A10)와 합류하거나, 합류 없이 실내로 공급될 수 있다. 공기 공급 방향은 상황에 따라서 공급 유로(A4)의 공기 공급은 정해질 수 있으며, 어느 한쪽으로만 공급하게 구성될 수도 있음은 물론이다.
상기 응축기 공급 유로(A3)에 송풍 모듈이 설치되어 외부 공기와 실내 공기를 상기 응축 모듈(111)에 제공할 수 있다. 상기 응축기 공급 유로(A3)의 공기는 응축 모듈(111)을 통과한 후 온도가 상승된 후 외부로 배출된다. 수공급원에 연결된 수공급 유로(W1)는 상기 주수 모듈(112)에 의해서 응축 모듈(111)로 분사된 후 응축 모듈(111) 하부에서 배수되며, 냉매 싸이클(R1)은 응축 모듈(111)을 통과하면서, 상기 응축기 공급 유로(A3)의 공기와 수공급 유로(W1)의 물에 의해서 상기 냉매가 응축하게 된다.
냉매 싸이클(R1)이 통과하는 증발기(130)는 실내기(150)에 배치되며, 실내기(150)는 송풍기(151)를 포함하며, 송풍기(151)에 의해서 실내 공기는 증발기(130)를 통과한 후 다시 실내로 공급되는 순환 유로(A10)가 형성되는 것은 제 1 실시예와 동일하다.
도 14b의 제 3 실시예의 변형례의 경우에 도 14a와 공급 유로(A4)가 분기 없이 바로 실내로 공급되며, 공급된 공기가 실내에서 혼합된 후 실내기의 순환 유로(A10)로 순환된다.
도 14c의 제 3 실시예의 변형례는 도 14a 의 실내기(150)가 복수의 공간(Z1~Z3)에 각각 배치되는 것을 도시하고 있다. 환기 열교환기(200)는 천장이나 실외기실, 다용도실과 같이 실내기(150)가 배치되는 사용 공간(Z1~Z3)과는 다른 설치공간(Z0)에 배치될 수 있으며, 실외기와 같은 공간에 배치되는 것도 가능하다. 배출 유로(A2)는 상기 사용 공간(Z1~Z3)에 연결되는 제 1 내지 제 3 배출 유로(A2a~A2c)를 포함하며, 공급 유로(A4)는 상기 사용 공간(Z1~Z3)에 연결되는 제 1 내지 제 3 공급 유로(A4a~A4c)를 포함한다.
도 14c 에서 보이듯이, 공기 조화기(100)는 실내에 배치되는 컨트롤러(C)를 더 포함할 수 있으며, 컨트롤러(C)는 냉매 싸이클(R1), 환기 열교환기(200)를 조절하여 각 사용 공간(Z1~Z3)을 사용자가 원하는 상태로 실내 공기를 조절할 수 있다. 이때, 본 발명의 증발식 응축기(110)를 사용함으로써, 실외기에 배치된 압축기의 소음도 저감되며, 에너지 효율도 상승되며 소형화가 가능하여 공간 세이브도 가능하다. 나아가. 환기 냉방 모드(환기 열교환기와 냉매 싸이클을 동시에 가동), 냉방 모드(냉매 싸이클 가동), 환기 모드(환기 열교환기 가동)등 다양한 모드가 가능하며, 각 사용 공간(Z1~Z3)별로 다른 모드로 동작하는 것도 가능하여, 사용 공간(Z1~Z3)에 따른 사용자 별 다양한 요구사항도 모두 만족시킬 수 있다.
도 15 에는 본 발명의 제 4 실시예의 공기 조화기의 개략도가 도시되어 있다. 도 15 에서 보이듯이, 본 발명의 제 4 실시예의 공기 조화기는 제 1 내지 제 3 실시예와 동일하게 압축된 냉매가 순환하는 냉매 싸이클(R1)을 포함한다.
증발식 응축기(110)는 유체 통로를 포함하는 응축 모듈(111); 상기 응축 모듈 상부(111)에서 응축 모듈을 통과하는 물을 분사하는 주수 모듈(112); 및 상기 응축 모듈(111)의 일측에 배치되어 상기 응축 모듈(111)을 통과하는 공기를 제공하는 송풍 모듈(미도시)을 포함한다.
증발식 응축기(110)는 실내와는 공간적으로 분리된 위치에 배치되는 실외기에 설치될 수 있다. 상기 응축 모듈(111)에 공기가 공급되도록 외부와 연결된 공기 유로(A1)과 실내의 공기가 배출되는 배출 유로(A2)가 합류점(P1)에서 합류하여 응축기 공급 유로(A3)로 연결되며, 상기 응축기 공급 유로(A3)에 송풍 모듈이 설치되어 외부 공기와 실내 공기를 상기 응축 모듈(111)에 제공할 수 있다. 상기 응축기 공급 유로(A3)의 공기는 응축 모듈(111)을 통과한 후 온도가 상승된 후 외부로 배출된다. 수공급원에 연결된 수공급 유로(W2)는 상기 주수 모듈(112)에 의해서 응축 모듈(111)로 분사된 후 응축 모듈(111) 하부에서 배수되며, 냉매 싸이클(R1)은 응축 모듈(111)을 통과하면서, 상기 응축기 공급 유로(A3)의 공기와 수공급 유로(W1)의 물에 의해서 상기 냉매가 응축하게 된다.
제 4 실시예의 공기 조화기는 상기 배출 유로(A2)와는 반대로 상기 실외에서 상기 실내로 공기를 공급하는 공급 유로(A4) 및 상기 공급 유로(A4) 상에 설치되며, 실내로 유입되는 공기를 냉각하는 증발식 냉각기(170)를 더 포함한다.
수공급원에 연결되는 수공급 유로(W1)는 분기점(P2)에서 상기 증발식 응축기(110)로 향하는 수공급 유로(W2)와 상기 증발식 냉각기(170)로 향하는 수공급 유로(W3)로 분기되며, 수공급 유로(W2, W3)에 의해서 상기 증발식 응축기(110)를 통과하는 냉매를 응축시키기 위한 잠열을 제공하는 물 및 상기 증발식 냉각기(170)를 통과하는 공기를 냉각시키기 위한 잠열을 제공하는 물이 공급된다. 증발식 냉각기(170)를 통과한 물을 외부로 배수된다.
한편, 증발식 냉각기(170) 및 증발식 응축기(110)를 통과한 물은 배수되지 않고 수집된 후 수공급원에서 공급되는 물과 함께 다시 증발식 냉각기(170) 및/또는 증발식 응축기(110)로 공급되는 방식으로 재활용될 수도 있다.
냉매 싸이클(R1)이 통과하는 증발기(130)는 실내기(150)에 배치되며, 실내기(150)는 송풍기(151)를 포함하며, 송풍기(151)에 의해서 실내 공기는 증발기(130)를 통과한 후 다시 실내로 공급되는 순환 유로(A10)가 형성되는 것은 제 1 실시예와 동일하다.
도 16 에는 본 발명의 제 5 실시예의 개략도가 도시되어 있다. 본 발명의 제 5 실시예의 공기 조화기는 제 1 내지 제 4 실시예와 동일하게 압축된 냉매가 순환하는 냉매 싸이클(R1)을 포함하며, 상기 냉매 싸이클(R1)은 냉매를 응축기를 응축시키는 응축기(110) 및 냉매가 증발하며 공기를 냉각하는 증발기(130)를 통과한다.
제 5 실시예의 공기 조화기는 상기 증발식 응축기(110)가 배치되는 실외기; 및 상기 증발기(130)가 배치되는 실내기(150);를 포함한다. 상기 실외기는 실외 공기가 유입되는 유입 유로(A4) 상에 배치되며, 건채널과 습채널을 포함하며 상기 건채널을 통과하는 공기를 냉각시키는 증발식 냉각기(170); 상기 유입 유로(A4) 상에 상기 증발식 냉각기(170) 전에 배치되며, 유입되는 공기를 제습하는 제습로터(180); 상기 제습로터(180)를 재생시키기 위한 공기가 지나가는 재생 유로(A9, A11) 상에서 상기 제습로터(180) 전에 배치되어 공기를 가열하는 가열부(185);를 포함한다.
상기 제습로터(180)는 상기 재생 유로(A9, A11)와 상기 유입 유로(A4)에 걸쳐서 배치되며, 상기 제습로터(180)는 회전하는 로터를 통하여 유입 유로(A4)에서는 수분을 흡수하며, 재생 유로(A9, A11)에서는 흡수된 수분을 배출하는 방식으로 동작한다. 상기 유입 유로(A4)는 상기 증발식 냉각기(170)를 통과한 후 분기점(P3, P4)에서 실내와 연결되는 실내 공급 유로(A8), 상기 증발식 응축기(110)와 연결되는 응축기 공급 유로(A7), 상기 증발식 냉각기(170)의 습채널과 연결되는 냉각기 공급 유로(A5)로 분기된다. 이 실시예에서 분기점(P3, P4)은 2개로 도시하였으나, 한 분기점에서 3 곳으로 분기될 수도 있다. 상기 실내 공급 유로(A8)는 상기 실내기(150)에 연결되며, 증발기(130)를 통과한 후 냉각된 상태로 실내로 공급될 수 있다.
한편, 공기 조화기는 실내로 공급되는 공기량에 대응되는 만큼 실내 공기를 외부로 배출하는 배출 유로(A2)를 포함할 수 있으며, 이 배출 유로(A2)는 재생 유로(A9, A11)의 합류점(P5)에서 상기 재생 유로(A9, A11)에 합류할 수 있으며, 상기 재생 유로(A9, A11)에 합류하여 제습 로터(180)를 재생시킨 후 외부로 배출된다.
수공급원에 연결되는 수공급 유로(W1)는 분기점(P2)에서 상기 증발식 응축기(110)로 향하는 수공급 유로(W2)와 상기 증발식 냉각기(170)로 향하는 수공급 유로(W3)로 분기되며, 수공급 유로(W2, W3)에 의해서 상기 증발식 응축기(110)를 통과하는 냉매를 응축시키기 위한 잠열을 제공하는 물 및 상기 증발식 냉각기(170)를 통과하는 공기를 냉각시키기 위한 잠열을 제공하는 물이 공급된다. 증발식 냉각기(170)를 통과한 물을 외부로 배수된다.
도 17 에는 본 발명의 제 6 실시예의 개략도가 도시되어 있다. 본 발명의 제 6 실시예의 공기 조화기는 제 1 내지 제 5 실시예와 동일하게 압축된 냉매가 순환하는 냉매 싸이클(R1)을 포함하며, 상기 냉매 싸이클(R1)은 냉매를 응축기를 응축시키는 응축기(110) 및 냉매가 증발하며 공기를 냉각하는 증발기(130)를 통과한다.
제 6 실시예에서는 사람이 거주하는 거주 공간 외에 지하실과 같은 공기 조화 공간이 구비되는 경우로 실내인 거주 공간에 실내기가 배치되는 것이 아니다. 도 17 에서는 공기 조화 공간에 증발기(130)가 배치된다. 실내에는 실내 공기를 흡입한 후 온도가 조절한 상태로 다시 실내로 공급하는 순환 유로(A10)가 연결되어 있으며, 순환 유로(A10) 상에 증발기(130)가 배치된다. 상기 증발기(130)는 상기 공기 조화 공간을 통과하는 순환 유로(A10) 상에 배치된다. 상기 공기 조화 공간은 통과하는 공기를 냉각시키는 증발기(130)외에 통과하는 공기를 가열시키는 가열부를 포함하여 실내에 가열 혹은 냉각된 공기를 제공하는 구조로 사용될 수도 있다.
제 6 실시예에서 실외기의 경우에 상기 제 1 실시예의 실외기와 동일하므로, 여기서는 자세한 설명은 생략하도록 한다.
도 18a 및 도 18b 에는 본 발명의 제 6 실시예가 설치된 집(H) 및 퍼니스(FN)의 개략도가 도시되어 있다. 제 6 실시예에서, 상기 공기 조화 공간은 집안을 난방하기 위한 퍼니스(Furnace, FN)일 수 있다.
도 18a에서 보이듯이 집(H)의 외부에는 실외기가 배치될 수 있으며, 집(H)의 지하실에는 집(H) 내부 공기를 흡입한 후 가열하여 제공하는 퍼니스(FN)와 상기 퍼니스(FN)와 집(H) 내부 공간을 연결하는 덕트(D)가 구비될 수 있다. 이 실시예에서 실외기는 도 17의 실외기와 동일한 구조를 가진다.
도 18b 에서 보이듯인, 상기 공기 조화 공간인 퍼니스(FN)는 덕트(D)를 통과하는 순환 유로(A10)를 가열할 수 있는데, 이러한 퍼니스(FN)의 상부측에 연결된 덕트(D)에 증발기(130, 도 17 참고)가 구비되는 A코일(A)이 배치된다. 상기 A 코일(A)은 도 18a 에 도시된 실외기와 연결되어 실외기에서 응축된 냉매가 상기 A 코일(A)을 지나면서 증발하며, 순환 유로(A10)를 통과하는 공기의 열기를 뺏을 수 있다. 즉, 퍼니스(FN)가 가열을 하지 않을 때 공기 조화기는 내부 순환 공기 흐름, 즉 순환 유로(A10)를 형성한 후 실외기와 A 코일(A)을 구동하여 퍼니스(FN)의 덕트(D)를 통하여 집(H)에 냉방을 제공할 수 있다.
따라서, 공기조화기는 퍼니스(FN), A코일 및 실외기를 포함하여, 집(H)에 냉방과 난방을 필요에 따라서 제공할 수 있다.
도 19 에는 본 발명의 제 7 실시예의 개략도가 도시되어 있다. 본 발명의 제 7 실시예의 공기 조화기는 제 1 내지 제 6 실시예와 동일하게 압축된 냉매가 순환하는 냉매 싸이클(R1)을 포함하며, 상기 냉매 싸이클(R1)은 냉매를 응축기를 응축시키는 응축기(110) 및 냉매가 증발하며 공기를 냉각하는 증발기(130)를 통과한다.
제 7 실시예에서는 실내 공기를 제습하는 제습 장치(300)를 포함하며, 상기 제습 장치(300)를 통과한 제습 공기가 합류점(P6)에서 다른 실내 공기와 합류하여 상기 증발기(130)를 통과한다. 합류점(P6)은 증발기(130) 전에 위치하는 것으로 도시하였으나, 증발기(130) 중간 혹은 실내기(150)에서 순환 유로(A10)로 같이 나오기만 한다면 각 공기가 증발기(130)를 통과한 후 합류하여도 무방하다.
제습 장치(300)는 제습 로터(310)와 외부 공기가 통과하는 외부 공기 유로(A13), 외부 공기를 가열하는 열교환부(330)를 포함한다. 외부 공기 유로(A13)에서 외부 공기는 열교환부(330)에서 가열된 후 상기 제습 로터(310)를 재생하며, 재생된 제습 로터(310)는 제습 유로(A12)상에 배치되어 실내 공기를 제습한다. 제습 유로(A12)와 외부 공기 유로(A13)는 내부 벽(320)에 의해서 구획되며 서로 혼합되지 않는다.
제 7 실시예에서 실외기는 제 1 실시예의 실외기와 동일하므로 자세한 설명을 생략한다. 제 7 실시예에서는 냉방과 제습을 별도의 장치로 구현하므로, 즉, 증발기(130)와 별도의 제습 로터(310)를 통하여 제습을 구현하고 이렇게 제습된 공기를 증발기(130)를 거쳐서 제공하기 때문에, 종래의 에어컨을 통한 제습과는 다른 온도/습도를 가지는 공기를 실내에 제공할 수 있다. 특히, 에어컨(증발기)를 통한 제습의 경우에 온도와 포화습도와의 관계를 통하여 제습을 하는 것이나, 이 실시예에서는 온도와 무관하게 제습로터(310)를 통하여 제습하므로 사용자가 원하는 온도/습도를 모두 만족시키는 것이 가능하다.
또한, 제습된 공기가 증발기(130)로 공급되기 때문에, 증발기(130)에 응축수가 발생하지 않으며, 따라서, 증발기(130)의 물기로 인하여 발생되는 곰팡이나 세균 증식이 발생하지 않게 한다.
도 20 에는 본 발명의 제 8 실시예의 개략도가 도시되어 있다. 본 발명의 제 8 실시예의 공기 조화기는 제 1 내지 제 7 실시예와 동일하게 압축된 냉매가 순환하는 냉매 싸이클(R1)을 포함하며, 상기 냉매 싸이클(R1)은 냉매를 응축기를 응축시키는 응축기(110) 및 냉매가 증발하며 공기를 냉각하는 증발기(130)를 통과한다.다만, 냉매 싸이클(R1)에서 응축기(110)와 압축기(140) 사이에 열교환부(330')가 배치되며, 이 열교환부(330')는 실외기에 배치되며, 외부 공기 유로(A13) 상에 배치된다.
또한, 실외기에는 제습로터(310)가 배치되며, 상기 제습로터(310)의 일부는 제습 유로(A12)에 나머지 일부는 외부 공기 유로(A13)에 배치된다. 제습 유로(A12)와 외부 공기 유로(A13)는 서로 분리되게 구성되며, 외부 공기 유로(A13)에서 유입된 공기는 상기 열교환부(330')와 제습로터(310)를 순차적으로 통과하도록 구성된다. 외부 공기 유로(A13)에서 유입된 공기는 열교환부(330')를 통과하면서 압축에 의해서 온도가 올라간 냉매와 열교환하면서 온도가 상승되고, 열교환부(330')에 의해서 온도가 상승된 공기로 제습로터(310)를 재생한다.
한편, 제습 유로(A12)는 실내 또는 실외로부터 공기가 유입되며, 제습로터(310)를 통과한 후 실내로 공기를 공급하게 구성된다. 이때, 실내로 공급되는 공기는 분기점(P8)에서 순환 유로(A10)와 합류하는 합류점(P6)과 합류하게 공급되거나, 순환 유로(A10)와 합류하지 않고 바로, 예를 들면 천정의 덕트를 통하여 바로 실내 공간으로 공급될 수 있다.
이 실시예에서, 제습로터(310)를 재생시키는 공기가 압축기(140)에 의해서 온도가 상승된 냉매에 의해서 가열되므로, 재생을 위하여 별도의 가열원이 필요하지 않다는 점에서 전체적인 에너지 효율을 향상시킬 수 있다. 더하여, 제 7 실시예와 동일하게 제습로터(310)를 통하여 제습이 이루어지기 때문에, 사용자가 원하는 온도/습도를 모두 만족시키는 것도 가능하다.
이상에서는 본 발명을 실시예를 중심으로 설명하였지만, 본 발명은 상술한 실시예에 한정되지 않으며, 청구범위에서 청구되는 본 발명의 기술적 사상의 변화 없이 통상의 기술자에 의해서 변형되어 실시될 수 있음은 물론이다.

Claims (20)

  1. 유체 통로를 포함하는 응축 모듈;
    상기 응축 모듈 상부에서 응축 모듈을 통과하는 물을 분사하는 주수 모듈; 및
    상기 응축 모듈의 일측에 배치되어 상기 응축 모듈을 통과하는 공기를 제공하는 송풍 모듈;을 포함하는 증발식 응축기로,
    상기 응축 모듈은 제 1 방향으로 연장하며 내부에 유로가 형성된 제 1 헤더, 상기 제 1 방향으로 연장하며 내부에 유로가 형성된 제 2 헤더 및 상기 제 1 헤더와 제 2 헤더 사이에서 제 2 방향으로 연장하며 상기 제 1 헤더와 제 2 헤더의 유로를 연결하는 복수의 연결튜브를 포함하는 N 개의 헤더열이 제 3 방향으로 적층되며, 여기서 N은 2 이상의 자연수이고,
    상기 제 1 내지 제 3 방향은 서로 다른 방향이며,
    상기 응축 모듈, 주수 모률 및 송풍 모듈은 상기 주수 모듈이 분사하는 물 및 상기 송풍 모듈이 제공하는 공기는 상기 응축 모듈의 연결튜브 사이를 통과하도록 배치된 증발식 응축기.
  2. 제 1 항에 있어서,
    상기 응축 모듈에서 유체 입구는 제 1 헤더열에 연결되며, 유체 출구는 제 N 헤더열에 연결되며,
    상기 제 1 헤더열에서 상기 제 N 헤더열까지 적층되는 제 3 방향과 상기 송풍 모듈의 공기 공급 방향은 서로 반대되는 증발식 응축기.
  3. 제 2 항에 있어서,
    상기 응축 모듈에서 상기 유체 입구는 상기 제 1 헤더열의 제 1 헤더에 연결되며, 상기 제 1 헤더열의 제 1 헤더 및 상기 제 1 헤더열의 위에 배치되는 제2 헤더열의 제 1 헤더 사이에는 유로홀이 형성되는 증발식 응축기.
  4. 제 1 항에 있어서,
    상기 헤더열은 상기 연결튜브에서 제1헤더로부터 제2헤더를 향하는 제 2-1 방향으로 유체가 흐르는 제 2-1 방향 헤더열과 상기 연결튜브에서 제2헤더로부터 제1헤더를 향하는 제 2-2 방향으로 유체가 흐르는 제 2-2 방향 헤더열을 포함하며,
    상기 제1 헤더열로부터 순차적으로 적층된 A 개의 헤더열은 제 2-1 방향 헤더열이고,
    상기 제 N 헤더열을 포함하여 상기 제 N 헤더열에서부터 아래로 연속적으로 배치되는 제 2-1 또는 제 2-2 방향 헤더열의 수가 M 개일 때, A, M 은 자연수이며, A > M 이고, A+M ≤ N, A≥2 을 만족하는 증발식 응축기.
  5. 제 3 항에 있어서,
    상기 헤더열은 상기 연결튜브에서 제1헤더로부터 제2헤더를 향하는 제 2-1 방향으로 유체가 흐르는 제 2-1 방향 헤더열과, 상기 연결튜브에서 제 2 헤더로부터 제1헤더를 향하는 제 2-2 방향으로 유체가 흐르는 제 2-2 방향 헤더열을 포함하며,
    상기 제 1 헤더열로부터 순차적으로 적층된 A 개의 헤더열은 제 2-1 방향 헤더열이고, 제 A 헤더열 상에 순차적으로 적층된 B 개의 헤더열은 제 2-2 방향 헤더열이며, 제 A+B 헤더열 상에 순차적으로 적층된 C 개의 헤더열은 제 2-1 방향 헤더열이며,
    A, B, C 는 자연수이며, A≥B 이며, A > C 이며, A+B+C ≤ N 를 만족하는 증발식 응축기.
  6. 제 3 항에 있어서,
    상기 헤더열은 상기 연결튜브에서 제1헤더로부터 제2헤더를 향하는 제 2-1 방향으로 유체가 흐르는 제 2-1 방향 헤더열과 상기 연결튜브에서 제2헤더로부터 제1헤더를 향하는 제 2-2 방향으로 유체가 흐르는 제 2-2 방향 헤더열을 포함하며,
    상기 유체 입구로 유입된 유체는 상기 제 2-1 방향 헤더열과 제 2-2 방향 헤더열을 번갈아 통과한 후 유체 출구로 토출되며,
    상기 유체 입구로부터 상기 유체 출구로 갈수록 상기 유체가 통과하는 제 2-1 방향 또는 제 2-2 방향 헤더열의 수가 감소하는 증발식 응축기.
  7. 제 1 항에 있어서,
    제 1 헤더열의 제 1 헤더에 유체 입구가 연결되며, 제 N 헤더열에 유체 출구가 연결되며,
    상기 연결튜브는 상기 제 1 헤더로부터 상기 제 2 헤더를 향하는 제 2-1 방향으로 유체가 흐르는 제 2-1 방향 연결튜브와, 상기 제 2 헤더로부터 상기 제 1 헤더를 향하는 제 2-2 방향으로 유체가 흐르는 제 2-2 방향 연결튜브를 포함하며,
    상기 유체 입구로 유입된 유체는 상기 제 2-1 방향 연결튜브와 제 2-2 방향 연결튜브를 번갈아 통과한 후 유체 출구로 토출되며,
    상기 유체 입구로부터 상기 유체 출구로 갈수록 상기 유체가 통과하는 연결튜브의 수가 감소하는 증발식 응축기.
  8. 제 7 항에 있어서,
    상기 제 2-1 방향 연결튜브와 상기 제 2-2 방향 연결튜브를 포함하는 헤더열은 제 1 또는 제 2 헤더에서 상기 상기 제 2-1 방향 연결튜브와 상기 제 2-2 방향 연결튜브 사이의 대응되는 위치에 배플이 배치되는 것을 특징으로 하는 응축기.
  9. 제 1 항에 있어서,
    제 1 헤더열에 유체 입구가 연결되며, 제 N 헤더열에 유체 출구가 연결되며,
    상기 유체는 상기 연결튜브에서 제 1 헤더에서 제 2 헤더를 향하는 제 2-1 방향과, 제 2 헤더에서 제 1 헤더를 향하는 제 2-2 방향을 번갈아 가면서 상기 유체 입구로부터 상기 유체 출구로 유동되며,
    상기 응축 모듈은 상기 연결튜브에서 유체의 흐름이 상기 제 2-1 방향 및 제 2-2 방향 중 어느 한 방향에서 다른 방향으로 전환될 때, 상기 한 방향에서 유체가 통과하는 단면적의 합이 상기 다른 방향에서 유체가 통과하는 단면적의 합보다 큰 부분을 포함하는 증발식 응축기.
  10. 냉매 사이클로 증발기, 팽창밸브, 압축기 및 응축기를 포함하는 공기 조화기로,
    상기 응축기는 제 1 항 내지 제 9 항 중 어느 한 항의 증발식 응축기인 공기 조화기.
  11. 제 10 항에 있어서,
    상기 증발기가 배치되는 실내기;
    상기 증발식 응축기가 배치되는 실외기; 및
    상기 송풍 모듈과 실내를 연결하며 실내 공기를 송풍 모듈에 공급하는 배출 유로를 포함하는 공기 조화기.
  12. 제 10 항에 있어서,
    상기 증발기, 팽창밸브, 압축기 및 증발식 응축기가 배치되는 케이스;
    실외에 연결되어 상기 증발식 응축기에 공기를 제공하는 공기 유로; 및
    수공급원에 연결되어 상기 증발식 응축기에 물을 제공하는 수공급 유로를 포함하는 공기 조화기.
  13. 제 12 항에 있어서,
    상기 증발기는 상기 증발식 응축기 상부에 배치되며,
    상기 증발기에서 형성된 응축수가 상기 증발식 응축기에 공급되도록 형성된 응축수 공급 유로를 더 포함하는 공기 조화기.
  14. 제 10 항에 있어서,
    실외에서 실내로 공기가 공급되는 공급 유로;
    실내에서 실외로 공기가 배출되는 배출 유로; 및
    상기 공급 유로 및 상기 배출 유로 상에 배치되며, 실내로 공급되는 공기와 실외로 배출되는 공기가 교차하며 열교환하게 구성되는 환기 열교환기;를 포함하며,
    상기 배출 유로는 상기 송풍 모듈과 연결되는 공기 조화기.
  15. 제 10 항에 있어서,
    실외에서 실내로 공기가 공급되는 공급 유로;
    실내에서 실외로 공기가 배출되는 배출 유로; 및
    상기 공급 유로 상에 배치되며, 주수 모듈을 포함하는 냉각기; 를 포함하며,
    상기 배출 유로는 상기 송풍 모듈과 연결되는 공기 조화기.
  16. 제 10 항에 있어서,
    실내 공기를 순환시키는 순환 유로;
    상기 순환 유로 상에 배치되는 퍼니스; 및
    상기 퍼니스 상측에서 상기 순환 유로 상에 배치되는 A 코일;을 더 포함하며,
    상기 증발기는 상기 A 코일인 공기 조화기.
  17. 제 10 항에 있어서,
    상기 응축기가 배치되는 실외기;
    상기 증발기가 배치되는 실내기;를 포함하며,
    상기 실외기는
    실외 공기가 유입되는 유입 유로 상에 배치되며, 건채널과 습채널을 포함하며, 상기 건채널을 통과하는 공기를 냉각시키는 증발식 냉각기;
    상기 유입 유로 상에 상기 증발식 냉각기 전에 배치되며, 유입되는 공기를 제습하는 제습로터;
    상기 제습로터를 재생시키기 위한 공기가 지나가는 재생 유로 상에서 상기 제습로터 전에 배치되어 공기를 가열하는 가열부;를 포함하며,
    상기 제습로터는 상기 재생 유로와 상기 유입 유로에 걸쳐서 배치되며,
    상기 유입 유로는 상기 증발식 냉각기를 통과한 후 실내와 연결되는 실내 공급 유로, 상기 응축기와 연결되는 응축기 공급 유로, 상기 증발식 냉각기의 습채널과 연결되는 냉각기 공급 유로로 분기되는 공기 조화기.
  18. 제 16 항에 있어서,
    실내 공기가 유입되며 상기 실내기에 연결되는 제습 유로, 실외 공기가 유입되었다가 배출되는 외부 공기 유로, 상기 제습 유로와 외부 공기 유로를 구획하는 내부 벽, 상기 제습 유로와 상기 외부 공기 유로에 걸쳐서 배치되는 제습 로터 및 상기 외부 공기 유로 상에서 상기 제습 로터로 유입되기 전의 외부 공기를 가열하게 배치되는 가열부를 포함하는 제습기를 더 포함하며,
    상기 제습 유로의 공기는 상기 실내기의 상기 증발기와 연결되는 공기 조화기.
  19. 제 17 항에 있어서,
    실내로부터 공기가 빠져나오는 배출 유로는 상기 재생 유로에 연결되는 공기 조화기.
  20. 제 10 항에 있어서,
    상기 응축기가 배치되는 실외기;
    상기 증발기가 각각 배치되는 복수의 실내기;를 포함하는 공기 조화기.
PCT/KR2021/017621 2020-11-27 2021-11-26 증발식 응축기 및 이를 포함하는 공기 조화기 WO2022114849A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21898674.3A EP4253872A1 (en) 2020-11-27 2021-11-26 Evaporative condenser and air conditioner including same
US18/253,855 US20240027110A1 (en) 2020-11-27 2021-11-26 Evaporative condenser and air conditioner including same
AU2021388344A AU2021388344A1 (en) 2020-11-27 2021-11-26 Evaporative condenser and air conditioner including same
CN202180079474.8A CN116635679A (zh) 2020-11-27 2021-11-26 蒸发式冷凝器及包含其的空调机
MX2023006131A MX2023006131A (es) 2020-11-27 2021-11-26 Condensador evaporativo y acondicionador de aire que incluye el mismo.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020200163010A KR20220074472A (ko) 2020-11-27 2020-11-27 응축기 및 이를 포함하는 증발식 냉각 장치
KR20200163011 2020-11-27
KR10-2020-0163010 2020-11-27
KR10-2020-0163011 2020-11-27
KR10-2021-0150027 2021-11-03
KR1020210150027A KR20220074734A (ko) 2020-11-27 2021-11-03 증발식 응축기 및 이를 포함하는 공기 조화기

Publications (1)

Publication Number Publication Date
WO2022114849A1 true WO2022114849A1 (ko) 2022-06-02

Family

ID=81754865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017621 WO2022114849A1 (ko) 2020-11-27 2021-11-26 증발식 응축기 및 이를 포함하는 공기 조화기

Country Status (5)

Country Link
US (1) US20240027110A1 (ko)
EP (1) EP4253872A1 (ko)
AU (1) AU2021388344A1 (ko)
MX (1) MX2023006131A (ko)
WO (1) WO2022114849A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116972459A (zh) * 2023-09-25 2023-10-31 杭州医维之星医疗技术有限公司 一种冷凝水潜冷回收装置、系统、制冷设备及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0121948B1 (ko) * 1995-10-11 1997-11-13 정몽원 에어컨의 응축기 냉각방법
KR100289123B1 (ko) * 1998-07-03 2001-10-27 윤종용 공조기기용실내기
KR200286535Y1 (ko) * 2002-05-15 2002-08-21 주식회사 유니온금속 리본형 냉매응축튜브와 이를 이용한 증발식 열교환기 및증발식응축기
KR20060018169A (ko) * 2004-08-23 2006-02-28 미래냉동공조주식회사 냉난방용 에어컨
US20110186277A1 (en) * 2008-10-20 2011-08-04 Showa Denko K.K. Condenser
KR20170058155A (ko) * 2015-11-18 2017-05-26 주식회사 경동나비엔 난방과 습도 조절이 가능한 공기조화기와 그 제어방법
KR20180122201A (ko) * 2017-05-02 2018-11-12 김봉석 냉동장치의 증발식 응축기
KR20190006781A (ko) 2017-07-11 2019-01-21 주식회사 경동나비엔 증발식 응축기

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0121948B1 (ko) * 1995-10-11 1997-11-13 정몽원 에어컨의 응축기 냉각방법
KR100289123B1 (ko) * 1998-07-03 2001-10-27 윤종용 공조기기용실내기
KR200286535Y1 (ko) * 2002-05-15 2002-08-21 주식회사 유니온금속 리본형 냉매응축튜브와 이를 이용한 증발식 열교환기 및증발식응축기
KR20060018169A (ko) * 2004-08-23 2006-02-28 미래냉동공조주식회사 냉난방용 에어컨
US20110186277A1 (en) * 2008-10-20 2011-08-04 Showa Denko K.K. Condenser
KR20170058155A (ko) * 2015-11-18 2017-05-26 주식회사 경동나비엔 난방과 습도 조절이 가능한 공기조화기와 그 제어방법
KR20180122201A (ko) * 2017-05-02 2018-11-12 김봉석 냉동장치의 증발식 응축기
KR20190006781A (ko) 2017-07-11 2019-01-21 주식회사 경동나비엔 증발식 응축기

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116972459A (zh) * 2023-09-25 2023-10-31 杭州医维之星医疗技术有限公司 一种冷凝水潜冷回收装置、系统、制冷设备及控制方法
CN116972459B (zh) * 2023-09-25 2024-01-12 杭州医维之星医疗技术有限公司 一种冷凝水潜冷回收装置、系统、制冷设备及控制方法

Also Published As

Publication number Publication date
US20240027110A1 (en) 2024-01-25
EP4253872A1 (en) 2023-10-04
MX2023006131A (es) 2023-09-25
AU2021388344A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
WO2018212609A1 (en) Air conditioner
WO2011062348A1 (en) Heat pump
WO2017014504A1 (en) Air conditioner
WO2016013798A1 (en) Refrigerator and control method thereof
WO2015111847A1 (ko) 차량용 히트 펌프 시스템
EP3610201A1 (en) Air conditioner
WO2015034332A4 (en) Dehumidifier
WO2022114849A1 (ko) 증발식 응축기 및 이를 포함하는 공기 조화기
WO2021132866A1 (en) Air conditioning apparatus
WO2019143195A1 (ko) 멀티형 공기조화기
WO2017164711A1 (ko) 냉장고의 제어방법
WO2018080150A1 (en) Air conditioner
EP3516305A1 (en) Air conditioner
WO2020197044A1 (en) Air conditioning apparatus
WO2009136726A2 (en) Heat exchange system
WO2020197052A1 (en) Air conditioning apparatus
WO2016129880A1 (en) Air conditioner
EP3126749A1 (en) Air conditioner
WO2017115966A1 (ko) 열교환장치 및 열전발전장치의 통합 시스템, 및 그 작동 방법
WO2016163771A1 (ko) 차량용 공조 시스템
WO2016204560A1 (ko) 열 회수 장치
WO2021112522A1 (ko) 차량용 히트펌프 시스템
WO2021040427A1 (en) Air conditioner and control method thereof
WO2019143198A1 (ko) 멀티형 공기조화기
WO2019050077A1 (ko) 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템 및 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898674

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18253855

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180079474.8

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023010135

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021898674

Country of ref document: EP

Effective date: 20230627

ENP Entry into the national phase

Ref document number: 2021388344

Country of ref document: AU

Date of ref document: 20211126

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023010135

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230525

WWE Wipo information: entry into national phase

Ref document number: 523440886

Country of ref document: SA