WO2022114175A1 - Photosensitive resin composition - Google Patents

Photosensitive resin composition Download PDF

Info

Publication number
WO2022114175A1
WO2022114175A1 PCT/JP2021/043588 JP2021043588W WO2022114175A1 WO 2022114175 A1 WO2022114175 A1 WO 2022114175A1 JP 2021043588 W JP2021043588 W JP 2021043588W WO 2022114175 A1 WO2022114175 A1 WO 2022114175A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
photosensitive resin
mass
resin composition
modified
Prior art date
Application number
PCT/JP2021/043588
Other languages
French (fr)
Japanese (ja)
Inventor
将暢 石坂
諒哉 ▲高▼島
Original Assignee
株式会社タムラ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所 filed Critical 株式会社タムラ製作所
Priority to CN202180080124.3A priority Critical patent/CN116602060A/en
Publication of WO2022114175A1 publication Critical patent/WO2022114175A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention has a photosensitive resin composition and a coating film of a photosensitive resin composition suitable for a coating material, for example, a coating material for coating a conductor circuit pattern formed on a wiring board such as a flexible printed wiring board.
  • the present invention relates to a wiring board having a dry film and a photocurable film of a photosensitive resin composition.
  • the printed wiring board is used to form a conductor circuit pattern on the board and mount electronic components on the soldering lands of the pattern by soldering, and the circuit part excluding the soldering lands is an insulating protective film (for example, it is coated with a solder resist film).
  • This insulating protective film can be obtained, for example, by applying a photosensitive resin composition to a printed wiring board to form a coating film, and then photocuring the coating film. This prevents the solder from adhering to unnecessary parts when soldering electronic components to the printed wiring board, and also prevents the circuit from being directly exposed to air and corroded by oxidation and humidity. ..
  • urethane beads may be blended as an organic filler in the photosensitive resin composition (Patent Document 1).
  • urethane beads when urethane beads are blended in the photosensitive resin composition, the urethane beads have a low softening point, so that the solid content aggregates during storage and storage of the photosensitive resin composition, and the dispersibility of the photosensitive resin composition There was a problem that it may not be obtained. Therefore, by blending silica-coated urethane beads, in which urethane beads are coated with silica, into the photosensitive resin composition, flexibility (bending property) is imparted to the insulating protective film, and dispersibility is provided in the photosensitive resin composition. It is also given.
  • the silica of the silica-coated urethane beads is untreated silica that has not been surface-treated, and if the amount of silica coated on the silica-coated urethane beads is increased in order to obtain the dispersibility of the photosensitive resin composition, the silica-coated urethane beads become Water absorption is imparted, and there is a risk that the insulation reliability of the insulating protective film may be impaired, especially in an environment of high temperature and high humidity.
  • the present invention is a photosensitive resin composition, the photosensitive resin, which is excellent in dispersibility during storage and storage, can reduce water absorption, and can form a cured film having excellent bendability and insulation reliability. It is an object of the present invention to provide a dry film having a coating film of the composition and a wiring board having a photocurable film of the photosensitive resin composition.
  • the gist of the structure of the present invention is as follows. [1] Containing (A) a carboxyl group-containing photosensitive resin, (B) an epoxy compound, (C) urethane beads, (D) a photopolymerization initiator, and (E) a reactive diluent. A photosensitive resin composition in which the urethane beads (C) are coated with silica, and 20% by mass or more of the 100% by mass of the silica is hydrophobic silica. [2] The photosensitive resin composition according to [1], wherein 30% by mass or more of the 100% by mass of the silica is hydrophobic silica.
  • the hydrophobic silica is surface-modified with a monoalkylsilylated silica surface-modified with a monoalkylsilyl group, a dialkylsiloxylated silica surface-modified with a dialkylsilyl group, and a surface modification with a trialkylsilyl group.
  • the photosensitive resin composition according to any one of [1] to [4], which is at least one selected from the group consisting of surface-modified silica.
  • the hydrophobic silica is a monoalkyl siroxylated silica surface-modified with a monoalkyl silyl group, a dialkyl siroxylated silica surface-modified with a dialkyl silyl group, or a (meth) acrylic silyl group.
  • [7] [1] to [6] contain 35 parts by mass or more and 150 parts by mass or less of the (C) urethane beads coated with silica with respect to 100 parts by mass of the (A) carboxyl group-containing photosensitive resin.
  • silica coverage means the ratio of the mass of silica coated on the outer surface of the urethane beads to the mass of the urethane beads coated with silica.
  • the coverage of silica can be determined by weighing the ash content of the urethane beads coated with silica after burning them at 600 ° C. for 2 hours.
  • (C) urethane beads are coated with silica, and 20% by mass or more of the 100% by mass of the silica is hydrophobic silica, so that water absorption is excellent while being excellent in dispersibility during storage and storage.
  • a photosensitive resin composition capable of reducing the rate can be obtained, and a photosensitive resin composition capable of forming a cured film having excellent bendability and insulation reliability can be obtained.
  • the urethane beads (C) is hydrophobic silica, the water absorption rate of the photosensitive resin composition can be further reduced. A cured film with even better insulation reliability can be formed.
  • the coverage of the silica of the urethane beads (C) is 1.0% by mass or more and 40% by mass or less, so that the photosensitive resin composition having excellent dispersibility during storage and storage is more reliable. It is possible to obtain a photosensitive resin composition capable of obtaining a product and more reliably forming a cured film having excellent bendability.
  • the coverage of the silica of the urethane beads (C) is 5.0% by mass or more and 30% by mass or less, so that the photosensitive resin composition having excellent dispersibility during storage and storage is more reliably performed. It is possible to obtain a product, and more reliably, to obtain a photosensitive resin composition capable of forming a cured film having excellent bendability.
  • the hydrophobic silica is surface-modified with a monoalkylsilyl group, monoalkylsiloxylated silica, surface-modified with a dialkylsilyl group, dialkylsiloxylated silica, or trialkylsilyl.
  • a photosensitive resin composition that can more reliably reduce the water absorption rate while having excellent dispersibility during storage and storage by being at least one selected from the group consisting of silica surface-modified with a polysiloxane group. It is also possible to obtain a photosensitive resin composition capable of more reliably forming a cured film having excellent bendability and insulation reliability.
  • the hydrophobic silica is surface-modified with a monoalkylsilyl group, monoalkylsiloxylated silica, and surface-modified with a dialkylsilyl group, dialkylsiloxylated silica, (meth).
  • a monoalkylsilyl group monoalkylsiloxylated silica
  • dialkylsilyl group dialkylsiloxylated silica, (meth)
  • the water absorption rate can be further reliably improved while being excellent in dispersibility during storage and storage.
  • a photosensitive resin composition that can be reduced can be obtained, and a photosensitive resin composition that can more reliably form a cured film having excellent bendability and insulation reliability can be obtained.
  • the photosensitive resin is contained by containing 35 parts by mass or more and 150 parts by mass or less of (C) urethane beads coated with silica with respect to 100 parts by mass of (A) carboxyl group-containing photosensitive resin. It is possible to obtain a photosensitive resin composition that can reduce the water absorption rate while imparting excellent coatability to the composition and more reliably with excellent dispersibility during storage and storage, and more reliably with bending. It is possible to obtain a photosensitive resin composition capable of forming a cured film having excellent properties and insulation reliability.
  • the photosensitive resin composition of the present invention comprises (A) a carboxyl group-containing photosensitive resin, (B) an epoxy compound, (C) urethane beads, (D) a photopolymerization initiator, and (E) a reactive dilution.
  • the (C) urethane bead is coated with silica, and 20% by mass or more of the 100% by mass of the silica is hydrophobic silica.
  • the structure of the carboxyl group-containing photosensitive resin of the component (A) is not particularly limited, and examples thereof include a resin having one or more photosensitive unsaturated double bonds and a free carboxyl group.
  • the carboxyl group-containing photosensitive resin for example, acrylic acid or methacrylic acid (hereinafter, “(meth) acrylic acid”) may be added to at least a part of the epoxy group of the polyfunctional epoxy resin having two or more epoxy groups in one molecule.
  • the radically polymerizable unsaturated monocarboxylic acid produced by reacting with a radically polymerizable unsaturated monocarboxylic acid such as) to obtain a radically polymerizable unsaturated monocarboxylic oxide epoxy resin such as epoxy (meth) acrylate.
  • a polybasic acid-modified radically polymerizable unsaturated monocarboxylic oxide epoxy resin such as a polybasic acid-modified epoxy (meth) acrylate obtained by reacting a hydroxyl group of a carboxylic oxide epoxy resin with a polybasic acid and / or its anhydride. And so on.
  • the chemical structure of the polyfunctional epoxy resin is not particularly limited as long as it is a bifunctional or higher functional epoxy resin.
  • the epoxy equivalent of the polyfunctional epoxy resin is not particularly limited, and for example, the upper limit thereof is preferably 4000 g / eq, more preferably 3000 g / eq, still more preferably 2500 g / eq, and particularly preferably 2000 g / eq.
  • the lower limit of the epoxy equivalent of the polyfunctional epoxy resin is preferably 100 g / eq, and particularly preferably 200 g / eq.
  • Examples of the resin type of the polyfunctional epoxy resin include rubber-modified epoxy such as biphenyl aralkyl type epoxy resin, phenyl aralkyl type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, and silicone-modified epoxy resin.
  • rubber-modified epoxy such as biphenyl aralkyl type epoxy resin, phenyl aralkyl type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, and silicone-modified epoxy resin.
  • Phenol novolak type epoxy resin such as resin, ⁇ -caprolactone modified epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolak type epoxy resin such as ortho-cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, Cyclic aliphatic polyfunctional epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, heterocyclic epoxy resin, bisphenol-modified novolak type epoxy resin, polyfunctional modified novolak type epoxy resin and the like can be mentioned. Further, those epoxy resins in which halogen atoms such as Br and Cl are further introduced may be used. These polyfunctional epoxy resins may be used alone or in combination of two or more.
  • the radically polymerizable unsaturated monocarboxylic acid is not particularly limited, and examples thereof include (meth) acrylic acid, crotonic acid, tiglic acid, angelic acid, and cinnamon acid. Of these, (meth) acrylic acid is preferred because it is easy to obtain and handle. These radically polymerizable unsaturated monocarboxylic acids may be used alone or in combination of two or more.
  • the method for reacting the polyfunctional epoxy resin with the radically polymerizable unsaturated monocarboxylic acid is not particularly limited, and for example, the polyfunctional epoxy resin and the radically polymerizable unsaturated monocarboxylic acid are mixed in a diluent such as an organic solvent. Examples thereof include a method of dissolving and stirring while heating.
  • a radically polymerizable unsaturated monocarboxylic oxide epoxy resin by an addition reaction of a polybasic acid and / or a polybasic acid anhydride to a hydroxyl group generated by a reaction between a polyfunctional epoxy resin and a radically polymerizable unsaturated monocarboxylic acid.
  • a free carboxyl group is introduced into the.
  • the chemical structure of the polybasic acid and the polybasic acid anhydride is not particularly limited, and either saturated or unsaturated can be used.
  • polybasic acid examples include succinic acid, maleic acid, adipic acid, citric acid, phthalic acid, tetrahydrophthalic acid, 3-methyltetrahydrophthalic acid, 4-methyltetrahydrophthalic acid, 3-ethyltetrahydrophthalic acid, 4-.
  • Tetrahydrophthalates such as ethyltetrahydrophthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, hexahydrophthalic acid, 3-methylhexahydrophthalic acid, 4-methylhexahydrophthalic acid, 3-ethylhexahydrophthalic acid
  • examples thereof include acids, hexahydrophthalic acids such as 4-ethylhexahydrophthalic acid, trimellitic acid, pyromellitic acid and diglycolic acid.
  • the polybasic acid anhydride include the above-mentioned various polybasic acid anhydrides. These polybasic acids and / or polybasic acid anhydrides may be used alone or in combination of two or more.
  • the method for reacting the radically polymerizable unsaturated monocarboxylic oxide epoxy resin with the polybasic acid and / or the polybasic acid anhydride is not particularly limited, and for example, the radically polymerizable unsaturated monocarboxylic oxide epoxy resin and the polybasic acid are not particularly limited. And / or a method of dissolving the polybasic acid anhydride in a diluent such as an organic solvent and stirring while heating can be mentioned.
  • the above-mentioned polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin can also be used as a carboxyl group-containing photosensitive resin, but a part of the carboxyl groups of the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin obtained as described above.
  • a polybasic acid-modified radically polymerizable unsaturated monocarboxylic oxide epoxy obtained by further introducing a radically polymerizable unsaturated group, which is obtained by an addition reaction of a compound having one or more radically polymerizable unsaturated groups and an epoxy group. Resin may be used.
  • the polybasic acid-modified radically polymerizable unsaturated monocarboxylic oxide epoxy resin further introduced with a radically polymerizable unsaturated group has a radically polymerizable unsaturated group further introduced into the side chain of the polybasic acid modified unsaturated monocarboxylic oxide epoxy resin. It is a carboxyl group-containing photosensitive resin having further improved photosensitivity as compared with the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin because of the chemical structure.
  • Examples of the compound having one or more radically polymerizable unsaturated groups and an epoxy group include glycidyl compounds.
  • Examples of the glycidyl compound include glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, pentaerythritol triacrylate monoglycidyl ether, pentaerythritol trimethacrylate monoglycidyl ether and the like.
  • One molecule may have one glycidyl group or a plurality of glycidyl groups.
  • the compound having one or more radically polymerizable unsaturated groups and an epoxy group described above may be used alone or in combination of two or more.
  • the method for reacting the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin with a compound having one or more radically polymerizable unsaturated groups such as a glycidyl compound and an epoxy group is not particularly limited, and is not particularly limited, for example, many.
  • a method of dissolving a basic acid-modified unsaturated monocarboxylic oxide epoxy resin and a compound having one or more radically polymerizable unsaturated groups and an epoxy group in a diluent such as an organic solvent and stirring while heating is mentioned. Be done.
  • the acid value of the carboxyl group-containing photosensitive resin is not particularly limited, and for example, the lower limit thereof is preferably 30 mgKOH / g and particularly preferably 40 mgKOH / g from the viewpoint of reliably imparting alkali developability.
  • the upper limit of the acid value of the carboxyl group-containing photosensitive resin is preferably 200 mgKOH / g from the viewpoint of preventing dissolution of the exposed portion (photocuring portion) by the alkaline developer, and the moisture resistance and insulation reliability of the photocured product are preferable.
  • 150 mgKOH / g is particularly preferable from the viewpoint of surely preventing the decrease of the amount.
  • the mass average molecular weight of the carboxyl group-containing photosensitive resin is not particularly limited, and for example, the lower limit thereof is preferably 6000, more preferably 7000 from the viewpoint of reliably obtaining the toughness and dryness to the touch of the photocured product. 8000 is particularly preferable.
  • the upper limit of the mass average molecular weight of the carboxyl group-containing photosensitive resin is preferably 200,000, more preferably 100,000, and particularly preferably 50,000, for example, from the viewpoint of surely obtaining good alkali developability.
  • the "mass average molecular weight” means a mass average molecular weight measured at room temperature using gel permeation chromatography (GPC) and calculated in terms of polystyrene.
  • the carboxyl group-containing photosensitive resin may be prepared in the above reaction step using each of the above components, or a commercially available carboxyl group-containing photosensitive resin may be used.
  • Examples of the carboxyl group-containing photosensitive resin on the market include “SP-4621” (Showa Denko KK), "KAYARAD ZAR-2000", “KAYARAD ZFR-1122", “KAYARAD FLX-2089", and “KAYARAD”.
  • "ZCR-1569H” aboveve, Nippon Kayaku Co., Ltd.
  • Cyclomer P (ACA) Z-250” (Dycel Ornex Co., Ltd.) can be mentioned.
  • These carboxyl group-containing photosensitive resins may be used alone or in combination of two or more.
  • the epoxy compound of the component (B) is for increasing the crosslink density of the cured product of the photosensitive resin composition and imparting sufficient strength to the cured product.
  • the epoxy compound include epoxy resins.
  • the epoxy resin include the same epoxy resin as the polyfunctional epoxy resin used for preparing the above-mentioned carboxyl group-containing photosensitive resin.
  • rubber-modified epoxy resins such as biphenyl aralkyl type epoxy resin, phenyl aralkyl type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, silicone-modified epoxy resin, and ⁇ -caprolactone.
  • Phenol novolak type epoxy resin such as modified epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolak type epoxy resin such as ortho-cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, cyclic aliphatic polyfunctional Examples thereof include an epoxy resin, a glycidyl ester type polyfunctional epoxy resin, a glycidylamine type polyfunctional epoxy resin, a heterocyclic polyfunctional epoxy resin, a bisphenol-modified novolak type epoxy resin, and a polyfunctional modified novolak type epoxy resin. These epoxy compounds may be used alone or in combination of two or more.
  • the content of the epoxy compound is not particularly limited, but for example, 100 parts by mass of the carboxyl group-containing photosensitive resin (solid content, the same applies hereinafter) from the viewpoint of obtaining a coating film having sufficient strength after curing of the photosensitive resin composition.
  • 10 parts by mass or more and 100 parts by mass or less are preferable, and 10 parts by mass or more and 50 parts by mass or less are particularly preferable.
  • the urethane beads of the component (C) are particulate matter in which at least a part of the outer surface thereof is coated with silica. Therefore, the urethane beads of the component (C) have a core-shell structure in which the urethane beads form the core portion and the silica forms the shell portion in at least a part of the outer surface. Further, 20% by mass or more of the total silica covering the outer surface of the urethane beads is hydrophobic silica. That is, 20% by mass or more of 100% by mass of silica is composed of hydrophobic silica.
  • the urethane beads are coated with silica, and 20% by mass or more of the 100% by mass of the silica is hydrophobic silica, so that the photosensitive resin composition has excellent dispersibility during storage and storage, and also. , The water absorption rate is reduced. Further, since the urethane beads (C) are coated with silica and 20% by mass or more of the 100% by mass of the silica is hydrophobic silica, the photosensitive resin composition is excellent in bendability and insulation reliability. A cured film can be formed.
  • the proportion of hydrophobic silica in the total silica covering the urethane beads is not particularly limited as long as it is 20% by mass or more, but the water absorption rate of the photosensitive resin composition can be further reduced, and the insulation reliability is further excellent. From the viewpoint of forming a cured film, 30% by mass or more is preferable, 40% by mass or more is more preferable, and 60% by mass or more is particularly preferable.
  • the upper limit of the ratio of hydrophobic silica to the total silica covering the urethane beads is preferably as high as possible, and examples thereof include 100% by mass.
  • the ratio of hydrophobic silica to the total silica covering the urethane beads is 100% by mass, that is, the silica coating the urethane beads is made of hydrophobic silica, so that the water absorption rate of the photosensitive resin composition is further ensured. It is possible to form a cured film with further improved insulation reliability.
  • silica other than hydrophobic silica that can be used for silica that coats urethane beads include untreated silica that has not been surface-treated, that is, hydrophilic silica.
  • the coverage of all silica including hydrophobic silica of urethane beads is not particularly limited, but the lower limit thereof is from the point that a photosensitive resin composition having excellent dispersibility during storage and storage can be obtained more reliably. , 1.0% by mass is preferable, 5.0% by mass is more preferable, and 8.0% by mass is further preferable, from the viewpoint that a photosensitive resin composition having excellent dispersibility during storage and storage can be obtained more reliably. , 12% by mass is particularly preferable.
  • the upper limit of the coverage of all silica of the urethane beads is preferably 40% by mass, more reliably, from the viewpoint that a photosensitive resin composition capable of more reliably forming a cured film having excellent bendability can be obtained. 30% by mass is more preferable, 25% by mass is further preferable, and 18% by mass is particularly preferable, from the viewpoint that a photosensitive resin composition capable of forming a cured film having excellent bendability can be obtained.
  • the hydrophobic silica is not particularly limited as long as it is a silica having a hydrophobic substituent, but for example, a photosensitive resin composition capable of more reliably reducing the water absorption rate while having excellent dispersibility during storage and storage.
  • Alkylsiloxylated silica dialkylsiloxylated silica surface-modified with a dialkylsilyl group, trialkylsiloxylated silica surface-modified with a trialkylsilyl group, and surface-modified with a (meth) acrylicsilyl group.
  • Preferables are (meth) acrylic siloxylated silica, silica surface-modified with a dialkylsiloxane group, silica surface-modified with a dialkylpolysiloxane group, and the like.
  • a photosensitive resin composition capable of reducing the water absorption rate while having excellent dispersibility during storage and storage can be obtained more reliably, and a cured film having excellent bendability and insulation reliability can be obtained more reliably.
  • Monoalkyl siroxylated silica surface-modified with a monoalkylsilyl group, dialkylsiloxylated silica surface-modified with a dialkylsilyl group from the viewpoint that a photosensitive resin composition capable of forming the above can be obtained.
  • Particularly preferred is (meth) acrylic siloxylated silica, which has been surface modified with a (meth) acrylic silyl group.
  • the carbon number of each of the above-mentioned dialkyl and trialkyl is not particularly limited, but is preferably 1 or more and 10 or less, more preferably 1 or more and 5 or less, and 1 or more and 3 or less. Especially preferable.
  • the carbon number of the monoalkyl described above is not particularly limited, but is preferably 1 or more and 20 or less, more preferably 3 or more and 15 or less, and particularly preferably 5 or more and 10 or less.
  • hydrophobic silica may be used alone or in combination of two or more.
  • the content of the urethane beads coated with silica is not particularly limited, but for example, the lower limit thereof more reliably obtains a photosensitive resin composition capable of reducing water absorption while having excellent dispersibility during storage and storage. From the viewpoint that a photosensitive resin composition capable of forming a cured film having excellent bendability and insulation reliability can be obtained more reliably, with respect to 100 parts by mass of the carboxyl group-containing photosensitive resin. 35 parts by mass is preferable, 50 parts by mass is more preferable, and 60 parts by mass is particularly preferable.
  • the upper limit of the content of the urethane beads coated with silica is 150 mass by mass with respect to 100 parts by mass of the carboxyl group-containing photosensitive resin from the viewpoint of imparting excellent coatability to the photosensitive resin composition. Parts are preferable, 120 parts by mass is more preferable, and 90 parts by mass is particularly preferable.
  • the average particle size of the urethane beads coated with silica is not particularly limited, but for example, the urethane beads are surely coated with silica containing hydrophobic silica to ensure the dispersibility and insulation reliability of the photosensitive resin composition. It is preferably 1.0 ⁇ m or more and 10 ⁇ m or less, more preferably 2.0 ⁇ m or more and 7.0 ⁇ m or less, and more preferably 3.0 ⁇ m, from the viewpoint of uniformly dispersing urethane beads coated with silica in the photosensitive resin composition. More than 5.0 ⁇ m or less is particularly preferable.
  • the photopolymerization initiator of the component (D) is not particularly limited, and is, for example, 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], etanone 1- [9-].
  • Examples of the photopolymerization initiator other than the oxime ester-based photopolymerization initiator and the ⁇ -aminoalkylphenone-based photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin-n-butyl ether.
  • Benzophenone such as benzoin isobutyl ether; acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone and other acetophenone; benzophenone, p-phenylbenzophenone, 4, Benzophenone series such as 4'-diethylaminobenzophenone and dichlorobenzophenone; anthraquinone series such as 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiary butyl anthraquinone and 2-aminoanthraquinone; 2-methylthioxanthone, 2-ethylthioxanthone, Thioxanthone series such as 2-chlorthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone; benzyldimethylketal
  • the content of the photopolymerization initiator is not particularly limited, but is preferably 0.1 part by mass or more and 10 parts by mass or less, and 0.2 parts by mass or more and 5.0 parts by mass with respect to 100 parts by mass of the carboxyl group-containing photosensitive resin. Part or less is particularly preferable.
  • the reactive diluent of the component (E) is, for example, a photopolymerizable monomer, which is a compound having at least one polymerizable double bond per molecule, preferably two or more polymerizable double bonds per molecule.
  • the reactive diluent reinforces the photocuring of the photosensitive resin composition and contributes to imparting sufficient heat resistance, acid resistance, alkali resistance and the like to the cured product of the photosensitive resin composition.
  • Examples of the reactive diluent include monofunctional (meth) acrylate compounds, bifunctional (meth) acrylate compounds, trifunctional (meth) acrylate compounds, and tetrafunctional or higher (meth) acrylate compounds. ..
  • Examples of the (meth) acrylate compound include 2-hydroxyethyl (meth) acrylate, phenoxyethyl (meth) acrylate, diethylene glucol mono (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth) acrylic rate.
  • Monofunctional (meth) acrylate compounds 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, neo Pentyl glycol adipate di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, ethylene oxide-modified di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, Bifunctional (meth) acrylate compounds such as isocyanurate di (meth) acrylate; trimethylol propanetri (meth) acrylate, dipentaerythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propy
  • Trifunctional (meth) acrylate compounds such as (meth) acrylate, tris (acryloxyethyl) isocyanurate; ditrimethylolpropanetetra (meth) acrylate, propionic acid-modified dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth).
  • Examples thereof include tetrafunctional or higher functional (meth) acrylate compounds such as acrylate.
  • a monofunctional or bifunctional or higher urethane (meth) acrylate compound and the like can be mentioned. These may be used alone or in combination of two or more.
  • the content of the reactive diluent is not particularly limited, but is preferably 5.0 parts by mass or more and 50 parts by mass or less, and particularly 10 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the carboxyl group-containing photosensitive resin. preferable.
  • the photosensitive resin composition of the present invention in addition to the above-mentioned components (A) to (E), various components such as extender pigments, curing accelerators, various additives, flame retardants, and coloring are required. Agents, non-reactive diluents and the like can be blended.
  • Examples of the extender pigment include talc, barium sulfate, alumina, aluminum hydroxide, mica and the like.
  • Examples of the curing accelerator include boron trifluoride-amine complex, dicyandiamide (DICY) and its derivatives, organic acid hydrazide, diaminomaleonitrile (DAMN) and its derivatives, guanamine and its derivatives, melamine and its derivatives, and amineimide ( AI) and polyamines can be mentioned.
  • Examples of various additives include defoaming agents such as silicone-based, hydrocarbon-based and acrylic-based, organic fillers such as (meth) acrylic polymers and organic bentonite, and thixotropic agents such as polycarboxylic acid amide. Can be mentioned.
  • Examples of the flame retardant include phosphorus-based flame retardants.
  • Examples of the phosphorus-based flame retardant include tris (chloroethyl) phosphate, tris (2,3-dichloropropyl) phosphate, tris (2-chloropropyl) phosphate, tris (2,3-bromopropyl) phosphate, and tris (bromo).
  • Halogen-containing phosphoric acid such as chloropropyl) phosphate, 2,3-dibromopropyl-2,3-chloropropyl phosphate, tris (tribromophenyl) phosphate, tris (dibromophenyl) phosphate, tris (tribromoneopentyl) phosphate, etc.
  • Non-halogen aliphatic phosphates such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate; triphenyl phosphate, cresyldiphenyl phosphate, dicresylphenyl phosphate, tricresyl phosphate, trixylate Nylphosphate, xylenyldiphenyl phosphate, tris (isopropylphenyl) phosphate, isopropylphenyldiphenyl phosphate, diisopropylphenylphenyl phosphate, tris (trimethylphenyl) phosphate, tris (t-butylphenyl) phosphate, hydroxyphenyldiphenyl phosphate, octyldiphenyl phosphate.
  • Non-halogen aromatic phosphate esters such as: Aluminum Trisdiethylphosphine, Aluminum Trismethylethylphosphine, Aluminum Trisdiphenylphosphine, Zinc bisdiphenylphosphine, Zinc bismethylethylphosphine, Zinc bisdiphenylphosphine, Bisdiethyl Metal salts of phosphinic acids such as titanyl phosphinate, titanium tetrakisdiethylphosphine, titanyl bismethylethylphosphine, titanium tetrakismethylethylphosphine, titanyl bisdiphenylphosphine, titanium tetrakisdiphenylphosphine, diphenylvinylphosphine oxide, triphenyl Examples thereof include phosphine oxide compounds such as phosphine oxide, trialkylphosphine oxide, and tris (hydroxyalkyl) phosphine oxide. Of these, organic
  • the colorant is not particularly limited, such as pigments and pigments. Further, as the color of the colorant, any colorant such as a white colorant, a blue colorant, a green colorant, a yellow colorant, an orange colorant, a red colorant, a purple colorant, and a black colorant can be used. Is.
  • the inorganic colorant include titanium oxide, which is a white colorant, carbon black, which is a black colorant, and acetylene black, which are black colorants.
  • organic colorant examples include phthalocyanine green which is a green colorant, phthalocyanine type such as phthalocyanine blue and lionol blue which are blue colorants, and diketopyrrolopyrrole type such as chromoftalo orange which is an orange colorant. And so on.
  • the non-reactive diluent is a component for adjusting the viscosity, coatability, drying property, etc. of the photosensitive resin composition.
  • the non-reactive diluent include organic solvents.
  • the organic solvent include ketones such as methyl ethyl ketone, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, n-propanol, isopropanol, cyclohexanol and propylene glycol monomethyl ether, cyclohexane and methylcyclohexane.
  • Alicyclic hydrocarbons such as cellosolve and butyl cellosolve
  • carbitols such as carbitol and butyl carbitol
  • ethyl acetate butyl acetate
  • cellosolve acetate butyl cellosolve acetate
  • carbitol acetate carbitol acetate
  • diethylene glycol monomethyl examples thereof include esters such as ether acetate, ethyl diglycol acetate, and propylene glycol monomethyl ether acetate.
  • the content of the non-reactive diluent is not particularly limited, but is preferably 2.0 parts by mass or more and 50 parts by mass or less, and 5.0 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the carboxyl group-containing photosensitive resin. The following are particularly preferred.
  • the method for producing the photosensitive resin composition of the present invention is not limited to a specific method, and a known method can be used. Specifically, for example, after blending each of the above components in a predetermined ratio, at room temperature (for example, 25 ° C.), a kneading means such as a three-roll, ball mill, sand mill, bead mill, kneader, or a super mixer or planetary mixer. , Trimix and the like can be kneaded or mixed and produced. Further, before the kneading or mixing, pre-kneading or pre-mixing may be carried out, if necessary.
  • a kneading means such as a three-roll, ball mill, sand mill, bead mill, kneader, or a super mixer or planetary mixer. , Trimix and the like can be kneaded or mixed and produced. Further, before the kneading or mixing, pre-k
  • an insulating protective film for example, a solder resist film
  • a dry film coated with the photosensitive resin composition of the present invention on a printed wiring board having a circuit pattern formed by etching a conductor such as a copper foil. Etc. will be described as an example.
  • the dry film includes a support film (for example, a thermoplastic resin film such as a polyethylene terephthalate film or a polyester film), a solder resist layer coated on the support film, and a cover film (for example, polyethylene) that protects the solder resist layer. It has a laminated structure with a film (film, polypropylene film).
  • the photosensitive resin composition of the present invention is applied onto a support film by a known method such as a roller coating method or a bar coater method to form a coating film having a predetermined film thickness.
  • a solder resist layer is formed on the support film by drying the coating film of the formed photosensitive resin composition. Then, by laminating a cover film on the formed solder resist layer, a dry film having a coating film of the photosensitive resin composition of the present invention can be produced.
  • the solder resist layer is formed on the printed wiring board by laminating the solder resist layer and the printed wiring board such as the flexible printed wiring board while peeling off the cover film.
  • the support film is still laminated on the solder resist layer.
  • pre-drying is performed by heating at a temperature of about 60 to 100 ° C. for about 5 to 30 minutes in order to volatilize the non-reactive diluent (organic solvent) in the photosensitive resin composition, and then solder resist. Make the surface of the layer tack-free.
  • a negative film (photomask) having a translucent pattern other than the land of the circuit pattern is placed on the support film, and ultraviolet rays (for example, a wavelength range of 300 to 400 nm) are irradiated from above the negative film.
  • the solder resist layer is photocured.
  • the support film is peeled off, and the non-exposed region corresponding to the land is removed with a dilute alkaline aqueous solution to develop the solder resist layer.
  • a spray method, a shower method or the like is used, and examples of the dilute alkaline aqueous solution used include a 0.5 to 5% by mass sodium carbonate aqueous solution.
  • the solder resist layer is thermoset (post-cured) for 20 to 80 minutes in a hot air circulation type dryer or the like at 130 to 170 ° C., so that the solder is a photocurable film on the printed wiring board.
  • a resist film can be formed.
  • a method of applying the photosensitive resin composition of the present invention to a printed wiring board to form an insulating protective film for example, a solder resist film
  • an insulating protective film for example, a solder resist film
  • the photosensitive resin composition of the present invention is applied onto a printed wiring board such as a flexible printed wiring board by a screen printing method, a bar coater method, an applicator method, a blade coater method, a knife coater method, a roll coater method, a gravure coater method, and a spray coater.
  • a coating film is formed by applying to a desired thickness by a known method such as a method. Then, if necessary, pre-drying is performed by heating at a temperature of about 60 to 100 ° C. for about 5 to 30 minutes in order to volatilize the non-reactive diluent (organic solvent) in the photosensitive resin composition. To be tack-free.
  • a negative film (photomask) having a pattern having a translucent pattern other than the land of the circuit pattern is adhered to the coating film, and ultraviolet rays (for example, a wavelength range of 300 to 400 nm) are irradiated from above the negative film (photomask) to apply the coating film. Photocure the film. Then, the non-exposed region corresponding to the land is removed with a dilute alkaline aqueous solution to develop the coating film.
  • a spray method, a shower method or the like examples of the dilute alkaline aqueous solution to be used include a 0.5 to 5% by mass sodium carbonate aqueous solution.
  • solder resist film which is a photocurable film
  • a solder resist film is formed on the printed wiring board by heat curing treatment (post-cure) for 20 to 80 minutes in a hot air circulation type dryer or the like at 130 to 170 ° C. Can be made to.
  • Urethane beads / Urethane beads A As hydrophobic silica, 10 g of dimethylsiloxylated silica (trade name "Aerosil R974", Nippon Aerosil Co., Ltd., average primary particle diameter 0.012 ⁇ m) is uniformly dispersed in 100 g of a solvent. Urethane beads A (average particles) having a silica coverage of 10% by mass by uniformly dispersing an emulsion containing polyurethane spheres obtained by reacting 20 g of an isocyanate compound with 20 g of alcohols with a homogenizer and then drying the mixture. Diameter 3 ⁇ m) was prepared.
  • the silica coverage was determined from the ash content after complete combustion at 600 ° C. for 2 hours.
  • Urethane beads B Urethane beads B (average particle diameter 3 ⁇ m) having a silica coverage of 15% by mass were prepared in the same manner as urethane beads A.
  • Urethane beads C In the same manner as urethane beads A, urethane beads C (average particle diameter 3 ⁇ m) having a silica coverage of 20% by mass were prepared.
  • urethane beads D With urethane beads A, except that octylsiloxylated silica (trade name "Aerosil R805", Nippon Aerosil Co., Ltd., average primary particle diameter 0.012 ⁇ m) was used instead of dimethylsiloxylated silica. Similarly, urethane beads D (average particle diameter 3 ⁇ m) having a silica coverage of 15% by mass were prepared.
  • urethane beads E With urethane beads A, except that methacrylicylated silica (trade name "Aerosil R711", Nippon Aerosil Co., Ltd., average primary particle diameter 0.012 ⁇ m) was used instead of dimethylsiloxylated silica. Similarly, urethane beads E (average particle diameter 3 ⁇ m) having a silica coverage of 15% by mass were prepared.
  • methacrylicylated silica trade name "Aerosil R711", Nippon Aerosil Co., Ltd., average primary particle diameter 0.012 ⁇ m
  • Urethane beads F Dimethylsiloxylated silica and untreated silica (trade name "Aerosil 200", Nippon Aerosil Co., Ltd., average primary particle diameter 0.012 ⁇ m) used in Urethane beads A are used in a mass ratio of 1: 1.
  • Urethane beads F (average particle diameter 3 ⁇ m) having a coverage of 15% by mass of silica (hydrophobic silica 50% by mass) were prepared in the same manner as the urethane beads A.
  • Urethane beads G Silica (hydrophobic silica 33% by mass) in the same manner as urethane beads A, except that the dimethylsiloxylated silica used in urethane beads A and untreated silica were used in a mass ratio of 1: 2. Urethane beads G (average particle diameter 3 ⁇ m) having a coverage of 15% by mass were prepared. Urethane beads H: Silica (hydrophobic silica 25% by mass) in the same manner as urethane beads A, except that the dimethylsiloxylated silica used in urethane beads A and untreated silica were used in a mass ratio of 1: 3. Urethane beads H (average particle diameter 3 ⁇ m) having a coverage of 15% by mass were prepared.
  • Urethane beads I Urethane beads I (average particle diameter 3 ⁇ m) having a silica coverage of 10% by mass were prepared in the same manner as urethane beads A except that the untreated silica used in the preparation of urethane beads F was used. ..
  • Urethane beads J Urethane beads J (average particle diameter 3 ⁇ m) having a silica coverage of 15% by mass were prepared in the same manner as urethane beads A except that the untreated silica used in the preparation of urethane beads F was used. ..
  • Urethane beads K Urethane beads K (average particle diameter 3 ⁇ m) having a silica coverage of 20% by mass were prepared in the same manner as urethane beads A except that the untreated silica used in the preparation of urethane beads F was used. ..
  • Hajilite H42M Showa Denko Corporation Flame Retardant / Exorit OP-935: Clariant Japan Co., Ltd.
  • Hardening Accelerator / Melamine Nissan Chemical Corporation / DICY-7: Mitsubishi Chemical Corporation Additive / AC-303: Organic System filler, Shin-Etsu Chemical Co., Ltd.
  • Specimen manufacturing process Board Flexible printed wiring board (polyimide film, Panasonic Corporation, film thickness 25 ⁇ m, conductor (Cu foil) thickness 12.5 ⁇ m)
  • Surface treatment 5% by mass sulfuric acid aqueous solution
  • Coating Screen printing Pre-drying: 80 ° C in a BOX furnace, 20 minutes exposure: 100 mJ / cm 2 on a photosensitive resin composition (main wavelength 365 nm, direct drawing by Oak Co., Ltd.
  • the evaluation items are as follows. (1) Dispersibility (blocking) 200 g of the photosensitive resin composition was placed in a 300 ml plastic container, sealed, and left in a heat insulating tank at 30 ° C. for 72 hours, and the state was visually observed and evaluated according to the following criteria. The viscosity of the photosensitive resin composition was measured with a Brookfield B-type viscometer. ⁇ : The viscosity of the photosensitive resin composition after being left to stand has a rate of change of 10% or less with respect to the initial value, and no aggregated particles (blocking) are observed.
  • The viscosity of the photosensitive resin composition after being left to stand has a rate of change of more than 10% and 20% or less with respect to the initial value, and no aggregated particles (blocking) are observed.
  • The viscosity of the photosensitive resin composition after being left to stand has a rate of change of more than 20% and 30% or less with respect to the initial value, and no aggregated particles (blocking) are observed.
  • X The change rate of the viscosity of the photosensitive resin composition after standing by more than 30% with respect to the initial value, or agglomerated particles (blocking) are observed in the photosensitive resin composition.
  • Insulation reliability (insulation reliability in the thickness direction (Z-axis direction) of the coating film)
  • the top surface of the electromagnetic wave shield film (Tatsuta Electric Wire Co., Ltd., "SF-PC5000”) pasted on the cured coating film is used as the anode, and copper, which is the conductor of the test piece, is used.
  • SF-PC5000 electromagnetic wave shield film
  • 50 V was applied in a constant temperature and humidity chamber at 60 ° C. and a humidity of 95%, and the resistance value was continuously measured using an ion migration tester (IMV, “MIG-8600B / 128”).
  • the measurement start time is when 50 V is applied, the time until the resistance value drops to less than 1.0E + 6 (1.0 ⁇ 106) ⁇ is measured, and this is the dielectric breakdown time.
  • the insulation breakdown in the Z-axis direction) was evaluated.
  • Dielectric breakdown time 1500 hours or more.
  • Dielectric breakdown time 1000 hours or more and less than 1500 hours.
  • Dielectric breakdown time 500 hours or more and less than 1000 hours.
  • X Dielectric breakdown time is less than 500 hours.
  • the photosensitive resin compositions of Examples 1 to 8 even after being left for 72 hours. It was possible to form a cured film having excellent dispersibility, a reduced water absorption rate, and excellent bendability and insulation reliability.
  • Examples 1 to 5 in which the silica covering the urethane beads is entirely hydrophobic silica have water absorption as compared with Examples 6 to 8 in which the ratio of hydrophobic silica in the total silica is 25 to 50% by mass. The rate was further reduced and the insulation reliability was further improved. Further, in Example 2 in which the silica coverage is 15% by mass, the dispersibility is further improved as compared with Example 1 in which the silica coverage is 10% by mass, and the silica coverage is 20% by mass. The bendability was further improved as compared with a certain Example 3.
  • Example 2 in which the urethane beads were coated with dimethylsiloxylated silica was compared with Example 4 in which the urethane beads were coated with octylsiloxylated silica and Example 5 in which the urethane beads were coated with methacrylicylated silica.
  • Example 4 in which the urethane beads were coated with octylsiloxylated silica was compared with Example 4 in which the urethane beads were coated with octylsiloxylated silica
  • Example 5 in which the urethane beads were coated with methacrylicylated silica.
  • the water absorption rate could be reduced as the ratio of hydrophobic silica in the total silica increased.
  • Comparative Example 1 in which urethane beads were not blended, bendability could not be obtained. Further, in Comparative Example 2 in which hydrophobic silica was not blended and the silica coverage was 10% by mass, dispersibility could not be obtained and the water absorption rate was high. In Comparative Example 3 in which hydrophobic silica is not blended and the silica coverage is 15% by mass, and in Comparative Example 4 in which hydrophobic silica is not blended and the silica coverage is 20% by mass, water absorption is absorbed. The rate was high and insulation reliability could not be obtained.
  • a cured film having excellent dispersibility during storage and storage, reducing the water absorption rate, and having excellent bendability and insulation reliability. Therefore, for example, insulation of a solder resist film or the like on a flexible printed wiring board can be formed. It has high utility value in the field of providing a protective film.

Abstract

The present invention provides a photosensitive resin composition which has excellent dispersibility during storage and preservation, is capable of reducing the water absorption coefficient, and is capable of forming a cured film having excellent bendability and insulation reliability. The photosensitive resin composition comprises (A) a photosensitive resin containing carboxyl groups, (B) an epoxy compound, (C) urethane beads, (D) a photopolymerization initiator, and (E) a reactive diluent,. The urethane beads (C) are coated by silica, and at least 20 mass% of 100 mass% of the silica is hydrophobic silica.

Description

感光性樹脂組成物Photosensitive resin composition
 本発明は、被覆材料、例えば、フレキシブルプリント配線板等の配線板に形成された導体回路パターンを被覆するための被覆材料に適した感光性樹脂組成物、感光性樹脂組成物の塗膜を有するドライフィルム、感光性樹脂組成物の光硬化膜を有する配線板に関するものである。 The present invention has a photosensitive resin composition and a coating film of a photosensitive resin composition suitable for a coating material, for example, a coating material for coating a conductor circuit pattern formed on a wiring board such as a flexible printed wiring board. The present invention relates to a wiring board having a dry film and a photocurable film of a photosensitive resin composition.
 プリント配線板は、基板の上に導体回路パターンを形成し、そのパターンのはんだ付けランドに電子部品をはんだ付けにより搭載するために使用され、そのはんだ付けランドを除く回路部分は、絶縁保護膜(例えば、ソルダーレジスト膜)で被覆される。この絶縁保護膜は、例えば、感光性樹脂組成物をプリント配線板に塗工して塗膜を形成後、塗膜を光硬化させることで得ることができる。これにより、プリント配線板に電子部品をはんだ付けする際に、はんだが不必要な部分に付着するのを防止すると共に、回路が空気に直接曝されて酸化や湿度により腐食されるのを防止する。 The printed wiring board is used to form a conductor circuit pattern on the board and mount electronic components on the soldering lands of the pattern by soldering, and the circuit part excluding the soldering lands is an insulating protective film ( For example, it is coated with a solder resist film). This insulating protective film can be obtained, for example, by applying a photosensitive resin composition to a printed wiring board to form a coating film, and then photocuring the coating film. This prevents the solder from adhering to unnecessary parts when soldering electronic components to the printed wiring board, and also prevents the circuit from being directly exposed to air and corroded by oxidation and humidity. ..
 また、近年、電子機器の小型化等から、折り曲げ性に優れたフレキシブルプリント配線板が使用されることがある。フレキシブルプリント配線板に塗工される絶縁保護膜には、特に、柔軟性(折り曲げ性)が要求される。そこで、フレキシブルプリント配線板に塗工される絶縁保護膜に柔軟性(折り曲げ性)を付与するために、感光性樹脂組成物に有機フィラーとしてウレタンビーズを配合することがある(特許文献1)。 Also, in recent years, due to the miniaturization of electronic devices, flexible printed wiring boards with excellent bendability may be used. The insulating protective film applied to the flexible printed wiring board is particularly required to have flexibility (bending property). Therefore, in order to impart flexibility (bending property) to the insulating protective film applied to the flexible printed wiring board, urethane beads may be blended as an organic filler in the photosensitive resin composition (Patent Document 1).
 しかし、感光性樹脂組成物にウレタンビーズを配合すると、ウレタンビーズは軟化点が低いことから、感光性樹脂組成物の貯蔵保管中に固形分が凝集してしまい、感光性樹脂組成物の分散性が得られない場合があるという問題があった。そこで、ウレタンビーズにシリカを被覆させたシリカ被覆ウレタンビーズを感光性樹脂組成物に配合することで、絶縁保護膜に柔軟性(折り曲げ性)を付与しつつ、感光性樹脂組成物に分散性を付与することも行われている。 However, when urethane beads are blended in the photosensitive resin composition, the urethane beads have a low softening point, so that the solid content aggregates during storage and storage of the photosensitive resin composition, and the dispersibility of the photosensitive resin composition There was a problem that it may not be obtained. Therefore, by blending silica-coated urethane beads, in which urethane beads are coated with silica, into the photosensitive resin composition, flexibility (bending property) is imparted to the insulating protective film, and dispersibility is provided in the photosensitive resin composition. It is also given.
 しかし、シリカ被覆ウレタンビーズのシリカの被覆量が少ないと、依然として、感光性樹脂組成物の貯蔵保管中に固形分が凝集してしまい、感光性樹脂組成物の分散性が得られないという問題があった。また、シリカ被覆ウレタンビーズのシリカは表面処理されていない未処理シリカであり、感光性樹脂組成物の分散性を得るためにシリカ被覆ウレタンビーズのシリカの被覆量を多くすると、シリカ被覆ウレタンビーズに吸水性が付与されてしまい、特に、高温高湿度の環境下で、絶縁保護膜の絶縁信頼性が損なわれるおそれがあった。 However, if the amount of silica coated on the silica-coated urethane beads is small, the solid content still aggregates during storage and storage of the photosensitive resin composition, and there is a problem that the dispersibility of the photosensitive resin composition cannot be obtained. there were. Further, the silica of the silica-coated urethane beads is untreated silica that has not been surface-treated, and if the amount of silica coated on the silica-coated urethane beads is increased in order to obtain the dispersibility of the photosensitive resin composition, the silica-coated urethane beads become Water absorption is imparted, and there is a risk that the insulation reliability of the insulating protective film may be impaired, especially in an environment of high temperature and high humidity.
特開2017-201369号公報JP-A-2017-201369
 上記事情に鑑み、本発明は、貯蔵保管中の分散性に優れ、吸水率を低減でき、また、折り曲げ性と絶縁信頼性に優れた硬化膜を形成できる感光性樹脂組成物、前記感光性樹脂組成物の塗膜を有するドライフィルム、前記感光性樹脂組成物の光硬化膜を有する配線板を提供することを目的とする。 In view of the above circumstances, the present invention is a photosensitive resin composition, the photosensitive resin, which is excellent in dispersibility during storage and storage, can reduce water absorption, and can form a cured film having excellent bendability and insulation reliability. It is an object of the present invention to provide a dry film having a coating film of the composition and a wiring board having a photocurable film of the photosensitive resin composition.
 本発明の構成の要旨は、以下の通りである。
 [1](A)カルボキシル基含有感光性樹脂と、(B)エポキシ化合物と、(C)ウレタンビーズと、(D)光重合開始剤と、(E)反応性希釈剤と、を含有し、
 前記(C)ウレタンビーズがシリカで被覆され、前記シリカ100質量%のうち20質量%以上が疎水性シリカである感光性樹脂組成物。
 [2]前記シリカ100質量%のうち30質量%以上が疎水性シリカである[1]に記載の感光性樹脂組成物。
 [3]前記(C)ウレタンビーズの、前記シリカの被覆率が、1.0質量%以上40質量%以下である[1]または[2]に記載の感光性樹脂組成物。
 [4]前記(C)ウレタンビーズの、前記シリカの被覆率が、5.0質量%以上30質量%以下である[1]または[2]に記載の感光性樹脂組成物。
 [5]前記疎水性シリカが、モノアルキルシリル基で表面改質されているモノアルキルシロキシル化シリカ、ジアルキルシリル基で表面改質されているジアルキルシロキシル化シリカ、トリアルキルシリル基で表面改質されているトリアルキルシロキシル化シリカ、(メタ)アクリルシリル基で表面改質されている(メタ)アクリルシロキシル化シリカ、ジアルキルシロキサン基で表面改質されているシリカ及びジアルキルポリシロキサン基で表面改質されているシリカからなる群から選択された少なくとも1種である[1]乃至[4]のいずれか1つに記載の感光性樹脂組成物。
 [6]前記疎水性シリカが、モノアルキルシリル基で表面改質されているモノアルキルシロキシル化シリカ、ジアルキルシリル基で表面改質されているジアルキルシロキシル化シリカ、(メタ)アクリルシリル基で表面改質されている(メタ)アクリルシロキシル化シリカからなる群から選択された少なくとも1種である[1]乃至[4]のいずれか1つに記載の感光性樹脂組成物。
 [7]前記(A)カルボキシル基含有感光性樹脂100質量部に対して、前記シリカで被覆された(C)ウレタンビーズを、35質量部以上150質量部以下含有する[1]乃至[6]のいずれか1つに記載の感光性樹脂組成物。
 [8][1]乃至[7]のいずれか1つに記載の感光性樹脂組成物の塗膜を有するドライフィルム。
 [9][1]乃至[7]のいずれか1つに記載の感光性樹脂組成物の光硬化膜を有する配線板。
The gist of the structure of the present invention is as follows.
[1] Containing (A) a carboxyl group-containing photosensitive resin, (B) an epoxy compound, (C) urethane beads, (D) a photopolymerization initiator, and (E) a reactive diluent.
A photosensitive resin composition in which the urethane beads (C) are coated with silica, and 20% by mass or more of the 100% by mass of the silica is hydrophobic silica.
[2] The photosensitive resin composition according to [1], wherein 30% by mass or more of the 100% by mass of the silica is hydrophobic silica.
[3] The photosensitive resin composition according to [1] or [2], wherein the silica coverage of the urethane beads (C) is 1.0% by mass or more and 40% by mass or less.
[4] The photosensitive resin composition according to [1] or [2], wherein the silica coverage of the urethane beads (C) is 5.0% by mass or more and 30% by mass or less.
[5] The hydrophobic silica is surface-modified with a monoalkylsilylated silica surface-modified with a monoalkylsilyl group, a dialkylsiloxylated silica surface-modified with a dialkylsilyl group, and a surface modification with a trialkylsilyl group. Quality trialkylsiloxylated silica, surface-modified (meth) acrylic siloxylated silica with (meth) acrylic silyl groups, surface-modified silica with dialkylsiloxane groups and dialkylpolysiloxane groups The photosensitive resin composition according to any one of [1] to [4], which is at least one selected from the group consisting of surface-modified silica.
[6] The hydrophobic silica is a monoalkyl siroxylated silica surface-modified with a monoalkyl silyl group, a dialkyl siroxylated silica surface-modified with a dialkyl silyl group, or a (meth) acrylic silyl group. The photosensitive resin composition according to any one of [1] to [4], which is at least one selected from the group consisting of surface-modified (meth) acrylic siloxylated silica.
[7] [1] to [6] contain 35 parts by mass or more and 150 parts by mass or less of the (C) urethane beads coated with silica with respect to 100 parts by mass of the (A) carboxyl group-containing photosensitive resin. The photosensitive resin composition according to any one of the above.
[8] A dry film having a coating film of the photosensitive resin composition according to any one of [1] to [7].
[9] A wiring board having a photocurable film of the photosensitive resin composition according to any one of [1] to [7].
 ウレタンビーズのシリカの被覆率について、「シリカの被覆率」は、シリカで被覆されたウレタンビーズの質量に対する、ウレタンビーズの外表面に被覆されたシリカの質量の割合を意味する。シリカの被覆率は、シリカで被覆されたウレタンビーズを、600℃にて2時間、燃焼させた後の灰分を重量測定することで求めることができる。 Regarding the silica coverage of urethane beads, "silica coverage" means the ratio of the mass of silica coated on the outer surface of the urethane beads to the mass of the urethane beads coated with silica. The coverage of silica can be determined by weighing the ash content of the urethane beads coated with silica after burning them at 600 ° C. for 2 hours.
 本発明の態様によれば、(C)ウレタンビーズがシリカで被覆され、前記シリカ100質量%のうち20質量%以上が疎水性シリカであることにより、貯蔵保管中の分散性に優れつつ、吸水率を低減できる感光性樹脂組成物を得ることができ、また、折り曲げ性と絶縁信頼性に優れた硬化膜を形成できる感光性樹脂組成物を得ることができる。 According to the aspect of the present invention, (C) urethane beads are coated with silica, and 20% by mass or more of the 100% by mass of the silica is hydrophobic silica, so that water absorption is excellent while being excellent in dispersibility during storage and storage. A photosensitive resin composition capable of reducing the rate can be obtained, and a photosensitive resin composition capable of forming a cured film having excellent bendability and insulation reliability can be obtained.
 本発明の態様によれば、(C)ウレタンビーズを被覆しているシリカ100質量%のうち30質量%以上が疎水性シリカであることにより、感光性樹脂組成物の吸水率をさらに低減でき、絶縁信頼性にさらに優れた硬化膜を形成できる。 According to the aspect of the present invention, since 30% by mass or more of the 100% by mass of silica coating the urethane beads (C) is hydrophobic silica, the water absorption rate of the photosensitive resin composition can be further reduced. A cured film with even better insulation reliability can be formed.
 本発明の態様によれば、(C)ウレタンビーズのシリカの被覆率が1.0質量%以上40質量%以下であることにより、より確実に、貯蔵保管中の分散性に優れる感光性樹脂組成物を得ることができ、また、より確実に、折り曲げ性に優れた硬化膜を形成できる感光性樹脂組成物を得ることができる。 According to the aspect of the present invention, the coverage of the silica of the urethane beads (C) is 1.0% by mass or more and 40% by mass or less, so that the photosensitive resin composition having excellent dispersibility during storage and storage is more reliable. It is possible to obtain a photosensitive resin composition capable of obtaining a product and more reliably forming a cured film having excellent bendability.
 本発明の態様によれば、(C)ウレタンビーズのシリカの被覆率が5.0質量%以上30質量%以下であることにより、さらに確実に、貯蔵保管中の分散性に優れる感光性樹脂組成物を得ることができ、また、さらに確実に、折り曲げ性に優れた硬化膜を形成できる感光性樹脂組成物を得ることができる。 According to the aspect of the present invention, the coverage of the silica of the urethane beads (C) is 5.0% by mass or more and 30% by mass or less, so that the photosensitive resin composition having excellent dispersibility during storage and storage is more reliably performed. It is possible to obtain a product, and more reliably, to obtain a photosensitive resin composition capable of forming a cured film having excellent bendability.
 本発明の態様によれば、疎水性シリカが、モノアルキルシリル基で表面改質されているモノアルキルシロキシル化シリカ、ジアルキルシリル基で表面改質されているジアルキルシロキシル化シリカ、トリアルキルシリル基で表面改質されているトリアルキルシロキシル化シリカ、(メタ)アクリルシリル基で表面改質されている(メタ)アクリルシロキシル化シリカ、ジアルキルシロキサン基で表面改質されているシリカ及びジアルキルポリシロキサン基で表面改質されているシリカからなる群から選択された少なくとも1種であることにより、より確実に、貯蔵保管中の分散性に優れつつ、吸水率を低減できる感光性樹脂組成物を得ることができ、また、より確実に、折り曲げ性と絶縁信頼性に優れた硬化膜を形成できる感光性樹脂組成物を得ることができる。 According to the aspect of the present invention, the hydrophobic silica is surface-modified with a monoalkylsilyl group, monoalkylsiloxylated silica, surface-modified with a dialkylsilyl group, dialkylsiloxylated silica, or trialkylsilyl. Trialkyl siloxylated silica surface-modified with a group, (meth) acrylic siloxylated silica surface-modified with a (meth) acrylic silyl group, silica surface-modified with a dialkylsiloxane group and dialkyl. A photosensitive resin composition that can more reliably reduce the water absorption rate while having excellent dispersibility during storage and storage by being at least one selected from the group consisting of silica surface-modified with a polysiloxane group. It is also possible to obtain a photosensitive resin composition capable of more reliably forming a cured film having excellent bendability and insulation reliability.
 本発明の態様によれば、疎水性シリカが、モノアルキルシリル基で表面改質されているモノアルキルシロキシル化シリカ、ジアルキルシリル基で表面改質されているジアルキルシロキシル化シリカ、(メタ)アクリルシリル基で表面改質されている(メタ)アクリルシロキシル化シリカからなる群から選択された少なくとも1種であることにより、さらに確実に、貯蔵保管中の分散性に優れつつ、吸水率を低減できる感光性樹脂組成物を得ることができ、また、さらに確実に、折り曲げ性と絶縁信頼性に優れた硬化膜を形成できる感光性樹脂組成物を得ることができる。 According to the aspect of the present invention, the hydrophobic silica is surface-modified with a monoalkylsilyl group, monoalkylsiloxylated silica, and surface-modified with a dialkylsilyl group, dialkylsiloxylated silica, (meth). By being at least one selected from the group consisting of (meth) acrylic siloxylated silica surface-modified with an acrylic silyl group, the water absorption rate can be further reliably improved while being excellent in dispersibility during storage and storage. A photosensitive resin composition that can be reduced can be obtained, and a photosensitive resin composition that can more reliably form a cured film having excellent bendability and insulation reliability can be obtained.
 本発明の態様によれば、(A)カルボキシル基含有感光性樹脂100質量部に対してシリカで被覆された(C)ウレタンビーズを35質量部以上150質量部以下含有することにより、感光性樹脂組成物に優れた塗工性を付与しつつ、より確実に、貯蔵保管中の分散性に優れつつ、吸水率を低減できる感光性樹脂組成物を得ることができ、また、より確実に、折り曲げ性と絶縁信頼性に優れた硬化膜を形成できる感光性樹脂組成物を得ることができる。 According to the aspect of the present invention, the photosensitive resin is contained by containing 35 parts by mass or more and 150 parts by mass or less of (C) urethane beads coated with silica with respect to 100 parts by mass of (A) carboxyl group-containing photosensitive resin. It is possible to obtain a photosensitive resin composition that can reduce the water absorption rate while imparting excellent coatability to the composition and more reliably with excellent dispersibility during storage and storage, and more reliably with bending. It is possible to obtain a photosensitive resin composition capable of forming a cured film having excellent properties and insulation reliability.
 次に、本発明の感光性樹脂組成物について詳細を説明する。本発明の感光性樹脂組成物は、(A)カルボキシル基含有感光性樹脂と、(B)エポキシ化合物と、(C)ウレタンビーズと、(D)光重合開始剤と、(E)反応性希釈剤と、を含有し、前記(C)ウレタンビーズがシリカで被覆され、前記シリカ100質量%のうち20質量%以上が疎水性シリカである。 Next, the photosensitive resin composition of the present invention will be described in detail. The photosensitive resin composition of the present invention comprises (A) a carboxyl group-containing photosensitive resin, (B) an epoxy compound, (C) urethane beads, (D) a photopolymerization initiator, and (E) a reactive dilution. The (C) urethane bead is coated with silica, and 20% by mass or more of the 100% by mass of the silica is hydrophobic silica.
 <(A)カルボキシル基含有感光性樹脂>
 (A)成分のカルボキシル基含有感光性樹脂の構造は、特に限定されず、例えば、感光性の不飽和二重結合を1個以上と遊離のカルボキシル基を有する樹脂が挙げられる。カルボキシル基含有感光性樹脂としては、例えば、1分子中にエポキシ基を2個以上有する多官能エポキシ樹脂のエポキシ基の少なくとも一部に、アクリル酸やメタクリル酸(以下、「(メタ)アクリル酸」ということがある。)等のラジカル重合性不飽和モノカルボン酸を反応させて、エポキシ(メタ)アクリレート等のラジカル重合性不飽和モノカルボン酸化エポキシ樹脂を得て、生成したラジカル重合性不飽和モノカルボン酸化エポキシ樹脂の水酸基に、多塩基酸及び/またはその無水物を反応させることで得られる、多塩基酸変性エポキシ(メタ)アクリレート等の多塩基酸変性ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂等を挙げることができる。
<(A) Carboxyl group-containing photosensitive resin>
The structure of the carboxyl group-containing photosensitive resin of the component (A) is not particularly limited, and examples thereof include a resin having one or more photosensitive unsaturated double bonds and a free carboxyl group. As the carboxyl group-containing photosensitive resin, for example, acrylic acid or methacrylic acid (hereinafter, “(meth) acrylic acid”) may be added to at least a part of the epoxy group of the polyfunctional epoxy resin having two or more epoxy groups in one molecule. The radically polymerizable unsaturated monocarboxylic acid produced by reacting with a radically polymerizable unsaturated monocarboxylic acid such as) to obtain a radically polymerizable unsaturated monocarboxylic oxide epoxy resin such as epoxy (meth) acrylate. A polybasic acid-modified radically polymerizable unsaturated monocarboxylic oxide epoxy resin such as a polybasic acid-modified epoxy (meth) acrylate obtained by reacting a hydroxyl group of a carboxylic oxide epoxy resin with a polybasic acid and / or its anhydride. And so on.
 前記多官能エポキシ樹脂は、2官能以上のエポキシ樹脂であれば、化学構造は、特に限定されない。また、多官能エポキシ樹脂のエポキシ当量は、特に限定されず、例えば、その上限値は、4000g/eqが好ましく、3000g/eqがより好ましく、2500g/eqがさらに好ましく、2000g/eqが特に好ましい。一方で、多官能エポキシ樹脂のエポキシ当量の下限値は、100g/eqが好ましく、200g/eqが特に好ましい。 The chemical structure of the polyfunctional epoxy resin is not particularly limited as long as it is a bifunctional or higher functional epoxy resin. The epoxy equivalent of the polyfunctional epoxy resin is not particularly limited, and for example, the upper limit thereof is preferably 4000 g / eq, more preferably 3000 g / eq, still more preferably 2500 g / eq, and particularly preferably 2000 g / eq. On the other hand, the lower limit of the epoxy equivalent of the polyfunctional epoxy resin is preferably 100 g / eq, and particularly preferably 200 g / eq.
 多官能エポキシ樹脂の樹脂種としては、例えば、ビフェニルアラルキル型エポキシ樹脂、フェニルアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、シリコーン変性エポキシ樹脂等のゴム変性エポキシ樹脂、ε-カプロラクトン変性エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のフェノールノボラック型エポキシ樹脂、オルト-クレゾールノボラック型エポキシ樹脂等のクレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、環状脂肪族多官能エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環式エポキシ樹脂、ビスフェノール変性ノボラック型エポキシ樹脂、多官能変性ノボラック型エポキシ樹脂等を挙げることができる。また、これらのエポキシ樹脂に、さらにBr、Cl等のハロゲン原子を導入したものを使用してもよい。これらの多官能エポキシ樹脂は、単独で使用してもよく、2種以上を併用してもよい。 Examples of the resin type of the polyfunctional epoxy resin include rubber-modified epoxy such as biphenyl aralkyl type epoxy resin, phenyl aralkyl type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, and silicone-modified epoxy resin. Phenol novolak type epoxy resin such as resin, ε-caprolactone modified epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolak type epoxy resin such as ortho-cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, Cyclic aliphatic polyfunctional epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, heterocyclic epoxy resin, bisphenol-modified novolak type epoxy resin, polyfunctional modified novolak type epoxy resin and the like can be mentioned. Further, those epoxy resins in which halogen atoms such as Br and Cl are further introduced may be used. These polyfunctional epoxy resins may be used alone or in combination of two or more.
 ラジカル重合性不飽和モノカルボン酸は、特に限定されず、例えば、(メタ)アクリル酸、クロトン酸、チグリン酸、アンゲリカ酸、桂皮酸等を挙げることができる。これらのうち、入手と取り扱いが容易である点から、(メタ)アクリル酸が好ましい。これらのラジカル重合性不飽和モノカルボン酸は、単独で使用してもよく、2種以上を併用してもよい。 The radically polymerizable unsaturated monocarboxylic acid is not particularly limited, and examples thereof include (meth) acrylic acid, crotonic acid, tiglic acid, angelic acid, and cinnamon acid. Of these, (meth) acrylic acid is preferred because it is easy to obtain and handle. These radically polymerizable unsaturated monocarboxylic acids may be used alone or in combination of two or more.
 多官能エポキシ樹脂とラジカル重合性不飽和モノカルボン酸とを反応させる方法は、特に限定されず、例えば、多官能エポキシ樹脂とラジカル重合性不飽和モノカルボン酸とを有機溶媒等の希釈剤中に溶解させて、加熱しながら撹拌する方法が挙げられる。 The method for reacting the polyfunctional epoxy resin with the radically polymerizable unsaturated monocarboxylic acid is not particularly limited, and for example, the polyfunctional epoxy resin and the radically polymerizable unsaturated monocarboxylic acid are mixed in a diluent such as an organic solvent. Examples thereof include a method of dissolving and stirring while heating.
 多塩基酸及び/または多塩基酸無水物が、多官能エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応により生成した水酸基に付加反応することで、ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂に遊離のカルボキシル基が導入される。多塩基酸、多塩基酸無水物の化学構造は、特に限定されず、飽和、不飽和のいずれも使用可能である。多塩基酸としては、例えば、コハク酸、マレイン酸、アジピン酸、クエン酸、フタル酸、テトラヒドロフタル酸、3-メチルテトラヒドロフタル酸、4-メチルテトラヒドロフタル酸、3-エチルテトラヒドロフタル酸、4-エチルテトラヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸等のテトラヒドロフタル酸類、ヘキサヒドロフタル酸、3-メチルヘキサヒドロフタル酸、4-メチルヘキサヒドロフタル酸、3-エチルヘキサヒドロフタル酸、4-エチルヘキサヒドロフタル酸等のヘキサヒドロフタル酸類、トリメリット酸、ピロメリット酸及びジグリコール酸等が挙げられる。多塩基酸無水物としては、上記した各種多塩基酸の無水物が挙げられる。これらの多塩基酸及び/または多塩基酸無水物は、単独で使用してもよく、2種以上を併用してもよい。 A radically polymerizable unsaturated monocarboxylic oxide epoxy resin by an addition reaction of a polybasic acid and / or a polybasic acid anhydride to a hydroxyl group generated by a reaction between a polyfunctional epoxy resin and a radically polymerizable unsaturated monocarboxylic acid. A free carboxyl group is introduced into the. The chemical structure of the polybasic acid and the polybasic acid anhydride is not particularly limited, and either saturated or unsaturated can be used. Examples of the polybasic acid include succinic acid, maleic acid, adipic acid, citric acid, phthalic acid, tetrahydrophthalic acid, 3-methyltetrahydrophthalic acid, 4-methyltetrahydrophthalic acid, 3-ethyltetrahydrophthalic acid, 4-. Tetrahydrophthalates such as ethyltetrahydrophthalic acid, endomethylenetetrahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, hexahydrophthalic acid, 3-methylhexahydrophthalic acid, 4-methylhexahydrophthalic acid, 3-ethylhexahydrophthalic acid Examples thereof include acids, hexahydrophthalic acids such as 4-ethylhexahydrophthalic acid, trimellitic acid, pyromellitic acid and diglycolic acid. Examples of the polybasic acid anhydride include the above-mentioned various polybasic acid anhydrides. These polybasic acids and / or polybasic acid anhydrides may be used alone or in combination of two or more.
 ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂と多塩基酸及び/または多塩基酸無水物とを反応させる方法は、特に限定されず、例えば、ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂と多塩基酸及び/または多塩基酸無水物とを有機溶媒等の希釈剤中で溶解させて、加熱しながら撹拌する方法が挙げられる。 The method for reacting the radically polymerizable unsaturated monocarboxylic oxide epoxy resin with the polybasic acid and / or the polybasic acid anhydride is not particularly limited, and for example, the radically polymerizable unsaturated monocarboxylic oxide epoxy resin and the polybasic acid are not particularly limited. And / or a method of dissolving the polybasic acid anhydride in a diluent such as an organic solvent and stirring while heating can be mentioned.
 上記した多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂もカルボキシル基含有感光性樹脂として使用できるが、上記のようにして得られた多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂のカルボキシル基の一部に、1つ以上のラジカル重合性不飽和基とエポキシ基とを有する化合物を付加反応させて得られる、ラジカル重合性不飽和基をさらに導入した多塩基酸変性ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂を使用してもよい。ラジカル重合性不飽和基をさらに導入した多塩基酸変性ラジカル重合性不飽和モノカルボン酸化エポキシ樹脂は、多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂の側鎖にラジカル重合性不飽和基がさらに導入されている化学構造を有しているので、多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂よりも、感光性がさらに向上したカルボキシル基含有感光性樹脂である。 The above-mentioned polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin can also be used as a carboxyl group-containing photosensitive resin, but a part of the carboxyl groups of the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin obtained as described above. A polybasic acid-modified radically polymerizable unsaturated monocarboxylic oxide epoxy obtained by further introducing a radically polymerizable unsaturated group, which is obtained by an addition reaction of a compound having one or more radically polymerizable unsaturated groups and an epoxy group. Resin may be used. The polybasic acid-modified radically polymerizable unsaturated monocarboxylic oxide epoxy resin further introduced with a radically polymerizable unsaturated group has a radically polymerizable unsaturated group further introduced into the side chain of the polybasic acid modified unsaturated monocarboxylic oxide epoxy resin. It is a carboxyl group-containing photosensitive resin having further improved photosensitivity as compared with the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin because of the chemical structure.
 1つ以上のラジカル重合性不飽和基とエポキシ基とを有する化合物としては、例えば、グリシジル化合物を挙げることができる。グリシジル化合物としては、例えば、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、ペンタエリスリトールトリアクリレートモノグリシジルエーテル、ペンタエリスリトールトリメタクリレートモノグリシジルエーテル等が挙げられる。グリシジル基は1分子中に1つでもよく、複数有していてもよい。また、上記した1つ以上のラジカル重合性不飽和基とエポキシ基とを有する化合物は、単独で使用してもよく、2種以上を併用してもよい。 Examples of the compound having one or more radically polymerizable unsaturated groups and an epoxy group include glycidyl compounds. Examples of the glycidyl compound include glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, pentaerythritol triacrylate monoglycidyl ether, pentaerythritol trimethacrylate monoglycidyl ether and the like. One molecule may have one glycidyl group or a plurality of glycidyl groups. Further, the compound having one or more radically polymerizable unsaturated groups and an epoxy group described above may be used alone or in combination of two or more.
 多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂と、グリシジル化合物等の1つ以上のラジカル重合性不飽和基とエポキシ基とを有する化合物と、を反応させる方法は、特に限定されず、例えば、多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂と1つ以上のラジカル重合性不飽和基とエポキシ基を有する化合物とを、有機溶媒等の希釈剤中で溶解させて、加熱しながら撹拌する方法が挙げられる。 The method for reacting the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin with a compound having one or more radically polymerizable unsaturated groups such as a glycidyl compound and an epoxy group is not particularly limited, and is not particularly limited, for example, many. A method of dissolving a basic acid-modified unsaturated monocarboxylic oxide epoxy resin and a compound having one or more radically polymerizable unsaturated groups and an epoxy group in a diluent such as an organic solvent and stirring while heating is mentioned. Be done.
 カルボキシル基含有感光性樹脂の酸価は、特に限定されず、例えば、その下限値は、確実にアルカリ現像性を付与する点から30mgKOH/gが好ましく、40mgKOH/gが特に好ましい。一方で、カルボキシル基含有感光性樹脂の酸価の上限値は、アルカリ現像液による露光部(光硬化部)の溶解防止の点から200mgKOH/gが好ましく、光硬化物の耐湿性と絶縁信頼性の低下を確実に防止する点から150mgKOH/gが特に好ましい。 The acid value of the carboxyl group-containing photosensitive resin is not particularly limited, and for example, the lower limit thereof is preferably 30 mgKOH / g and particularly preferably 40 mgKOH / g from the viewpoint of reliably imparting alkali developability. On the other hand, the upper limit of the acid value of the carboxyl group-containing photosensitive resin is preferably 200 mgKOH / g from the viewpoint of preventing dissolution of the exposed portion (photocuring portion) by the alkaline developer, and the moisture resistance and insulation reliability of the photocured product are preferable. 150 mgKOH / g is particularly preferable from the viewpoint of surely preventing the decrease of the amount.
 カルボキシル基含有感光性樹脂の質量平均分子量は、特に限定されず、例えば、その下限値は、光硬化物の強靭性及び指触乾燥性を確実に得る点から6000が好ましく、7000がより好ましく、8000が特に好ましい。一方で、カルボキシル基含有感光性樹脂の質量平均分子量の上限値は、例えば、良好なアルカリ現像性を確実に得る点から200000が好ましく、100000がより好ましく、50000が特に好ましい。なお、「質量平均分子量」とは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、常温で測定し、ポリスチレン換算にて算出される質量平均分子量を意味する。 The mass average molecular weight of the carboxyl group-containing photosensitive resin is not particularly limited, and for example, the lower limit thereof is preferably 6000, more preferably 7000 from the viewpoint of reliably obtaining the toughness and dryness to the touch of the photocured product. 8000 is particularly preferable. On the other hand, the upper limit of the mass average molecular weight of the carboxyl group-containing photosensitive resin is preferably 200,000, more preferably 100,000, and particularly preferably 50,000, for example, from the viewpoint of surely obtaining good alkali developability. The "mass average molecular weight" means a mass average molecular weight measured at room temperature using gel permeation chromatography (GPC) and calculated in terms of polystyrene.
 カルボキシル基含有感光性樹脂は、上記各成分を用いて上記反応工程にて調製してもよく、上市されているカルボキシル基含有感光性樹脂を使用してもよい。上市されているカルボキシル基含有感光性樹脂としては、例えば、「SP-4621」(昭和電工株式会社)、「KAYARAD ZAR-2000」、「KAYARAD ZFR-1122」、「KAYARAD FLX-2089」、「KAYARAD ZCR-1569H」(以上、日本化薬株式会社)、「サイクロマーP(ACA)Z-250」(ダイセル・オルネクス株式会社)を挙げることができる。これらのカルボキシル基含有感光性樹脂は、単独で使用してもよく、2種以上を併用してもよい。 The carboxyl group-containing photosensitive resin may be prepared in the above reaction step using each of the above components, or a commercially available carboxyl group-containing photosensitive resin may be used. Examples of the carboxyl group-containing photosensitive resin on the market include "SP-4621" (Showa Denko KK), "KAYARAD ZAR-2000", "KAYARAD ZFR-1122", "KAYARAD FLX-2089", and "KAYARAD". "ZCR-1569H" (above, Nippon Kayaku Co., Ltd.) and "Cyclomer P (ACA) Z-250" (Dycel Ornex Co., Ltd.) can be mentioned. These carboxyl group-containing photosensitive resins may be used alone or in combination of two or more.
 <(B)エポキシ化合物>
 (B)成分のエポキシ化合物は、感光性樹脂組成物の硬化物の架橋密度を上げて十分な強度を硬化物に付与するためのものである。エポキシ化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、例えば、上記したカルボキシル基含有感光性樹脂の調製に使用する多官能エポキシ樹脂と同じエポキシ樹脂を挙げることができる。具体的には、例えば、ビフェニルアラルキル型エポキシ樹脂、フェニルアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、シリコーン変性エポキシ樹脂等のゴム変性エポキシ樹脂、ε-カプロラクトン変性エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のフェノールノボラック型エポキシ樹脂、オルト-クレゾールノボラック型エポキシ樹脂等のクレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、環状脂肪族多官能エポキシ樹脂、グリシジルエステル型多官能エポキシ樹脂、グリシジルアミン型多官能エポキシ樹脂、複素環式多官能エポキシ樹脂、ビスフェノール変性ノボラック型エポキシ樹脂、多官能変性ノボラック型エポキシ樹脂等を挙げることができる。これらのエポキシ化合物は、単独で使用してもよく、2種以上を併用してもよい。
<(B) Epoxy compound>
The epoxy compound of the component (B) is for increasing the crosslink density of the cured product of the photosensitive resin composition and imparting sufficient strength to the cured product. Examples of the epoxy compound include epoxy resins. Examples of the epoxy resin include the same epoxy resin as the polyfunctional epoxy resin used for preparing the above-mentioned carboxyl group-containing photosensitive resin. Specifically, for example, rubber-modified epoxy resins such as biphenyl aralkyl type epoxy resin, phenyl aralkyl type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, silicone-modified epoxy resin, and ε-caprolactone. Phenol novolak type epoxy resin such as modified epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolak type epoxy resin such as ortho-cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, cyclic aliphatic polyfunctional Examples thereof include an epoxy resin, a glycidyl ester type polyfunctional epoxy resin, a glycidylamine type polyfunctional epoxy resin, a heterocyclic polyfunctional epoxy resin, a bisphenol-modified novolak type epoxy resin, and a polyfunctional modified novolak type epoxy resin. These epoxy compounds may be used alone or in combination of two or more.
 エポキシ化合物の含有量は、特に限定されないが、例えば、感光性樹脂組成物の硬化後に十分な強度の塗膜を得る点から、カルボキシル基含有感光性樹脂100質量部(固形分、以下同じ。)に対して、10質量部以上100質量部以下が好ましく、10質量部以上50質量部以下が特に好ましい。 The content of the epoxy compound is not particularly limited, but for example, 100 parts by mass of the carboxyl group-containing photosensitive resin (solid content, the same applies hereinafter) from the viewpoint of obtaining a coating film having sufficient strength after curing of the photosensitive resin composition. On the other hand, 10 parts by mass or more and 100 parts by mass or less are preferable, and 10 parts by mass or more and 50 parts by mass or less are particularly preferable.
 <(C)ウレタンビーズ>
 (C)成分のウレタンビーズは、その外表面の少なくとも一部領域がシリカで被覆されている粒子状物質である。従って、(C)成分のウレタンビーズは、外表面の少なくとも一部領域では、ウレタンビーズがコア部を形成し、シリカがシェル部を形成しているコアシェル構造を有している。また、ウレタンビーズの外表面を被覆している全シリカのうち20質量%以上が疎水性シリカである。すなわち、シリカ100質量%のうち20質量%以上が疎水性シリカで構成されている。
<(C) Urethane beads>
The urethane beads of the component (C) are particulate matter in which at least a part of the outer surface thereof is coated with silica. Therefore, the urethane beads of the component (C) have a core-shell structure in which the urethane beads form the core portion and the silica forms the shell portion in at least a part of the outer surface. Further, 20% by mass or more of the total silica covering the outer surface of the urethane beads is hydrophobic silica. That is, 20% by mass or more of 100% by mass of silica is composed of hydrophobic silica.
 (C)ウレタンビーズがシリカで被覆され、前記シリカ100質量%のうち20質量%以上が疎水性シリカであることにより、感光性樹脂組成物は、貯蔵保管中の分散性に優れており、また、吸水率が低減されている。また、(C)ウレタンビーズがシリカで被覆され、前記シリカ100質量%のうち、20質量%以上が疎水性シリカであることにより、感光性樹脂組成物は、折り曲げ性と絶縁信頼性に優れた硬化膜を形成できる。 (C) The urethane beads are coated with silica, and 20% by mass or more of the 100% by mass of the silica is hydrophobic silica, so that the photosensitive resin composition has excellent dispersibility during storage and storage, and also. , The water absorption rate is reduced. Further, since the urethane beads (C) are coated with silica and 20% by mass or more of the 100% by mass of the silica is hydrophobic silica, the photosensitive resin composition is excellent in bendability and insulation reliability. A cured film can be formed.
 ウレタンビーズを被覆する全シリカのうちの疎水性シリカの割合は、20質量%以上であれば、特に限定されないが、感光性樹脂組成物の吸水率をさらに低減でき、絶縁信頼性にさらに優れた硬化膜を形成できる点から、30質量%以上が好ましく、40質量%以上がより好ましく、60質量%以上が特に好ましい。ウレタンビーズを被覆する全シリカのうちの疎水性シリカの割合の上限値としては、高いほど好ましいが、例えば、100質量%が挙げられる。ウレタンビーズを被覆する全シリカのうちの疎水性シリカの割合が100質量%である、すなわち、ウレタンビーズを被覆するシリカが疎水性シリカからなることにより、感光性樹脂組成物の吸水率をさらに確実に低減でき、絶縁信頼性がさらに向上した硬化膜を形成できる。 The proportion of hydrophobic silica in the total silica covering the urethane beads is not particularly limited as long as it is 20% by mass or more, but the water absorption rate of the photosensitive resin composition can be further reduced, and the insulation reliability is further excellent. From the viewpoint of forming a cured film, 30% by mass or more is preferable, 40% by mass or more is more preferable, and 60% by mass or more is particularly preferable. The upper limit of the ratio of hydrophobic silica to the total silica covering the urethane beads is preferably as high as possible, and examples thereof include 100% by mass. The ratio of hydrophobic silica to the total silica covering the urethane beads is 100% by mass, that is, the silica coating the urethane beads is made of hydrophobic silica, so that the water absorption rate of the photosensitive resin composition is further ensured. It is possible to form a cured film with further improved insulation reliability.
 ウレタンビーズを被覆するシリカに使用できる、疎水性シリカ以外のシリカとしては、表面処理されていない未処理シリカ、すなわち親水性シリカを挙げることができる。 Examples of silica other than hydrophobic silica that can be used for silica that coats urethane beads include untreated silica that has not been surface-treated, that is, hydrophilic silica.
 ウレタンビーズの、疎水性シリカを含めた全シリカの被覆率は、特に限定されないが、その下限値は、より確実に貯蔵保管中の分散性に優れる感光性樹脂組成物を得ることができる点から、1.0質量%が好ましく、さらに確実に貯蔵保管中の分散性に優れる感光性樹脂組成物を得ることができる点から、5.0質量%がより好ましく、8.0質量%がさらに好ましく、12質量%が特に好ましい。一方で、ウレタンビーズの全シリカの被覆率の上限値は、より確実に折り曲げ性に優れた硬化膜を形成できる感光性樹脂組成物を得ることができる点から、40質量%が好ましく、さらに確実に折り曲げ性に優れた硬化膜を形成できる感光性樹脂組成物を得ることができる点から、30質量%がより好ましく、25質量%がさらに好ましく、18質量%が特に好ましい。 The coverage of all silica including hydrophobic silica of urethane beads is not particularly limited, but the lower limit thereof is from the point that a photosensitive resin composition having excellent dispersibility during storage and storage can be obtained more reliably. , 1.0% by mass is preferable, 5.0% by mass is more preferable, and 8.0% by mass is further preferable, from the viewpoint that a photosensitive resin composition having excellent dispersibility during storage and storage can be obtained more reliably. , 12% by mass is particularly preferable. On the other hand, the upper limit of the coverage of all silica of the urethane beads is preferably 40% by mass, more reliably, from the viewpoint that a photosensitive resin composition capable of more reliably forming a cured film having excellent bendability can be obtained. 30% by mass is more preferable, 25% by mass is further preferable, and 18% by mass is particularly preferable, from the viewpoint that a photosensitive resin composition capable of forming a cured film having excellent bendability can be obtained.
 疎水性シリカとしては、疎水性の置換基を有するシリカであれば、特に限定されないが、例えば、より確実に、貯蔵保管中の分散性に優れつつ、吸水率を低減できる感光性樹脂組成物を得ることができ、また、より確実に、折り曲げ性と絶縁信頼性に優れた硬化膜を形成できる感光性樹脂組成物を得ることができる点から、モノアルキルシリル基で表面改質されているモノアルキルシロキシル化シリカ、ジアルキルシリル基で表面改質されているジアルキルシロキシル化シリカ、トリアルキルシリル基で表面改質されているトリアルキルシロキシル化シリカ、(メタ)アクリルシリル基で表面改質されている(メタ)アクリルシロキシル化シリカ、ジアルキルシロキサン基で表面改質されているシリカ及びジアルキルポリシロキサン基で表面改質されているシリカ等が好ましい。このうち、さらに確実に、貯蔵保管中の分散性に優れつつ、吸水率を低減できる感光性樹脂組成物を得ることができ、また、さらに確実に、折り曲げ性と絶縁信頼性に優れた硬化膜を形成できる感光性樹脂組成物を得ることができる点から、モノアルキルシリル基で表面改質されているモノアルキルシロキシル化シリカ、ジアルキルシリル基で表面改質されているジアルキルシロキシル化シリカ、(メタ)アクリルシリル基で表面改質されている(メタ)アクリルシロキシル化シリカが特に好ましい。 The hydrophobic silica is not particularly limited as long as it is a silica having a hydrophobic substituent, but for example, a photosensitive resin composition capable of more reliably reducing the water absorption rate while having excellent dispersibility during storage and storage. A monoalkylsilyl group surface-modified from the viewpoint that a photosensitive resin composition that can be obtained and that can more reliably form a cured film having excellent bendability and insulation reliability can be obtained. Alkylsiloxylated silica, dialkylsiloxylated silica surface-modified with a dialkylsilyl group, trialkylsiloxylated silica surface-modified with a trialkylsilyl group, and surface-modified with a (meth) acrylicsilyl group. Preferables are (meth) acrylic siloxylated silica, silica surface-modified with a dialkylsiloxane group, silica surface-modified with a dialkylpolysiloxane group, and the like. Of these, a photosensitive resin composition capable of reducing the water absorption rate while having excellent dispersibility during storage and storage can be obtained more reliably, and a cured film having excellent bendability and insulation reliability can be obtained more reliably. Monoalkyl siroxylated silica surface-modified with a monoalkylsilyl group, dialkylsiloxylated silica surface-modified with a dialkylsilyl group, from the viewpoint that a photosensitive resin composition capable of forming the above can be obtained. Particularly preferred is (meth) acrylic siloxylated silica, which has been surface modified with a (meth) acrylic silyl group.
 また、上記したジアルキル及びトリアルキルにおける各アルキルの炭素数は、特に限定されないが、1以上10以下の炭素数が好ましく、1以上5以下の炭素数がより好ましく、1以上3以下の炭素数が特に好ましい。また、上記したモノアルキルの炭素数は、特に限定されないが、1以上20以下の炭素数が好ましく、3以上15以下の炭素数がより好ましく、5以上10以下の炭素数が特に好ましい。 The carbon number of each of the above-mentioned dialkyl and trialkyl is not particularly limited, but is preferably 1 or more and 10 or less, more preferably 1 or more and 5 or less, and 1 or more and 3 or less. Especially preferable. The carbon number of the monoalkyl described above is not particularly limited, but is preferably 1 or more and 20 or less, more preferably 3 or more and 15 or less, and particularly preferably 5 or more and 10 or less.
 上記した疎水性シリカは、単独で使用してもよく、2種以上を併用してもよい。 The above-mentioned hydrophobic silica may be used alone or in combination of two or more.
 シリカで被覆されたウレタンビーズの含有量は、特に限定されないが、例えば、その下限値は、より確実に、貯蔵保管中の分散性に優れつつ、吸水率を低減できる感光性樹脂組成物を得ることができ、また、より確実に、折り曲げ性と絶縁信頼性に優れた硬化膜を形成できる感光性樹脂組成物を得ることができる点から、カルボキシル基含有感光性樹脂100質量部に対して、35質量部が好ましく、50質量部がより好ましく、60質量部が特に好ましい。一方で、シリカで被覆されたウレタンビーズの含有量の上限値は、感光性樹脂組成物に優れた塗工性を付与する点から、カルボキシル基含有感光性樹脂100質量部に対して、150質量部が好ましく、120質量部がより好ましく、90質量部が特に好ましい。 The content of the urethane beads coated with silica is not particularly limited, but for example, the lower limit thereof more reliably obtains a photosensitive resin composition capable of reducing water absorption while having excellent dispersibility during storage and storage. From the viewpoint that a photosensitive resin composition capable of forming a cured film having excellent bendability and insulation reliability can be obtained more reliably, with respect to 100 parts by mass of the carboxyl group-containing photosensitive resin. 35 parts by mass is preferable, 50 parts by mass is more preferable, and 60 parts by mass is particularly preferable. On the other hand, the upper limit of the content of the urethane beads coated with silica is 150 mass by mass with respect to 100 parts by mass of the carboxyl group-containing photosensitive resin from the viewpoint of imparting excellent coatability to the photosensitive resin composition. Parts are preferable, 120 parts by mass is more preferable, and 90 parts by mass is particularly preferable.
 シリカで被覆されたウレタンビーズの平均粒子径は、特に限定されないが、例えば、疎水性シリカを含むシリカによって確実にウレタンビーズが被覆されて、感光性樹脂組成物の分散性と絶縁信頼性を確実に得る点、及びシリカで被覆されたウレタンビーズを感光性樹脂組成物中に均一分散させる点から、1.0μm以上10μm以下が好ましく、2.0μm以上7.0μm以下がより好ましく、3.0μm以上5.0μm以下が特に好ましい。 The average particle size of the urethane beads coated with silica is not particularly limited, but for example, the urethane beads are surely coated with silica containing hydrophobic silica to ensure the dispersibility and insulation reliability of the photosensitive resin composition. It is preferably 1.0 μm or more and 10 μm or less, more preferably 2.0 μm or more and 7.0 μm or less, and more preferably 3.0 μm, from the viewpoint of uniformly dispersing urethane beads coated with silica in the photosensitive resin composition. More than 5.0 μm or less is particularly preferable.
 <(D)光重合開始剤>
 (D)成分の光重合開始剤は、特に限定されず、例えば、1,2-オクタンジオン,1-〔4-(フェニルチオ)-2-(O-ベンゾイルオキシム)〕、エタノン1-〔9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(0-アセチルオキシム)、2-(アセチルオキシイミノメチル)チオキサンテン-9-オン、1,8-オクタンジオン,1,8-ビス[9-エチル-6-ニトロ-9H-カルバゾール-3-イル]-,1,8-ビス(O-アセチルオキシム)、1,8-オクタンジオン,1,8-ビス[9-(2-エチルヘキシル)-6-ニトロ-9H-カルバゾール-3-イル]-,1,8-ビス(O-アセチルオキシム)、(Z) -(9-エチル-6-ニトロ-9H-カルバゾール-3-イル)(4-((1-メトキシプロパン-2-イル)オキシ) -2-メチルフェニル)メタノン O-アセチルオキシム等のオキシムエステル系光重合開始剤、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等のα-アミノアルキルフェノン系光重合開始剤を挙げることができる。
<(D) Photopolymerization Initiator>
The photopolymerization initiator of the component (D) is not particularly limited, and is, for example, 1,2-octanedione, 1- [4- (phenylthio) -2- (O-benzoyloxime)], etanone 1- [9-]. Ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl] -1- (0-acetyloxime), 2- (acetyloxyiminomethyl) thioxanthene-9-one, 1,8-octanedione , 1,8-bis [9-ethyl-6-nitro-9H-carbazole-3-yl]-, 1,8-bis (O-acetyloxime), 1,8-octanedione, 1,8-bis [ 9- (2-ethylhexyl) -6-nitro-9H-carbazole-3-yl]-, 1,8-bis (O-acetyloxime), (Z)-(9-ethyl-6-nitro-9H-carbazole)-(9-ethyl-6-nitro-9H-carbazole) -3-yl) (4-((1-Methylpropan-2-yl) oxy) -2-methylphenyl) Oxime ester-based photopolymerization initiator such as O-acetyloxime, 2-benzyl-2-dimethylamino Initiation of α-aminoalkylphenone-based photopolymerization of -1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one, etc. Agents can be mentioned.
 また、オキシムエステル系光重合開始剤及びα-アミノアルキルフェノン系光重合開始剤以外の光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル等のベンゾイン系;アセトフェノン、ジメチルアミノアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン等のアセトフェノン系;ベンゾフェノン、p-フェニルベンゾフェノン、4,4′-ジエチルアミノベンゾフェノン、ジクロルベンゾフェノン等のベンゾフェノン系;2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリーブチルアントラキノン、2-アミノアントラキノン等のアントラキノン系;2-メチルチオキサントン、2-エチルチオキサントン、2-クロルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン系;ベンジルジメチルケタール、アセトフェノンジメチルケタール、P-ジメチルアミノ安息香酸エチルエステル、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド、(2,4,6‐トリメチルベンゾイル)エトキシフェニルフォスフィンオキサイド、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、4-(2-ヒドロキシエトキシ)フェニル-2-(ヒドロキシ‐2‐プロピル)ケトン等を挙げることができる。これらの光重合開始剤は、単独で使用してもよく、2種以上を併用してもよい。 Examples of the photopolymerization initiator other than the oxime ester-based photopolymerization initiator and the α-aminoalkylphenone-based photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin-n-butyl ether. , Benzophenone such as benzoin isobutyl ether; acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone and other acetophenone; benzophenone, p-phenylbenzophenone, 4, Benzophenone series such as 4'-diethylaminobenzophenone and dichlorobenzophenone; anthraquinone series such as 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiary butyl anthraquinone and 2-aminoanthraquinone; 2-methylthioxanthone, 2-ethylthioxanthone, Thioxanthone series such as 2-chlorthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone; benzyldimethylketal, acetphenonedimethylketal, P-dimethylaminobenzoic acid ethyl ester, 2,4,6-trimethylbenzoyldiphenylphosphine Oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, (2,4,6-trimethylbenzoyl) ethoxy Phenylphosphine oxide, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenylketone, 4- (2-hydroxyethoxy) phenyl-2- (hydroxy-2-propyl) ketone, etc. Can be mentioned. These photopolymerization initiators may be used alone or in combination of two or more.
 光重合開始剤の含有量は、特に限定されないが、カルボキシル基含有感光性樹脂100質量部に対して、0.1質量部以上10質量部以下が好ましく、0.2質量部以上5.0質量部以下が特に好ましい。 The content of the photopolymerization initiator is not particularly limited, but is preferably 0.1 part by mass or more and 10 parts by mass or less, and 0.2 parts by mass or more and 5.0 parts by mass with respect to 100 parts by mass of the carboxyl group-containing photosensitive resin. Part or less is particularly preferable.
 <(E)反応性希釈剤>
 (E)成分の反応性希釈剤は、例えば、光重合性モノマーであり、1分子当たり少なくとも1つ、好ましくは1分子当たり2つ以上の重合性二重結合を有する化合物である。反応性希釈剤は、感光性樹脂組成物の光硬化を補強して、感光性樹脂組成物の硬化物に十分な耐熱性、耐酸性、耐アルカリ性等を付与することに寄与する。
<(E) Reactive diluent>
The reactive diluent of the component (E) is, for example, a photopolymerizable monomer, which is a compound having at least one polymerizable double bond per molecule, preferably two or more polymerizable double bonds per molecule. The reactive diluent reinforces the photocuring of the photosensitive resin composition and contributes to imparting sufficient heat resistance, acid resistance, alkali resistance and the like to the cured product of the photosensitive resin composition.
 反応性希釈剤としては、例えば、単官能の(メタ)アクリレート化合物、2官能の(メタ)アクリレート化合物、3官能の(メタ)アクリレート化合物、4官能以上の(メタ)アクリレート化合物を挙げることができる。(メタ)アクリレート化合物としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、フェノキシエチル(メタ)アクリレート、ジエチレングルコールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリルレート等の単官能(メタ)アクリレート化合物;1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、エチレンオキサイド変性燐酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート等の2官能(メタ)アクリレート化合物;トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート等の3官能(メタ)アクリレート化合物;ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の(メタ)アクリレート化合物が挙げられる。また、単官能または2官能以上のウレタン(メタ)アクリレート化合物等が挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。 Examples of the reactive diluent include monofunctional (meth) acrylate compounds, bifunctional (meth) acrylate compounds, trifunctional (meth) acrylate compounds, and tetrafunctional or higher (meth) acrylate compounds. .. Examples of the (meth) acrylate compound include 2-hydroxyethyl (meth) acrylate, phenoxyethyl (meth) acrylate, diethylene glucol mono (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth) acrylic rate. Monofunctional (meth) acrylate compounds; 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, neo Pentyl glycol adipate di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, ethylene oxide-modified di (meth) acrylate, allylated cyclohexyl di (meth) acrylate, Bifunctional (meth) acrylate compounds such as isocyanurate di (meth) acrylate; trimethylol propanetri (meth) acrylate, dipentaerythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide-modified trimethylol propanetri. Trifunctional (meth) acrylate compounds such as (meth) acrylate, tris (acryloxyethyl) isocyanurate; ditrimethylolpropanetetra (meth) acrylate, propionic acid-modified dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth). ) Examples thereof include tetrafunctional or higher functional (meth) acrylate compounds such as acrylate. Further, a monofunctional or bifunctional or higher urethane (meth) acrylate compound and the like can be mentioned. These may be used alone or in combination of two or more.
 反応性希釈剤の含有量は、特に限定されないが、カルボキシル基含有感光性樹脂100質量部に対して、5.0質量部以上50質量部以下が好ましく、10質量部以上30質量部以下が特に好ましい。 The content of the reactive diluent is not particularly limited, but is preferably 5.0 parts by mass or more and 50 parts by mass or less, and particularly 10 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the carboxyl group-containing photosensitive resin. preferable.
 本発明の感光性樹脂組成物では、上記(A)成分~(E)成分に加えて、必要に応じて、種々の成分、例えば、体質顔料、硬化促進剤、各種添加剤、難燃剤、着色剤、非反応性希釈剤等を配合することができる。 In the photosensitive resin composition of the present invention, in addition to the above-mentioned components (A) to (E), various components such as extender pigments, curing accelerators, various additives, flame retardants, and coloring are required. Agents, non-reactive diluents and the like can be blended.
 体質顔料としては、例えば、タルク、硫酸バリウム、アルミナ、水酸化アルミニウム、マイカ等が挙げられる。硬化促進剤としては、例えば、三フッ化ホウ素-アミンコンプレックス、ジシアンジアミド(DICY)及びその誘導体、有機酸ヒドラジド、ジアミノマレオニトリル(DAMN)及びその誘導体、グアナミン及びその誘導体、メラミン及びその誘導体、アミンイミド(AI)並びにポリアミン等が挙げられる。各種添加剤としては、例えば、シリコーン系、炭化水素系及びアクリル系等の消泡剤、(メタ)アクリル系ポリマー及び有機ベントナイト等の有機系充填剤、ポリカルボン酸アマイド等のチキソ性付与剤等が挙げられる。 Examples of the extender pigment include talc, barium sulfate, alumina, aluminum hydroxide, mica and the like. Examples of the curing accelerator include boron trifluoride-amine complex, dicyandiamide (DICY) and its derivatives, organic acid hydrazide, diaminomaleonitrile (DAMN) and its derivatives, guanamine and its derivatives, melamine and its derivatives, and amineimide ( AI) and polyamines can be mentioned. Examples of various additives include defoaming agents such as silicone-based, hydrocarbon-based and acrylic-based, organic fillers such as (meth) acrylic polymers and organic bentonite, and thixotropic agents such as polycarboxylic acid amide. Can be mentioned.
 難燃剤としては、例えば、リン系の難燃剤を挙げることができる。リン系の難燃剤としては、例えば、トリス(クロロエチル)ホスフェート、トリス(2,3-ジクロロプロピル)ホスフェート、トリス(2-クロロプロピル)ホスフェート、トリス(2,3-ブロモプロピル)ホスフェート、トリス(ブロモクロロプロピル)ホスフェート、2,3-ジブロモプロピル-2,3-クロロプロピルホスフェート、トリス(トリブロモフェニル)ホスフェート、トリス(ジブロモフェニル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等の含ハロゲン系リン酸エステル;トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート等のノンハロゲン系脂肪族リン酸エステル;トリフェニルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、キシレニルジフェニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ジイソプロピルフェニルフェニルホスフェート、トリス(トリメチルフェニル)ホスフェート、トリス(t-ブチルフェニル)ホスフェート、ヒドロキシフェニルジフェニルホスフェート、オクチルジフェニルホスフェート等のノンハロゲン系芳香族リン酸エステル;トリスジエチルホスフィン酸アルミニウム、トリスメチルエチルホスフィン酸アルミニウム、トリスジフェニルホスフィン酸アルミニウム、ビスジエチルホスフィン酸亜鉛、ビスメチルエチルホスフィン酸亜鉛、ビスジフェニルホスフィン酸亜鉛、ビスジエチルホスフィン酸チタニル、テトラキスジエチルホスフィン酸チタン、ビスメチルエチルホスフィン酸チタニル、テトラキスメチルエチルホスフィン酸チタン、ビスジフェニルホスフィン酸チタニル、テトラキスジフェニルホスフィン酸チタン等のホスフィン酸の金属塩、ジフェニルビニルホスフィンオキサイド、トリフェニルホスフィンオキサイド、トリアルキルホスフィンオキサイド、トリス(ヒドロキシアルキル)ホスフィンオキサイド等のホスフィンオキサイド系化合物等が挙げられる。このうち、有機リン酸塩系の難燃剤が好ましい。 Examples of the flame retardant include phosphorus-based flame retardants. Examples of the phosphorus-based flame retardant include tris (chloroethyl) phosphate, tris (2,3-dichloropropyl) phosphate, tris (2-chloropropyl) phosphate, tris (2,3-bromopropyl) phosphate, and tris (bromo). Halogen-containing phosphoric acid such as chloropropyl) phosphate, 2,3-dibromopropyl-2,3-chloropropyl phosphate, tris (tribromophenyl) phosphate, tris (dibromophenyl) phosphate, tris (tribromoneopentyl) phosphate, etc. Esters; Non-halogen aliphatic phosphates such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate; triphenyl phosphate, cresyldiphenyl phosphate, dicresylphenyl phosphate, tricresyl phosphate, trixylate Nylphosphate, xylenyldiphenyl phosphate, tris (isopropylphenyl) phosphate, isopropylphenyldiphenyl phosphate, diisopropylphenylphenyl phosphate, tris (trimethylphenyl) phosphate, tris (t-butylphenyl) phosphate, hydroxyphenyldiphenyl phosphate, octyldiphenyl phosphate. Non-halogen aromatic phosphate esters such as: Aluminum Trisdiethylphosphine, Aluminum Trismethylethylphosphine, Aluminum Trisdiphenylphosphine, Zinc bisdiphenylphosphine, Zinc bismethylethylphosphine, Zinc bisdiphenylphosphine, Bisdiethyl Metal salts of phosphinic acids such as titanyl phosphinate, titanium tetrakisdiethylphosphine, titanyl bismethylethylphosphine, titanium tetrakismethylethylphosphine, titanyl bisdiphenylphosphine, titanium tetrakisdiphenylphosphine, diphenylvinylphosphine oxide, triphenyl Examples thereof include phosphine oxide compounds such as phosphine oxide, trialkylphosphine oxide, and tris (hydroxyalkyl) phosphine oxide. Of these, organic phosphate-based flame retardants are preferable.
 着色剤は、顔料、色素等、特に限定されない。また、着色剤の色彩は、白色着色剤、青色着色剤、緑色着色剤、黄色着色剤、橙色着色剤、赤色着色剤、紫色着色剤、黒色着色剤等、いずれの色彩の着色剤も使用可能である。上記着色剤には、無機系着色剤としては、例えば、白色着色剤である酸化チタン、黒色着色剤であるカーボンブラック、アセチレンブラック等を挙げることができる。また、有機系着色剤としては、例えば、緑色着色剤であるフタロシアニングリーン、青色着色剤であるフタロシアニンブルーやリオノールブルー等のフタロシアニン系、橙色着色剤であるクロモフタルオレンジ等のジケトピロロピロール系等を挙げることができる。 The colorant is not particularly limited, such as pigments and pigments. Further, as the color of the colorant, any colorant such as a white colorant, a blue colorant, a green colorant, a yellow colorant, an orange colorant, a red colorant, a purple colorant, and a black colorant can be used. Is. Examples of the inorganic colorant include titanium oxide, which is a white colorant, carbon black, which is a black colorant, and acetylene black, which are black colorants. Examples of the organic colorant include phthalocyanine green which is a green colorant, phthalocyanine type such as phthalocyanine blue and lionol blue which are blue colorants, and diketopyrrolopyrrole type such as chromoftalo orange which is an orange colorant. And so on.
 非反応性希釈剤は、感光性樹脂組成物の粘度、塗工性、乾燥性等を調節するための成分である。非反応性希釈剤として、例えば、有機溶剤を挙げることができる。有機溶剤には、例えば、メチルエチルケトン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、メタノール、n-プロパノール、イソプロパノール、シクロヘキサノール、プロピレングリコールモノメチルエーテル等のアルコール類、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素類、セロソルブ、ブチルセロソルブ等のセロソルブ類、カルビトール、ブチルカルビトール等のカルビトール類、酢酸エチル、酢酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、ジエチレングリコールモノメチルエーテルアセテート、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類等を挙げることができる。非反応性希釈剤の含有量は、特に限定されないが、カルボキシル基含有感光性樹脂100質量部に対して、2.0質量部以上50質量部以下が好ましく、5.0質量部以上20質量部以下が特に好ましい。 The non-reactive diluent is a component for adjusting the viscosity, coatability, drying property, etc. of the photosensitive resin composition. Examples of the non-reactive diluent include organic solvents. Examples of the organic solvent include ketones such as methyl ethyl ketone, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, n-propanol, isopropanol, cyclohexanol and propylene glycol monomethyl ether, cyclohexane and methylcyclohexane. Alicyclic hydrocarbons, cellosolves such as cellosolve and butyl cellosolve, carbitols such as carbitol and butyl carbitol, ethyl acetate, butyl acetate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbitol acetate and diethylene glycol monomethyl. Examples thereof include esters such as ether acetate, ethyl diglycol acetate, and propylene glycol monomethyl ether acetate. The content of the non-reactive diluent is not particularly limited, but is preferably 2.0 parts by mass or more and 50 parts by mass or less, and 5.0 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the carboxyl group-containing photosensitive resin. The following are particularly preferred.
 本発明の感光性樹脂組成物の製造方法は、特定の方法に限定されず、公知の方法を使用することができる。具体的には、例えば、上記各成分を所定割合で配合後、常温(例えば、25℃)にて、三本ロール、ボールミル、サンドミル、ビーズミル、ニーダー等の混練手段、またはスーパーミキサー、プラネタリーミキサー、トリミックス等の攪拌手段により混練または混合して製造することができる。また、前記混練または混合の前に、必要に応じて、予備混練または予備混合を実施してもよい。 The method for producing the photosensitive resin composition of the present invention is not limited to a specific method, and a known method can be used. Specifically, for example, after blending each of the above components in a predetermined ratio, at room temperature (for example, 25 ° C.), a kneading means such as a three-roll, ball mill, sand mill, bead mill, kneader, or a super mixer or planetary mixer. , Trimix and the like can be kneaded or mixed and produced. Further, before the kneading or mixing, pre-kneading or pre-mixing may be carried out, if necessary.
 次に、本発明の感光性樹脂組成物の使用方法例について説明する。まず、銅箔等の導体をエッチングして形成した回路パターンを有するプリント配線板上に、本発明の感光性樹脂組成物を塗工したドライフィルムを用いて、絶縁保護膜(例えば、ソルダーレジスト膜等)を形成する方法を例にとって説明する。 Next, an example of how to use the photosensitive resin composition of the present invention will be described. First, an insulating protective film (for example, a solder resist film) is used by using a dry film coated with the photosensitive resin composition of the present invention on a printed wiring board having a circuit pattern formed by etching a conductor such as a copper foil. Etc.) will be described as an example.
 ドライフィルムは、支持フィルム(例えば、ポリエチレンテレフタレートフィルム、ポリエステルフィルム等の熱可塑性樹脂フィルム)と、該支持フィルムに塗工されたソルダーレジスト層と、該ソルダーレジスト層を保護するカバーフィルム(例えば、ポリエチレンフィルム、ポリプロピレンフィルム)と、を有する積層構造となっている。支持フィルム上に本発明の感光性樹脂組成物を、ローラコート法、バーコータ法等の公知の方法で塗工して所定の膜厚を有する塗膜を形成する。形成した感光性樹脂組成物の塗膜を乾燥処理することで、支持フィルム上にソルダーレジスト層を形成する。その後、形成したソルダーレジスト層上にカバーフィルムを積層することで、本発明の感光性樹脂組成物の塗膜を有するドライフィルムを作製できる。 The dry film includes a support film (for example, a thermoplastic resin film such as a polyethylene terephthalate film or a polyester film), a solder resist layer coated on the support film, and a cover film (for example, polyethylene) that protects the solder resist layer. It has a laminated structure with a film (film, polypropylene film). The photosensitive resin composition of the present invention is applied onto a support film by a known method such as a roller coating method or a bar coater method to form a coating film having a predetermined film thickness. A solder resist layer is formed on the support film by drying the coating film of the formed photosensitive resin composition. Then, by laminating a cover film on the formed solder resist layer, a dry film having a coating film of the photosensitive resin composition of the present invention can be produced.
 上記のように作製したドライフィルムについて、カバーフィルムを剥がしながらソルダーレジスト層とフレキシブルプリント配線板等のプリント配線板をはり合わせることで、プリント配線板上にソルダーレジスト層を形成する。なお、ソルダーレジスト層上には支持フィルムが積層されたままとなっている。その後、必要に応じて、感光性樹脂組成物中の非反応性希釈剤(有機溶剤)を揮散させるために60~100℃程度の温度で5~30分間程度加熱する予備乾燥を行い、ソルダーレジスト層の表面をタックフリーの状態にする。その後、支持フィルム上に、回路パターンのランド以外を透光性にしたパターンを有するネガフィルム(フォトマスク)を載置し、ネガフィルムの上から紫外線(例えば、波長300~400nmの範囲)を照射させてソルダーレジスト層を光硬化させる。その後、支持フィルムを剥がして、前記ランドに対応する非露光領域を希アルカリ水溶液で除去することによりソルダーレジスト層を現像する。現像方法には、スプレー法、シャワー法等が用いられ、使用される希アルカリ水溶液としては、例えば、0.5~5質量%の炭酸ナトリウム水溶液が挙げられる。アルカリ現像後、130~170℃の熱風循環式の乾燥機等で、20~80分間、ソルダーレジスト層を熱硬化処理(ポストキュア)することにより、プリント配線板上に、光硬化膜であるソルダーレジスト膜を形成させることができる。 For the dry film produced as described above, the solder resist layer is formed on the printed wiring board by laminating the solder resist layer and the printed wiring board such as the flexible printed wiring board while peeling off the cover film. The support film is still laminated on the solder resist layer. Then, if necessary, pre-drying is performed by heating at a temperature of about 60 to 100 ° C. for about 5 to 30 minutes in order to volatilize the non-reactive diluent (organic solvent) in the photosensitive resin composition, and then solder resist. Make the surface of the layer tack-free. After that, a negative film (photomask) having a translucent pattern other than the land of the circuit pattern is placed on the support film, and ultraviolet rays (for example, a wavelength range of 300 to 400 nm) are irradiated from above the negative film. The solder resist layer is photocured. Then, the support film is peeled off, and the non-exposed region corresponding to the land is removed with a dilute alkaline aqueous solution to develop the solder resist layer. As a developing method, a spray method, a shower method or the like is used, and examples of the dilute alkaline aqueous solution used include a 0.5 to 5% by mass sodium carbonate aqueous solution. After alkaline development, the solder resist layer is thermoset (post-cured) for 20 to 80 minutes in a hot air circulation type dryer or the like at 130 to 170 ° C., so that the solder is a photocurable film on the printed wiring board. A resist film can be formed.
 本発明の感光性樹脂組成物の使用方法例として、本発明の感光性樹脂組成物をプリント配線板に塗工して、絶縁保護膜(例えば、ソルダーレジスト膜等)を形成する方法を説明する。 As an example of how to use the photosensitive resin composition of the present invention, a method of applying the photosensitive resin composition of the present invention to a printed wiring board to form an insulating protective film (for example, a solder resist film) will be described. ..
 本発明の感光性樹脂組成物を、フレキシブルプリント配線板等のプリント配線板上に、スクリーン印刷法、バーコータ法、アプリケータ法、ブレードコータ法、ナイフコータ法、ロールコータ法、グラビアコータ法、スプレーコータ法等、公知の方法にて、所望の厚さに塗布して塗膜を形成する。その後、必要に応じて、感光性樹脂組成物中の非反応性希釈剤(有機溶剤)を揮散させるために60~100℃程度の温度で5~30分間程度加熱する予備乾燥を行い、塗膜をタックフリーの状態にする。次に、塗膜上に回路パターンのランド以外を透光性にしたパターンを有するネガフィルム(フォトマスク)を密着させ、その上から紫外線(例えば、波長300~400nmの範囲)を照射させて塗膜を光硬化させる。そして、前記ランドに対応する非露光領域を希アルカリ水溶液で除去して塗膜を現像する。現像方法には、スプレー法、シャワー法等が用いられ、使用する希アルカリ水溶液としては、例えば、0.5~5質量%の炭酸ナトリウム水溶液が挙げられる。アルカリ現像後、130~170℃の熱風循環式の乾燥機等で、20~80分間、熱硬化処理(ポストキュア)することにより、プリント配線板上に、光硬化膜であるソルダーレジスト膜を形成させることができる。 The photosensitive resin composition of the present invention is applied onto a printed wiring board such as a flexible printed wiring board by a screen printing method, a bar coater method, an applicator method, a blade coater method, a knife coater method, a roll coater method, a gravure coater method, and a spray coater. A coating film is formed by applying to a desired thickness by a known method such as a method. Then, if necessary, pre-drying is performed by heating at a temperature of about 60 to 100 ° C. for about 5 to 30 minutes in order to volatilize the non-reactive diluent (organic solvent) in the photosensitive resin composition. To be tack-free. Next, a negative film (photomask) having a pattern having a translucent pattern other than the land of the circuit pattern is adhered to the coating film, and ultraviolet rays (for example, a wavelength range of 300 to 400 nm) are irradiated from above the negative film (photomask) to apply the coating film. Photocure the film. Then, the non-exposed region corresponding to the land is removed with a dilute alkaline aqueous solution to develop the coating film. As a developing method, a spray method, a shower method or the like is used, and examples of the dilute alkaline aqueous solution to be used include a 0.5 to 5% by mass sodium carbonate aqueous solution. After alkaline development, a solder resist film, which is a photocurable film, is formed on the printed wiring board by heat curing treatment (post-cure) for 20 to 80 minutes in a hot air circulation type dryer or the like at 130 to 170 ° C. Can be made to.
 次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの例に限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to these examples as long as the gist of the present invention is not exceeded.
 実施例1~8、比較例1~4
 下記表1に示す各成分を下記表1に示す割合にて配合し、3本ロールを用いて室温にて混合させて、実施例1~8、比較例1~4にて使用する感光性樹脂組成物を調製した。その後、調製した感光性樹脂組成物を以下のように基板に塗工して試験体を作製した。下記表1に示す各成分の配合量は、特に断りのない限り質量部を示す。なお、下記表1中の配合量の空欄部は、配合なしを意味する。
Examples 1 to 8, Comparative Examples 1 to 4
Each component shown in Table 1 below is blended in the ratio shown in Table 1 below, mixed at room temperature using three rolls, and the photosensitive resin used in Examples 1 to 8 and Comparative Examples 1 to 4. The composition was prepared. Then, the prepared photosensitive resin composition was applied to a substrate as follows to prepare a test piece. Unless otherwise specified, the blending amount of each component shown in Table 1 below is shown in parts by mass. In addition, the blank part of the blending amount in the following Table 1 means no blending.
 下記表1中の各成分についての詳細は、以下の通りである。
 (A)カルボキシル基含有感光性樹脂
・KAYARAD ZAR-2000:日本化薬株式会社
 (B)エポキシ化合物
・EPICRON 850-S:DIC社
Details of each component in Table 1 below are as follows.
(A) Carboxyl group-containing photosensitive resin, KAYARAD ZAR-2000: Nippon Kayaku Co., Ltd. (B) Epoxy compound, EPICRON 850-S: DIC Corporation
 (C)ウレタンビーズ
・ウレタンビーズA:疎水性シリカとして、ジメチルシロキシル化シリカ(商品名「アエロジルR974」、日本アエロジル株式会社、平均一次粒子径0.012μm)10gを均一に溶媒100gに分散後、イソシアネート化合物20gとアルコール類20gを反応させて得られたポリウレタン球体を含む乳化液を、ホモジナイザーにて均一に分散後、乾燥させることで、シリカの被覆率10質量%のウレタンビーズA(平均粒子径3μm)を調製した。なお、シリカの被覆率は、600℃にて2時間の完全燃焼後の灰分より求めた。
・ウレタンビーズB:ウレタンビーズAと同様にして、シリカの被覆率15質量%のウレタンビーズB(平均粒子径3μm)を調製した。
・ウレタンビーズC:ウレタンビーズAと同様にして、シリカの被覆率20質量%のウレタンビーズC(平均粒子径3μm)を調製した。
・ウレタンビーズD:ジメチルシロキシル化シリカの代わりに、オクチルシロキシル化シリカ(商品名「アエロジルR805」、日本アエロジル株式会社、平均一次粒子径0.012μm)を使用した以外は、ウレタンビーズAと同様にして、シリカの被覆率15質量%のウレタンビーズD(平均粒子径3μm)を調製した。
・ウレタンビーズE:ジメチルシロキシル化シリカの代わりに、メタクリルシロキシル化シリカ(商品名「アエロジルR711」、日本アエロジル株式会社、平均一次粒子径0.012μm)を使用した以外は、ウレタンビーズAと同様にして、シリカの被覆率15質量%のウレタンビーズE(平均粒子径3μm)を調製した。
(C) Urethane beads / Urethane beads A: As hydrophobic silica, 10 g of dimethylsiloxylated silica (trade name "Aerosil R974", Nippon Aerosil Co., Ltd., average primary particle diameter 0.012 μm) is uniformly dispersed in 100 g of a solvent. Urethane beads A (average particles) having a silica coverage of 10% by mass by uniformly dispersing an emulsion containing polyurethane spheres obtained by reacting 20 g of an isocyanate compound with 20 g of alcohols with a homogenizer and then drying the mixture. Diameter 3 μm) was prepared. The silica coverage was determined from the ash content after complete combustion at 600 ° C. for 2 hours.
Urethane beads B: Urethane beads B (average particle diameter 3 μm) having a silica coverage of 15% by mass were prepared in the same manner as urethane beads A.
Urethane beads C: In the same manner as urethane beads A, urethane beads C (average particle diameter 3 μm) having a silica coverage of 20% by mass were prepared.
-Urethane beads D: With urethane beads A, except that octylsiloxylated silica (trade name "Aerosil R805", Nippon Aerosil Co., Ltd., average primary particle diameter 0.012 μm) was used instead of dimethylsiloxylated silica. Similarly, urethane beads D (average particle diameter 3 μm) having a silica coverage of 15% by mass were prepared.
-Urethane beads E: With urethane beads A, except that methacrylicylated silica (trade name "Aerosil R711", Nippon Aerosil Co., Ltd., average primary particle diameter 0.012 μm) was used instead of dimethylsiloxylated silica. Similarly, urethane beads E (average particle diameter 3 μm) having a silica coverage of 15% by mass were prepared.
・ウレタンビーズF:ウレタンビーズAで用いたジメチルシロキシル化シリカ並びに未処理シリカ(商品名「アエロジル200」、日本アエロジル株式会社、平均一次粒子径0.012μm)を1:1の質量比で使用した以外は、ウレタンビーズAと同様にして、シリカ(疎水性シリカ50質量%)の被覆率15質量%のウレタンビーズF(平均粒子径3μm)を調製した。
・ウレタンビーズG:ウレタンビーズAで用いたジメチルシロキシル化シリカ並びに未処理シリカを1:2の質量比で使用した以外は、ウレタンビーズAと同様にして、シリカ(疎水性シリカ33質量%)の被覆率15質量%のウレタンビーズG(平均粒子径3μm)を調製した。
・ウレタンビーズH:ウレタンビーズAで用いたジメチルシロキシル化シリカ並びに未処理シリカを1:3の質量比で使用した以外は、ウレタンビーズAと同様にして、シリカ(疎水性シリカ25質量%)の被覆率15質量%のウレタンビーズH(平均粒子径3μm)を調製した。
Urethane beads F: Dimethylsiloxylated silica and untreated silica (trade name "Aerosil 200", Nippon Aerosil Co., Ltd., average primary particle diameter 0.012 μm) used in Urethane beads A are used in a mass ratio of 1: 1. Urethane beads F (average particle diameter 3 μm) having a coverage of 15% by mass of silica (hydrophobic silica 50% by mass) were prepared in the same manner as the urethane beads A.
Urethane beads G: Silica (hydrophobic silica 33% by mass) in the same manner as urethane beads A, except that the dimethylsiloxylated silica used in urethane beads A and untreated silica were used in a mass ratio of 1: 2. Urethane beads G (average particle diameter 3 μm) having a coverage of 15% by mass were prepared.
Urethane beads H: Silica (hydrophobic silica 25% by mass) in the same manner as urethane beads A, except that the dimethylsiloxylated silica used in urethane beads A and untreated silica were used in a mass ratio of 1: 3. Urethane beads H (average particle diameter 3 μm) having a coverage of 15% by mass were prepared.
・ウレタンビーズI:ウレタンビーズFの調製で使用した未処理シリカを使用した以外は、ウレタンビーズAと同様にして、シリカの被覆率10質量%のウレタンビーズI(平均粒子径3μm)を調製した。
・ウレタンビーズJ:ウレタンビーズFの調製で使用した未処理シリカを使用した以外は、ウレタンビーズAと同様にして、シリカの被覆率15質量%のウレタンビーズJ(平均粒子径3μm)を調製した。
・ウレタンビーズK:ウレタンビーズFの調製で使用した未処理シリカを使用した以外は、ウレタンビーズAと同様にして、シリカの被覆率20質量%のウレタンビーズK(平均粒子径3μm)を調製した。
Urethane beads I: Urethane beads I (average particle diameter 3 μm) having a silica coverage of 10% by mass were prepared in the same manner as urethane beads A except that the untreated silica used in the preparation of urethane beads F was used. ..
Urethane beads J: Urethane beads J (average particle diameter 3 μm) having a silica coverage of 15% by mass were prepared in the same manner as urethane beads A except that the untreated silica used in the preparation of urethane beads F was used. ..
Urethane beads K: Urethane beads K (average particle diameter 3 μm) having a silica coverage of 20% by mass were prepared in the same manner as urethane beads A except that the untreated silica used in the preparation of urethane beads F was used. ..
 (D)光重合開始剤
・OXE-02:オキシムエステル系光重合開始剤、BASF社
 (E)反応性希釈剤
・EBERCRYL8405:ダイセル・サイテック株式会社
(D) Photopolymerization Initiator, OXE-02: Oxym Ester-based Photopolymerization Initiator, BASF, Inc. (E) Reactive Diluent, EBERCRYL8405: Daicel Cytec Co., Ltd.
 体質顔料
・ハイジライト H42M:昭和電工株式会社
 難燃剤
・エクソリット OP-935:クラリアントジャパン社
 硬化促進剤
・メラミン:日産化学工業株式会社
・DICY-7:三菱化学株式会社
 添加剤
・AC-303:有機系充填剤、信越化学工業株式会社
 着色剤
・クロモフタルDPPオレンジ TR:チバ・スペシャルティケミカルズ
 非反応性希釈剤
・EDGAC:三洋化成品株式会社
Hajilite H42M: Showa Denko Corporation Flame Retardant / Exorit OP-935: Clariant Japan Co., Ltd. Hardening Accelerator / Melamine: Nissan Chemical Corporation / DICY-7: Mitsubishi Chemical Corporation Additive / AC-303: Organic System filler, Shin-Etsu Chemical Co., Ltd. Colorant / Clariant DPP Orange TR: Ciba Specialty Chemicals Non-reactive diluent / EDGAC: Sanyo Kasei Co., Ltd.
 試験体作製工程
基板:フレキシブルプリント配線板(ポリイミドフィルム、パナソニック株式会社、フィルム厚25μm、導体(Cu箔)厚12.5μm)
表面処理:5質量%硫酸水溶液
塗工:スクリーン印刷 
予備乾燥:BOX炉にて80℃、20分
露光:感光性樹脂組成物上100mJ/cm(メイン波長365nm、株式会社オークの直描(DI)紫外線露光装置「Mms604B」(光源:高圧水銀灯)
アルカリ現像:1質量%のNa2CO3水溶液、液温30℃、スプレー圧0.2MPa、現像時間60秒
ポストキュア(本硬化の加熱処理):BOX炉にて150℃、60分
ポストキュア後の膜厚:20~23μm
Specimen manufacturing process Board: Flexible printed wiring board (polyimide film, Panasonic Corporation, film thickness 25 μm, conductor (Cu foil) thickness 12.5 μm)
Surface treatment: 5% by mass sulfuric acid aqueous solution Coating: Screen printing
Pre-drying: 80 ° C in a BOX furnace, 20 minutes exposure: 100 mJ / cm 2 on a photosensitive resin composition (main wavelength 365 nm, direct drawing by Oak Co., Ltd. (DI) UV exposure device "Mms604B" (light source: high-pressure mercury lamp)
Alkaline development: 1% by mass Na 2 CO 3 aqueous solution, liquid temperature 30 ° C, spray pressure 0.2 MPa, development time 60 seconds Post-cure (heat treatment for main curing): 150 ° C in a BOX furnace, after 60 minutes post-cure Film thickness: 20-23 μm
 評価項目は、以下の通りである。
 (1)分散性(ブロッキング)
 感光性樹脂組成物200gを、300mlポリ容器に入れて密封し、30℃の保温槽に72時間放置後の状態を目視にて観察し、以下の基準で評価した。また、感光性樹脂組成物の粘度はブルックフィールドB型粘度計にて測定した。
 ◎:放置後の感光性樹脂組成物の粘度が初期値に対して10%以下の変化率であり、凝集粒子(ブロッキング)は認められない。
 ○:放置後の感光性樹脂組成物の粘度が初期値に対して10%超20%以下の変化率であり、凝集粒子(ブロッキング)は認められない。
 △:放置後の感光性樹脂組成物の粘度が初期値に対して20%超30%以下の変化率であり、凝集粒子(ブロッキング)は認められない。
 ×:放置後の感光性樹脂組成物の粘度が初期値に対して30%超の変化率、または感光性樹脂組成物中に凝集粒子(ブロッキング)が認められる。
The evaluation items are as follows.
(1) Dispersibility (blocking)
200 g of the photosensitive resin composition was placed in a 300 ml plastic container, sealed, and left in a heat insulating tank at 30 ° C. for 72 hours, and the state was visually observed and evaluated according to the following criteria. The viscosity of the photosensitive resin composition was measured with a Brookfield B-type viscometer.
⊚: The viscosity of the photosensitive resin composition after being left to stand has a rate of change of 10% or less with respect to the initial value, and no aggregated particles (blocking) are observed.
◯: The viscosity of the photosensitive resin composition after being left to stand has a rate of change of more than 10% and 20% or less with respect to the initial value, and no aggregated particles (blocking) are observed.
Δ: The viscosity of the photosensitive resin composition after being left to stand has a rate of change of more than 20% and 30% or less with respect to the initial value, and no aggregated particles (blocking) are observed.
X: The change rate of the viscosity of the photosensitive resin composition after standing by more than 30% with respect to the initial value, or agglomerated particles (blocking) are observed in the photosensitive resin composition.
 (2)折り曲げ性
 作製した試験体について、はぜ折りにより、導体パターンのラインの長手方向に対して直交方向に180°折り曲げを1回行い、その際の硬化塗膜における微小クラック発生状況を×500の光学顕微鏡で観察し、微小クラックの発生の有無を測定した。微小クラックとは、クラックの長さが100μm未満のクラックを意味する。測定結果については、以下の基準で評価した。
 ◎:微小クラックの発生が無い。
 ○:微小クラックの発生が1~3箇所。
 △:微小クラックの発生が3箇所より多く、導体パターンのライン周辺部のみに発生。
 ×:硬化塗膜全体に微小クラックが発生。
(2) Bending property The produced test piece was bent 180 ° once in the direction orthogonal to the longitudinal direction of the conductor pattern line by hemming and seaming folding, and the state of microcracks in the cured coating film at that time was measured as ×. Observation was performed with a 500 optical microscope, and the presence or absence of microcracks was measured. The microcrack means a crack having a crack length of less than 100 μm. The measurement results were evaluated according to the following criteria.
⊚: No minute cracks are generated.
◯: Occurrence of minute cracks in 1 to 3 places.
Δ: Microcracks occur more than 3 places, and occur only around the line of the conductor pattern.
X: Microcracks occur in the entire cured coating film.
 (3)吸水率(D-24/23)
 JIS C6481に準拠し、吸水率(%)を測定した。吸水率は、2.50%未満を合格とした。
(3) Water absorption rate (D-24 / 23)
The water absorption rate (%) was measured according to JIS C6481. The water absorption rate was less than 2.50%.
 (4)絶縁信頼性(塗膜の厚さ方向(Z軸方向)の絶縁信頼性)
 上記試験体作製工程にて作製した試験体について、硬化塗膜の上に電磁波シールドフィルム(タツタ電線株式会社、「SF-PC5000」)を貼った上面を陽極に、上記試験体の導体である銅を陰極に、それぞれ、接続した。次いで、60℃、湿度95%の恒温恒湿槽の中で、50V印加を行い、イオンマイグレーションテスター(IMV社、「MIG-8600B/128」)を用いて抵抗値の連続測定を行った。50V印加時を測定開始時間とし、抵抗値が1.0E+6(1.0×106)Ω未満に低下するまでの時間を計測し、これを絶縁破壊時間とし、以下の基準に従って、厚さ方向(Z軸方向)の絶縁信頼性を評価した。
 ◎:絶縁破壊時間1500時間以上。
 ○:絶縁破壊時間1000時間以上1500時間未満。
 △:絶縁破壊時間500時間以上1000時間未満。
 ×:絶縁破壊時間500時間未満。
(4) Insulation reliability (insulation reliability in the thickness direction (Z-axis direction) of the coating film)
For the test piece manufactured in the test piece manufacturing step, the top surface of the electromagnetic wave shield film (Tatsuta Electric Wire Co., Ltd., "SF-PC5000") pasted on the cured coating film is used as the anode, and copper, which is the conductor of the test piece, is used. Was connected to the cathode, respectively. Next, 50 V was applied in a constant temperature and humidity chamber at 60 ° C. and a humidity of 95%, and the resistance value was continuously measured using an ion migration tester (IMV, “MIG-8600B / 128”). The measurement start time is when 50 V is applied, the time until the resistance value drops to less than 1.0E + 6 (1.0 × 106) Ω is measured, and this is the dielectric breakdown time. The insulation breakdown in the Z-axis direction) was evaluated.
⊚: Dielectric breakdown time 1500 hours or more.
◯: Dielectric breakdown time 1000 hours or more and less than 1500 hours.
Δ: Dielectric breakdown time 500 hours or more and less than 1000 hours.
X: Dielectric breakdown time is less than 500 hours.
 上記評価の結果を下記表1に示す。 The results of the above evaluation are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001



 上記表1に示すように、(A)カルボキシル基含有感光性樹脂と、(B)エポキシ化合物と、(C)ウレタンビーズと、(D)光重合開始剤と、(E)反応性希釈剤と、を含有し、(C)ウレタンビーズがシリカで被覆され、シリカ100質量%のうち20質量%以上が疎水性シリカである実施例1~8の感光性樹脂組成物では、72時間放置後でも分散性に優れ、吸水率を低減でき、また、折り曲げ性と絶縁信頼性に優れた硬化膜を形成できた。特に、ウレタンビーズを被覆するシリカが全て疎水性シリカからなる実施例1~5は、全シリカ中における疎水性シリカの割合が25~50質量%である実施例6~8と比較して、吸水率がより低減され、絶縁信頼性がさらに向上した。また、シリカの被覆率が15質量%である実施例2は、シリカの被覆率が10質量%である実施例1と比較して分散性がさらに向上し、シリカの被覆率が20質量%である実施例3と比較して折り曲げ性がさらに向上した。 As shown in Table 1 above, (A) a carboxyl group-containing photosensitive resin, (B) an epoxy compound, (C) urethane beads, (D) a photopolymerization initiator, and (E) a reactive diluent. , And (C) the urethane beads are coated with silica, and 20% by mass or more of the 100% by mass of silica is hydrophobic silica. In the photosensitive resin compositions of Examples 1 to 8, even after being left for 72 hours. It was possible to form a cured film having excellent dispersibility, a reduced water absorption rate, and excellent bendability and insulation reliability. In particular, Examples 1 to 5 in which the silica covering the urethane beads is entirely hydrophobic silica have water absorption as compared with Examples 6 to 8 in which the ratio of hydrophobic silica in the total silica is 25 to 50% by mass. The rate was further reduced and the insulation reliability was further improved. Further, in Example 2 in which the silica coverage is 15% by mass, the dispersibility is further improved as compared with Example 1 in which the silica coverage is 10% by mass, and the silica coverage is 20% by mass. The bendability was further improved as compared with a certain Example 3.
 また、ジメチルシロキシル化シリカでウレタンビーズを被覆した実施例2は、オクチルシロキシル化シリカでウレタンビーズを被覆した実施例4、メタクリルシロキシル化シリカでウレタンビーズを被覆した実施例5と比較して、分散性と折り曲げ性がさらに向上した。また、実施例6~8から、全シリカ中における疎水性シリカの割合が大きくなるほど、吸水率を低減することができた。 Further, Example 2 in which the urethane beads were coated with dimethylsiloxylated silica was compared with Example 4 in which the urethane beads were coated with octylsiloxylated silica and Example 5 in which the urethane beads were coated with methacrylicylated silica. As a result, dispersibility and bendability have been further improved. Further, from Examples 6 to 8, the water absorption rate could be reduced as the ratio of hydrophobic silica in the total silica increased.
 一方で、ウレタンビーズを配合しなかった比較例1では、折り曲げ性が得られなかった。また、疎水性シリカが配合されておらず、シリカの被覆率が10質量%である比較例2では、分散性が得られず、吸水率も高くなってしまった。疎水性シリカが配合されておらず、シリカの被覆率が15質量%である比較例3、疎水性シリカが配合されておらず、シリカの被覆率が20質量%である比較例4では、吸水率が高くなり、絶縁信頼性が得られなかった。 On the other hand, in Comparative Example 1 in which urethane beads were not blended, bendability could not be obtained. Further, in Comparative Example 2 in which hydrophobic silica was not blended and the silica coverage was 10% by mass, dispersibility could not be obtained and the water absorption rate was high. In Comparative Example 3 in which hydrophobic silica is not blended and the silica coverage is 15% by mass, and in Comparative Example 4 in which hydrophobic silica is not blended and the silica coverage is 20% by mass, water absorption is absorbed. The rate was high and insulation reliability could not be obtained.
 本発明では、貯蔵保管中の分散性に優れ、吸水率を低減でき、また、折り曲げ性と絶縁信頼性に優れた硬化膜を形成できるので、例えば、フレキシブルプリント配線板にソルダーレジスト膜等の絶縁保護膜を設ける分野で利用価値が高い。 In the present invention, it is possible to form a cured film having excellent dispersibility during storage and storage, reducing the water absorption rate, and having excellent bendability and insulation reliability. Therefore, for example, insulation of a solder resist film or the like on a flexible printed wiring board can be formed. It has high utility value in the field of providing a protective film.

Claims (9)

  1.  (A)カルボキシル基含有感光性樹脂と、(B)エポキシ化合物と、(C)ウレタンビーズと、(D)光重合開始剤と、(E)反応性希釈剤と、を含有し、
     前記(C)ウレタンビーズがシリカで被覆され、前記シリカ100質量%のうち20質量%以上が疎水性シリカである感光性樹脂組成物。
    It contains (A) a carboxyl group-containing photosensitive resin, (B) an epoxy compound, (C) urethane beads, (D) a photopolymerization initiator, and (E) a reactive diluent.
    A photosensitive resin composition in which the urethane beads (C) are coated with silica, and 20% by mass or more of the 100% by mass of the silica is hydrophobic silica.
  2.  前記シリカ100質量%のうち30質量%以上が疎水性シリカである請求項1に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein 30% by mass or more of the 100% by mass of the silica is hydrophobic silica.
  3.  前記(C)ウレタンビーズの、前記シリカの被覆率が、1.0質量%以上40質量%以下である請求項1または2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1 or 2, wherein the silica coverage of the urethane beads (C) is 1.0% by mass or more and 40% by mass or less.
  4.  前記(C)ウレタンビーズの、前記シリカの被覆率が、5.0質量%以上30質量%以下である請求項1または2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1 or 2, wherein the silica coverage of the urethane beads (C) is 5.0% by mass or more and 30% by mass or less.
  5.  前記疎水性シリカが、モノアルキルシリル基で表面改質されているモノアルキルシロキシル化シリカ、ジアルキルシリル基で表面改質されているジアルキルシロキシル化シリカ、トリアルキルシリル基で表面改質されているトリアルキルシロキシル化シリカ、(メタ)アクリルシリル基で表面改質されている(メタ)アクリルシロキシル化シリカ、ジアルキルシロキサン基で表面改質されているシリカ及びジアルキルポリシロキサン基で表面改質されているシリカからなる群から選択された少なくとも1種である請求項1乃至4のいずれか1項に記載の感光性樹脂組成物。 The hydrophobic silica is surface-modified with a monoalkylsiloxylated silica surface-modified with a monoalkylsilyl group, a dialkylsiloxylated silica surface-modified with a dialkylsilyl group, and a trialkylsilyl group. Trialkylsiloxylated silica, surface-modified (meth) acrylic siloxylated silica with (meth) acrylic silyl group, surface-modified silica with dialkylsiloxane group and surface-modified with dialkylpolysiloxane group The photosensitive resin composition according to any one of claims 1 to 4, which is at least one selected from the group consisting of silica.
  6.  前記疎水性シリカが、モノアルキルシリル基で表面改質されているモノアルキルシロキシル化シリカ、ジアルキルシリル基で表面改質されているジアルキルシロキシル化シリカ、(メタ)アクリルシリル基で表面改質されている(メタ)アクリルシロキシル化シリカからなる群から選択された少なくとも1種である請求項1乃至4のいずれか1項に記載の感光性樹脂組成物。 The hydrophobic silica is surface-modified with a monoalkylsiloxylated silica surface-modified with a monoalkylsilyl group, a dialkylsiloxylated silica surface-modified with a dialkylsilyl group, and a surface-modified with a (meth) acrylicsilyl group. The photosensitive resin composition according to any one of claims 1 to 4, which is at least one selected from the group consisting of (meth) acrylic siloxylated silica.
  7.  前記(A)カルボキシル基含有感光性樹脂100質量部に対して、前記シリカで被覆された(C)ウレタンビーズを、35質量部以上150質量部以下含有する請求項1乃至6のいずれか1項に記載の感光性樹脂組成物。 One of claims 1 to 6, wherein the urethane beads (C) coated with silica are contained in an amount of 35 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the (A) carboxyl group-containing photosensitive resin. The photosensitive resin composition according to.
  8.  請求項1乃至7のいずれか1項に記載の感光性樹脂組成物の塗膜を有するドライフィルム。 A dry film having a coating film of the photosensitive resin composition according to any one of claims 1 to 7.
  9.  請求項1乃至7のいずれか1項に記載の感光性樹脂組成物の光硬化膜を有する配線板。 A wiring board having a photocurable film of the photosensitive resin composition according to any one of claims 1 to 7.
PCT/JP2021/043588 2020-11-30 2021-11-29 Photosensitive resin composition WO2022114175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180080124.3A CN116602060A (en) 2020-11-30 2021-11-29 Photosensitive resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-198850 2020-11-30
JP2020198850A JP7118124B2 (en) 2020-11-30 2020-11-30 Photosensitive resin composition

Publications (1)

Publication Number Publication Date
WO2022114175A1 true WO2022114175A1 (en) 2022-06-02

Family

ID=81754435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043588 WO2022114175A1 (en) 2020-11-30 2021-11-29 Photosensitive resin composition

Country Status (4)

Country Link
JP (1) JP7118124B2 (en)
CN (1) CN116602060A (en)
TW (1) TW202235533A (en)
WO (1) WO2022114175A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293882A (en) * 2001-03-30 2002-10-09 Taiyo Ink Mfg Ltd Photo-curing and thermosetting resin composition, and print wiring board
JP2019056824A (en) * 2017-09-21 2019-04-11 株式会社タムラ製作所 Photocured film of photosensitive resin composition and printed wiring board having photocured film of photosensitive resin composition
JP2020148971A (en) * 2019-03-14 2020-09-17 株式会社タムラ製作所 Photosensitive resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293882A (en) * 2001-03-30 2002-10-09 Taiyo Ink Mfg Ltd Photo-curing and thermosetting resin composition, and print wiring board
JP2019056824A (en) * 2017-09-21 2019-04-11 株式会社タムラ製作所 Photocured film of photosensitive resin composition and printed wiring board having photocured film of photosensitive resin composition
JP2020148971A (en) * 2019-03-14 2020-09-17 株式会社タムラ製作所 Photosensitive resin composition

Also Published As

Publication number Publication date
CN116602060A (en) 2023-08-15
TW202235533A (en) 2022-09-16
JP2022086696A (en) 2022-06-09
JP7118124B2 (en) 2022-08-15

Similar Documents

Publication Publication Date Title
JP2020148971A (en) Photosensitive resin composition
JP6822987B2 (en) Photosensitive resin composition
JP6993154B2 (en) Photosensitive resin composition
JP7028828B2 (en) Manufacturing method of wiring board with protective coating
JP6872302B2 (en) Black photosensitive resin composition
JP7118124B2 (en) Photosensitive resin composition
JP6909551B2 (en) Photosensitive resin composition
JP6802207B2 (en) Photosensitive resin composition
JP6986476B2 (en) Photosensitive resin composition
JP7295299B2 (en) Photosensitive resin composition
JP7118043B2 (en) Photosensitive resin composition
JP7202282B2 (en) Photosensitive resin composition and dry film containing photosensitive resin composition
JP6811757B2 (en) Photosensitive resin composition
JP7001866B1 (en) A method for manufacturing a photosensitive dry film and a printed wiring board using a photosensitive dry film.
WO2022202979A1 (en) Photosensitive resin composition
KR20190034119A (en) A photosensitive resin composition
JP7258004B2 (en) photosensitive composition
JP6986534B2 (en) A printed wiring board having a photosensitive resin composition, a dry film having a photosensitive resin composition, and a photocured product of the photosensitive resin composition.
JP2023044637A (en) Photosensitive resin composition, dry film having photosensitive resin composition, and printed wiring board having cured product of photosensitive resin composition
JP7133594B2 (en) Photosensitive resin composition
JP7405803B2 (en) Photosensitive resin composition, photocured product of the photosensitive resin composition, and printed wiring board coated with the photosensitive resin composition
JP2023143764A (en) Photosensitive resin composition, photocured product of photosensitive resin composition, and printed wiring board having photocured film of photosensitive resin composition
TW202328815A (en) A photosensitive resin composition a dry film comprising the composition and a printed circuit board comprising a cured material of the composition
JP2023047298A (en) Photosensitive resin composition, photocured product of photosensitive resin composition, and printed wiring board having photosensitive resin composition applied thereto
JP2023183285A (en) Photosensitive resin composition, photocured product of photosensitive resin composition, and printed wiring board with photocured film of photosensitive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180080124.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898147

Country of ref document: EP

Kind code of ref document: A1