WO2022113987A1 - 新規化合物、抗プラス鎖rnaウイルス剤、及び脂肪滴産生抑制剤 - Google Patents

新規化合物、抗プラス鎖rnaウイルス剤、及び脂肪滴産生抑制剤 Download PDF

Info

Publication number
WO2022113987A1
WO2022113987A1 PCT/JP2021/042944 JP2021042944W WO2022113987A1 WO 2022113987 A1 WO2022113987 A1 WO 2022113987A1 JP 2021042944 W JP2021042944 W JP 2021042944W WO 2022113987 A1 WO2022113987 A1 WO 2022113987A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
mmol
nmr
mhz
Prior art date
Application number
PCT/JP2021/042944
Other languages
English (en)
French (fr)
Inventor
幸司 倉持
啓史 大橋
宏太 西内
幸一 渡士
Original Assignee
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学 filed Critical 学校法人東京理科大学
Priority to JP2022565363A priority Critical patent/JPWO2022113987A1/ja
Publication of WO2022113987A1 publication Critical patent/WO2022113987A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/06Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having one or two double bonds between ring members or between ring members and non-ring members
    • C07D241/08Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having one or two double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms

Definitions

  • the present invention relates to a novel compound, an anti-plus-strand RNA virus agent, and a lipid droplet production inhibitor.
  • NeoB neoequinulin B
  • LXR liver X receptor
  • NeoB derivatives as an active ingredient of an antiviral agent against a positive-strand RNA virus (also referred to as a single-strand plus-strand RNA virus) such as HCV, or as an active ingredient of a lipid droplet production inhibitor.
  • a positive-strand RNA virus also referred to as a single-strand plus-strand RNA virus
  • HCV single-strand plus-strand RNA virus
  • the subject of the present invention is to find a novel compound useful as an active ingredient of an antiviral agent and a lipid droplet production inhibitor against a plus-strand RNA virus, and to obtain an antiviral agent and a lipid droplet production inhibitor containing the novel compound as an active ingredient. To provide.
  • the present inventors have found that the compound represented by the following formula (1) is useful as an active ingredient of an antiviral agent and a lipid droplet production inhibitor against a positive-strand RNA virus, and the present invention has been made. Has been completed. That is, the present invention is as shown below.
  • RNA virus hepatitis C virus or SARS-CoV-2.
  • ⁇ 6> A lipid droplet production inhibitor containing the compound according to ⁇ 1> or ⁇ 2> as an active ingredient.
  • a novel compound useful as an active ingredient of an antiviral agent and a lipid droplet production inhibitor against a plus-chain RNA virus, and an antiviral agent and a lipid droplet production inhibitor containing the compound as an active ingredient are provided. be able to.
  • FIG. It is a figure explaining the experimental procedure of Test Example 1.
  • FIG. It is a figure which shows the measurement result of the infectious titer in Test Example 1.
  • FIG. It is a figure which shows the measurement result of the MTT assay in Test Example 1.
  • FIG. It is a figure explaining the experimental procedure of Test Example 2.
  • FIG. It is a figure which shows the virus RNA quantification result in Test Example 2.
  • the compound of the present invention is a compound represented by the following formula (1).
  • R represents an aryl group which may have a substituent or a heteroaryl group which may have a substituent.
  • the aryl group represented by R includes a monocyclic group such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a fluorenyl group, an indenyl group, an acenaphthylenyl, an indanyl group, and an acenaphthenyl group, or a double-four condensed group.
  • a phenyl group, a naphthyl group, and a pyrenyl group are particularly preferable.
  • heteroaryl group represented by R examples include a monocyclic nitrogen-containing group such as a pyrrolyl group, a pyridyl group, an imidazolyl group, a pyrazolyl group, a pyrazinyl group, a pyridadinyl group, a pyrimidinyl group, a triazolyl group and a tetrazolyl group; a furanyl group and the like.
  • Monocyclic oxygen-containing group Monocyclic sulfur-containing group such as thienyl group; Monocyclic nitrogen-containing / oxygen group such as oxazolyl group, isooxazolyl group, oxadiazolyl group; thiazolyl group, isothiazolyl group, thiadiazolyl group, etc.
  • R is an aryl group which may have a substituent.
  • Substituents that the aryl group or heteroaryl group represented by R may have include a cyano group, a halogen atom, a hydroxy group, an amino group, a nitro group, a nitroxy group, a mercapto group, a cyanate group, a thiocyanate group, and an iso. Examples thereof include a thiocyanate group, a sulfo group, a sulfamino group, a sulfino group, a sulfamoyl group, a phospho group, a phosphono group, a boronyl group, and a monovalent organic group.
  • the monovalent organic group includes an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a non-aromatic heterocyclic group, a heteroaryl group, an arylalkyl group, a carboxy group, a formyl group, a formyloxy group and an acetal.
  • These monovalent organic groups may be groups to which one or more organic groups exemplified above are bonded.
  • these organic groups include a cyano group, a halogen atom, a hydroxy group, an amino group, a nitro group, a nitroxy group, a mercapto group, a cyanate group, a thiocianate group, an isothiocyanate group, a sulfo group, a sulfamino group, a sulfino group and a sulfamoyl group.
  • a phospho group, a phosphono group, a boronyl group and the like may be appropriately substituted with one or more groups.
  • substituents that the aryl group represented by R or the heteroaryl group may have, preferable substituents are an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and carbon in the alkyl moiety. Examples thereof include an alkoxycarbonyl group having 1 to 6 carbon atoms, a dialkylamino group having 1 to 6 carbon atoms in the alkyl portion, and a haloalkyl group having 1 to 6 carbon atoms.
  • the aryl group or heteroaryl group represented by R has a plurality of substituents
  • the plurality of substituents may be the same or different.
  • R excludes the group represented by the following formula (2).
  • * indicates a bond.
  • R is preferably a group represented by the following formula (3).
  • * indicates a bond.
  • Ra is a hydrogen atom, an alkoxycarbonyl group having 1 to 6 carbon atoms in the alkyl moiety (preferably 1 to 4 carbon atoms in the alkyl moiety), and 1 to 6 carbon atoms (preferably carbon atoms).
  • the haloalkyl groups of 1 to 4) are shown.
  • the compound represented by the above formula (1) may be in the form of a salt.
  • the compound when the compound represented by the above formula (1) has an acidic functional group, the compound may be an alkali metal salt (sodium salt, potassium salt, etc.), an alkaline earth metal salt (calcium salt, magnesium salt, etc.), or the like. It may be in the form of an ammonium salt or the like.
  • the compound represented by the above formula (1) has a basic functional group, the compound may be in the form of a salt with an inorganic acid such as hydrochloric acid or phosphoric acid, and acetic acid, fumaric acid or methane. It may be in the form of a salt with an organic acid such as sulfonic acid.
  • the antiviral agent against the positive-strand RNA virus contains the compound represented by the above formula (1) as an active ingredient and is formulated.
  • the compound represented by the above formula (1) has an antagonistic activity against the liver X receptor (LXR) and suppresses transcription of a gene present downstream of the LXR response sequence.
  • LXR liver X receptor
  • SCD-1 gene involved in the lipid fluidity of the endoplasmic reticulum.
  • DMVs double membrane vesicles
  • the compound represented by the above formula (1) can inhibit the formation of DMV by suppressing the transcription of the SCD-1 gene, and as a result, suppress the replication of the positive-strand RNA virus.
  • the plus-strand RNA virus is not particularly limited, and for example, hepatitis C virus, SARS-CoV-2, SARS-CoV, MERS-CoV, West Nile virus, Japanese encephalitis virus, yellow fever virus, chikungnia virus, rhinovirus, etc.
  • examples thereof include encephalomyelitis virus, poliovirus, coxsackie virus, enterovirus 71, enterovirus D68, hepatitis A virus, aichi virus, human parecovirus, ruin virus, norovirus, hepatitis E virus and the like.
  • Antiviral agents against positive-strand RNA virus can be produced by any method adopted in the fields of pharmaceuticals, research reagent products, etc., or by a method with appropriate improvements.
  • the antiviral agent against the positive-strand RNA virus may contain a conventional organic or inorganic carrier as a pharmaceutical material.
  • This carrier can be used as an excipient, a lubricant, a binder, a disintegrant, etc. in a solid preparation, and as a solvent, a solubilizing agent, a suspending agent, an tonicity agent, a buffering agent, etc. in a liquid preparation. It is compounded.
  • the antiviral agent against the positive-strand RNA virus may contain a pharmaceutical additive such as a preservative, an antioxidant, a colorant, and a sweetener.
  • the dosage form of the antiviral agent against the positive-strand RNA virus is not particularly limited. Dosage forms include tablets, capsules, granules, powders, troches, syrups, emulsions, suspensions, oral preparations such as films; injections, infusions, external preparations, suppositories, pellets, nasal passages. Parenteral agents such as agents, transpulmonary agents (inhalants), eye drops, etc .; and the like.
  • the application target of the antiviral agent to the positive-strand RNA virus is not particularly limited, and mammals and the like can be preferably mentioned.
  • the mammal may be either a human or a non-human animal (mouse, rat, hamster, rabbit, cat, dog, cow, sheep, monkey, etc.).
  • the dose of the antiviral agent for the positive-strand RNA virus is appropriately determined according to the administration target, administration route, target disease, symptom, and the like.
  • the antiviral agent against the positive-strand RNA virus may be administered in combination with other agents depending on the purpose of administration and the like.
  • the type and amount of the drug to be used in combination with the antiviral agent for the plus-strand RNA virus are appropriately selected based on the effect to be obtained, and may be administered together with the antiviral agent for the plus-strand RNA virus, or administered separately. You may.
  • the antiviral agent against SARS-CoV-2 includes an antiviral agent containing a compound (NeoB) represented by the following formula (4) as an active ingredient.
  • the antiviral agent against SARS-CoV-2 can be produced by any method adopted in the fields of pharmaceuticals, research reagent products, etc., or by a method with appropriate improvements.
  • the same carrier, dosage form, application target, dose, etc. as those described in the antiviral agent against positive-strand RNA virus can be adopted.
  • the lipid droplet production inhibitor contains a compound represented by the above formula (1) as an active ingredient and is formulated.
  • the compound represented by the above formula (1) has an antagonistic activity against the liver X receptor (LXR) and suppresses transcription of a gene present downstream of the LXR response sequence.
  • the SREBP-1c gene is one of the genes existing downstream of the LXR response sequence.
  • the compound represented by the above formula (1) can suppress the production of lipid droplets in the cell. Therefore, lipid droplet production inhibitors include non-alcoholic steatohepatitis (NASH), non-alcoholic steatohepatitis (NAFLD), hypercholesterolemia, hyperlipoproteinemia, hypertriglyceridemia, arteriosclerosis, etc. It is effective in the prevention or treatment of diseases related to dyslipidemia.
  • the lipid droplet production inhibitor can be produced by any method adopted in the fields of pharmaceuticals, research reagent products, etc., or by a method with appropriate improvements.
  • the same carrier, dosage form, application target, dose, etc. as those described in the antiviral agent against positive-strand RNA virus can be adopted.
  • the compound represented by the above formula (1) was synthesized by the following general synthesis methods (1) and (2).
  • aldehyde A (0.20 mmol) and diketopiperazine B (0.40 mmol) were dissolved in DMF, cooled to 0 ° C., and then potassium tert-butoxide (0.58 mmol) was added. Then, the reaction was carried out by returning to room temperature, and a saturated ammonium chloride solution was added to stop the reaction. The organic layer was extracted with ethyl acetate, washed with water and saturated brine, and dried over anhydrous sodium sulfate. After removing anhydrous sodium sulfate by filtration, the solvent was removed under reduced pressure, and purification was performed by column chromatography to obtain compound C.
  • the compound C obtained above was dissolved in THF, a THF solution containing 1M tetrabutylammonium fluoride (TBAF) was added to carry out the reaction, and then a saturated ammonium chloride solution was added to terminate the reaction.
  • THF tetrabutylammonium fluoride
  • the organic layer was extracted with ethyl acetate, washed with water and saturated brine, removed with anhydrous sodium sulfate, and the solvent was removed under reduced pressure.
  • Methanol was added to the obtained solid and suspended, and then purified by centrifugation (3500 rpm, 2 min) to obtain compound D.
  • compound C1 (107 mg, 0.23 mmol) is dissolved in THF (2.0 mL), TBAF (460 ⁇ L, 0.46 mmol) is added and reacted, and compound D1 (50.8 mg, 50.8 mg,) is reacted. 75%) was obtained as a yellow solid.
  • the chemical structure and physical property data of the obtained compound D1 are as follows.
  • compound D1 (43.3 mg, 0.15 mmol) was dissolved in DMF (1.5 ml), hydrazine monohydrate (14.0 ⁇ L, 0.44 mmol) was added and reacted, and compound 1 (14. 9 mg, 40%) was obtained as a yellow solid.
  • the chemical structure and physical property data of the obtained compound 1 are as follows.
  • NeoB> According to the general synthesis method 1, aldehyde A16 (51.4 mg, 0.20 mmol) and diketopiperazine B (137 mg, 0.40 mmol) were dissolved in DMF (2.0 mL), and potassium tert-butoxide (65.3 mg, 65.3 mg,) was dissolved in DMF (2.0 mL). 0.58 mmol) was added and reacted. Using the recovered aldehyde A16, the reaction was carried out again according to the general synthesis method 1. The reaction was carried out a total of 4 times to obtain compound C16 (15.2 mg, 14%) as a yellow oily substance. The chemical structure and physical property data of the obtained compound C16 are as follows.
  • NeoB (4.4 mg, 77%) is added. Obtained as a yellow solid.
  • the obtained chemical structure and physical property data of NeoB are as follows.
  • Test Example 1 HCV infection system test
  • Test Example 1 the infectious titer when the compound synthesized above and NeoB were added to HCV-infected cells was confirmed. The test procedure is shown in FIG.
  • cytotoxicity was confirmed by MTT assay.
  • the MTT assay was performed using Cell proliferation Kit II XTT (Roche Diagnostics). The results of the MTT assay are shown in FIG.
  • HCV-infected cells were performed by the following method. First, after removing the supernatant and washing once with PBS, the 96-well plate was submerged in a water tank containing 100% methanol solution and treated at ⁇ 20 ° C. for 20 minutes. Next, methanol was completely removed, and 100 ⁇ L of Block ace (Snow Brand Dairy Industry) containing 0.3% Triton X 100 was added to each well, and blocking was performed at room temperature for 1 hour. After washing twice with PBS after 1 hour, 50 ⁇ L of a 500-fold diluted anti-HCV core antibody (2H9) was added, and the mixture was incubated overnight at 4 ° C. in the dark.
  • Block ace Snow Brand Dairy Industry
  • Test Example 2 SARS-CoV-2 infectious system test
  • Test Example 2 the amount of viral RNA when the compounds 2, 10, 12, and NeoB synthesized above were added to cells infected with SARS-CoV-2 was confirmed.
  • the test procedure is shown in FIG.
  • the viral RNA contained in the extract was quantified by real-time RT-PCR using THUNDERBIRD Probe One-step qRT-PCR kit (TOYOBO).
  • TOYOBO THUNDERBIRD Probe One-step qRT-PCR kit
  • the sequences of primers and probes used in real-time RT-PCR are as follows. The probe used was modified with FAM at the 5'end and TAMRA at the 3'end.
  • FIG. 5 shows the quantitative results of SARS-CoV-2 virus RNA when each compound was added.
  • Test Example 3 Evaluation of transcriptional activity of LXR
  • Test Example 3 the transcriptional activity of LXR when the compound 6 and NeoB synthesized above were added to Huh-7 cells was confirmed.
  • Huh-7 cells were seeded on a 6-well plate at a cell density of 5 ⁇ 10 4 cells / well and cultured overnight.
  • a reporter plasmid encoding luciferase downstream of the DNA binding element of LXR was introduced into these cells by TransIT-LT1 Transfection Reagent (TaKaRa). After 12 hours, the cells were reseeded in 96-well plates at a cell density of 7.0 ⁇ 10 3 cells / well. After culturing overnight, compound 6 (5 ⁇ M) or NeoB (10 ⁇ M) and the LXR agonist T0901317 (1 ⁇ M) were added, and culturing was continued for 60 hours.
  • DMSO dimethyl sulfoxide
  • NeoB dimethyl sulfoxide
  • 30 ⁇ L of 1 ⁇ Passive Lysis Buffer (Promega) was added to each well, and the cells were allowed to stand at room temperature for 20 minutes to lyse the cells.
  • 8 ⁇ L of cell lysate and 25 ⁇ L of Luciferase Assay Substrate (Promega) were added to a white half-area 96-well plate (Corning) for measurement, and the luciferase luminescence signal was measured by 2030 Multilabel Reader (PerkinElmer). The activity was evaluated. The results are shown in FIG.
  • the addition of the LXR agonist T0901317 enhanced the transcriptional activity of LXR, but the co-addition of compound 6 (5 ⁇ M) or NeoB (10 ⁇ M) significantly suppressed the transcriptional activity of LXR ( ** p ⁇ 0.01; * p ⁇ 0.05).
  • Test Example 4 Evaluation of lipid droplet production of HCV-infected cells
  • Test Example 3 lipid droplet production was confirmed when the compound 6 and NeoB synthesized above were added to HCV-infected Huh-7 cells.
  • HCV-infected Huh-7 cells were seeded on collagen-coated 8-well chamber slides at a cell density of 1.0 ⁇ 10 4 cells / well and cultured overnight. Then, compound 6 (5 ⁇ M) or NeoB (20 ⁇ M) was added, and the culture was continued for 72 hours. As a control, dimethyl sulfoxide (DMSO) was added instead of compound 6 or NeoB. After washing the cultured cells once with PBS, 4% paraformaldehyde was added, and the cells were allowed to stand at room temperature for 20 minutes for fixation.
  • DMSO dimethyl sulfoxide

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

下記式(1)で表される新規化合物、並びに該化合物を有効成分として含有するプラス鎖RNAウイルスに対する抗ウイルス剤及び脂肪滴産生抑制剤を提供する。式(1)中、Rは置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を示す。但し、Rは下記式(2)で表される基を除く。式(2)中、*は結合手を示す。

Description

新規化合物、抗プラス鎖RNAウイルス剤、及び脂肪滴産生抑制剤
 本発明は、新規化合物、抗プラス鎖RNAウイルス剤、及び脂肪滴産生抑制剤に関する。
 従来より、C型肝炎の治療には直接作用型抗ウイルス薬が用いられているが、このような抗ウイルス薬は、C型肝炎ウイルス(HCV)の増殖に関わるタンパク質を直接阻害することで、ウイルスの増殖を抑制する。しかし、近年、このような抗HCVウイルス薬に耐性を示すウイルスが出現しており、薬効が出づらい患者が現れているという問題がある。
 本発明者らは、in vitroスクリーニングによって、HCVの増殖を妨げる化合物としてネオエキヌリンB(NeoB)を同定し、報告した(非特許文献1参照)。この報告では、NeoBが肝臓X受容体(LXR)に対するアンタゴニスト活性を有し、LXR応答配列の下流に存在する遺伝子の転写を抑制すること;LXRがHCV複製のプロセスにおいて重要な役割を果たしていること;等を明らかにしている。
 しかし、これまでに、NeoB誘導体のうち、HCVのようなプラス鎖RNAウイルス(一本鎖プラス鎖RNAウイルスとも称される)に対する抗ウイルス剤の有効成分、或いは脂肪滴産生抑制剤の有効成分として有用な新規化合物に関する報告はなかった。
Nakajima S.et al.,J.Virol.;2016;90;9058
 本発明の課題は、プラス鎖RNAウイルスに対する抗ウイルス剤及び脂肪滴産生抑制剤の有効成分として有用な新規化合物を見出し、該新規化合物を有効成分として含有する抗ウイルス剤及び脂肪滴産生抑制剤を提供することにある。
 本発明者らは、鋭意研究の結果、以下の式(1)に示される化合物が、プラス鎖RNAウイルスに対する抗ウイルス剤及び脂肪滴産生抑制剤の有効成分として有用であることを見出し、本発明を完成するに至った。すなわち、本発明は以下に示されるとおりのものである。
<1> 下記式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000004
[式中、Rは置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を示す。但し、Rは下記式(2)で表される基を除く。]
Figure JPOXMLDOC01-appb-C000005
[式中、*は結合手を示す。]
<2> 前記Rは置換基を有していてもよいアリール基を示す、<1>に記載の化合物。
<3> <1>又は<2>に記載の化合物を有効成分として含有する、プラス鎖RNAウイルスに対する抗ウイルス剤。
<4> 前記プラス鎖RNAウイルスがC型肝炎ウイルス又はSARS-CoV-2である、<3>に記載の抗ウイルス剤。
<5> 下記式(4)で表される化合物を有効成分として含有する、SARS-CoV-2に対する抗ウイルス剤。
Figure JPOXMLDOC01-appb-C000006
<6> <1>又は<2>に記載の化合物を有効成分として含有する、脂肪滴産生抑制剤。
 本発明によれば、プラス鎖RNAウイルスに対する抗ウイルス剤及び脂肪滴産生抑制剤の有効成分として有用な新規化合物、並びに該化合物を有効成分として含有する抗ウイルス剤及び脂肪滴産生抑制剤を提供することができる。
試験例1の実験手順を説明する図である。 試験例1における感染力価の測定結果を示す図である。 試験例1におけるMTTアッセイの測定結果を示す図である。 試験例2の実験手順を説明する図である。 試験例2におけるウイルスRNA定量結果を示す図である。 試験例3におけるLXRの転写活性の測定結果を示す図である。 試験例4における脂肪滴産生の測定結果を示す図である。
<化合物>
 本発明の化合物は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000007
 上記式(1)中、Rは置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を示す。
 Rで示されるアリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、フルオレニル基、インデニル基、アセナフチレニル、インダニル基、アセナフテニル基等の単環式又は2~4環の縮合多環式の基;などが挙げられる。Rで示されるアリール基として、特には、フェニル基、ナフチル基、及びピレニル基が好ましい。
 Rで示されるヘテロアリール基としては、ピロリル基、ピリジル基、イミダゾリル基、ピラゾリル基、ピラジニル基、ピリダジニル基、ピリミジニル基、トリアゾリル基、テトラゾリル基等の単環式の含窒素基;フラニル基等の単環式の含酸素基;チエニル基等の単環式の含硫黄基;オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基等の単環式の含窒素・酸素基;チアゾリル基、イソチアゾリル基、チアジアゾリル基等の単環式の含窒素・硫黄基;インドリル基、イソインドリル基、ベンズイミダゾリル基、インダゾリル基、ベンゾトリアゾリル基、テトラヒドロキノリル基、キノリル基、テトラヒドロイソキノリル基、イソキノリル基、キノリジニル基、シンノリニル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ナフチリジニル基、ピロロピリジル基、イミダゾピリジル基、ピラゾロピリジル基、ピリドピラジル基、プリニル基、プテリジニル基等の2環式の含窒素基;ベンゾフラニル基、イソベンゾフラニル基等の2環式の含酸素基;ベンゾチエニル基等の2環式の含硫黄基;ベンゾオキサゾリル基、ベンゾイソオキサゾリル基、ベンゾオキサジアゾリル基等の2環式の含窒素・酸素基;ベンゾチアゾリル基、ベンゾイソチアゾリル基、ベンゾチアジアゾリル基、チアゾロピリジル基等の2環式の含窒素・硫黄基;などが挙げられる。Rで示されるヘテロアリール基として、特には、インドリル基、フラニル基、及びチエニル基が好ましい。
 Rとしては、置換基を有していてもよいアリール基であることがより好ましい。
 Rで示されるアリール基又はヘテロアリール基が有していてもよい置換基としては、シアノ基、ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、ニトロキシ基、メルカプト基、シアネート基、チオシアネート基、イソチオシアネート基、スルホ基、スルファミノ基、スルフィノ基、スルファモイル基、ホスホ基、ホスホノ基、ボロニル基、1価の有機基等が挙げられる。
 1価の有機基としては、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、非芳香族複素環基、ヘテロアリール基、アリールアルキル基、カルボキシ基、ホルミル基、ホルミルオキシ基、アセタール化ホルミル基、ホルムアミド基、イソシアネート基、カルバモイル基、グアニジノ基;-OR、-C(=O)R、-C(=O)OR、-OC(=O)R、-NHR、-NR、-C(=NR)R、-C(=NR)NHR、-C(=NR)NR、-SR、-C(=O)NHR、-C(=O)NR、-C(=N-OR)R、-C(=NR)OR、-OC(=NR)R、-OC(=O)NHR、-OC(=O)NR、-NHC(=O)R、-NRC(=O)R、-NHC(=O)OR、-NRC(=O)OR、-NHC(=O)NHR、-NRC(=O)NHR、-NHC(=O)NR、-NRC(=O)NR、-NHC(=NR)R、-NRC(=NR)R、-S(=O)R、-S(=O)OR、-OS(=O)R、-NHS(=O)R、-NRS(=O)R、-NHC(=S)NR、-NRC(=S)NR、-NHC(=S)NHR、-NRC(=S)NHR、-S(=O)NHR、-S(=O)NR、-P(=O)R、-P(=O)(OR)、-P(=O)(NR、-P(=O)(NHR)、又は-SiRで表される基(式中、Rはそれぞれ独立に、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、非芳香族複素環基、又はヘテロアリール基を示す。);などが挙げられる。
 これらの1価の有機基は、上記で例示した1種以上の有機基が結合した基であってもよい。また、これらの有機基は、シアノ基、ハロゲン原子、ヒドロキシ基、アミノ基、ニトロ基、ニトロキシ基、メルカプト基、シアネート基、チオシアネート基、イソチオシアネート基、スルホ基、スルファミノ基、スルフィノ基、スルファモイル基、ホスホ基、ホスホノ基、ボロニル基等の1種以上の基で適宜置換されていてもよい。
 Rで示されるアリール基又はヘテロアリール基が有していてもよい置換基のうち、好ましい置換基としては、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、アルキル部の炭素数が1~6のアルコキシカルボニル基、アルキル部の炭素数が1~6のジアルキルアミノ基、炭素数1~6のハロアルキル基が挙げられる。
 Rで示されるアリール基又はヘテロアリール基が複数の置換基を有する場合、当該複数の置換基は同一であっても異なっていてもよい。
 上記式(1)中、Rは下記式(2)で表される基を除く。下記式(2)中、*は結合手を示す。
Figure JPOXMLDOC01-appb-C000008
 上記式(1)で表される化合物をSARS-CoV-2に対する抗ウイルス剤の有効成分として用いる場合、Rは下記式(3)で表される基であることが好ましい。下記式(3)中、*は結合手を示す。
Figure JPOXMLDOC01-appb-C000009
 上記式(3)中、Rは水素原子、アルキル部の炭素数が1~6(好ましくはアルキル部の炭素数が1~4)のアルコキシカルボニル基、炭素数1~6(好ましくは炭素数1~4)のハロアルキル基を示す。
 上記式(1)で表される化合物が酸性官能基又は塩基性官能基を有する場合、当該化合物は、塩の形態であってもよい。例えば、上記式(1)で表される化合物が酸性官能基を有する場合、当該化合物は、アルカリ金属塩(ナトリウム塩、カリウム塩等)、アルカリ土類金属塩(カルシウム塩、マグネシウム塩等)、アンモニウム塩等の形態であってもよい。また、上記式(1)で表される化合物が塩基性官能基を有する場合、当該化合物は、塩酸、リン酸等の無機酸との塩の形態であってもよく、酢酸、フマル酸、メタンスルホン酸等の有機酸との塩の形態であってもよい。
 上記式(1)で表される化合物の製造方法の詳細な説明は、後述する実施例の記載に任せる。
<プラス鎖RNAウイルスに対する抗ウイルス剤>
 プラス鎖RNAウイルスに対する抗ウイルス剤は、有効成分として上記式(1)で表される化合物を含有し、製剤化したものである。
 上記式(1)で表される化合物は、肝臓X受容体(LXR)に対するアンタゴニスト活性を有し、LXR応答配列の下流に存在する遺伝子の転写を抑制する。LXR応答配列の下流に存在する遺伝子の1つとして、小胞体の脂質流動性等に関与するSCD-1遺伝子がある。プラス鎖RNAウイルスに感染した細胞では、SCD-1遺伝子の転写が促進される結果、二重膜ベシクル(DMV)が多量に形成され、このDMV内でRNAの複製が行われる。上記式(1)で表される化合物は、SCD-1遺伝子の転写を抑制することによりDMVの形成を阻害し、その結果、プラス鎖RNAウイルスの複製を抑えることができる。
 プラス鎖RNAウイルスとしては特に限定されず、例えば、C型肝炎ウイルス、SARS-CoV-2、SARS-CoV、MERS-CoV、西ナイルウイルス、日本脳炎ウイルス、黄熱ウイルス、チクングニアウイルス、ライノウイルス、脳心筋炎ウイルス、ポリオウイルス、コクサッキーウイルス、エンテロウイルス71、エンテロウイルスD68、A型肝炎ウイルス、アイチウイルス、ヒトパレコウイルス、風疹ウイルス、ノロウイルス、E型肝炎ウイルス等が挙げられる。
 プラス鎖RNAウイルスに対する抗ウイルス剤は、医薬品や研究試薬品等の分野において採用される任意の方法や適当な改良を加えた方法によって製造することができる。
 プラス鎖RNAウイルスに対する抗ウイルス剤は、製剤素材として慣用の有機又は無機の担体を含有していてもよい。この担体は、固形製剤においては、賦形剤、滑沢剤、結合剤、崩壊剤等として、液状製剤においては、溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤等として配合される。また、プラス鎖RNAウイルスに対する抗ウイルス剤は、防腐剤、抗酸化剤、着色剤、甘味剤等の製剤添加物を含有していてもよい。
 プラス鎖RNAウイルスに対する抗ウイルス剤の剤形は特に制限されない。剤形としては、錠剤、カプセル剤、顆粒剤、散剤、トローチ剤、シロップ剤、乳剤、懸濁剤、フィルム剤等の経口剤;注射剤、点滴剤、外用剤、坐剤、ペレット、経鼻剤、経肺剤(吸入剤)、点眼剤等の非経口剤;などが挙げられる。
 プラス鎖RNAウイルスに対する抗ウイルス剤の適用対象は特に限定されず、哺乳動物等を好ましく挙げることができる。哺乳動物としては、ヒト、及び非ヒト動物(マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ヒツジ、サル等)のいずれであってもよい。
 プラス鎖RNAウイルスに対する抗ウイルス剤の投与量は、投与対象、投与経路、対象疾患、症状等に応じて適宜決定される。
 また、プラス鎖RNAウイルスに対する抗ウイルス剤は、投与目的等に応じて、他の薬剤と併用して投与してもよい。プラス鎖RNAウイルスに対する抗ウイルス剤とともに併用される薬剤の種類や量等は、得ようとする効果等に基づき適宜選択され、プラス鎖RNAウイルスに対する抗ウイルス剤とともに投与してもよく、別々に投与してもよい。
<SARS-CoV-2に対する抗ウイルス剤>
 SARS-CoV-2に対する抗ウイルス剤には、下記式(4)で表される化合物(NeoB)を有効成分として含有する抗ウイルス剤が含まれる。
Figure JPOXMLDOC01-appb-C000010
 SARS-CoV-2に対する抗ウイルス剤は、医薬品や研究試薬品等の分野において採用される任意の方法や適当な改良を加えた方法によって製造することができる。また、担体、剤形、適用対象、投与量等は、プラス鎖RNAウイルスに対する抗ウイルス剤において述べたものと同様のものを採用することができる。
<脂肪滴産生抑制剤>
 脂肪滴産生抑制剤は、有効成分として上記式(1)で表される化合物を含有し、製剤化したものである。
 上述したとおり、上記式(1)で表される化合物は、肝臓X受容体(LXR)に対するアンタゴニスト活性を有し、LXR応答配列の下流に存在する遺伝子の転写を抑制する。LXR応答配列の下流に存在する遺伝子の1つとして、SREBP-1c遺伝子がある。
上記式(1)で表される化合物は、SREBP-1c遺伝子の転写を抑制する結果、細胞内における脂肪滴の産生を抑制することができる。このため、脂肪滴産生抑制剤は、非アルコール性脂肪性肝炎(NASH)、非アルコール性脂肪性肝疾患(NAFLD)、高コレステロール血症、高リポタンパク質血症、高トリグリセリド血症、動脈硬化等の脂質異常症関連疾患の予防又は治療に有効である。
 脂肪滴産生抑制剤は、医薬品や研究試薬品等の分野において採用される任意の方法や適当な改良を加えた方法によって製造することができる。また、担体、剤形、適用対象、投与量等は、プラス鎖RNAウイルスに対する抗ウイルス剤において述べたものと同様のものを採用することができる。
 以下、実施例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[化合物の合成]
 上記式(1)で表される化合物の合成を、下記の一般合成法(1)及び(2)により行った。
<一般合成法(1)>
Figure JPOXMLDOC01-appb-C000011
 上記スキームのとおり、アルデヒド A(0.20mmol)と、ジケトピペラジン B(0.40mmol)とをDMFに溶かし、0℃に冷却した後、カリウムtert-ブトキシド(0.58mmol)を加えた。その後、室温に戻して反応を行い、飽和塩化アンモニウム溶液を加えて反応を停止させた。酢酸エチルで有機層を抽出した後、水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。濾過により、無水硫酸ナトリウムを除去した後、溶媒を減圧除去し、カラムクロマトグラフィーによる精製を行い、化合物Cを得た。
<一般合成法(2)>
Figure JPOXMLDOC01-appb-C000012
 上記で得た化合物CをTHFに溶かし、1M テトラブチルアンモニウムフルオライド(TBAF)を含有するTHF溶液を加えて反応を行った後に、飽和塩化アンモニウム溶液を加えて反応を停止した。酢酸エチルで有機層を抽出した後、水、飽和食塩水で洗浄し、無水硫酸ナトリウムで除去した後、溶媒を減圧除去した。得られた固体にメタノールを加え懸濁した後、遠心(3500rpm,2min)による精製を行い、化合物Dを得た。
 上記一般合成法(1)及び一般合成法(2)を用いて、下記の化合物1~15及びNeoBを合成した。
<合成例1:化合物1>
 上記一般合成法1に従って、下記に示す化学構造のアルデヒド A1(37.4mg,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C1(83.5mg,89%)を黄色固体で得た。
Figure JPOXMLDOC01-appb-C000013
 得られた化合物C1の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000014
Mp = 173-174℃; IR (KBr) νmax = 3282, 3132, 3080, 3020, 2952, 2931, 2893, 2856, 1711, 1678, 1622, 1552 cm-11H NMR (400 MHz, CDCl3) δ 8.45 (d, J = 7.7 Hz, 1H), 8.03 (s, 1H), 7.65-7.63 (m, 2H), 7.46 (t, J = 7.7 Hz, 1H), 7.37 (t, J = 7.7 Hz, 1H), 7.21 (s, 1H), 5.11 (s, 1H), 4.14 (d, J = 10.3 Hz, 1H), 3.94 (dd, J = 10.3, 2.6 Hz, 1H), 2.70 (s, 3H), 2.64 (s, 3H), 0.79 (s, 9H), -0.02 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.4, 168.3, 165.6, 160.7, 135.6, 128.9, 127.5, 126.5, 124.4, 123.9, 119.5, 116.8, 115.1, 108.8, 64.5, 59.3, 26.7, 25.6 (3C), 24.1, 18.2, -5.78, -5.89; HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C24H32N3O5Si 470.2106; Found 470.2104.
 次に、上記一般合成法2に従って、化合物C1(107mg,0.23mmol)をTHF(2.0mL)に溶かし、TBAF(460μL,0.46mmol)を加えて反応させ、化合物D1(50.8mg,75%)を黄色固体で得た。得られた化合物D1の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000015
Mp = 256-257℃; IR (KBr) νmax = 3178, 3006, 2889, 2821, 1707, 1680, 1643, 1562 cm-11H NMR (400 MHz, DMSO-d6) δ 11.02 (s, 1H), 10.25 (s, 1H), 8.36 (d, J = 7.4 Hz, 1H), 8.31 (s, 1H), 7.67 (d, J = 7.4 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 6.91 (s, 1H), 5.32 (s, 1H), 4.96 (s, 1H), 2.74 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 170.1, 157.2, 157.1, 134.78, 134.76, 129.9, 127.1, 126.8, 125.6, 124.1, 118.9, 116.2, 113.0, 104.7, 100.6, 24.2; HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C16H13N3NaO3 318.0849; Found 318.0858.
 次に、化合物D1(43.3mg,0.15mmol)をDMF(1.5ml)に溶かし、ヒドラジン一水和物(14.0μL,0.44mmol)を加えて反応させて、化合物1(14.9mg,40%)を黄色固体で得た。得られた化合物1の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000016
Mp = 285-286℃; IR (KBr) νmax = 3330, 3257, 3188, 3051, 1682, 1637, 1601, 1529 cm-11H NMR (400 MHz, DMSO-d6) δ 11.74 (s, 1H), 10.82 (s, 1H), 9.66 (s, 1H), 8.07 (s, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.43 (d, J = 7.7 Hz, 1H), 7.18 (t, J = 7.7 Hz, 1H), 7.11 (t, J = 7.7 Hz, 1H), 7.07 (s, 1H), 5.25 (s, 1H), 4.89 (s, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 157.8, 156.9, 135.9, 135.1, 127.3, 127.1, 122.4, 122.2, 120.3, 118.2, 112.1, 108.6, 107.9, 99.5; HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C14H11N3NaO2 276.0744; Found 276.0749.
<合成例2:化合物2>
 上記一般合成法1に従って、アルデヒド A2(21.0μL,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C2(63.9mg,82%)を白色固体で得た。なお、合成例2以降では、用いたアルデヒドの化学構造の記載は省略する。得られた化合物C2の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000017
Mp = 104-105℃; IR (KBr) νmax = 3242, 2956, 2929, 2885, 2856, 1682, 1633 cm-11H NMR (400 MHz, CDCl3) δ 7.95 (s, 1H), 7.47-7.43 (m, 2H), 7.38-7.34 (m, 3H), 7.09 (s, 1H), 5.09 (s, 1H), 4.12 (dd, J = 10.4, 1.4 Hz, 1H), 3.92 (dd, J = 10.4, 2.8 Hz, 1H), 2.61 (s, 3H), 0.80 (s, 9H), -0.02 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.4, 165.4, 161.1, 132.8, 129.5 (2C), 129.0, 128.4 (2C), 126.9, 117.8, 64.5, 59.3, 26.6, 25.6 (3C), 18.1, -5.85 (2C); HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C20H29N2O4Si 389.1891; Found 389.1877.
 次に、一般合成法2に従って、化合物C2(76.0mg,0.20mmol)をTHF(2.0mL)に溶かし、TBAF(390μL,0.39mmol)を加えて反応させ、化合物2(26.6mg,63%)を白色固体で得た。得られた化合物2の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000018
Mp = 242-243℃; IR (KBr) νmax = 3276, 3180, 3080, 3060, 3016, 2914, 1687, 1641, 1617, 1603 cm-11H NMR (400 MHz, DMSO-d6) δ 10.90 (br, 1H), 10.05 (br, 1H), 7.49 (d, J = 7.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.5 Hz, 1H), 6.74 (s, 1H), 5.28 (s, 1H), 4.93 (s, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 157.4, 157.0, 134.7, 133.2, 129.5 (2C), 128.9 (2C), 128.3, 126.7, 115.0, 100.6; HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C12H10N2NaO2 237.0635; Found 237.0638.
<合成例3:化合物3>
 一般合成法1に従って、アルデヒド A3(17.5μL,0.20mmol)と、ジケトピペラジン B(137.0mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C3(72.2mg,95%)を白色固体で得た。得られた化合物C3の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000019
Mp = 158-159℃; IR (KBr) νmax = 3400, 3255, 3143, 3120, 2956, 2931, 2885, 2858, 1707, 1687, 1635 cm-11H NMR (400 MHz, CDCl3) δ 7.81 (s, 1H), 7.68 (s, 1H), 7.53 (m, 1H), 6.90 (s, 1H), 6.56 (s, 1H), 5.09 (s, 1H), 4.10 (dd, J = 10.4, 1.6 Hz, 1H), 3.90 (dd, J = 10.4, 2.8 Hz, 1H), 2.59 (s, 3H), 0.76 (s, 9H), -0.05 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.4, 165.4, 160.9, 144.7, 142.9, 126.3, 118.6, 109.2, 109.1, 64.4, 59.3, 26.6, 25.5 (3C), 18.1, -5.89, -5.90; HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C18H27N2O5Si 379.1684; Found 379.1677.
 次に、一般合成法2に従って、化合物C3(41.5mg,0.11mmol)をTHF(1.5mL)に溶かし、TBAF(210μL,0.21mmol)を加えて反応させ、化合物3(14.8mg,64%)を白色固体で得た。得られた化合物3の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000020
Mp = 242-243℃; IR (KBr) νmax = 3291, 3163, 3143, 3022, 2925, 1693, 1643, 1622 cm-11H NMR (400 MHz, DMSO-d6) δ 10.88 (s, 1H), 9.74 (s, 1H), 8.20 (s, 1H), 7.73 (s, 1H), 6.89 (s, 1H), 6.62 (s, 1H), 5.27 (s, 1H), 4.91 (s, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 157.4, 157.1, 144.3, 144.2, 134.8, 125.7, 118.7, 110.9, 106.5, 100.4; HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C10H8N2NaO3 237.0427; Found 227.0432.
<合成例4:化合物4>
 一般合成法1に従って、アルデヒド A4(18.2μL,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C4(36.7mg,47%)を白色固体で得た。得られた化合物C4の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000021
Mp = 84-85℃; IR (KBr) νmax = 3176, 3095, 3030, 2951, 2929, 2858, 2341, 1689, 1631 cm-11H NMR (400 MHz, CDCl3) δ 7.92 (s, 1H), 7.47-7.45 (m, 1H), 7.42 (m, 1H), 7.17 (dd, J = 5.0, 1.1 Hz, 1H), 7.05 (s, 1H), 5.09 (s, 1H), 4.11 (dd, J = 10.4, 1.6 Hz, 1H), 3.91 (dd, J = 10.4, 2.8 Hz, 1H), 2.60 (s, 3H), 0.77 (s, 9H), -0.04 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.4, 165.4, 161.1 133.7, 127.6, 127.2, 126.1, 125.7, 112.7, 64.4, 59.3, 26.6, 25.6 (3C), 18.1, -5.87, -5.88; HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C18H27N2O4SSi 395.1455; Found 395.1443.
 次に、一般合成法2に従って、化合物C4(41.5mg,0.11mmol)をTHF(1.5mL)に溶かし、TBAF(210μL,0.21mmol)を加えて反応させ、化合物4(14.8mg,64%)を白色固体で得た。得られた化合物4の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000022
Mp = 242-243℃; IR (KBr) νmax = 3266, 3178, 3124, 3055, 3016, 2921, 1687, 1641 cm-11H NMR (400 MHz, DMSO-d6) δ 10.92 (s, 1H), 9.91 (s, 1H), 7.94 (d, J = 2.0 Hz, 1H), 7.62-7.60 (m, 1H), 7.37 (d, J = 5.1 Hz, 1H), 6.79 (s, 1H), 5.28 (s, 1H), 4.92 (s, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 157.6, 157.1, 134.8, 134.0, 129.0, 127.0, 126.7, 125.5, 109.9, 100.5; HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C10H8N2NaO2S 243.0199; Found 243.0190.
<合成例5:化合物5>
 一般合成法1に従って、アルデヒド A5(43.7mg,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C5(86.6mg,84%)を白色固体で得た。得られた化合物C5の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000023
 Mp = 57-58℃; IR (KBr) νmax = 3388, 3070, 2958, 2931, 2860, 1707, 1637, 1593, 1471 cm-11H NMR (400 MHz, CDCl3) δ 7.88 (s, 1H), 7.43 (s, 1H), 7.16 (s, 2H), 7.12 (s, 1H), 5.09 (s, 1H), 4.13 (d, J = 10.4 Hz, 1H), 3.92 (dd, J = 10.4, 2.6 Hz, 1H), 2.61 (s, 3H), 1.33 (s, 18H), 0.82 (s, 9H), 0.01 (s,   3H), 0.00 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.4, 165.3, 161.1, 152.4, 129.8, 128.2 (2C), 126.4 (2C), 118.1, 64.4, 59.3, 34.8 (2C), 31.1 (6C), 26.6, 25.6 (3C), 18.1, -5.84 (2C). One carbon signal is overlapped; HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C28H45N2O4Si 501.3143; Found 501.3135.
 次に、化合物C5(84.0mg,0.16mmol)をTHF(1.5mL)に溶かし、TBAF(330μL,0.33mmol)を加えて反応させた。溶媒を減圧除去した後、得られた固体にメタノールを加え懸濁した。そして、遠心(3500rpm,2min)による精製を行い、化合物5(34.1mg,64%)を黄色固体で得た。得られた化合物5の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000024
Mp = 204-205℃; IR (KBr) νmax = 3176, 3022, 2964, 2904, 1684, 1637 cm-11H NMR (400 MHz, DMSO-d6) δ 10.90 (s, 1H), 10.00 (s, 1H), 7.36 (s, 1H), 7.29 (s, 2H), 6.76 (s, 1H), 5.27 (s, 1H), 4.93 (s, 1H), 1.29 (s, 18H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 157.5, 156.9, 150.7 (2C), 134.8, 132.5, 126.2, 123.5 (2C), 122.6, 116.3, 100.4, 34.7 (2C), 31.3 (6C); HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C20H26N2NaO2 349.1887; Found 349.1875.
<合成例6:化合物6>
 一般合成法1に従って、アルデヒド A6(33.5μL,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C6(78.4mg,88%)を白色固体で得た。得られた化合物C6の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000025
Mp = 163-164℃; IR (KBr) νmax = 3203, 3087, 2958, 2931, 2879, 2858, 1707, 1691, 1639, 1512, 1460 cm-11H NMR (400 MHz, CDCl3) δ 7.94 (s, 1H), 7.46 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.3 Hz, 2H), 7.07 (s, 1H), 5.08 (s, 1H), 4.12 (dd, J = 10.4, 1.3 Hz, 1H), 3.92 (dd, J = 10.4, 2.8 Hz, 1H), 2.61 (s, 3H), 1.34 (s, 9H), 0.80 (s, 9H), -0.02 (s, 6H).; 13C{1H} NMR (100 MHz, CDCl3) δ 172.4, 165.3, 161.1, 152.4, 129.9, 128.2 (2C), 126.4 (2C), 118.0, 64.4, 59.3, 34.8, 31.1 (3C), 26.6, 25.6 (3C), 18.1, -5.84 (2C). One carbon signal is overlapped; HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C24H37N2O4Si 445.2517; Found 445.2511.
 次に、化合物C6(79.5mg,0.18mmol)をTHF(1.5mL)に溶かし、TBAF(360μL,0.36mmol)を加えて反応させた。溶媒を減圧除去した後、得られた固体にメタノールを加え懸濁した。そして、遠心(3500rpm,2min)による精製を行い、化合物6(28.6mg,59%)を白色固体で得た。得られた化合物6の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000026
Mp = 212-213℃; IR (KBr) νmax = 3188, 3020, 2962, 2914, 1691, 1645, 1620 cm-11H NMR (400 MHz, DMSO-d6) δ 10.91 (s, 1H), 10.05 (s, 1H), 7.43 (s, 4H), 6.71 (s, 1H), 5.26 (s, 1H), 4.91 (s, 1H), 1.28 (s, 9H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 157.6, 157.0, 151.0, 134.9, 130.6, 129.3 (2C), 126.4, 125.7 (2C), 115.0, 100.4, 34.7, 31.2 (3C); HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C16H18N2NaO2 293.1261; Found 293.1253.
<合成例7:化合物7>
 一般合成法1に従って、アルデヒド A7(23.6μL,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C7(82.1mg,quant.)を白色固体で得た。得られた化合物C7の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000027
Mp = 131-133℃; IR (KBr) νmax = 3194, 2943, 2927, 2858, 1703, 1682, 1630 cm-11H NMR (400 MHz, CDCl3) δ 7.92 (s, 1H), 7.27-7.26 (m, 4H), 7.06 (s, 1H), 5.09 (s, 1H), 4.12 (dd, J = 10.5, 1.4 Hz, 1H), 3.92 (dd, J = 10.5, 2.7 Hz, 1H), 2.61 (s, 3H), 2.39 (s, 3H), 0.80 (s, 9H), -0.02 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.4, 165.4, 161.2, 139.3, 130.2 (2C), 129.9, 128.4 (2C), 126.3, 118.1, 64.5, 59.3, 26.6, 25.6 (3C), 21.4, 18.1, -5.85 (2C); HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C21H31N2O4Si 403.2048; Found 403.2045.
 次に、一般合成法2に従って、化合物C7(63.7mg,0.16mmol)をTHF(1.5mL)に溶かし、TBAF(320μL,0.32mmol)を加えて反応させ、化合物7(29.3mg,81%)を白色固体で得た。得られた化合物7の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000028
Mp = 237-239℃; IR (KBr) νmax = 3168, 3060, 3026, 2918, 2889, 1682, 1635, 1604 cm-11H NMR (400 MHz, DMSO-d6) δ 10.91 (s,1H), 10.02 (s,1H), 7.39 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.70 (s, 1H), 5.27 (s, 1H), 4.92 (s, 1H), 2.31 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 157.5, 157.0, 138.0, 134.8, 130.4, 129.49 (2C), 129.47 (2C), 126.1, 115.1, 100.3, 21.1; HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C13H12N2NaO2 251.0791; Found 251.0782.
<合成例8:化合物8>
 一般合成法1に従って、アルデヒド A8(24.3μL,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C8(73.8mg,88%)を白色固体で得た。得られた化合物C8の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000029
Mp = 140-141℃; IR (KBr) νmax = 3180, 3107, 3072, 3033, 3012, 2954, 2929, 2856, 1682, 1631, 1606, 1514, 1464 cm-11H NMR (400 MHz, CDCl3) δ 7.93 (s, 1H), 7.32 (d, J = 8.6 Hz, 2H), 7.03 (s, 1H), 6.96 (d, J = 8.6 Hz, 2H), 5.08 (s, 1H), 4.11 (dd, J = 10.4, 1.6 Hz, 1H), 3.91 (dd, J = 10.4, 2.8 Hz, 1H), 3.84 (s, 3H), 2.60 (s, 3H), 0.78 (s, 9H), -0.03 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.4, 165.4, 161.3, 160.0, 130.0 (2C), 125.5, 125.1, 118.1, 114.9 (2C), 64.4, 59.3, 55.4, 26.6, 25.6 (3C), 18.1, -5.87 (2C); HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C21H31N2O5Si 419.1997; Found 419.1990.
 次に、一般合成法2に従って、化合物C8(52.2mg,0.13mmol)をTHF(1.5mL)に溶かし、TBAF(250μL,0.25mmol)を加えて反応させ、化合物8(20.8mg,71%)を黄色固体で得た。得られた化合物8の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000030
Mp = 229-231℃; IR (KBr) νmax = 3176, 3012, 2925, 2833, 2349, 1684, 1641, 1603, 1574, 1514 cm-11H NMR (400 MHz, DMSO-d6) δ 10.90 (s, 1H), 10.08 (s, 1H), 7.47 (d, J = 8.6 Hz, 2H), 6.97 (d, J = 8.6 Hz, 2H), 6.70 (s, 1H), 5.25 (s, 1H), 4.90 (s, 1H), 3.78 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 159.4, 157.7, 157.0, 134.9, 131.2 (2C), 125.6, 125.1, 115.3, 114.4 (2C), 100.2, 55.5; HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C13H12N2NaO3 267.0740; Found 267.0750.
<合成例9:化合物9>
 一般合成法1に従って、アルデヒド A9(33.2mg,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C9(73.7mg,82%)を白色固体で得た。得られた化合物C9の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000031
Mp = 175-176℃; IR (KBr) νmax = 3217, 2949, 2929, 2875, 1707, 1682, 1631, 1604, 1510 cm-11H NMR (400 MHz, CDCl3) δ 7.94 (s, 1H), 7.02 (s, 1H), 6.97 (d, J = 8.3 Hz, 1H), 6.92 (d, J = 8.3 Hz, 1H), 6.82 (s, 1H), 5.09 (s, 1H), 4.12 (d, J = 10.4 Hz, 1H), 3.92 (s, 3H), 3.92-3.90 (m, 1H), 3.88 (s, 3H), 2.60 (s, 3H), 0.80 (s, 9H), 0.00 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.4, 165.3, 161.2, 149.7, 149.6, 125.8, 125.5, 121.0, 118.1, 111.70, 111.67, 64.5, 59.3, 56.0, 55.9, 26.6, 25.6 (3C), 18.1, -5.83, -5.85; HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C22H33N2O6Si 449.2102; Found 449.2108.
 次に、一般合成法2に従って、化合物C9(63.0mg,0.14mmol)をTHF(1.5mL)に溶かし、TBAF(280μL,0.28mmol)を加えて反応させ、化合物9(21.8mg,62%)を黄色固体で得た。得られた化合物9の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000032
Mp = 237-238℃; IR (KBr) νmax = 3442, 3184, 3041, 1691, 1684, 1641, 1603, 1581, 1516 cm-11H NMR (400 MHz, DMSO-d6) δ 10.88 (s, 1H), 7.09-7.07 (m, 2H), 6.98 (d, J = 9.1 Hz, 1H), 6.71 (s, 1H), 5.26 (s, 1H), 4.91 (s, 1H), 3.78 (s, 3H), 3.77 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 157.6, 157.0, 149.2, 148.7, 134.8, 125.8, 125.1, 122.7, 115.7, 113.1, 112.0, 100.2, 55.7, 55.6; HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C14H14N2NaO4 297.0846; Found 297.0839.
<合成例10:化合物10>
 一般合成法1に従って、アルデヒド A10(32.8mg,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C10(75.4mg,84%)を白色固体で得た。得られた化合物C10の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000033
Mp = 46-48℃; IR (KBr) νmax = 3440, 2952, 2931, 2883, 2856, 1707, 1685, 1637, 1608, 1508, 1473 cm-11H NMR (400 MHz, CDCl3) δ 8.09 (d, J = 8.2 Hz, 2H), 8.05 (s, 1H), 7.42 (d, J = 8.2 Hz, 2H), 7.07 (s, 1H), 5.07 (s, 1H), 4.10 (d, J = 10.4 Hz, 1H), 3.93 (s, 3H), 3.93-3.89 (m, 1H), 2.60 (s, 3H), 0.78 (s, 9H), -0.03 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.3, 166.2, 165.5, 160.8, 137.3, 130.5 (2C), 130.2, 128.4 (2C), 128.0, 116.2, 64.4, 59.2, 52.3, 26.6, 25.6 (3C), 18.1, -5.88 (2C); HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C22H31N2O6Si 447.1946; Found 447.1949.
 次に、一般合成法2に従って、化合物C10(64.9mg,0.15mmol)をTHF(1.5mL)に溶かし、TBAF(290μL,0.29mmol)を加えて反応させ、化合物10(20.2mg,51%)を白色固体で得た。得られた化合物10の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000034
Mp = 248-249℃; IR (KBr) νmax = 3273, 3170, 3022, 2927, 1734, 1689, 1643, 1612, 1475 cm-11H NMR (400 MHz, DMSO-d6) δ 11.03 (s, 1H), 10.41 (s, 1H), 7.94 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 6.75 (s, 1H), 5.30 (s, 1H), 4.95 (s, 1H), 3.85 (s, 3H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 166.1, 157.2, 157.1, 138.3, 134.6, 129.7 (2C), 129.5 (2C), 128.7, 128.5, 113.3, 100.9, 52.4; HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C14H12N2NaO4 295.0689; Found 295.0691.
<合成例11:化合物11>
 一般合成法1に従って、アルデヒド A11(29.8mg,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C11(35.1mg,41%)を黄色固体で得た。得られた化合物C11の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000035
Mp = 183-184℃; IR (KBr) νmax = 3184, 3072, 3016, 2952, 2935, 2883, 2856, 2808, 1701, 1676, 1604, 1525 cm-11H NMR (400 MHz, CDCl3) δ 7.90 (s, 1H), 7.29 (d, J= 8.7 Hz, 2H), 7.02 (s, 1H), 6.72 (d, J= 8.7 Hz, 2H), 5.09 (s, 1H), 4.13 (d, J = 10.4 Hz, 1H), 3.92 (dd, J = 10.4, 2.6 Hz, 1H), 3.02 (s, 6H), 2.60 (s, 3H), 0.78 (s, 9H), -0.03 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.6, 165.3, 161.6, 150.5, 130.1 (2C), 123.4, 120.1, 119.6, 112.3 (2C), 64.4, 59.4, 40.1 (2C), 26.6, 25.6 (3C), 18.1, -5.84 (2C); HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C22H34N3O4Si 432.2313; Found 432.2328.
 化合物C11(47.4mg,0.11mmol)をTHF(1.5mL)に溶かし、TBAF(220μL,0.22mmol)を加えて反応させた。溶媒を減圧除去した後、得られた固体にメタノールを加え懸濁した。そして、遠心(3500rpm,2min)による精製を行い、化合物11(26.6mg,94%)を黄色固体で得た。得られた化合物11の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000036
Mp = 225-227℃; IR (KBr) νmax = 3257, 3153, 3030, 3006, 2902, 1682, 1643, 1599, 1527, 1475 cm-11H NMR (400 MHz, DMSO-d6) δ 10.77 (s, 1H), 9.84 (s, 1H), 7.39 (d, J = 8.8 Hz, 2H), 6.72 (d, J = 8.8 Hz, 2H), 6.67 (s, 1H), 5.22 (s, 1H), 4.87 (s, 1H), 2.95 (s, 6H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 157.9, 156.9, 150.3, 135.0, 131.0 (2C), 122.9, 120.5, 116.7, 112.1 (2C), 99.5, 39.9 (2C); HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C14H16N3O2 258.1237; Found 258.1234.
<合成例12:化合物12>
 一般合成法1に従って、アルデヒド A12(26.8μL,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C12(68.1mg,75%)を白色固体で得た。得られた化合物C12の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000037
Mp = 163-164℃; IR (KBr) νmax = 3080, 3020. 2956, 2929, 2897, 1712, 1685, 1633, 1466 cm-11H NMR (400 MHz, CDCl3) δ 8.03 (s, 1H), 7.70 (d, J = 8.2 Hz, 2H), 7.47 (d, J = 8.2 Hz, 2H), 7.07 (s, 1H), 5.08 (s, 1H), 4.09 (dd, J = 10.4, 1.4 Hz, 1H), 3.91 (dd, J = 10.4, 2.8 Hz, 1H), 2.61 (s, 3H), 0.79 (s, 9H), -0.02 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.3, 165.5, 160.7, 136.5, 130.7 (q, J = 32.7 Hz), 128.7 (2C), 128.3, 126.4 (q, J = 3.7 Hz, 2C), 123.7 (q, J = 270.7 Hz), 115.6, 64.5, 59.2, 26.6, 25.6 (3C), 18.1, -5.85, -5.87; HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C21H28F3N2O4Si 457.1765; Found 457.1785.
 次に、化合物C12(57.8mg,0.13mmol)をTHF(1.5mL)に溶かし、TBAF(260μL,0.26mmol)を加えて反応させた。溶媒を減圧除去した後、得られた固体にメタノールを加え懸濁した。そして、遠心(3500rpm,2min)による精製を試み、化合物12(25.0mg,70%)を白色固体で得た。得られた化合物12の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000038
Mp = 244-245℃; IR (KBr) νmax = 3180, 3037, 3020, 2902, 2821, 1685, 1641, 1630, 1479 cm-11H NMR (400 MHz, DMSO-d6) δ 10.99 (s, 1H), 10.46 (br, 1H), 7.73-7.67 (m, 4H), 6.75 (s, 1H), 5.29 (s, 1H), 4.94 (s, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 157.2, 157.1, 137.7, 134.7, 130.2 (2C), 128.7 128.0 (q, J = 31.5 Hz), 125.6 (q, J = 3.7 Hz, 2C), 124.5 (q, J = 270.3 Hz), 113.0, 101.0; HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C13H9F3N2NaO2 305.0508; Found 305.0506.
<合成例13:化合物13>
 一般合成法1に従って、アルデヒド A13(36.4mg,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C13(77.9mg,84%)を白色固体で得た。得られた化合物C13の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000039
Mp = 144-146℃; IR (KBr) νmax = 3184, 3033, 2958, 2929, 2883, 2856, 1695, 1637, 1606, 1489 cm-11H NMR (400 MHz, CDCl3) δ 8.01 (s, 1H), 7.68 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 7.4 Hz, 2H), 7.49-7.39 (m, 5H), 7.12 (s, 1H), 5.11 (s, 1H), 4.14 (dd, J = 10.4, 1.2 Hz, 1H), 3.93 (dd, J = 10.4, 2.8 Hz, 1H), 2.62 (s, 3H), 0.81 (s, 9H), -0.01 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.4, 165.4, 161.1, 141.8, 139.8, 131.7, 128.94 (2C), 128.92 (2C), 128.1 (2C), 127.9, 127.0 (2C), 126.8, 117.5, 64.5, 59.3, 26.7, 25.6 (3C), 18.1, -5.84 (2C); HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C26H33N2O4Si 465.2204; Found 465.2200.
 次に、一般合成法2に従って、化合物C13(67.8mg,0.15mmol)をTHF(1.5mL)に溶かし、TBAF(290μL,0.29mmol)を加えて反応させ、化合物13(34.3mg,81%)を黄色固体で得た。得られた化合物13の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000040
Mp = 229-230℃; IR (KBr) νmax = 3174, 3072, 3047, 3026, 2902, 1687, 1641, 1601, 1552, 1486 cm-11H NMR (400 MHz, DMSO-d6) δ 10.98 (s, 1H), 10.25 (s, 1H), 7.73-7.70 (m, 4H), 7.60 (d, J = 8.0 Hz, 2H), 7.48 (t, J = 7.5 Hz, 2H), 7.38 (t, J = 7.5 Hz, 1H), 6.78 (s, 1H), 5.29 (s, 1H), 4.94 (s, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 157.4, 157.1, 139.8, 139.7, 134.8, 132.5, 130.2 (2C), 129.3 (2C), 128.0, 127.0 (2C), 126.9, 126.8 (2C), 114.6, 100.6; HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C18H14N2NaO2 313.0948; Found 313.0941.
<合成例14:化合物14>
 一般合成法1に従って、アルデヒド A14(31.2mg,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C14(70.0mg,80%)を白色固体で得た。得られた化合物C14の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000041
Mp = 150-152℃; IR(KBr) νmax = 3197, 3057, 2952, 2925, 2854, 1711, 1701, 1678, 1639, 1624, 1506, 1469 cm-11H NMR (400 MHz, CDCl3) δ 8.14 (s, 1H), 7.91 (d, J = 8.5 Hz, 1H), 7.86-7.84 (m, 3H), 7.56- 7.53 (m, 2H), 7.44 (d, J = 8.5 Hz, 1H), 7.23 (s, 1H), 5.11 (s, 1H), 4.14 (d, J = 10.4 Hz, 1H), 3.94 (dd, J = 10.4, 2.6 Hz, 1H), 2.63 (s, 3H), 0.81 (s, 9H), 0.00 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.4, 165.5, 161.1, 133.3, 133.0, 130.2, 129.4, 128.2, 128.0, 127.8, 127.2, 127.0, 126.9, 125.6, 118.0, 64.5, 59.3, 26.7, 25.7 (2C), 18.1, -5.83 (2C); HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for; C24H31N2O4Si 439.2048; Found 439.2038.
 次に、一般合成法2に従って、化合物C14(67.8mg,0.16mmol)を THF(1.5mL)に溶かし、TBAF(310μL,0.31mmol)を加えて反応させ、化合物14(35.5mg,87%)を黄色固体で得た。得られた化合物14の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000042
Mp = 216-217℃; IR (KBr) νmax = 3289, 3176, 3049, 2910, 1687, 1643, 1610, 1595, 1463 cm-11H NMR (400 MHz, DMSO-d6) δ 10.99 (s, 1H), 10.28 (s, 1H), 8.08 (s, 1H), 7.95-7.91 (m, 3H), 7.58-7.51 (m, 3H), 6.89 (s, 1H), 5.30 (s, 1H), 4.95 (s, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 157.4, 157.2, 134.8, 133.1, 132.7, 130.8, 128.8, 128.5, 128.2, 127.7, 127.3, 127.1, 126.8, 126.6, 115.0, 100.6; HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C16H12N2NaO2 287.0791; Found 287.0786.
<合成例15:化合物15>
 一般合成法1に従って、アルデヒド A15(46.1mg,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させ、化合物C15(88.8mg,87%)を黄色固体で得た。得られた化合物C15の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000043
Mp = 83-85℃; IR (KBr) νmax = 3194, 3037, 2949, 2927, 2881, 2854, 1703, 1633 cm-11H NMR (400 MHz, CDCl3) δ 8.26-8.21 (m, 3H), 8.18-8.14 (m, 3H), 8.10-8.05 (m, 2H), 7.98 (d, J = 7.9 Hz, 1H), 7.92 (s, 1H), 7.87 (s, 1H), 5.12 (s, 1H), 4.18 (d, J = 10.4 Hz, 1H), 4.00 (dd, J = 10.4, 2.6 Hz, 1H), 2.70 (s, 3H), 0.87 (s, 9H), 0.06 (d, J = 7.9 Hz, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.4, 165.3, 161.0, 131.9, 131.2, 130.8, 129.3, 128.8, 128.6, 127.9, 127.2, 126.5, 126.4, 126.1, 126.0, 125.9, 125.5, 125.2, 124.4, 123.6, 116.6, 64.6, 59.4, 26.7, 25.8 (3C), 18.3, -5.68, -5.80; HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C30H33N2O4Si 513.2204; Found 513.2192.
 次に、一般合成法2に従って、化合物C15(88.8mg,0.17mmol)をTHF(1.5mL)に溶かし、TBAF(350μL,0.35mmol)を加えて反応させ、化合物15(45.6mg,78%)を黄色固体で得た。得られた化合物15の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000044
Mp = 265-266℃; IR (KBr) νmax = 3163, 3033, 2897, 1682, 1633, 1606 cm-11H NMR (400 MHz, DMSO-d6) δ 10.95 (br, 1H), 10.23 (br, 1H), 8.34-8.30 (m, 3H), 8.26 (d, J = 9.2 Hz, 1H), 8.21 (s, 2H), 8.16 (d, J = 9.2 Hz, 1H), 8.12-8.07 (m, 2H), 7.47 (s, 1H), 5.30 (s, 1H), 4.98 (s, 1H); 13C{1H} NMR (100 MHz, DMSO-d6) δ 157.2, 157.0, 134.9, 131.0, 130.9, 130.6, 129.0, 128.8, 128.2, 128.1, 127.8, 127.6, 127.3, 126.6, 125.8, 125.7, 125.2, 124.4, 124.2, 124.1, 113.0, 100.6; HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C22H14N2NaO2 361.0948; Found 361.0939.
<合成例16:NeoB>
 一般合成法1に従って、アルデヒド A16(51.4mg,0.20mmol)と、ジケトピペラジン B(137mg,0.40mmol)とをDMF(2.0mL)に溶かし、カリウムtert-ブトキシド(65.3mg,0.58mmol)を加えて反応させた。回収したアルデヒド A16を用いて、再び一般合成法1に従って反応を行った。計4回反応を行うことで、化合物C16(15.2mg,14%)を黄色油状物質で得た。得られた化合物C16の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000045
 
Mp = amorphous; IR (NaCl) νmax = 3367, 3178, 3018, 2954, 2929, 2883, 2858, 1693, 1633 cm-11H NMR (400 MHz, CDCl3) δ 7.42-7.36 (m, 4H), 7.26-7.23 (m, 1H), 7.14 (t, J = 7.2 Hz, 1H), 6.19 (dd, J = 17.4, 10.6 Hz, 1H), 5.51 (s, 2H), 5.14-5.02 (m, 2H), 5.07 (s, 1H), 4.23 (d, J = 10.6 Hz, 1H), 4.02 (dd, J = 10.6, 2.8 Hz, 1H), 3.40 (s, 3H), 2.64 (s, 3H), 1.63 (s, 3H), 1.60 (s, 3H), 0.88 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.4, 164.9, 161.0, 146.8, 143.9, 137.9, 125.8, 124.8, 123.2, 121.5, 120.0, 115.4 ,112.2, 110.3, 105.6, 75.2, 64.7, 59.3, 55.7, 40.7, 30.1, 29.6, 26.8, 25.8 (3C), 18.6, -5.43, -5.95; HRMS (ESI/QTOF) m/z: [M+H]+ Calcd for C29H42N3O5Si 540.2888; Found 540.2899.
 次に、一般合成法2に従って、化合物C16(28.2mg,0.05mmol)をTHF(1.0mL)に溶かし、TBAF(100μL,0.10mmol)を加えて反応させ、化合物17(16.0mg,84%)を茶色固体で得た。得られた化合物17の化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000046
Mp = 200-201℃; IR (KBr) νmax = 3176, 2991, 2970, 2814, 1684, 1643 cm-11H NMR (400 MHz, CDCl3) δ 9.10 (s, 1H), 7.53 (s, 1H), 7.43 (d, J = 7.7 Hz, 1H), 7.28-7.24 (m, 2H), 7.26 (s, 1H), 7.17 (t, J = 7.7 Hz, 1H), 6.19 (dd, J = 17.5, 10.5 Hz, 1H), 5.61 (s, 1H), 5.51 (s, 2H), 5.12 (d, J = 10.5 Hz, 1H), 5.05 (d, J = 17.5 Hz, 1H), 5.00 (s, 1H), 3.40 (s, 3H), 1.60 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 157.7, 155.9, 146.7, 143.5, 138.0, 133.3, 125.5, 125.0, 123.3, 121.5, 119.0, 114.5 ,112.2, 110.4, 105.0, 102.7, 75.2, 55.7, 40.6, 29.8 (2C); HRMS (ESI/QTOF) m/z: [M+Na]+ Calcd for C21H23N3NaO3 388.1632; Found 388.1645.
 化合物17(6.5mg,0.02mmol)をTHF(0.25mL)、水(0.25mL)に溶かし、ギ酸(0.50mL)を加えて反応させ、NeoB(4.4mg,77%)を黄色固体で得た。得られたNeoBの化学構造及び物性データは以下のとおりである。
Figure JPOXMLDOC01-appb-C000047
1H NMR (400 MHz, CDCl3) δ 8.33 (s, 1H), 8.03 (s, 1H), 7.65 (s, 1H), 7.38 (d, J = 7.4 Hz, 1H), 7.31 (d, J = 7.4 Hz, 1H), 7.28-7.26 (m, 1H), 7.23-7.17 (m, 2H), 6.07 (dd, J = 17.2, 10.8 Hz, 1H), 5.60 (s, 1H), 5.25 (d, J = 10.8 Hz, 1H), 5.20 (d, J = 17.2 Hz, 1H), 4.93 (s, 1H), 1.54 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 157.3, 155.8, 144.3, 144.1, 134.3, 133.4, 125.8, 124.3, 122.5, 121.3, 119.0, 113.6, 113.2, 111.4, 102.0, 39.2, 27.4
[試験例1:HCV感染系試験]
 試験例1では、上記で合成した化合物及びNeoBを、HCVに感染した細胞に添加した場合の感染力価を確認した。試験手順は図1に示されたものである。
 まず、Huh-7.5.1細胞を96ウェルプレートに7.0×10個/ウェルの細胞密度となるように播種し、一晩培養した。次に、感染性HCV含有培地を用いてMOI=0.15で細胞を4時間処理した。洗浄後、上記で合成した化合物及びNeoBを含む新しい培地に交換して72時間後に上清を回収した。ここで、細胞毒性は、MTTアッセイにより確認した。MTTアッセイはCell Proliferation Kit II XTT(Roche Diagnostics)を使用して行った。MTTアッセイの結果を図3に示す。
 次に、上記で回収した上清を4℃、2500rpmで遠心して、浮遊する死細胞等を取り除いた。感染力価の測定のため、この培養上清を、96ウェルプレートに7.0×10個/ウェルの細胞密度で播種したHuh-7.5.1細胞に処理し、4時間後に新しい培地に交換し、更に48時間培養した。
 HCV感染細胞の可視化と定量は以下の方法で行った。まず、上清を除きPBSで1回洗浄した後、96ウェルプレートを100% メタノール液の入った水槽内に沈め、-20℃で20分間処理した。次に、メタノールを完全に除き、0.3% Triton X 100を含有するBlock ace(雪印乳業)を各ウェルに100μLずつ加え、室温で1時間ブロッキングした。1時間後にPBSで2回洗浄した後、500倍希釈した抗HCV core抗体(2H9)50μLを加え、暗所4℃で一晩インキュベートした。その後、PBSで5回洗浄し、500倍希釈したAlexa 488 anti-mouse IgG(Invitrogen)と5000倍希釈したDAPIとの混合液を50μL加え、室温で1時間静置した。PBSで5回洗浄し、PBSを100μL入れ、蛍光顕微鏡で緑色に蛍光標識された細胞の数(フォーカス)を計数し、感染力価(focus forming units/mL;ffu/mL)を測定した。各化合物の感染力価の測定結果を図2に示す。
 図2に示されるように、化合物1、2、3、4、5、6、7、10、12、13、14、15を添加した場合、NeoBを同濃度となるように添加した場合と比較して、細胞毒性がみられない濃度において感染力価が低いことが確認された。また、化合物8、9、11を添加した場合、細胞毒性がみられない濃度において、NeoBと同等の感染力価であることが確認された。
[試験例2:SARS-CoV-2感染系試験]
 試験例2では、上記で合成した化合物2、10、12、及びNeoBを、SARS-CoV-2に感染した細胞に添加した場合のウイルスRNA量を確認した。試験手順は図4に示されたものである。
 SARS-CoV-2を用いた感染実験はBSL3実験区画内で行った。まず、VeroE6/TMPRSS2細胞を96ウェルプレートに3.0×10個/ウェルの細胞密度となるように播種し、一晩培養した。次に、感染性SARS-CoV-2(WK-521株)を含む培地を用いて、MOI=0.003で、上記で合成した化合物及びNeoBとともに細胞を1時間処理した。洗浄後、化合物を含む新しい培地に交換した。24時間後に培養上清を回収し、細胞毒性を顕微鏡にて確認した。また、上記上清中に含まれるウイルスRNAをMagMax Viral/Pathogen II Nucleic Acid Isolation kit(Thermo Fisher Scientific)により抽出した。
 抽出物に含まれるウイルスRNAはTHUNDERBIRD Probe One-step qRT-PCR kit(TOYOBO)を用いたリアルタイムRT-PCRによって定量した。リアルタイムRT-PCRで用いたプライマー及びプローブの配列は以下のとおりである。なお、プローブは、5’末端はFAMで、3’末端はTAMRAで、それぞれ修飾されたものを用いた。
Figure JPOXMLDOC01-appb-T000048
 各化合物を添加した場合のSARS-CoV-2ウイルスRNAの定量結果を図5に示す。
 図5に示されるように、化合物2、10、12を添加した場合、NeoBを同濃度となるように添加した場合と比較して、細胞毒性がみられない濃度においてウイルスRNA量が低いことが確認された。
[試験例3:LXRの転写活性の評価]
 試験例3では、上記で合成した化合物6及びNeoBをHuh-7細胞に添加した場合のLXRの転写活性を確認した。
 まず、Huh-7細胞を6ウェルプレートに5×10個/ウェルの細胞密度で播種し、一晩培養した。この細胞に、LXRのDNA結合エレメントの下流にルシフェラーゼをコードしたレポータープラスミドをTransIT-LT1 Transfection Reagent(TaKaRa)により導入した。12時間後、この細胞を96ウェルプレートに7.0×10個/ウェルの細胞密度で再播種した。一晩培養した後、化合物6(5μM)又はNeoB(10μM)と、LXRアゴニストであるT0901317(1μM)とを添加し、60時間培養を続けた。コントロールとしては、化合物6又はNeoBの代わりにジメチルスルホキシド(DMSO)を添加した。培養後の細胞をPBSで1回洗浄した後、1×Passive Lysis Buffer(Promega)を各ウェルに30μLずつ添加し、室温で20分間静置して細胞を溶解した。測定用白色ハーフエリア96ウェルプレート(Corning)に細胞溶解液8μLとLuciferase Assay Substrate(Promega)25μLとを添加し、2030 Multilabel Reader(Perkin Elmer)によりルシフェラーゼの発光シグナルを測定することで、LXRの転写活性を評価した。結果を図6に示す。
 図6に示されるように、LXRアゴニストであるT0901317を添加するとLXRの転写活性が亢進したが、化合物6(5μM)又はNeoB(10μM)を共添加するとLXRの転写活性が有意に抑制された(**p<0.01;p<0.05)。
[試験例4:HCV感染細胞の脂肪滴産生の評価]
 試験例3では、上記で合成した化合物6及びNeoBをHCV感染Huh-7細胞に添加した場合の脂肪滴産生を確認した。
 まず、HCV感染Huh-7細胞をコラーゲンコートした8ウェルチャンバースライドに1.0×10個/ウェルの細胞密度で播種し、一晩培養した。次いで、化合物6(5μM)又はNeoB(20μM)を添加し、72時間培養を続けた。コントロールとしては、化合物6又はNeoBの代わりにジメチルスルホキシド(DMSO)を添加した。培養後の細胞をPBSで1回洗浄した後、4%パラホルムアルデヒドを添加して室温で20分間静置し、固定した。PBSで2回洗浄した後、0.05%サポニン含有PBSを添加し、室温で10分間処理した後、Block ace(KAC)を添加し、室温で1時間静置してブロッキングした。Block aceにより1000倍希釈したDAPIを添加し、室温で1時間遮光して静置した。PBSで4回洗浄した後、PBSにより500倍希釈したBODIPY 493/503(Invitrogen)を添加し、室温で20分間遮光して静置した。チャンバースライドからウェルカセットを外し、PBSで4回洗浄した後、共焦点レーザー顕微鏡TCS SP8(Leica)で細胞を観察した。結果を図7に示す。
 図7に示されるように、化合物6(5μM)又はNeoB(20μM)を添加すると、HCV感染細胞の細胞内における脂肪滴産生が抑制された。

Claims (6)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは置換基を有していてもよいアリール基又は置換基を有していてもよいヘテロアリール基を示す。但し、Rは下記式(2)で表される基を除く。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、*は結合手を示す。]
  2.  前記Rは置換基を有していてもよいアリール基を示す、請求項1に記載の化合物。
  3.  請求項1又は2に記載の化合物を有効成分として含有する、プラス鎖RNAウイルスに対する抗ウイルス剤。
  4.  前記プラス鎖RNAウイルスがC型肝炎ウイルス又はSARS-CoV-2である、請求項3に記載の抗ウイルス剤。
  5.  下記式(4)で表される化合物を有効成分として含有する、SARS-CoV-2に対する抗ウイルス剤。
    Figure JPOXMLDOC01-appb-C000003
  6.  請求項1又は2に記載の化合物を有効成分として含有する、脂肪滴産生抑制剤。
PCT/JP2021/042944 2020-11-30 2021-11-24 新規化合物、抗プラス鎖rnaウイルス剤、及び脂肪滴産生抑制剤 WO2022113987A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022565363A JPWO2022113987A1 (ja) 2020-11-30 2021-11-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020198970 2020-11-30
JP2020-198970 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022113987A1 true WO2022113987A1 (ja) 2022-06-02

Family

ID=81755562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042944 WO2022113987A1 (ja) 2020-11-30 2021-11-24 新規化合物、抗プラス鎖rnaウイルス剤、及び脂肪滴産生抑制剤

Country Status (2)

Country Link
JP (1) JPWO2022113987A1 (ja)
WO (1) WO2022113987A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102669110A (zh) * 2012-05-16 2012-09-19 中国科学院海洋研究所 一种吲哚二酮哌嗪类衍生物的应用
CN104402792A (zh) * 2014-11-13 2015-03-11 中国科学院南海海洋研究所 一种吲哚-3-甲醛类化合物的制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102669110A (zh) * 2012-05-16 2012-09-19 中国科学院海洋研究所 一种吲哚二酮哌嗪类衍生物的应用
CN104402792A (zh) * 2014-11-13 2015-03-11 中国科学院南海海洋研究所 一种吲哚-3-甲醛类化合物的制备方法和应用

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BHAVARAJU, S. MCGREGOR, M.A. ROSEN, W.: "Nucleophilic reactivity of amines with an @a-formylglycyl enol-tosylate fragment", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 48, no. 44, 4 October 2007 (2007-10-04), Amsterdam , NL , pages 7751 - 7755, XP022284190, ISSN: 0040-4039, DOI: 10.1016/j.tetlet.2007.09.018 *
CHEN XUEQING; SI LONGLONG; LIU DONG; PROKSCH PETER; ZHANG LIHE; ZHOU DEMIN; LIN WENHAN: "Neoechinulin B and its analogues as potential entry inhibitors of influenza viruses, targeting viral hemagglutinin", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 93, 7 February 2015 (2015-02-07), AMSTERDAM, NL , pages 182 - 195, XP029176749, ISSN: 0223-5234, DOI: 10.1016/j.ejmech.2015.02.006 *
DATABASE REGISTRY STN; 20 November 2007 (2007-11-20), ANONYMOUS : "2,5-Piperazinedione, 3-[(4-hydroxyphenyl)methylene]-6-methylene-", XP055936406, Database accession no. RN 955086-50-7 *
KAMAUCHI HITOSHI, KINOSHITA KAORU, SUGITA TAKASHI, KOYAMA KIYOTAKA: "Conditional changes enhanced production of bioactive metabolites of marine derived fungus Eurotium rubrum", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 26, no. 20, 1 October 2016 (2016-10-01), AMSTERDAM, NL , pages 4911 - 4914, XP055936412, ISSN: 0960-894X, DOI: 10.1016/j.bmcl.2016.09.017 *
NAGASAWA HIROMICHI, ISOGAI AKIRA, SUZUKI AKINORI, TAMURA SABURO: "Structures of isoechinulins A, B and C, new indole metabolites from aspergillus ruber", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 17, no. 19, 1 May 1976 (1976-05-01), Amsterdam , NL , pages 1601 - 1604, XP055936416, ISSN: 0040-4039, DOI: 10.1016/S0040-4039(01)91627-2 *
NAKAJIMA SYO, WATASHI KOICHI, OHASHI HIROFUMI, KAMISUKI SHINJI, IZAGUIRRE CARBONELL JESUS, KWON ANDREW, SUZUKI HARUKAZU, KATAOKA M: "Fungus-Derived Neoechinulin B as a Novel Antagonist of Liver X Receptor, Identified by Chemical Genetics Using a Hepatitis C Virus Cell Culture System", JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 90, no. 20, 15 October 2016 (2016-10-15), US , pages 9058 - 9074, XP055936420, ISSN: 0022-538X, DOI: 10.1128/JVI.00856-16 *
NISHIUCHI KOTA, OHASHI HIROFUMI, FURUTA MASATERU, MASHIKO TAKUMI, OHGANE KENJI, KAMISUKI SHINJI, WATASHI KOICHI, KURAMOCHI KOUJI: "3G05-14 Synthesis and Antivirus Effects of Neoechinulin B and Its Derivatives", ANNUAL MEETING OF THE JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 2021, JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, JP, 5 March 2021 (2021-03-05) - 18 March 2021 (2021-03-18), JP, pages 869 - 869, XP055936430 *
SENCANSKI MILAN, RADOSEVIC DRAGINJA, PEROVIC VLADIMIR, GEMOVIC BRANISLAVA, STANOJEVIC MAJA, VELJKOVIC NEVENA, GLISIC SANJA: "Natural Products as Promising Therapeutics for Treatment of Influenza Disease", CURRENT PHARMACEUTICAL DESIGN, BENTHAM SCIENCE PUBLISHERS, NL, vol. 21, no. 38, 12 November 2015 (2015-11-12), NL , pages 5573 - 5588, XP055936402, ISSN: 1381-6128, DOI: 10.2174/1381612821666151002113426 *
SHIKI SAITOH ○, OTAGAKI JUNICHIRO, OOHASHI HIROHUMI, NISHIOKA KAZANE, NAKAMURA KOU, TSURUKAWA YUKINE, SHIBASAKI HISANOBU, KANNO KA: "3G05-04 Discovery of a Novel LXR antagonist and its anti-hepatitis C virus activity", ANNUAL MEETING OF THE JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 2021, JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 5 March 2021 (2021-03-05) - 18 March 2021 (2021-03-18), pages 859 - 859, XP055936424 *

Also Published As

Publication number Publication date
JPWO2022113987A1 (ja) 2022-06-02

Similar Documents

Publication Publication Date Title
EP3319606B1 (en) Pharmaceutical compound
KR101891933B1 (ko) B형 간염 바이러스 감염의 치료 또는 예방을 위한 신규한 피리다존 및 트라이아진온
JP6134338B2 (ja) B型肝炎ウイルス共有結合閉環状dna形成の阻害剤およびそれらの使用方法
ES2569660T3 (es) Inhibidores de la IRE-1alfa
CA2726588C (en) Compounds and methods for treating inflammatory and fibrotic disorders
ES2660914T3 (es) Derivados de 6-(5-hidroxi-1H-pirazol-1-il)nicotinamida y su uso como inhibidores de PHD
US10023591B2 (en) Heterocyclic derivatives and use thereof
WO2007142323A1 (ja) 側鎖にスピロ環構造を有する新規インダゾール誘導体
CN107176933B (zh) 一种含氮烷基化和芳基化亚砜亚胺的吲哚胺-2,3-双加氧酶抑制剂
JP2013505218A (ja) 複素環式抗ウイルス化合物
WO2018121689A1 (zh) 磺酰胺-芳基酰胺类化合物及其治疗乙型肝炎的药物用途
KR20080091294A (ko) 바이러스 폴리머라제 억제제
JP2012519661A (ja) 抗ウイルス性複素環化合物
US20190092761A1 (en) Methods and Compositions for Inhibition of Bromodomain and Extratermial Proteins
JP6492012B2 (ja) 新規キナゾリン誘導体
JP2016535043A (ja) キナゾリンベースの呼吸器合胞体ウイルス阻害剤
JP5946409B2 (ja) IRE−1αインヒビター
JP2013513584A (ja) 複素環式抗ウイルス化合物
JP2012527420A (ja) 抗ウイルス性複素環化合物
WO2022113987A1 (ja) 新規化合物、抗プラス鎖rnaウイルス剤、及び脂肪滴産生抑制剤
US20140194443A1 (en) Pyrazolyl-Based Carboxamides I
US11773121B2 (en) Antiviral compounds
WO1999054306A1 (fr) Derives isoquinolinesulfonamide et medicaments integrant ces derives comme principe actif
RU2572558C2 (ru) Противовирусные гетероциклические соединения
US10035775B2 (en) Compositions for the treatment of fibrosis and fibrosis-related conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565363

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897959

Country of ref document: EP

Kind code of ref document: A1